Sample records for early evolutionary events

  1. The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications.

    PubMed

    Crame, J Alistair; Beu, Alan G; Ineson, Jon R; Francis, Jane E; Whittle, Rowan J; Bowman, Vanessa C

    2014-01-01

    The extensive Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous - Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early - Middle Eocene. Evolutionary source - sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds.

  2. The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications

    PubMed Central

    Crame, J. Alistair; Beu, Alan G.; Ineson, Jon R.; Francis, Jane E.; Whittle, Rowan J.; Bowman, Vanessa C.

    2014-01-01

    The extensive Late Cretaceous – Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous – Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early – Middle Eocene. Evolutionary source – sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds. PMID:25493546

  3. Probabilistic and Evolutionary Early Warning System: concepts, performances, and case-studies

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Emolo, A.; Colombelli, S.; Elia, L.; Festa, G.; Martino, C.; Picozzi, M.

    2013-12-01

    PRESTo (PRobabilistic and Evolutionary early warning SysTem) is a software platform for Earthquake Early Warning that integrates algorithms for real-time earthquake location, magnitude estimation and damage assessment into a highly configurable and easily portable package. In its regional configuration, the software processes, in real-time, the 3-component acceleration data streams coming from seismic stations, for P-waves arrival detection and, in the case a quite large event is occurring, can promptly performs event detection and location, magnitude estimation and peak ground-motion prediction at target sites. The regional approach has been integrated with a threshold-based early warning method that allows, in the very first seconds after a moderate-to-large earthquake, to identify the most Probable Damaged Zone starting from the real-time measurement at near-source stations located at increasing distances from the earthquake epicenter, of the peak displacement (Pd) and predominant period of P-waves (τc), over a few-second long window after the P-wave arrival. Thus, each recording site independently provides an evolutionary alert level, according to the Pd and τc it measured, through a decisional table. Since 2009, PRESTo has been under continuous real-time testing using data streaming from the Iripinia Seismic Network (Southern Italy) and has produced a bulletin of some hundreds low magnitude events, including all the M≥2.5 earthquakes occurred in that period in Irpinia. Recently, PRESTo has been also implemented at the accelerometric network and broad-band networks in South Korea and in Romania, and off-line tested in Iberian Peninsula, in Turkey, in Israel, and in Japan. The feasibility of an Early Warning System at national scale, is currently under testing by studying the performances of the PRESTo platform for the Italian Accelerometric Network. Moreover, PRESTo is under experimentation in order to provide alert in a high-school located in the

  4. Evolutionary toxicology: Meta-analysis of evolutionary events in response to chemical stressors.

    PubMed

    M Oziolor, Elias; De Schamphelaere, Karel; Matson, Cole W

    2016-12-01

    The regulatory decision-making process regarding chemical safety is most often informed by evidence based on ecotoxicity tests that consider growth, reproduction and survival as end-points, which can be quantitatively linked to short-term population outcomes. Changes in these end-points resulting from chemical exposure can cause alterations in micro-evolutionary forces (mutation, drift, selection and gene flow) that control the genetic composition of populations. With multi-generation exposures, anthropogenic contamination can lead to a population with an altered genetic composition, which may respond differently to future stressors. These evolutionary changes are rarely discussed in regulatory or risk assessment frameworks, but the growing body of literature that documents their existence suggests that these important population-level impacts should be considered. In this meta-analysis we have compared existing contamination levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) that have been documented to be associated with evolutionary changes in resident aquatic organisms to regulatory benchmarks for these contaminants. The original intent of this project was to perform a meta-analysis on evolutionary events associated with PCB and PAH contamination. However, this effort was hindered by a lack of consistency in congener selection for "total" PCB or PAH measurements. We expanded this manuscript to include a discussion of methods used to determine PCB and PAH total contamination in addition to comparing regulatory guidelines and contamination that has caused evolutionary effects. Micro-evolutionary responses often lead populations onto unique and unpredictable trajectories. Therefore, to better understand the risk of population-wide alterations occurring, we need to improve comparisons of chemical contamination between affected locations. In this manuscript we offer several possibilities to unify chemical comparisons for PCBs and

  5. Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events.

    PubMed

    Wang, Xiyin; Wang, Jingpeng; Jin, Dianchuan; Guo, Hui; Lee, Tae-Ho; Liu, Tao; Paterson, Andrew H

    2015-06-01

    Multiple comparisons among genomes can clarify their evolution, speciation, and functional innovations. To date, the genome sequences of eight grasses representing the most economically important Poaceae (grass) clades have been published, and their genomic-level comparison is an essential foundation for evolutionary, functional, and translational research. Using a formal and conservative approach, we aligned these genomes. Direct comparison of paralogous gene pairs all duplicated simultaneously reveal striking variation in evolutionary rates among whole genomes, with nucleotide substitution slowest in rice and up to 48% faster in other grasses, adding a new dimension to the value of rice as a grass model. We reconstructed ancestral genome contents for major evolutionary nodes, potentially contributing to understanding the divergence and speciation of grasses. Recent fossil evidence suggests revisions of the estimated dates of key evolutionary events, implying that the pan-grass polyploidization occurred ∼96 million years ago and could not be related to the Cretaceous-Tertiary mass extinction as previously inferred. Adjusted dating to reflect both updated fossil evidence and lineage-specific evolutionary rates suggested that maize subgenome divergence and maize-sorghum divergence were virtually simultaneous, a coincidence that would be explained if polyploidization directly contributed to speciation. This work lays a solid foundation for Poaceae translational genomics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions.

    PubMed

    van de Pol, Martijn; Jenouvrier, Stéphanie; Cornelissen, Johannes H C; Visser, Marcel E

    2017-06-19

    More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  7. Early traumatic events in psychopaths.

    PubMed

    Borja, Karina; Ostrosky, Feggy

    2013-07-01

    The relationship between diverse early traumatic events and psychopathy was studied in 194 male inmates. Criminal history transcripts were revised, and clinical interviews were conducted to determine the level of psychopathy using the Psychopathy Checklist-Revised (PCL-R) Form, and the Early Trauma Inventory was applied to assess the incidence of abuse before 18 years of age. Psychopathic inmates presented a higher victimization level and were more exposed to certain types of intended abuse than sociopathic inmates, while the sum of events and emotional abuse were associated with the PCL-R score. Our studies support the influence of early adverse events in the development of psychopathic offenders. © 2013 American Academy of Forensic Sciences.

  8. Neptunism and Transformism: Robert Jameson and other Evolutionary Theorists in Early Nineteenth-Century Scotland.

    PubMed

    Jenkins, Bill

    2016-08-01

    This paper sheds new light on the prevalence of evolutionary ideas in Scotland in the early nineteenth century and establish what connections existed between the espousal of evolutionary theories and adherence to the directional history of the earth proposed by Abraham Gottlob Werner and his Scottish disciples. A possible connection between Wernerian geology and theories of the transmutation of species in Edinburgh in the period when Charles Darwin was a medical student in the city was suggested in an important 1991 paper by James Secord. This study aims to deepen our knowledge of this important episode in the history of evolutionary ideas and explore the relationship between these geological and evolutionary discourses. To do this it focuses on the circle of natural historians around Robert Jameson, Wernerian geologist and professor of natural history at the University of Edinburgh from 1804 to 1854. From the evidence gathered here there emerges a clear confirmation that the Wernerian model of geohistory facilitated the acceptance of evolutionary explanations of the history of life in early nineteenth-century Scotland. As Edinburgh was at this time the most important center of medical education in the English-speaking world, this almost certainly influenced the reception and development of evolutionary ideas in the decades that followed.

  9. The evolutionary landscape of intergenic trans-splicing events in insects

    PubMed Central

    Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan

    2015-01-01

    To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696

  10. Early Cenozoic radiations in the Antarctic marine realm and their evolutionary implications

    NASA Astrophysics Data System (ADS)

    Crame, Alistair

    2014-05-01

    The extensive and very well exposed Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, NE Antarctic Peninsula presents a unique opportunity to examine Early Cenozoic evolutionary radiations in a variety of macrofaunal taxa. Building on the extensive pioneer studies by US and Argentinian palaeontologists, recent investigations have focused on refining litho-, bio- and chronostratigraphies, and taxonomic revisions to a number of key groups. Within the numerically dominant Mollusca, the balance of faunas changes significantly across the Cretaceous/Paleogene boundary, with gastropods becoming numerically dominant for the first time in the Early Paleocene Sobral Formation (SF). At this level seven of the 31 gastropod genera present (= 23%) can be referred to modern Southern Ocean taxa and the same figure is maintained in the Early Eocene La Meseta Formation (LMF) where 21 of 63 genera are modern. A major reason for the rise of the gastropods in the earliest Cenozoic of Antarctica is a significant radiation of the Neogastropoda, which today forms one of the largest clades in the sea. 50% of the SF gastropod fauna and 53% of the LMF at the species level are neogastropods. This important burst of speciation is linked to a major pulse of global warming from ~63 - 43Ma when warm temperate conditions prevailed for long intervals of time at 65ºS. The marked Early Paleogene radiation of neogastropods in Antarctica represents a distinct pulse of southern high-latitude taxa that was coeval with similar tropical/subtropical radiations in localities such as the US Gulf Coast and NW Europe. Thus it would appear that the Early Cenozoic radiation of this major taxon was truly global in scale and not just confined to one latitudinal belt. Whereas it is possible to regard a significant proportion of the modern bivalve fauna as relicts, and thus Antarctica as an evolutionary refugium, or sink, it is much less easy to do so for the Neogastropoda. At least in the

  11. An analytical approach for estimating fossil record and diversification events in sharks, skates and rays.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cappetta, Henri

    2012-01-01

    Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.

  12. When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model.

    PubMed

    Ingram, T; Harmon, L J; Shurin, J B

    2012-09-01

    Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  13. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions

    PubMed Central

    2017-01-01

    More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483865

  14. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal.

    PubMed

    Turajlic, Samra; Xu, Hang; Litchfield, Kevin; Rowan, Andrew; Horswell, Stuart; Chambers, Tim; O'Brien, Tim; Lopez, Jose I; Watkins, Thomas B K; Nicol, David; Stares, Mark; Challacombe, Ben; Hazell, Steve; Chandra, Ashish; Mitchell, Thomas J; Au, Lewis; Eichler-Jonsson, Claudia; Jabbar, Faiz; Soultati, Aspasia; Chowdhury, Simon; Rudman, Sarah; Lynch, Joanna; Fernando, Archana; Stamp, Gordon; Nye, Emma; Stewart, Aengus; Xing, Wei; Smith, Jonathan C; Escudero, Mickael; Huffman, Adam; Matthews, Nik; Elgar, Greg; Phillimore, Ben; Costa, Marta; Begum, Sharmin; Ward, Sophia; Salm, Max; Boeing, Stefan; Fisher, Rosalie; Spain, Lavinia; Navas, Carolina; Grönroos, Eva; Hobor, Sebastijan; Sharma, Sarkhara; Aurangzeb, Ismaeel; Lall, Sharanpreet; Polson, Alexander; Varia, Mary; Horsfield, Catherine; Fotiadis, Nicos; Pickering, Lisa; Schwarz, Roland F; Silva, Bruno; Herrero, Javier; Luscombe, Nick M; Jamal-Hanjani, Mariam; Rosenthal, Rachel; Birkbak, Nicolai J; Wilson, Gareth A; Pipek, Orsolya; Ribli, Dezso; Krzystanek, Marcin; Csabai, Istvan; Szallasi, Zoltan; Gore, Martin; McGranahan, Nicholas; Van Loo, Peter; Campbell, Peter; Larkin, James; Swanton, Charles

    2018-04-19

    The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance. Copyright © 2018 Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  15. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna

    PubMed Central

    Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles

    2017-01-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643

  16. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    PubMed

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  17. Demographic Events and Evolutionary Forces Shaping European Genetic Diversity

    PubMed Central

    Veeramah, Krishna R.; Novembre, John

    2014-01-01

    Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709

  18. A New Observation Technique Applied to Early/Fast VLF Scattering Events

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2012-12-01

    Early/fast very low frequency (VLF, 3-30 kHz) events are understood to result from ionospheric conductivity changes associated with lightning. Early/fast amplitude and phase perturbations have been observed coincidentally with various optical observations of transient luminous events (TLEs), including elves, sprites, and sprite halos, each of which can have temporal characteristics consistent with those of early/fast VLF events. It is yet unresolved, however, whether a specific type of TLE is directly related to the ionospheric conductivity changes responsible for the typical early/fast event. In this paper, we present spread spectrum VLF scattering observations of early/fast events. The spread spectrum analysis technique determines the amplitude and phase of a subionospherically propagating VLF signal as a function of time during the early/fast event and as a function of frequency across the 200 Hz bandwidth of the VLF transmission. VLF scattering observations, each identified with causative lightning logged by the National Lightning Detection Network (NLDN), are compared with the predictions of the Long-Wave Propagation Capability (LWPC) code, a three-dimensional earth-ionosphere waveguide propagation and scattering model. Theoretical predictions for VLF scattering from ionization changes associated with elves are compared with those associated with sprite halos, and each are compared with experimental observations. Results indicate that the observed frequency dependence of VLF scattering during early/fast events results from the combination of scattering source properties and Earth-ionosphere waveguide propagation effects. Observations are more consistent with the modeled amplitude perturbations associated with sprite halos than those with elves.

  19. Operational early warning platform for extreme meteorological events

    NASA Astrophysics Data System (ADS)

    Mühr, Bernhard; Kunz, Michael

    2015-04-01

    Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.

  20. Testing for Independence between Evolutionary Processes.

    PubMed

    Behdenna, Abdelkader; Pothier, Joël; Abby, Sophie S; Lambert, Amaury; Achaz, Guillaume

    2016-09-01

    Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment

    PubMed Central

    Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.

    2018-01-01

    Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574

  2. Mesozoic Calcareous Nannofossil Evolution: Relation to Paleoceanographic Events

    NASA Astrophysics Data System (ADS)

    Roth, Peter H.

    1987-12-01

    The taxonomic evolution of Jurassic and Cretaceous calcareous nannofossil species is described using the following indices: species diversity, rate of speciation, rate of extinction, rate of diversification, rate of turnover, survivorship, and species accretion. The Jurassic prior to the late Oxfordian is characterized by positive diversification rates, that is, rates of speciation exceeded rates of extinction. Highest rates of diversification occurred in the late Lias and early Oxfordian. During the generally regressive latest Jurassic, diversification rates remained low and rates of extinctions exceed rates of speciation. In the early Cretaceous, rates of diversification are positive and peak in the early Valanginian, early Aptian, and middle Albian, after which time rates of extinction generally exceed rates of speciation. Such peaks in rate of evolution coincide with times of increased accumulation of organic carbon in the ocean ("anoxic events"). Peaks in rates of extinction result in very high rates of turnover during times of major regressions, in particular, in the Tithonian and Maastrichtian. Survivorship analyses for three datum planes (74.5, 144, and 160 Ma) show relatively constant extinction rates with some stepping in the older part; they are best explained by a temporally fluctuating abiotic environment causing changes in the probability of extinction. Species accretion curves are also relatively linear with some indication of changing rates of speciation. The coincidences of major changes in evolutionary rates with major paleoceanographic events are indicative of a predominantly abiotic control of nannoplankton evolution. Relationships of evolutionary rates of calcareous nannoplankton with deep ocean ventilation, sea level, and ocean fertility indicates that global tectonic processes are the ultimate causes of evolutionary change.

  3. Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics

    PubMed Central

    Huang, Chien-Hsun; Zhang, Caifei; Liu, Mian; Hu, Yi; Gao, Tiangang; Qi, Ji; Ma, Hong

    2016-01-01

    Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae–Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity. PMID:27604225

  4. Evolution of early embryogenesis in rhabditid nematodes

    PubMed Central

    Brauchle, Michael; Kiontke, Karin; MacMenamin, Philip; Fitch, David H. A.; Piano, Fabio

    2009-01-01

    The cell biological events that guide early embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. PMID:19643102

  5. Early stress and human behavioral development: emerging evolutionary perspectives.

    PubMed

    Del Giudice, M

    2014-08-01

    Stress experienced early in life exerts a powerful, lasting influence on development. Converging empirical findings show that stressful experiences become deeply embedded in the child's neurobiology, with an astonishing range of long-term effects on cognition, emotion, and behavior. In contrast with the prevailing view that such effects are the maladaptive outcomes of 'toxic' stress, adaptive models regard them as manifestations of evolved developmental plasticity. In this paper, I offer a brief introduction to adaptive models of early stress and human behavioral development, with emphasis on recent theoretical contributions and emerging concepts in the field. I begin by contrasting dysregulation models of early stress with their adaptive counterparts; I then introduce life history theory as a unifying framework, and review recent work on predictive adaptive responses (PARs) in human life history development. In particular, I discuss the distinction between forecasting the future state of the environment (external prediction) and forecasting the future state of the organism (internal prediction). Next, I present the adaptive calibration model, an integrative model of individual differences in stress responsivity based on life history concepts. I conclude by examining how maternal-fetal conflict may shape the physiology of prenatal stress and its adaptive and maladaptive effects on postnatal development. In total, I aim to show how theoretical work from evolutionary biology is reshaping the way we think about the role of stress in human development, and provide researchers with an up-to-date conceptual map of this fascinating and rapidly evolving field.

