Sample records for early eukaryotic versatility

  1. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likelymore » present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.« less

  2. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    PubMed Central

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  3. Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks

    PubMed Central

    2011-01-01

    Background Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. Results A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Conclusions Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking

  4. Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks.

    PubMed

    Xie, Xueying; Jin, Jing; Mao, Yongyi

    2011-08-18

    Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking versatility appear to be evolutionary

  5. Morphological and ecological complexity in early eukaryotic ecosystems.

    PubMed

    Javaux, E J; Knoll, A H; Walter, M R

    2001-07-05

    Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

  6. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    PubMed

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  7. Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes

    PubMed Central

    Ginger, Michael L.; Fritz-Laylin, Lillian K.; Fulton, Chandler; Cande, W. Zacheus; Dawson, Scott C.

    2011-01-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2–3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H2 in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. PMID:21036663

  8. The early evolution of eukaryotes - A geological perspective

    NASA Technical Reports Server (NTRS)

    Knoll, Andrew H.

    1992-01-01

    This paper examines the goodness of fit between patterns of biological and environmental history implied by molecular phylogenies of eukaryotic organisms and the geological records of early eukaryote evolution. It was found that Precambrian geological records show evidence that episodic increases in biological diversity roughly coincided with episodic environmental changes and by sharp increases in atmospheric oxygen concentrations which significantly changed the earth surface environments. Although the goodness of fit among physical and biological changes is gratifyingly high, the records of these changes do not always coincide in time. The additional information in these fields that is needed for complete integration of geological and phylogenic records is suggested.

  9. Paleobiological perspectives on early eukaryotic evolution.

    PubMed

    Knoll, Andrew H

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600-1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ~800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon.

  10. Paleobiological Perspectives on Early Eukaryotic Evolution

    PubMed Central

    Knoll, Andrew H.

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600–1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ∼800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon. PMID:24384569

  11. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting proterozoic paleobiology and biogeochemical processes in light of trait evolution.

    PubMed

    Blank, Carrine E

    2013-12-01

    Phylogenetic analyses were performed on concatenated data sets of 31 genes and 11,789 unambiguously alignable characters from 37 cyanobacterial and 35 chloroplast genomes. The plastid lineage emerged somewhat early in the cyanobacterial tree, at a time when Cyanobacteria were likely unicellular and restricted to freshwater ecosystems. Using relaxed molecular clocks and 22 age constraints spanning cyanobacterial and eukaryote nodes, the common ancestor to the photosynthetic eukaryotes was predicted to have also inhabited freshwater environments around the time that oxygen appeared in the atmosphere (2.0-2.3 Ga). Early diversifications within each of the three major plastid clades were also inferred to have occurred in freshwater environments, through the late Paleoproterozoic and into the middle Mesoproterozoic. The colonization of marine environments by photosynthetic eukaryotes may not have occurred until after the middle Mesoproterozoic (1.2-1.5 Ga). The evolutionary hypotheses proposed here predict that early photosynthetic eukaryotes may have never experienced the widespread anoxia or euxinia suggested to have characterized marine environments in the Paleoproterozoic to early Mesoproterozoic. It also proposes that earliest acritarchs (1.5-1.7 Ga) may have been produced by freshwater taxa. This study highlights how the early evolution of habitat preference in photosynthetic eukaryotes, along with Cyanobacteria, could have contributed to changing biogeochemical conditions on the early Earth. © 2013 Phycological Society of America.

  12. Energetics and genetics across the prokaryote-eukaryote divide

    PubMed Central

    2011-01-01

    Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by: Eugene Koonin, William Martin

  13. The eukaryotic RNA exosome: same scaffold but variable catalytic subunits.

    PubMed

    Lykke-Andersen, Søren; Tomecki, Rafal; Jensen, Torben Heick; Dziembowski, Andrzej

    2011-01-01

    The RNA exosome is a versatile ribonucleolytic protein complex that participates in a multitude of cellular RNA processing and degradation events. It consists of an invariable nine-subunit core that associates with a variety of enzymatically active subunits and co-factors. These contribute to or even provide the catalytic activity and substrate specificity of the complex. The S. cerevisiae exosome has been intensively studied since its discovery in 1997 and thus serves as the archetype of eukaryotic exosomes. Notably, its catalytic potential, derived exclusively from associated subunits, differs between the nuclear and cytoplasmic versions of the complex. The same holds true for other eukaryotes, however, recent discoveries from various laboratories including our own have revealed that there are variations on this theme. Here, we review the latest findings concerning catalytic subunits of eukaryotic exosomes, and we discuss the apparent need for differential composition and subcellular distribution of exosome variants.

  14. Symbiosis in eukaryotic evolution.

    PubMed

    López-García, Purificación; Eme, Laura; Moreira, David

    2017-12-07

    Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Endosymbiosis and Eukaryotic Cell Evolution.

    PubMed

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cas9-mediated targeting of viral RNA in eukaryotic cells.

    PubMed

    Price, Aryn A; Sampson, Timothy R; Ratner, Hannah K; Grakoui, Arash; Weiss, David S

    2015-05-12

    Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems are prokaryotic RNA-directed endonuclease machineries that act as an adaptive immune system against foreign genetic elements. Using small CRISPR RNAs that provide specificity, Cas proteins recognize and degrade nucleic acids. Our previous work demonstrated that the Cas9 endonuclease from Francisella novicida (FnCas9) is capable of targeting endogenous bacterial RNA. Here, we show that FnCas9 can be directed by an engineered RNA-targeting guide RNA to target and inhibit a human +ssRNA virus, hepatitis C virus, within eukaryotic cells. This work reveals a versatile and portable RNA-targeting system that can effectively function in eukaryotic cells and be programmed as an antiviral defense.

  17. Cas9-mediated targeting of viral RNA in eukaryotic cells

    PubMed Central

    Price, Aryn A.; Sampson, Timothy R.; Ratner, Hannah K.; Grakoui, Arash; Weiss, David S.

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats–CRISPR associated (CRISPR-Cas) systems are prokaryotic RNA-directed endonuclease machineries that act as an adaptive immune system against foreign genetic elements. Using small CRISPR RNAs that provide specificity, Cas proteins recognize and degrade nucleic acids. Our previous work demonstrated that the Cas9 endonuclease from Francisella novicida (FnCas9) is capable of targeting endogenous bacterial RNA. Here, we show that FnCas9 can be directed by an engineered RNA-targeting guide RNA to target and inhibit a human +ssRNA virus, hepatitis C virus, within eukaryotic cells. This work reveals a versatile and portable RNA-targeting system that can effectively function in eukaryotic cells and be programmed as an antiviral defense. PMID:25918406

  18. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    PubMed Central

    Li, Wei; Podar, Mircea

    2016-01-01

    ABSTRACT The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. IMPORTANCE Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and

  19. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake.

    PubMed

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M

    2016-06-15

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential

  20. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activatedmore » cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential

  1. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    DOE PAGES

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.

    2016-04-15

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activatedmore » cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential

  2. Ribosomal RNA sequence suggest microsporidia are extremely ancient eukaryotes

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Maddox, J. V.; Friedman, S.; Debrunner-Vossbrinck, B. A.; Woese, C. R.

    1987-01-01

    A comparative sequence analysis of the 18S small subunit ribosomal RNA (rRNA) of the microsporidium Vairimorpha necatrix is presented. The results show that this rRNA sequence is more unlike those of other eukaryotes than any known eukaryote rRNA sequence. It is concluded that the lineage leading to microsporidia branched very early from that leading to other eukaryotes.

  3. Eukaryotic organisms in Proterozoic oceans

    PubMed Central

    Knoll, A.H; Javaux, E.J; Hewitt, D; Cohen, P

    2006-01-01

    The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800–1300 Myr old rocks. 1300–720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran–Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms. PMID:16754612

  4. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    PubMed

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  5. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes.

    PubMed

    Nillegoda, Nadinath B; Stank, Antonia; Malinverni, Duccio; Alberts, Niels; Szlachcic, Anna; Barducci, Alessandro; De Los Rios, Paolo; Wade, Rebecca C; Bukau, Bernd

    2017-05-15

    Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

  6. What can we infer about the origin of sex in early eukaryotes?

    PubMed Central

    2016-01-01

    Current analysis shows that the last eukaryotic common ancestor (LECA) was capable of full meiotic sex. The original eukaryotic life cycle can probably be described as clonal, interrupted by episodic sex triggered by external or internal stressors. The cycle could have started in a highly flexible form, with the interruption of either diploid or haploid clonal growth determined by stress signals only. Eukaryotic sex most likely evolved in response to a high mutation rate, arising from the uptake of the endosymbiont, as this (proto) mitochondrion generated internal reactive oxygen species. This is consistent with the likely development of full meiotic sex from a diverse set of existing archaeal (the host of the endosymbiont) repair and signalling mechanisms. Meiotic sex could thus have been one of the fruits of symbiogenesis at the basis of eukaryotic origins: a product of the merger by which eukaryotic cells arose. Symbiogenesis also explains the large-scale migration of organellar DNA to the nucleus. I also discuss aspects of uniparental mitochondrial inheritance and mitonuclear interactions in the light of the previous analysis. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619694

  7. What can we infer about the origin of sex in early eukaryotes?

    PubMed

    Speijer, Dave

    2016-10-19

    Current analysis shows that the last eukaryotic common ancestor (LECA) was capable of full meiotic sex. The original eukaryotic life cycle can probably be described as clonal, interrupted by episodic sex triggered by external or internal stressors. The cycle could have started in a highly flexible form, with the interruption of either diploid or haploid clonal growth determined by stress signals only. Eukaryotic sex most likely evolved in response to a high mutation rate, arising from the uptake of the endosymbiont, as this (proto) mitochondrion generated internal reactive oxygen species. This is consistent with the likely development of full meiotic sex from a diverse set of existing archaeal (the host of the endosymbiont) repair and signalling mechanisms. Meiotic sex could thus have been one of the fruits of symbiogenesis at the basis of eukaryotic origins: a product of the merger by which eukaryotic cells arose. Symbiogenesis also explains the large-scale migration of organellar DNA to the nucleus. I also discuss aspects of uniparental mitochondrial inheritance and mitonuclear interactions in the light of the previous analysis.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  8. Ancient diversification of eukaryotic MCM DNA replication proteins

    PubMed Central

    Liu, Yuan; Richards, Thomas A; Aves, Stephen J

    2009-01-01

    Background Yeast and animal cells require six mini-chromosome maintenance proteins (Mcm2-7) for pre-replication complex formation, DNA replication initiation and DNA synthesis. These six individual MCM proteins form distinct heterogeneous subunits within a hexamer which is believed to form the replicative helicase and which associates with the essential but non-homologous Mcm10 protein during DNA replication. In contrast Archaea generally only possess one MCM homologue which forms a homohexameric MCM helicase. In some eukaryotes Mcm8 and Mcm9 paralogues also appear to be involved in DNA replication although their exact roles are unclear. Results We used comparative genomics and phylogenetics to reconstruct the diversification of the eukaryotic Mcm2-9 gene family, demonstrating that Mcm2-9 were formed by seven gene duplication events before the last common ancestor of the eukaryotes. Mcm2-7 protein paralogues were present in all eukaryote genomes studied suggesting that no gene loss or functional replacements have been tolerated during the evolutionary diversification of eukaryotes. Mcm8 and 9 are widely distributed in eukaryotes and group together on the MCM phylogenetic tree to the exclusion of all other MCM paralogues suggesting co-ancestry. Mcm8 and Mcm9 are absent in some taxa, including Trichomonas and Giardia, and appear to have been secondarily lost in some fungi and some animals. The presence and absence of Mcm8 and 9 is concordant in all taxa sampled with the exception of Drosophila species. Mcm10 is present in most eukaryotes sampled but shows no concordant pattern of presence or absence with Mcm8 or 9. Conclusion A multifaceted and heterogeneous Mcm2-7 hexamer evolved during the early evolution of the eukaryote cell in parallel with numerous other acquisitions in cell complexity and prior to the diversification of extant eukaryotes. The conservation of all six paralogues throughout the eukaryotes suggests that each Mcm2-7 hexamer component has an

  9. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymesmore » and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.« less

  10. Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes

    PubMed Central

    Major, Peter; Embley, T. Martin

    2017-01-01

    Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated. PMID:28164241

  11. Conservation and Variability of Meiosis Across the Eukaryotes.

    PubMed

    Loidl, Josef

    2016-11-23

    Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.

  12. The eukaryotic fossil record in deep time

    NASA Astrophysics Data System (ADS)

    Butterfield, N.

    2011-12-01

    their Phanerozoic counterparts. I will argue here that this fundamental change of state was driven by the early Ediacaran appearance of Eumetazoa, a uniquely complex clade of heterotrophic eukaryotes that redefined how the planet worked.

  13. The origin of the eukaryotic cell

    NASA Technical Reports Server (NTRS)

    Hartman, H.

    1984-01-01

    The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.

  14. Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2018-03-03

    Besides the massive gene transfer from organelles to the nuclear genomes, which occurred during the early evolution of eukaryote lineages, the importance of horizontal gene transfer (HGT) in eukaryotes remains controversial. Yet, increasing amounts of genomic data reveal many cases of bacterium-to-eukaryote HGT that likely represent a significant force in adaptive evolution of eukaryotic species. However, DNA transfer involved in genetic transformation of plants by Agrobacterium species has traditionally been considered as the unique example of natural DNA transfer and integration into eukaryotic genomes. Recent discoveries indicate that the repertoire of donor bacterial species and of recipient eukaryotic hosts potentially are much wider than previously thought, including donor bacterial species, such as plant symbiotic nitrogen-fixing bacteria (e.g., Rhizobium etli) and animal bacterial pathogens (e.g., Bartonella henselae, Helicobacter pylori), and recipient species from virtually all eukaryotic clades. Here, we review the molecular pathways and potential mechanisms of these trans-kingdom HGT events and discuss their utilization in biotechnology and research.

  15. Precambrian Skeletonized Microbial Eukaryotes

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.

    2017-04-01

    . Tintinnids first appear in the mid-Mesozoic, like other modern planktic groups, including planktic foraminifera, new types of radiolarians, and a host of skeletal micro-algae. Microbial eukaryotes track algal eukaryote and metazoan evolution—none or very few in the Precambrian, some in the early Paleozoic with radiations in the later Paleozoic, Mesozoic and Cenozoic, with extinctions ( 30) reducing their biodiversity at particular times in the fossil record—thus indicating strong environmental selection on all marine groups.

  16. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    PubMed

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Origin and Evolution of the Self-Organizing Cytoskeleton in the Network of Eukaryotic Organelles

    PubMed Central

    Jékely, Gáspár

    2014-01-01

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. PMID:25183829

  18. Molecular paleontology and complexity in the last eukaryotic common ancestor

    PubMed Central

    Koumandou, V. Lila; Wickstead, Bill; Ginger, Michael L.; van der Giezen, Mark; Dacks, Joel B.

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself. PMID:23895660

  19. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    PubMed

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes

    NASA Astrophysics Data System (ADS)

    Zhang, Kan; Zhu, Xiangkun; Wood, Rachel A.; Shi, Yao; Gao, Zhaofu; Poulton, Simon W.

    2018-05-01

    The Mesoproterozoic era (1,600-1,000 million years ago (Ma)) has long been considered a period of relative environmental stasis, with persistently low levels of atmospheric oxygen. There remains much uncertainty, however, over the evolution of ocean chemistry during this period, which may have been of profound significance for the early evolution of eukaryotic life. Here we present rare earth element, iron-speciation and inorganic carbon isotope data to investigate the redox evolution of the 1,600-1,550 Ma Yanliao Basin, North China Craton. These data confirm that the ocean at the start of the Mesoproterozoic was dominantly anoxic and ferruginous. Significantly, however, we find evidence for a progressive oxygenation event starting at 1,570 Ma, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin. Our study thus demonstrates that oxygenation of the Mesoproterozoic environment was far more dynamic and intense than previously envisaged, and establishes an important link between rising oxygen and the emerging record of diverse, multicellular eukaryotic life in the early Mesoproterozoic.

  1. Endosymbiotic theories for eukaryote origin

    PubMed Central

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  2. ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite.

    PubMed

    Li, Feng-Jun; Xu, Zhi-Shen; Soo, Andy D S; Lun, Zhao-Rong; He, Cynthia Y

    2017-04-03

    Autophagy is a catabolic cellular process required to maintain protein synthesis, energy production and other essential activities in starved cells. While the exact nutrient sensor(s) is yet to be identified, deprivation of amino acids, glucose, growth factor and other nutrients can serve as metabolic stimuli to initiate autophagy in higher eukaryotes. In the early-branching unicellular parasite Trypanosoma brucei, which can proliferate as procyclic form (PCF) in the tsetse fly or as bloodstream form (BSF) in animal hosts, autophagy is robustly triggered by amino acid deficiency but not by glucose depletion. Taking advantage of the clearly defined adenosine triphosphate (ATP) production pathways in T. brucei, we have shown that autophagic activity depends on the levels of cellular ATP production, using either glucose or proline as a carbon source. While autophagosome formation positively correlates with cellular ATP levels; perturbation of ATP production by removing carbon sources or genetic silencing of enzymes involved in ATP generation pathways, also inhibited autophagy. This obligate energy dependence and the lack of glucose starvation-induced autophagy in T. brucei may reflect an adaptation to its specialized, parasitic life style.

  3. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes.

    PubMed

    Brunet, Thibaut; Arendt, Detlev

    2016-01-05

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization-contraction-secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an 'emergency response' to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory-effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. © 2015 The Authors.

  4. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes

    PubMed Central

    Brunet, Thibaut; Arendt, Detlev

    2016-01-01

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization–contraction–secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an ‘emergency response’ to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory–effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. PMID:26598726

  5. Evolution of eukaryotic microbial pathogens via covert sexual reproduction

    PubMed Central

    Heitman, Joseph

    2010-01-01

    Sexual reproduction enables eukaryotic organisms to re-assort genetic diversity and purge deleterious mutations, producing better-fit progeny. Sex arose early and pervades eukaryotes. Fungal and parasite pathogens once thought asexual have maintained cryptic sexual cycles, including unisexual or parasexual reproduction. As pathogens become niche and host-adapted, sex appears to specialize to promote inbreeding and clonality yet maintain out-crossing potential. During self-fertile sexual modes, sex itself may generate genetic diversity de novo. Mating-type loci govern fungal sexual identity; how parasites establish sexual identity is unknown. Comparing and contrasting fungal and parasite sex promises to reveal how microbial pathogens evolved and are evolving. PMID:20638645

  6. Massive expansion of the calpain gene family in unicellular eukaryotes.

    PubMed

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  7. Massive expansion of the calpain gene family in unicellular eukaryotes

    PubMed Central

    2012-01-01

    Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes. PMID:23020305

  8. Evolution of prokaryote and eukaryote lines inferred from sequence evidence

    NASA Technical Reports Server (NTRS)

    Hunt, L. T.; George, D. G.; Yeh, L.-S.; Dayhoff, M. O.

    1984-01-01

    This paper describes the evolution of prokaryotes and early eukaryotes, including their symbiotic relationships, as inferred from phylogenetic trees of bacterial ferredoxin, 5S ribosomal RNA, ribulose-1,5-biphosphate carboxylase large chain, and mitochondrial cytochrome oxidase polypeptide II.

  9. EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens.

    PubMed

    Peng, Duo; Tarleton, Rick

    2015-10-01

    Recent development of CRISPR-Cas9 genome editing has enabled highly efficient and versatile manipulation of a variety of organisms and adaptation of the CRISPR-Cas9 system to eukaryotic pathogens has opened new avenues for studying these otherwise hard to manipulate organisms. Here we describe a webtool, Eukaryotic Pathogen gRNA Design Tool (EuPaGDT; available at http://grna.ctegd.uga.edu), which identifies guide RNA (gRNA) in input gene(s) to guide users in arriving at well-informed and appropriate gRNA design for many eukaryotic pathogens. Flexibility in gRNA design, accommodating unique eukaryotic pathogen (gene and genome) attributes and high-throughput gRNA design are the main features that distinguish EuPaGDT from other gRNA design tools. In addition to employing an array of known principles to score and rank gRNAs, EuPaGDT implements an effective on-target search algorithm to identify gRNA targeting multi-gene families, which are highly represented in these pathogens and play important roles in host-pathogen interactions. EuPaGDT also identifies and scores microhomology sequences flanking each gRNA targeted cut-site; these sites are often essential for the microhomology-mediated end joining process used for double-stranded break repair in these organisms. EuPaGDT also assists users in designing single-stranded oligonucleotides for homology directed repair. In batch processing mode, EuPaGDT is able to process genome-scale sequences, enabling preparation of gRNA libraries for large-scale screening projects.

  10. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles andmore » a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  11. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    PubMed Central

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  12. Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: Cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria

    PubMed Central

    Watanabe, Yoh-ichi; Gray, Michael W.

    2000-01-01

    A reverse transcription–polymerase chain reaction (RT–PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated ‘PsuX’ and ‘PsuY’) distantly related to the Cbf5p/TruB gene family. PMID:10871366

  13. The archaebacterial origin of eukaryotes.

    PubMed

    Cox, Cymon J; Foster, Peter G; Hirt, Robert P; Harris, Simon R; Embley, T Martin

    2008-12-23

    The origin of the eukaryotic genetic apparatus is thought to be central to understanding the evolution of the eukaryotic cell. Disagreement about the source of the relevant genes has spawned competing hypotheses for the origins of the eukaryote nuclear lineage. The iconic rooted 3-domains tree of life shows eukaryotes and archaebacteria as separate groups that share a common ancestor to the exclusion of eubacteria. By contrast, the eocyte hypothesis has eukaryotes originating within the archaebacteria and sharing a common ancestor with a particular group called the Crenarchaeota or eocytes. Here, we have investigated the relative support for each hypothesis from analysis of 53 genes spanning the 3 domains, including essential components of the eukaryotic nucleic acid replication, transcription, and translation apparatus. As an important component of our analysis, we investigated the fit between model and data with respect to composition. Compositional heterogeneity is a pervasive problem for reconstruction of ancient relationships, which, if ignored, can produce an incorrect tree with strong support. To mitigate its effects, we used phylogenetic models that allow for changing nucleotide or amino acid compositions over the tree and data. Our analyses favor a topology that supports the eocyte hypothesis rather than archaebacterial monophyly and the 3-domains tree of life.

  14. Versatility of hydrocarbon production in cyanobacteria.

    PubMed

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  15. Three distinct modes of intron dynamics in the evolution of eukaryotes.

    PubMed

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2007-07-01

    Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

  16. The COG database: an updated version includes eukaryotes

    PubMed Central

    Tatusov, Roman L; Fedorova, Natalie D; Jackson, John D; Jacobs, Aviva R; Kiryutin, Boris; Koonin, Eugene V; Krylov, Dmitri M; Mazumder, Raja; Mekhedov, Sergei L; Nikolskaya, Anastasia N; Rao, B Sridhar; Smirnov, Sergei; Sverdlov, Alexander V; Vasudevan, Sona; Wolf, Yuri I; Yin, Jodie J; Natale, Darren A

    2003-01-01

    Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the KOG set is much greater

  17. The relative ages of eukaryotes and akaryotes.

    PubMed

    Penny, David; Collins, Lesley J; Daly, Toni K; Cox, Simon J

    2014-12-01

    The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.

  18. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation

    PubMed Central

    Roger, Andrew J; Hug, Laura A

    2006-01-01

    Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods

  19. The others: our biased perspective of eukaryotic genomes

    PubMed Central

    del Campo, Javier; Sieracki, Michael E.; Molestina, Robert; Keeling, Patrick; Massana, Ramon; Ruiz-Trillo, Iñaki

    2015-01-01

    Understanding the origin and evolution of the eukaryotic cell and the full diversity of eukaryotes is relevant to many biological disciplines. However, our current understanding of eukaryotic genomes is extremely biased, leading to a skewed view of eukaryotic biology. We argue that a phylogeny-driven initiative to cover the full eukaryotic diversity is needed to overcome this bias. We encourage the community: (i) to sequence a representative of the neglected groups available at public culture collections, (ii) to increase our culturing efforts, and (iii) to embrace single cell genomics to access organisms refractory to propagation in culture. We hope that the community will welcome this proposal, explore the approaches suggested, and join efforts to sequence the full diversity of eukaryotes. PMID:24726347

  20. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Expanding the eukaryotic genetic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  2. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  4. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Transfer of DNA from Bacteria to Eukaryotes

    PubMed Central

    2016-01-01

    ABSTRACT Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  10. Origins of Eukaryotic Sexual Reproduction

    PubMed Central

    2014-01-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation. PMID:24591519

  11. Rab protein evolution and the history of the eukaryotic endomembrane system

    PubMed Central

    Brighouse, Andrew; Dacks, Joel B.

    2010-01-01

    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity. PMID:20582450

  12. How natural a kind is "eukaryote?".

    PubMed

    Doolittle, W Ford

    2014-06-02

    Systematics balances uneasily between realism and nominalism, uncommitted as to whether biological taxa are discoveries or inventions. If the former, they might be taken as natural kinds. I briefly review some philosophers' concepts of natural kinds and then argue that several of these apply well enough to "eukaryote." Although there are some sticky issues around genomic chimerism and when eukaryotes first appeared, if we allow for degrees in the naturalness of kinds, existing eukaryotes rank highly, higher than prokaryotes. Most biologists feel this intuitively: All I attempt to do here is provide some conceptual justification. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.

    PubMed

    Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan

    2017-09-01

    Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.

  14. Counterintuitive effect of fall mixed layer deepening on eukaryotic new production in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Sigman, D. M.

    2012-12-01

    The Sargasso Sea is characterized by a short period of deep vertical mixing in the late winter and early spring, followed by strong thermal stratification during the summer. Stratification persists into the fall, impeding the upward flux of nitrate from depth so that recycled forms of nitrogen (N) such as ammonium are thought to support most primary production. We collected particles from surface waters during March, July, October, and December, used flow cytometry to separate the prokaryotic and eukaryotic phytoplankton, and analyzed their respective 15N/14N. In all months, the 15N/14N of the prokaryotic genera, Prochlorococcus and Synechococcus, was low, indicative of reliance on recycled N throughout the year. In July, the 15N/14N of eukaryotic phytoplankton was variable but consistently higher than that of the prokaryotes, reflecting eukaryotic consumption of subsurface nitrate. Two eukaryotic profiles from October and December were similar to those from July. In three other fall profiles, the eukaryotes had a 15N/14N similar to that of the prokaryotes, suggesting a switch toward greater reliance on recycled N. This change in the dominant N source supporting eukaryotic production appears to be driven by the density structure of the upper water column. The very shallow low-density surface "mixed layer" (≤20 m) that develops in early-to-mid summer does not contribute to stratification at the base of the euphotic zone, and subsurface nitrate can mix up into the lower euphotic zone, facilitating continued production. The deepening of the mixed layer into the fall, typically taken as an indication of weaker overall stratification, actually strengthens the isolation of the euphotic zone as a whole, reducing the upward supply of nitrate to the photosynthetically active layer. The same counterintuitive dynamic explains the latitudinal patterns in a set of three October depth profiles. Two northern stations (32°N and 27°N) were characterized by a thick, low

  15. Where did eukaryotes first evolve? Revisiting Mesoproterozoic habitats in the Torridonian Supergroup, NW Scotland

    NASA Astrophysics Data System (ADS)

    Stüeken, E.; Bellefroid, E. J.; Prave, T.; Asael, D.; Planavsky, N.; Lyons, T. W.

    2016-12-01

    Eukaryotic microfossils first appear in the early Mesoproterozoic (1.8-1.6 billion years ago), but their record remains sparse for nearly a billion years. This observation has invited hypotheses about oxygen and nutrient limitation of eukaryotic organisms in a stratified ocean underneath an oxygen-poor atmosphere1,2. One of the most fossiliferous units of Mesoproterozoic age is the Torridonian Supergroup in northwestern Scotland (1.2-1.0 Ga)3, which has been interpreted as lacustrine, based on mild boron enrichments and close associations with fluvial sandstones4. Recent studies have documented unusually large δ34S fractionations and Mo enrichments in the Poll a'Mhuilt Member of the lower Torridonian, which led to the interpretation that non-marine environments became oxygenated earlier than the open ocean and were therefore important niches for early eukaryotes5,6. Here we revisited the Poll a'Mhuilt Member with new geochemical tools. We found δ98/95Mo values up to +1.2‰ in euxinic shales and carbonate-bound 87Sr/86Sr ratios of <0.707-0.710 that agree well with constraints on the composition of Mesoproterozoic seawater. Sedimentological observations revealed herringbone cross-bedding and wave ripples indicative of tidal activity. Collectively, our results are consistent with a marine influence during the time of deposition. The high Mo concentrations and δ34S fractions are most likely the results of evapo-concentration of seawater. These rocks can therefore not be used to make inferences about eukaryotic evolution in freshwater habitats. Instead, it is conceivable that marine margins with active oxygen production and dynamic wave mixing were more hospitable settings for eukaryotic evolution than potentially stagnant mid-Proterozoic lakes. 1. Reinhard, CT, et al.(2016) PNAS doi: 10.1073/pnas.1521544113. 2. Anbar, AD & AH Knoll (2002) Science 297: 1137-1142. 3. Strother, PK, et al.(2011) Nature 473: 505-509. 4. Stewart, AD, in: Memoirs of the Geological Society

  16. Drug resistance in eukaryotic microorganisms

    PubMed Central

    Fairlamb, Alan H.; Gow, Neil A. R.; Matthews, Keith R.; Waters, Andrew P.

    2016-01-01

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies. PMID:27572976

  17. The Eukaryotic Replisome Goes Under the Microscope

    DOE PAGES

    O'Donnell, Mike; Li, Huilin

    2016-03-21

    The machinery at the eukaryotic replication fork has seen many new structural advances using EM and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are importantmore » to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome.« less

  18. Atypical mitochondrial inheritance patterns in eukaryotes.

    PubMed

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  19. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  20. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes

    DOE PAGES

    Saw, Jimmy H.; Spang, Anja; Zaremba-Niedzwiedzka, Katarzyna; ...

    2015-08-31

    The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal 'dark matter', is ablemore » to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. In conclusion, the maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell.« less

  1. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Jimmy H.; Spang, Anja; Zaremba-Niedzwiedzka, Katarzyna

    The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal 'dark matter', is ablemore » to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. In conclusion, the maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell.« less

  2. A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes

    PubMed Central

    Gómez-García, María R.; Losada, Manuel; Serrano, Aurelio

    2005-01-01

    Two sPPases (soluble inorganic pyrophosphatases, EC 3.6.1.1) have been isolated from the microalga Chlamydomonas reinhardtii. Both are monomeric proteins of organellar localization, the chloroplastic sPPase I [Cr (Ch. reinhardtii)-sPPase I, 30 kDa] is a major isoform and slightly larger protein than the mitochondrial sPPase II (Cr-sPPase II, 24 kDa). They are members of sPPase family I and are encoded by two different cDNAs, as demonstrated by peptide mass fingerprint analysis. Molecular phylogenetic analyses indicated that Cr-sPPase I is closely related to other eukaryotic sPPases, whereas Cr-sPPase II resembles its prokaryotic counterparts. Chloroplastic sPPase I may have replaced a cyanobacterial ancestor very early during plastid evolution. Cr-sPPase II orthologues are found in members of the green photosynthetic lineage, but not in animals or fungi. These two sPPases from photosynthetic eukaryotes are novel monomeric family I sPPases with different molecular phylogenies and cellular localizations. PMID:16313235

  3. Eukaryotes first: how could that be?

    PubMed

    Mariscal, Carlos; Doolittle, W Ford

    2015-09-26

    In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such 'eukaryotes first' (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemporary eukaryotes, as relics of an earlier 'progenotic' period or RNA world. Bacteria and Archaea thus must have lost these complex features secondarily, through 'streamlining'. If the canonical three-domain tree in which Archaea and Eukarya are sisters is accepted, EF entails that Bacteria and Archaea are convergently prokaryotic. We ask what this means and how it might be tested. © 2015 The Author(s).

  4. Microbial Eukaryotes: a Missing Link in Gut Microbiome Studies.

    PubMed

    Laforest-Lapointe, Isabelle; Arrieta, Marie-Claire

    2018-01-01

    Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. As recent studies consider eukaryotes in their surveys, it is becoming increasingly clear that eukaryotes play important ecological roles in the microbiome as well as in host health. In this perspective, we discuss new evidence on eukaryotes as fundamental species of the human gut and emphasize that future microbiome studies should characterize the multitrophic interactions between microeukaryotes, other microorganisms, and the host.

  5. Microbial Eukaryotes: a Missing Link in Gut Microbiome Studies

    PubMed Central

    2018-01-01

    ABSTRACT Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. As recent studies consider eukaryotes in their surveys, it is becoming increasingly clear that eukaryotes play important ecological roles in the microbiome as well as in host health. In this perspective, we discuss new evidence on eukaryotes as fundamental species of the human gut and emphasize that future microbiome studies should characterize the multitrophic interactions between microeukaryotes, other microorganisms, and the host. PMID:29556538

  6. Complex archaea that bridge the gap between prokaryotes and eukaryotes

    PubMed Central

    Martijn, Joran; Lind, Anders E.; van Eijk, Roel; Schleper, Christa; Guy, Lionel; Ettema, Thijs J. G.

    2015-01-01

    The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of ‘Lokiarchaeota’, a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic ‘starter-kit’ to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. PMID:25945739

  7. Widespread presence of "bacterial-like" PPP phosphatases in eukaryotes.

    PubMed

    Andreeva, Alexandra V; Kutuzov, Mikhail A

    2004-11-19

    In eukaryotes, PPP (protein phosphatase P) family is one of the two known protein phosphatase families specific for Ser and Thr. The role of PPP phosphatases in multiple signaling pathways in eukaryotic cell has been extensively studied. Unlike eukaryotic PPP phosphatases, bacterial members of the family have broad substrate specificity or may even be Tyr-specific. Moreover, one group of bacterial PPPs are diadenosine tetraphosphatases, indicating that bacterial PPP phosphatases may not necessarily function as protein phosphatases. We describe the presence in eukaryotes of three groups of expressed genes encoding "non-conventional" phosphatases of the PPP family. These enzymes are more closely related to bacterial PPP phosphatases than to the known eukaryotic members of the family. One group, found exclusively in land plants, is most closely related to PPP phosphatases from some alpha-Proteobacteria, including Rhizobiales, Rhodobacterales and Rhodospirillaceae. This group is therefore termed Rhizobiales / Rhodobacterales / Rhodospirillaceae-like phosphatases, or Rhilphs. Phosphatases of the other group are found in Viridiplantae, Rhodophyta, Trypanosomatidae, Plasmodium and some fungi. They are structurally related to phosphatases from psychrophilic bacteria Shewanella and Colwellia, and are termed Shewanella-like phosphatases, or Shelphs. Phosphatases of the third group are distantly related to ApaH, bacterial diadenosine tetraphosphatases, and are termed ApaH-like phosphatases, or Alphs. Patchy distribution of Alphs in animals, plants, fungi, diatoms and kinetoplasts suggests that these phosphatases were present in the common ancestor of eukaryotes but were independently lost in many lineages. Rhilphs, Shelphs and Alphs form PPP clades, as divergent from "conventional" eukaryotic PPP phosphatases as they are from each other and from major bacterial clades. In addition, comparison of primary structures revealed a previously unrecognised (I/L/V)D(S/T)G motif

  8. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov; Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu; Krupovic, Mart, E-mail: krupovic@pasteur.fr

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangiblemore » clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different

  9. Compositional patterns in the genomes of unicellular eukaryotes

    PubMed Central

    2013-01-01

    Background The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. Results In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. Conclusions The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes. PMID:24188247

  10. Compositional patterns in the genomes of unicellular eukaryotes.

    PubMed

    Costantini, Maria; Alvarez-Valin, Fernando; Costantini, Susan; Cammarano, Rosalia; Bernardi, Giorgio

    2013-11-05

    The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes.