  6. Early Warning and Early Action during the 2015-16 El Nino Event

    NASA Astrophysics Data System (ADS)

    Robertson, A. W.; Goddard, L. M.

    2016-12-01

    Strong El Niño events have a marked impact on regional climate worldwide through their influence on large-scale atmospheric circulation. As a result, seasonal climate forecasts show greater skill during El Niño events, which provide communities, governments and humanitarian agencies greater ability to plan and prepare. The scientific community has advanced considerably in the quality and content of information provided about El Niño and its impacts. As a result, society has become better aware of and engaged with this information. This talk will present some details on how we navigate the fine line between expectations and probabilistic forecasts, and how this information was used during the 2015-16 El Niño event. Examples are drawn from the health sector and food security community. Specific attention will be given to the importance of problem-focus and data availability in the appropriate tailoring of climate information for Early Warning/Early Action.

  7. Eco-evolutionary processes affecting plant-herbivore interactions during early community succession.

    PubMed

    Howard, Mia M; Kalske, Aino; Kessler, André

    2018-06-01

    The quality and outcome of organismal interactions are not only a function of genotypic composition of the interacting species, but also the surrounding environment. Both the strength and direction of natural selection on interacting populations vary with the community context, which itself is changed by these interactions. Here, we test for the role of interacting evolutionary and ecological processes in plant-herbivore interactions during early community succession in the tall goldenrod, Solidago altissima. We use surveys in a large-scale field experiment with repeated plots representing 6 years of early oldfield succession and reciprocal transplant common garden experiments to test for the relative importance of rapid evolution (genetic) and environmental changes (soil quality) in affecting mean plant resistance and growth phenotypes during community succession. While plant growth varied strongly with soil quality over the first 5 years of agricultural abandonment, plant secondary metabolism, and herbivore resistance varied minimally with the soil environment. Instead, mean composition and abundance of plant secondary compound bouquets differed between S. altissima plants from populations collected in communities in the first ("early") and sixth ("intermediate") years of oldfield succession, which was reflected in the feeding preference of the specialist herbivore, Trirhabda virgata, for early succession lines. Moreover, this preference was most pronounced on poorer quality, early succession soils. Overall, our data demonstrate that plant quality varies for insect herbivores during the course of early succession and this change is a combination of altered genotypic composition of the population and phenotypic plasticity in different soil environments.

  8. Repetitive mammalian dwarfing during ancient greenhouse warming events

    PubMed Central

    D’Ambrosia, Abigail R.; Clyde, William C.; Fricke, Henry C.; Gingerich, Philip D.; Abels, Hemmo A.

    2017-01-01

    Abrupt perturbations of the global carbon cycle during the early Eocene are associated with rapid global warming events, which are analogous in many ways to present greenhouse warming. Mammal dwarfing has been observed, along with other changes in community structure, during the largest of these ancient global warming events, known as the Paleocene-Eocene Thermal Maximum [PETM; ~56 million years ago (Ma)]. We show that mammalian dwarfing accompanied the subsequent, smaller-magnitude warming event known as Eocene Thermal Maximum 2 [ETM2 (~53 Ma)]. Statistically significant decrease in body size during ETM2 is observed in two of four taxonomic groups analyzed in this study and is most clearly observed in early equids (horses). During ETM2, the best-sampled lineage of equids decreased in size by ~14%, as opposed to ~30% during the PETM. Thus, dwarfing appears to be a common evolutionary response of some mammals during past global warming events, and the extent of dwarfing seems related to the magnitude of the event. PMID:28345031

  9. Early events in speciation: Cryptic species of Drosophila aldrichi.

    PubMed

    Castro Vargas, Cynthia; Richmond, Maxi Polihronakis; Ramirez Loustalot Laclette, Mariana; Markow, Therese Ann

    2017-06-01

    Understanding the earliest events in speciation remains a major challenge in evolutionary biology. Thus identifying species whose populations are beginning to diverge can provide useful systems to study the process of speciation. Drosophila aldrichi , a cactophilic fruit fly species with a broad distribution in North America, has long been assumed to be a single species owing to its morphological uniformity. While previous reports either of genetic divergence or reproductive isolation among different D. aldrichi strains have hinted at the existence of cryptic species, the evolutionary relationships of this species across its range have not been thoroughly investigated. Here we show that D. aldrichi actually is paraphyletic with respect to its closest relative, Drosophila wheeleri , and that divergent D. aldrichi lineages show complete hybrid male sterility when crossed. Our data support the interpretation that there are at least two species of D. aldrichi, making these flies particularly attractive for studies of speciation in an ecological and geographical context.

  10. Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins

    PubMed Central

    Kalyna, Maria; Lopato, Sergiy; Voronin, Viktor; Barta, Andrea

    2006-01-01

    Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins. PMID:16936312

  11. Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics.

    PubMed

    Huang, Chien-Hsun; Zhang, Caifei; Liu, Mian; Hu, Yi; Gao, Tiangang; Qi, Ji; Ma, Hong

    2016-11-01

    Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae-Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Psychotraumatology: What researchers and clinicians can learn from an evolutionary perspective.

    PubMed

    Troisi, Alfonso

    2018-05-01

    This review outlines the contribution of evolutionary science to experimental and clinical psychotraumatology. From an evolutionary perspective, traumatic and psychosocial stressors are conceived of as events or circumstances that thwart the achievement of biological goals. The more important is the adaptive value of the goal, the more painful is the emotional impact of the life event that endangers goal achievement. Life history theory and sexual selection theory help to explain why goal priorities differ between the sexes and across age groups. Cultural values and social learning interact with evolved inclinations in determining the hierarchy of goals for a specific person in a specific phase of his or her life. To illustrate the applicability of the evolutionary model, epidemiological and clinical data concerning individual differences in stress sensitivity and stress generation are reviewed and discussed. The final part of the review summarizes new hypotheses that explain how early and current psychosocial stressors can activate a series of adaptive mechanisms including developmental plasticity, predictive adaptive responses and differential susceptibility. Ultimately, the contribution of evolutionary science to psychotraumatology is the idea that experimental and clinical studies should shift the focus of research from the external environment (defined as all stressful factors external to the subjects under investigation) to the ecological environment (defined as those stressful factors of the external environment that have a greater potential to threaten the adaptive equilibrium of the subjects under investigation because of their evolved inclinations). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.

    PubMed

    Markunas, Chelsea M; Triemer, Richard E

    2016-05-01

    Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  14. Seasonality and the evolutionary divergence of plant parasites.

    PubMed

    Hamelin, Frédéric M; Castel, Magda; Poggi, Sylvain; Andrivon, Didier; Mailleret, Ludovic

    2011-12-01

    The coexistence of closely related plant parasites is widespread. Yet, understanding the ecological determinants of evolutionary divergence in plant parasites remains an issue. Niche differentiation through resource specialization has been widely researched, but it hardly explains the coexistence of parasites exploiting the same host plant. Time-partitioning has so far received less attention, although in temperate climates, parasites may specialize on either the early or the late season. Accordingly, we investigated whether seasonality can also promote phenotypic divergence. For plant parasites, seasonality generally engenders periodic host absence. To account for abrupt seasonal events, we made use of an epidemic model that combines continuous and discrete dynamics. Based on the assumption of a trade-off between in-season transmission and inter-season survival, we found through an "evolutionary invasion analysis" that evolutionary divergence of the parasite phenotype can occur. Since such a trade-off has been reported, this study provides further ecological bases for the coexistence of closely related plant parasites. Moreover, this study provides original insights into the coexistence of sibling plant pathogens which perform either a single or several infection cycles within a season (mono- and polycyclic diseases, or uni- and multivoltine life cycles).

  15. Performance of Earthquake Early Warning Systems during the Major Events of the 2016-2017 Central Italy Seismic Sequence.

    NASA Astrophysics Data System (ADS)

    Festa, G.; Picozzi, M.; Alessandro, C.; Colombelli, S.; Cattaneo, M.; Chiaraluce, L.; Elia, L.; Martino, C.; Marzorati, S.; Supino, M.; Zollo, A.

    2017-12-01

    Earthquake early warning systems (EEWS) are systems nowadays contributing to the seismic risk mitigation actions, both in terms of losses and societal resilience, by issuing an alert promptly after the earthquake origin and before the ground shaking impacts the targets to be protected. EEWS systems can be grouped in two main classes: network based and stand-alone systems. Network based EEWS make use of dense seismic networks surrounding the fault (e.g. Near Fault Observatory; NFO) generating the event. The rapid processing of the P-wave early portion allows for the location and magnitude estimation of the event then used to predict the shaking through ground motion prediction equations. Stand-alone systems instead analyze the early P-wave signal to predict the ground shaking carried by the late S or surface waves, through empirically calibrated scaling relationships, at the recording site itself. We compared the network-based (PRESTo, PRobabilistic and Evolutionary early warning SysTem, www.prestoews.org, Satriano et al., 2011) and the stand-alone (SAVE, on-Site-Alert-leVEl, Caruso et al., 2017) systems, by analyzing their performance during the 2016-2017 Central Italy sequence. We analyzed 9 earthquakes having magnitude 5.0 < M < 6.5 at about 200 stations located within 200 km from the epicentral area, including stations of The Altotiberina NFO (TABOO). Performances are evaluated in terms of rate of success of ground shaking intensity prediction and available lead-time, i.e. the time available for security actions. PRESTo also evaluated the accuracy of location and magnitude. Both systems well predict the ground shaking nearby the event source, with a success rate around 90% within the potential damage zone. The lead-time is significantly larger for the network based system, increasing to more than 10s at 40 km from the event epicentre. The stand-alone system better performs in the near-source region showing a positive albeit small lead-time (<3s). Far away from

  16. Bursts of transposable elements as an evolutionary driving force.

    PubMed

    Belyayev, A

    2014-12-01

    A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  17. Social anxiety and negative early life events in university students.

    PubMed

    Binelli, Cynthia; Ortiz, Ana; Muñiz, Armando; Gelabert, Estel; Ferraz, Liliana; S Filho, Alaor; Crippa, José Alexandre S; Nardi, Antonio E; Subirà, Susana; Martín-Santos, Rocío

    2012-06-01

    There is substantial evidence regarding the impact of negative life events during childhood on the aetiology of psychiatric disorders. We examined the association between negative early life events and social anxiety in a sample of 571 Spanish University students. In a cross-sectional survey conducted in 2007, we collected data through a semistructured questionnaire of sociodemographic variables, personal and family psychiatric history, and substance abuse. We assessed the five early negative life events: (i) the loss of someone close, (ii) emotional abuse, (iii) physical abuse, (iv) family violence, and (v) sexual abuse. All participants completed the Liebowitz Social Anxiety Scale. Mean (SD) age was 21 (4.5), 75% female, LSAS score was 40 (DP = 22), 14.2% had a psychiatric family history and 50.6% had negative life events during childhood. Linear regression analyses, after controlling for age, gender, and family psychiatric history, showed a positive association between family violence and social score (p = 0.03). None of the remaining stressors produced a significant increase in LSAS score (p > 0.05). University students with high levels of social anxiety presented higher prevalence of negative early life events. Thus, childhood family violence could be a risk factor for social anxiety in such a population.

  18. The Relationship Between Early Life Events, Parental Attachment, and Psychopathic Tendencies in Adolescent Detainees.

    PubMed

    Christian, Erica J; Meltzer, Christine L; Thede, Linda L; Kosson, David S

    2017-04-01

    Despite increasing interest in understanding psychopathic traits in youth, the role of early environmental factors in the development of psychopathic traits is not well understood. No prior studies have directly examined the relationship between early life events and psychopathic traits. We examined links between life events in the first 4 years of life and indices of the core affective and interpersonal components of psychopathy. Additionally, we examined relationships between early life events, psychopathic traits, and attachment to parents among 206 adjudicated adolescents. Results indicated that the total number of early life events was positively correlated with indices of the affective component of psychopathy. Moreover, psychopathic traits moderated the relationship between the number of early life events and later reports of attachment to parents. Findings suggest that early environmental factors could have important implications for the development of psychopathic traits and may impact attachment to parents for youth with psychopathic traits.

  19. The major synthetic evolutionary transitions.

    PubMed

    Solé, Ricard

    2016-08-19

    Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).

  20. The major synthetic evolutionary transitions

    PubMed Central

    Solé, Ricard

    2016-01-01

    Evolution is marked by well-defined events involving profound innovations that are known as ‘major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These ‘synthetic’ transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431528

  1. Evolution caused by extreme events.

    PubMed

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  2. Method for early detection of cooling-loss events

    DOEpatents

    Bermudez, Sergio A.; Hamann, Hendrik; Marianno, Fernando J.

    2015-06-30

    A method of detecting cooling-loss event early is provided. The method includes defining a relative humidity limit and change threshold for a given space, measuring relative humidity in the given space, determining, with a processing unit, whether the measured relative humidity is within the defined relative humidity limit, generating a warning in an event the measured relative humidity is outside the defined relative humidity limit and determining whether a change in the measured relative humidity is less than the defined change threshold for the given space and generating an alarm in an event the change is greater than the defined change threshold.

  3. Method for early detection of cooling-loss events

    DOEpatents

    Bermudez, Sergio A.; Hamann, Hendrik F.; Marianno, Fernando J.

    2015-12-22

    A method of detecting cooling-loss event early is provided. The method includes defining a relative humidity limit and change threshold for a given space, measuring relative humidity in the given space, determining, with a processing unit, whether the measured relative humidity is within the defined relative humidity limit, generating a warning in an event the measured relative humidity is outside the defined relative humidity limit and determining whether a change in the measured relative humidity is less than the defined change threshold for the given space and generating an alarm in an event the change is greater than the defined change threshold.

  4. Dispersal and vicariance: the complex evolutionary history of boid snakes.

    PubMed

    Noonan, Brice P; Chippindale, Paul T

    2006-08-01

    Since the early 1970s, boine snakes (Boidae: Boinae) have served as a prime example of a group whose current distribution was shaped by vicariant events associated with the fragmentation of the supercontinent Gondwana. Early phylogenetic treatments of this group, and what were thought to be closely related groups (Erycinae and Pythoninae) based on morphological features, produced a relatively stable view of relationships that has strongly influenced subsequent molecular-based work. We examined 4307 base pairs (bp) of nucleotide sequence data obtained from five nuclear loci (c-mos, NT3, BDNF, RAG1, and ODC) and one mitochondrial locus (cyt b) for all genera of erycines and boines, plus representatives of other groups, including those previously thought to be closely allied with boines (Ungaliophiidae, Loxocemidae, Xenopeltidae, and Pythoninae). Our results suggest that the Boidae is not monophyletic, and its current division into three subfamilies (Erycinae, Boinae, and Pythoninae) does not accurately reflect evolutionary history. We find that the evolutionary relationships are better reflected by current geographic distributions and tectonic history than by the morphological characters that have long served as the foundation of boid phylogeny. Divergence time estimates suggest that this strong congruence between geography and phylogeny is the result of several vicariant and dispersal events in the Late Cretaceous and Paleocene associated with the fragmentation of the Gondwanan supercontinent. Our results demonstrate the importance of both vicariance and dispersal in shaping the global distributions of terrestrial organisms.

  5. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei).

    PubMed

    Chen, Wei-Jen; Lavoué, Sébastien; Mayden, Richard L

    2013-08-01

    The biogeography of the mega-diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans-oceanic distributions. Despite multiple hypotheses explaining present-day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time-calibrated, molecular-based phylogenetic analysis and event-based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within- and between-continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post-tectonic drift dispersal events are hypothesized to account for their current distribution patterns. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  6. Early events in speciation: polymorphism for hybrid male sterility in Drosophila.

    PubMed

    Reed, Laura K; Markow, Therese A

    2004-06-15

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors present at different frequencies in different populations of D. mojavensis. In addition, we show that hybrid male sterility is a complex phenotype; some hybrid males with motile sperm still cannot sire offspring. Because male sterility factors in hybrids between these species are not yet fixed within D. mojavensis, this system provides an invaluable opportunity to characterize the genetics of reproductive isolation at an early stage.

  7. Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system.

    PubMed

    Mordhorst, Bethany R; Wilson, Miranda L; Conant, Gavin C

    2016-01-01

    In this review, we discuss the way that insights from evolutionary theory and systems biology shed light on form and function in mammalian reproductive systems. In the first part of the review, we contrast the rapid evolution seen in some reproductive genes with the generally conservative nature of development. We discuss directional selection and coevolution as potential drivers of rapid evolution in sperm and egg proteins. Such rapid change is very different from the highly conservative nature of later embryo development. However, it is not unique, as some regions of the sex chromosomes also show elevated rates of evolutionary change. To explain these contradictory trends, we argue that it is not reproductive functions per se that induce rapid evolution. Rather, it is the fact that biotic interactions, such as speciation events and sexual conflict, have no evolutionary endpoint and hence can drive continuous evolutionary changes. Returning to the question of sex chromosome evolution, we discuss the way that recent advances in evolutionary genomics and systems biology and, in particular, the development of a theory of gene balance provide a better understanding of the evolutionary patterns seen on these chromosomes. We end the review with a discussion of a surprising and incompletely understood phenomenon observed in early embryos: namely the Warburg effect, whereby glucose is fermented to lactate and alanine rather than respired to carbon dioxide. We argue that evolutionary insights, from both yeasts and tumor cells, help to explain the Warburg effect, and that new metabolic modeling approaches are useful in assessing the potential sources of the effect.

  8. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura)

    PubMed Central

    2010-01-01

    early in the association between anoplurans and mammals, there is substantial conflict between the host and parasite phylogenies. This conflict is likely the result of a complex history of host switching and extinction events that occurred throughout the evolutionary association between sucking lice and their mammalian hosts. It is unlikely that there are any ectoparasite groups (including lice) that tracked the early and rapid radiation of eutherian mammals. PMID:20860811

  9. Bichordites from the early Eocene of Cuba: significance in the evolutionary history of the spatangoids

    NASA Astrophysics Data System (ADS)

    Villegas-Martín, Jorge; Netto, Renata Guimarães

    2017-12-01

    The trace fossil Bichordites monastiriensis is found in early Eocene turbiditic sandstones of the upper-slope deposits from the Capdevila Formation in Los Palacios Basin, Pinar del Río region, western Cuba. The potential tracemakers of B. monastiriensis include fossil spatangoids from the family Eupatagidae. The record of Bichordites in the deposits from Cuba allows to suppose that Eupatagidae echinoids were the oldest potential tracemakers of Bichordites isp. and reinforce the hypothesis that the ichnological record are relevant in envisaging the evolutionary history of the spatangoids.

  10. Towards a mechanistic foundation of evolutionary theory.

    PubMed

    Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt

    2017-02-15

    Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

  11. Test of Von Baer's law of the conservation of early development.

    PubMed

    Poe, Steven

    2006-11-01

    One of the oldest and most pervasive ideas in comparative embryology is the perceived evolutionary conservation of early ontogeny relative to late ontogeny. Karl Von Baer first noted the similarity of early ontogeny across taxa, and Ernst Haeckel and Charles Darwin gave evolutionary interpretation to this phenomenon. In spite of a resurgence of interest in comparative embryology and the development of mechanistic explanations for Von Baer's law, the pattern itself has been largely untested. Here, I use statistical phylogenetic approaches to show that Von Baer's law is an unnecessarily complex explanation of the patterns of ontogenetic timing in several clades of vertebrates. Von Baer's law suggests a positive correlation between ontogenetic time and amount of evolutionary change. I compare ranked position in ontogeny to frequency of evolutionary change in rank for developmental events and find that these measures are not correlated, thus failing to support Von Baer's model. An alternative model that postulates that small changes in ontogenetic rank are evolutionarily easier than large changes is tentatively supported.

  12. Evolutionary Theory under Fire.

    ERIC Educational Resources Information Center

    Lewin, Roger

    1980-01-01

    Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)

  13. Why flying dogs are rare: A general theory of luck in evolutionary transitions.

    PubMed

    Fleming, Leonore; Brandon, Robert

    2015-02-01

    There is a worry that the 'major transitions in evolution' represent an arbitrary group of events. This worry is warranted, and we show why. We argue that the transition to a new level of hierarchy necessarily involves a nonselectionist chance process. Thus any unified theory of evolutionary transitions must be more like a general theory of fortuitous luck, rather than a rigid formulation of expected events. We provide a systematic account of evolutionary transitions based on a second-order regularity of chance events, as stipulated by the ZFEL (Zero Force Evolutionary Law). And in doing so, we make evolutionary transitions explainable and predictable, and so not entirely contingent after all. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Early events in speciation: Polymorphism for hybrid male sterility in Drosophila

    PubMed Central

    Reed, Laura K.; Markow, Therese A.

    2004-01-01

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors present at different frequencies in different populations of D. mojavensis. In addition, we show that hybrid male sterility is a complex phenotype; some hybrid males with motile sperm still cannot sire offspring. Because male sterility factors in hybrids between these species are not yet fixed within D. mojavensis, this system provides an invaluable opportunity to characterize the genetics of reproductive isolation at an early stage. PMID:15184657

  15. Sex-Specific Pathways to Early Puberty, Sexual Debut, and Sexual Risk Taking: Tests of an Integrated Evolutionary-Developmental Model

    ERIC Educational Resources Information Center

    James, Jenee; Ellis, Bruce J.; Schlomer, Gabriel L.; Garber, Judy

    2012-01-01

    The current study tested sex-specific pathways to early puberty, sexual debut, and sexual risk taking, as specified by an integrated evolutionary-developmental model of adolescent sexual development and behavior. In a prospective study of 238 adolescents (n = 129 girls and n = 109 boys) followed from approximately 12-18 years of age, we tested for…

  16. Diversity-dependent evolutionary rates in early Palaeozoic zooplankton.

    PubMed

    Foote, Michael; Cooper, Roger A; Crampton, James S; Sadler, Peter M

    2018-02-28

    The extent to which biological diversity affects rates of diversification is central to understanding macroevolutionary dynamics, yet no consensus has emerged on the importance of diversity-dependence of evolutionary rates. Here, we analyse the species-level fossil record of early Palaeozoic graptoloids, documented with high temporal resolution, to test directly whether rates of diversification were influenced by levels of standing diversity within this major clade of marine zooplankton. To circumvent the statistical regression-to-the-mean artefact, whereby higher- and lower-than-average values of diversity tend to be followed by negative and positive diversification rates, we construct a non-parametric, empirically scaled, diversity-independent null model by randomizing the observed diversification rates with respect to time. Comparing observed correlations between diversity and diversification rate to those expected from this diversity-independent model, we find evidence for negative diversity-dependence, accounting for up to 12% of the variance in diversification rate, with maximal correlation at a temporal lag of approximately 1 Myr. Diversity-dependence persists throughout the Ordovician and Silurian, despite a major increase in the strength and frequency of extinction and speciation pulses in the Silurian. By contrast to some previous work, we find that diversity-dependence affects rates of speciation and extinction nearly equally on average, although subtle differences emerge when we compare the Ordovician and Silurian. © 2018 The Author(s).

  17. Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis.

    PubMed

    Chisholm, Rebecca H; Trauer, James M; Curnoe, Darren; Tanaka, Mark M

    2016-08-09

    Tuberculosis (TB) is caused by the Mycobacterium tuberculosis complex (MTBC), a wildly successful group of organisms and the leading cause of death resulting from a single bacterial pathogen worldwide. It is generally accepted that MTBC established itself in human populations in Africa and that animal-infecting strains diverged from human strains. However, the precise causal factors of TB emergence remain unknown. Here, we propose that the advent of controlled fire use in early humans created the ideal conditions for the emergence of TB as a transmissible disease. This hypothesis is supported by mathematical modeling together with a synthesis of evidence from epidemiology, evolutionary genetics, and paleoanthropology.

  18. Early diversification trend and Asian origin for extent bat lineages.

    PubMed

    Yu, W; Wu, Y; Yang, G

    2014-10-01

    Bats are a unique mammalian group, which belong to one of the largest and most diverse mammalian radiations, but their early diversification is still poorly understood, and conflicting hypotheses have emerged regarding their biogeographic history. Understanding their diversification is crucial for untangling the enigmatic evolutionary history of bats. In this study, we elucidated the rate of diversification and the biogeographic history of extant bat lineages using genus-level chronograms. The results suggest that a rapid adaptive radiation persisted from the emergence of crown bats until the Early Eocene Climatic Optimum, whereas there was a major deceleration in diversification around 35-49 Ma. There was a positive association between changes in the palaeotemperature and the net diversification rate until 35 Ma, which suggests that the palaeotemperature may have played an important role in the regulation of ecological opportunities. By contrast, there were unexpectedly higher diversification rates around 25-35 Ma during a period characterized by intense and long-lasting global cooling, which implies that intrinsic innovations or adaptations may have released some lineages from the intense selective pressures associated with these severe conditions. Our reconstruction of the ancestral distribution suggests an Asian origin for bats, thereby indicating that the current panglobal but disjunct distribution pattern of extant bats may be related to events involving seriate cross-continental dispersal and local extinction, as well as the influence of geological events and the expansion and contraction of megathermal rainforests during the Tertiary. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  19. Stressful Life Events, ADHD Symptoms, and Brain Structure in Early Adolescence.

    PubMed

    Humphreys, Kathryn L; Watts, Emily L; Dennis, Emily L; King, Lucy S; Thompson, Paul M; Gotlib, Ian H

    2018-05-21

    Despite a growing understanding that early adversity in childhood broadly affects risk for psychopathology, the contribution of stressful life events to the development of symptoms of attention-deficit/hyperactivity disorder (ADHD) is not clear. In the present study, we examined the association between number of stressful life events experienced and ADHD symptoms, assessed using the Attention Problems subscale of the Child Behavior Checklist, in a sample of 214 children (43% male) ages 9.11-13.98 years (M = 11.38, SD = 1.05). In addition, we examined whether the timing of the events (i.e., onset through age 5 years or after age 6 years) was associated with ADHD symptoms. Finally, we examined variation in brain structure to determine whether stressful life events were associated with volume in brain regions that were found to vary as a function of symptoms of ADHD. We found a small to moderate association between number of stressful life events and ADHD symptoms. Although the strength of the associations between number of events and ADHD symptoms did not differ as a function of the age of occurrence of stressful experiences, different brain regions were implicated in the association between stressors and ADHD symptoms in the two age periods during which stressful life events occurred. These findings support the hypothesis that early adversity is associated with ADHD symptoms, and provide insight into possible brain-based mediators of this association.

  20. A comparative study of diversification events: the early Paleozoic versus the Mesozoic

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1987-01-01

    We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.

  1. Archaeogenetics in evolutionary medicine.

    PubMed

    Bouwman, Abigail; Rühli, Frank

    2016-09-01

    Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.

  2. The integration of Darwinism and evolutionary morphology: Alexej Nikolajevich Sewertzoff (1866-1936) and the developmental basis of evolutionary change.

    PubMed

    Levit, George S; Hossfeld, Uwe; Olsson, Lennart

    2004-07-15

    The growth of evolutionary morphology in the late 19th and early 20th centuries was inspired by the work of Carl Gegenbaur (1826-1903) and his protégé and friend Ernst Haeckel (1834-1919). However, neither of them succeeded in creating and applying a strictly Darwinian (selectionist) methodology. This task was left to the next generation of evolutionary morphologists. In this paper we present a relatively unknown researcher, Alexej Nikolajevich Sewertzoff (1866-1936) who made important contributions towards a synthesis of Darwinism and evolutionary morphology. Copyright 2004 Wiley-Liss, Inc.

  3. Evolutionary history of the enolase gene family.

    PubMed

    Tracy, M R; Hedges, S B

    2000-12-23

    The enzyme enolase [EC 4.2.1.11] is found in all organisms, with vertebrates exhibiting tissue-specific isozymes encoded by three genes: alpha (alpha), beta (beta), and gamma (gamma) enolase. Limited taxonomic sampling of enolase has obscured the timing of gene duplication events. To help clarify the evolutionary history of the gene family, cDNAs were sequenced from six taxa representing major lineages of vertebrates: Chiloscyllium punctatum (shark), Amia calva (bowfin), Salmo trutta (trout), Latimeria chalumnae (coelacanth), Lepidosiren paradoxa (South American lungfish), and Neoceratodus forsteri (Australian lungfish). Phylogenetic analysis of all enolase and related gene sequences revealed an early gene duplication event prior to the last common ancestor of living organisms. Several distantly related archaebacterial sequences were designated as 'enolase-2', whereas all other enolase sequences were designated 'enolase-1'. Two of the three isozymes of enolase-1, alpha- and beta-enolase, were discovered in actinopterygian, sarcopterygian, and chondrichthian fishes. Phylogenetic analysis of vertebrate enolases revealed that the two gene duplications leading to the three isozymes of enolase-1 occurred subsequent to the divergence of living agnathans, near the Proterozoic/Phanerozoic boundary (approximately 550Mya). Two copies of enolase, designated alpha(1) and alpha(2), were found in the trout and are presumed to be the result of a genome duplication event.

  4. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  5. A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time.

    PubMed

    Uyeda, Josef C; Harmon, Luke J; Blank, Carrine E

    2016-01-01

    Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record-phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth's history have shaped-and been shaped by-evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and "Snowball Earth" glaciations and is associated with decrease in the evolutionary rates around 1.8-1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes-particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic Oxidation Event in

  6. A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time

    PubMed Central

    Harmon, Luke J.; Blank, Carrine E.

    2016-01-01

    Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record—phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth’s history have shaped—and been shaped by—evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and “Snowball Earth” glaciations and is associated with decrease in the evolutionary rates around 1.8–1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes–particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic

  7. Evolutionary mysteries in meiosis

    PubMed Central

    2016-01-01

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often ‘weird’ features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619705

  8. The Importance of First Impressions: Early Events in Mycobacterium tuberculosis Infection Influence Outcome.

    PubMed

    Cadena, Anthony M; Flynn, JoAnne L; Fortune, Sarah M

    2016-04-05

    Tuberculosis remains a major health threat in much of the world. New vaccines against Mycobacterium tuberculosis are essential for preventing infection, disease, and transmission. However, the host immune responses that need to be induced by an effective vaccine remain unclear. Increasingly, it has become clear that early events in infection are of major importance in the eventual outcome of the infection. Studying such events in humans is challenging, as they occur within the lung and thoracic lymph nodes, and any clinical signs of early infection are relatively nonspecific. Nonetheless, clinical studies and animal models of tuberculosis have provided new insights into the local events that occur in the first few weeks of tuberculosis. Development of an effective vaccine requires a clear understanding of the successful (and detrimental) early host responses against M. tuberculosis, with the goal to improve upon natural immune responses and prevent infection or disease. Copyright © 2016 Cadena et al.

  9. Divergent evolutionary processes associated with colonization of offshore islands.

    PubMed

    Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B

    2013-10-01

    Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.

  10. Extinction vs. Rapid Radiation: The Juxtaposed Evolutionary Histories of Coelotine Spiders Support the Eocene-Oligocene Orogenesis of the Tibetan Plateau.

    PubMed

    Zhao, Zhe; Li, Shuqiang

    2017-11-01

    Evolutionary biology has long been concerned with how changing environments affect and drive the spatiotemporal development of organisms. Coelotine spiders (Agelenidae: Coelotinae) are common species in the temperate and subtropical areas of the Northern Hemisphere. Their long evolutionary history and the extremely imbalanced distribution of species richness suggest that Eurasian environments, especially since the Cenozoic, are the drivers of their diversification. We use phylogenetics, molecular dating, ancestral area reconstructions, diversity, and ecological niche analyses to investigate the spatiotemporal evolution of 286 coelotine species from throughout the region. Based on eight genes (6.5 kb) and 2323 de novo DNA sequences, analyses suggest an Eocene South China origin for them. Most extant, widespread species belong to the southern (SCG) or northern (NCG) clades. The origin of coelotine spiders appears to associate with either the Paleocene-Eocene Thermal Maximum or the hot period in early Eocene. Tibetan uplifting events influenced the current diversity patterns of coelotines. The origin of SCG lies outside of the Tibetan Plateau. Uplifting in the southeastern area of the plateau blocked dispersal since the Late Eocene. Continuous orogenesis appears to have created localized vicariant events, which drove rapid radiation in SCG. North-central Tibet is the likely location of origin for NCG and many lineages likely experienced extinction owing to uplifting since early Oligocene. Their evolutionary histories correspond with recent geological evidence that high-elevation orographical features existed in the Tibetan region as early as 40-35 Ma. Our discoveries may be the first empirical evidence that links the evolution of organisms to the Eocene-Oligocene uplifting of the Tibetan Plateau. [Tibet; biogeography; ecology; molecular clock; diversification.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic

  11. The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates

    PubMed Central

    Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A.; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe

    2014-01-01

    Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells

  12. An evolutionary perspective on health psychology: new approaches and applications.

    PubMed

    Tybur, Joshua M; Bryan, Angela D; Hooper, Ann E Caldwell

    2012-12-20

    Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understanding the myriad behaviors grouped under the umbrella of "health," as can theoretical perspectives used by evolutionary anthropologists, biologists, and psychologists (e.g., Life History Theory). We detail some early investigations into evolutionary health psychology, and we provide suggestions for directions for future research.