  11. Structural studies demonstrating a bacteriophage-like replication cycle of the eukaryote-infecting Paramecium bursaria chlorella virus-1

    PubMed Central

    Shimoni, Eyal; Dadosh, Tali; Rechav, Katya; Unger, Tamar

    2017-01-01

    A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1). Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle. PMID:28850602

  12. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum.

    PubMed Central

    Gupta, R S; Aitken, K; Falah, M; Singh, B

    1994-01-01

    The genes for two different 70-kDa heat shock protein (HSP70) homologs have been cloned and sequenced from the protozoan Giardia lamblia. On the basis of their sequence features, one of these genes corresponds to the cytoplasmic form of HSP70. The second gene, on the basis of its characteristic N-terminal hydrophobic signal sequence and C-terminal endoplasmic reticulum (ER) retention sequence (Lys-Asp-Glu-Leu), is the equivalent of ER-resident GRP78 or the Bip family of proteins. Phylogenetic trees based on HSP70 sequences show that G. lamblia homologs show the deepest divergence among eukaryotic species. The identification of a GRP78 or Bip homolog in G. lamblia strongly suggests the existence of ER in this ancient eukaryote. Detailed phylogenetic analyses of HSP70 sequences by boot-strap neighbor-joining and maximum-parsimony methods show that the cytoplasmic and ER homologs form distinct subfamilies that evolved from a common eukaryotic ancestor by gene duplication that occurred very early in the evolution of eukaryotic cells. It is postulated that because of the essential "molecular chaperone" function of these proteins in translocation of other proteins across membranes, duplication of their genes accompanied the evolution of ER or nucleus in the eukaryotic cell ancestor. The presence in all eukaryotic cytoplasmic HSP70 homologs (including the cognate, heat-induced, and ER forms) of a number of autapomorphic sequence signatures that are not present in any prokaryotic or organellar homologs provides strong evidence regarding the monophyletic nature of eukaryotic lineage. Further, all eukaryotic HSP70 homologs share in common with the Gram-negative group of eubacteria a number of sequence features that are not present in any archaebacterium or Gram-positive bacterium, indicating their evolution from this group of organisms. Some implications of these findings regarding the evolution of eukaryotic cells and ER are discussed. Images PMID:8159675

  13. Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery.

    PubMed

    Nedelcu, Aurora M

    2009-03-01

    Programmed cell death (PCD) represents a significant component of normal growth and development in multicellular organisms. Recently, PCD-like processes have been reported in single-celled eukaryotes, implying that some components of the PCD machinery existed early in eukaryotic evolution. This study provides a comparative analysis of PCD-related sequences across more than 50 unicellular genera from four eukaryotic supergroups: Unikonts, Excavata, Chromalveolata, and Plantae. A complex set of PCD-related sequences that correspond to domains or proteins associated with all main functional classes--from ligands and receptors to executors of PCD--was found in many unicellular lineages. Several PCD domains and proteins previously thought to be restricted to animals or land plants are also present in unicellular species. Noteworthy, the yeast, Saccharomyces cerevisiae--used as an experimental model system for PCD research, has a rather reduced set of PCD-related sequences relative to other unicellular species. The phylogenetic distribution of the PCD-related sequences identified in unicellular lineages suggests that the genetic basis for the evolution of the complex PCD machinery present in extant multicellular lineages has been established early in the evolution of eukaryotes. The shaping of the PCD machinery in multicellular lineages involved the duplication, co-option, recruitment, and shuffling of domains already present in their unicellular ancestors.

  14. Eukaryotic Cell Panorama

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  15. Evaluating Support for the Current Classification of Eukaryotic Diversity

    PubMed Central

    Parfrey, Laura Wegener; Barbero, Erika; Lasser, Elyse; Dunthorn, Micah; Bhattacharya, Debashish; Patterson, David J; Katz, Laura A

    2006-01-01

    Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. PMID:17194223

  16. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes.

    PubMed

    Janicki, Mateusz; Rooke, Rebecca; Yang, Guojun

    2011-08-01

    A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.

  17. High Conformational Stability of Secreted Eukaryotic Catalase-peroxidases

    PubMed Central

    Zámocký, Marcel; García-Fernández, Queralt; Gasselhuber, Bernhard; Jakopitsch, Christa; Furtmüller, Paul G.; Loewen, Peter C.; Fita, Ignacio; Obinger, Christian; Carpena, Xavi

    2012-01-01

    Catalase-peroxidases (KatGs) are bifunctional heme enzymes widely spread in archaea, bacteria, and lower eukaryotes. Here we present the first crystal structure (1.55 Å resolution) of an eukaryotic KatG, the extracellular or secreted enzyme from the phytopathogenic fungus Magnaporthe grisea. The heme cavity of the homodimeric enzyme is similar to prokaryotic KatGs including the unique distal +Met-Tyr-Trp adduct (where the Trp is further modified by peroxidation) and its associated mobile arginine. The structure also revealed several conspicuous peculiarities that are fully conserved in all secreted eukaryotic KatGs. Peculiarities include the wrapping at the dimer interface of the N-terminal elongations from the two subunits and cysteine residues that cross-link the two subunits. Differential scanning calorimetry and temperature- and urea-mediated unfolding followed by UV-visible, circular dichroism, and fluorescence spectroscopy combined with site-directed mutagenesis demonstrated that secreted eukaryotic KatGs have a significantly higher conformational stability as well as a different unfolding pattern when compared with intracellular eukaryotic and prokaryotic catalase-peroxidases. We discuss these properties with respect to the structure as well as the postulated roles of this metalloenzyme in host-pathogen interactions. PMID:22822072

  18. Endosymbiosis and the design of eukaryotic electron transport.

    PubMed

    Berry, Stephan

    2003-09-30

    The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.

  19. Genome-reconstruction for eukaryotes from complex natural microbial communities.

    PubMed

    West, Patrick T; Probst, Alexander J; Grigoriev, Igor V; Thomas, Brian C; Banfield, Jillian F

    2018-04-01

    Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k -mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities. © 2018 West et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Unitary circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. The origin of this circular code X in genes is an open problem since its discovery in 1996. Here, we first show that the unitary circular codes (UCC), i.e. sets of one word, allow to generate unitary circular code motifs (UCC motifs), i.e. a concatenation of the same motif (simple repeats) leading to low complexity DNA. Three classes of UCC motifs are studied here: repeated dinucleotides (D + motifs), repeated trinucleotides (T + motifs) and repeated tetranucleotides (T + motifs). Thus, the D + , T + and T + motifs allow to retrieve, synchronize and maintain a frame modulo 2, modulo 3 and modulo 4, respectively, and their shifted frames (1 modulo 2; 1 and 2 modulo 3; 1, 2 and 3 modulo 4 according to the C 2 , C 3 and C 4 properties, respectively) in the DNA sequences. The statistical distribution of the D + , T + and T + motifs is analyzed in the genomes of eukaryotes. A UCC motif and its comp lementary UCC motif have the same distribution in the eukaryotic genomes. Furthermore, a UCC motif and its complementary UCC motif have increasing occurrences contrary to their number of hydrogen bonds, very significant with the T + motifs. The longest D + , T + and T + motifs in the studied eukaryotic genomes are also given. Surprisingly, a scarcity of repeated trinucleotides (T + motifs) in the large eukaryotic genomes is observed compared to the D + and T + motifs. This result has been investigated and may be explained by two outcomes. Repeated trinucleotides (T + motifs) are identified

  1. The molecular mechanics of eukaryotic translation.

    PubMed

    Kapp, Lee D; Lorsch, Jon R

    2004-01-01

    Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.

  2. A statistical anomaly indicates symbiotic origins of eukaryotic membranes

    PubMed Central

    Bansal, Suneyna; Mittal, Aditya

    2015-01-01

    Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite—the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson's paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the “third front” (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins. PMID:25631820

  3. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    PubMed Central

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  4. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    PubMed

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  5. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp.

    PubMed

    Dai, Wenfang; Yu, Weina; Zhang, Jinjie; Zhu, Jinyong; Tao, Zhen; Xiong, Jinbo

    2017-08-01

    Increasing evidence has revealed a close interplay between the gut bacterial communities and host growth performance. However, until recently, studies generally ignored the contribution of eukaryotes, endobiotic organisms. To fill this gap, we used Illumina sequencing technology on eukaryotic 18S rRNA gene to compare the structures of gut eukaryotic communities among cohabitating retarded, overgrown, and normal shrimp obtained from identically managed ponds. Results showed that a significant difference between gut eukaryotic communities differed significantly between water and intestine and among three shrimp categories. Structural equation modeling revealed that changes in the gut eukaryotic community were positively related to digestive enzyme activities, which in turn influenced shrimp growth performance (λ = 0.97, P < 0.001). Overgrown shrimp exhibited a more complex and cooperative gut eukaryotic interspecies interaction than retarded and normal shrimp, which may facilitate their nutrient acquisition efficiency. Notably, the distribution of dominant eukaryotic genera and shifts in keystone species were closely concordant with shrimp growth performance. In summary, this study provides an integrated overview on direct roles of gut eukaryotic communities in shrimp growth performance instead of well-studied bacterial assembly.

  6. Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts

    PubMed Central

    2012-01-01

    Background Regulation of surface antigenic variation in Giardia lamblia is controlled post-transcriptionally by an RNA-interference (RNAi) pathway that includes a Dicer-like bidentate RNase III (gDicer). This enzyme, however, lacks the RNA helicase domain present in Dicer enzymes from higher eukaryotes. The participation of several RNA helicases in practically all organisms in which RNAi was studied suggests that RNA helicases are potentially involved in antigenic variation, as well as during Giardia differentiation into cysts. Results An extensive in silico analysis of the Giardia genome identified 32 putative Super Family 2 RNA helicases that contain almost all the conserved RNA helicase motifs. Phylogenetic studies and sequence analysis separated them into 22 DEAD-box, 6 DEAH-box and 4 Ski2p-box RNA helicases, some of which are homologs of well-characterized helicases from higher organisms. No Giardia putative helicase was found to have significant homology to the RNA helicase domain of Dicer enzymes. Additionally a series of up- and down-regulated putative RNA helicases were found during encystation and antigenic variation by qPCR experiments. Finally, we were able to recognize 14 additional putative helicases from three different families (RecQ family, Swi2/Snf2 and Rad3 family) that could be considered DNA helicases. Conclusions This is the first comprehensive analysis of the Super Family 2 helicases from the human intestinal parasite G. lamblia. The relative and variable expression of particular RNA helicases during both antigenic variation and encystation agrees with the proposed participation of these enzymes during both adaptive processes. The putatives RNA and DNA helicases identified in this early-branching eukaryote provide initial information regarding the biological role of these enzymes in cell adaptation and differentiation. PMID:23190735

  7. Archaeal and eukaryotic homologs of Hfq

    PubMed Central

    Mura, Cameron; Randolph, Peter S.; Patterson, Jennifer; Cozen, Aaron E.

    2013-01-01

    Hfq and other Sm proteins are central in RNA metabolism, forming an evolutionarily conserved family that plays key roles in RNA processing in organisms ranging from archaea to bacteria to human. Sm-based cellular pathways vary in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in each of these pathways being mediated by an RNA-associated molecular assembly built upon Sm proteins. Though the first structures of Sm assemblies were from archaeal systems, the functions of Sm-like archaeal proteins (SmAPs) remain murky. Our ignorance about SmAP biology, particularly vis-à-vis the eukaryotic and bacterial Sm homologs, can be partly reduced by leveraging the homology between these lineages to make phylogenetic inferences about Sm functions in archaea. Nevertheless, whether SmAPs are more eukaryotic (RNP scaffold) or bacterial (RNA chaperone) in character remains unclear. Thus, the archaeal domain of life is a missing link, and an opportunity, in Sm-based RNA biology. PMID:23579284

  8. [MiRNA system in unicellular eukaryotes and its evolutionary implications].

    PubMed

    Zhang, Yan-Qiong; Wen, Jian-Fan

    2010-02-01

    microRNAs (miRNAs) in higher multicellular eukaryotes have been extensively studied in recent years. Great progresses have also been achieved for miRNAs in unicellular eukaryotes. All these studies not only enrich our knowledge about the complex expression regulation system in diverse organisms, but also have evolutionary significance for understanding the origin of this system. In this review, Authors summarize the recent advance in the studies of miRNA in unicellular eukaryotes, including that on the most primitive unicellular eukaryote--Giardia. The origin and evolution of miRNA system is also discussed.

  9. Sequencing our way towards understanding global eukaryotic biodiversity

    PubMed Central

    Bik, Holly M.; Porazinska, Dorota L.; Creer, Simon; Caporaso, J. Gregory; Knight, Rob; Thomas, W. Kelley

    2011-01-01

    Microscopic eukaryotes are abundant, diverse, and fill critical ecological roles across every ecosystem on earth, yet there is a well-recognized gap in our understanding of their global biodiversity. Fundamental advances in DNA sequencing and bioinformatics now allow accurate en masse biodiversity assessments of microscopic eukaryotes from environmental samples. Despite a promising outlook, the field of eukaryotic marker gene surveys faces significant challenges: how to generate data that is most useful to the community, especially in the face of evolving sequencing technology and bioinformatics pipelines, and how to incorporate an expanding number of target genes. PMID:22244672

  10. Eukaryotic cell flattening

    NASA Astrophysics Data System (ADS)

    Bae, Albert; Westendorf, Christian; Erlenkamper, Christoph; Galland, Edouard; Franck, Carl; Bodenschatz, Eberhard; Beta, Carsten

    2010-03-01

    Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field to total internal reflection fluorescence microscopy. In this talk, we will discuss traditional overlay techniques, and more modern, microfluidic based flattening, which provides a greater level of control. We demonstrate these techniques on the social amoebae Dictyostelium discoideum, comparing the advantages and disadvantages of each method.

  11. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    PubMed Central

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2018-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  12. How MCM loading and spreading specify eukaryotic DNA replication initiation sites.

    PubMed

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  13. How MCM loading and spreading specify eukaryotic DNA replication initiation sites

    PubMed Central

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes. PMID:27635237

  14. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition.

    PubMed

    Celedon, Jose M; Cline, Kenneth

    2013-02-01

    Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  16. Eukaryotic-Like Virus Budding in Archaea

    PubMed Central

    Quemin, Emmanuelle R. J.; Chlanda, Petr; Sachse, Martin; Forterre, Patrick

    2016-01-01

    ABSTRACT Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. PMID:27624130

  17. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    NASA Technical Reports Server (NTRS)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  18. Metatranscriptomics of Soil Eukaryotic Communities.

    PubMed

    Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2016-01-01

    Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.

  19. The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile?

    PubMed

    Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri

    2012-01-01

    Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.

  20. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    PubMed Central

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  1. Archaeal "dark matter" and the origin of eukaryotes.

    PubMed

    Williams, Tom A; Embley, T Martin

    2014-03-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis.

  2. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    NASA Astrophysics Data System (ADS)

    Angeles Aguilera, Angeles

    2013-07-01

    A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).

  4. Transferred interbacterial antagonism genes augment eukaryotic innate immune function.

    PubMed

    Chou, Seemay; Daugherty, Matthew D; Peterson, S Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L; Fritz-Laylin, Lillian K; Ferrin, Michael A; Harding, Brittany N; Jacobs-Wagner, Christine; Yang, X Frank; Vollmer, Waldemar; Malik, Harmit S; Mougous, Joseph D

    2015-02-05

    Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems.

  5. A search for extraterrestrial eukaryotes: physical and paleontological aspects.

    PubMed

    Chela-Flores, J

    1998-10-01

    Physical and biochemical aspects of a proposed search for extraterrestrial eukaryotes (SETE) are considered. Such a program should approach the distinction between a primitive eukaryote and an archaebacteria. The emphasis on gene silencing suggests a possible assay suitable for a robotic investigation of eukaryoticity, so as to be able to decide whether the first steps towards eukaryogenesis have been taken in an extraterrestrial planet, or satellite. The experiment would consist of searching for cellular division and the systematic related delay in replication of heterochromatic chromosome segments. It should be noticed that the direct search for a membrane-bounded set of chromosomes does not necessarily determine eukaryotic identity, as there are prokaryotes that have membrane-bounded nucleoids. A closer look at the protein fraction of chromatin (mainly histones) does not help either, as there are some eukaryotes that may lack histones; there are also some bacteria as well as archaebacteria with histone-like proteins in their nucleoids. Comments on the recent suggestion of possible environments for a SETE program are discussed: the deep crust of Mars, and the Jovian satellite Europa, provided the existence of an ocean under its ice-covered surface is confirmed by the current Galileo mission.

  6. Structure and Mechanism of a Eukaryotic FMN Adenylyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huerta, Carlos; Borek, Dominika; Machius, Mischa

    2009-12-01

    Flavin mononucleotide adenylyltransferase (FMNAT) catalyzes the formation of the essential flavocoenzyme flavin adenine dinucleotide (FAD) and plays an important role in flavocoenzyme homeostasis regulation. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different sets of active-site residues to accomplish the same chemistry. Here we report the first structural characterization of a eukaryotic FMNAT from the pathogenic yeast Candida glabrata. Four crystal structures of C. glabrata FMNAT in different complexed forms were determined at 1.20-1.95 A resolutions, capturing the enzyme active-site states prior to and after catalysis. These structures reveal a novelmore » flavin-binding mode and a unique enzyme-bound FAD conformation. Comparison of the bacterial and eukaryotic FMNATs provides a structural basis for understanding the convergent evolution of the same FMNAT activity from different protein ancestors. Structure-based investigation of the kinetic properties of FMNAT should offer insights into the regulatory mechanisms of FAD homeostasis by FMNAT in eukaryotic organisms.« less

  7. David and Goliath: chemical perturbation of eukaryotes by bacteria.

    PubMed

    Ho, Louis K; Nodwell, Justin R

    2016-03-01

    Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.

  8. Reproduction, symbiosis, and the eukaryotic cell

    PubMed Central

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  9. Eukaryotic DNA polymerase ζ

    PubMed Central

    Makarova, Alena V.; Burgers, Peter M.

    2015-01-01

    This review focuses on eukaryotic DNA polymerase ζ (Pol ζ), the enzyme responsible for the bulk of mutagenesis in eukaryotic cells in response to DNA damage. Pol ζ is also responsible for a large portion of mutagenesis during normal cell growth, in response to spontaneous damage or to certain DNA structures and other blocks that stall DNA replication forks. Novel insights in mutagenesis have been derived from recent advances in the elucidation of the subunit structure of Pol ζ. The lagging strand DNA polymerase δ shares the small Pol31 and Pol32 subunits with the Rev3-Rev7 core assembly giving a four subunit Pol ζ complex that is the active form in mutagenesis. Furthermore, Pol ζ forms essential interactions with the mutasome assembly factor Rev1 and with proliferating cell nuclear antigen (PCNA). These interactions are modulated by posttranslational modifications such as ubiquitination and phosphorylation that enhance translesion synthesis (TLS) and mutagenesis. PMID:25737057

  10. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    PubMed Central

    Rogers, Matthew B; Patron, Nicola J; Keeling, Patrick J

    2007-01-01

    Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA) are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes) of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group. PMID:17584924

  11. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution

    PubMed Central

    Krupovic, Mart; Koonin, Eugene V.

    2018-01-01

    Polintons (also known as Mavericks) are large DNA transposons that are widespread in the genomes of eukaryotes. We have recently shown that Polintons encode virus capsid proteins, which suggests that these transposons might form virions, at least under some conditions. In this Opinion article, we delineate the evolutionary relationships among bacterial tectiviruses, Polintons, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order ‘Megavirales’, and linear mitochondrial and cytoplasmic plasmids. We hypothesize that Polintons were the first group of eukaryotic double-stranded DNA viruses to evolve from bacteriophages and that they gave rise to most large DNA viruses of eukaryotes and various other selfish genetic elements. PMID:25534808

  12. Eukaryotic DNA Ligases: Structural and Functional Insights

    PubMed Central

    Ellenberger, Tom; Tomkinson, Alan E.

    2010-01-01

    DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encircles nicked DNA with each of the domains contacting the DNA duplex. The unique segments adjacent to the catalytic region of eukaryotic DNA ligases are involved in specific protein-protein interactions with a growing number of DNA replication and repair proteins. These interactions determine the specific cellular functions of the DNA ligase isozymes. In mammals, defects in DNA ligation have been linked with an increased incidence of cancer and neurodegeneration. PMID:18518823

  13. Fluorescence turn-on detection of Sn2+ in live eukaryotic and prokaryotic cells.

    PubMed

    Lan, Haichuang; Wen, Ying; Shi, Yunming; Liu, Keyin; Mao, Yueyuan; Yi, Tao

    2014-10-21

    Sn(2+) is usually added to toothpaste to prevent dental plaque and oral disease. However, studies of its physiological role and bacteriostatic mechanism are restricted by the lack of versatile Sn(2+) detection methods applicable to live cells, including Streptococcus mutans. Here we report two Sn(2+) fluorescent probes containing a rhodamine B derivative as a fluorophore, linked via the amide moiety to N,N-bis(2-hydroxyethyl)ethylenediamine (R1) and tert-butyl carbazate group (R2), respectively. These probes can selectively chelate Sn(2+) and show marked fluorescence enhancement due to the ring open reaction of rhodamine induced by Sn(2+) chelation. The probes have high sensitivity and selectivity for Sn(2+) in the presence of various relevant metal ions. Particularly, both R1 and R2 can target lysosomes, and R2 can probe Sn concentrations in lysosomes with rather acidic microenvironment. Furthermore, these two probes have low toxicity and can be used as imaging probes for monitoring Sn(2+) not only in live KB cells (eukaryotic) but also in Streptococcus mutans cells (prokaryotic), which is a useful tool to study the physiological function of Sn(2+) in biological systems.

  14. Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang.

    PubMed

    Dacks, Joel B; Marinets, Alexandra; Ford Doolittle, W; Cavalier-Smith, Thomas; Logsdon, John M

    2002-06-01

    The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist

  15. Death of a dogma: eukaryotic mRNAs can code for more than one protein

    PubMed Central

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-01

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5′ UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3′ UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. PMID:26578573

  16. Single-cell transcriptomics for microbial eukaryotes.

    PubMed

    Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J

    2014-11-17

    One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Arsenic and Antimony Transporters in Eukaryotes

    PubMed Central

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  18. Arsenic and antimony transporters in eukaryotes.

    PubMed

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  19. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    PubMed Central

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  20. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that

  1. Deletion of L4 domains reveals insights into the importance of ribosomal protein extensions in eukaryotic ribosome assembly.

    PubMed

    Gamalinda, Michael; Woolford, John L

    2014-11-01

    Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function. © 2014 Gamalinda and Woolford; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia.

    PubMed

    Zhang, Yan-Qiong; Chen, Dong-Liang; Tian, Hai-Feng; Zhang, Bao-Hong; Wen, Jian-Fan

    2009-10-01

    Using a combined computational program, we identified 50 potential microRNAs (miRNAs) in Giardia lamblia, one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs, currently known in other species, were not found in G. lamblia. This suggests that miRNA biogenesis and miRNA-mediated gene regulation pathway may evolve independently, especially in evolutionarily distant lineages. A majority (43) of the predicted miRNAs are located at one single locus; however, some miRNAs have two or more copies in the genome. Among the 58 miRNA genes, 28 are located in the intergenic regions whereas 30 are present in the anti-sense strands of the protein-coding sequences. Five predicted miRNAs are expressed in G. lamblia trophozoite cells evidenced by expressed sequence tags or RT-PCR. Thirty-seven identified miRNAs may target 50 protein-coding genes, including seven variant-specific surface proteins (VSPs). Our findings provide a clue that miRNA-mediated gene regulation may exist in the early stage of eukaryotic evolution, suggesting that it is an important regulation system ubiquitous in eukaryotes.

  3. Defensins: antifungal lessons from eukaryotes

    PubMed Central

    Silva, Patrícia M.; Gonçalves, Sónia; Santos, Nuno C.

    2014-01-01

    Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed. PMID:24688483

  4. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    NASA Astrophysics Data System (ADS)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  5. Gene Transfers Shaped the Evolution of De Novo NAD+ Biosynthesis in Eukaryotes

    PubMed Central

    Ternes, Chad M.; Schönknecht, Gerald

    2014-01-01

    NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers. PMID:25169983

  6. Discovering Protein-Coding Genes from the Environment: Time for the Eukaryotes?

    PubMed

    Marmeisse, Roland; Kellner, Harald; Fraissinet-Tachet, Laurence; Luis, Patricia

    2017-09-01

    Eukaryotic microorganisms from diverse environments encompass a large number of taxa, many of them still unknown to science. One strategy to mine these organisms for genes of biotechnological relevance is to use a pool of eukaryotic mRNA directly extracted from environmental samples. Recent reports demonstrate that the resulting metatranscriptomic cDNA libraries can be screened by expression in yeast for a wide range of genes and functions from many of the different eukaryotic taxa. In combination with novel emerging high-throughput technologies, we anticipate that this approach should contribute to exploring the functional diversity of the eukaryotic microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Censusing marine eukaryotic diversity in the twenty-first century

    PubMed Central

    Knowlton, Nancy

    2016-01-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481783

  8. Archaeal “Dark Matter” and the Origin of Eukaryotes

    PubMed Central

    Williams, Tom A.; Embley, T. Martin

    2014-01-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis. PMID:24532674

  9. Eukaryotic Translation Initiation Factor 4E Is a Feed-Forward Translational Coactivator of Transforming Growth Factor β Early Protransforming Events in Breast Epithelial Cells

    PubMed Central

    Decarlo, Lindsey; Mestel, Celine; Barcellos-Hoff, Mary-Helen

    2015-01-01

    Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed early in breast cancers in association with disease progression and reduced survival. Much remains to be understood regarding the role of eIF4E in human cancer. We determined, using immortalized human breast epithelial cells, that elevated expression of eIF4E translationally activates the transforming growth factor β (TGF-β) pathway, promoting cell invasion, a loss of cell polarity, increased cell survival, and other hallmarks of early neoplasia. Overexpression of eIF4E is shown to facilitate the selective translation of integrin β1 mRNA, which drives the translationally controlled assembly of a TGF-β receptor signaling complex containing α3β1 integrins, β-catenin, TGF-β receptor I, E-cadherin, and phosphorylated Smad2/3. This receptor complex acutely sensitizes nonmalignant breast epithelial cells to activation by typically substimulatory levels of activated TGF-β. TGF-β can promote cellular differentiation or invasion and transformation. As a translational coactivator of TGF-β, eIF4E confers selective mRNA translation, reprogramming nonmalignant cells to an invasive phenotype by reducing the set point for stimulation by activated TGF-β. Overexpression of eIF4E may be a proinvasive facilitator of TGF-β activity. PMID:25986608

  10. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yieldsmore » a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.« less

  11. Expanding Applications of SERS through Versatile Nanomaterials Engineering (Postprint)

    DTIC Science & Technology

    2017-06-22

    AFRL-RX-WP-JA-2017-0341 EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) M. Fernanda...AND SUBTITLE EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-2-5518 5b...Expanding applications of SERS through versatile nanomaterials engineering M. Fernanda Cardinal, Emma Vander Ende, Ryan A. Hackler, Michael O. McAnally

  12. Strong Seasonality of Marine Microbial Eukaryotes in a High-Arctic Fjord (Isfjorden, in West Spitsbergen, Norway)

    PubMed Central

    Vader, Anna; Stübner, Eike I.; Reigstad, Marit

    2016-01-01

    The Adventfjorden time series station (IsA) in Isfjorden, West Spitsbergen, Norway, was sampled frequently from December 2011 to December 2012. The community composition of microbial eukaryotes (size, 0.45 to 10 μm) from a depth of 25 m was determined using 454 sequencing of the 18S V4 region amplified from both DNA and RNA. The compositional changes throughout the year were assessed in relation to in situ fjord environmental conditions. Size fractionation analyses of chlorophyll a showed that the photosynthetic biomass was dominated by small cells (<10 μm) most of the year but that larger cells dominated during the spring and summer. The winter and early-spring communities were more diverse than the spring and summer/autumn communities. Dinophyceae were predominant throughout the year. The Arctic Micromonas ecotype was abundant mostly in the early-bloom and fall periods, whereas heterotrophs, such as marine stramenopiles (MASTs), Picozoa, and the parasitoid marine alveolates (MALVs), displayed higher relative abundance in the winter than in other seasons. Our results emphasize the extreme seasonality of Arctic microbial eukaryotic communities driven by the light regime and nutrient availability but point to the necessity of a thorough knowledge of hydrography for full understanding of their succession and variability. PMID:26746718

  13. Eukaryotic Chemotaxis

    PubMed Central

    Rappel, Wouter-Jan; Loomis, William F.

    2009-01-01

    During eukaryotic chemotaxis, external chemical gradients guide the crawling motion of cells. This process plays an important role in a large variety of biological systems and has wide ranging medical implications. New experimental techniques including confocal microscopy and microfluidics have advanced our understanding of chemotaxis while numerical modeling efforts are beginning to offer critical insights. In this short review, we survey the current experimental status of the field by dividing chemotaxis into three distinct “modules”: directional sensing, polarity and motility. For each module, we attempt to point out potential new directions of research and discuss how modeling studies interact with experimental investigations. PMID:20648241

  14. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils.

    PubMed

    Pang, K; Tang, Q; Schiffbauer, J D; Yao, J; Yuan, X; Wan, B; Chen, L; Ou, Z; Xiao, S

    2013-11-01

    The well-known debate on the nature and origin of intracellular inclusions (ICIs) in silicified microfossils from the early Neoproterozoic Bitter Springs Formation has recently been revived by reports of possible fossilized nuclei in phosphatized animal embryo-like fossils from the Ediacaran Doushantuo Formation of South China. The revisitation of this discussion prompted a critical and comprehensive investigation of ICIs in some of the oldest indisputable eukaryote microfossils-the ornamented acritarchs Dictyosphaera delicata and Shuiyousphaeridium macroreticulatum from the Paleoproterozoic Ruyang Group of North China-using a suite of characterization approaches: scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM). Although the Ruyang acritarchs must have had nuclei when alive, our data suggest that their ICIs represent neither fossilized nuclei nor taphonomically condensed cytoplasm. We instead propose that these ICIs likely represent biologically contracted and consolidated eukaryotic protoplasts (the combination of the nucleus, surrounding cytoplasm, and plasma membrane). As opposed to degradational contraction of prokaryotic cells within a mucoidal sheath-a model proposed to explain the Bitter Springs ICIs-our model implies that protoplast condensation in the Ruyang acritarchs was an in vivo biologically programmed response to adverse conditions in preparation for encystment. While the discovery of bona fide nuclei in Paleoproterozoic acritarchs would be a substantial landmark in our understanding of eukaryote evolution, the various processes (such as degradational and biological condensation of protoplasts) capable of producing nuclei-mimicking structures require that interpretation of ICIs as fossilized nuclei be based on comprehensive investigations. © 2013 John Wiley & Sons Ltd.

  15. Death of a dogma: eukaryotic mRNAs can code for more than one protein.

    PubMed

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-08

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. An archaeal origin of eukaryotes supports only two primary domains of life.

    PubMed

    Williams, Tom A; Foster, Peter G; Cox, Cymon J; Embley, T Martin

    2013-12-12

    The discovery of the Archaea and the proposal of the three-domains 'universal' tree, based on ribosomal RNA and core genes mainly involved in protein translation, catalysed new ideas for cellular evolution and eukaryotic origins. However, accumulating evidence suggests that the three-domains tree may be incorrect: evolutionary trees made using newer methods place eukaryotic core genes within the Archaea, supporting hypotheses in which an archaeon participated in eukaryotic origins by founding the host lineage for the mitochondrial endosymbiont. These results provide support for only two primary domains of life--Archaea and Bacteria--because eukaryotes arose through partnership between them.

  17. Eukaryotic systematics: a user's guide for cell biologists and parasitologists.

    PubMed

    Walker, Giselle; Dorrell, Richard G; Schlacht, Alexander; Dacks, Joel B

    2011-11-01

    Single-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.

  18. Reconstruction of the sialylation pathway in the ancestor of eukaryotes.

    PubMed

    Petit, Daniel; Teppa, Elin; Cenci, Ugo; Ball, Steven; Harduin-Lepers, Anne

    2018-02-13

    The biosynthesis of sialylated molecules of crucial relevance for eukaryotic cell life is achieved by sialyltransferases (ST) of the CAZy family GT29. These enzymes are widespread in the Deuterostoma lineages and more rarely described in Protostoma, Viridiplantae and various protist lineages raising the question of their presence in the Last eukaryotes Common Ancestor (LECA). If so, it is expected that the main enzymes associated with sialic acids metabolism are also present in protists. We conducted phylogenomic and protein sequence analyses to gain insights into the origin and ancient evolution of ST and sialic acid pathway in eukaryotes, Bacteria and Archaea. Our study uncovered the unreported occurrence of bacterial GT29 ST and evidenced the existence of 2 ST groups in the LECA, likely originating from the endosymbiotic event that generated mitochondria. Furthermore, distribution of the major actors of the sialic acid pathway in the different eukaryotic phyla indicated that these were already present in the LECA, which could also access to this essential monosaccharide either endogenously or via a sialin/sialidase uptake mechanism involving vesicles. This pathway was lost in several basal eukaryotic lineages including Archaeplastida despite the presence of two different ST groups likely assigned to other functions.

  19. From the Cover: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features

    NASA Astrophysics Data System (ADS)

    Derelle, Evelyne; Ferraz, Conchita; Rombauts, Stephane; Rouzé, Pierre; Worden, Alexandra Z.; Robbens, Steven; Partensky, Frédéric; Degroeve, Sven; Echeynié, Sophie; Cooke, Richard; Saeys, Yvan; Wuyts, Jan; Jabbari, Kamel; Bowler, Chris; Panaud, Olivier; Piégu, Benoît; Ball, Steven G.; Ral, Jean-Philippe; Bouget, François-Yves; Piganeau, Gwenael; de Baets, Bernard; Picard, André; Delseny, Michel; Demaille, Jacques; van de Peer, Yves; Moreau, Hervé

    2006-08-01

    The green lineage is reportedly 1,500 million years old, evolving shortly after the endosymbiosis event that gave rise to early photosynthetic eukaryotes. In this study, we unveil the complete genome sequence of an ancient member of this lineage, the unicellular green alga Ostreococcus tauri (Prasinophyceae). This cosmopolitan marine primary producer is the world's smallest free-living eukaryote known to date. Features likely reflecting optimization of environmentally relevant pathways, including resource acquisition, unusual photosynthesis apparatus, and genes potentially involved in C4 photosynthesis, were observed, as was downsizing of many gene families. Overall, the 12.56-Mb nuclear genome has an extremely high gene density, in part because of extensive reduction of intergenic regions and other forms of compaction such as gene fusion. However, the genome is structurally complex. It exhibits previously unobserved levels of heterogeneity for a eukaryote. Two chromosomes differ structurally from the other eighteen. Both have a significantly biased G+C content, and, remarkably, they contain the majority of transposable elements. Many chromosome 2 genes also have unique codon usage and splicing, but phylogenetic analysis and composition do not support alien gene origin. In contrast, most chromosome 19 genes show no similarity to green lineage genes and a large number of them are specialized in cell surface processes. Taken together, the complete genome sequence, unusual features, and downsized gene families, make O. tauri an ideal model system for research on eukaryotic genome evolution, including chromosome specialization and green lineage ancestry. genome heterogeneity | genome sequence | green alga | Prasinophyceae | gene prediction

  20. Modifying the 5'-Cap for Click Reactions of Eukaryotic mRNA and To Tune Translation Efficiency in Living Cells.

    PubMed

    Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea

    2016-08-26

    The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gonococcal attachment to eukaryotic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, J.F.; Lammel, C.J.; Draper, D.L.

    The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with (/sup 3/H)- and (/sup 14/C)adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants frommore » transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture.« less

  2. A Versatile PDMS/Paper Hybrid Microfluidic Platform for Sensitive Infectious Disease Diagnosis

    PubMed Central

    2015-01-01

    Bacterial meningitis is a serious health concern worldwide. Given that meningitis can be fatal and many meningitis cases occurred in high-poverty areas, a simple, low-cost, highly sensitive method is in great need for immediate and early diagnosis of meningitis. Herein, we report a versatile and cost-effective polydimethylsiloxane (PDMS)/paper hybrid microfluidic device integrated with loop-mediated isothermal amplification (LAMP) for the rapid, sensitive, and instrument-free detection of the main meningitis-causing bacteria, Neisseria meningitidis (N. meningitidis). The introduction of paper into the microfluidic device for LAMP reactions enables stable test results over a much longer period of time than a paper-free microfluidic system. This hybrid system also offers versatile functions, by providing not only on-site qualitative diagnostic analysis (i.e., a yes or no answer), but also confirmatory testing and quantitative analysis in laboratory settings. The limit of detection of N. meningitidis is about 3 copies per LAMP zone within 45 min, close to single-bacterium detection sensitivity. In addition, we have achieved simple pathogenic microorganism detection without a laborious sample preparation process and without the use of centrifuges. This low-cost hybrid microfluidic system provides a simple and highly sensitive approach for fast instrument-free diagnosis of N. meningitidis in resource-limited settings. This versatile PDMS/paper microfluidic platform has great potential for the point of care (POC) diagnosis of a wide range of infectious diseases, especially for developing nations. PMID:25019330

  3. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    NASA Astrophysics Data System (ADS)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  4. The Evolution of Silicon Transport in Eukaryotes

    PubMed Central

    Marron, Alan O.; Ratcliffe, Sarah; Wheeler, Glen L.; Goldstein, Raymond E.; King, Nicole; Not, Fabrice; de Vargas, Colomban; Richter, Daniel J.

    2016-01-01

    Biosilicification (the formation of biological structures from silica) occurs in diverse eukaryotic lineages, plays a major role in global biogeochemical cycles, and has significant biotechnological applications. Silicon (Si) uptake is crucial for biosilicification, yet the evolutionary history of the transporters involved remains poorly known. Recent evidence suggests that the SIT family of Si transporters, initially identified in diatoms, may be widely distributed, with an extended family of related transporters (SIT-Ls) present in some nonsilicified organisms. Here, we identify SITs and SIT-Ls in a range of eukaryotes, including major silicified lineages (radiolarians and chrysophytes) and also bacterial SIT-Ls. Our evidence suggests that the symmetrical 10-transmembrane-domain SIT structure has independently evolved multiple times via duplication and fusion of 5-transmembrane-domain SIT-Ls. We also identify a second gene family, similar to the active Si transporter Lsi2, that is broadly distributed amongst siliceous and nonsiliceous eukaryotes. Our analyses resolve a distinct group of Lsi2-like genes, including plant and diatom Si-responsive genes, and sequences unique to siliceous sponges and choanoflagellates. The SIT/SIT-L and Lsi2 transporter families likely contribute to biosilicification in diverse lineages, indicating an ancient role for Si transport in eukaryotes. We propose that these Si transporters may have arisen initially to prevent Si toxicity in the high Si Precambrian oceans, with subsequent biologically induced reductions in Si concentrations of Phanerozoic seas leading to widespread losses of SIT, SIT-L, and Lsi2-like genes in diverse lineages. Thus, the origin and diversification of two independent Si transporter families both drove and were driven by ancient ocean Si levels. PMID:27729397

  5. How many novel eukaryotic 'kingdoms'? Pitfalls and limitations of environmental DNA surveys

    PubMed Central

    Berney, Cédric; Fahrni, José; Pawlowski, Jan

    2004-01-01

    Background Over the past few years, the use of molecular techniques to detect cultivation-independent, eukaryotic diversity has proven to be a powerful approach. Based on small-subunit ribosomal RNA (SSU rRNA) gene analyses, these studies have revealed the existence of an unexpected variety of new phylotypes. Some of them represent novel diversity in known eukaryotic groups, mainly stramenopiles and alveolates. Others do not seem to be related to any molecularly described lineage, and have been proposed to represent novel eukaryotic kingdoms. In order to review the evolutionary importance of this novel high-level eukaryotic diversity critically, and to test the potential technical and analytical pitfalls and limitations of eukaryotic environmental DNA surveys (EES), we analysed 484 environmental SSU rRNA gene sequences, including 81 new sequences from sediments of the small river, the Seymaz (Geneva, Switzerland). Results Based on a detailed screening of an exhaustive alignment of eukaryotic SSU rRNA gene sequences and the phylogenetic re-analysis of previously published environmental sequences using Bayesian methods, our results suggest that the number of novel higher-level taxa revealed by previously published EES was overestimated. Three main sources of errors are responsible for this situation: (1) the presence of undetected chimeric sequences; (2) the misplacement of several fast-evolving sequences; and (3) the incomplete sampling of described, but yet unsequenced eukaryotes. Additionally, EES give a biased view of the diversity present in a given biotope because of the difficult amplification of SSU rRNA genes in some taxonomic groups. Conclusions Environmental DNA surveys undoubtedly contribute to reveal many novel eukaryotic lineages, but there is no clear evidence for a spectacular increase of the diversity at the kingdom level. After re-analysis of previously published data, we found only five candidate lineages of possible novel high-level eukaryotic

  6. The Emergence of Predators in Early Life: There was No Garden of Eden

    PubMed Central

    de Nooijer, Silvester; Holland, Barbara R.; Penny, David

    2009-01-01

    Background Eukaryote cells are suggested to arise somewhere between 0.85∼2.7 billion years ago. However, in the present world of unicellular organisms, cells that derive their food and metabolic energy from larger cells engulfing smaller cells (phagocytosis) are almost exclusively eukaryotic. Combining these propositions, that eukaryotes were the first phagocytotic predators and that they arose only 0.85∼2.7 billion years ago, leads to an unexpected prediction of a long period (∼1–3 billion years) with no phagocytotes – a veritable Garden of Eden. Methodology We test whether such a long period is reasonable by simulating a population of very simple unicellular organisms - given only basic physical, biological and ecological principles. Under a wide range of initial conditions, cellular specialization occurs early in evolution; we find a range of cell types from small specialized primary producers to larger opportunistic or specialized predators. Conclusions Both strategies, specialized smaller cells and phagocytotic larger cells are apparently fundamental biological strategies that are expected to arise early in cellular evolution. Such early predators could have been ‘prokaryotes’, but if the earliest cells on the eukaryote lineage were predators then this explains most of their characteristic features. PMID:19492046

  7. An inhibitor of eIF2 activity in the sRNA pool of eukaryotic cells.

    PubMed

    Centrella, Michael; Porter, David L; McCarthy, Thomas L

    2011-08-15

    Eukaryotic protein synthesis is a multi-step and highly controlled process that includes an early initiation complex containing eukaryotic initiation factor 2 (eIF2), GTP, and methionine-charged initiator methionyl-tRNA (met-tRNAi). During studies to reconstruct formation of the ternary complex containing these molecules, we detected a potent inhibitor in low molecular mass RNA (sRNA) preparations of eukaryotic tRNA. The ternary complex inhibitor (TCI) was retained in the total sRNA pool after met-tRNAi was charged by aminoacyl tRNA synthetase, co-eluted with sRNA by size exclusion chromatography, but resolved from met-tRNAi by ion exchange chromatography. The adverse effect of TCI was not overcome by high GTP or magnesium omission and was independent of GTP regeneration. Rather, TCI suppressed the rate of ternary complex formation, and disrupted protein synthesis and the accumulation of heavy polymeric ribosomes in reticulocyte lysates in vitro. Lastly, a component or components in ribosome depleted cell lysate significantly reversed TCI activity. Since assembly of the met-tRNAi/eIF2/GTP ternary complex is integral to protein synthesis, awareness of TCI is important to avoid confusion in studies of translation initiation. A clear definition of TCI may also allow a better appreciation of physiologic or pathologic situations, factors, and events that control protein synthesis in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A versatile laboratory cryogenic plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrov, V.M.; Marevichev, I.P.; Petrova, Y.B.

    1983-07-01

    The Institute of Theoretical and Experimental physics has designed a versatile cryogenic plant (VCP) which can liquefy helium, hydrogen, neon, and can extract neon from a gaseous neon-helium mixture. It can also be used as a refrigerator for cryostating external objects. The versatile cryogenic plant is schematicized and the refrigerating capacity and VCP control panel are detailed. Characteristic features which distinguish the VCP from other plants are specified. The processes involved in the liquefaction of helium, hydrogen, or neon, and the cryostating and cooling of an external object are explained. The use of the plant showed it to be economic,more » reliable, and convenient to operate.« less

  9. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.

    PubMed

    Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J

    2016-09-01

    Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    PubMed

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast

  11. A congruent phylogenomic signal places eukaryotes within the Archaea.

    PubMed

    Williams, Tom A; Foster, Peter G; Nye, Tom M W; Cox, Cymon J; Embley, T Martin

    2012-12-22

    Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook 'three domains' tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.

  12. Inorganic phosphate uptake in unicellular eukaryotes.

    PubMed

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Uniting sex and eukaryote origins in an emerging oxygenic world.

    PubMed

    Gross, Jeferson; Bhattacharya, Debashish

    2010-08-23

    Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation

  14. Evolution of DNA Replication Protein Complexes in Eukaryotes and Archaea

    PubMed Central

    Chia, Nicholas; Cann, Isaac; Olsen, Gary J.

    2010-01-01

    Background The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and the minichromosome maintenance (MCM) complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. Methodology/Principal Findings While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex—all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. Conclusion/Significance This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota. PMID:20532250

  15. Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol.

    PubMed

    Fritz, Markus; Lokstein, Heiko; Hackenberg, Dieter; Welti, Ruth; Roth, Mary; Zähringer, Ulrich; Fulda, Martin; Hellmeyer, Wiebke; Ott, Claudia; Wolter, Frank P; Heinz, Ernst

    2007-02-16

    Plastidial glycolipids contain diacylglycerol (DAG) moieties, which are either synthesized in the plastids (prokaryotic lipids) or originate in the extraplastidial compartment (eukaryotic lipids) necessitating their transfer into plastids. In contrast, the only phospholipid in plastids, phosphatidylglycerol (PG), contains exclusively prokaryotic DAG backbones. PG contributes in several ways to the functions of chloroplasts, but it is not known to what extent its prokaryotic nature is required to fulfill these tasks. As a first step toward answering this question, we produced transgenic tobacco plants that contain eukaryotic PG in thylakoids. This was achieved by targeting a bacterial DAG kinase into chloroplasts in which the heterologous enzyme was also incorporated into the envelope fraction. From lipid analysis we conclude that the DAG kinase phosphorylated eukaryotic DAG forming phosphatidic acid, which was converted into PG. This resulted in PG with 2-3 times more eukaryotic than prokaryotic DAG backbones. In the newly formed PG the unique Delta3-trans-double bond, normally confined to 3-trans-hexadecenoic acid, was also found in sn-2-bound cis-unsaturated C18 fatty acids. In addition, a lipidomics technique allowed the characterization of phosphatidic acid, which is assumed to be derived from eukaryotic DAG precursors in the chloroplasts of the transgenic plants. The differences in lipid composition had only minor effects on measured functions of the photosynthetic apparatus, whereas the most obvious phenotype was a significant reduction in growth.

  16. DLR MiroSurge: a versatile system for research in endoscopic telesurgery.

    PubMed

    Hagn, Ulrich; Konietschke, R; Tobergte, A; Nickl, M; Jörg, S; Kübler, B; Passig, G; Gröger, M; Fröhlich, F; Seibold, U; Le-Tien, L; Albu-Schäffer, A; Nothhelfer, A; Hacker, F; Grebenstein, M; Hirzinger, G

    2010-03-01

    Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based on industrial robots, though, and because of this, are hardly suitable for close contact with humans. To achieve a high degree of versatility the Miro robotic surgery platform (MRSP) consists of versatile components, dedicated front-ends towards surgery and configurable interfaces for the surgeon. This paper presents MiroSurge, a configuration of the MRSP that allows for bimanual endoscopic telesurgery with force feedback. While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.

  17. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart.

    PubMed

    Malgieri, Gaetano; Palmieri, Maddalena; Russo, Luigi; Fattorusso, Roberto; Pedone, Paolo V; Isernia, Carla

    2015-12-01

    Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships. © 2015 FEBS.

  18. Initiation of translation in bacteria by a structured eukaryotic IRES RNA.

    PubMed

    Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S

    2015-03-05

    The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.

  19. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    PubMed

    Hamad, Ibrahim; Abou Abdallah, Rita; Ravaux, Isabelle; Mokhtari, Saadia; Tissot-Dupont, Hervé; Michelle, Caroline; Stein, Andreas; Lagier, Jean-Christophe; Raoult, Didier; Bittar, Fadi

    2018-01-01

    Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1) and 2 (ITS2) amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index) and alpha diversity (Shannon diversity) differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs) belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis and

  20. Role versatility among men who have sex with men in urban Peru.

    PubMed

    Goodreau, Steven M; Peinado, Jesus; Goicochea, Pedro; Vergara, Jorge; Ojeda, Nora; Casapia, Martin; Ortiz, Abner; Zamalloa, Victoria; Galvan, Rosa; Sanchez, Jorge R

    2007-08-01

    Role versatility refers to the practice in which individual men who have sex with men (MSM) play both insertive and receptive sexual roles over time. Versatility has been thought to be relatively uncommon among Latin American MSM but possibly rising. Versatility has also been shown to be a potentially large population-level risk factor for HIV infection. In this study we examine the correlates of versatile behavior and identity among 2,655 MSM in six Peruvian cities. Versatile behavior with recent male partners was found in 9% of men and versatile ("moderno") identity was reported by 16%. Significant predictors included high education, white-collar occupation, sex work, and residence in Lima. Age was not significant in any analysis. Since sex work is negatively correlated with other predictors, versatile men appear to comprise two distinct sub-populations. Insertive-only men appear to play a strong role in bridging the HIV epidemic between MSM and women.

  1. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome.

    PubMed

    Wallau, Gabriel Luz; Vieira, Cristina; Loreto, Élgion Lúcio Silva

    2018-01-01

    All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.

  2. Eukaryotic ribosome display with in situ DNA recovery.

    PubMed

    He, Mingyue; Edwards, Bryan M; Kastelic, Damjana; Taussig, Michael J

    2012-01-01

    Ribosome display is a cell-free display technology for in vitro selection and optimisation of proteins from large diversified libraries. It operates through the formation of stable protein-ribosome-mRNA (PRM) complexes and selection of ligand-binding proteins, followed by DNA recovery from the selected genetic information. Both prokaryotic and eukaryotic ribosome display systems have been developed. In this chapter, we describe the eukaryotic rabbit reticulocyte method in which a distinct in situ single-primer RT-PCR procedure is used to recover DNA from the selected PRM complexes without the need for prior disruption of the ribosome.

  3. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters.

    PubMed

    Matsubayashi, Miri; Shimada, Yusuke; Li, Yu-You; Harada, Hideki; Kubota, Kengo

    2017-01-01

    Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR), 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2-8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester.

  4. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  5. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Bolstad, D; Bolstad, E

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison ofmore » the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.« less

  6. Eukaryotic acquisition of a bacterial operon

    USDA-ARS?s Scientific Manuscript database

    The yeast Saccharomyces cerevisiae is one of the champions of basic biomedical research due to its compact eukaryotic genome and ease of experimental manipulation. Despite these immense strengths, its impact on understanding the genetic basis of natural phenotypic variation has been limited by strai...

  7. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota.

    PubMed

    Xiong, Jinbo; Yu, Weina; Dai, Wenfang; Zhang, Jinjie; Qiu, Qiongfen; Ou, Changrong

    2018-04-01

    One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.

  8. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    PubMed Central

    Arabski, Michał; Węgierek-Ciuk, Aneta; Czerwonka, Grzegorz; Lankoff, Anna; Kaca, Wiesław

    2012-01-01

    Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed. PMID:22500084

  9. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    PubMed

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  10. Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria.

    PubMed

    Brown, Matthew W; Kolisko, Martin; Silberman, Jeffrey D; Roger, Andrew J

    2012-06-19

    Multicellular forms of life have evolved many times, independently giving rise to a diversity of organisms such as animals, plants, and fungi that together comprise the visible biosphere. Yet multicellular life is far more widespread among eukaryotes than just these three lineages. A particularly common form of multicellularity is a social aggregative fruiting lifestyle whereby individual cells associate to form a "fungus-like" sorocarp. This complex developmental process that requires the interaction of thousands of cells working in concert was made famous by the "cellular slime mold"Dictyostelium discoideum, which became an important model organism. Although sorocarpic protistan lineages have been identified in five of the major eukaryote groups, the ubiquitous and globally distributed species Guttulinopsis vulgaris has eluded proper classification. Here we demonstrate, by phylogenomic analyses of a 159-protein data set, that G. vulgaris is a member of Rhizaria and is thus the first member of this eukaryote supergroup known to be capable of aggregative multicellularity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Exaptive origins of regulated mRNA decay in eukaryotes

    PubMed Central

    Hamid, Fursham M.

    2016-01-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. PMID:27438915

  12. Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia lamblia

    PubMed Central

    Liao, Jian-You; Guo, Yan-Hua; Zheng, Ling-Ling; Li, Yan; Xu, Wen-Li; Zhang, Yu-Chan; Zhou, Hui; Lun, Zhao-Rong; Ayala, Francisco J.; Qu, Liang-Hu

    2014-01-01

    Small RNAs (sRNAs), including microRNAs and endogenous siRNAs (endo-siRNAs), regulate most important biologic processes in eukaryotes, such as cell division and differentiation. Although sRNAs have been extensively studied in various eukaryotes, the role of sRNAs in the early emergence of eukaryotes is unclear. To address these questions, we deep sequenced the sRNA transcriptome of four different stages in the differentiation of Giardia lamblia, one of the most primitive eukaryotes. We identified a large number of endo-siRNAs in this fascinating parasitic protozoan and found that they were produced from live telomeric retrotransposons and three genomic regions (i.e., endo-siRNA generating regions [eSGRs]). eSGR-derived endo-siRNAs were proven to target mRNAs in trans. Gradual up-regulation of endo-siRNAs in the differentiation of Giardia suggested that they might be involved in the regulation of this process. This hypothesis was supported by the impairment of the differentiation ability of Giardia when GLDICER, essential for the biogenesis of endo-siRNAs, was knocked down. Endo-siRNAs are not the only sRNA regulators in Giardia differentiation, because a great number of tRNAs-derived sRNAs showed more dramatic expression changes than endo-siRNAs in this process. We totally identified five novel kinds of tRNAs-derived sRNAs and found that the biogenesis in four of them might be correlated with that of stress-induced tRNA-derived RNA (sitRNA), which was discovered in our previous studies. Our studies reveal an unexpected complex panorama of sRNA in G. lamblia and shed light on the origin and functional evolution of eukaryotic sRNAs. PMID:25225396

  13. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    PubMed Central

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  14. The architecture of a eukaryotic replisome

    DOE PAGES

    Sun, Jingchuan; Yuan, Zuanning; Shi, Yi; ...

    2015-11-02

    At the eukaryotic DNA replication fork, it is widely believed that the Cdc45–Mcm2–7–GINS (CMG) helicase is positioned in front to unwind DNA and that DNA polymerases trail behind the helicase. Here we used single-particle EM to directly image a Saccharomyces cerevisiae replisome. Contrary to expectations, the leading strand Pol ε is positioned ahead of CMG helicase, whereas Ctf4 and the lagging-strand polymerase (Pol) α–primase are behind the helicase. This unexpected architecture indicates that the leading-strand DNA travels a long distance before reaching Pol ε, first threading through the Mcm2–7 ring and then making a U-turn at the bottom and reachingmore » Pol ε at the top of CMG. Lastly, our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture and provides a basis for further structural and biochemical replisome studies.« less

  15. The Iron Metallome in Eukaryotic Organisms

    PubMed Central

    Dlouhy, Adrienne C.; Outten, Caryn E.

    2013-01-01

    This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels. PMID:23595675

  16. The SH2 Domain–Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes

    PubMed Central

    Liu, Bernard A.; Shah, Eshana; Jablonowski, Karl; Stergachis, Andrew; Engelmann, Brett; Nash, Piers D.

    2014-01-01

    The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks. PMID:22155787

  17. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  18. Eukaryotes in the gut microbiota in myalgic encephalomyelitis/chronic fatigue syndrome

    PubMed Central

    Mandarano, Alexandra H.; Giloteaux, Ludovic; Keller, Betsy A.; Levine, Susan M.

    2018-01-01

    Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often suffer from gastrointestinal symptoms and many are diagnosed with irritable bowel syndrome (IBS). Previous studies, including from our laboratory, have demonstrated that the ME/CFS gut bacterial composition is altered and less diverse when compared to healthy individuals. Patients have increased biomarkers of inflammation and leaky gut syndrome. To further investigate dysbiosis in the ME/CFS gut microbiome, we sought to characterize the eukaryotes present in the gut of 49 individuals with ME/CFS and 39 healthy controls. Using 18S rRNA sequencing, we have identified eukaryotes in stool samples of 17 healthy individuals and 17 ME/CFS patients. Our analysis demonstrates a small, nonsignificant decrease in eukaryotic diversity in ME/CFS patients compared to healthy individuals. In addition, ME/CFS patients show a nonsignificant increase in the ratio of fungal phyla Basidiomycota to Ascomycota, which is consistent with ongoing inflammation in ME/CFS. We did not identify specific eukaryotic taxa that are associated with ME/CFS disease status. PMID:29375937

  19. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution

    PubMed Central

    Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai

    2015-01-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  20. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Versatile solid-state relay

    NASA Technical Reports Server (NTRS)

    Fox, D. A.

    1977-01-01

    Solid-state relay (SSR), containing multinode control logic, is operated as normally open, normally closed, or latched. Moreover several can be paralleled to form two-pole or double-throw relays. Versatile unit ends need to design custom control circuit for every relay application. Technique can be extended to incorporate selectable time delay, on operation or release, or pulsed output.

  2. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    PubMed

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  3. Emerging players in the initiation of eukaryotic DNA replication

    PubMed Central

    2012-01-01

    Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression. PMID:23075259

  4. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    PubMed

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  5. Mechanisms and regulation of DNA replication initiation in eukaryotes

    PubMed Central

    Parker, Matthew W.; Botchan, Michael R.; Berger, James M.

    2017-01-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a given cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the Origin Recognition Complex (ORC), and subsequent activation of the helicase by incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here we review the molecular mechanisms that underpin eukaryotic DNA replication initiation – from selecting replication start sites to replicative helicase loading and activation – and describe how these events are often distinctly regulated across different eukaryotic model organisms. PMID:28094588

  6. Exaptive origins of regulated mRNA decay in eukaryotes.

    PubMed

    Hamid, Fursham M; Makeyev, Eugene V

    2016-09-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense-mediated decay (NMD) and motif-specific transcript destabilization by CCCH-type zinc finger RNA-binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of "professional" innate and adaptive immunity systems allowed NMD and the motif-triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post-transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  7. A Versatile Class of Cell Surface Directional Motors Gives Rise to Gliding Motility and Sporulation in Myxococcus xanthus

    PubMed Central

    Wartel, Morgane; Czerwinski, Fabian; Le Gall, Anne-Valérie; Mauriello, Emilia M. F.; Bergam, Ptissam; Brun, Yves V.; Shaevitz, Joshua; Mignot, Tâm

    2013-01-01

    Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex) to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories. PMID:24339744

  8. Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes.

    PubMed

    Brannock, Pamela M; Ortmann, Alice C; Moss, Anthony G; Halanych, Kenneth M

    2016-08-01

    Marine environments harbour a vast diversity of micro-eukaryotic organisms (protists and other small eukaryotes) that play important roles in structuring marine ecosystems. However, micro-eukaryote diversity is not well understood. Likewise, knowledge is limited regarding micro-eukaryote spatial and seasonal distribution, especially over long temporal scales. Given the importance of this group for mobilizing energy from lower trophic levels near the base of the food chain to larger organisms, assessing community stability, diversity and resilience is important to understand ecosystem health. Herein, we use a metabarcoding approach to examine pelagic micro-eukaryote communities over a 2.5-year time series. Bimonthly surface sampling (July 2009 to December 2011) was conducted at four locations within Mobile Bay (Bay) and along the Alabama continental shelf (Shelf). Alpha-diversity only showed significant differences in Shelf sites, with the greatest differences observed between summer and winter. Beta-diversity showed significant differences in community composition in relation to season and the Bay was dominated by diatoms, while the Shelf was characterized by dinoflagellates and copepods. The northern Gulf of Mexico is heavily influenced by the Mobile River Basin, which brings low-salinity nutrient-rich water mostly during winter and spring. Community composition was correlated with salinity, temperature and dissolved silicate. However, species interactions (e.g. predation and parasitism) may also contribute to the observed variation, especially on the Shelf, which warrants further exploration. Metabarcoding revealed clear patterns in surface pelagic micro-eukaryote communities that were consistent over multiple years, demonstrating how these techniques could be greatly beneficial to ecological monitoring and management over temporal scales. © 2016 John Wiley & Sons Ltd.

  9. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  10. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes.

    PubMed

    Novák, Lukáš; Zubáčová, Zuzana; Karnkowska, Anna; Kolisko, Martin; Hroudová, Miluše; Stairs, Courtney W; Simpson, Alastair G B; Keeling, Patrick J; Roger, Andrew J; Čepička, Ivan; Hampl, Vladimír

    2016-10-06

    Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.

  11. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists.

    PubMed

    Jagus, Rosemary; Bachvaroff, Tsvetan R; Joshi, Bhavesh; Place, Allen R

    2012-01-01

    The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in "text-book" model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.

  12. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists

    PubMed Central

    Jagus, Rosemary; Bachvaroff, Tsvetan R.; Joshi, Bhavesh; Place, Allen R.

    2012-01-01

    The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in “text-book” model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed. PMID:22778692

  13. Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes

    PubMed Central

    Ren, Ren; Sun, Yazhou; Zhao, Yue; Geiser, David

    2016-01-01

    Abstract A comprehensive and reliable eukaryotic tree of life is important for many aspects of biological studies from comparative developmental and physiological analyses to translational medicine and agriculture. Both gene-rich and taxon-rich approaches are effective strategies to improve phylogenetic accuracy and are greatly facilitated by marker genes that are universally distributed, well conserved, and orthologous among divergent eukaryotes. In this article, we report the identification of 943 low-copy eukaryotic genes and we show that many of these genes are promising tools in resolving eukaryotic phylogenies, despite the challenges of determining deep eukaryotic relationships. As a case study, we demonstrate that smaller subsets of ∼20 and 52 genes could resolve controversial relationships among widely divergent taxa and provide strong support for deep relationships such as the monophyly and branching order of several eukaryotic supergroups. In addition, the use of these genes resulted in fungal phylogenies that are congruent with previous phylogenomic studies that used much larger datasets, and successfully resolved several difficult relationships (e.g., forming a highly supported clade with Microsporidia, Mitosporidium and Rozella sister to other fungi). We propose that these genes are excellent for both gene-rich and taxon-rich analyses and can be applied at multiple taxonomic levels and facilitate a more complete understanding of the eukaryotic tree of life. PMID:27604879

  14. DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes?

    PubMed

    Luo, Guan-Zheng; Blanco, Mario Andres; Greer, Eric Lieberman; He, Chuan; Shi, Yang

    2015-12-01

    DNA N(6)-adenine methylation (N(6)-methyladenine; 6mA) in prokaryotes functions primarily in the host defence system. The prevalence and significance of this modification in eukaryotes had been unclear until recently. Here, we discuss recent publications documenting the presence of 6mA in Chlamydomonas reinhardtii, Drosophila melanogaster and Caenorhabditis elegans; consider possible roles for this DNA modification in regulating transcription, the activity of transposable elements and transgenerational epigenetic inheritance; and propose 6mA as a new epigenetic mark in eukaryotes.

  15. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow

    PubMed Central

    Bochdansky, Alexander B; Clouse, Melissa A; Herndl, Gerhard J

    2017-01-01

    In the bathypelagic realm of the ocean, the role of marine snow as a carbon and energy source for the deep-sea biota and as a potential hotspot of microbial diversity and activity has not received adequate attention. Here, we collected bathypelagic marine snow by gentle gravity filtration of sea water onto 30 μm filters from ~1000 to 3900 m to investigate the relative distribution of eukaryotic microbes. Compared with sediment traps that select for fast-sinking particles, this method collects particles unbiased by settling velocity. While prokaryotes numerically exceeded eukaryotes on marine snow, eukaryotic microbes belonging to two very distant branches of the eukaryote tree, the fungi and the labyrinthulomycetes, dominated overall biomass. Being tolerant to cold temperature and high hydrostatic pressure, these saprotrophic organisms have the potential to significantly contribute to the degradation of organic matter in the deep sea. Our results demonstrate that the community composition on bathypelagic marine snow differs greatly from that in the ambient water leading to wide ecological niche separation between the two environments. PMID:27648811

  16. VAC: Versatile Advection Code

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Keppens, Rony

    2012-07-01

    The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.

  17. Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.

    PubMed

    Ma, Zheng; Fung, Victor; D'Orso, Iván

    2017-01-26

    The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.

  18. The first eukaryote cell: an unfinished history of contestation.

    PubMed

    O'Malley, Maureen A

    2010-09-01

    The eukaryote cell is one of the most radical innovations in the history of life, and the circumstances of its emergence are still deeply contested. This paper will outline the recent history of attempts to reveal these origins, with special attention to the argumentative strategies used to support claims about the first eukaryote cell. I will focus on two general models of eukaryogenesis: the phagotrophy model and the syntrophy model. As their labels indicate, they are based on claims about metabolic relationships. The first foregrounds the ability to consume other organisms; the second the ability to enter into symbiotic metabolic arrangements. More importantly, however, the first model argues for the autogenous or self-generated origins of the eukaryote cell, and the second for its exogenous or externally generated origins. Framing cell evolution this way leads each model to assert different priorities in regard to cell-biological versus molecular evidence, cellular versus environmental influences, plausibility versus evolutionary probability, and irreducibility versus the continuity of cell types. My examination of these issues will conclude with broader reflections on the implications of eukaryogenesis studies for a philosophical understanding of scientific contestation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Translational Control of Viral Gene Expression in Eukaryotes

    PubMed Central

    Gale, Michael; Tan, Seng-Lai; Katze, Michael G.

    2000-01-01

    As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell. PMID:10839817

  20. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    PubMed Central

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  1. The activities of eukaryotic replication origins in chromatin.

    PubMed

    Weinreich, Michael; Palacios DeBeer, Madeleine A; Fox, Catherine A

    2004-03-15

    DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.

  2. Diversity patterns of microbial eukaryotes mirror those of bacteria in Antarctic cryoconite holes.

    PubMed

    Sommers, Pacifica; Darcy, John L; Gendron, Eli M S; Stanish, Lee F; Bagshaw, Elizabeth A; Porazinska, Dorota L; Schmidt, Steven K

    2018-01-01

    Ice-lidded cryoconite holes on glaciers in the Taylor Valley, Antarctica, provide a unique system of natural mesocosms for studying community structure and assembly. We used high-throughput DNA sequencing to characterize both microbial eukaryotic communities and bacterial communities within cryoconite holes across three glaciers to study similarities in their spatial patterns. We expected that the alpha (phylogenetic diversity) and beta (pairwise community dissimilarity) diversity patterns of eukaryotes in cryoconite holes would be related to those of bacteria, and that they would be related to the biogeochemical gradient within the Taylor Valley. We found that eukaryotic alpha and beta diversity were strongly related to those of bacteria across scales ranging from 140 m to 41 km apart. Alpha diversity of both was significantly related to position in the valley and surface area of the cryoconite hole, with pH also significantly correlated with the eukaryotic diversity. Beta diversity for both bacteria and eukaryotes was significantly related to position in the valley, with bacterial beta diversity also related to nitrate. These results are consistent with transport of sediments onto glaciers occurring primarily at local scales relative to the size of the valley, thus creating feedbacks in local chemistry and diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Evolution of intrinsic disorder in eukaryotic proteins.

    PubMed

    Ahrens, Joseph B; Nunez-Castilla, Janelle; Siltberg-Liberles, Jessica

    2017-09-01

    Conformational flexibility conferred though regions of intrinsic structural disorder allows proteins to behave as dynamic molecules. While it is well-known that intrinsically disordered regions can undergo disorder-to-order transitions in real-time as part of their function, we also are beginning to learn more about the dynamics of disorder-to-order transitions along evolutionary time-scales. Intrinsically disordered regions endow proteins with functional promiscuity, which is further enhanced by the ability of some of these regions to undergo real-time disorder-to-order transitions. Disorder content affects gene retention after whole genome duplication, but it is not necessarily conserved. Altered patterns of disorder resulting from evolutionary disorder-to-order transitions indicate that disorder evolves to modify function through refining stability, regulation, and interactions. Here, we review the evolution of intrinsically disordered regions in eukaryotic proteins. We discuss the interplay between secondary structure and disorder on evolutionary time-scales, the importance of disorder for eukaryotic proteome expansion and functional divergence, and the evolutionary dynamics of disorder.

  4. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  5. Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis

    PubMed Central

    de la Cueva-Méndez, Guillermo; Mills, Anthony D.; Clay-Farrace, Lorena; Díaz-Orejas, Ramón; Laskey, Ronald A.

    2003-01-01

    Plasmid R1 inhibits growth of bacteria by synthesizing an inhibitor of cell proliferation, Kid, and a neutralizing antidote, Kis, which binds tightly to the toxin. Here we report that this toxin and antidote, which have evolved to function in bacteria, also function efficiently in a wide range of eukaryotes. Kid inhibits cell proliferation in yeast, Xenopus laevis and human cells, whilst Kis protects. Moreover, we show that Kid triggers apoptosis in human cells. These effects can be regulated in vivo by modulating the relative amounts of antidote and toxin using inducible eukaryotic promoters for independent transcriptional control of their genes. These findings allow highly regulatable, selective killing of eukaryotic cells, and could be applied to eliminate cancer cells or specific cell lineages in development. PMID:12514130

  6. Evolution of histone 2A for chromatin compaction in eukaryotes

    PubMed Central

    Macadangdang, Benjamin R; Oberai, Amit; Spektor, Tanya; Campos, Oscar A; Sheng, Fang; Carey, Michael F; Vogelauer, Maria; Kurdistani, Siavash K

    2014-01-01

    During eukaryotic evolution, genome size has increased disproportionately to nuclear volume, necessitating greater degrees of chromatin compaction in higher eukaryotes, which have evolved several mechanisms for genome compaction. However, it is unknown whether histones themselves have evolved to regulate chromatin compaction. Analysis of histone sequences from 160 eukaryotes revealed that the H2A N-terminus has systematically acquired arginines as genomes expanded. Insertion of arginines into their evolutionarily conserved position in H2A of a small-genome organism increased linear compaction by as much as 40%, while their absence markedly diminished compaction in cells with large genomes. This effect was recapitulated in vitro with nucleosomal arrays using unmodified histones, indicating that the H2A N-terminus directly modulates the chromatin fiber likely through intra- and inter-nucleosomal arginine–DNA contacts to enable tighter nucleosomal packing. Our findings reveal a novel evolutionary mechanism for regulation of chromatin compaction and may explain the frequent mutations of the H2A N-terminus in cancer. DOI: http://dx.doi.org/10.7554/eLife.02792.001 PMID:24939988

  7. Gene flow and biological conflict systems in the origin and evolution of eukaryotes

    PubMed Central

    Aravind, L.; Anantharaman, Vivek; Zhang, Dapeng; de Souza, Robson F.; Iyer, Lakshminarayan M.

    2012-01-01

    The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary “nurseries” for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations. PMID

  8. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation

    PubMed Central

    Blackstone, Neil W.