  13. Early/fast VLF events produced by the quiescent heating of the lower ionosphere by thunderstorms

    NASA Astrophysics Data System (ADS)

    Kabirzadeh, R.; Marshall, R. A.; Inan, U. S.

    2017-06-01

    Large and easily distinguishable perturbations of the VLF transmitter signals due to interactions with thundercloud-driven ionospheric modifications have been observed and studied for about three decades. These events are called "early/fast VLF" or "early VLF" events due to their immediate detection (˜20 ms) after the causative lightning flash on the ground and the fast rise time of the perturbed signal. Despite many years of study, the physical mechanisms responsible for these perturbations are still under investigation. Modifications of the sustained heating level of the ionosphere due to a lightning flash has been previously proposed as the causative mechanism of early/fast VLF events. The perturbations predicted by this mechanism, however, have been much smaller than experimental observations of 0.2-1 dB or higher. In this study, by using an improved 3-D thundercloud electrostatic upward coupling model which uses a realistic geomagnetic field, we find that the sustained heating model can predict perturbations that are consistent with reported experimental observations. Modifications in the quiescent heating of the lower ionosphere by thundercloud fields by individual lightning flashes may thus account for some observations of early/fast VLF events.

  14. Preventive evolutionary medicine of cancers.

    PubMed

    Hochberg, Michael E; Thomas, Frédéric; Assenat, Eric; Hibner, Urszula

    2013-01-01

    Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high-risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.

  15. Evolutionary mysteries in meiosis.

    PubMed

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  16. Predicting loss of evolutionary history: Where are we?

    PubMed

    Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine

    2017-02-01

    The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic

  17. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines.

    PubMed

    Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane

    2016-05-21

    The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC

  18. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia.

    PubMed

    Wang, Jiguang; Khiabanian, Hossein; Rossi, Davide; Fabbri, Giulia; Gattei, Valter; Forconi, Francesco; Laurenti, Luca; Marasca, Roberto; Del Poeta, Giovanni; Foà, Robin; Pasqualucci, Laura; Gaidano, Gianluca; Rabadan, Raul

    2014-12-11

    Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination, and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We applied TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors.

  19. Oceanic oxygenation events in the anoxic Ediacaran ocean.

    PubMed

    Sahoo, S K; Planavsky, N J; Jiang, G; Kendall, B; Owens, J D; Wang, X; Shi, X; Anbar, A D; Lyons, T W

    2016-09-01

    The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi-proxy paleoredox study of a relatively continuous, deep-water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran-early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox-static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well-oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran-early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis. © 2016 John Wiley & Sons Ltd.

  20. Persistence of carbon release events through the peak of early Eocene global warmth

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, Sandra; Sexton, Philip F.; Charles, Christopher D.; Norris, Richard D.

    2014-10-01

    The Early Eocene Climatic Optimum (53-50 million years ago) was preceded by approximately six million years of progressive global warming. This warming was punctuated by a series of rapid hyperthermal warming events triggered by the release of greenhouse gases. Over these six million years, the carbon isotope record suggests that the events became more frequent but smaller in magnitude. This pattern has been suggested to reflect a thermodynamic threshold for carbon release that was more easily crossed as global temperature rose, combined with a decrease in the size of carbon reservoirs during extremely warm conditions. Here we present a continuous, 4.25-million-year-long record of the stable isotope composition of carbonate sediments from the equatorial Atlantic, spanning the peak of early Eocene global warmth. A composite of this and pre-existing records shows that the carbon isotope excursions that identify the hyperthermals exhibit continuity in magnitude and frequency throughout the approximately 10-million-year period covering the onset, peak and termination of the Early Eocene Climate Optimum. We suggest that the carbon cycle processes behind these events, excluding the largest event, the Palaeocene-Eocene Thermal Maximum (about 56 million years ago), were not exceptional. Instead, we argue that the hyperthermals may reflect orbital forcing of the carbon cycle analogous to the mechanisms proposed to operate in the cooler Oligocene and Miocene.

  1. Ophthalmic Vascular Events after Primary Unilateral Intra-arterial Chemotherapy for Retinoblastoma in Early and Recent Eras.

    PubMed

    Dalvin, Lauren A; Ancona-Lezama, David; Lucio-Alvarez, J Antonio; Masoomian, Babak; Jabbour, Pascal; Shields, Carol L

    2018-06-16

    To assess risk factors for ophthalmic vascular events after intra-arterial chemotherapy (IAC) for retinoblastoma. Retrospective cohort study. Patients who received unilateral IAC as primary treatment for retinoblastoma from January 1, 2009, to November 30, 2017, at a single center. Records were reviewed for patient demographics, tumor features, IAC parameters, and treatment-related vascular events in the early IAC era (2009-2011) compared with the recent era (2012-2017) using the t test and Fisher exact test. Change in event rates over time was assessed using Poisson regression analysis, with Spearman's rho used to test correlation. Rate of IAC-induced ophthalmic vascular events. There were 243 chemotherapy infusions in 76 eyes of 76 patients, divided into early (22 eyes, 57 infusions) and recent (54 eyes, 186 infusions) eras. Intra-arterial chemotherapy consisted of melphalan (243 infusions), topotecan (124 infusions), and carboplatin (9 infusions). A comparison (early vs. recent era) revealed fewer mean number of infusions (2.6 vs. 3.4, P = 0.02) with similar mean patient age and presenting tumor features. Event rates decreased over time (P < 0.01), with fewer ophthalmic vascular events (early era vs. recent era) in the recent era (59% vs. 9% per eye, 23% vs. 3% per infusion, P < 0.01), including peripheral retinal nonperfusion (5% vs. 2% per eye, P = 0.50), vitreous hemorrhage (9% vs. 2%, P = 0.20), subretinal hemorrhage (0% vs. 2%, P = 0.99), branch retinal vein occlusion (5% vs. 0%, P = 0.29), choroidal ischemia (14% vs. 4%, P = 0.14), and ophthalmic artery spasm/occlusion (27% vs. 0%, P < 0.01). Events did not correlate to patient age (P = 0.75), tumor diameter (P = 0.32), tumor thickness (P = 0.59), or cumulative dosage of melphalan (P = 0.13) or topotecan (P = 0.59). There were no IAC-induced vascular events in 72 infusions of 21 consecutively treated eyes in 2016 to 2017. Ophthalmic vascular events after IAC have decreased from the early era

  2. Mega-evolutionary dynamics of the adaptive radiation of birds.

    PubMed

    Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H

    2017-02-16

    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.

  3. Mega-evolutionary dynamics of the adaptive radiation of birds

    PubMed Central

    Capp, Elliot J. R.; Chira, Angela M.; Hughes, Emma C.; Moody, Christopher J. A.; Nouri, Lara O.; Varley, Zoë K.; Thomas, Gavin H.

    2017-01-01

    The origin and expansion of biological diversity is regulated by both developmental trajectories1,2 and limits on available ecological niches3–7. As lineages diversify an early, often rapid, phase of species and trait proliferation gives way to evolutionary slowdowns as new species pack into ever more densely occupied regions of ecological niche space6,8. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear9. Here we address this problem on a global scale by analysing a novel crowd-sourced dataset of 3D-scanned bill morphology from >2000 species. We find that bill diversity expanded early in extant avian evolutionary history before transitioning to a phase dominated by morphospace packing. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare but major discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian9 and Simpsonian4 ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks. PMID:28146475

  4. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis.

    PubMed

    Boulila, Moncef

    2010-06-01

    To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.

  5. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory

    PubMed Central

    Ferriere, Regis; Legendre, Stéphane

    2013-01-01

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163

  6. Will extreme climatic events facilitate biological invasions?

    USDA-ARS?s Scientific Manuscript database

    Extreme climatic events, such as intense heat waves, hurricanes, floods and droughts, can dramatically affect ecological and evolutionary processes, and more extreme events are projected with ongoing climate change. However, the implications of these events for biological invasions, which themselves...

  7. Impact Constraints on Major Events in Early Mars History

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2004-01-01

    MOLA data have revealed a large population of "Quasi-Circular Depressions" (QCDs) with little or no visible expression in image data. These likely buried impact basins have important implications for the age of the lowland crust, how that compares with original highland crust, and when and how the crustal dichotomy may have formed. The buried lowlands are of Early Noachian age, likely slightly younger than the buried highlands but older than the exposed (visible) highland surface. A depopulation of large visible basins at diameters 800 to 1300 km suggests some global scale event early in martian history, maybe related to the formation of the lowlands and/or the development of Tharsis. A suggested early disappearance of the global magnetic field can be placed within a temporal sequence of formation of the very largest impact basins. The global field appears to have disappeared at about the time the lowlands formed. It seems likely the topographic crustal dichotomy was produced very early in martian history by processes which operated very quickly. Thus there appears to have been a northern lowland throughout nearly all of martian history, predating the last of the really large impacts (Hellas, Argyre and Isidis) and their likely very significant environmental consequences.

  8. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changedmore » over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.« less

  9. Dose and Effect Thresholds for Early Key Events in a Mode of PPARa-Mediated Action

    EPA Science Inventory

    ABSTRACT Strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. T...

  10. Evolutionary process of deep-sea bathymodiolus mussels.

    PubMed

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  11. Estimating true evolutionary distances under the DCJ model.

    PubMed

    Lin, Yu; Moret, Bernard M E

    2008-07-01

    Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.

  12. Evolutionary ethics from Darwin to Moore.

    PubMed

    Allhoff, Fritz

    2003-01-01

    Evolutionary ethics has a long history, dating all the way back to Charles Darwin. Almost immediately after the publication of the Origin, an immense interest arose in the moral implications of Darwinism and whether the truth of Darwinism would undermine traditional ethics. Though the biological thesis was certainly exciting, nobody suspected that the impact of the Origin would be confined to the scientific arena. As one historian wrote, 'whether or not ancient populations of armadillos were transformed into the species that currently inhabit the new world was certainly a topic about which zoologists could disagree. But it was in discussing the broader implications of the theory...that tempers flared and statements were made which could transform what otherwise would have been a quiet scholarly meeting into a social scandal' (Farber 1994, 22). Some resistance to the biological thesis of Darwinism sprung from the thought that it was incompatible with traditional morality and, since one of them had to go, many thought that Darwinism should be rejected. However, some people did realize that a secular ethics was possible so, even if Darwinism did undermine traditional religious beliefs, it need not have any effects on moral thought. Before I begin my discussion of evolutionary ethics from Darwin to Moore, I would like to make some more general remarks about its development. There are three key events during this history of evolutionary ethics. First, Charles Darwin published On the Origin of the Species (Darwin 1859). Since one did not have a fully developed theory of evolution until 1859, there exists little work on evolutionary ethics until then. Shortly thereafter, Herbert Spencer (1898) penned the first systematic theory of evolutionary ethics, which was promptly attacked by T.H. Huxley (Huxley 1894). Second, at about the turn of the century, moral philosophers entered the fray and attempted to demonstrate logical errors in Spencer's work; such errors were alluded

  13. Evolutionary trends in directional hearing

    PubMed Central

    Carr, Catherine E.; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850

  14. Human genomic disease variants: a neutral evolutionary explanation.

    PubMed

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  15. Human genomic disease variants: A neutral evolutionary explanation

    PubMed Central

    Dudley, Joel T.; Kim, Yuseob; Liu, Li; Markov, Glenn J.; Gerold, Kristyn; Chen, Rong; Butte, Atul J.; Kumar, Sudhir

    2012-01-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease. PMID:22665443

  16. The Ancient Evolutionary History of Polyomaviruses

    PubMed Central

    Buck, Christopher B.; Van Doorslaer, Koenraad; Peretti, Alberto; Geoghegan, Eileen M.; Tisza, Michael J.; An, Ping; Katz, Joshua P.; Pipas, James M.; McBride, Alison A.; Camus, Alvin C.; McDermott, Alexa J.; Dill, Jennifer A.; Delwart, Eric; Ng, Terry F. F.; Farkas, Kata; Austin, Charlotte; Kraberger, Simona; Davison, William; Pastrana, Diana V.; Varsani, Arvind

    2016-01-01

    Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. PMID:27093155

  17. Blunt splenic injury: are early adverse events related to trauma, nonoperative management, or surgery?

    PubMed Central

    Frandon, Julien; Rodiere, Mathieu; Arvieux, Catherine; Vendrell, Anne; Boussat, Bastien; Sengel, Christian; Broux, Christophe; Bricault, Ivan; Ferretti, Gilbert; Thony, Frédéric

    2015-01-01

    PURPOSE We aimed to compare clinical outcomes and early adverse events of operative management (OM), nonoperative management (NOM), and NOM with splenic artery embolization (SAE) in blunt splenic injury (BSI) and identify the prognostic factors. METHODS Medical records of 136 consecutive patients with BSI admitted to a trauma center from 2005 to 2010 were retrospectively reviewed. Patients were separated into three groups: OM, NOM, and SAE. We focused on associated injuries and early adverse events. Multivariate analysis was performed on 23 prognostic factors to find predictors. RESULTS The total survival rate was 97.1%, with four deaths all occurred in the OM group. The spleen salvage rate was 91% in NOM and SAE. At least one adverse event was observed in 32.8%, 62%, and 96% of patients in NOM, SAE, and OM groups, respectively (P < 0.001). We found significantly more deaths, infectious complications, pleural drainage, acute renal failures, and pancreatitis in OM and more pseudocysts in SAE. Six prognostic factors were statistically significant for one or more adverse events: simplified acute physiology score 2 ≥25 for almost all adverse events, age ≥50 years for acute respiratory syndrome, limb fracture for secondary bleeding, thoracic injury for pleural drainage, and at least one associated injury for pseudocyst. Adverse events were not related to the type of BSI management. CONCLUSION Patients with BSI present worse outcome and more adverse events in OM, but this is related to the severity of injury. The main predictor of adverse events remains the severity of injury. PMID:26081719

  18. Blunt splenic injury: are early adverse events related to trauma, nonoperative management, or surgery?

    PubMed

    Frandon, Julien; Rodiere, Mathieu; Arvieux, Catherine; Vendrell, Anne; Boussat, Bastien; Sengel, Christian; Broux, Christophe; Bricault, Ivan; Ferretti, Gilbert; Thony, Frédéric

    2015-01-01

    We aimed to compare clinical outcomes and early adverse events of operative management (OM), nonoperative management (NOM), and NOM with splenic artery embolization (SAE) in blunt splenic injury (BSI) and identify the prognostic factors. Medical records of 136 consecutive patients with BSI admitted to a trauma center from 2005 to 2010 were retrospectively reviewed. Patients were separated into three groups: OM, NOM, and SAE. We focused on associated injuries and early adverse events. Multivariate analysis was performed on 23 prognostic factors to find predictors. The total survival rate was 97.1%, with four deaths all occurred in the OM group. The spleen salvage rate was 91% in NOM and SAE. At least one adverse event was observed in 32.8%, 62%, and 96% of patients in NOM, SAE, and OM groups, respectively (P < 0.001). We found significantly more deaths, infectious complications, pleural drainage, acute renal failures, and pancreatitis in OM and more pseudocysts in SAE. Six prognostic factors were statistically significant for one or more adverse events: simplified acute physiology score 2 ≥25 for almost all adverse events, age ≥50 years for acute respiratory syndrome, limb fracture for secondary bleeding, thoracic injury for pleural drainage, and at least one associated injury for pseudocyst. Adverse events were not related to the type of BSI management. Patients with BSI present worse outcome and more adverse events in OM, but this is related to the severity of injury. The main predictor of adverse events remains the severity of injury.

  19. Probing evolutionary population synthesis models in the near infrared with early-type galaxies

    NASA Astrophysics Data System (ADS)

    Dahmer-Hahn, Luis Gabriel; Riffel, Rogério; Rodríguez-Ardila, Alberto; Martins, Lucimara P.; Kehrig, Carolina; Heckman, Timothy M.; Pastoriza, Miriani G.; Dametto, Natacha Z.

    2018-06-01

    We performed a near-infrared (NIR; ˜1.0 -2.4 μm) stellar population study in a sample of early-type galaxies. The synthesis was performed using five different evolutionary population synthesis libraries of models. Our main results can be summarized as follows: low-spectral-resolution libraries are not able to produce reliable results when applied to the NIR alone, with each library finding a different dominant population. The two newest higher resolution models, on the other hand, perform considerably better, finding consistent results to each other and to literature values. We also found that optical results are consistent with each other even for lower resolution models. We also compared optical and NIR results and found out that lower resolution models tend to disagree in the optical and in the NIR, with higher fraction of young populations in the NIR and dust extinction ˜1 mag higher than optical values. For higher resolution models, optical and NIR results tend to agree much better, suggesting that a higher spectral resolution is fundamental to improve the quality of the results.