    2013-01-01

    According to multi-level theory, evolutionary transitions require mediating conflicts between lower-level units in favour of the higher-level unit. By this view, the origin of eukaryotes and the origin of multicellularity would seem largely equivalent. Yet, eukaryotes evolved only once in the history of life, whereas multicellular eukaryotes have evolved many times. Examining conflicts between evolutionary units and mechanisms that mediate these conflicts can illuminate these differences. Energy-converting endosymbionts that allow eukaryotes to transcend surface-to-volume constraints also can allocate energy into their own selfish replication. This principal conflict in the origin of eukaryotes can be mediated by genetic or energetic mechanisms. Genome transfer diminishes the heritable variation of the symbiont, but requires the de novo evolution of the protein-import apparatus and was opposed by selection for selfish symbionts. By contrast, metabolic signalling is a shared primitive feature of all cells. Redox state of the cytosol is an emergent feature that cannot be subverted by an individual symbiont. Hypothetical scenarios illustrate how metabolic regulation may have mediated the conflicts inherent at different stages in the origin of eukaryotes. Aspects of metabolic regulation may have subsequently been coopted from within-cell to between-cell pathways, allowing multicellularity to emerge repeatedly. PMID:23754817

  9. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation.

    PubMed

    Blackstone, Neil W

    2013-07-19

    According to multi-level theory, evolutionary transitions require mediating conflicts between lower-level units in favour of the higher-level unit. By this view, the origin of eukaryotes and the origin of multicellularity would seem largely equivalent. Yet, eukaryotes evolved only once in the history of life, whereas multicellular eukaryotes have evolved many times. Examining conflicts between evolutionary units and mechanisms that mediate these conflicts can illuminate these differences. Energy-converting endosymbionts that allow eukaryotes to transcend surface-to-volume constraints also can allocate energy into their own selfish replication. This principal conflict in the origin of eukaryotes can be mediated by genetic or energetic mechanisms. Genome transfer diminishes the heritable variation of the symbiont, but requires the de novo evolution of the protein-import apparatus and was opposed by selection for selfish symbionts. By contrast, metabolic signalling is a shared primitive feature of all cells. Redox state of the cytosol is an emergent feature that cannot be subverted by an individual symbiont. Hypothetical scenarios illustrate how metabolic regulation may have mediated the conflicts inherent at different stages in the origin of eukaryotes. Aspects of metabolic regulation may have subsequently been coopted from within-cell to between-cell pathways, allowing multicellularity to emerge repeatedly.

  10. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes

    PubMed Central

    D’Archivio, Simon

    2017-01-01

    Kinetochores are multiprotein complexes that couple eukaryotic chromosomes to the mitotic spindle to ensure proper segregation. The model for kinetochore assembly is conserved between humans and yeast, and homologues of several components are widely distributed in eukaryotes, but key components are absent in some lineages. The recent discovery in a lineage of protozoa called kinetoplastids of unconventional kinetochores with no apparent homology to model organisms suggests that more than one system for eukaryotic chromosome segregation may exist. In this study, we report a new family of proteins distantly related to outer kinetochore proteins Ndc80 and Nuf2. The family member in kinetoplastids, KKT-interacting protein 1 (KKIP1), associates with the kinetochore, and its depletion causes severe defects in karyokinesis, loss of individual chromosomes, and gross defects in spindle assembly or stability. Immunopurification of KKIP1 from stabilized kinetochores identifies six further components, which form part of a trypanosome outer kinetochore complex. These findings suggest that kinetochores in organisms such as kinetoplastids are built from a divergent, but not ancestrally distinct, set of components and that Ndc80/Nuf2-like proteins are universal in eukaryotic division. PMID:28034897

  11. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    PubMed

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  12. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    PubMed

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  13. Evolution and function of eukaryotic-like proteins from sponge symbionts.

    PubMed

    Reynolds, David; Thomas, Torsten

    2016-10-01

    Sponges (Porifera) are ancient metazoans that harbour diverse microorganisms, whose symbiotic interactions are essential for the host's health and function. Although symbiosis between bacteria and sponges are ubiquitous, the molecular mechanisms that control these associations are largely unknown. Recent (meta-) genomic analyses discovered an abundance of genes encoding for eukaryotic-like proteins (ELPs) in bacterial symbionts from different sponge species. ELPs belonging to the ankyrin repeat (AR) class from a bacterial symbiont of the sponge Cymbastela concentrica were subsequently found to modulate amoebal phagocytosis. This might be a molecular mechanism, by which symbionts can control their interaction with the sponge. In this study, we investigated the evolution and function of ELPs from other classes and from symbionts found in other sponges to better understand the importance of ELPs for bacteria-eukaryote interactions. Phylogenetic analyses showed that all of the nine ELPs investigated were most closely related to proteins found either in eukaryotes or in bacteria that can live in association with eukaryotes. ELPs were then recombinantly expressed in Escherichia coli and exposed to the amoeba Acanthamoeba castellanii, which is functionally analogous to phagocytic cells in sponges. Phagocytosis assays with E. coli containing three ELP classes (AR, TPR-SEL1 and NHL) showed a significantly higher percentage of amoeba containing bacteria and average number of intracellular bacteria per amoeba when compared to negative controls. The result that various classes of ELPs found in symbionts of different sponges can modulate phagocytosis indicates that they have a broader function in mediating bacteria-sponge interactions. © 2016 John Wiley & Sons Ltd.

  14. The evolution of organellar metabolism in unicellular eukaryotes.

    PubMed

    Ginger, Michael L; McFadden, Geoffrey I; Michels, Paul A M

    2010-03-12

    Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution.

  15. Genetic diversity of small eukaryotes in lakes differing by their trophic status.

    PubMed

    Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier

    2005-10-01

    Small eukaryotes, cells with a diameter of less than 5 mum, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem.

  16. Genetic Diversity of Small Eukaryotes in Lakes Differing by Their Trophic Status

    PubMed Central

    Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier

    2005-01-01

    Small eukaryotes, cells with a diameter of less than 5 μm, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem. PMID:16204507

  17. Symbiosis in cell evolution: Life and its environment on the early earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  18. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function.

    PubMed

    Cotton, James A; McInerney, James O

    2010-10-05

    The traditional tree of life shows eukaryotes as a distinct lineage of living things, but many studies have suggested that the first eukaryotic cells were chimeric, descended from both Eubacteria (through the mitochondrion) and Archaebacteria. Eukaryote nuclei thus contain genes of both eubacterial and archaebacterial origins, and these genes have different functions within eukaryotic cells. Here we report that archaebacterium-derived genes are significantly more likely to be essential to yeast viability, are more highly expressed, and are significantly more highly connected and more central in the yeast protein interaction network. These findings hold irrespective of whether the genes have an informational or operational function, so that many features of eukaryotic genes with prokaryotic homologs can be explained by their origin, rather than their function. Taken together, our results show that genes of archaebacterial origin are in some senses more important to yeast metabolism than genes of eubacterial origin. This importance reflects these genes' origin as the ancestral nuclear component of the eukaryotic genome.

  19. Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense

    PubMed Central

    Price, Aryn A.; Grakoui, Arash; Weiss, David S.

    2016-01-01

    Clustered, regularly interspaced, short palindromic repeats - CRISPR associated (CRISPR-Cas) systems are sequence specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense. PMID:26852268

  20. Environmental versatility promotes modularity in genome-scale metabolic networks.

    PubMed

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple

  1. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor

    PubMed Central

    Garg, Sriram G.; Martin, William F.

    2016-01-01

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host’s genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which—by virtue of mitochondria—metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host’s vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny—sex—in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep

  2. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes.

    PubMed

    Olina, A V; Kulbachinskiy, A V; Aravin, A A; Esyunina, D M

    2018-05-01

    Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small noncoding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.

  3. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    PubMed

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  4. The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein.

    PubMed

    Fédry, Juliette; Liu, Yanjie; Péhau-Arnaudet, Gérard; Pei, Jimin; Li, Wenhao; Tortorici, M Alejandra; Traincard, François; Meola, Annalisa; Bricogne, Gérard; Grishin, Nick V; Snell, William J; Rey, Félix A; Krey, Thomas

    2017-02-23

    Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. A versatile scalable PET processing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman

    2011-06-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed tomore » accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.« less

  6. Energizing Eukaryotic Cell-Free Protein Synthesis With Glucose Metabolism

    PubMed Central

    Hodgman, C. Eric; Jewett, Michael C.

    2015-01-01

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL−1 active luciferase in batch reactions with 16mM glucose and 25mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. PMID:26054976

  7. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes

    PubMed Central

    Richardson, Dale N; Simmons, Mark P; Reddy, Anireddy SN

    2006-01-01

    Background Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis) has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. Results We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. Conclusion The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the

  8. The Vaginal Eukaryotic DNA Virome and Preterm Birth.

    PubMed

    Wylie, Kristine M; Wylie, Todd N; Cahill, Alison G; Macones, George A; Tuuli, Methodius G; Stout, Molly J

    2018-05-05

    Despite decades of attempts to link infectious agents to preterm birth, an exact causative microbe or community of microbes remains elusive. Culture-independent sequencing of vaginal bacterial communities demonstrates community characteristics are associated with preterm birth, although none are specific enough to apply clinically. Viruses are important components of the vaginal microbiome and have dynamic relationships with vaginal bacterial communities. We hypothesized that vaginal eukaryotic DNA viral communities (the "vaginal virome") either alone or in the context of bacterial communities are associated with preterm birth. The objective of this study was to use high-throughput sequencing to examine the vaginal eukaryotic DNA virome in a cohort of pregnant women and examine associations between vaginal community characteristics and preterm birth. This is a nested case-control study within a prospective cohort study of women with singleton pregnancies, not on supplemental progesterone, and without cervical cerclage in situ. Serial mid-vaginal swabs were obtained at routine prenatal visits. DNA was extracted, bacterial communities were characterized by 16S rRNA gene sequencing, and eukaryotic viral communities were characterized by enrichment of viral nucleic acid with the ViroCap targeted sequence capture panel followed by nucleic acid sequencing. Viral communities were analyzed according to presence/absence of viruses, diversity, dynamics over time, and association with bacterial community data obtained from the same specimens. Sixty subjects contributed 128 vaginal swabs longitudinally across pregnancy. Twenty-four patients delivered preterm. Participants were predominantly African-American (65%). Six families of eukaryotic DNA viruses were detected in the vaginal samples. At least 1 virus was detected in 80% of women. No specific virus or group of viruses was associated with preterm delivery. Higher viral richness was significantly associated with preterm

  9. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin).

    PubMed

    Lepère, Cécile; Boucher, Delphine; Jardillier, Ludwig; Domaizon, Isabelle; Debroas, Didier

    2006-04-01

    The structure and dynamics of small eukaryotes (cells with a diameter less than 5 microm) were studied over two consecutive years in an oligomesotrophic lake (Lake Pavin in France). Water samples were collected at 5 and 30 m below the surface; when the lake was stratified, these depths corresponded to the epilimnion and hypolimnion. Changes in small-eukaryote structure were analyzed using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the 18S rRNA genes. Terminal restriction fragments from clones were used to reveal the dominant taxa in T-RFLP profiles of the environmental samples. Spumella-like cells (Chrysophyceae) did not dominate the small eukaryote community identified by molecular techniques in lacustrine ecosystems. Small eukaryotes appeared to be dominated by heterotrophic cells, particularly Cercozoa, which represented nearly half of the identified phylotypes, followed by the Fungi-LKM11 group (25%), choanoflagellates (10.3%) and Chrysophyceae (8.9%). Bicosoecida, Cryptophyta, and ciliates represented less than 9% of the community studied. No seasonal reproducibility in temporal evolution of the small-eukaryote community was observed from 1 year to the next. The T-RFLP patterns were related to bottom-up (resources) and top-down (grazing) variables using canonical correspondence analysis. The results showed a strong top-down regulation of small eukaryotes by zooplankton, more exactly, by cladocerans at 5 m and copepods at 30 m. Among bottom-up factors, temperature had a significant effect at both depths. The concentrations of nitrogenous nutrients and total phosphorus also had an effect on small-eukaryote dynamics at 5 m, whereas bacterial abundance and dissolved oxygen played a more important structuring role in the deeper zone.

  10. Strand-specific Recognition of DNA Damages by XPD Provides Insights into Nucleotide Excision Repair Substrate Versatility*

    PubMed Central

    Buechner, Claudia N.; Heil, Korbinian; Michels, Gudrun; Carell, Thomas; Kisker, Caroline; Tessmer, Ingrid

    2014-01-01

    Recognition and removal of DNA damages is essential for cellular and organismal viability. Nucleotide excision repair (NER) is the sole mechanism in humans for the repair of carcinogenic UV irradiation-induced photoproducts in the DNA, such as cyclobutane pyrimidine dimers. The broad substrate versatility of NER further includes, among others, various bulky DNA adducts. It has been proposed that the 5′-3′ helicase XPD (xeroderma pigmentosum group D) protein plays a decisive role in damage verification. However, despite recent advances such as the identification of a DNA-binding channel and central pore in the protein, through which the DNA is threaded, as well as a dedicated lesion recognition pocket near the pore, the exact process of target site recognition and verification in eukaryotic NER still remained elusive. Our single molecule analysis by atomic force microscopy reveals for the first time that XPD utilizes different recognition strategies to verify structurally diverse lesions. Bulky fluorescein damage is preferentially detected on the translocated strand, whereas the opposite strand preference is observed for a cyclobutane pyrimidine dimer lesion. Both states, however, lead to similar conformational changes in the resulting specific complexes, indicating a merge to a “final” verification state, which may then trigger the recruitment of further NER proteins. PMID:24338567

  11. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery.

    PubMed

    Tuteja, Narendra; Tuteja, Renu

    2004-05-01

    DNA helicases are ubiquitous molecular motor proteins which harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of energetically stable duplex DNA, and thus play important roles in nearly all aspects of nucleic acid metabolism, including replication, repair, recombination, and transcription. They break the hydrogen bonds between the duplex helix and move unidirectionally along the bound strand. All helicases are also translocases and DNA-dependent ATPases. Most contain conserved helicase motifs that act as an engine to power DNA unwinding. All DNA helicases share some common properties, including nucleic acid binding, NTP binding and hydrolysis, and unwinding of duplex DNA in the 3' to 5' or 5' to 3' direction. The minichromosome maintenance (Mcm) protein complex (Mcm4/6/7) provides a DNA-unwinding function at the origin of replication in all eukaryotes and may act as a licensing factor for DNA replication. The RecQ family of helicases is highly conserved from bacteria to humans and is required for the maintenance of genome integrity. They have also been implicated in a variety of human genetic disorders. Since the discovery of the first DNA helicase in Escherichia coli in 1976, and the first eukaryotic one in the lily in 1978, a large number of these enzymes have been isolated from both prokaryotic and eukaryotic systems, and the number is still growing. In this review we cover the historical background of DNA helicases, helicase assays, biochemical properties, prokaryotic and eukaryotic DNA helicases including Mcm proteins and the RecQ family of helicases. The properties of most of the known DNA helicases from prokaryotic and eukaryotic systems, including viruses and bacteriophages, are summarized in tables.

  12. Molecular Detection of Eukaryotes in a Single Human Stool Sample from Senegal

    PubMed Central

    Hamad, Ibrahim; Sokhna, Cheikh; Raoult, Didier; Bittar, Fadi

    2012-01-01

    Background Microbial eukaryotes represent an important component of the human gut microbiome, with different beneficial or harmful roles; some species are commensal or mutualistic, whereas others are opportunistic or parasitic. The diversity of eukaryotes inhabiting humans remains relatively unexplored because of either the low abundance of these organisms in human gut or because they have received limited attention from a whole-community perspective. Methodology/Principal Finding In this study, a single fecal sample from a healthy African male was studied using both culture-dependent methods and extended molecular methods targeting the 18S rRNA and ITS sequences. Our results revealed that very few fungi, including Candida spp., Galactomyces spp., and Trichosporon asahii, could be isolated using culture-based methods. In contrast, a relatively a high number of eukaryotic species could be identified in this fecal sample when culture-independent methods based on various primer sets were used. A total of 27 species from one sample were found among the 977 analyzed clones. The clone libraries were dominated by fungi (716 clones/977, 73.3%), corresponding to 16 different species. In addition, 187 sequences out of 977 (19.2%) corresponded to 9 different species of plants; 59 sequences (6%) belonged to other micro-eukaryotes in the gut, including Entamoeba hartmanni and Blastocystis sp; and only 15 clones/977 (1.5%) were related to human 18S rRNA sequences. Conclusion Our results revealed a complex eukaryotic community in the volunteer’s gut, with fungi being the most abundant species in the stool sample. Larger investigations are needed to assess the generality of these results and to understand their roles in human health and disease. PMID:22808282

  13. A Nitrile Hydratase in the Eukaryote Monosiga brevicollis

    PubMed Central

    Foerstner, Konrad U.; Doerks, Tobias; Muller, Jean; Raes, Jeroen; Bork, Peer

    2008-01-01

    Bacterial nitrile hydratase (NHases) are important industrial catalysts and waste water remediation tools. In a global computational screening of conventional and metagenomic sequence data for NHases, we detected the two usually separated NHase subunits fused in one protein of the choanoflagellate Monosiga brevicollis, a recently sequenced unicellular model organism from the closest sister group of Metazoa. This is the first time that an NHase is found in eukaryotes and the first time it is observed as a fusion protein. The presence of an intron, subunit fusion and expressed sequence tags covering parts of the gene exclude contamination and suggest a functional gene. Phylogenetic analyses and genomic context imply a probable ancient horizontal gene transfer (HGT) from proteobacteria. The newly discovered NHase might open biotechnological routes due to its unconventional structure, its new type of host and its apparent integration into eukaryotic protein networks. PMID:19096720

  14. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?

    PubMed Central

    Koonin, Eugene V.

    2015-01-01

    The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until

  15. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  16. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    PubMed Central

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  17. Insights into the Initiation of Eukaryotic DNA Replication.

    PubMed

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.

  18. The evolution of organellar metabolism in unicellular eukaryotes

    PubMed Central

    Ginger, Michael L.; McFadden, Geoffrey I.; Michels, Paul A. M.

    2010-01-01

    Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution. PMID:20124338

  19. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  20. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes

    PubMed Central

    Li, Li; Stoeckert, Christian J.; Roos, David S.

    2003-01-01

    The identification of orthologous groups is useful for genome annotation, studies on gene/protein evolution, comparative genomics, and the identification of taxonomically restricted sequences. Methods successfully exploited for prokaryotic genome analysis have proved difficult to apply to eukaryotes, however, as larger genomes may contain multiple paralogous genes, and sequence information is often incomplete. OrthoMCL provides a scalable method for constructing orthologous groups across multiple eukaryotic taxa, using a Markov Cluster algorithm to group (putative) orthologs and paralogs. This method performs similarly to the INPARANOID algorithm when applied to two genomes, but can be extended to cluster orthologs from multiple species. OrthoMCL clusters are coherent with groups identified by EGO, but improved recognition of “recent” paralogs permits overlapping EGO groups representing the same gene to be merged. Comparison with previously assigned EC annotations suggests a high degree of reliability, implying utility for automated eukaryotic genome annotation. OrthoMCL has been applied to the proteome data set from seven publicly available genomes (human, fly, worm, yeast, Arabidopsis, the malaria parasite Plasmodium falciparum, and Escherichia coli). A Web interface allows queries based on individual genes or user-defined phylogenetic patterns (http://www.cbil.upenn.edu/gene-family). Analysis of clusters incorporating P. falciparum genes identifies numerous enzymes that were incompletely annotated in first-pass annotation of the parasite genome. PMID:12952885

  1. A Versatile Ion Injector at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90° deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

  2. [Advance of heterologous expression study of eukaryote-origin laccases].

    PubMed

    Ning, Na; Tan, Huijun; Sun, Xinxin; Ni, Jinfeng

    2017-04-25

    Laccases are enzymes belonging to the group of multi-copper oxidases. These enzymes are widely distributed in insects, plants, fungi and bacteria. In general, laccases can oxidize an exceptionally high number of substrates, so they have broad applications in textile, pulp, food and the degradation of lignin. However, low yield, low activity and thermo-instability of laccase in nature limit the application of laccase. High efficient heterologous expression of the protein is an effective way for solving this problem. Here, we summarize the research advances of heterologous expression of eukaryote-origin laccases. We focus on the overexpression of eukaryote-origin laccases using different expression system and the method for improving the production yield and enzyme activity in yeast cells. Information provided in this review would be helpful for researchers in the field.

  3. Getting ready to translate: cytoplasmic maturation of eukaryotic ribosomes.

    PubMed

    Panse, Vikram Govind

    2011-01-01

    The ribosome is the 'universal ribozyme' that is responsible for the final step of decoding genetic information into proteins. While the function of the ribosome is being elucidated at the atomic level, in comparison, little is known regarding its assembly in vivo and intracellular transport. In contrast to prokaryotic ribosomes, the construction of eukaryotic ribosomes, which begins in the nucleolus, requires >200 evolutionary conserved non-ribosomal trans-acting factors, which transiently associate with pre-ribosomal subunits at distinct assembly stages and perform specific maturation steps. Notably, pre-ribosomal subunits are transported to the cytoplasm in a functionally inactive state where they undergo maturation prior to entering translation. In this review, I will summarize our current knowledge of the eukaryotic ribosome assembly pathway with emphasis on cytoplasmic maturation events that render pre-ribosomal subunits translation competent.

  4. Growth control of the eukaryote cell: a systems biology study in yeast.

    PubMed

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David Cj; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom Pj; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the

  5. Growth control of the eukaryote cell: a systems biology study in yeast

    PubMed Central

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David CJ; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom PJ; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome

  6. Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A.

    PubMed

    McClary, Brandon; Zinshteyn, Boris; Meyer, Mélanie; Jouanneau, Morgan; Pellegrino, Simone; Yusupova, Gulnara; Schuller, Anthony; Reyes, Jeremy Chris P; Lu, Junyan; Guo, Zufeng; Ayinde, Safiat; Luo, Cheng; Dang, Yongjun; Romo, Daniel; Yusupov, Marat; Green, Rachel; Liu, Jun O

    2017-05-18

    Protein synthesis plays an essential role in cell proliferation, differentiation, and survival. Inhibitors of eukaryotic translation have entered the clinic, establishing the translation machinery as a promising target for chemotherapy. A recently discovered, structurally unique marine sponge-derived brominated alkaloid, (-)-agelastatin A (AglA), possesses potent antitumor activity. Its underlying mechanism of action, however, has remained unknown. Using a systematic top-down approach, we show that AglA selectively inhibits protein synthesis. Using a high-throughput chemical footprinting method, we mapped the AglA-binding site to the ribosomal A site. A 3.5 Å crystal structure of the 80S eukaryotic ribosome from S. cerevisiae in complex with AglA was obtained, revealing multiple conformational changes of the nucleotide bases in the ribosome accompanying the binding of AglA. Together, these results have unraveled the mechanism of inhibition of eukaryotic translation by AglA at atomic level, paving the way for future structural modifications to develop AglA analogs into novel anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes.

    PubMed

    Isson, Terry T; Love, Gordon D; Dupont, Christopher L; Reinhard, Christopher T; Zumberge, Alex J; Asael, Dan; Gueguen, Bleuenn; McCrow, John; Gill, Ben C; Owens, Jeremy; Rainbird, Robert H; Rooney, Alan D; Zhao, Ming-Yu; Stueeken, Eva E; Konhauser, Kurt O; John, Seth G; Lyons, Timothy W; Planavsky, Noah J

    2018-06-05

    The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic-derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records. © 2018 John Wiley & Sons Ltd.

  8. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    PubMed

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    PubMed

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  10. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom.

    PubMed

    Xue, Yuanyuan; Chen, Huihuang; Yang, Jun R; Liu, Min; Huang, Bangqin; Yang, Jun

    2018-06-13

    Plankton communities normally consist of few abundant and many rare species, yet little is known about the ecological role of rare planktonic eukaryotes. Here we used a 18S ribosomal DNA sequencing approach to investigate the dynamics of rare planktonic eukaryotes, and to explore the co-occurrence patterns of abundant and rare eukaryotic plankton in a subtropical reservoir following a cyanobacterial bloom event. Our results showed that the bloom event significantly altered the eukaryotic plankton community composition and rare plankton diversity without affecting the diversity of abundant plankton. The similarities of both abundant and rare eukaryotic plankton subcommunities significantly declined with the increase in time-lag, but stronger temporal turnover was observed in rare taxa. Further, species turnover of both subcommunities explained a higher percentage of the community variation than species richness. Both deterministic and stochastic processes significantly influenced eukaryotic plankton community assembly, and the stochastic pattern (e.g., ecological drift) was particularly pronounced for rare taxa. Co-occurrence network analysis revealed that keystone taxa mainly belonged to rare species, which may play fundamental roles in network persistence. Importantly, covariations between rare and non-rare taxa were predominantly positive, implying multispecies cooperation might contribute to the stability and resilience of the microbial community. Overall, these findings expand current understanding of the ecological mechanisms and microbial interactions underlying plankton dynamics in changing aquatic ecosystems.

  11. GenColors-based comparative genome databases for small eukaryotic genomes.

    PubMed

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  12. Spatial epigenetics: linking nuclear structure and function in higher eukaryotes.

    PubMed

    Jackson, Dean A

    2010-09-20

    Eukaryotic cells are defined by the genetic information that is stored in their DNA. To function, this genetic information must be decoded. In doing this, the information encoded in DNA is copied first into RNA, during RNA transcription. Primary RNA transcripts are generated within transcription factories, where they are also processed into mature mRNAs, which then pass to the cytoplasm. In the cytoplasm these mRNAs can finally be translated into protein in order to express the genetic information as a functional product. With only rare exceptions, the cells of an individual multicellular eukaryote contain identical genetic information. However, as different genes must be expressed in different cell types to define the structure and function of individual tissues, it is clear that mechanisms must have evolved to regulate gene expression. In higher eukaryotes, mechanisms that regulate the interaction of DNA with the sites where nuclear functions are performed provide one such layer of regulation. In this chapter, I evaluate how a detailed understanding of nuclear structure and chromatin dynamics are beginning to reveal how spatial mechanisms link chromatin structure and function. As these mechanisms operate to modulate the genetic information in DNA, the regulation of chromatin function by nuclear architecture defines the concept of 'spatial epigenetics'.

  13. Extremophilic Eukaryote Life in Hawaiian Fumaroles

    NASA Astrophysics Data System (ADS)

    Ackerman, C.; Anderson, S.; Anderson, C.

    2008-12-01

    Extremophilic microorganisms exist in all three domains of life (Eukarya, Archaea, Bacteria), but are less known in eukaryotes. Fumaroles provide heat and moisture characteristic of an environment suitable for these organisms. On the Island of Hawaii, fumaroles are scattered across the southeastern portion of the island as a result of the volcanic activity from Kilauea Crater and Pu'u' O'o vent with all forming within geochemically similar basalt substrates. We used metagenomics to detect 18S rDNA from eukaryotic extremophilic microorganisms indicating their presence in Hawaiian fumaroles. To determine the effects of environmental gradients (temperature and pH) on microbial diversity within and among fumaroles, 11 samples from 3 fumaroles were collected over a three-day period in February of 2007. Temperatures of the different fumaroles range from 31.0oC to 62.7oC, with pH values that vary from 2.55 to 6.93 allowing for 8 different microenvironments. Fifty sequences per sample were analyzed with eighteen different organisms identified, the majority belonging to the family Cercozoa. The most diverse fumarole consisted of 8 different genera residing in a temperature of 34.1oC and a pH of 3.0. Unclassified mosses were identified in the fumarole with the highest temperature and Phaeoceros (hornworts) were identified at the most acidic fumarole. Both of these groups have been previously identified in geothermal areas.

  14. Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes.

    PubMed

    Shemarova, Irina V

    2010-04-01

    In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed. 2010 Elsevier Inc. All rights reserved.

  15. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes?

    PubMed

    Hoffman, P F

    2016-11-01

    Geochemical, paleomagnetic, and geochronological data increasingly support the Snowball Earth hypothesis for Cryogenian glaciations. Yet, the fossil record reveals no clear-cut evolutionary bottleneck. Climate models and the modern cryobiosphere offer insights on this paradox. Recent modeling implies that Snowball continents never lacked ice-free areas. Wind-blown dust from these areas plus volcanic ash were trapped by snow on ice sheets and sea ice. At a Snowball onset, sea ice was too thin to flow and ablative ice was too cold for dust retention. After a few millenia, sea ice reached 100 s of meters in thickness and began to flow as a 'sea glacier' toward an equatorial ablation zone. At first, dust advected to the ablative surface was recycled by winds, but as the surface warmed with rising CO 2 , dust aka cryoconite began to accumulate. As a sea glacier has no terminus, cryoconite saturated the surface. It absorbed solar radiation, supported cyanobacterial growth, and sank to an equilibrium depth forming holes and decameter-scale pans of meltwater. As meltwater production rose, drainages developed, connecting pans to moulins, where meltwater was flushed into the subglacial ocean. Flushing cleansed the surface, creating a stabilizing feedback. If the dust flux rose, cryoconite was removed; if the dust flux waned, cryoconite accumulated. In addition to cyanobacteria, modern cryoconite holes are inhabited by green algae, fungi, protists, and certain metazoans. On Snowball Earth, cryoconite pans provided stable interconnected habitats for eukaryotes tolerant of fresh to brackish cold water on an ablation surface 60 million km 2 in area. Flushing and burial of organic matter was a potential source of atmospheric oxygen. Dominance of green algae among Ediacaran eukaryotic primary producers is a possible legacy of Cryogenian cryoconite pans, but a schizohaline ocean-supraglacial freshwater and subglacial brine-may have exerted selective stress on early metazoans, or

  16. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.

    PubMed

    Gutierrez, Jahir M; Lewis, Nathan E

    2015-07-01

    Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are invaluable hosts for the production of many recombinant proteins. With the advent of genomic resources, one can now leverage genome-scale computational modeling of cellular pathways to rationally engineer eukaryotic host cells. Genome-scale models of metabolism include all known biochemical reactions occurring in a specific cell. By describing these mathematically and using tools such as flux balance analysis, the models can simulate cell physiology and provide targets for cell engineering that could lead to enhanced cell viability, titer, and productivity. Here we review examples in which metabolic models in eukaryotic cell cultures have been used to rationally select targets for genetic modification, improve cellular metabolic capabilities, design media supplementation, and interpret high-throughput omics data. As more comprehensive models of metabolism and other cellular processes are developed for eukaryotic cell culture, these will enable further exciting developments in cell line engineering, thus accelerating recombinant protein production and biotechnology in the years to come. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ancient Eukaryotic Origin and Evolutionary Plasticity of Nuclear Lamina

    PubMed Central

    Field, Mark C.

    2016-01-01

    Abstract The emergence of the nucleus was a major event of eukaryogenesis. How the nuclear envelope (NE) arose and acquired functions governing chromatin organization and epigenetic control has direct bearing on origins of developmental/stage-specific expression programs. The configuration of the NE and the associated lamina in the last eukaryotic common ancestor (LECA) is of major significance and can provide insight into activities within the LECA nucleus. Subsequent lamina evolution, alterations, and adaptations inform on the variation and selection of distinct mechanisms that subtend gene expression in distinct taxa. Understanding lamina evolution has been difficult due to the diversity and limited taxonomic distributions of the three currently known highly distinct nuclear lamina. We rigorously searched available sequence data for an expanded view of the distribution of known lamina and lamina-associated proteins. While the lamina proteins of plants and trypanosomes are indeed taxonomically restricted, homologs of metazoan lamins and key lamin-binding proteins have significantly broader distributions, and a lamin gene tree supports vertical evolution from the LECA. Two protist lamins from highly divergent taxa target the nucleus in mammalian cells and polymerize into filamentous structures, suggesting functional conservation of distant lamin homologs. Significantly, a high level of divergence of lamin homologs within certain eukaryotic groups and the apparent absence of lamins and/or the presence of seemingly different lamina proteins in many eukaryotes suggests great evolutionary plasticity in structures at the NE, and hence mechanisms of chromatin tethering and epigenetic gene control. PMID:27189989

  18. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga

    PubMed Central

    Qin, Jie; Lehr, Corinne R.; Yuan, Chungang; Le, X. Chris; McDermott, Timothy R.; Rosen, Barry P.

    2009-01-01

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a Topt of 60–70 °C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases. PMID:19276121

  19. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

    PubMed

    Qin, Jie; Lehr, Corinne R; Yuan, Chungang; Le, X Chris; McDermott, Timothy R; Rosen, Barry P

    2009-03-31

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a T(opt) of 60-70 degrees C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.

  20. Energizing eukaryotic cell-free protein synthesis with glucose metabolism.

    PubMed

    Anderson, Mark J; Stark, Jessica C; Hodgman, C Eric; Jewett, Michael C

    2015-07-08

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages

    PubMed Central

    de Mendoza, Alex; Sebé-Pedrós, Arnau; Šestak, Martin Sebastijan; Matejčić, Marija; Torruella, Guifré; Domazet-Lošo, Tomislav; Ruiz-Trillo, Iñaki

    2013-01-01

    Transcription factors (TFs) are the main players in transcriptional regulation in eukaryotes. However, it remains unclear what role TFs played in the origin of all of the different eukaryotic multicellular lineages. In this paper, we explore how the origin of TF repertoires shaped eukaryotic evolution and, in particular, their role into the emergence of multicellular lineages. We traced the origin and expansion of all known TFs through the eukaryotic tree of life, using the broadest possible taxon sampling and an updated phylogenetic background. Our results show that the most complex multicellular lineages (i.e., those with embryonic development, Metazoa and Embryophyta) have the most complex TF repertoires, and that these repertoires were assembled in a stepwise manner. We also show that a significant part of the metazoan and embryophyte TF toolkits evolved earlier, in their respective unicellular ancestors. To gain insights into the role of TFs in the development of both embryophytes and metazoans, we analyzed TF expression patterns throughout their ontogeny. The expression patterns observed in both groups recapitulate those of the whole transcriptome, but reveal some important differences. Our comparative genomics and expression data reshape our view on how TFs contributed to eukaryotic evolution and reveal the importance of TFs to the origins of multicellularity and embryonic development. PMID:24277850

  2. Extracellular enzymes produced by marine eukaryotes, thraustochytrids.

    PubMed

    Taoka, Yousuke; Nagano, Naoki; Okita, Yuji; Izumida, Hitoshi; Sugimoto, Shinichi; Hayashi, Masahiro

    2009-01-01

    Extracellular enzymes produced by six strains of thraustochytrids, Thraustochytrium, Schizochytrium, and Aurantiochytrium, were investigated. These strains produced 5 to 8 kinds of the extracellular enzymes, depending on the species. Only the genus Thraustochytrium produced amylase. When insoluble cellulose was used as substrate, cellulase was not detected in the six strains of thraustochytrids. This study indicates that marine eukaryotes, thraustochytrids, produced a wide variety of extracellular enzymes.

  3. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    PubMed

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  4. The evolution of sex: A new hypothesis based on mitochondrial mutational erosion: Mitochondrial mutational erosion in ancestral eukaryotes would favor the evolution of sex, harnessing nuclear recombination to optimize compensatory nuclear coadaptation.

    PubMed

    Havird, Justin C; Hall, Matthew D; Dowling, Damian K

    2015-09-01

    The evolution of sex in eukaryotes represents a paradox, given the "twofold" fitness cost it incurs. We hypothesize that the mutational dynamics of the mitochondrial genome would have favored the evolution of sexual reproduction. Mitochondrial DNA (mtDNA) exhibits a high-mutation rate across most eukaryote taxa, and several lines of evidence suggest that this high rate is an ancestral character. This seems inexplicable given that mtDNA-encoded genes underlie the expression of life's most salient functions, including energy conversion. We propose that negative metabolic effects linked to mitochondrial mutation accumulation would have invoked selection for sexual recombination between divergent host nuclear genomes in early eukaryote lineages. This would provide a mechanism by which recombinant host genotypes could be rapidly shuffled and screened for the presence of compensatory modifiers that offset mtDNA-induced harm. Under this hypothesis, recombination provides the genetic variation necessary for compensatory nuclear coadaptation to keep pace with mitochondrial mutation accumulation. © 2015 WILEY Periodicals, Inc.

  5. Blocking Modification of Eukaryotic Initiation 5A2 Antagonizes Cervical Carcinoma via Inhibition of RhoA/ROCK Signal Transduction Pathway.