  20. Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau

    PubMed Central

    Shang, Hui-Ying; Li, Zhong-Hu; Dong, Miao; Adams, Robert P.; Miehe, Georg; Opgenoorth, Lars; Mao, Kang-Shan

    2015-01-01

    All Qinghai-Tibetan Plateau (QTP) endemic species are assumed to have originated recently, although very rare species most likely diverged early. These ancient species provide an excellent model to examine the origin and evolution of QTP endemic plants in response to the QTP uplifts and the climate changes that followed in this high altitude region. In this study, we examined these hypotheses by employing sequence variation from multiple nuclear and chloroplast DNA of 239 individuals of Juniperus microsperma and its five congeners. Both phylogenetic and population genetic analyses revealed that J. microsperma diverged from its sister clade comprising two species with long isolation around the Early Miocene, which corresponds to early QTP uplift. Demographic modeling and coalescent tests suggest that J. microsperma experienced an obvious bottleneck event during the Quaternary when the global climate greatly oscillated. The results presented here support the hypotheses that the QTP uplifts and Quaternary climate changes played important roles in shaping the evolutionary history of this rare juniper. PMID:25977142

  1. Evolutionary analyses of non-genealogical bonds produced by introgressive descent.

    PubMed

    Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M

    2012-11-06

    All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.

  2. Neighborhood Disadvantage, Stressful Life Events, and Adjustment among Mexican American Early Adolescents

    ERIC Educational Resources Information Center

    Roosa, Mark W.; Burrell, Ginger L.; Nair, Rajni L.; Coxe, Stefany; Tein, Jenn-Yun; Knight, George P.

    2010-01-01

    This study examined a stress process model in which stressful life events and association with delinquent peers mediated the relationship of neighborhood disadvantage to Mexican American early adolescents' mental health. The authors also proposed that child gender, child generation, and neighborhood informal social control would moderate the…

  3. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

    PubMed Central

    Sansom, Robert S.; Randle, Emma; Donoghue, Philip C. J.

    2015-01-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates. PMID:25520359

  4. Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research

    PubMed Central

    Piperno, Dolores R.

    2017-01-01

    The development of agricultural societies, one of the most transformative events in human and ecological history, was made possible by plant and animal domestication. Plant domestication began 12,000–10,000 y ago in a number of major world areas, including the New World tropics, Southwest Asia, and China, during a period of profound global environmental perturbations as the Pleistocene epoch ended and transitioned into the Holocene. Domestication is at its heart an evolutionary process, and for many prehistorians evolutionary theory has been foundational in investigating agricultural origins. Similarly, geneticists working largely with modern crops and their living wild progenitors have documented some of the mechanisms that underwrote phenotypic transformations from wild to domesticated species. Ever-improving analytic methods for retrieval of empirical data from archaeological sites, together with advances in genetic, genomic, epigenetic, and experimental research on living crop plants and wild progenitors, suggest that three fields of study currently little applied to plant domestication processes may be necessary to understand these transformations across a range of species important in early prehistoric agriculture. These fields are phenotypic (developmental) plasticity, niche construction theory, and epigenetics with transgenerational epigenetic inheritance. All are central in a controversy about whether an Extended Evolutionary Synthesis is needed to reconceptualize how evolutionary change occurs. An exploration of their present and potential utility in domestication study shows that all three fields have considerable promise in elucidating important issues in plant domestication and in agricultural origin and dispersal research and should be increasingly applied to these issues. PMID:28576881

  5. Early Life Conditions, Adverse Life Events, and Chewing Ability at Middle and Later Adulthood

    PubMed Central

    Watt, Richard G.; Tsakos, Georgios

    2014-01-01

    Objectives. We sought to determine the extent to which early life conditions and adverse life events impact chewing ability in middle and later adulthood. Methods. Secondary analyses were conducted based on data from waves 2 and 3 of the Survey of Health, Ageing, and Retirement in Europe (SHARE), collected in the years 2006 to 2009 and encompassing information on current chewing ability and the life history of persons aged 50 years or older from 13 European countries. Logistic regression models were estimated with sequential inclusion of explanatory variables representing living conditions in childhood and adverse life events. Results. After controlling for current determinants of chewing ability at age 50 years or older, certain childhood and later life course socioeconomic, behavioral, and cognitive factors became evident as correlates of chewing ability at age 50 years or older. Specifically, childhood financial hardship was identified as an early life predictor of chewing ability at age 50 years or older (odds ratio = 1.58; 95% confidence interval = 1.22, 2.06). Conclusions. Findings suggest a potential enduring impact of early life conditions and adverse life events on oral health in middle and later adulthood and are relevant for public health decision-makers who design strategies for optimal oral health. PMID:24625140

  6. Integrating evolutionary and molecular genetics of aging.

    PubMed

    Flatt, Thomas; Schmidt, Paul S

    2009-10-01

    Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.

  7. Environmental change during the Late Berriasian - Early Valanginian: a prelude to the late Early Valanginian carbon-isotope event?

    NASA Astrophysics Data System (ADS)

    Morales, Chloé; Schnyder, Johann; Spangenberg, Jorge; Adatte, Thierry; Westermann, Stephane; Föllmi, Karl

    2010-05-01

    The Valanginian period is well known for a positive excursion in marine and terrestrial δ13C records, which has been interpreted as the consequence of a major perturbation in the global carbon cycle (Lini et al., 1992; Erba et al., 2004). In contrast to the positive δ13C excursions of the Early Aptian and latest Cenomanian, marine organic-rich sediments have only been recognized from a few localities (van de Schootbrugge et al., 2003; Reboulet et al., 2003; Gröcke et al., 2005; Westermann et al., in press). The δ13C excursion began in the late Early Valanginian (campylotoxus ammonite zone) and gradually ended during the Late Valanginian. It is associated with a phase of widespread carbonate-platform drowning on the shelf (Föllmi et al., 1994) and a decline in calcareous nannofossils in the pelagic realm (Erba et al., 2004). As a triggering mechanism, numerous authors invoke the formation of the Parañà-Etendeka flood basalt. The correlation of this episode with the Valanginian δ13C event depends, however, on the absolute ages attributed to the Valanginian stage. The recent geological timescale by Ogg et al. (2008) shows that the major eruptional phase occurred during the Late Valanginian. This may imply that the late Early Valanginian δ13C event resulted from a combination of different factors. Important paleoenvironmental change occurred already in the latest Berriasian and earliest Valanginian, prior to the positive δ13C excursion. An increase in nutrient input near the onset of the δ13C excursion (campylotoxus ammonite zone), which may be considered as a trigger of the carbon cycle perturbation, has been identified in different studies, (Hennig, 2003; Duchamp-Alphonse et al., 2007; Bornemann & Mutterlose, 2008). Heterozoan faunal associations became dominant since the Early Valanginian on the northern Tethyan Helvetic platform and may indicate the beginning of sea-water eutrophication (Föllmi et al., 2007). Clay assemblages in the Tethys and Western

  8. The onset of childhood amnesia in childhood: A prospective investigation of the course and determinants of forgetting of early-life events

    PubMed Central

    Bauer, Patricia J.; Larkina, Marina

    2013-01-01

    The present research was an examination of the onset of childhood amnesia and how it relates to maternal narrative style, an important determinant of autobiographical memory development. Children and their mothers discussed unique events when the children were 3 years of age. Different subgroups of children were tested for recall of the events at ages 5, 6, 7, 8, and 9 years. At the later session, they were interviewed by an experimenter about the events discussed 2 to 6 years previously with their mothers (early-life events). Children ages 5, 6, and 7 remembered 60% or more of the early-life events. In contrast, children ages 8 and 9 years remembered fewer than 40% of the early-life events. Overall maternal narrative style predicted children's contributions to mother-child conversations at age 3 years; it did not have cross-lagged relations to memory for early-life events at ages 5 to 9 years. Maternal deflections of the conversational turn to the child predicted the amount of information children later reported about the early-life events. The findings have implications for our understanding of the onset of childhood amnesia and the achievement of an adult-like distribution of memories in the school years. They highlight the importance of forgetting processes in explanations of the amnesia. PMID:24236647

  9. Ancient Origin of the Tryptophan Operon and the Dynamics of Evolutionary Change†

    PubMed Central

    Xie, Gary; Keyhani, Nemat O.; Bonner; Jensen, Roy A.

    2003-01-01

    The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting

  10. Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.

    1983-01-01

    Prokaryotic and eukaryotic evolutionary trees are developed from protein and nucleic-acid sequences by the methods of numerical taxonomy. Trees are presented for bacterial ferredoxins, 5S ribosomal RNA, c-type cytochromes , cytochromes c2 and c', and 5.8S ribosomal RNA; the implications for early evolution are discussed; and a composite tree showing the branching of the anaerobes, aerobes, archaebacteria, and eukaryotes is shown. Single lines are found for all oxygen-evolving photosynthetic forms and for the salt-loving and high-temperature forms of archaebacteria. It is argued that the eukaryote mitochondria, chloroplasts, and cytoplasmic host material are descended from free-living prokaryotes that formed symbiotic associations, with more than one symbiotic event involved in the evolution of each organelle.

  11. How Early Events Affect Growing Brains. An Interview with Neuroscientist Pat Levitt

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    Recent advances in neuroscience show clearly how experience can change brain neurochemicals, and how this in turn affects the way the brain functions. As a result, early negative events actually get built into the growing brain's neurochemistry, altering the brain's architecture. Research is continuing to investigate how children with genetic…

  12. A Further Extension of the Tahiti-Darwin SOI, Early ENSO Events and Darwin Pressure.

    NASA Astrophysics Data System (ADS)

    Allan, Robert J.; Nicholls, Neville; Jones, Phil D.; Butterworth, Ian J.

    1991-07-01

    An extension of the Tahiti minus Darwin Southern Oscillation Index (SOI) from 1882 back to 1876 is reported following the recovery of early Darwin mean sea-level pressure data spanning the period 1865-81. As a result, we are able to compare, for the first time, the major 1877-78 and 1982-83 ENSO events on the basis of this commonly used index. Early Darwin and Jakarta data are also examined in terms of a measure of the Australian response to documented El Niño and/or ENSO events in 1866, 1868, 1871, 1873, 1874 and 1875.The SOI during the 1877-78 ENSO event has a similar temporal response to that in 1982-83, but the index is slightly weaker than in the recent event. Examination of documentary evidence confirms the severity of the drought conditions that affected the Australian continent during the 1877-78 ENSO, and shows that this response is in line with the wider Indo-Pacific impacts reported in the literature. Earlier El Niño phases in 1868 and 1873 are not resolved distinctly in either the Darwin or Jakarta pressure data. This appears to illustrate that El Niño event histories do not always indicate wider ENSO influences in the Indo-Pacific basin, particularly during weak to moderate phases.

  13. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  14. Early event related fields during visually evoked pain anticipation.

    PubMed

    Gopalakrishnan, Raghavan; Burgess, Richard C; Plow, Ela B; Floden, Darlene P; Machado, Andre G

    2016-03-01

    Pain experience is not only a function of somatosensory inputs. Rather, it is strongly influenced by cognitive and affective pathways. Pain anticipatory phenomena, an important limitation to rehabilitative efforts in the chronic state, are processed by associative and limbic networks, along with primary sensory cortices. Characterization of neurophysiological correlates of pain anticipation, particularly during very early stages of neural processing is critical for development of therapeutic interventions. Here, we utilized magnetoencephalography to study early event-related fields (ERFs) in healthy subjects exposed to a 3 s visual countdown task that preceded a painful stimulus, a non-painful stimulus or no stimulus. We found that the first countdown cue, but not the last cue, evoked critical ERFs signaling anticipation, attention and alertness to the noxious stimuli. Further, we found that P2 and N2 components were significantly different in response to first-cues that signaled incoming painful stimuli when compared to non-painful or no stimuli. The findings indicate that early ERFs are relevant neural substrates of pain anticipatory phenomena and could be potentially serve as biomarkers. These measures could assist in the development of neurostimulation approaches aimed at curbing the negative effects of pain anticipation during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Chemical characterization of the early evolutionary phases of high-mass star-forming regions

    NASA Astrophysics Data System (ADS)

    Gerner, Thomas

    2014-10-01

    The formation of high-mass stars is a very complex process and up to date no comprehensive theory about it exists. This thesis studies the early stages of high-mass star-forming regions and employs astrochemistry as a tool to probe their different physical conditions. We split the evolutionary sequence into four observationally motivated stages that are based on a classification proposed in the literature. The sequence is characterized by an increase of the temperatures and densities that strongly influences the chemistry in the different stages. We observed a sample of 59 high-mass star-forming regions that cover the whole sequence and statistically characterized the chemical compositions of the different stages. We determined average column densities of 18 different molecular species and found generally increasing abundances with stage. We fitted them for each stage with a 1D model, such that the result of the best fit to the previous stage was used as new input for the following. This is a unique approach and allowed us to infer physical properties like the temperature and density structure and yielded a typical chemical lifetime for the high-mass star-formation process of 1e5 years. The 18 analyzed molecular species also included four deuterated molecules whose chemistry is particularly sensitive to thermal history and thus is a promising tool to infer chemical ages. We found decreasing trends of the D/H ratios with evolutionary stage for 3 of the 4 molecular species and that the D/H ratio depends more on the fraction of warm and cold gas than on the total amount of gas. That indicates different chemical pathways for the different molecules and confirms the potential use of deuterated species as chemical age indicators. In addition, we mapped a low-mass star forming region in order to study the cosmic ray ionization rate, which is an important parameter in chemical models. While in chemical models it is commonly fixed, we found that it ! strongly varies with

  16. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation

    PubMed Central

    2014-01-01

    Background The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable ‘wildcards’ in morphological phylogenetic analyses, reducing phylogenetic resolution. Results We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. Conclusions Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and

  17. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation.

    PubMed

    Butler, Richard J; Sullivan, Corwin; Ezcurra, Martín D; Liu, Jun; Lecuona, Agustina; Sookias, Roland B

    2014-06-10

    The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable 'wildcards' in morphological phylogenetic analyses, reducing phylogenetic resolution. We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and Argentina demonstrates that early

  18. Integrating Evolutionary and Molecular Genetics of Aging

    PubMed Central

    Flatt, Thomas; Schmidt, Paul S.

    2010-01-01

    Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940’s and 1950’s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980’s and 1990’s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging. PMID:19619612

  19. [Evolutionary medicine: an introduction. Evolutionary biology, a missing element in medical teaching].

    PubMed

    Swynghedauw, Bernard

    2009-05-01

    The aim of this brief review article is to help to reconcile medicine with evolutionary biology, a subject that should be taught in medical school. Evolutionary medicine takes the view that contemporary ills are related to an incompatibility between the environment in which humans currently live and their genomes, which have been shaped by diferent environmental conditions during biological evolution. Human activity has recently induced acute environmental modifications that have profoundly changed the medical landscape. Evolutionary biology is an irreversible, ongoing and discontinuous process characterized by periods of stasis followed by accelerations. Evolutionary biology is determined by genetic mutations, which are selected either by Darwinian selective pressure or randomly by genetic drift. Most medical events result from a genome/environment conflict. Some may be purely genetic, as in monogenic diseases, and others purely environmental, such as traffic accidents. Nevertheless, in most common diseases the clinical landscape is determined by the conflict between these two factors, the genetic elements of which are gradually being unraveled Three examples are examined in depth:--The medical consequences of the greenhouse effect. The absence of excess mortality during recent heat waves suggests that the main determinant of mortality in the 2003 heatwave was heatstroke and old age. The projected long-term effects of global warming call for research on thermolysis, a forgotten branch of physiology.--The hygiene hypothesis postulates that the exponential rise in autoimmune and allergic diseases is linked to lesser exposure to infectious agents, possibly involving counter-regulatory factors such as IL-10.--The recent rise in the incidence of obesity and type 2 diabetes in rich countries can be considered to result from a conflict between a calorie-rich environment and gene variants that control appetite. These variants are currently being identified by genome

  20. Atmospheric pCO2 reconstructed across five early Eocene global warming events

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Schubert, Brian A.