    PubMed

    Liu, Xiaojun; Chen, Dong; Liu, Jiamei; Chu, Zhangtao; Liu, Dongli

    2017-10-01

    Cervical carcinoma is one of the leading causes of cancer-related death for female worldwide. Eukaryotic initiation factor 5A2 belongs to the eukaryotic initiation factor 5A family and is proposed to be a key factor involved in the development of diverse cancers. In the current study, a series of in vivo and in vitro investigations were performed to characterize the role of eukaryotic initiation factor 5A2 in oncogenesis and metastasis of cervical carcinoma. The expression status of eukaryotic initiation factor 5A2 in 15 cervical carcinoma patients was quantified. Then, the effect of eukaryotic initiation factor 5A2 knockdown on in vivo tumorigenicity ability, cell proliferation, cell cycle distribution, and cell mobility of HeLa cells was measured. To uncover the mechanism driving the function of eukaryotic initiation factor 5A2 in cervical carcinoma, expression of members within RhoA/ROCK pathway was detected, and the results were further verified with an RhoA overexpression modification. The level of eukaryotic initiation factor 5A2 in cervical carcinoma samples was significantly higher than that in paired paratumor tissues ( P < .05). And the in vivo tumorigenic ability of HeLa cells was reduced by inhibition of eukaryotic initiation factor 5A2. Knockdown of eukaryotic initiation factor 5A2 in HeLa cells decreased the cell viability compared with normal cells and induced G1 phase cell cycle arrest ( P < .05). Moreover, the cell migration ability of eukaryotic initiation factor 5A2 knockdown cells was dramatically inhibited. Associated with alterations in phenotypes, RhoA, ROCK I, and ROCK II were downregulated. The above-mentioned changes in eukaryotic initiation factor 5A2 knockdown cells were alleviated by the overexpression of RhoA. The major findings outlined in the current study confirmed the potential of eukaryotic initiation factor 5A2 as a promising prognosis predictor and therapeutic target for cervical carcinoma treatment. Also, our data inferred that

  6. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.

    PubMed

    Marques, Catarina A; Dickens, Nicholas J; Paape, Daniel; Campbell, Samantha J; McCulloch, Richard

    2015-10-19

    DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.

  7. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    PubMed Central

    2011-01-01

    Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton. PMID:21787419

  8. Engineering of chimeric eukaryotic/bacterial Rubisco large subunits in Escherichia coli.

    PubMed

    Koay, Teng Wei; Wong, Hann Ling; Lim, Boon Hoe

    2016-11-26

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a rate-limiting photosynthetic enzyme that catalyzes carbon fixation in the Calvin cycle. Much interest has been devoted to engineering this ubiquitous enzyme with the goal of increasing plant growth. However, experiments that have successfully produced improved Rubisco variants, via directed evolution in Escherichia coli, are limited to bacterial Rubisco because the eukaryotic holoenzyme cannot be produced in E. coli. The present study attempts to determine the specific differences between bacterial and eukaryotic Rubisco large subunit primary structure that are responsible for preventing heterologous eukaryotic holoenzyme formation in E. coli. A series of chimeric Synechococcus Rubiscos were created in which different sections of the large subunit were swapped with those of the homologous Chlamydomonas Rubisco. Chimeric holoenzymes that can form in vivo would indicate that differences within the swapped sections do not disrupt holoenzyme formation. Large subunit residues 1-97, 198-247 and 448-472 were successfully swapped without inhibiting holoenzyme formation. In all ten chimeras, protein expression was observed for the separate subunits at a detectable level. As a first approximation, the regions that can tolerate swapping may be targets for future engineering.

  9. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses

    PubMed Central

    Koonin, Eugene V; Krupovic, Mart; Yutin, Natalya

    2015-01-01

    Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolutionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order “Megavirales,” adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mavericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polintoviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order “Megavirales,” and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order “Megavirales,” refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life. PMID:25727355

  10. Eukaryotic DNA Replication Fork.

    PubMed

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  11. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response.

    PubMed

    Horváth, Vivien; Merenciano, Miriam; González, Josefa

    2017-11-01

    A relationship between transposable elements (TEs) and the eukaryotic stress response was suggested in the first publications describing TEs. Since then, it has often been assumed that TEs are activated by stress, and that this activation is often beneficial for the organism. In recent years, the availability of new high-throughput experimental techniques has allowed further interrogation of the relationship between TEs and stress. By reviewing the recent literature, we conclude that although there is evidence for a beneficial effect of TE activation under stress conditions, the relationship between TEs and the eukaryotic stress response is quite complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei).

    PubMed

    Jackson, Dean; Wang, Xindan; Rudner, David Z

    2012-08-01

    Here we discuss the spatio-temporal organization of replication in eubacteria and eukaryotes. Although there are significant differences in how replication is organized in cells that contain nuclei from those that do not, you will see that organization of replication in all organisms is principally dictated by the structured arrangement of the chromosome. We will begin with how replication is organized in eubacteria with particular emphasis on three well studied model organisms. We will then discuss spatial and temporal organization of replication in eukaryotes highlighting the similarities and differences between these two domains of life.

  13. Versatile module for experiments with focussing neutron guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.; Pfleiderer, C.; Böni, P.

    2014-09-22

    We report the development of a versatile module that permits fast and reliable use of focussing neutron guides under varying scattering angles. A simple procedure for setting up the module and neutron guides is illustrated by typical intensity patterns to highlight operational aspects as well as typical parasitic artefacts. Combining a high-precision alignment table with separate housings for the neutron guides on kinematic mounts, the change-over between neutron guides with different focussing characteristics requires no readjustments of the experimental setup. Exploiting substantial gain factors, we demonstrate the performance of this versatile neutron scattering module in a study of the effectsmore » of uniaxial stress on the domain populations in the transverse spin density wave phase of single crystal Cr.« less

  14. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    PubMed

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  15. Probabilistic models of eukaryotic evolution: time for integration

    PubMed Central

    Lartillot, Nicolas

    2015-01-01

    In spite of substantial work and recent progress, a global and fully resolved picture of the macroevolutionary history of eukaryotes is still under construction. This concerns not only the phylogenetic relations among major groups, but also the general characteristics of the underlying macroevolutionary processes, including the patterns of gene family evolution associated with endosymbioses, as well as their impact on the sequence evolutionary process. All these questions raise formidable methodological challenges, calling for a more powerful statistical paradigm. In this direction, model-based probabilistic approaches have played an increasingly important role. In particular, improved models of sequence evolution accounting for heterogeneities across sites and across lineages have led to significant, although insufficient, improvement in phylogenetic accuracy. More recently, one main trend has been to move away from simple parametric models and stepwise approaches, towards integrative models explicitly considering the intricate interplay between multiple levels of macroevolutionary processes. Such integrative models are in their infancy, and their application to the phylogeny of eukaryotes still requires substantial improvement of the underlying models, as well as additional computational developments. PMID:26323768

  16. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes

    PubMed Central

    Gaona-López, Carlos; Julián-Sánchez, Adriana

    2016-01-01

    Background Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Currently, there are three non-homologous NAD(P)+-dependent ADH families reported: Type I ADH comprises Zn-dependent ADHs; type II ADH comprises short-chain ADHs described first in Drosophila; and, type III ADH comprises iron-containing ADHs (FeADHs). These three families arose independently throughout evolution and possess different structures and mechanisms of reaction. While types I and II ADHs have been extensively studied, analyses about the evolution and diversity of (type III) FeADHs have not been published yet. Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights into the evolution of this protein family, as well as explore the diversity of FeADHs in eukaryotes. Principal Findings Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies, eight of them possessing protein sequences distributed in the three domains of life. Interestingly, none of these protein subfamilies possess protein sequences found simultaneously in animals, plants and fungi. Many FeADHs are activated by or contain Fe2+, but many others bind to a variety of metals, or even lack of metal cofactor. Animal FeADHs are found in just one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which includes protein sequences widely distributed in fungi, but not in plants), and in several taxa from lower eukaryotes, bacteria and archaea. Fungi FeADHs are found mainly in two subfamilies: HOT and maleylacetate reductase (MAR), but some can be found also in other three different protein subfamilies. Plant FeADHs are found only in chlorophyta but not in higher plants, and are distributed in three different protein subfamilies. Conclusions/Significance FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a patchy distribution in eukaryotes. The majority of sequenced FeADHs from

  17. Global transcriptome analysis of eukaryotic genes affected by gromwell extract.

    PubMed

    Bang, Soohyun; Lee, Dohyun; Kim, Hanhe; Park, Jiyong; Bahn, Yong-Sun

    2014-02-01

    Gromwell is known to have diverse pharmacological, cosmetic and nutritional benefits for humans. Nevertheless, the biological influence of gromwell extract (GE) on the general physiology of eukaryotic cells remains unknown. In this study a global transcriptome analysis was performed to identify genes affected by the addition of GE with Cryptococcus neoformans as the model system. In response to GE treatment, genes involved in signal transduction were immediately regulated, and the evolutionarily conserved sets of genes involved in the core cellular functions, including DNA replication, RNA transcription/processing and protein translation/processing, were generally up-regulated. In contrast, a number of genes involved in carbohydrate metabolism and transport, inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperone functions and signal transduction were down-regulated. Among the GE-responsive genes that are also evolutionarily conserved in the human genome, the expression patterns of YSA1, TPO2, CFO1 and PZF1 were confirmed by northern blot analysis. Based on the functional characterization of some GE-responsive genes, it was found that GE treatment may promote cellular tolerance against a variety of environmental stresses in eukaryotes. GE treatment affects the expression levels of a significant portion of the Cryptococcus genome, implying that GE significantly affects the general physiology of eukaryotic cells. © 2013 Society of Chemical Industry.

  18. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    PubMed Central

    Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A

    2016-01-01

    Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357

  19. On how role versatility boosts an STI.

    PubMed

    Cortés, Andrés J

    2017-12-19

    The prevalence of the HIV-1 infection has decayed in the last decades in western heterosexual populations. However, among men who have sex with men (MSM) the prevalence is still high, despite intensive campaigns and treatment programs that keep infected men as undetectable (Beyrer et al. 2012). Promiscuity and condom fatigue (Adam et al. 2005), which are not unique to the MSM community, are making unprotected anal intercourse (UAI) more common and sexually transmitted infections (STIs) presumably harder to track. Yet, MSM communities are peculiar in the sense that men can adopt fixed (insertive or receptive) or versatile (both practices) roles. Some old theoretical work (Wiley & Herschkorn 1989, Van Druten et al. 1992, Trichopoulos et al. 1998) predicted that the transmission of HIV-1 would be enhanced in MSM populations engaged more in role versatility than in role segregation, in which fixed roles are predominantly adopted. These predictions were based on the assumption that the probability of acquisition from unprotected insertive anal (UIA) sex was neglectable. However, as later shown (Vittinghoff et al. 1999, Goodreau et al. 2005), this assumption is inappropriate and HIV-1 may still be acquired via UIA sex. Here I show through a stochastic model that the increase of the HIV-1 prevalence among MSM due to role versatility holds under a stronger assumption of bidirectional virus transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ancient Eukaryotic Origin and Evolutionary Plasticity of Nuclear Lamina.

    PubMed

    Koreny, Ludek; Field, Mark C

    2016-09-19

    The emergence of the nucleus was a major event of eukaryogenesis. How the nuclear envelope (NE) arose and acquired functions governing chromatin organization and epigenetic control has direct bearing on origins of developmental/stage-specific expression programs. The configuration of the NE and the associated lamina in the last eukaryotic common ancestor (LECA) is of major significance and can provide insight into activities within the LECA nucleus. Subsequent lamina evolution, alterations, and adaptations inform on the variation and selection of distinct mechanisms that subtend gene expression in distinct taxa. Understanding lamina evolution has been difficult due to the diversity and limited taxonomic distributions of the three currently known highly distinct nuclear lamina. We rigorously searched available sequence data for an expanded view of the distribution of known lamina and lamina-associated proteins. While the lamina proteins of plants and trypanosomes are indeed taxonomically restricted, homologs of metazoan lamins and key lamin-binding proteins have significantly broader distributions, and a lamin gene tree supports vertical evolution from the LECA. Two protist lamins from highly divergent taxa target the nucleus in mammalian cells and polymerize into filamentous structures, suggesting functional conservation of distant lamin homologs. Significantly, a high level of divergence of lamin homologs within certain eukaryotic groups and the apparent absence of lamins and/or the presence of seemingly different lamina proteins in many eukaryotes suggests great evolutionary plasticity in structures at the NE, and hence mechanisms of chromatin tethering and epigenetic gene control. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform

    PubMed Central

    Wagner, Tobias; Greschik, Holger; Burgahn, Teresa; Schmidtkunz, Karin; Schott, Anne-Kathrin; McMillan, Joel; Baranauskienė, Lina; Xiong, Yan; Fedorov, Oleg; Jin, Jian; Oppermann, Udo; Matulis, Daumantas; Schüle, Roland; Jung, Manfred

    2016-01-01

    Epigenetic modifications of histone tails play an essential role in the regulation of eukaryotic transcription. Writer and eraser enzymes establish and maintain the epigenetic code by creating or removing posttranslational marks. Specific binding proteins, called readers, recognize the modifications and mediate epigenetic signalling. Here, we present a versatile assay platform for the investigation of the interaction between methyl lysine readers and their ligands. This can be utilized for the screening of small-molecule inhibitors of such protein–protein interactions and the detailed characterization of the inhibition. Our platform is constructed in a modular way consisting of orthogonal in vitro binding assays for ligand screening and verification of initial hits and biophysical, label-free techniques for further kinetic characterization of confirmed ligands. A stability assay for the investigation of target engagement in a cellular context complements the platform. We applied the complete evaluation chain to the Tudor domain containing protein Spindlin1 and established the in vitro test systems for the double Tudor domain of the histone demethylase JMJD2C. We finally conducted an exploratory screen for inhibitors of the interaction between Spindlin1 and H3K4me3 and identified A366 as the first nanomolar small-molecule ligand of a Tudor domain containing methyl lysine reader. PMID:26893353

  2. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.

    PubMed

    Germot, A; Philippe, H

    1999-01-01

    Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.

  3. Calcineurin-Crz1 Signaling in Lower Eukaryotes

    PubMed Central

    2014-01-01

    Calcium ions are ubiquitous intracellular messengers. An increase in the cytosolic Ca2+ concentration activates many proteins, including calmodulin and the Ca2+/calmodulin-dependent protein phosphatase calcineurin. The phosphatase is conserved from yeast to humans (except in plants), and many target proteins of calcineurin have been identified. The most prominent and best-investigated targets, however, are the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeast. In recent years, many orthologues of Crz1 have been identified and characterized in various species of fungi, amoebae, and other lower eukaryotes. It has been shown that the functions of calcineurin-Crz1 signaling, ranging from ion homeostasis through cell wall biogenesis to the building of filamentous structures, are conserved in the different organisms. Furthermore, frequency-modulated gene expression through Crz1 has been discovered as a striking new mechanism by which cells can coordinate their response to a signal. In this review, I focus on the latest findings concerning calcineurin-Crz1 signaling in fungi, amoebae and other lower eukaryotes. I discuss the potential of Crz1 and its orthologues as putative drug targets, and I also discuss possible parallels with calcineurin-NFAT signaling in mammals. PMID:24681686

  4. RNA Export through the NPC in Eukaryotes.

    PubMed

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  5. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    NASA Astrophysics Data System (ADS)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  6. Next-Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and Surface Water.

    PubMed

    Aguilar, Maria; Richardson, Elisabeth; Tan, BoonFei; Walker, Giselle; Dunfield, Peter F; Bass, David; Nesbø, Camilla; Foght, Julia; Dacks, Joel B

    2016-11-01

    Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  7. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.

    PubMed

    Gaspin, C; Cavaillé, J; Erauso, G; Bachellerie, J P

    2000-04-07

    Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into

  8. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages

    PubMed Central

    Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro

    2017-01-01

    Abstract Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases’ evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. PMID:28369657

  9. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-09-01

    Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.

  10. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs

    PubMed Central

    Ivanov, Ivaylo P.; Loughran, Gary; Atkins, John F.

    2008-01-01

    In a minority of eukaryotic mRNAs, a small functional upstream ORF (uORF), often performing a regulatory role, precedes the translation start site for the main product(s). Here, conserved uORFs in numerous ornithine decarboxylase homologs are identified from yeast to mammals. Most have noncanonical evolutionarily conserved start codons, the main one being AUU, which has not been known as an initiator for eukaryotic chromosomal genes. The AUG-less uORF present in mouse antizyme inhibitor, one of the ornithine decarboxylase homologs in mammals, mediates polyamine-induced repression of the downstream main ORF. This repression is part of an autoregulatory circuit, and one of its sensors is the AUU codon, which suggests that translation initiation codon identity is likely used for regulation in eukaryotes. PMID:18626014

  11. The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes.

    PubMed

    Beattie, Thomas R; Bell, Stephen D

    2011-01-01

    Efficient processing of Okazaki fragments generated during discontinuous lagging-strand DNA replication is critical for the maintenance of genome integrity. In eukaryotes, a number of enzymes co-ordinate to ensure the removal of initiating primers from the 5'-end of each fragment and the generation of a covalently linked daughter strand. Studies in eukaryotic systems have revealed that the co-ordination of DNA polymerase δ and FEN-1 (Flap Endonuclease 1) is sufficient to remove the majority of primers. Other pathways such as that involving Dna2 also operate under certain conditions, although, notably, Dna2 is not universally conserved between eukaryotes and archaea, unlike the other core factors. In addition to the catalytic components, the DNA sliding clamp, PCNA (proliferating-cell nuclear antigen), plays a pivotal role in binding and co-ordinating these enzymes at sites of lagging-strand replication. Structural studies in eukaryotic and archaeal systems have revealed that PCNA-binding proteins can adopt different conformations when binding PCNA. This conformational malleability may be key to the co-ordination of these enzymes' activities.

  12. Guinea Pigs: Versatile Animals for the Classroom

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1977-01-01

    Guinea pigs are presented as versatile classroom animals. Suggestions for animal behavior and genetics studies are given. Also included is information concerning sex determination and the breeding of guinea pigs, and hints on keeping these animals in the classroom. References and illustrations complete the article. (MA)

  13. Early stages in the biogenesis of eukaryotic β-barrel proteins.

    PubMed

    Jores, Tobias; Rapaport, Doron

    2017-09-01

    The endosymbiotic organelles mitochondria and chloroplasts harbour, similarly to their prokaryotic progenitors, β-barrel proteins in their outer membrane. These proteins are encoded on nuclear DNA, translated on cytosolic ribosomes and imported into their target organelles by a dedicated machinery. Recent studies have provided insights into the import into the organelles and the membrane insertion of these proteins. Although the cytosolic stages of their biogenesis are less well defined, it is speculated that upon their synthesis, chaperones prevent β-barrel proteins from aggregation and keep them in an import-competent conformation. In this Review, we summarize the current knowledge about the biogenesis of β-barrel proteins, focusing on the early stages from the translation on cytosolic ribosomes to the recognition on the surface of the organelle. © 2017 Federation of European Biochemical Societies.

  14. Geographic variation in the eukaryotic virome of human diarrhea

    PubMed Central

    Holtz, Lori R.; Cao, Song; Zhao, Guoyan; Bauer, Irma K.; Denno, Donna M.; Klein, Eileen J.; Antonio, Martin; Stine, O. Colin; Snelling, Thomas L.; Kirkwood, Carl D.; Wang, David

    2014-01-01

    Little is known about the population of eukaryotic viruses in the human gut (“virome”) or the potential role it may play in disease. We used a metagenomic approach to define and compare the eukaryotic viromes in pediatric diarrhea cohorts from two locations (Melbourne and Northern Territory, Australia). We detected viruses known to cause diarrhea, non-pathogenic enteric viruses, viruses not associated with an enteric reservoir, viruses of plants, and novel viruses. Viromes from Northern Territory children contained more viral families per sample than viromes from Melbourne, which could be attributed largely to an increased number of sequences from the families Adenoviridae and Picornaviridae (genus enterovirus). qRT-PCR/PCR confirmed the increased prevalence of adenoviruses and enteroviruses. Testing of additional diarrhea cohorts by qRT-PCR/PCR demonstrated statistically different prevalences in different geographic sites. These findings raise the question of whether the virome plays a role in enteric diseases and conditions that vary with geography. PMID:25262473

  15. Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins

    PubMed Central

    Yeeles, Joseph T.P.; Deegan, Tom D.; Janska, Agnieszka; Early, Anne; Diffley, John F. X.

    2016-01-01

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric MCM complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45, MCM, GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4 dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication. PMID:25739503

  16. Regulated eukaryotic DNA replication origin firing with purified proteins.

    PubMed

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  17. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.

    PubMed

    Bonnet, Amandine; Grosso, Ana R; Elkaoutari, Abdessamad; Coleno, Emeline; Presle, Adrien; Sridhara, Sreerama C; Janbon, Guilhem; Géli, Vincent; de Almeida, Sérgio F; Palancade, Benoit

    2017-08-17

    Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Spatio-Temporal Organization of Replication in Bacteria and Eukaryotes (Nucleoids and Nuclei)

    PubMed Central

    Jackson, Dean; Wang, Xindan; Rudner, David Z.

    2012-01-01

    Here we discuss the spatio-temporal organization of replication in eubacteria and eukaryotes. Although there are significant differences in how replication is organized in cells that contain nuclei from those that do not, you will see that organization of replication in all organisms is principally dictated by the structured arrangement of the chromosome. We will begin with how replication is organized in eubacteria with particular emphasis on three well studied model organisms. We will then discuss spatial and temporal organization of replication in eukaryotes highlighting the similarities and differences between these two domains of life. PMID:22855726

  19. The ring of life provides evidence for a genome fusion origin of eukaryotes.

    PubMed

    Rivera, Maria C; Lake, James A

    2004-09-09

    Genomes hold within them the record of the evolution of life on Earth. But genome fusions and horizontal gene transfer seem to have obscured sufficiently the gene sequence record such that it is difficult to reconstruct the phylogenetic tree of life. Here we determine the general outline of the tree using complete genome data from representative prokaryotes and eukaryotes and a new genome analysis method that makes it possible to reconstruct ancient genome fusions and phylogenetic trees. Our analyses indicate that the eukaryotic genome resulted from a fusion of two diverse prokaryotic genomes, and therefore at the deepest levels linking prokaryotes and eukaryotes, the tree of life is actually a ring of life. One fusion partner branches from deep within an ancient photosynthetic clade, and the other is related to the archaeal prokaryotes. The eubacterial organism is either a proteobacterium, or a member of a larger photosynthetic clade that includes the Cyanobacteria and the Proteobacteria.

  20. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    NASA Astrophysics Data System (ADS)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L. M.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

  1. Large variability of bathypelagic microbial eukaryotic communities across the world's oceans.

    PubMed

    Pernice, Massimo C; Giner, Caterina R; Logares, Ramiro; Perera-Bel, Júlia; Acinas, Silvia G; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2016-04-01

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8-20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

  2. Multilayer network decoding versatility and trust

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Yadav, Alok; Jalan, Sarika

    2016-01-01

    In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.

  3. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.

    PubMed

    Li, Sanshu; Smith, Kathryn D; Davis, Jared H; Gordon, Patricia B; Breaker, Ronald R; Strobel, Scott A

    2013-11-19

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.

  4. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins

    PubMed Central

    Li, Sanshu; Smith, Kathryn D.; Davis, Jared H.; Gordon, Patricia B.; Breaker, Ronald R.; Strobel, Scott A.

    2013-01-01

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, 18F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions. PMID:24173035

  5. EuGI: a novel resource for studying genomic islands to facilitate horizontal gene transfer detection in eukaryotes.

    PubMed

    Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg

    2018-05-03

    Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.

  6. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes

    PubMed Central

    Csuros, Miklos; Rogozin, Igor B.; Koonin, Eugene V.

    2011-01-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing. PMID:21935348

  7. Structural Basis for Eukaryotic Transcription-Coupled DNA Repair Initiation

    PubMed Central

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A.; Chong, Jenny; Hare, Alissa A.; Dervan, Peter B.; DiMaio, Frank; Leschziner, Andres E.; Wang, Dong

    2017-01-01

    Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation. PMID:29168508

  8. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentousmore » ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.« less

  9. Bacterial inosine 5'-monophosphate dehydrogenase ("IMPDH") DNA as a dominant selectable marker in mammals and other eukaryotes

    DOEpatents

    Huberman, Eliezer [Chicago, IL; Baccam, Mekhine J [Woodridge, IL

    2007-02-27

    The present invention relates to a nucleic acid sequence and its corresponding protein sequence useful as a dominant selectable marker in eukaryotes. More specifically the invention relates to a nucleic acid encoding a bacterial IMPDH gene that has been engineered into a eukaryotic expression vectors, thereby permitting bacterial IMPDH expression in mammalian cells. Bacterial IMPDH expression confers resistance to MPA which can be used as dominant selectable marker in eukaryotes including mammals. The invention also relates to expression vectors and cells that express the bacterial IMPDH gene as well as gene therapies and protein synthesis.

  10. Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation.

    PubMed

    Harada, Yoichiro; Buser, Reto; Ngwa, Elsy M; Hirayama, Hiroto; Aebi, Markus; Suzuki, Tadashi

    2013-11-08

    Asparagine (N)-linked glycosylation regulates numerous cellular activities, such as glycoprotein quality control, intracellular trafficking, and cell-cell communications. In eukaryotes, the glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), a multimembrane protein complex that is localized in the endoplasmic reticulum (ER). During N-glycosylation in the ER, the protein-unbound form of oligosaccharides (free oligosaccharides; fOSs), which is structurally related to N-glycan, is released into the ER lumen. However, the enzyme responsible for this process remains unidentified. Here, we demonstrate that eukaryotic OST generates fOSs. Biochemical and genetic analyses using mutant strains of Saccharomyces cerevisiae revealed that the generation of fOSs is tightly correlated with the N-glycosylation activity of OST. Furthermore, we present evidence that the purified OST complex can generate fOSs by hydrolyzing dolichol-linked oligosaccharide, the glycan donor substrate for N-glycosylation. The heterologous expression of a single subunit of OST from the protozoan Leishmania major in S. cerevisiae demonstrated that this enzyme functions both in N-glycosylation and generation of fOSs. This study provides insight into the mechanism of PNGase-independent formation of fOSs.

  11. Molecular events regulating messenger RNA stability in eukaryotes.

    PubMed

    Saini, K S; Summerhayes, I C; Thomas, P

    1990-07-17

    The regulation of mRNA turnover plays a major role in the overall control of gene expression. Transcriptional control of eukaryotic gene regulation by external and/or internal stimuli has received considerable attention and the purpose of this review is to highlight recent work elucidating the mechanisms underlying the steady-state levels of mRNAs in the cytoplasm. Protection of mRNA from the action of nucleases as it passes from the nucleus to the ribosomes for translation is achieved, at least in part, by its union with mRNA binding proteins and the presence of poly(A) tail. The half-life of a message represents a balance between the transcriptional activity and intracellular degradative processes. These properties can be modulated by the presence of specific nucleotide sequences in a mRNA along with cis- and trans-acting elements and accompanied by post-translational feed back mechanisms. Presently, various regulatory mechanisms involved in the mRNA decay process are ill-defined. The work described here illustrates the complexity of this emerging field of study and outlines its contribution to our understanding of gene regulation in eukaryotes.

  12. A Combinatorial Auction among Versatile Experts and Amateurs

    NASA Astrophysics Data System (ADS)

    Ito, Takayuki; Yokoo, Makoto; Matsubara, Shigeo

    Auctions have become an integral part of electronic commerce and a promising field for applying multi-agent technologies. Correctly judging the quality of auctioned goods is often difficult for amateurs, in particular, in Internet auctions. However, experts can correctly judge the quality of goods. In this situation, it is difficult to make experts tell the truth and attain an efficient allocation, since experts have a clear advantage over amateurs and they would not reveal their valuable information without some reward. In our previous work, we have succeeded in developing such auction protocols under the following two cases: (1) the case of a single-unit auction among experts and amateurs, and (2) the case of a combinatorial auction among single-skilled experts and amateurs. In this paper, we focus on versatile experts. Versatile experts have an interest in, and expert knowledge on the qualities of several goods. In the case of versatile experts, there would be several problems, e.g., free riding problems, if we simply extended the previous VCG-style auction protocol. Thus, in this paper, we employ PORF (price-oriented, rationing-free) protocol for designing our new protocol to realize a strategy-proof auction protocol for experts. In the protocol, the dominant strategy for experts is truth-telling. Also, for amateurs, truth-telling is the best response when two or more experts select the dominant strategy. Furthermore, the protocol is false-name-proof.

  13. Evolutionary history and functional implications of protein domains and their combinations in eukaryotes.

    PubMed

    Itoh, Masumi; Nacher, Jose C; Kuma, Kei-ichi; Goto, Susumu; Kanehisa, Minoru

    2007-01-01

    In higher multicellular eukaryotes, complex protein domain combinations contribute to various cellular functions such as regulation of intercellular or intracellular signaling and interactions. To elucidate the characteristics and evolutionary mechanisms that underlie such domain combinations, it is essential to examine the different types of domains and their combinations among different groups of eukaryotes. We observed a large number of group-specific domain combinations in animals, especially in vertebrates. Examples include animal-specific combinations in tyrosine phosphorylation systems and vertebrate-specific combinations in complement and coagulation cascades. These systems apparently underwent extensive evolution in the ancestors of these groups. In extant animals, especially in vertebrates, animal-specific domains have greater connectivity than do other domains on average, and contribute to the varying number of combinations in each animal subgroup. In other groups, the connectivities of older domains were greater on average. To observe the global behavior of domain combinations during evolution, we traced the changes in domain combinations among animals and fungi in a network analysis. Our results indicate that there is a correlation between the differences in domain combinations among different phylogenetic groups and different global behaviors. Rapid emergence of animal-specific domains was observed in animals, contributing to specific domain combinations and functional diversification, but no such trends were observed in other clades of eukaryotes. We therefore suggest that the strategy for achieving complex multicellular systems in animals differs from that of other eukaryotes.

  14. 76 FR 31362 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Versatile Onboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Production Act of 1993--Versatile Onboard Traffic Embedded Roaming Sensors (Formerly Joint Venture To Perform Project Entitled Versatile Onboard Traffic Embedded Roaming Sensors) Notice is hereby given that, on April..., 15 U.S.C. 4301 et seq. (``the Act''), Versatile Onboard Traffic Embedded Roaming Sensors (formerly...

  15. Eukaryotic cell encystation and cancer cell dormancy: is a greater devil veiled in the details of a lesser evil?

    PubMed

    Baig, Abdul Mannan; Khan, Naveed Ahmed; Abbas, Farhat

    2015-03-01

    Cancer cell dormancy is the main cause of cancer recurrence and failure of therapy as dormant cells evade not only the anticancer drugs but also the host immune system. These dormant cells veil themselves from detection by imaging and/or using biomarkers, which imposes an additional problem in targeting such cells. A similar form of hibernation process known as encystation is studied in detail for pathogenic unicellular eukaryotic microorganisms. By examination using microarray gene expression profiles, immunocytochemistry tools, and siRNAs during the process of encystation, understanding the covert features of cancer cell dormancy as proposed could be possible. This knowledge can be extended to dormant cancer cells to uncover the mechanisms that underlie this ghost, yet dangerous state of human cancers. We propose a strategy to induce dormancy and exit this state by application of knowledge gained from the encystation induction and retrieval processes in pathogenic eukaryotic microorganisms. Given that early detection and characterization of dormant malignant tumor cells is important as a general strategy to monitor and prevent the development of overt metastatic disease, this homology may enable the design of therapies that could either awake the dormant cell from dormancy to make it available for therapies or prolong such a phase to make cancer appear as a chronic disease.

  16. RNA Export through the NPC in Eukaryotes

    PubMed Central

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-01-01

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC. PMID:25802992

  17. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  18. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages.

    PubMed

    Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro; Imai, Kenichiro

    2017-07-01

    Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases' evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology

    PubMed Central

    Fritz-Laylin, Lillian K.; Ginger, Michael L.; Walsh, Charles; Dawson, Scott C.; Fulton, Chandler

    2016-01-01

    Naegleria gruberi, a free-living protist, has long been treasured as a model for basal body and flagellar assembly due to its ability to differentiate from crawling amoebae into swimming flagellates. The full genome sequence of Naegleria gruberi has recently been used to estimate gene families ancestral to all eukaryotes and to identify novel aspects of Naegleria biology, including likely facultative anaerobic metabolism, extensive signaling cascades, and evidence for sexuality. Distinctive features of the Naegleria genome and nuclear biology provide unique perspectives for comparative cell biology, including cell division, RNA processing and nucleolar assembly. We highlight here exciting new and novel aspects of Naegleria biology identified through genomic analysis. PMID:21392573

  20. Potential key bases of ribosomal RNA to kingdom-specific spectra of antibiotic susceptibility and the possible archaeal origin of eukaryotes.

    PubMed

    Xie, Qiang; Wang, Yanhui; Lin, Jinzhong; Qin, Yan; Wang, Ying; Bu, Wenjun

    2012-01-01

    In support of the hypothesis of the endosymbiotic origin of eukaryotes, much evidence has been found to support the idea that some organelles of eukaryotic cells originated from bacterial ancestors. Less attention has been paid to the identity of the host cell, although some biochemical and molecular genetic properties shared by archaea and eukaryotes have been documented. Through comparing 507 taxa of 16S-18S rDNA and 347 taxa of 23S-28S rDNA, we found that archaea and eukaryotes share twenty-six nucleotides signatures in ribosomal DNA. These signatures exist in all living eukaryotic organisms, whether protist, green plant, fungus, or animal. This evidence explicitly supports the archaeal origin of eukaryotes. In the ribosomal RNA, besides A2058 in Escherichia coli vs. G2400 in Saccharomyces cerevisiae, there still exist other twenties of sites, in which the bases are kingdom-specific. Some of these sites concentrate in the peptidyl transferase centre (PTC) of the 23S-28S rRNA. The results suggest potential key sites to explain the kingdom-specific spectra of drug resistance of ribosomes.

  1. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals

    PubMed Central

    Blangy, Anne

    2017-01-01

    Abstract The dynamics of cell morphology in eukaryotes is largely controlled by small GTPases of the Rho family. Rho GTPases are activated by guanine nucleotide exchange factors (RhoGEFs), of which diffuse B-cell lymphoma (Dbl)-like members form the largest family. Here, we surveyed Dbl-like sequences from 175 eukaryotic genomes and illuminate how the Dbl family evolved in all eukaryotic supergroups. By combining probabilistic phylogenetic approaches and functional domain analysis, we show that the human Dbl-like family is made of 71 members, structured into 20 subfamilies. The 71 members were already present in ancestral jawed vertebrates, but several members were subsequently lost in specific clades, up to 12% in birds. The jawed vertebrate repertoire was established from two rounds of duplications that occurred between tunicates, cyclostomes, and jawed vertebrates. Duplicated members showed distinct tissue distributions, conserved at least in Amniotes. All 20 subfamilies have members in Deuterostomes and Protostomes. Nineteen subfamilies are present in Porifera, the first phylum that diverged in Metazoa, 14 in Choanoflagellida and Filasterea, single-celled organisms closely related to Metazoa and three in Fungi, the sister clade to Metazoa. Other eukaryotic supergroups show an extraordinary variability of Dbl-like repertoires as a result of repeated and independent gain and loss events. Last, we observed that in Metazoa, the number of Dbl-like RhoGEFs varies in proportion of cell signaling complexity. Overall, our analysis supports the conclusion that Dbl-like RhoGEFs were present at the origin of eukaryotes and evolved as highly adaptive cell signaling mediators. PMID:28541439

  2. A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species

    PubMed Central

    Jayaswal, Pawan Kumar; Dogra, Vivek; Shanker, Asheesh; Sharma, Tilak Raj

    2017-01-01

    Rapid advances in DNA sequencing technologies have resulted in the accumulation of large data sets in the public domain, facilitating comparative studies to provide novel insights into the evolution of life. Phylogenetic studies across the eukaryotic taxa have been reported but on the basis of a limited number of genes. Here we present a genome-wide analysis across different plant, fungal, protist, and animal species, with reference to the 36,002 expressed genes of the rice genome. Our analysis revealed 9831 genes unique to rice and 98 genes conserved across all 49 eukaryotic species analysed. The 98 genes conserved across diverse eukaryotes mostly exhibited binding and catalytic activities and shared common sequence motifs; and hence appeared to have a common origin. The 98 conserved genes belonged to 22 functional gene families including 26S protease, actin, ADP–ribosylation factor, ATP synthase, casein kinase, DEAD-box protein, DnaK, elongation factor 2, glyceraldehyde 3-phosphate, phosphatase 2A, ras-related protein, Ser/Thr protein phosphatase family protein, tubulin, ubiquitin and others. The consensus Bayesian eukaryotic tree of life developed in this study demonstrated widely separated clades of plants, fungi, and animals. Musa acuminata provided an evolutionary link between monocotyledons and dicotyledons, and Salpingoeca rosetta provided an evolutionary link between fungi and animals, which indicating that protozoan species are close relatives of fungi and animals. The divergence times for 1176 species pairs were estimated accurately by integrating fossil information with synonymous substitution rates in the comprehensive set of 98 genes. The present study provides valuable insight into the evolution of eukaryotes. PMID:28922368

  3. Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view

    PubMed Central

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E.