    2017-11-01

    Multiple short-lived global warming events, known as hyperthermals, occurred during the early Eocene (56-52 Ma). Five of these events - the Paleocene-Eocene Thermal Maximum (PETM or ETM1), H1 (or ETM2), H2, I1, and I2 - are marked by a carbon isotope excursion (CIE) within both marine and terrestrial sediments. The magnitude of CIE, which is a function of the amount and isotopic composition of carbon added to the ocean-atmosphere system, varies significantly between marine versus terrestrial substrates. Here we use the increase in carbon isotope fractionation by C3 land plants in response to increased pCO2 to reconcile this difference and reconstruct a range of background pCO2 and peak pCO2 for each CIE, provided two potential carbon sources: methane hydrate destabilization and permafrost-thawing/organic matter oxidation. Although the uncertainty on each pCO2 estimate using this approach is low (e.g., median uncertainty = + 23% / - 18%), this work highlights the potential for significant systematic bias in the pCO2 estimate resulting from sampling resolution, substrate type, diagenesis, and environmental change. Careful consideration of each of these factors is required especially when applying this approach to a single marine-terrestrial CIE pair. Given these limitations, we provide an upper estimate for background early Eocene pCO2 of 463 +248/-131 ppmv (methane hydrate scenario) to 806 +127/-104 ppmv (permafrost-thawing/organic matter oxidation scenario). These results, which represent the first pCO2 proxy estimates directly tied to the Eocene hyperthermals, demonstrate that early Eocene warmth was supported by background pCO2 less than ∼3.5× preindustrial levels and that pCO2 > 1000 ppmv may have occurred only briefly, during hyperthermal events.

  1. Dose and Effect Thresholds for Early Key Events in a Mode of ...

    EPA Pesticide Factsheets

    ABSTRACT Strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. The goal of this study was to evaluate short-term key event indicators using qualitative and quantitative methods in an established pathway of mouse liver tumorigenesis mediated by peroxisome proliferator-activated receptor-alpha (PPARα). Male B6C3F1 mice were exposed for 7 days to di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and n-butyl benzyl phthalate (BBP), which vary in PPARα activity and liver tumorigenicity. Each phthalate increased expression of select PPARα target genes at 7 days, while only DEHP significantly increased liver cell proliferation labeling index (LI). Transcriptional benchmark dose (BMDT) estimates for dose-related genomic markers stratified phthalates according to hypothetical tumorigenic potencies, unlike BMDs for non-genomic endpoints (liver weights or proliferation). The 7-day BMDT values for Acot1 as a surrogate measure for PPARα activation were 29, 370, and 676 mg/kg-d for DEHP, DNOP, and BBP, respectively, distinguishing DEHP (liver tumor BMD of 35 mg/kg-d) from non-tumorigenic DNOP and BBP. Effect thresholds were generated using linear regression of DEHP effects at 7 days and 2-year tumor incidence values to anchor early response molec

  2. Evolutionary demography and the population history of the European early Neolithic.

    PubMed

    Shennan, Stephen

    2009-04-01

    In this paper I propose that evolutionary demography and associated theory from human behavioral ecology provide a strong basis for explaining the available evidence for the patterns observed in the first agricultural settlement of Europe in the 7th-5th millennium cal. BC, linking together a variety of what have previously been disconnected observations and casting doubt on some long-standing existing models. An outline of relevant aspects of life history theory, which provides the foundation for understanding demography, is followed by a review of large-scale demographic patterns in the early Neolithic, which point to rapid population increase and a process of demic diffusion. More localized socioeconomic and demographic patterns suggesting rapid expansion to local carrying capacities and an associated growth of inequality in the earliest farming communities of central Europe (the Linear Pottery Culture, or LBK) are then outlined and shown to correspond to predictions of spatial population ecology and reproductive skew theory. Existing models of why it took so long for farming to spread to northern and northwest Europe, which explain the spread in terms of the gradual disruption of hunter-gatherer ways of life, are then questioned in light of evidence for population collapse at the end of the LBK. Finally, some broader implications of the study are presented, including the suggestion that the pattern of an initial agricultural boom followed by a bust may be relevant in other parts of the world.

  3. Treatment resistance in urothelial carcinoma: an evolutionary perspective.

    PubMed

    Vlachostergios, Panagiotis J; Faltas, Bishoy M

    2018-05-02

    The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.

  4. CISN ShakeAlert: Faster Warning Information Through Multiple Threshold Event Detection in the Virtual Seismologist (VS) Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Cua, G. B.; Fischer, M.; Caprio, M.; Heaton, T. H.; Cisn Earthquake Early Warning Project Team

    2010-12-01

    The Virtual Seismologist (VS) earthquake early warning (EEW) algorithm is one of 3 EEW approaches being incorporated into the California Integrated Seismic Network (CISN) ShakeAlert system, a prototype EEW system that could potentially be implemented in California. The VS algorithm, implemented by the Swiss Seismological Service at ETH Zurich, is a Bayesian approach to EEW, wherein the most probable source estimate at any given time is a combination of contributions from a likehihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS codes have been running in real-time at the Southern California Seismic Network since July 2008, and at the Northern California Seismic Network since February 2009. We discuss recent enhancements to the VS EEW algorithm that are being integrated into CISN ShakeAlert. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to initiate an event declaration, with the goal of reducing false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and the requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) into an on-site/regional approach capable of providing a continuously evolving stream of EEW information starting from the first P-detection. Real-time and offline analysis on Swiss and California waveform datasets indicate that the

  5. Constraints on early events in Martian history as derived from the cratering record

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1990-01-01

    Constrains on early events in Martian history are derived using the planet's cratering record. Variations in the shapes of the crater size-frequency distribution curves are interpreted as indicative of the size-frequency distribution of the production populations, thus providing information about the age of the unit relative to the end of the heavy bombardment period. Results from the analysis of craters superposed on heavily cratered units across the Martian surface provide constraints on the hemispheric dichotomy and the early erosional conditions on Mars.

  6. Negative affective spillover from daily events predicts early response to cognitive therapy for depression.

    PubMed

    Cohen, Lawrence H; Gunthert, Kathleen C; Butler, Andrew C; Parrish, Brendt P; Wenze, Susan J; Beck, Judith S

    2008-12-01

    This study evaluated the predictive role of depressed outpatients' (N = 62) affective reactivity to daily stressors in their rates of improvement in cognitive therapy (CT). For 1 week before treatment, patients completed nightly electronic diaries that assessed daily stressors and negative affect (NA). The authors used multilevel modeling to compute each patient's within-day relationship between daily stressors and daily NA (within-day reactivity), as well as the relationship between daily stressors and next-day NA (next-day reactivity; affective spillover). In growth model analyses, the authors evaluated the predictive role of patients' NA reactivity in their early (Sessions 1-4) and late (Sessions 5-12) response to CT. Within-day NA reactivity did not predict early or late response to CT. However, next-day reactivity predicted early response to CT, such that patients who had greater NA spillover in response to negative events had a slower rate of symptom change during the first 4 sessions. Affective spillover did not influence later response to CT. The findings suggest that depressed patients who have difficulty bouncing back the next day from their NA reactions to a relative increase in daily negative events will respond less quickly to the early sessions of CT.

  7. The early Toarcian anoxic event: what the beginning and the end of the story are?

    NASA Astrophysics Data System (ADS)

    Mattioli, Emanuela; Plancq, Julien; Raucsik, Béla

    2010-05-01

    The early Toarcian anoxic event: what the beginning and the end of the story are? E. Mattioli (1), J. Plancq (1), and B. Rauksik (2) (1) UMR 5125 PEPS, CNRS, France; Université Lyon 1, Campus de la DOUA, Bâtiment Géode, 69622 Villeurbanne Cedex, France (emanuela.mattioli@univ-lyon1.fr) (2) Department of Earth and Environmental Sciences, University of Pannonia, Veszprém, Hungary The early Toarcian anoxic event (T-OAE) and the associated biotic crisis have received much attention in the last decade. However, the events forewarning the crisis as well as its aftermath are still poorly known. The T-OAE coincides with a prominent carbon isotope negative excursion (T-CIE) that is preceded by an excursion of similar intensity at the Pliensbachian-Toarcian boundary (Hesselbo et al., 2007). The onset of T-CIE occurred some 700 kyr later than the end of the Boundary-CIE (Suan et al., 2008a). This succession of events demonstrates that the T-OAE was a complex suite of environmental perturbations. In this work, we focused on calcareous nannofossil assemblages occurring in the Peniche section (Portugal) during the Boundary-CIE with the aim to understand if calcifying plankton reacted in a similar/different way to the two CIEs. Also, two sections and one borehole located along a W-E transect, along the NW-Tethyan shelf (in the Yorkshire coast, in the E Paris Basin, and in Mecsek Basin, respectively), were investigated to assess which way calcareous nannoplankton recovered after the crisis, and if the recovery was a synchronous event. The production by nannoplankton collapsed during the T-CIE, as demonstrated by the lowest absolute abundance of nannofossils measured in Peniche and other studied sites (Mattioli et al., 2008). Besides this nannofossil abundance decrease, also the size of the incertae sedis Schizosphaerella test was drastically reduced (Suan et al., 2008b). If a similar size decrease is also recorded during the Boundary-CIE, calcareous nannofossil abundances are

  8. Chinese paleontology and the reception of Darwinism in early twentieth century.

    PubMed

    Yu, Xiaobo

    2017-12-01

    The paper examines the social, cultural and disciplinary factors that influenced the reception and appropriation of Darwinism by China's first generation paleontologists. Darwinism was mixed with Social Darwinism when first introduced to China, and the co-option of Darwinian phrases for nationalistic awakening obscured the scientific essence of Darwin's evolutionary theory. First generation Chinese paleontologists started their training in 1910s-1920s. They quickly asserted their professional identity by successfully focusing on morphology, taxonomy and biostratigraphy. Surrounded by Western paleontologists with Lamarckian or orthogenetic leanings, early Chinese paleontologists enthusiastically embraced evolution and used fossils as factual evidence; yet not enough attention was given to mechanistic evolutionary studies. The 1940s saw the beginning of a new trend for early Chinese paleontologists to incorporate more biological and biogeographical components in their work, but external events such as the dominance of Lysenkoism in the 1950s made the Modern Synthesis pass by without being publicly noticed in Chinese paleontology. Characterized by the larger goal of using science for nation building and by the utilitarian approach favoring local sciences, the reception and appropriation of Darwinism by first generation Chinese paleontologists raise important questions for studying the indigenizing efforts of early Chinese scientists to appropriate Western scientific theories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Human Germline Mutation and the Erratic Evolutionary Clock

    PubMed Central

    Przeworski, Molly

    2016-01-01

    Our understanding of the chronology of human evolution relies on the “molecular clock” provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a precise characterization of how mutations accumulate in development in males and females—knowledge that remains elusive. PMID:27760127

  10. Evolutionary ecology of virus emergence.

    PubMed

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  11. Evolutionary Game Theory in Growing Populations

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Cremer, Jonas; Frey, Erwin

    2010-10-01

    Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in a population while the dynamic behavior of the population size is mostly left unconsidered. We present here a generic stochastic model which combines the growth dynamics of the population and its internal evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify our approach by studying the dilemma of cooperation in growing populations and show that genuinely stochastic events can ease the dilemma by leading to a transient but robust increase in cooperation.

  12. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhleh, Luay

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less

  13. Spatial Structure of Evolutionary Models of Dialects in Contact

    PubMed Central

    Murawaki, Yugo

    2015-01-01

    Phylogenetic models, originally developed to demonstrate evolutionary biology, have been applied to a wide range of cultural data including natural language lexicons, manuscripts, folktales, material cultures, and religions. A fundamental question regarding the application of phylogenetic inference is whether trees are an appropriate approximation of cultural evolutionary history. Their validity in cultural applications has been scrutinized, particularly with respect to the lexicons of dialects in contact. Phylogenetic models organize evolutionary data into a series of branching events through time. However, branching events are typically not included in dialectological studies to interpret the distributions of lexical terms. Instead, dialectologists have offered spatial interpretations to represent lexical data. For example, new lexical items that emerge in a politico-cultural center are likely to spread to peripheries, but not vice versa. To explore the question of the tree model’s validity, we present a simple simulation model in which dialects form a spatial network and share lexical items through contact rather than through common ancestors. We input several network topologies to the model to generate synthetic data. We then analyze the synthesized data using conventional phylogenetic techniques. We found that a group of dialects can be considered tree-like even if it has not evolved in a temporally tree-like manner but has a temporally invariant, spatially tree-like structure. In addition, the simulation experiments appear to reproduce unnatural results observed in reconstructed trees for real data. These results motivate further investigation into the spatial structure of the evolutionary history of dialect lexicons as well as other cultural characteristics. PMID:26221958

  14. Early events governing memory CD8+ T-cell differentiation.

    PubMed

    Obar, Joshua J; Lefrançois, Leo

    2010-08-01

    Understanding the regulation of the CD8(+) T-cell response and how protective memory cells are generated has been intensely studied. It is now appreciated that a naive CD8(+) T cell requires at least three signals to mount an effective immune response: (i) TCR triggering, (ii) co-stimulation and (iii) inflammatory cytokines. Only recently have we begun to understand the molecular integration of those signals and how early events regulate the fate decisions of the responding CD8(+) T cells. This review will discuss the recent findings about both the extracellular and intracellular factors that regulate the destiny of responding CD8(+) T cells.

  15. Evolutionary medicine and its implications for endocrinological issues (e.g. menopause).

    PubMed

    Kirchengast, Sylvia; Rühli, Frank

    2013-06-01

    Evolutionary medicine, which was formalized in the early 1990s, investigates evolutionary causes of recent human disease, disorders and malfunctions but also the influence of changing living conditions and modernization on health and disease. Evolutionary medicine can also provide insights into endocrinological disorders and in particular in the process of female reproductive senescence. Female reproductive senescence, i.e. menopausal transition is physiologically caused by the decline of estrogen secretion, which is associated with various somatic and psychic discomforts making this stage of life extremely uncomfortable. From the viewpoint of evolutionary medicine, these menopausal symptoms are the result from the sudden decrease of very high lifetime estrogen levels to zero during postmenopause, a situation which is quite new in our evolution and history. While women in recent developed countries experience menarche early, menopause late, few pregnancies, short periods of lactation and consequently low life time estrogen levels. The opposite is true of women living in traditional societies, whose living conditions may be interpreted as a mirror of the situation in our history. From this viewpoint we can conclude that menopausal symptoms may are the result of a mismatch between female reproductive physiology and recent living conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. [Influence of early childhood stress exposure and traumatic life events on pain perception].

    PubMed

    Tesarz, J; Gerhardt, A; Eich, W

    2018-06-05

    Adult pain perception is influenced substantially by interactions between mind, body, and social environment during early life. Early stress exposure and traumatic life events induce powerful psychophysical stress reactions that exert multiple neurofunctional processes. This has significant implications for pain perception and pain processing. As part of this review, the complex relationships between traumatic stress experiences and associated psychobiological mechanisms of chronic pain will be discussed. Based on selected studies, psychophysiological findings are presented and possible underlying mechanisms are discussed. The article concludes with a discussion of potential implications for treatment.

  17. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana

    PubMed Central

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-01-01

    The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359

  18. Early changes in physical tree characteristics during an oak decline event in the Ozark highlands

    Treesearch

    Martin A. Spetich

    2006-01-01

    An oak decline event is severely affecting up to 120 000 ha in the Ozark National Forest of Arkansas. Results of early changes in physical tree characteristics during that event are presented. In the fall and winter of 1999 and 2000, we established research plots on a site that would become a center of severe oak decline. In August 2000, standing trees > 14 cm in...

  19. Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event.

    PubMed

    Caswell, Bryony A; Frid, Christopher L J

    2017-01-01

    Global warming during the Early Jurassic, and associated widespread ocean deoxygenation, was comparable in scale with the changes projected for the next century. This study quantifies the impact of severe global environmental change on the biological traits of marine communities that define the ecological roles and functions they deliver. We document centennial-millennial variability in the biological trait composition of Early Jurassic (Toarcian) seafloor communities and examine how this changed during the event using biological traits analysis. Environmental changes preceding the global oceanic anoxic event (OAE) produced an ecological shift leading to stressed benthic palaeocommunities with reduced resilience to the subsequent OAE. Changes in traits and ecological succession coincided with major environmental changes; and were of similar nature and magnitude to those in severely deoxygenated benthic communities today despite the very different timescales. Changes in community composition were linked to local redox conditions whereas changes in populations of opportunists were driven by primary productivity. Throughout most of the OAE substitutions by tolerant taxa conserved the trait composition and hence functioning, but periods of severe deoxygenation caused benthic defaunation that would have resulted in functional collapse. Following the OAE recovery was slow probably because the global nature of the event restricted opportunities for recruitment from outside the basin. Our findings suggest that future systems undergoing deoxygenation may initially show functional resilience, but severe global deoxygenation will impact traits and ecosystem functioning and, by limiting the species pool, will slow recovery rates.

  20. Evolutionary Instability of Symbiotic Function in Bradyrhizobium japonicum

    PubMed Central

    Sachs, Joel L.; Russell, James E.; Hollowell, Amanda C.