    2014-01-01

    The basic principles of Ca2+ regulation emerged early in prokaryotes. Ca2+ signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca2+ concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca2+ signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca2+ exchangers and four-domain voltage-gated Ca2+ channels. Newly identified evolutionary evidence suggests that the distinct Ca2+ signaling machineries in animals, plants and fungi likely originated from an ancient Ca2+ signaling machinery prior to early eukaryotic radiation. PMID:25498309

  4. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.

    PubMed

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E

    2015-03-01

    The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Malley, Konstantin R.; Brenner, Caitlin C.; Koroleva, Olga; Korolev, Sergey; Downes, Brian P.

    2016-08-01

    Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2~Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.

  6. Eukaryotic DING Proteins Are Endogenous: An Immunohistological Study in Mouse Tissues

    PubMed Central

    Collombet, Jean-Marc; Elias, Mikael; Gotthard, Guillaume; Four, Elise; Renault, Frédérique; Joffre, Aurélie; Baubichon, Dominique; Rochu, Daniel; Chabrière, Eric

    2010-01-01

    Background DING proteins encompass an intriguing protein family first characterized by their conserved N-terminal sequences. Some of these proteins seem to have key roles in various human diseases, e.g., rheumatoid arthritis, atherosclerosis, HIV suppression. Although this protein family seems to be ubiquitous in eukaryotes, their genes are consistently lacking from genomic databases. Such a lack has considerably hampered functional studies and has fostered therefore the hypothesis that DING proteins isolated from eukaryotes were in fact prokaryotic contaminants. Principal Findings In the framework of our study, we have performed a comprehensive immunological detection of DING proteins in mice. We demonstrate that DING proteins are present in all tissues tested as isoforms of various molecular weights (MWs). Their intracellular localization is tissue-dependant, being exclusively nuclear in neurons, but cytoplasmic and nuclear in other tissues. We also provide evidence that germ-free mouse plasma contains as much DING protein as wild-type. Significance Hence, data herein provide a valuable basis for future investigations aimed at eukaryotic DING proteins, revealing that these proteins seem ubiquitous in mouse tissue. Our results strongly suggest that mouse DING proteins are endogenous. Moreover, the determination in this study of the precise cellular localization of DING proteins constitute a precious evidence to understand their molecular involvements in their related human diseases. PMID:20161715

  7. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    PubMed Central

    Bourke, Michael F; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L.M.

    2016-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments. PMID:28070216

  8. Distribution and Diversity of Microbial Eukaryotes in Bathypelagic Waters of the South China Sea.

    PubMed

    Xu, Dapeng; Jiao, Nianzhi; Ren, Rui; Warren, Alan

    2017-05-01

    Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  9. 3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    PubMed Central

    Henderson, Gregory P.; Gan, Lu; Jensen, Grant J.

    2007-01-01

    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes. PMID:17710148

  10. Oceanographic structure drives the assembly processes of microbial eukaryotic communities

    PubMed Central

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-01-01

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance–decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community. PMID:25325383

  11. Oceanographic structure drives the assembly processes of microbial eukaryotic communities.

    PubMed

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-03-17

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.

  12. A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes

    PubMed Central

    Carmell, Michelle A; Dokshin, Gregoriy A; Skaletsky, Helen; Hu, Yueh-Chiang; van Wolfswinkel, Josien C; Igarashi, Kyomi J; Bellott, Daniel W; Nefedov, Michael; Reddien, Peter W; Enders, George C; Uversky, Vladimir N; Mello, Craig C; Page, David C

    2016-01-01

    The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya – either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome. DOI: http://dx.doi.org/10.7554/eLife.19993.001 PMID:27718356

  13. Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius

    NASA Astrophysics Data System (ADS)

    Anjum, Rana S.; Bray, Sian M.; Blackwood, John K.; Kilkenny, Mairi L.; Coelho, Matthew A.; Foster, Benjamin M.; Li, Shurong; Howard, Julie A.; Pellegrini, Luca; Albers, Sonja-Verena; Deery, Michael J.; Robinson, Nicholas P.

    2015-09-01

    In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.

  14. A Versatile Technique for Solving Quintic Equations

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2006-01-01

    In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…

  15. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2009-03-19

    ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce

  16. Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation.

    PubMed

    Wriessnegger, Tamara; Pichler, Harald

    2013-07-01

    Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components

    PubMed Central

    Fagerlund, Robert D.; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S.

    2015-01-01

    Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA–RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. PMID:26135751

  18. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  19. Compositional pressure and translational selection determine codon usage in the extremely GC-poor unicellular eukaryote Entamoeba histolytica.

    PubMed

    Romero, H; Zavala, A; Musto, H

    2000-01-25

    It is widely accepted that the compositional pressure is the only factor shaping codon usage in unicellular species displaying extremely biased genomic compositions. This seems to be the case in the prokaryotes Mycoplasma capricolum, Rickettsia prowasekii and Borrelia burgdorferi (GC-poor), and in Micrococcus luteus (GC-rich). However, in the GC-poor unicellular eukaryotes Dictyostelium discoideum and Plasmodium falciparum, there is evidence that selection, acting at the level of translation, influences codon choices. This is a twofold intriguing finding, since (1) the genomic GC levels of the above mentioned eukaryotes are lower than the GC% of any studied bacteria, and (2) bacteria usually have larger effective population sizes than eukaryotes, and hence natural selection is expected to overcome more efficiently the randomizing effects of genetic drift among prokaryotes than among eukaryotes. In order to gain a new insight about this problem, we analysed the patterns of codon preferences of the nuclear genes of Entamoeba histolytica, a unicellular eukaryote characterised by an extremely AT-rich genome (GC = 25%). The overall codon usage is strongly biased towards A and T in the third codon positions, and among the presumed highly expressed sequences, there is an increased relative usage of a subset of codons, many of which are C-ending. Since an increase in C in third codon positions is 'against' the compositional bias, we conclude that codon usage in E. histolytica, as happens in D. discoideum and P. falciparum, is the result of an equilibrium between compositional pressure and selection. These findings raise the question of why strongly compositionally biased eukaryotic cells may be more sensitive to the (presumed) slight differences among synonymous codons than compositionally biased bacteria.

  20. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    PubMed

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  1. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  2. Evolution of patchily distributed proteins shared between eukaryotes and prokaryotes: Dictyostelium as a case study.

    PubMed

    Andersson, Jan O

    2011-04-01

    Protein families are often patchily distributed in the tree of life; they are present in distantly related organisms, but absent in more closely related lineages. This could either be the result of lateral gene transfer between ancestors of organisms that encode them, or losses in the lineages that lack them. Here a novel approach is developed to study the evolution of patchily distributed proteins shared between prokaryotes and eukaryotes. Proteins encoded in the genome of cellular slime mold Dictyostelium discoideum and a restricted number of other lineages, including at least one prokaryote, were identified. Analyses of the phylogenetic distribution of 49 such patchily distributed protein families showed conflicts with organismal phylogenies; 25 are shared with the distantly related amoeboflagellate Naegleria (Excavata), whereas only two are present in the more closely related Entamoeba. Most protein families show unexpected topologies in phylogenetic analyses; eukaryotes are polyphyletic in 85% of the trees. These observations suggest that gene transfers have been an important mechanism for the distribution of patchily distributed proteins across all domains of life. Further studies of this exchangeable gene fraction are needed for a better understanding of the origin and evolution of eukaryotic genes and the diversification process of eukaryotes. Copyright © 2011 S. Karger AG, Basel.

  3. EUPAN enables pan-genome studies of a large number of eukaryotic genomes.

    PubMed

    Hu, Zhiqiang; Sun, Chen; Lu, Kuang-Chen; Chu, Xixia; Zhao, Yue; Lu, Jinyuan; Shi, Jianxin; Wei, Chaochun

    2017-08-01

    Pan-genome analyses are routinely carried out for bacteria to interpret the within-species gene presence/absence variations (PAVs). However, pan-genome analyses are rare for eukaryotes due to the large sizes and higher complexities of their genomes. Here we proposed EUPAN, a eukaryotic pan-genome analysis toolkit, enabling automatic large-scale eukaryotic pan-genome analyses and detection of gene PAVs at a relatively low sequencing depth. In the previous studies, we demonstrated the effectiveness and high accuracy of EUPAN in the pan-genome analysis of 453 rice genomes, in which we also revealed widespread gene PAVs among individual rice genomes. Moreover, EUPAN can be directly applied to the current re-sequencing projects primarily focusing on single nucleotide polymorphisms. EUPAN is implemented in Perl, R and C ++. It is supported under Linux and preferred for a computer cluster with LSF and SLURM job scheduling system. EUPAN together with its standard operating procedure (SOP) is freely available for non-commercial use (CC BY-NC 4.0) at http://cgm.sjtu.edu.cn/eupan/index.html . ccwei@sjtu.edu.cn or jianxin.shi@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Diatoms dominate the eukaryotic metatranscriptome during spring in coastal 'dead zone' sediments.

    PubMed

    Broman, Elias; Sachpazidou, Varvara; Dopson, Mark; Hylander, Samuel

    2017-10-11

    An important characteristic of marine sediments is the oxygen concentration that affects many central metabolic processes. There has been a widespread increase in hypoxia in coastal systems (referred to as 'dead zones') mainly caused by eutrophication. Hence, it is central to understand the metabolism and ecology of eukaryotic life in sediments during changing oxygen conditions. Therefore, we sampled coastal 'dead zone' Baltic Sea sediment during autumn and spring, and analysed the eukaryotic metatranscriptome from field samples and after incubation in the dark under oxic or anoxic conditions. Bacillariophyta (diatoms) dominated the eukaryotic metatranscriptome in spring and were also abundant during autumn. A large fraction of the diatom RNA reads was associated with the photosystems suggesting a constitutive expression in darkness. Microscope observation showed intact diatom cells and these would, if hatched, represent a significant part of the pelagic phytoplankton biomass. Oxygenation did not significantly change the relative proportion of diatoms nor resulted in any major shifts in metabolic 'signatures'. By contrast, diatoms rapidly responded when exposed to light suggesting that light is limiting diatom development in hypoxic sediments. Hence, it is suggested that diatoms in hypoxic sediments are on 'standby' to exploit the environment if they reach suitable habitats. © 2017 The Author(s).

  5. Eukaryotic cells and their cell bodies: Cell Theory revised.

    PubMed

    Baluska, Frantisek; Volkmann, Dieter; Barlow, Peter W

    2004-07-01

    Cell Theory, also known as cell doctrine, states that all eukaryotic organisms are composed of cells, and that cells are the smallest independent units of life. This Cell Theory has been influential in shaping the biological sciences ever since, in 1838/1839, the botanist Matthias Schleiden and the zoologist Theodore Schwann stated the principle that cells represent the elements from which all plant and animal tissues are constructed. Some 20 years later, in a famous aphorism Omnis cellula e cellula, Rudolf Virchow annunciated that all cells arise only from pre-existing cells. General acceptance of Cell Theory was finally possible only when the cellular nature of brain tissues was confirmed at the end of the 20th century. Cell Theory then rapidly turned into a more dogmatic cell doctrine, and in this form survives up to the present day. In its current version, however, the generalized Cell Theory developed for both animals and plants is unable to accommodate the supracellular nature of higher plants, which is founded upon a super-symplasm of interconnected cells into which is woven apoplasm, symplasm and super-apoplasm. Furthermore, there are numerous examples of multinucleate coenocytes and syncytia found throughout the eukaryote superkingdom posing serious problems for the current version of Cell Theory. To cope with these problems, we here review data which conform to the original proposal of Daniel Mazia that the eukaryotic cell is composed of an elemental Cell Body whose structure is smaller than the cell and which is endowed with all the basic attributes of a living entity. A complement to the Cell Body is the Cell Periphery Apparatus, which consists of the plasma membrane associated with other periphery structures. Importantly, boundary structures of the Cell Periphery Apparatus, although capable of some self-assembly, are largely produced and maintained by Cell Body activities and can be produced from it de novo. These boundary structures serve not only as

  6. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes

    PubMed Central

    Platre, Matthieu Pierre

    2017-01-01

    ABSTRACT A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells. PMID:28102755

  7. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    PubMed

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  8. GWFASTA: server for FASTA search in eukaryotic and microbial genomes.

    PubMed

    Issac, Biju; Raghava, G P S

    2002-09-01

    Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists.

  9. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data

    PubMed Central

    McInerney, James; Pisani, Davide; O'Connell, Mary J.

    2015-01-01

    The literature is replete with manuscripts describing the origin of eukaryotic cells. Most of the models for eukaryogenesis are either autogenous (sometimes called slow-drip), or symbiogenic (sometimes called big-bang). In this article, we use large and diverse suites of ‘Omics' and other data to make the inference that autogeneous hypotheses are a very poor fit to the data and the origin of eukaryotic cells occurred in a single symbiosis. PMID:26323755

  10. Research and development of a versatile portable speech prosthesis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Versatile Portable Speech Prosthesis (VPSP), a synthetic speech output communication aid for non-speaking people is described. It was intended initially for severely physically limited people with cerebral palsy who are in electric wheelchairs. Hence, it was designed to be placed on a wheelchair and powered from a wheelchair battery. It can easily be separated from the wheelchair. The VPSP is versatile because it is designed to accept any means of single switch, multiple switch, or keyboard control which physically limited people have the ability to use. It is portable because it is mounted on and can go with the electric wheelchair. It is a speech prosthesis, obviously, because it speaks with a synthetic voice for people unable to speak with their own voices. Both hardware and software are described.

  11. Early evolution without a tree of life.

    PubMed

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  12. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence.

    PubMed

    Koonin, Eugene V

    2017-02-10

    Complementarity between nucleic acid molecules is central to biological information transfer processes. Apart from the basal processes of replication, transcription and translation, complementarity is also employed by multiple defense and regulatory systems. All cellular life forms possess defense systems against viruses and mobile genetic elements, and in most of them some of the defense mechanisms involve small guide RNAs or DNAs that recognize parasite genomes and trigger their inactivation. The nucleic acid-guided defense systems include prokaryotic Argonaute (pAgo)-centered innate immunity and CRISPR-Cas adaptive immunity as well as diverse branches of RNA interference (RNAi) in eukaryotes. The archaeal pAgo machinery is the direct ancestor of eukaryotic RNAi that, however, acquired additional components, such as Dicer, and enormously diversified through multiple duplications. In contrast, eukaryotes lack any heritage of the CRISPR-Cas systems, conceivably, due to the cellular toxicity of some Cas proteins that would get activated as a result of operon disruption in eukaryotes. The adaptive immunity function in eukaryotes is taken over partly by the PIWI RNA branch of RNAi and partly by protein-based immunity. In this review, I briefly discuss the interplay between homology and analogy in the evolution of RNA- and DNA-guided immunity, and attempt to formulate some general evolutionary principles for this ancient class of defense systems. This article was reviewed by Mikhail Gelfand and Bojan Zagrovic.

  13. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES AND OTHER EUKARYOTIC ALGAE

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  14. Protein and DNA Modifications: Evolutionary Imprints of Bacterial Biochemical Diversification and Geochemistry on the Provenance of Eukaryotic Epigenetics

    PubMed Central

    Aravind, L.; Burroughs, A. Maxwell; Zhang, Dapeng; Iyer, Lakshminarayan M.

    2014-01-01

    Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth’s history. PMID:24984775

  15. Microanalyzes of remarkable microfossils of the Late Mesoproterozoic-Early Neoproterozoic

    NASA Astrophysics Data System (ADS)

    Cornet, Yohan; Beghin, Jérémie; Baludikay, Blaise; François, Camille; Storme, Jean-Yves; Compère, Philippe; Javaux, Emanuelle

    2016-04-01

    The Late Mesoproterozoic-Early Neoproterozoic is an important period to investigate the diversification of early eukaryotes [1]. Following the first appearance of red algae in the Late Mesoproterozoic, other (morphological or molecular) fossils of crown groups are recorded during the Early Neoproterozoic, including green algae, sponges, amoebozoa and possibly fungi. Other microfossils also includes unambiguous eukaryotes, including several distinctive forms for that time period, such as the acritarchs Cerebrosphaera buickii (˜820-720 Ma), Trachyhystrichosphaera aimika and T . botula (1100-720 Ma), and the multicellular eukaryotic problematicum taxon Jacutianema solubila (1100-?720 Ma). To further characterize the taxonomy of these microfossils and to test hypotheses about their possible relationships to crown groups, we combine analyzes of their morphology, wall ultrastructure and microchemistry, using optical microscopy, Scanning and Transmission Electron microscopy (SEM and TEM), as well as Raman and FTIR microspectroscopy respectively. Cerebrosphaera populations from the Svanbergfjellet formation, Spitsbergen, and from the Kanpa Formation, Officer Basin, Australia, include organic vesicles with dark and robust walls ornamented by cerebroid folds [2]. Our study shows the occurrence of complex tri- or bi-layered wall ultrastructures and a highly aromatic composition [3]. The genus Trachyhystrichosphaera includes various species characterized by the presence of a variable number of hollow heteromorphic processes [2]. Preliminary infrared microspectroscopy analyzes performed on two species, T. aimika and T. botula, from the 1.1 Ga Taoudeni Basin, Mauritania, and from the ˜1.1 - 0.8 Ga Mbuji-Mayi Supergroup, RDC, indicate a strong aliphatic and carbonyl composition of the wall biopolymer, with some differences linked to thermal maturity between the two locations. TEM is also performed to characterize the wall ultrastructure of these two species. Various morphotypes

  16. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    PubMed

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  17. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  18. Quantitative studies of mRNA recruitment to the eukaryotic ribosome.

    PubMed

    Fraser, Christopher S

    2015-07-01

    The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome. Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  19. SigHunt: horizontal gene transfer finder optimized for eukaryotic genomes.

    PubMed

    Jaron, Kamil S; Moravec, Jiří C; Martínková, Natália

    2014-04-15

    Genomic islands (GIs) are DNA fragments incorporated into a genome through horizontal gene transfer (also called lateral gene transfer), often with functions novel for a given organism. While methods for their detection are well researched in prokaryotes, the complexity of eukaryotic genomes makes direct utilization of these methods unreliable, and so labour-intensive phylogenetic searches are used instead. We present a surrogate method that investigates nucleotide base composition of the DNA sequence in a eukaryotic genome and identifies putative GIs. We calculate a genomic signature as a vector of tetranucleotide (4-mer) frequencies using a sliding window approach. Extending the neighbourhood of the sliding window, we establish a local kernel density estimate of the 4-mer frequency. We score the number of 4-mer frequencies in the sliding window that deviate from the credibility interval of their local genomic density using a newly developed discrete interval accumulative score (DIAS). To further improve the effectiveness of DIAS, we select informative 4-mers in a range of organisms using the tetranucleotide quality score developed herein. We show that the SigHunt method is computationally efficient and able to detect GIs in eukaryotic genomes that represent non-ameliorated integration. Thus, it is suited to scanning for change in organisms with different DNA composition. Source code and scripts freely available for download at http://www.iba.muni.cz/index-en.php?pg=research-data-analysis-tools-sighunt are implemented in C and R and are platform-independent. 376090@mail.muni.cz or martinkova@ivb.cz. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Update: Mechanisms underlying N6-methyladenosine modification of eukaryotic mRNA

    PubMed Central

    Wang, Yang; Zhao, Jing Crystal

    2016-01-01

    Summary Eukaryotic messenger RNA (mRNA) undergoes chemical modification both at the 5′cap [1, 2] and internally [3–14]. Among internal modifications, m6A, by far the most abundant, is present in all eukaryotes examined, including mammals [3–6], flies [15], plants [16, 17] and yeast [18, 19]. m6A modification plays an essential role in diverse biological processes. Over the past few years, our knowledge relevant to establishment and function of this modification has grown rapidly. This review focuses on technologies that have facilitated m6A detection in mRNAs, identification of m6A methylation enzymes and binding proteins, and potential functions of the modification at the molecular level. Regarding m6A function at cellular or organismal levels or in disease, please refer to other recent reviews [20–23]. PMID:27793360

  1. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components.

    PubMed

    Fagerlund, Robert D; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2015-09-01

    Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. © 2015 Fagerlund et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments

    PubMed Central

    Haas, Brian J; Salzberg, Steven L; Zhu, Wei; Pertea, Mihaela; Allen, Jonathan E; Orvis, Joshua; White, Owen; Buell, C Robin; Wortman, Jennifer R

    2008-01-01

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation. PMID:18190707

  3. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer.

    PubMed

    Uhrig, R Glen; Kerk, David; Moorhead, Greg B

    2013-12-01

    Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.

  4. In Silico Ionomics Segregates Parasitic from Free-Living Eukaryotes

    PubMed Central

    Greganova, Eva; Steinmann, Michael; Mäser, Pascal; Fankhauser, Niklaus

    2013-01-01

    Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals. PMID:24048281

  5. In silico ionomics segregates parasitic from free-living eukaryotes.

    PubMed

    Greganova, Eva; Steinmann, Michael; Mäser, Pascal; Fankhauser, Niklaus

    2013-01-01

    Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.

  6. Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes

    PubMed Central

    Mix, Heiko; Zhang, Yan; Saira, Kazima; Glass, Richard S; Berry, Marla J; Gladyshev, Vadim N; Hatfield, Dolph L

    2007-01-01

    Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA[Ser]Sec as substrates to generate selenocysteyl-tRNA[Ser]Sec. Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, O-phosphoseryl-tRNA[Ser]Sec kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA[Ser]Sec kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins. PMID:17194211

  7. Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.

    PubMed

    Pervouchine, Dmitri D

    2018-06-15

    The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.

  8. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics.

    PubMed

    Aravind, L; Burroughs, A Maxwell; Zhang, Dapeng; Iyer, Lakshminarayan M

    2014-07-01

    Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth's history. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Canopy Flow Analysis Reveals the Advantage of Size in the Oldest Communities of Multicellular Eukaryotes

    PubMed Central

    Ghisalberti, Marco; Gold, David A.; Laflamme, Marc; Clapham, Matthew E.; Narbonne, Guy M.; Summons, Roger E.; Johnston, David T.; Jacobs, David K.

    2015-01-01

    Summary At Mistaken Point, Newfoundland, Canada, rangeomorph “fronds” dominate the earliest (579–565 million years ago) fossil communities of large (0.1 to 2 m height) multicellular benthic eukaryotes. They lived in low-flow environments, fueled by uptake [1–3] of dissolved reactants (osmotrophy). However, prokaryotes are effective osmotrophs, and the advantage of taller eukaryotic osmotrophs in this deepwater community context has not been addressed. We reconstructed flow-velocity profiles and vertical mixing using canopy flow models appropriate to the densities of the observed communities. Further modeling of processes at organismal surfaces documents increasing uptake with height in the community as a function of thinning of the diffusive boundary layer with increased velocity. The velocity profile, produced by canopy flow in the community, generates this advantage of upward growth. Alternative models of upward growth advantage based on redox/resource gradients fail, given the efficiency of vertical mixing. In benthic communities of osmotrophs of sufficient density, access to flow in low-flow settings provides an advantage to taller architecture, providing a selectional driver for communities of tall eukaryotes in contexts where phototropism cannot contribute to upward growth. These Ediacaran deep-sea fossils were preserved during the increasing oxygenation prior to the Cambrian radiation of animals and likely represent an important phase in the ecological and evolutionary transition to more complex eukaryotic forms. PMID:24462003

  10. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.

    PubMed

    Lemieux, M Joanne

    2007-01-01

    The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.

  11. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated.

    PubMed

    Tognetti, Silvia; Riera, Alberto; Speck, Christian

    2015-03-01

    A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.

  12. Biological processing of dinuclear ruthenium complexes in eukaryotic cells.

    PubMed

    Li, Xin; Heimann, Kirsten; Dinh, Xuyen Thi; Keene, F Richard; Collins, J Grant

    2016-10-20

    The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that

  13. [Structure and evolution of the eukaryotic FANCJ-like proteins].

    PubMed

    Wuhe, Jike; Zefeng, Wu; Sanhong, Fan; Xuguang, Xi

    2015-02-01

    The FANCJ-like protein family is a class of ATP-dependent helicases that can catalytically unwind duplex DNA along the 5'-3' direction. It is involved in the processes of DNA damage repair, homologous recombination and G-quadruplex DNA unwinding, and plays a critical role in maintaining genome integrity. In this study, we systemically analyzed FNACJ-like proteins from 47 eukaryotic species and discussed their sequences diversity, origin and evolution, motif organization patterns and spatial structure differences. Four members of FNACJ-like proteins, including XPD, CHL1, RTEL1 and FANCJ, were found in eukaryotes, but some of them were seriously deficient in most fungi and some insects. For example, the Zygomycota fungi lost RTEL1, Basidiomycota and Ascomycota fungi lost RTEL1 and FANCJ, and Diptera insect lost FANCJ. FANCJ-like proteins contain canonical motor domains HD1 and HD2, and the HD1 domain further integrates with three unique domains Fe-S, Arch and Extra-D. Fe-S and Arch domains are relatively conservative in all members of the family, but the Extra-D domain is lost in XPD and differs from one another in rest members. There are 7, 10 and 2 specific motifs found from the three unique domains respectively, while 5 and 12 specific motifs are found from HD1 and HD2 domains except the conserved motifs reported previously. By analyzing the arrangement pattern of these specific motifs, we found that RTEL1 and FANCJ are more closer and share two specific motifs Vb2 and Vc in HD2 domain, which are likely related with their G-quadruplex DNA unwinding activity. The evidence of evolution showed that FACNJ-like proteins were originated from a helicase, which has a HD1 domain inserted by extra Fe-S domain and Arch domain. By three continuous gene duplication events and followed specialization, eukaryotes finally possessed the current four members of FANCJ-like proteins.

  14. Versatile Desktop Experiment Module (DEMo) on Heat Transfer

    ERIC Educational Resources Information Center

    Minerick, Adrienne R.

    2010-01-01

    This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

  15. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.

    PubMed

    Jiang, Feng; Waterfield, Nicholas R; Yang, Jian; Yang, Guowei; Jin, Qi

    2014-05-14

    Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacterium's interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Eukaryotic Cells and their Cell Bodies: Cell Theory Revised

    PubMed Central

    BALUŠKA, FRANTIŠEK; VOLKMANN, DIETER; BARLOW, PETER W.

    2004-01-01

    • Background Cell Theory, also known as cell doctrine, states that all eukaryotic organisms are composed of cells, and that cells are the smallest independent units of life. This Cell Theory has been influential in shaping the biological sciences ever since, in 1838/1839, the botanist Matthias Schleiden and the zoologist Theodore Schwann stated the principle that cells represent the elements from which all plant and animal tissues are constructed. Some 20 years later, in a famous aphorism Omnis cellula e cellula, Rudolf Virchow annunciated that all cells arise only from pre‐existing cells. General acceptance of Cell Theory was finally possible only when the cellular nature of brain tissues was confirmed at the end of the 20th century. Cell Theory then rapidly turned into a more dogmatic cell doctrine, and in this form survives up to the present day. In its current version, however, the generalized Cell Theory developed for both animals and plants is unable to accommodate the supracellular nature of higher plants, which is founded upon a super‐symplasm of interconnected cells into which is woven apoplasm, symplasm and super‐apoplasm. Furthermore, there are numerous examples of multinucleate coenocytes and syncytia found throughout the eukaryote superkingdom posing serious problems for the current version of Cell Theory. • Scope To cope with these problems, we here review data which conform to the original proposal of Daniel Mazia that the eukaryotic cell is composed of an elemental Cell Body whose structure is smaller than the cell and which is endowed with all the basic attributes of a living entity. A complement to the Cell Body is the Cell Periphery Apparatus, which consists of the plasma membrane associated with other periphery structures. Importantly, boundary stuctures of the Cell Periphery Apparatus, although capable of some self‐assembly, are largely produced and maintained by Cell Body activities and can be produced from it de novo. These

  17. Prokaryotic ancestry of eukaryotic protein networks mediating innate immunity and apoptosis.

    PubMed

    Dunin-Horkawicz, Stanislaw; Kopec, Klaus O; Lupas, Andrei N

    2014-04-03

    Protein domains characteristic of eukaryotic innate immunity and apoptosis have many prokaryotic counterparts of unknown function. By reconstructing interactomes computationally, we found that bacterial proteins containing these domains are part of a network that also includes other domains not hitherto associated with immunity. This network is connected to the network of prokaryotic signal transduction proteins, such as histidine kinases and chemoreceptors. The network varies considerably in domain composition and degree of paralogy, even between strains of the same species, and its repetitive domains are often amplified recently, with individual repeats sharing up to 100% sequence identity. Both phenomena are evidence of considerable evolutionary pressure and thus compatible with a role in the "arms race" between host and pathogen. In order to investigate the relationship of this network to its eukaryotic counterparts, we performed a cluster analysis of organisms based on a census of its constituent domains across all fully sequenced genomes. We obtained a large central cluster of mainly unicellular organisms, from which multicellular organisms radiate out in two main directions. One is taken by multicellular bacteria, primarily cyanobacteria and actinomycetes, and plants form an extension of this direction, connected via the basal, unicellular cyanobacteria. The second main direction is taken by animals and fungi, which form separate branches with a common root in the α-proteobacteria of the central cluster. This analysis supports the notion that the innate immunity networks of eukaryotes originated from their endosymbionts and that increases in the complexity of these networks accompanied the emergence of multicellularity. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.

    PubMed

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong

    2017-11-30

    Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.

  19. The MCM Helicase Motor of the Eukaryotic Replisome.

    PubMed

    Abid Ali, Ferdos; Costa, Alessandro

    2016-05-08

    The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate. Copyright © 2016. Published by Elsevier Ltd.

  20. Prokaryotic and eukaryotic features observed on the secondary structures of Giardia SSU rRNAs and its phylogenetic implications.

    PubMed

    Hwang, Ui Wook

    2007-04-01

    Phylogenetic position of a diplomonad protist Giardia, a principle cause of diarrhea, among eukaryotes has been vigorously debated so far. Through the comparisons of primary and secondary structures of SSU rRNAs of G. intestinalis, G. microti, G. ardeae, and G. muris, I found two major indel regions (a 6-nt indel and a 22-26-nt indel), which correspond to the helix 10 of the V2 region and helices E23-8 to E23-9 of the V4 region, respectively. As generally shown in eukaryotes, G. intestinalis and G. microti have commonly a relatively longer helix 10 (a 7-bp stem and a 4-nt loop), and also the eukaryote-specific helices E23-6 to E23-9. On the other hand, G. muris and G. ardeae have a shorter helix 10: a 2-bp stem and a 6-nt loop in G. ardeae and a 3-bp stem and a 6-nt loop in G. muris. In the V4, they have a single long helix (like the P23-1 helix in prokaryotes) instead of the helices E23-6 to E23-9. Among the four Giardia species, co-appearance of prokaryote- and eukaryote-typical features might be significant evidence to suggest that Giardia (Archezoa) is a living fossil showing an "intermediate stage" during the evolution from prokaryotes to eukaryotes.

  1. Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs.

    PubMed

    Dupont, A Ö C; Griffiths, R I; Bell, T; Bass, D

    2016-06-01

    A recent large-scale assessment of bacterial communities across a range of UK soil types showed that bacterial community structure was strongly determined by soil pH. We analysed a data set of eukaryotic 454 sequencing 18S rDNA from the surveyed samples and showed significant differences in eukaryotic assemblages according to pH class, mostly between low pH and higher pH soils. Soil eukaryote communities (per sample) differed most at the taxonomic rank approximating to order level. Taxonomies assigned with the Protist Ribosomal Reference and the Silva 119 databases were taxonomically inconsistent, mostly due to differing 18S annotations, although general structure and composition according to pH were coherent. A relatively small number of lineages, mostly putative parasitic protists and fungi, drive most differences between pH classes, with weaker contributions from bacterivores and autotrophs. Overall, soil parasites included a large diversity of alveolates, in particular apicomplexans. Phylogenetic analysis of alveolate lineages demonstrates a large diversity of unknown gregarines, novel perkinsids, coccidians, colpodellids and uncharacterized alveolates. Other novel and/or divergent lineages were revealed across the eukaryote tree of life. Our study provides an in-depth taxonomic evaluation of micro-eukaryotic diversity, and reveals novel lineages and insights into their relationships with environmental variables across soil gradients. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research.

    PubMed

    Kim, Dae-Kyum; Lee, Jaewook; Simpson, Richard J; Lötvall, Jan; Gho, Yong Song

    2015-04-01

    For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The ecology and diversity of microbial eukaryotes in geothermal springs.

    PubMed

    Oliverio, Angela M; Power, Jean F; Washburne, Alex; Cary, S Craig; Stott, Matthew B; Fierer, Noah

    2018-04-16

    Decades of research into the Bacteria and Archaea living in geothermal spring ecosystems have yielded great insight into the diversity of life and organismal adaptations to extreme environmental conditions. Surprisingly, while microbial eukaryotes (protists) are also ubiquitous in many environments, their diversity across geothermal springs has mostly been ignored. We used high-throughput sequencing to illuminate the diversity and structure of microbial eukaryotic communities found in 160 geothermal springs with broad ranges in temperature and pH across the Taupō Volcanic Zone in New Zealand. Protistan communities were moderately predictable in composition and varied most strongly across gradients in pH and temperature. Moreover, this variation mirrored patterns observed for bacterial and archaeal communities across the same spring samples, highlighting that there are similar ecological constraints across the tree of life. While extreme pH values were associated with declining protist diversity, high temperature springs harbored substantial amounts of protist diversity. Although protists are often overlooked in geothermal springs and other extreme environments, our results indicate that such environments can host distinct and diverse protistan communities.

  4. GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.

    PubMed

    Deng, Feilong; Chen, Shi-Yi; Wu, Zhou-Lin; Hu, Yongsong; Jia, Xianbo; Lai, Song-Jia

    2017-10-01

    Owing to wide application of RNA sequencing (RNA-seq) technology, more and more eukaryotic genomes have been extensively annotated, such as the gene structure, alternative splicing, and noncoding loci. Annotation information of genome is prevalently stored as plain text in General Feature Format (GFF), which could be hundreds or thousands Mb in size. Therefore, it is a challenge for manipulating GFF file for biologists who have no bioinformatic skill. In this study, we provide a web server (GFFview) for parsing the annotation information of eukaryotic genome and then generating statistical description of six indices for visualization. GFFview is very useful for investigating quality and difference of the de novo assembled transcriptome in RNA-seq studies.