    2011-01-01

    Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally-acquired bacterial mutualists often lose symbiotic function over evolutionary time. Here, we investigate the evolutionary erosion of symbiotic traits in Bradyrhizobium japonicum, a nodulating root symbiont of legumes. Building on a previous published phylogeny we infer loss events of nodulation capability in a natural population of Bradyrhizobium, potentially driven by mutation or deletion of symbiosis loci. Subsequently, we experimentally evolved representative strains from the symbiont population under host-free in vitro conditions to examine potential drivers of these loss events. Among Bradyrhizobium genotypes that evolved significant increases in fitness in vitro, two exhibited reduced symbiotic quality, but no experimentally evolved strain lost nodulation capability or evolved any fixed changes at six sequenced loci. Our results are consistent with trade-offs between symbiotic quality and fitness in a host free environment. However, the drivers of loss-of-nodulation events in natural Bradyrhizobium populations remain unknown. PMID:22073160

  1. The Evolutionary History of Sarco(endo)plasmic Calcium ATPase (SERCA)

    PubMed Central

    Altshuler, Ianina; Vaillant, James J.; Xu, Sen; Cristescu, Melania E.

    2012-01-01

    Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na+/K+ transporters, H+/K+ transporters, and plasma membrane Ca2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca2+ into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain. PMID:23285113

  2. The evolutionary history of sarco(endo)plasmic calcium ATPase (SERCA).

    PubMed

    Altshuler, Ianina; Vaillant, James J; Xu, Sen; Cristescu, Melania E

    2012-01-01

    Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na(+)/K(+) transporters, H(+)/K(+) transporters, and plasma membrane Ca(2+) pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca(2+) into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.

  3. 3D Computational Mechanics Elucidate the Evolutionary Implications of Orbit Position and Size Diversity of Early Amphibians

    PubMed Central

    Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel

    2015-01-01

    For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs. PMID:26107295

  4. On evolutionary systems.

    PubMed

    Alvarez de Lorenzana, J M; Ward, L M

    1987-01-01

    This paper develops a metatheoretical framework for understanding evolutionary systems (systems that develop in ways that increase their own variety). The framework addresses shortcomings seen in other popular systems theories. It concerns both living and nonliving systems, and proposes a metahierarchy of hierarchical systems. Thus, it potentially addresses systems at all descriptive levels. We restrict our definition of system to that of a core system whose parts have a different ontological status than the system, and characterize the core system in terms of five global properties: minimal length interval, minimal time interval, system cycle, total receptive capacity, and system potential. We propose two principles through the interaction of which evolutionary systems develop. The Principle of Combinatorial Expansion describes how a core system realizes its developmental potential through a process of progressive differentiation of the single primal state up to a limit stage. The Principle of Generative Condensation describes how the components of the last stage of combinatorial expansion condense and become the environment for and components of new, enriched systems. The early evolution of the Universe after the "big bang" is discussed in light of these ideas as an example of the application of the framework.

  5. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  6. Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred

    2008-01-01

    Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.

  7. Evolutionary Nephrology.

    PubMed

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  8. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    PubMed Central

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  9. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    PubMed

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  10. Early events in copper-ion catalyzed oxidation of α-synuclein.

    PubMed

    Tiwari, Manish K; Leinisch, Fabian; Sahin, Cagla; Møller, Ian Max; Otzen, Daniel E; Davies, Michael J; Bjerrum, Morten J

    2018-04-22

    Previous studies on metal-ion catalyzed oxidation of α-synuclein oxidation have mostly used conditions that result in extensive modification precluding an understanding of the early events in this process. In this study, we have examined time-dependent oxidative events related to α-synuclein modification using six different molar ratios of Cu 2+ /H 2 O 2 /protein and Cu 2+ /H 2 O 2 /ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu 2+ /H 2 O 2 /protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4.7:15.6:1 gave 0.22 carbonyls per α-synuclein within 15 min. With the latter conditions, rapid conversion of 3 out of 4 methionines (Met) to methionine sulfoxide, and 2 out of 4 tyrosines (Tyr) were converted to products including inter- and intra-molecular dityrosine cross-links and protein oligomers, as determined by SDS-PAGE and Western blot analysis. Limited histidine (His) modification was observed. The rapid formation of dityrosine cross-links was confirmed by fluorescence and mass-spectrometry. These data indicate that Met and Tyr oxidation are early events in Cu 2+ /H 2 O 2 -mediated damage, with carbonyl formation being a minor process. With the Cu 2+ /H 2 O 2 /ascorbate system, rapid protein carbonyl formation was detected with the first 5 min, but after this time point, little additional carbonyl formation was detected. With this system, lower levels of Met and Tyr oxidation were detected (2 Met and 1 Tyr modified with a Cu 2+ /H 2 O 2 /ascorbate/protein ratio of 2.3:7.8:7.8:1), but greater His oxidation. Only low levels of intra- dityrosine cross-links and no inter- dityrosine oligomers were detected under these conditions, suggesting that ascorbate limits Cu 2+ /H 2 O 2 -induced α-synuclein modification. Copyright © 2018. Published by Elsevier Inc.

  11. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly

    PubMed Central

    Hanski, Ilkka A.

    2011-01-01

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506

  12. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    PubMed

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  13. Detection of rain events in radiological early warning networks with spectro-dosimetric systems

    NASA Astrophysics Data System (ADS)

    Dąbrowski, R.; Dombrowski, H.; Kessler, P.; Röttger, A.; Neumaier, S.

    2017-10-01

    Short-term pronounced increases of the ambient dose equivalent rate, due to rainfall are a well-known phenomenon. Increases in the same order of magnitude or even below may also be caused by a nuclear or radiological event, i.e. by artificial radiation. Hence, it is important to be able to identify natural rain events in dosimetric early warning networks and to distinguish them from radiological events. Novel spectrometric systems based on scintillators may be used to differentiate between the two scenarios, because the measured gamma spectra provide significant nuclide-specific information. This paper describes three simple, automatic methods to check whether an dot H*(10) increase is caused by a rain event or by artificial radiation. These methods were applied to measurements of three spectrometric systems based on CeBr3, LaBr3 and SrI2 scintillation crystals, investigated and tested for their practicability at a free-field reference site of PTB.

  14. Evolutionary molecular medicine.

    PubMed

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  15. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    PubMed

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. An improved approximate-Bayesian model-choice method for estimating shared evolutionary history

    PubMed Central

    2014-01-01

    Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937

  17. Investigating evolutionary constraints on the detection of threatening stimuli in preschool children.

    PubMed

    Zsido, Andras N; Deak, Anita; Losonci, Adrienn; Stecina, Diana; Arato, Akos; Bernath, Laszlo

    2018-04-01

    Numerous objects and animals could be threatening, and thus, children learn to avoid them early. Spiders and syringes are among the most common targets of fears and phobias of the modern word. However, they are of different origins: while the former is evolutionary relevant, the latter is not. We sought to investigate the underlying mechanisms that make the quick detection of such stimuli possible and enable the impulse to avoid them in the future. The respective categories of threatening and non-threatening targets were similar in shape, while low-level visual features were controlled. Our results showed that children found threatening cues faster, irrespective of the evolutionary age of the cues. However, they detected non-threatening evolutionary targets faster than non-evolutionary ones. We suggest that the underlying mechanism may be different: general feature detection can account for finding evolutionary threatening cues quickly, while specific features detection is more appropriate for modern threatening stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas

    PubMed Central

    Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.

    2015-01-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  19. A New Model of the Early Paleozoic Tectonics and Evolutionary History in the Northern Qinling, China

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng; Zhang, Guowei; Yang, Zhao; Qu, Hongjun; Liu, Xiaoming

    2010-05-01

    a back-arc basin on the northern side of the island-arc terrain. To the east, it is presented by the Erlangping group in Xixia area, which consists mainly of clastic sediments, carbonatites and basic volcanic rocks. The geochemistry of the basalts show that they were formed in a back-arc basin setting (Sun et al.,1996), and the radiolarites from the interlayed silicalites show the Orovician-Silurian age (Wang et al., 1995). Our new investigation reveals some new tectonic assemblages exposed in the Yinggerzui area, Qinghusi area to the west. The detailed geochemical studies indicate that they were formed in a back-arc basin. All above evidences suggest that there had existed an Early Paleozoic subduction system, which consists of a subduction trench, island-Arc and back-arc basin along the northern Qinling zone. It is also indicated that the Paleo-ocean had been evolved into a complete evolutionary process including initial spreading (E-MORB ophiolite), maturated extension (N-MORB ophiolite) and subduction (Island-arc volcanic rocks). However, it is notable that there are large scale of Devonian clastic sediments distributing on the south of the Shangdan suture, and the pre-Mesozoic rocks in the South Qinling without any metamorphism or just underwent the low-greenschist facies metamorphism in some places, which are very different from the North Qinling Terrane consisting mainly of Precambrian rocks and evolving into an amphibolite facies metamorphism at ~1.0 Ga and greenschist facies metamorphism at ~400 Ma (Liu et al., 1993; Zhang et al., 1994). Accordingly, it is prefer that there only occurred a subduction of the Shangdan oceanic crust from south to north along the Shangdan suture on the south of the Northern Qinling Terrane. However, the Piaochi and the Anjiping granites possessing the sym-collisional type granite geochemistry and formation age of 450-486 (Chen et al., 1991; zhang et al., 1996) indicate that there occurred a collisional event between the North

  20. Inferring phylogenetic trees from the knowledge of rare evolutionary events.

    PubMed

    Hellmuth, Marc; Hernandez-Rosales, Maribel; Long, Yangjing; Stadler, Peter F

    2018-06-01

    Rare events have played an increasing role in molecular phylogenetics as potentially homoplasy-poor characters. In this contribution we analyze the phylogenetic information content from a combinatorial point of view by considering the binary relation on the set of taxa defined by the existence of a single event separating two taxa. We show that the graph-representation of this relation must be a tree. Moreover, we characterize completely the relationship between the tree of such relations and the underlying phylogenetic tree. With directed operations such as tandem-duplication-random-loss events in mind we demonstrate how non-symmetric information constrains the position of the root in the partially reconstructed phylogeny.

  1. Cenozoic tectonic and climatic events in southern Iberian Peninsula: Implications for the evolutionary history of freshwater fish of the genus Squalius (Actinopterygii, Cyprinidae).

    PubMed

    Perea, Silvia; Cobo-Simon, Marta; Doadrio, Ignacio

    2016-04-01

    Southern Iberian freshwater ecosystems located at the border between the European and African plates represent a tectonically complex region spanning several geological ages, from the uplifting of the Betic Mountains in the Serravalian-Tortonian periods to the present. This area has also been subjected to the influence of changing climate conditions since the Middle-Upper Pliocene when seasonal weather patterns were established. Consequently, the ichthyofauna of southern Iberia is an interesting model system for analyzing the influence of Cenozoic tectonic and climatic events on its evolutionary history. The cyprinids Squalius malacitanus and Squalius pyrenaicus are allopatrically distributed in southern Iberia and their evolutionary history may have been defined by Cenozoic tectonic and climatic events. We analyzed MT-CYB (510 specimens) and RAG1 (140 specimens) genes of both species to reconstruct phylogenetic relationships and to estimate divergence times and ancestral distribution ranges of the species and their populations. We also assessed their levels of genetic structure and diversity as well as the amount of gene flow between populations. To investigate recent paleogeographical and climatic factors in southern Iberia, we modeled changes-through-time in sea level from the LGM to the present. Phylogenetic, geographic and population structure analyses revealed two well-supported species (S. malacitanus and S. pyrenaicus) in southern Iberia and two subclades (Atlantic and Mediterranean) within S. malacitanus. The origin of S. malacitanus and the separation of its Atlantic and Mediterranean populations occurred during the Serravalian-Tortonian and Miocene-Pliocene periods, respectively. These divergence events occurred in the Middle Pliocene and Pleistocene in S. pyrenaicus. In both species, Atlantic basins possessed populations with higher genetic diversity than Mediterranean, which may be explained by the Janda Lagoon. The isolation of S. malacitanus was

  2. Occurrence of early adverse events after vaccination against influenza at a Brazilian reference center.

    PubMed

    Lopes, Marta Heloísa; Mascheretti, Melissa; Franco, Marilia Miranda; Vasconcelos, Ricardo; Gutierrez, Eliana Battaggia

    2008-02-01

    Since 1999, the Ministry of Health in Brazil has conducted campaigns of vaccination against influenza targeted towards the elderly, chronically-diseased people and health care workers. The vaccine against influenza is associated with adverse events of minor importance. To investigate the early adverse events related to the vaccine against influenza. CASUISTICS AND METHODS: One hundred and ninety seven elderly individuals and health care workers vaccinated against influenza were included. An inquiry regarding adverse events related to the vaccine was applied seven days after the vaccination. Local adverse events were reported by 32.5% and systemic effects by 26.4% of the vaccinated subjects. Pain in the region of the injection, headache, myalgia, malaise, and coryza were more frequent in the workers than in the elderly (p<0.05). There was no statistically significant difference in the occurrence of fever. The belief of part of the population that credits frequent and uncomfortable adverse events to the vaccine was not confirmed. The subjective adverse events were more frequent in the health care workers, which can influence, in a negative way, the disclosure of the benefits of this vaccine due to their role as opinion makers.

  3. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity.

    PubMed

    de Bruyn, Mark; Stelbrink, Björn; Morley, Robert J; Hall, Robert; Carvalho, Gary R; Cannon, Charles H; van den Bergh, Gerrit; Meijaard, Erik; Metcalfe, Ian; Boitani, Luigi; Maiorano, Luigi; Shoup, Robert; von Rintelen, Thomas

    2014-11-01

    Tropical Southeast (SE) Asia harbors extraordinary species richness and in its entirety comprises four of the Earth's 34 biodiversity hotspots. Here, we examine the assembly of the SE Asian biota through time and space. We conduct meta-analyses of geological, climatic, and biological (including 61 phylogenetic) data sets to test which areas have been the sources of long-term biological diversity in SE Asia, particularly in the pre-Miocene, Miocene, and Plio-Pleistocene, and whether the respective biota have been dominated by in situ diversification, immigration and/or emigration, or equilibrium dynamics. We identify Borneo and Indochina, in particular, as major "evolutionary hotspots" for a diverse range of fauna and flora. Although most of the region's biodiversity is a result of both the accumulation of immigrants and in situ diversification, within-area diversification and subsequent emigration have been the predominant signals characterizing Indochina and Borneo's biota since at least the early Miocene. In contrast, colonization events are comparatively rare from younger volcanically active emergent islands such as Java, which show increased levels of immigration events. Few dispersal events were observed across the major biogeographic barrier of Wallace's Line. Accelerated efforts to conserve Borneo's flora and fauna in particular, currently housing the highest levels of SE Asian plant and mammal species richness, are critically required. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Not Just the 8.2 event: Dynamic Early Holocene Climate in Arctic Canada

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Briner, J. P.; Miller, G. H.; Francis, D. R.

    2006-12-01

    Temperature reconstructions from a lake in the eastern Canadian Arctic indicate that peak warmth in the early Holocene was interrupted by two abrupt, short-lived temperature reversals at ~9.l and ~8.5 ka. Summer temperatures at Lake CF8, Baffin Island (~500 km west of Greenland) are inferred from subfossil midge (Chironomidae) assemblages. Our results indicate that the site, like others on Baffin Island, experienced exceptionally warm summers (almost 5°C warmer than present) through much of the early Holocene, presumably in response to enhanced summer insolation. After 1000 years of very warm, stable climate, warmth was interrupted by two discrete cold reversals at ~9.1 and ~8.5 ka, during which multiple cold-stenothermous midge taxa appeared in the lake and summer temperatures dropped more than 3°C. These two clearly-defined reversals, well beyond the range of background variability, were of similar amplitude and duration, and were separated by several centuries of near-peak warmth. The only Holocene events of comparable amplitude at this site are the rapid onset of Holocene warmth, and the more gradual Neoglacial cooling after 8 ka. Abrupt cooling events over the Baffin region are consistent with model simulations of the impacts of freshwater outbursts into the Labrador Sea, such as the Lake Agassiz outburst flood that occurred ~8.4 ka. That there are two discrete events recorded at this site indicates that the "8.2 event" was not uniquely significant in this region; rather, the period between approximately ~9.2 and 8 ka was characterized by repeated climate fluctuations forced by multiple outburst floods or other mechanisms. Thus global correlations among paleoclimate records need not assume that climate perturbations during this time period necessarily correlate with the draining of Lake Agassiz or the 8.2 ka cooling in central Greenland.

  5. Episodic processes, invasion and faunal mosaics in evolutionary and ecological time

    USDA-ARS?s Scientific Manuscript database

    Episodes of ecological perturbation and faunal turnover represent crises for global biodiversity and have occurred periodically across Earth history on a continuum linking deep evolutionary and shallow ecological time. Major extinction events and biodiversity crises across the 540 milion years of th...