  5. The structure of TON1937 from archaeon Thermococcus onnurineus NA1 reveals a eukaryotic HEAT-like architecture.

    PubMed

    Jeong, Jae-Hee; Kim, Yi-Seul; Rojviriya, Catleya; Cha, Hyung Jin; Ha, Sung-Chul; Kim, Yeon-Gil

    2013-10-01

    The members of the ARM/HEAT repeat-containing protein superfamily in eukaryotes have been known to mediate protein-protein interactions by using their concave surface. However, little is known about the ARM/HEAT repeat proteins in prokaryotes. Here we report the crystal structure of TON1937, a hypothetical protein from the hyperthermophilic archaeon Thermococcus onnurineus NA1. The structure reveals a crescent-shaped molecule composed of a double layer of α-helices with seven anti-parallel α-helical repeats. A structure-based sequence alignment of the α-helical repeats identified a conserved pattern of hydrophobic or aliphatic residues reminiscent of the consensus sequence of eukaryotic HEAT repeats. The individual repeats of TON1937 also share high structural similarity with the canonical eukaryotic HEAT repeats. In addition, the concave surface of TON1937 is proposed to be its potential binding interface based on this structural comparison and its surface properties. These observations lead us to speculate that the archaeal HEAT-like repeats of TON1937 have evolved to engage in protein-protein interactions in the same manner as eukaryotic HEAT repeats. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits

    NASA Technical Reports Server (NTRS)

    Hilario, E.; Gogarten, J. P.

    1998-01-01

    Changes in the primary and quarternary structure of vacuolar and archaeal type ATPases that accompany the prokaryote-to-eukaryote transition are analyzed. The gene encoding the vacuolar-type proteolipid of the V-ATPase from Giardia lamblia is reported. Giardia has a typical vacuolar ATPase as observed from the common motifs shared between its proteolipid subunit and other eukaryotic vacuolar ATPases, suggesting that the former enzyme works as a hydrolase in this primitive eukaryote. The phylogenetic analyses of the V-ATPase catalytic subunit and the front and back halves of the proteolipid subunit placed Giardia as the deepest branch within the eukaryotes. Our phylogenetic analysis indicated that at least two independent duplication and fusion events gave rise to the larger proteolipid type found in eukaryotes and in Methanococcus. The spatial distribution of the conserved residues among the vacuolar-type proteolipids suggest a zipper-type interaction among the transmembrane helices and surrounding subunits of the V-ATPase complex. Important residues involved in the function of the F-ATP synthase proteolipid have been replaced during evolution in the V-proteolipid, but in some cases retained in the archaeal A-ATPase. Their possible implication in the evolution of V/F/A-ATPases is discussed.

  7. Six Subgroups and Extensive Recent Duplications Characterize the Evolution of the Eukaryotic Tubulin Protein Family

    PubMed Central

    Findeisen, Peggy; Mühlhausen, Stefanie; Dempewolf, Silke; Hertzog, Jonny; Zietlow, Alexander; Carlomagno, Teresa; Kollmar, Martin

    2014-01-01

    Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog–paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other. PMID:25169981

  8. Minimization of extracellular space as a driving force in prokaryote association and the origin of eukaryotes.

    PubMed

    Hooper, Scott L; Burstein, Helaine J

    2014-11-18

    Internalization-based hypotheses of eukaryotic origin require close physical association of host and symbiont. Prior hypotheses of how these associations arose include chance, specific metabolic couplings between partners, and prey-predator/parasite interactions. Since these hypotheses were proposed, it has become apparent that mixed-species, close-association assemblages (biofilms) are widespread and predominant components of prokaryotic ecology. Which forces drove prokaryotes to evolve the ability to form these assemblages are uncertain. Bacteria and archaea have also been found to form membrane-lined interconnections (nanotubes) through which proteins and RNA pass. These observations, combined with the structure of the nuclear envelope and an energetic benefit of close association (see below), lead us to propose a novel hypothesis of the driving force underlying prokaryotic close association and the origin of eukaryotes. Respiratory proton transport does not alter external pH when external volume is effectively infinite. Close physical association decreases external volume. For small external volumes, proton transport decreases external pH, resulting in each transported proton increasing proton motor force to a greater extent. We calculate here that in biofilms this effect could substantially decrease how many protons need to be transported to achieve a given proton motor force. Based as it is solely on geometry, this energetic benefit would occur for all prokaryotes using proton-based respiration. This benefit may be a driving force in biofilm formation. Under this hypothesis a very wide range of prokaryotic species combinations could serve as eukaryotic progenitors. We use this observation and the discovery of prokaryotic nanotubes to propose that eukaryotes arose from physically distinct, functionally specialized (energy factory, protein factory, DNA repository/RNA factory), obligatorily symbiotic prokaryotes in which the protein factory and DNA repository

  9. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo

    PubMed Central

    2016-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  10. The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process.

    PubMed

    Hashem, Yaser; Frank, Joachim

    2018-03-01

    Translation initiation in eukaryotes is a highly regulated and rate-limiting process. It results in the assembly and disassembly of numerous transient and intermediate complexes involving over a dozen eukaryotic initiation factors (eIFs). This process culminates in the accommodation of a start codon marking the beginning of an open reading frame at the appropriate ribosomal site. Although this process has been extensively studied by hundreds of groups for nearly half a century, it has been only recently, especially during the last decade, that we have gained deeper insight into the mechanics of the eukaryotic translation initiation process. This advance in knowledge is due in part to the contributions of structural biology, which have shed light on the molecular mechanics underlying the different functions of various eukaryotic initiation factors. In this review, we focus exclusively on the contribution of structural biology to the understanding of the eukaryotic initiation process, a long-standing jigsaw puzzle that is just starting to yield the bigger picture. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  11. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates.

    PubMed

    Lee, Hyukjin; Lee, Kang Dae; Pyo, Kyung Bo; Park, Sung Young; Lee, Haeshin

    2010-03-16

    We report on catechol-grafted poly(ethylene) glycol (PEG-g-catechol) for the preparation of nonfouling surfaces on versatile substrates including adhesion-resistant PTFE. PEG-g-catechol was prepared by the step-growth polymerization of PEO to which dopamine, a mussel-derived adhesive molecule, was conjugated. The immersion of substrates into an aqueous solution of PEG-g-catechol resulted in robust PEGylation on versatile surfaces of noble metals, oxides, and synthetic polymers. Surface PEGylation was unambiguously confirmed by various surface analytical tools such as ellipsometry, goniometry, infrared spectroscopy, and X-ray photoelectron spectroscopy. Contrary to existing PEG derivatives that are difficult-to-modify synthetic polymer surfaces, PEG-g-catechol can be considered to be a new class of PEGs for the facile surface PEGylation of various types of surfaces.

  12. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    PubMed

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  13. ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins

    PubMed Central

    Puntervoll, Pål; Linding, Rune; Gemünd, Christine; Chabanis-Davidson, Sophie; Mattingsdal, Morten; Cameron, Scott; Martin, David M. A.; Ausiello, Gabriele; Brannetti, Barbara; Costantini, Anna; Ferrè, Fabrizio; Maselli, Vincenza; Via, Allegra; Cesareni, Gianni; Diella, Francesca; Superti-Furga, Giulio; Wyrwicz, Lucjan; Ramu, Chenna; McGuigan, Caroline; Gudavalli, Rambabu; Letunic, Ivica; Bork, Peer; Rychlewski, Leszek; Küster, Bernhard; Helmer-Citterich, Manuela; Hunter, William N.; Aasland, Rein; Gibson, Toby J.

    2003-01-01

    Multidomain proteins predominate in eukaryotic proteomes. Individual functions assigned to different sequence segments combine to create a complex function for the whole protein. While on-line resources are available for revealing globular domains in sequences, there has hitherto been no comprehensive collection of small functional sites/motifs comparable to the globular domain resources, yet these are as important for the function of multidomain proteins. Short linear peptide motifs are used for cell compartment targeting, protein–protein interaction, regulation by phosphorylation, acetylation, glycosylation and a host of other post-translational modifications. ELM, the Eukaryotic Linear Motif server at http://elm.eu.org/, is a new bioinformatics resource for investigating candidate short non-globular functional motifs in eukaryotic proteins, aiming to fill the void in bioinformatics tools. Sequence comparisons with short motifs are difficult to evaluate because the usual significance assessments are inappropriate. Therefore the server is implemented with several logical filters to eliminate false positives. Current filters are for cell compartment, globular domain clash and taxonomic range. In favourable cases, the filters can reduce the number of retained matches by an order of magnitude or more. PMID:12824381

  14. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities.

    PubMed

    Baker, Brett J; Tyson, Gene W; Goosherst, Lindsey; Banfield, Jillian F

    2009-04-01

    Microscopic eukaryotes are known to have important ecosystem functions, but their diversity in most environments remains vastly unexplored. Here we analyzed an 18S rRNA gene library from a subsurface iron- and sulfur-oxidizing microbial community growing in highly acidic (pH < 0.9) runoff within the Richmond Mine at Iron Mountain (northern California). Phylogenetic analysis revealed that the majority (68%) of the sequences belonged to fungi. Protists falling into the deeply branching lineage named the acidophilic protist clade (APC) and the class Heterolobosea were also present. The APC group represents kingdom-level novelty, with <76% sequence similarity to 18S rRNA gene sequences of organisms from other environments. Fluorescently labeled oligonucleotide rRNA probes were designed to target each of these groups in biofilm samples, enabling abundance and morphological characterization. Results revealed that the populations vary significantly with the habitat and no group is ubiquitous. Surprisingly, many of the eukaryotic lineages (with the exception of the APC) are closely related to neutrophiles, suggesting that they recently adapted to this extreme environment. Molecular analyses presented here confirm that the number of eukaryotic species associated with the acid mine drainage (AMD) communities is low. This finding is consistent with previous results showing a limited diversity of archaea, bacteria, and viruses in AMD environments and suggests that the environmental pressures and interplay between the members of these communities limit species diversity at all trophic levels.

  15. Spy: a new group of eukaryotic DNA transposons without target site duplications.

    PubMed

    Han, Min-Jin; Xu, Hong-En; Zhang, Hua-Hao; Feschotte, Cédric; Zhang, Ze

    2014-06-24

    Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal-inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described are also characterized by target site duplications (TSDs) of host DNA generated upon chromosomal insertion. Here, we report a new group of evolutionarily related DNA transposons called Spy, which also include TIRs and DDE motif-containing transposase but surprisingly do not create TSDs upon insertion. Instead, Spy transposons appear to transpose precisely between 5'-AAA and TTT-3' host nucleotides, without duplication or modification of the AAATTT target sites. Spy transposons were identified in the genomes of diverse invertebrate species based on transposase homology searches and structure-based approaches. Phylogenetic analyses indicate that Spy transposases are distantly related to IS5, ISL2EU, and PIF/Harbinger transposases. However, Spy transposons are distinct from these and other DNA transposon superfamilies by their lack of TSD and their target site preference. Our findings expand the known diversity of DNA transposons and reveal a new group of eukaryotic DDE transposases with unusual catalytic properties. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

    PubMed Central

    O'Toole, Nicholas; Barboza, Perry S.; Ungerfeld, Emilio; Leigh, Mary Beth; Selinger, L. Brent; Butler, Greg; Tsang, Adrian; McAllister, Tim A.; Forster, Robert J.

    2011-01-01

    Background Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. Methodology/Principal Findings In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. Conclusions/Significance The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes. PMID:21655220

  17. Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family.

    PubMed

    Krapp, S; Kelly, G; Reischl, J; Weinzierl, R O; Matthews, S

    1998-02-01

    RNA polymerase II subunit RPB8 is an essential subunit that is highly conserved throughout eukaryotic evolution and is present in all three types of nuclear RNA polymerases. We report the first high resolution structural insight into eukaryotic RNA polymerase architecture with the solution structure of RPB8 from Saccharomyces cerevisiae. It consists of an eight stranded, antiparallel beta-barrel, four short helical regions and a large, unstructured omega-loop. The strands are connected in classic Greek-key fashion. The overall topology is unusual and contains a striking C2 rotational symmetry. Furthermore, it is most likely a novel associate of the oligonucleotide/oligosaccharide (OB) binding protein class.

  18. The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku

    PubMed Central

    di Fagagna, Fabrizio d'Adda; Weller, Geoffrey R.; Doherty, Aidan J.; Jackson, Stephen P.

    2003-01-01

    Mu bacteriophage inserts its DNA into the genome of host bacteria and is used as a model for DNA transposition events in other systems. The eukaryotic Ku protein has key roles in DNA repair and in certain transposition events. Here we show that the Gam protein of phage Mu is conserved in bacteria, has sequence homology with both subunits of Ku, and has the potential to adopt a similar architecture to the core DNA-binding region of Ku. Through biochemical studies, we demonstrate that Gam and the related protein of Haemophilus influenzae display DNA binding characteristics remarkably similar to those of human Ku. In addition, we show that Gam can interfere with Ty1 retrotransposition in Saccharomyces cerevisiae. These data reveal structural and functional parallels between bacteriophage Gam and eukaryotic Ku and suggest that their functions have been evolutionarily conserved. PMID:12524520

  19. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.

    PubMed

    Leroux, M R; Fändrich, M; Klunker, D; Siegers, K; Lupas, A N; Brown, J R; Schiebel, E; Dobson, C M; Hartl, F U

    1999-12-01

    Group II chaperonins in the eukaryotic and archaeal cytosol assist in protein folding independently of the GroES-like cofactors of eubacterial group I chaperonins. Recently, the eukaryotic chaperonin was shown to cooperate with the hetero-oligomeric protein complex GimC (prefoldin) in folding actin and tubulins. Here we report the characterization of the first archaeal homologue of GimC, from Methanobacterium thermoautotrophicum. MtGimC is a hexamer of 87 kDa, consisting of two alpha and four beta subunits of high alpha-helical content that are predicted to contain extended coiled coils and represent two evolutionarily conserved classes of Gim subunits. Reconstitution experiments with MtGimC suggest that two subunits of the alpha class (archaeal Gimalpha and eukaryotic Gim2 and 5) form a dimer onto which four subunits of the beta class (archaeal Gimbeta and eukaryotic Gim1, 3, 4 and 6) assemble. MtGimalpha and beta can form hetero-complexes with yeast Gim subunits and MtGimbeta partially complements yeast strains lacking Gim1 and 4. MtGimC is a molecular chaperone capable of stabilizing a range of non-native proteins and releasing them for subsequent chaperonin-assisted folding. In light of the absence of Hsp70 chaperones in many archaea, GimC may fulfil an ATP-independent, Hsp70-like function in archaeal de novo protein folding.

  20. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.

    PubMed Central

    Leroux, M R; Fändrich, M; Klunker, D; Siegers, K; Lupas, A N; Brown, J R; Schiebel, E; Dobson, C M; Hartl, F U

    1999-01-01

    Group II chaperonins in the eukaryotic and archaeal cytosol assist in protein folding independently of the GroES-like cofactors of eubacterial group I chaperonins. Recently, the eukaryotic chaperonin was shown to cooperate with the hetero-oligomeric protein complex GimC (prefoldin) in folding actin and tubulins. Here we report the characterization of the first archaeal homologue of GimC, from Methanobacterium thermoautotrophicum. MtGimC is a hexamer of 87 kDa, consisting of two alpha and four beta subunits of high alpha-helical content that are predicted to contain extended coiled coils and represent two evolutionarily conserved classes of Gim subunits. Reconstitution experiments with MtGimC suggest that two subunits of the alpha class (archaeal Gimalpha and eukaryotic Gim2 and 5) form a dimer onto which four subunits of the beta class (archaeal Gimbeta and eukaryotic Gim1, 3, 4 and 6) assemble. MtGimalpha and beta can form hetero-complexes with yeast Gim subunits and MtGimbeta partially complements yeast strains lacking Gim1 and 4. MtGimC is a molecular chaperone capable of stabilizing a range of non-native proteins and releasing them for subsequent chaperonin-assisted folding. In light of the absence of Hsp70 chaperones in many archaea, GimC may fulfil an ATP-independent, Hsp70-like function in archaeal de novo protein folding. PMID:10581246

  1. ITSoneDB: a comprehensive collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences

    PubMed Central

    Santamaria, Monica; Fosso, Bruno; Licciulli, Flavio; Balech, Bachir; Larini, Ilaria; Grillo, Giorgio; De Caro, Giorgio; Liuni, Sabino

    2018-01-01

    Abstract A holistic understanding of environmental communities is the new challenge of metagenomics. Accordingly, the amplicon-based or metabarcoding approach, largely applied to investigate bacterial microbiomes, is moving to the eukaryotic world too. Indeed, the analysis of metabarcoding data may provide a comprehensive assessment of both bacterial and eukaryotic composition in a variety of environments, including human body. In this respect, whereas hypervariable regions of the 16S rRNA are the de facto standard barcode for bacteria, the Internal Transcribed Spacer 1 (ITS1) of ribosomal RNA gene cluster has shown a high potential in discriminating eukaryotes at deep taxonomic levels. As metabarcoding data analysis rely on the availability of a well-curated barcode reference resource, a comprehensive collection of ITS1 sequences supplied with robust taxonomies, is highly needed. To address this issue, we created ITSoneDB (available at http://itsonedb.cloud.ba.infn.it/) which in its current version hosts 985 240 ITS1 sequences spanning over 134 000 eukaryotic species. Each ITS1 is mapped on the NCBI reference taxonomy with its start and end positions precisely annotated. ITSoneDB has been developed in agreement to the FAIR guidelines by enabling the users to query and download its content through a simple web-interface and access relevant metadata by cross-linking to European Nucleotide Archive. PMID:29036529

  2. Chitosan-microreactor: a versatile approach for heterogeneous organic synthesis in microfluidics.

    PubMed

    Basavaraju, K C; Sharma, Siddharth; Singh, Ajay K; Im, Do Jin; Kim, Dong-Pyo

    2014-07-01

    Microreactors have been proven to be efficient tools for a variety of homogeneous organic transformations due to their mixing efficiency, which results in very fast reactions, better heat and mass transfer, and simple scale-up. However, in heterogeneous catalytic reactions each catalyst needs an individual substrate as support. Herein, a versatile approach to immobilize metal catalysts on chitosan as a common substrate is presented. Chitosan, accommodating many metal catalysts, is grafted onto the microchannel surface as nanobrush. The versatility, catalytic efficiency, and stability/durability of the microreactor are demonstrated for a number of organic transformations involving various metal compounds as catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Exploring the roles of basal transcription factor 3 in eukaryotic growth and development.

    PubMed

    Jamil, Muhammad; Wang, Wenyi; Xu, Mengyun; Tu, Jumin

    2015-01-01

    Basal transcription factor 3 (BTF3) has been reported to play a significant part in the transcriptional regulation linking with eukaryotes growth and development. Alteration in the BTF3 gene expression patterns or variation in their activities adds to the explanation of different signaling pathways and regulatory networks. Moreover, BTF3s often respond to numerous stresses, and subsequently they are involved in regulation of various mechanisms. BTF3 proteins also function through protein-protein contact, which can assist us to identify the multifaceted processes of signaling and transcriptional regulation controlled by BTF3 proteins. In this review, we discuss current advances made in starting to explore the roles of BTF3 transcription factors in eukaryotes especially in plant growth and development.

  4. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence

    PubMed Central

    Burnside, Kellie; Rajagopal, Lakshmi

    2011-01-01

    Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections. PMID:21797690

  5. Probing eukaryotic cell mechanics via mesoscopic simulations

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor V.; Lykov, Kirill; Nematbakhsh, Yasaman; Shang, Menglin; Lim, Chwee Teck

    2017-11-01

    We developed a new mesoscopic particle based eukaryotic cell model which takes into account cell membrane, cytoskeleton and nucleus. The breast epithelial cells were used in our studies. To estimate the viscoelastic properties of cells and to calibrate the computational model, we performed micropipette aspiration experiments. The model was then validated using data from microfluidic experiments. Using the validated model, we probed contributions of sub-cellular components to whole cell mechanics in micropipette aspiration and microfluidics experiments. We believe that the new model will allow to study in silico numerous problems in the context of cell biomechanics in flows in complex domains, such as capillary networks and microfluidic devices.

  6. [Construction and expression of a eukaryotic expression vector containing human CR2-Fc fusion protein].

    PubMed

    Li, Xinxin; Wu, Zhihao; Zhang, Chuanfu; Jia, Leili; Song, Hongbin; Xu, Yuanyong

    2014-01-01

    To construct a eukaryotic expression vector containing human complement receptor 2 (CR2)-Fc and express the CR2-Fc fusion protein in Chinese hamster ovary (CHO) cells. The extracellular domain of human CR2 and IgG1 Fc were respectively amplified, ligated and inserted into the eukaryotic expression vector PCI-neo. After verified by restriction enzyme digestion and sequencing, the recombinant plasmid was transfected into CHO K1 cells. The ones with stable expression of the fusion protein were obtained by means of G418 selection. The expression of the CR2-Fc fusion protein was detected and confirmed by SDS-PAGE and Western blotting. Restriction enzyme digestion and sequencing demonstrated that the recombinant plasmid was valid. SDS-PAGE showed that relative molecular mass (Mr;) of the purified product was consistent with the expected value. Western blotting further proved the single band at the same position. We constructed the eukaryotic expression vector of CR2-Fc/PCI-neo successfully. The obtained fusion protein was active and can be used for the further study of the role in HIV control.

  7. Primer synthesis by a eukaryotic-like archaeal primase is independent of its Fe-S cluster.

    PubMed

    Holzer, Sandro; Yan, Jiangyu; Kilkenny, Mairi L; Bell, Stephen D; Pellegrini, Luca

    2017-11-23

    DNA replication depends on primase, the specialised polymerase responsible for synthesis of the RNA primers that are elongated by the replicative DNA polymerases. In eukaryotic and archaeal replication, primase is a heterodimer of two subunits, PriS and PriL. Recently, a third primase subunit named PriX was identified in the archaeon Sulfolobus solfataricus. PriX is essential for primer synthesis and is structurally related to the Fe-S cluster domain of eukaryotic PriL. Here we show that PriX contains a nucleotide-binding site required for primer synthesis, and demonstrate equivalence of nucleotide-binding residues in PriX with eukaryotic PriL residues that are known to be important for primer synthesis. A primase chimera, where PriX is fused to a truncated version of PriL lacking the Fe-S cluster domain retains wild-type levels of primer synthesis. Our evidence shows that PriX has replaced PriL as the subunit that endows primase with the unique ability to initiate nucleic acid synthesis. Importantly, our findings reveal that the Fe-S cluster is not required for primer synthesis.

  8. Early Microbial Evolution: The Age of Anaerobes

    PubMed Central

    Martin, William F.; Sousa, Filipa L.

    2016-01-01

    In this article, the term “early microbial evolution” refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs—acetogens and methanogens—look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. PMID:26684184

  9. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China

    PubMed Central

    Zhu, Shixing; Zhu, Maoyan; Knoll, Andrew H.; Yin, Zongjun; Zhao, Fangchen; Sun, Shufen; Qu, Yuangao; Shi, Min; Liu, Huan

    2016-01-01

    Fossils of macroscopic eukaryotes are rarely older than the Ediacaran Period (635–541 million years (Myr)), and their interpretation remains controversial. Here, we report the discovery of macroscopic fossils from the 1,560-Myr-old Gaoyuzhuang Formation, Yanshan area, North China, that exhibit both large size and regular morphology. Preserved as carbonaceous compressions, the Gaoyuzhuang fossils have statistically regular linear to lanceolate shapes up to 30 cm long and nearly 8 cm wide, suggesting that the Gaoyuzhuang fossils record benthic multicellular eukaryotes of unprecedentedly large size. Syngenetic fragments showing closely packed ∼10 μm cells arranged in a thick sheet further reinforce the interpretation. Comparisons with living thalloid organisms suggest that these organisms were photosynthetic, although their phylogenetic placement within the Eukarya remains uncertain. The new fossils provide the strongest evidence yet that multicellular eukaryotes with decimetric dimensions and a regular developmental program populated the marine biosphere at least a billion years before the Cambrian Explosion. PMID:27186667

  10. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family.

    PubMed

    Findeisen, Peggy; Mühlhausen, Stefanie; Dempewolf, Silke; Hertzog, Jonny; Zietlow, Alexander; Carlomagno, Teresa; Kollmar, Martin

    2014-08-27

    Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog-paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Conservation of coevolving protein interfaces bridges prokaryote–eukaryote homologies in the twilight zone

    PubMed Central

    Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso

    2016-01-01

    Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach. PMID:27965389

  12. Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone.

    PubMed

    Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso

    2016-12-27

    Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.

  13. Early evolution without a tree of life

    PubMed Central

    2011-01-01

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre. PMID:21714942

  14. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    PubMed Central

    Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés

    2009-01-01

    Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network

  15. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication.

    PubMed

    Sun, Jingchuan; Yuan, Zuanning; Bai, Lin; Li, Huilin

    2017-01-01

    DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems. © 2016 The Protein Society.

  16. Versatile clinical information system design for emergency departments.

    PubMed

    Amouh, Teh; Gemo, Monica; Macq, Benoît; Vanderdonckt, Jean; El Gariani, Abdul Wahed; Reynaert, Marc S; Stamatakis, Lambert; Thys, Frédéric

    2005-06-01

    Compared to other hospital units, the emergency department presents some distinguishing characteristics of its own. Emergency health-care delivery is a collaborative process involving the contribution of several individuals who accomplish their tasks while working autonomously under pressure and sometimes with limited resources. Effective computerization of the emergency department information system presents a real challenge due to the complexity of the scenario. Current computerized support suffers from several problems, including inadequate data models, clumsy user interfaces, and poor integration with other clinical information systems. To tackle such complexity, we propose an approach combining three points of view, namely the transactions (in and out of the department), the (mono and multi) user interfaces and data management. Unlike current systems, we pay particular attention to the user-friendliness and versatility of our system. This means that intuitive user interfaces have been conceived and specific software modeling methodologies have been applied to provide our system with the flexibility and adaptability necessary for the individual and group coordinated tasks. Our approach has been implemented by prototyping a web-based, multiplatform, multiuser, and versatile clinical information system built upon multitier software architecture, using the Java programming language.

  17. Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm.

    PubMed

    Wang, Hong; Masters, Sheldon; Edwards, Marc A; Falkinham, Joseph O; Pruden, Amy

    2014-01-01

    Availability of safe, pathogen-free drinking water is vital to public health; however, it is impossible to deliver sterile drinking water to consumers. Recent microbiome research is bringing new understanding to the true extent and diversity of microbes that inhabit water distribution systems. The purpose of this study was to determine how water chemistry in main distribution lines shape the microbiome in drinking water biofilms and to explore potential associations between opportunistic pathogens and indigenous drinking water microbes. Effects of disinfectant (chloramines, chlorine), water age (2.3 days, 5.7 days), and pipe material (cement, iron, PVC) were compared in parallel triplicate simulated water distribution systems. Pyrosequencing was employed to characterize bacteria and terminal restriction fragment polymorphism was used to profile both bacteria and eukaryotes inhabiting pipe biofilms. Disinfectant and water age were both observed to be strong factors in shaping bacterial and eukaryotic community structures. Pipe material only influenced the bacterial community structure (ANOSIM test, P < 0.05). Interactive effects of disinfectant, pipe material, and water age on both bacteria and eukaryotes were noted. Disinfectant concentration had the strongest effect on bacteria, while dissolved oxygen appeared to be a major driver for eukaryotes (BEST test). Several correlations of similarity metrics among populations of bacteria, eukaryotes, and opportunistic pathogens, as well as one significant association between mycobacterial and proteobacterial operational taxonomic units, provides insight into means by which manipulating the microbiome may lead to new avenues for limiting the growth of opportunistic pathogens (e.g., Legionella) or other nuisance organisms (e.g., nitrifiers).

  18. Diversity of eukaryotic microorganisms: computer-based resources, "The Handbook of Protoctista" and its "Glossary"

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Olendzenski, L.; Dolan, M.; MacIntyre, F.

    1996-01-01

    The kingdom Protoctista comprises some 30 phyla, including the eukaryotic anaerobes that permanently lack mitochondria, the Phylum Archaeprotista, with its three classes: (i) Archamoebae, e.g., Pelomyxa, Mastigina, (ii) Metamonada, e.g., Giardia, Pyrsonympha, and (iii) Parabasalia, e.g., Trichomonas, Calonympha, and the Phylum Microspora (Microsporidia), e.g., Vairimorpha. These and all algae, protozoa, labyrinthulids, "water molds" (oomycota, plasmodiophorans, hyphochytrids, chytrids, etc.) and other eukaryotes excluded from plants, animals and fungi are detailed in the Handbook of Protoctista. The Illustrated Glossary of Protoctista contains descriptions of the morphology and taxonomy of these microorganisms, including the many equivalent and homologous structures with different names. The Glossary has also been made into a Macintosh-compatible CD-ROM disk.

  19. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists.

    PubMed

    Adl, Sina M; Simpson, Alastair G B; Farmer, Mark A; Andersen, Robert A; Anderson, O Roger; Barta, John R; Bowser, Samuel S; Brugerolle, Guy; Fensome, Robert A; Fredericq, Suzanne; James, Timothy Y; Karpov, Sergei; Kugrens, Paul; Krug, John; Lane, Christopher E; Lewis, Louise A; Lodge, Jean; Lynn, Denis H; Mann, David G; McCourt, Richard M; Mendoza, Leonel; Moestrup, Ojvind; Mozley-Standridge, Sharon E; Nerad, Thomas A; Shearer, Carol A; Smirnov, Alexey V; Spiegel, Frederick W; Taylor, Max F J R

    2005-01-01

    This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional "kingdoms." The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.

  20. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups.

    PubMed

    Koonin, Eugene V; Wolf, Yuri I; Nagasaki, Keizo; Dolja, Valerian V

    2008-12-01

    The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.

  1. Versatile monolithic 2-micron laser systems

    NASA Astrophysics Data System (ADS)

    Wysmolek, M.; Steinke, M.; Neumann, J.; Kracht, D.

    2018-02-01

    To answer a growing demand in development of high power pulsed and continuous wave sources at 2 micron spectral range we have participated in several projects, which resulted in a delivery of versatile monolithic sources providing picosecond, nanosecond and CW laser signal. As an example of pulsed sources we developed all-fiber monolithic devices based on a directly modulated laser diode and gain-switched laser diode to generate nanosecond and picosecond pulses, respectively, which are amplified in the same fiber amplifier chain up to 50 µJ with 96 ps and more than 1 mJ with pulses longer than 35 ns.

  2. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist

    PubMed Central

    Katz, Laura A.

    2015-01-01

    While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast to the nucleus) on genome evolution in eukaryotes, the role of interdomain transfer from bacteria and/or archaea (i.e. prokaryotes) is less clear. Lateral gene transfers (LGTs) have been argued to be potential sources of phylogenetic information, particularly for reconstructing deep nodes that are difficult to recover with traditional phylogenetic methods. We sought to identify interdomain LGTs by using a phylogenomic pipeline that generated 13 465 single gene trees and included up to 487 eukaryotes, 303 bacteria and 118 archaea. Our goals include searching for LGTs that unite major eukaryotic clades, and describing the relative contributions of LGT and EGT across the eukaryotic tree of life. Given the difficulties in interpreting single gene trees that aim to capture the approximately 1.8 billion years of eukaryotic evolution, we focus on presence–absence data to identify interdomain transfer events. Specifically, we identify 1138 genes found only in prokaryotes and representatives of three or fewer major clades of eukaryotes (e.g. Amoebozoa, Archaeplastida, Excavata, Opisthokonta, SAR and orphan lineages). The majority of these genes have phylogenetic patterns that are consistent with recent interdomain LGTs and, with the notable exception of EGTs involving photosynthetic eukaryotes, we detect few ancient interdomain LGTs. These analyses suggest that LGTs have probably occurred throughout the history of eukaryotes, but that ancient events are not maintained unless they are associated with endosymbiotic gene transfer among photosynthetic lineages. PMID:26323756

  3. Are maternal mitochondria the selfish entities that are masters of the cells of eukaryotic multicellular organisms?

    PubMed Central

    Barlow, Peter W; Baldelli, E; Baluška, Frantisek

    2009-01-01

    The Energide concept, as well as the endosymbiotic theory of eukaryotic cell organization and evolution, proposes that present-day cells of eukaryotic organisms are mosaics of specialized and cooperating units, or organelles. Some of these units were originally free-living prokaryotes, which were engulfed during evolutionary time. Mitochondria represent one of these types of previously independent organisms, the Energide, is another type. This new perspective on the organization of the cell has been further expanded to reveal the concept of a public milieu, the cytosol, in which Energides and mitochondria live, each with their own private internal milieu. The present paper discusses how the endosymbiotic theory implicates a new hypothesis about the hierarchical and communicational organization of the integrated prokaryotic components of the eukaryotic cell and provides a new angle from which to consider the theory of evolution and its bearing upon cellular complexity. Thus, it is proposed that the “selfish gene” hypothesis of Dawkins1 is not the only possible perspective for comprehending genomic and cellular evolution. Our proposal is that maternal mitochondria are the selfish “master” entities of the eukaryotic cell with respect not only to their propagation from cell-to-cell and from generation-to-generation but also to their regulation of all other cellular functions. However, it should be recognized that the concept of “master” and “servant” cell components is a metaphor; in present-day living organisms their organellar components are considered to be interdependent and inseparable. PMID:19513277

  4. ITSoneDB: a comprehensive collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences.

    PubMed

    Santamaria, Monica; Fosso, Bruno; Licciulli, Flavio; Balech, Bachir; Larini, Ilaria; Grillo, Giorgio; De Caro, Giorgio; Liuni, Sabino; Pesole, Graziano

    2018-01-04

    A holistic understanding of environmental communities is the new challenge of metagenomics. Accordingly, the amplicon-based or metabarcoding approach, largely applied to investigate bacterial microbiomes, is moving to the eukaryotic world too. Indeed, the analysis of metabarcoding data may provide a comprehensive assessment of both bacterial and eukaryotic composition in a variety of environments, including human body. In this respect, whereas hypervariable regions of the 16S rRNA are the de facto standard barcode for bacteria, the Internal Transcribed Spacer 1 (ITS1) of ribosomal RNA gene cluster has shown a high potential in discriminating eukaryotes at deep taxonomic levels. As metabarcoding data analysis rely on the availability of a well-curated barcode reference resource, a comprehensive collection of ITS1 sequences supplied with robust taxonomies, is highly needed. To address this issue, we created ITSoneDB (available at http://itsonedb.cloud.ba.infn.it/) which in its current version hosts 985 240 ITS1 sequences spanning over 134 000 eukaryotic species. Each ITS1 is mapped on the NCBI reference taxonomy with its start and end positions precisely annotated. ITSoneDB has been developed in agreement to the FAIR guidelines by enabling the users to query and download its content through a simple web-interface and access relevant metadata by cross-linking to European Nucleotide Archive. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    PubMed Central

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  6. Versatile microsecond movie camera

    NASA Astrophysics Data System (ADS)

    Dreyfus, R. W.

    1980-03-01

    A laboratory-type movie camera is described which satisfies many requirements in the range 1 microsec to 1 sec. The camera consists of a He-Ne laser and compatible state-of-the-art components; the primary components are an acoustooptic modulator, an electromechanical beam deflector, and a video tape system. The present camera is distinct in its operation in that submicrosecond laser flashes freeze the image motion while still allowing the simplicity of electromechanical image deflection in the millisecond range. The gating and pulse delay circuits of an oscilloscope synchronize the modulator and scanner relative to the subject being photographed. The optical table construction and electronic control enhance the camera's versatility and adaptability. The instant replay video tape recording allows for easy synchronization and immediate viewing of the results. Economy is achieved by using off-the-shelf components, optical table construction, and short assembly time.

  7. Unexpected Importance of Potential Parasites in the Composition of the Freshwater Small-Eukaryote Community▿

    PubMed Central

    Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier

    2008-01-01

    The diversity of small eukaryotes (0.2 to 5 μm) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types. PMID:18359836

  8. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community.

    PubMed

    Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier

    2008-05-01

    The diversity of small eukaryotes (0.2 to 5 mum) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types.

  9. EuPathDB: the eukaryotic pathogen genomics database resource

    PubMed Central

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-01

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906

  10. In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice.

    PubMed

    Uhlig, Christiane; Kilpert, Fabian; Frickenhaus, Stephan; Kegel, Jessica U; Krell, Andreas; Mock, Thomas; Valentin, Klaus; Beszteri, Bánk

    2015-11-01

    Ice-binding proteins (IBPs) have been isolated from various sea-ice organisms. Their characterisation points to a crucial role in protecting the organisms in sub-zero environments. However, their in situ abundance and diversity in natural sea-ice microbial communities is largely unknown. In this study, we analysed the expression and phylogenetic diversity of eukaryotic IBP transcripts from microbial communities of Arctic and Antarctic sea ice. IBP transcripts were found in abundances similar to those of proteins involved in core cellular processes such as photosynthesis. Eighty-nine percent of the IBP transcripts grouped with known IBP sequences from diatoms, haptophytes and crustaceans, but the majority represented novel sequences not previously characterized in cultured organisms. The observed high eukaryotic IBP expression in natural eukaryotic sea ice communities underlines the essential role of IBPs for survival of many microorganisms in communities living under the extreme conditions of polar sea ice.

  11. RESPONSES OF MALE TROPICAL MOCKINGBIRDS TO VARIATION IN WITHIN-SONG AND BETWEEN-SONG VERSATILITY

    PubMed Central

    Botero, Carlos A.; Vehrencamp, Sandra L.

    2007-01-01

    Despite their large vocal repertoires and otherwise highly versatile singing style, male mockingbirds sometimes sing in a highly repetitive fashion. We conducted a playback experiment to determine the possible signal value of different syllable presentation patterns during simulated male intrusions in the Tropical Mockingbird (Mimus gilvus) testing the hypothesis that more repetitive singing represents a stronger threat and generates a stronger aggressive response. Responses were measured in terms of approach and singing behavior and were analyzed using McGregor’s (1992) multivariate method. We also introduce the use of survival analysis for analyzing response variables for which subjects do not perform the behavior in question in at least one of the replicates (known as ‘right-censored variables’ in the statistical literature). As predicted by theory, experimental subjects responded more aggressively to songs composed of a single note than to variable ones. However, versatility at the between-song level had an opposite effect as high song switching rates generated stronger responses than low ones. Given the lack of a statistical interaction between within-song versatility and switching rate, we conclude that these two parameters may serve independent purposes and possibly transmit different information. We discuss the possibility that the signal value of variation in vocal versatility lies in the mediation of territorial conflicts, the attraction of female partners and/or the mediation of conflicts over access to reproductive females. PMID:18509510

  12. Endoscopic Submucosal Dissection Using a Novel Versatile Knife: An Animal Feasibility Study (with Video)

    PubMed Central

    Kwon, Chang-Il; Kim, Gwangil; Kim, Won Hee; Ko, Kwang Hyun; Hong, Sung Pyo; Jeong, Seok; Lee, Don Haeng

    2014-01-01

    Background/Aims In order to reduce the procedure time and the number of accessory changes during endoscopic submucosal dissection (ESD), we developed a novel versatile knife, which has the combined advantages of several conventional knives. The aim of this study was to compare the efficacy, safety, and histological quality of ESD performed using this novel versatile knife and a combination of several conventional knives. Methods This was an in vivo animal study comparing two different modalities of ESD in mini-pigs. Completion time of each resection was documented, and the resected specimens were retrieved and evaluated for completeness. To assess the quality control of the procedures and adverse events, detailed histopathological examinations were performed. Results A total of 18 specimens were dissected by ESD safely and easily (nine specimens using the new versatile knife; nine specimens by mixing conventional knives). All resections were completed as en bloc resections. There was no significant difference in procedure time between the 2 modalities (456 seconds vs. 355 seconds, p=0.258) and cutting speed (1.983 mm2/sec vs. 1.57 mm2/sec, p=1.000). The rate of adverse events and histological quality did not statistically differ between the modalities. Conclusions ESD with a versatile knife appeared to be an easy, safe, and technically efficient method. PMID:25505721

  13. Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors

    PubMed Central

    Zhang, Dapeng; Burroughs, A. Maxwell; Vidal, Newton D.; Iyer, Lakshminarayan M.; Aravind, L.

    2016-01-01

    Enzymatic effectors targeting nucleic acids, proteins and other cellular components are the mainstay of conflicts across life forms. Using comparative genomics we identify a large class of eukaryotic proteins, which include effectors from oomycetes, fungi and other parasites. The majority of these proteins have a characteristic domain architecture with one of several N-terminal ‘Header’ domains, which are predicted to play a role in trafficking of these effectors, including a novel version of the Ubiquitin fold. The Headers are followed by one or more diverse C-terminal domains, such as restriction endonuclease (REase), protein kinase, HNH endonuclease, LK-nuclease (a RNase) and multiple distinct peptidase domains, which are predicted to carry their toxicity determinants. The most common types of these proteins appear to have originated from prokaryotic transposases (e.g. TN7 and Mu) and combine a CDC6/ORC1-STAND clade NTPase domain with a C-terminal REase domain. Other than the so-called Crinkler effectors of oomycetes and fungi, these effectors are encoded by other eukaryotic parasites such as trypanosomatids (the RHS proteins) and the rhizarian Plasmodiophora, and symbionts like Capsaspora. Remarkably, we also find these proteins in free-living eukaryotes, including several viridiplantae, fungi, amoebozoans and animals. These versions might either still be transposons or function in other poorly understood eukaryote-specific inter-organismal and inter-genomic conflicts. These include the Medea1 selfish element of Tribolium that spreads via post-zygotic killing. We present a unified mechanism for the recombination-dependent diversification and action of this widespread class of molecular weaponry deployed across diverse conflicts ranging from parasitic to free-living forms. PMID:27060143

  14. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa.

    PubMed

    Cavalier-Smith, Thomas; Chao, Ema E; Snell, Elizabeth A; Berney, Cédric; Fiore-Donno, Anna Maria; Lewis, Rhodri

    2014-12-01

    Animals and fungi independently evolved from the protozoan phylum Choanozoa, these three groups constituting a major branch of the eukaryotic evolutionary tree known as opisthokonts. Opisthokonts and the protozoan phylum Amoebozoa (amoebae plus slime moulds) were previously argued to have evolved independently from the little-studied, largely flagellate, protozoan phylum, Sulcozoa. Sulcozoa are a likely evolutionary link between opisthokonts and the more primitive excavate flagellates that have ventral feeding grooves and the most primitive known mitochondria. To extend earlier sparse evidence for the ancestral (paraphyletic) nature of Sulcozoa, we sequenced transcriptomes from six gliding flagellates (two apusomonads; three planomonads; Mantamonas). Phylogenetic analyses of 173-192 genes and 73-122 eukaryote-wide taxa show Sulcozoa as deeply paraphyletic, confirming that opisthokonts and Amoebozoa independently evolved from sulcozoans by losing their ancestral ventral groove and dorsal pellicle: Apusozoa (apusomonads plus anaerobic breviate amoebae) are robustly sisters to opisthokonts and probably paraphyletic, breviates diverging before apusomonads; Varisulca (planomonads, Mantamonas, and non-gliding flagellate Collodictyon) are sisters to opisthokonts plus Apusozoa and Amoebozoa, and possibly holophyletic; Glissodiscea (planomonads, Mantamonas) may be holophyletic, but Mantamonas sometimes groups with Collodictyon instead. Taxon and gene sampling slightly affects tree topology; for the closest branches in Sulcozoa and opisthokonts, proportionally reducing missing data eliminates conflicts between homogeneous-model maximum-likelihood trees and evolutionarily more realistic site-heterogeneous trees. Sulcozoa, opisthokonts, and Amoebozoa constitute an often-pseudopodial 'podiate' clade, one of only three eukaryotic 'supergroups'. Our trees indicate that evolution of sulcozoan dorsal pellicle, ventral pseudopodia, and ciliary gliding (probably simultaneously

  15. Replication and Transcription of Eukaryotic DNA in Esherichia coli

    PubMed Central

    Morrow, John F.; Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Goodman, Howard M.; Helling, Robert B.

    1974-01-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA. Images PMID:4600264

  16. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    PubMed

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  17. Unicellular eukaryotes as models in cell and molecular biology: critical appraisal of their past and future value.

    PubMed

    Simon, Martin; Plattner, Helmut

    2014-01-01

    Unicellular eukaryotes have been appreciated as model systems for the analysis of crucial questions in cell and molecular biology. This includes Dictyostelium (chemotaxis, amoeboid movement, phagocytosis), Tetrahymena (telomere structure, telomerase function), Paramecium (variant surface antigens, exocytosis, phagocytosis cycle) or both ciliates (ciliary beat regulation, surface pattern formation), Chlamydomonas (flagellar biogenesis and beat), and yeast (S. cerevisiae) for innumerable aspects. Nowadays many problems may be tackled with "higher" eukaryotic/metazoan cells for which full genomic information as well as domain databases, etc., were available long before protozoa. Established molecular tools, commercial antibodies, and established pharmacology are additional advantages available for higher eukaryotic cells. Moreover, an increasing number of inherited genetic disturbances in humans have become elucidated and can serve as new models. Among lower eukaryotes, yeast will remain a standard model because of its peculiarities, including its reduced genome and availability in the haploid form. But do protists still have a future as models? This touches not only the basic understanding of biology but also practical aspects of research, such as fund raising. As we try to scrutinize, due to specific advantages some protozoa should and will remain favorable models for analyzing novel genes or specific aspects of cell structure and function. Outstanding examples are epigenetic phenomena-a field of rising interest. © 2014 Elsevier Inc. All rights reserved.

  18. Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs

    PubMed Central

    Merritt, Ethan A; Arakaki, Tracy L; Gillespie, J Robert; Larson, Eric T; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J; Kim, Jessica; Zhang, Li; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Buckner, Frederick S; Van Voorhis, Wesley C; Hol, Wim G J

    2010-01-01

    Crystal structures of histidyl-tRNA synthetase from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme, and reveal differences from bacterial homologs. Histidyl-tRNA synthetases in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active site rearrangement upon histidine binding, but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme’s first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human histidyl-tRNA synthetases. The essentiality of the single histidyl-tRNA synthetase gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference. PMID:20132829

  19. Evolution of domain promiscuity in eukaryotic genomes—a perspective from the inferred ancestral domain architectures†

    PubMed Central

    Cohen-Gihon, Inbar; Fong, Jessica H.; Sharan, Roded; Nussinov, Ruth

    2012-01-01

    Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution. PMID:21127809

  20. Different effects of eubacterial and eukaryotic DNA topoisomerase II inhibitors on chloroplasts ofEuglena gracilis

    NASA Astrophysics Data System (ADS)

    Krajčovič, Juraj; Ebringer, Libor

    1990-03-01

    Inhibitors of eubacterial and eukaryotic DNA topoisomerases type II exhibited different effects on chloroplasts of the flagellateEuglena gracilis. Antibacterial agents (cinoxacin, nalidixic and oxolinic acids, ciprofloxacin, enoxacin, norfloxacin and ofloxacin) from the group of quinolones and coumarins (coumermycin A1, clorobiocin and novobiocin) — all inhibitors of prokaryotic DNA topoisomerase II — were very potent eliminators of chloroplasts fromE. gracilis. In contrast, antitumor drugs (adriamycin, etoposide, teniposide and mitoxantrone) — antagonists of the eukaryotic counterpart — did not affect these semiautonomous photosynthetic organelles. These findings point out again the close evolutionary relationships between eubacteria and chloroplasts and are in agreement with the hypothesis of an endosymbiotic origin of chloroplasts.

  1. Did meiosis evolve before sex and the evolution of eukaryotic life cycles?

    PubMed

    Niklas, Karl J; Cobb, Edward D; Kutschera, Ulrich

    2014-11-01

    Biologists have long theorized about the evolution of life cycles, meiosis, and sexual reproduction. We revisit these topics and propose that the fundamental difference between life cycles is where and when multicellularity is expressed. We develop a scenario to explain the evolutionary transition from the life cycle of a unicellular organism to one in which multicellularity is expressed in either the haploid or diploid phase, or both. We propose further that meiosis might have evolved as a mechanism to correct for spontaneous whole-genome duplication (auto-polyploidy) and thus before the evolution of sexual reproduction sensu stricto (i.e. the formation of a diploid zygote via the fusion of haploid gametes) in the major eukaryotic clades. In addition, we propose, as others have, that sexual reproduction, which predominates in all eukaryotic clades, has many different advantages among which is that it produces variability among offspring and thus reduces sibling competition. © 2014 WILEY Periodicals, Inc.

  2. Trypanosomes - versatile microswimmers

    NASA Astrophysics Data System (ADS)

    Krüger, Timothy; Engstler, Markus

    2016-11-01

    Evolution has generated a plethora of flagellate microswimmers. They populate all natural waters, from the deep sea to the ponds in our neighbourhood. But flagellates also thrive in the bodies of higher organisms, where they mostly remain undetected, but can also become pathogenic. Trypanosomes comprise a large group of mostly parasitic flagellates that cause many diseases, such as human sleeping sickness or the cattle plague nagana. We consider African trypanosomes as extremely versatile microswimmers, as they have to adapt to very diverse microenvironments. They swim efficiently in the blood of their mammalian hosts, but also in various tissue spaces and even in the human brain. Furthermore, in the transmitting tsetse fly, trypanosomes undergo characteristic morphological changes that are accompanied by amazing transitions between solitary and collective types of motion. In this review, we provide a basic introduction to trypanosome biology and then focus on the complex type of rotational movement that trypanosomes display. We relate their swimming performance to morphological parameters and the respective microenvironment, developing a contemporary view on the physics of trypanosome motility. The genetically programmed successions of life style-dependent motion patterns provide challenges and opportunities for interdisciplinary studies of microswimmers.

  3. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    PubMed

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  4. Solution Hybrid Selection Capture for the Recovery of Functional Full-Length Eukaryotic cDNAs From Complex Environmental Samples

    PubMed Central

    Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543

  5. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments

    PubMed Central

    Bik, Holly M.; Sung, Way; De Ley, Paul; Baldwin, James G.; Sharma, Jyotsna; Rocha-Olivares, Axayácatl; Thomas, W. Kelley

    2011-01-01

    Summary Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and likely play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the world’s largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst meiobenthic organisms in this ecosystem. Within this vast environment key questions concerning the historical genetic structure of species remain a mystery, yet have profound implications for our understanding of global biodiversity and how we perceive and mitigate the impact of environmental change and anthropogenic disturbance. Using a metagenetic approach, we present an assessment of microbial eukaryote communities across depth (shallow water to abyssal) and ocean basins (deep-sea Pacific and Atlantic). Within the 12 sites examined, our results suggest that some taxa can maintain eurybathic ranges and cosmopolitan deep-sea distributions, but the majority of species appear to be regionally restricted. For OCTUs reporting wide distributions, there appears to be a taxonomic bias towards a small subset of taxa in most phyla; such bias may be driven by specific life history traits amongst these organisms. In addition, low genetic divergence between geographically disparate deep-sea sites suggests either a shorter coalescence time between deep-sea regions or slower rates of evolution across this vast oceanic ecosystem. While high-throughput studies allow for broad assessment of genetic patterns across microbial eukaryote communities, intragenomic variation in rRNA gene copies and the patchy coverage of reference databases currently present substantial challenges for robust taxonomic interpretations of eukaryotic datasets. PMID:21985648

  6. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    EPA Science Inventory

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  7. Robust and versatile ionic liquid microarrays achieved by microcontact printing

    NASA Astrophysics Data System (ADS)

    Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan

    2014-04-01

    Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.

  8. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    PubMed

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing. © 2015 John Wiley & Sons Ltd.

  9. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes.

    PubMed

    Lawrence, J

    1999-12-01

    The Selfish Operon Model postulates that the organization of bacterial genes into operons is beneficial to the constituent genes in that proximity allows horizontal cotransfer of all genes required for a selectable phenotype; eukaryotic operons formed for very different reasons. Horizontal transfer of selfish operons most probably promotes bacterial diversification.

  10. Ciliary contact interactions dominate surface scattering of swimming eukaryotes

    PubMed Central

    Kantsler, Vasily; Dunkel, Jörn; Polin, Marco; Goldstein, Raymond E.

    2013-01-01

    Interactions between swimming cells and surfaces are essential to many microbiological processes, from bacterial biofilm formation to human fertilization. However, despite their fundamental importance, relatively little is known about the physical mechanisms that govern the scattering of flagellated or ciliated cells from solid surfaces. A more detailed understanding of these interactions promises not only new biological insights into structure and dynamics of flagella and cilia but may also lead to new microfluidic techniques for controlling cell motility and microbial locomotion, with potential applications ranging from diagnostic tools to therapeutic protein synthesis and photosynthetic biofuel production. Due to fundamental differences in physiology and swimming strategies, it is an open question of whether microfluidic transport and rectification schemes that have recently been demonstrated for pusher-type microswimmers such as bacteria and sperm cells, can be transferred to puller-type algae and other motile eukaryotes, because it is not known whether long-range hydrodynamic or short-range mechanical forces dominate the surface interactions of these microorganisms. Here, using high-speed microscopic imaging, we present direct experimental evidence that the surface scattering of both mammalian sperm cells and unicellular green algae is primarily governed by direct ciliary contact interactions. Building on this insight, we predict and experimentally verify the existence of optimal microfluidic ratchets that maximize rectification of initially uniform Chlamydomonas reinhardtii suspensions. Because mechano-elastic properties of cilia are conserved across eukaryotic species, we expect that our results apply to a wide range of swimming microorganisms. PMID:23297240

  11. Radiesse: Advanced Techniques and Applications for a Unique and Versatile Implant.

    PubMed

    Eviatar, Joseph; Lo, Christopher; Kirszrot, James

    2015-11-01

    Radiesse is a well-tolerated facial injectable with unique filling and lifting capabilities. Although initially approved for facial volumizing in HIV-related lipodystrophy patients, it quickly gained wide acceptance for aesthetic facial rejuvenation. In the USA, the Food and Drug Administration has approved several new indications for its use. This synopsis presents the experience and injection techniques currently favored by the primary author after many years of use in thousands of patients. The anecdotal practice of an experienced injector is presented along with the current Food and Drug Administration-approved standards of Radiesse injection. Radiesse has many on- and off-label applications that can be thoughtfully incorporated into clinical practice. Its unique chemical composition allows for immediate lifting and filling with long-term collagen stimulation. The product can be reconstituted to increase its versatility and minimize adverse events. Injections can be performed in the supraperiosteal space and the subcutaneous layer and are best administered in small, calculated doses to prevent nodules or vascular occlusion. Various techniques for Radiesse injection in specific areas are discussed in detail. Radiesse is a versatile injectable implant and a valuable tool for short- and long-term cosmetic and reconstructive treatments. In addition to various off-label uses, this injectable is often used in conjunction with botox, other injectables, collagen stimulators and tightening devices. A customized reconstitution of product increases its versatility for natural appearing and long lasting results that are both economical and effective for full facial rejuvenation.

  12. The copper metallome in eukaryotic cells.

    PubMed

    Vest, Katherine E; Hashemi, Hayaa F; Cobine, Paul A

    2013-01-01

    Copper is an element that is both essential and toxic. It is a required micronutrient for energy production in aerobic eukaryotes, from unicellular yeast to plants and mammals. Copper is also required for the acquisition and systemic distribution of the essential metal iron, and so copper deficiency results in iron deficiency. Copper enzymes have been identified that explain the wide variety of symptoms suffered by copper deficient subjects. The cloning of the genes encoding transport proteins responsible for copper-related Menkes and Wilson diseases inspired and coincided with the discovery of copper chaperones that stimulated the copper homeostasis field. Copper continues to be implicated in new array of proteins, notably those involved in a variety of neurodegenerative diseases. Here we will describe the cadre of important historical copper proteins and survey the major metallochaperones and transporters responsible for mobilization and sequestration of copper in yeast, mammals and plants.

  13. The Occupational Versatility Program: Student-Directed Learning in Industrial Arts.

    ERIC Educational Resources Information Center

    Lavender, John

    1978-01-01

    Describes the Occupational Versatility program in industrial arts, involving a self-instructional school shop in which the learning system is student-managed, nongraded, upgraded, and team taught. This federally funded learning method has also been successfully applied to home economics and art education. Information sources for the teacher are…

  14. Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions

    PubMed Central

    Schwarz, Sandra; West, T. Eoin; Boyer, Frédéric; Chiang, Wen-Chi; Carl, Mike A.; Hood, Rachel D.; Rohmer, Laurence; Tolker-Nielsen, Tim; Skerrett, Shawn J.; Mougous, Joseph D.

    2010-01-01

    Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections. PMID:20865170

  15. Early Rockets

    NASA Image and Video Library

    2004-04-15

    The image depicts Redstone missile being erected. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and the production was begun in 1952. Redstone rockets became the "reliable workhorse" for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  16. PHYLOGENETIC ANALYSIS OF PROKARYOTIC AND EUKARYOTIC MICROORGANISMS IN A DRINKING WATER PIPE LOOP SYSTEM

    EPA Science Inventory

    Within potable water distribution systems, opportunistic pathogens such as Legionella species infect protozoa, gaining protection from disinfectant residuals. Analyzing the prokaryotic and eukaryotic populations in distribution system water provides a basis for understanding the...

  17. Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway.

    PubMed

    Takeda, Kosuke; Shao, Danying; Adler, Micha; Charest, Pascale G; Loomis, William F; Levine, Herbert; Groisman, Alex; Rappel, Wouter-Jan; Firtel, Richard A

    2012-01-03

    Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.

  18. Reassigning stop codons via translation termination: How a few eukaryotes broke the dogma.

    PubMed

    Alkalaeva, Elena; Mikhailova, Tatiana

    2017-03-01

    The genetic code determines how amino acids are encoded within mRNA. It is universal among the vast majority of organisms, although several exceptions are known. Variant genetic codes are found in ciliates, mitochondria, and numerous other organisms. All revealed genetic codes (standard and variant) have at least one codon encoding a translation stop signal. However, recently two new genetic codes with a reassignment of all three stop codons were revealed in studies examining the protozoa transcriptomes. Here, we discuss this finding and the recent studies of variant genetic codes in eukaryotes. We consider the possible molecular mechanisms allowing the use of certain codons as sense and stop signals simultaneously. The results obtained by studying these amazing organisms represent a new and exciting insight into the mechanism of stop codon decoding in eukaryotes. Also see the video abstract here. © 2017 WILEY Periodicals, Inc.

  19. Micro-Eukaryotic Diversity in Hypolithons from Miers Valley, Antarctica

    PubMed Central

    Gokul, Jarishma K.; Valverde, Angel; Tuffin, Marla; Cary, Stephen Craig; Cowan, Don A.

    2013-01-01

    The discovery of extensive and complex hypolithic communities in both cold and hot deserts has raised many questions regarding their ecology, biodiversity and relevance in terms of regional productivity. However, most hypolithic research has focused on the bacterial elements of the community. This study represents the first investigation of micro-eukaryotic communities in all three hypolith types. Here we show that Antarctic hypoliths support extensive populations of novel uncharacterized bryophyta, fungi and protists and suggest that well known producer-decomposer-predator interactions may create the necessary conditions for hypolithic productivity in Antarctic deserts. PMID:24832664

  20. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    PubMed

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Biogeographic barriers drive co-diversification within associated eukaryotes of the Sarracenia alata pitcher plant system.

    PubMed

    Satler, Jordan D; Zellmer, Amanda J; Carstens, Bryan C

    2016-01-01

    Understanding if the members of an ecological community have co-diversified is a central concern of evolutionary biology, as co-diversification suggests prolonged association and possible coevolution. By sampling associated species from an ecosystem, researchers can better understand how abiotic and biotic factors influence diversification in a region. In particular, studies of co-distributed species that interact ecologically can allow us to disentangle the effect of how historical processes have helped shape community level structure and interactions. Here we investigate the Sarracenia alata pitcher plant system, an ecological community where many species from disparate taxonomic groups live inside the fluid-filled pitcher leaves. Direct sequencing of the eukaryotes present in the pitcher plant fluid enables us to better understand how a host plant can shape and contribute to the genetic structure of its associated inquilines, and to ask whether genetic variation in the taxa are structured in a similar manner to the host plant. We used 454 amplicon-based metagenomics to demonstrate that the pattern of genetic diversity in many, but not all, of the eukaryotic community is similar to that of S. alata, providing evidence that associated eukaryotes share an evolutionary history with the host pitcher plant. Our work provides further evidence that a host plant can influence the evolution of its associated commensals.

  2. RIP-seq analysis of eukaryotic Sm proteins identifies three major categories of Sm-containing ribonucleoproteins

    PubMed Central

    2014-01-01

    Background Sm proteins are multimeric RNA-binding factors, found in all three domains of life. Eukaryotic Sm proteins, together with their associated RNAs, form small ribonucleoprotein (RNP) complexes important in multiple aspects of gene regulation. Comprehensive knowledge of the RNA components of Sm RNPs is critical for understanding their functions. Results We developed a multi-targeting RNA-immunoprecipitation sequencing (RIP-seq) strategy to reliably identify Sm-associated RNAs from Drosophila ovaries and cultured human cells. Using this method, we discovered three major categories of Sm-associated transcripts: small nuclear (sn)RNAs, small Cajal body (sca)RNAs and mRNAs. Additional RIP-PCR analysis showed both ubiquitous and tissue-specific interactions. We provide evidence that the mRNA-Sm interactions are mediated by snRNPs, and that one of the mechanisms of interaction is via base pairing. Moreover, the Sm-associated mRNAs are mature, indicating a splicing-independent function for Sm RNPs. Conclusions This study represents the first comprehensive analysis of eukaryotic Sm-containing RNPs, and provides a basis for additional functional analyses of Sm proteins and their associated snRNPs outside of the context of pre-mRNA splicing. Our findings expand the repertoire of eukaryotic Sm-containing RNPs and suggest new functions for snRNPs in mRNA metabolism. PMID:24393626

  3. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    PubMed Central

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  4. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups".

    PubMed

    Hampl, Vladimir; Hug, Laura; Leigh, Jessica W; Dacks, Joel B; Lang, B Franz; Simpson, Alastair G B; Roger, Andrew J

    2009-03-10

    Nearly all of eukaryotic diversity has been classified into 6 suprakingdom-level groups (supergroups) based on molecular and morphological/cell-biological evidence; these are Opisthokonta, Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Excavata. However, molecular phylogeny has not provided clear evidence that either Chromalveolata or Excavata is monophyletic, nor has it resolved the relationships among the supergroups. To establish the affinities of Excavata, which contains parasites of global importance and organisms regarded previously as primitive eukaryotes, we conducted a phylogenomic analysis of a dataset of 143 proteins and 48 taxa, including 19 excavates. Previous phylogenomic studies have not included all major subgroups of Excavata, and thus have not definitively addressed their interrelationships. The enigmatic flagellate Andalucia is sister to typical jakobids. Jakobids (including Andalucia), Euglenozoa and Heterolobosea form a major clade that we name Discoba. Analyses of the complete dataset group Discoba with the mitochondrion-lacking excavates or "metamonads" (diplomonads, parabasalids, and Preaxostyla), but not with the final excavate group, Malawimonas. This separation likely results from a long-branch attraction artifact. Gradual removal of rapidly-evolving taxa from the dataset leads to moderate bootstrap support (69%) for the monophyly of all Excavata, and 90% support once all metamonads are removed. Most importantly, Excavata robustly emerges between unikonts (Amoebozoa + Opisthokonta) and "megagrouping" of Archaeplastida, Rhizaria, and chromalveolates. Our analyses indicate that Excavata forms a monophyletic suprakingdom-level group that is one of the 3 primary divisions within eukaryotes, along with unikonts and a megagroup of Archaeplastida, Rhizaria, and the chromalveolate lineages.

  5. Graphene Emerges as a Versatile Template for Materials Preparation.

    PubMed

    Li, Zhengjie; Wu, Sida; Lv, Wei; Shao, Jiao-Jing; Kang, Feiyu; Yang, Quan-Hong

    2016-05-01

    Graphene and its derivatives are emerging as a class of novel but versatile templates for the controlled preparation and functionalization of materials. In this paper a conceptual review on graphene-based templates is given, highlighting their versatile roles in materials preparation. Graphene is capable of acting as a low-dimensional hard template, where its two-dimensional morphology directs the formation of novel nanostructures. Graphene oxide and other functionalized graphenes are amphiphilic and may be seen as soft templates for formatting the growth or inducing the controlled assembly of nanostructures. In addition, nanospaces in restacked graphene can be used for confining the growth of sheet-like nanostructures, and assemblies of interlinked graphenes can behave either as skeletons for the formation of composite materials or as sacrificial templates for novel materials with a controlled network structure. In summary, flexible graphene and its derivatives together with an increasing number of assembled structures show great potentials as templates for materials production. Many challenges remain, for example precise structural control of such novel templates and the removal of the non-functional remaining templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evolution of the eukaryotic dynactin complex, the activator of cytoplasmic dynein

    PubMed Central

    2012-01-01

    Background Dynactin is a large multisubunit protein complex that enhances the processivity of cytoplasmic dynein and acts as an adapter between dynein and the cargo. It is composed of eleven different polypeptides of which eight are unique to this complex, namely dynactin1 (p150Glued), dynactin2 (p50 or dynamitin), dynactin3 (p24), dynactin4 (p62), dynactin5 (p25), dynactin6 (p27), and the actin-related proteins Arp1 and Arp10 (Arp11). Results To reveal the evolution of dynactin across the eukaryotic tree the presence or absence of all dynactin subunits was determined in most of the available eukaryotic genome assemblies. Altogether, 3061 dynactin sequences from 478 organisms have been annotated. Phylogenetic trees of the various subunit sequences were used to reveal sub-family relationships and to reconstruct gene duplication events. Especially in the metazoan lineage, several of the dynactin subunits were duplicated independently in different branches. The largest subunit repertoire is found in vertebrates. Dynactin diversity in vertebrates is further increased by alternative splicing of several subunits. The most prominent example is the dynactin1 gene, which may code for up to 36 different isoforms due to three different transcription start sites and four exons that are spliced as differentially included exons. Conclusions The dynactin complex is a very ancient complex that most likely included all subunits in the last common ancestor of extant eukaryotes. The absence of dynactin in certain species coincides with that of the cytoplasmic dynein heavy chain: Organisms that do not encode cytoplasmic dynein like plants and diplomonads also do not encode the unique dynactin subunits. The conserved core of dynactin consists of dynactin1, dynactin2, dynactin4, dynactin5, Arp1, and the heterodimeric actin capping protein. The evolution of the remaining subunits dynactin3, dynactin6, and Arp10 is characterized by many branch- and species-specific gene loss events. PMID

  7. Eukaryotic Protein Kinases (ePKs) of the Helminth Parasite Schistosoma mansoni

    PubMed Central

    2011-01-01

    Background Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The Schistosoma mansoni genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the S. mansoni predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets. Results We have identified 252 ePKs, which corresponds to 1.9% of the S. mansoni predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that S. mansoni has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in S. mansoni or belong to an expanded family in this parasite. Only 16 S. mansoni ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite. Conclusions Our approach has improved the functional annotation of 40% of S. mansoni ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will

  8. Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system.

    PubMed

    Germier, Thomas; Sylvain, Audibert; Silvia, Kocanova; David, Lane; Kerstin, Bystricky

    2018-06-01

    Spatio-temporal organization of the cell nucleus adapts to and regulates genomic processes. Microscopy approaches that enable direct monitoring of specific chromatin sites in single cells and in real time are needed to better understand the dynamics involved. In this chapter, we describe the principle and development of ANCHOR, a novel tool for DNA labelling in eukaryotic cells. Protocols for use of ANCHOR to visualize a single genomic locus in eukaryotic cells are presented. We describe an approach for live cell imaging of a DNA locus during the entire cell cycle in human breast cancer cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes.

    PubMed

    Luijsterburg, Martijn S; White, Malcolm F; van Driel, Roel; Dame, Remus Th

    2008-01-01

    The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.

  10. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections

    PubMed Central

    El-Aouar Filho, Rachid A.; Nicolas, Aurélie; De Paula Castro, Thiago L.; Deplanche, Martine; De Carvalho Azevedo, Vasco A.; Goossens, Pierre L.; Taieb, Frédéric; Lina, Gerard; Le Loir, Yves; Berkova, Nadia

    2017-01-01

    Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host. PMID:28589102

  11. The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals.

    PubMed

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2017-01-01

    Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. DVD - digital versatile disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality bymore » 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16

  13. Genetic code expansion for multiprotein complex engineering.

    PubMed

    Koehler, Christine; Sauter, Paul F; Wawryszyn, Mirella; Girona, Gemma Estrada; Gupta, Kapil; Landry, Jonathan J M; Fritz, Markus Hsi-Yang; Radic, Ksenija; Hoffmann, Jan-Erik; Chen, Zhuo A; Zou, Juan; Tan, Piau Siong; Galik, Bence; Junttila, Sini; Stolt-Bergner, Peggy; Pruneri, Giancarlo; Gyenesei, Attila; Schultz, Carsten; Biskup, Moritz Bosse; Besir, Hueseyin; Benes, Vladimir; Rappsilber, Juri; Jechlinger, Martin; Korbel, Jan O; Berger, Imre; Braese, Stefan; Lemke, Edward A

    2016-12-01

    We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.

  14. Ultrastructural diversity between centrioles of eukaryotes.

    PubMed

    Gupta, Akshari; Kitagawa, Daiju

    2018-02-16

    Several decades of centriole research have revealed the beautiful symmetry present in these microtubule-based organelles, which are required to form centrosomes, cilia, and flagella in many eukaryotes. Centriole architecture is largely conserved across most organisms, however, individual centriolar features such as the central cartwheel or microtubule walls exhibit considerable variability when examined with finer resolution. Here, we review the ultrastructural characteristics of centrioles in commonly studied organisms, highlighting the subtle and not-so-subtle differences between specific structural components of these centrioles. Additionally, we survey some non-canonical centriole structures that have been discovered in various species, from the coaxial bicentrioles of protists and lower land plants to the giant irregular centrioles of the fungus gnat Sciara. Finally, we speculate on the functional significance of these differences between centrioles, and the contribution of individual structural elements such as the cartwheel or microtubules towards the stability of centrioles.Centriole structure, cartwheel, triplet microtubules, SAS-6, centrosome.

  15. Genomic impact of eukaryotic transposable elements

    PubMed Central

    2012-01-01

    The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come. PMID:23171443

  16. Genomic impact of eukaryotic transposable elements.

    PubMed

    Arkhipova, Irina R; Batzer, Mark A; Brosius, Juergen; Feschotte, Cédric; Moran, John V; Schmitz, Jürgen; Jurka, Jerzy

    2012-11-21

    The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come.

  17. Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy

    PubMed Central

    Etheridge, Thomas J.; Boulineau, Rémi L.; Herbert, Alex; Watson, Adam T.; Daigaku, Yasukazu; Tucker, Jem; George, Sophie; Jönsson, Peter; Palayret, Matthieu; Lando, David; Laue, Ernest; Osborne, Mark A.; Klenerman, David; Lee, Steven F.; Carr, Antony M.

    2014-01-01

    Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds. PMID:25106872

  18. Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication

    PubMed Central

    Martinez, Matthew P.; Wacker, Amanda L.; Bruck, Irina; Kaplan, Daniel L.

    2017-01-01

    The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described. PMID:28383499

  19. The Persistent Contributions of RNA to Eukaryotic Gen(om)e Architecture and Cellular Function

    PubMed Central

    Brosius, Jürgen

    2014-01-01

    Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery. PMID:25081515

  20. Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years?

    PubMed Central

    Beerling, David J.

    2012-01-01

    Exciting evidence from diverse fields, including physiology, evolutionary biology, palaeontology, geosciences and molecular genetics, is providing an increasingly secure basis for robustly formulating and evaluating hypotheses concerning the role of atmospheric carbon dioxide (CO2) in the evolution of photosynthetic eukaryotes. Such studies span over a billion years of evolutionary change, from the origins of eukaryotic algae through to the evolution of our present-day terrestrial floras, and have relevance for plant and ecosystem responses to future global CO2 increases. The papers in this issue reflect the breadth and depth of approaches being adopted to address this issue. They reveal new discoveries pointing to deep evidence for the role of CO2 in shaping evolutionary changes in plants and ecosystems, and establish an exciting cross-disciplinary research agenda for uncovering new insights into feedbacks between biology and the Earth system. PMID:22232760