  6. The role of parent, teacher, and peer events in maintaining depressive symptoms during early adolescence.

    PubMed

    Herres, Joanna; Kobak, Roger

    2015-02-01

    Negative interpersonal events have been consistently identified as both antecedents and sequalae of adolescent depressive symptoms. However, little is known about the relative contributions of specific domains of interpersonal events (parents, peers or teachers) to the maintenance of depressive symptoms during early adolescence or whether a lack of positive interpersonal interactions plays a direct role in maintaining depressive symptoms. Further, few studies have examined whether positive interpersonal events moderate associations between negative events and adolescents' depressive symptoms. This study combined stress generation and exposure models to evaluate the contribution of daily events to the maintenance of depressive symptoms in a sample of 132 adolescents (53 % female) followed from ages 13 to 15. Daily phone diaries collected at age 14 assessed adolescents' negative and positive interactions with parents, teachers, and peers in a sample of adolescents from economically disadvantaged families. Negative peer events uniquely accounted for the maintenance of depressive symptoms over the 2 years period. Results did not differ by gender; however, positive parent events buffered the effects of negative parent events for females but not for males. Findings highlight the significance of peer relationships during a period of vulnerability for depressive symptoms.

  7. The record of Tethyan planktonic foraminifera at the early Paleogene hyperthermal events and Middle Eocene Climatic Optimum in northeastern Italy: are they comparable?

    NASA Astrophysics Data System (ADS)

    Luciani, Valeria; Giusberti, Luca; Agnini, Claudia; Fornaciari, Eliana; Rio, Domenico

    2010-05-01

    The early Paleogene is one of the more climatically and evolutionary dynamic periods in the Earth history that records a pronounced warming trend peaking in the Early Eocene, and a successive composite transition towards the modern icehouse world. Ever increasingly scientific attention is dedicated to definitely comprehend timing, nature and characters of the complex, non-linear evolution of the Paleogene climate. Several complete and expanded Paleogene successions (Forada, Possagno, Alano, Farra), with a sound magneto-biochronostratigraphic and stable isotope record crop out in the Venetian Southern Alps (Northeast Italy). Recent studies (Giusberti et. al., 2007; Luciani et al., 2007; Agnini et al., 2008) and unpublished data document the presence in these section of the main short-lived warming events (hyperthermals) of the Eocene (Paleocene-Eocene Thermal Maximum, PETM, ca 55 Ma, Eocene Layer of Mysterious Origin (ELMO, ca 53,6 Ma), X-event (ca 52.5 Ma), of the Early Eocene Climatic Optimum (EECO, ca 50-52 Ma) and of the Middle Eocene Climatic Optimum (MECO, ca 40 Ma; Zachos et al., 2001. 2008). All these events are typified by marked negative shifts in δ13C curves that correspond to carbonate decrease related to rise of the carbonate compensation depth in turn induced by large introduction in the ocean-atmosphere system of CO2. Common features to the warming events are pronounced and complex changes in planktonic foraminiferal assemblages, indicating strong environmental perturbations that perfectly parallel the variations of the stable isotope curves in all the examined events. These strict correspondences indicate close cause-effect relationships between changes in environmental conditions and modifications of the assemblages. Our analysis shows that the most striking variations are recorded by the PETM and MECO assemblages that reflect highly perturbed environments. The ELMO, X-event and EECO exhibit planktic foraminiferal responses that are similar to

  8. Evolutionary thinking

    PubMed Central

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  9. New Early Jurassic Tetrapod Assemblages Constrain Triassic-Jurassic Tetrapod Extinction Event

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Shubin, N. H.; Anders, M. H.

    1987-08-01

    The discovery of the first definitively correlated earliest Jurassic (200 million years before present) tetrapod assemblage (Fundy basin, Newark Supergroup, Nova Scotia) allows reevaluation of the duration of the Triassic-Jurassic tetrapod extinction event. Present are tritheledont and mammal-like reptiles, prosauropod, theropod, and ornithischian dinosaurs, protosuchian and sphenosuchian crocodylomorphs, sphenodontids, and hybodont, semionotid, and palaeonisciform fishes. All of the families are known from Late Triassic and Jurassic strata from elsewhere; however, pollen and spore, radiometric, and geochemical correlation indicate an early Hettangian age for these assemblages. Because all ``typical Triassic'' forms are absent from these assemblages, most Triassic-Jurassic tetrapod extinctions occurred before this time and without the introduction of new families. As was previously suggested by studies of marine invertebrates, this pattern is consistent with a global extinction event at the Triassic-Jurassic boundary. The Manicouagan impact structure of Quebec provides dates broadly compatible with the Triassic-Jurassic boundary and, following the impact theory of mass extinctions, may be implicated in the cause.

  10. The extended evolutionary synthesis: its structure, assumptions and predictions

    PubMed Central

    Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John

    2015-01-01

    Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559

  11. Beyond the pleistocene: using phylogeny and constraint to inform the evolutionary psychology of human mating.

    PubMed

    Eastwick, Paul W

    2009-09-01

    Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the specific timing of evolutionary events and the role of evolutionary constraint, researchers using the phylogenetic approach can generate new predictions regarding mating phenomena and derive new explanations for existing evolutionary psychological findings. Especially useful is the concept of the adaptive workaround-an adaptation that manages the maladaptive elements of a pre-existing evolutionary constraint. The current review organizes 7 features of human mating into their phylogenetic context and presents evidence that 2 adaptive workarounds played a critical role as Homo sapiens's mating psychology evolved. These adaptive workarounds function in part to mute or refocus the effects of older, previously evolved adaptations and highlight the layered nature of humans' mating psychology. (c) 2009 APA, all rights reserved.

  12. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.

    PubMed

    Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I

    2009-09-01

    Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.

  13. Sophisticated digestive systems in early arthropods.

    PubMed

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-05-02

    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian.

  14. Early Intravascular Events are Associated with Development of ARDS.

    PubMed

    Abdulnour, Raja-Elie E; Gunderson, Tina; Barkas, Ioanna; Timmons, Jack Y; Barnig, Cindy; Gong, Michelle; Kor, Daryl J; Gajic, Ognjen; Talmor, Daniel; Carter, Rickey E; Levy, Bruce D

    2018-05-21

    The acute respiratory distress syndrome (ARDS) is a devastating illness with limited therapeutic options. A better understanding of early biochemical and immunological events in ARDS could inform the development of new preventive and treatment strategies. To determine select peripheral blood lipid mediator and leukocyte responses in patients at-risk for ARDS. Patients at risk for ARDS were randomized as part of a multicenter, double-blind clinical trial of aspirin versus placebo (LIPS-A; NCT01504867). Plasma thromboxane B2 (TxB2), 15-epi-LXA4 (aspirin-triggered lipoxin A4, ATL), and peripheral blood leukocyte number and activation were determined upon enrollment and after treatment with either aspirin or placebo. Thirty-three of 367 subjects (9.0%) developed ARDS after randomization. Baseline ATL levels, total monocyte counts, intermediate monocyte (IntMo) counts, and Mo-PA were associated with the development of ARDS. Peripheral blood neutrophil count and monocyte-platelet aggregates significantly decreased over time. Of note, 9 subjects developed ARDS after randomization yet prior to study drug initiation, including 7 subjects assigned to aspirin treatment. Subjects without ARDS at the time of first dose demonstrated a lower incidence of ARDS with aspirin treatment. Compared with placebo, aspirin significantly decreased TxB2 and increased the ATL/TxB2 ratio. Biomarkers of intravascular monocyte activation in at-risk patients were associated with development of ARDS. The potential clinical benefit of early aspirin for prevention of ARDS remains uncertain. Together, results of the biochemical and immunological analyses provide a window into the early pathogenesis of human ARDS, and represent potential vascular biomarkers of ARDS risk.

  15. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.

    PubMed

    Hsiang, Allison Y; Field, Daniel J; Webster, Timothy H; Behlke, Adam D B; Davis, Matthew B; Racicot, Rachel A; Gauthier, Jacques A

    2015-05-20

    The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K

  16. Snake pictures draw more early attention than spider pictures in non-phobic women: evidence from event-related brain potentials.

    PubMed

    Van Strien, J W; Eijlers, R; Franken, I H A; Huijding, J

    2014-02-01

    Snakes were probably the first predators of mammals and may have been important agents of evolutionary changes in the primate visual system allowing rapid visual detection of fearful stimuli (Isbell, 2006). By means of early and late attention-related brain potentials, we examined the hypothesis that more early visual attention is automatically allocated to snakes than to spiders. To measure the early posterior negativity (EPN), 24 healthy, non-phobic women watched the random rapid serial presentation of 600 snake pictures, 600 spider pictures, and 600 bird pictures (three pictures per second). To measure the late positive potential (LPP), they also watched similar pictures (30 pictures per stimulus category) in a non-speeded presentation. The EPN amplitude was largest for snake pictures, intermediate for spider pictures and smallest for bird pictures. The LPP was significantly larger for both snake and spider pictures when compared to bird pictures. Interestingly, spider fear (as measured by a questionnaire) was associated with EPN amplitude for spider pictures, whereas snake fear was not associated with EPN amplitude for snake pictures. The results suggest that ancestral priorities modulate the early capture of visual attention and that early attention to snakes is more innate and independent of reported fear. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Significance of the evolutionary α1,3-galactosyltransferase (GGTA1) gene inactivation in preventing extinction of apes and old world monkeys.

    PubMed

    Galili, Uri

    2015-01-01

    The α1,3-galactosyltransferase (α1,3GT or GGTA1) gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The α1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the α1,3GT enzyme that synthesizes a carbohydrate antigen called "α-gal epitope." The α-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The α1,3GT gene was inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack α-gal epitopes and naturally produce an antibody called the "anti-Gal antibody" which binds specifically to α-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the α1,3GT gene in ancestral Old World primates could have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the α-gal epitope. Once the α-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. This assumption is supported by the fossil record demonstrating an almost complete extinction of apes in the late Miocene and failure of Old World monkeys to radiate into multiple species before that period. A present outcome of this evolutionary event is the anti-Gal-mediated rejection of mammalian xenografts expressing α-gal epitopes in humans, apes, and Old World monkeys.

  18. Latest Early Pleistocene remains of Lynx pardinus (Carnivora, Felidae) from the Iberian Peninsula: Taxonomy and evolutionary implications

    NASA Astrophysics Data System (ADS)

    Boscaini, Alberto; Alba, David M.; Beltrán, Juan F.; Moyà-Solà, Salvador; Madurell-Malapeira, Joan

    2016-07-01

    The Iberian lynx (Lynx pardinus) is a critically endangered felid that, during the last fifty years, has been subject to an intensive conservation program in an attempt to save it from extinction. This species is first recorded at ca. 1.7-1.6 Ma (late Villafranchian, late Early Pleistocene) in NE Iberian Peninsula, roughly coinciding with the large faunal turnover that occurred around the middle to late Villafranchian boundary. Here we describe the largest collection of L. pardinus remains available to date from the Iberian late Early Pleistocene (Epivillafranchian), including localities from the Vallparadís Section (Vallès-Penedès Basin, NE Iberian Peninsula) and Cueva Victoria (Cartagena, SE Iberian Peninsula). The morphology and biometry of the studied material attests to the widespread occurrence of L. pardinus in the Mediterranean coast of the Iberian Peninsula since the latest Early Pleistocene, i.e., about 0.5 million years earlier than it was generally accepted (i.e., at the beginning of the Middle Pleistocene). Based on the features observed in the large sample studied in this paper, we conclude that Lynx spelaeus is a junior synonym of L. pardinus and further propose to assign all the Epivillafranchian and younger fossil lynxes from SW Europe to the extant species L. pardinus. Due to the arrival of the Eurasian lynx (Lynx lynx) into Europe at the beginning of the Late Pleistocene, the attribution of specimens younger than MIS 5e to either this species or L. pardinus solely on morphological grounds has proven equivocal. Here we discuss the main diagnostic features of both species of European lynxes and further review their evolutionary history and paleobiogeography throughout the Pleistocene.

  19. phyloXML: XML for evolutionary biology and comparative genomics

    PubMed Central

    Han, Mira V; Zmasek, Christian M

    2009-01-01

    Background Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. Results We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. Conclusion PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at . PMID:19860910

  20. Eco-evolutionary effects on population recovery following catastrophic disturbance

    PubMed Central

    Weese, Dylan J; Schwartz, Amy K; Bentzen, Paul; Hendry, Andrew P; Kinnison, Michael T

    2011-01-01

    Fine-scale genetic diversity and contemporary evolution can theoretically influence ecological dynamics in the wild. Such eco-evolutionary effects might be particularly relevant to the persistence of populations facing acute or chronic environmental change. However, experimental data on wild populations is currently lacking to support this notion. One way that ongoing evolution might influence the dynamics of threatened populations is through the role that selection plays in mediating the ‘rescue effect’, the ability of migrants to contribute to the recovery of populations facing local disturbance and decline. Here, we combine experiments with natural catastrophic events to show that ongoing evolution is a major determinant of migrant contributions to population recovery in Trinidadian guppies (Poecilia reticulata). These eco-evolutionary limits on migrant contributions appear to be mediated by the reinforcing effects of natural and sexual selection against migrants, despite the close geographic proximity of migrant sources. These findings show that ongoing adaptive evolution can be a double-edged sword for population persistence, maintaining local fitness at a cost to demographic risk. Our study further serves as a potent reminder that significant evolutionary and eco-evolutionary dynamics might be at play even where the phenotypic status quo is largely maintained generation to generation. PMID:25567978

  1. Early events of citrus greening (Huanglongbing) disease development at the ultrastructural level.

    PubMed

    Folimonova, Svetlana Y; Achor, Diann S

    2010-09-01

    Citrus greening (Huanglongbing [HLB]) is one of the most destructive diseases of citrus worldwide. The causal agent of HLB in Florida is thought to be 'Candidatus Liberibacter asiaticus'. Understanding of the early events in HLB infection is critical for the development of effective measures to control the disease. In this work, we conducted cytopathological studies by following the development of the disease in citrus trees graft inoculated with 'Ca. L. asiaticus'-containing material under greenhouse conditions to examine the correlation between ultrastructural changes and symptom production, with the main objective of characterizing the early events of infection. Based on our observations, one of the first degenerative changes induced upon invasion of the pathogen appears to be swelling of middle lamella between cell walls surrounding sieve elements. This anatomical aberration was often observed in samples from newly growing flushes in inoculated sweet orange and grapefruit trees at the early "presymptomatic" stage of HLB infection. Development of symptoms and their progression correlated with an increasing degree of microscopic aberrations. Remarkably, the ability to observe the bacterium in the infected tissue also correlated with the degree of the disease progression. Large numbers of bacterial cells were found in phloem sieve tubes in tissue samples from presymptomatic young flushes. In contrast, we did not observe the bacteria in highly symptomatic leaf samples, suggesting a possibility that, at more advanced stages of the disease, a major proportion of 'Ca. L. asiaticus' is present in a nonviable state. We trust that observations reported here advance our understanding of how 'Ca. L. asiaticus' causes disease. Furthermore, they may be an important aid in answering a question: when and where within an infected tree the tissue serves as a better inoculum source for acquisition and transmission of the bacterium by its psyllid vector.

  2. Empirical verification of evolutionary theories of aging.

    PubMed

    Kyryakov, Pavlo; Gomez-Perez, Alejandra; Glebov, Anastasia; Asbah, Nimara; Bruno, Luigi; Meunier, Carolynne; Iouk, Tatiana; Titorenko, Vladimir I

    2016-10-25

    We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.

  3. Early maritime economy and El Nino events at Quebrada Tacahuay, Peru

    USGS Publications Warehouse

    Keefer, D.K.; DeFrance, Susan D.; Moseley, M.E.; Richardson, J. B.; Satterlee, D.R.; Day-Lewis, A.

    1998-01-01

    The archaeological site of Quebrada Tacahuay, Peru, dates to 12,700 to 12,500 calibrated years before the present (10,770 to 10,530 carbon-14 years before the present). It contains some of the oldest evidence of maritime- based economic activity in the New World. Recovered materials include a hearth, lithic cutting tools and flakes, and abundant processed marine fauna, primarily seabirds and fish. Sediments below and above the occupation layer were probably generated by El Nino events, indicating that El Nino was active during the Pleistocene as well as during the early and middle Holocene.

  4. Extinction events can accelerate evolution.

    PubMed

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.

  5. Extinction Events Can Accelerate Evolution

    PubMed Central

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804

  6. Women, behavior, and evolution: understanding the debate between feminist evolutionists and evolutionary psychologists.

    PubMed

    Liesen, Laurette T

    2007-03-01

    Often since the early 1990s, feminist evolutionists have criticized evolutionary psychologists, finding fault in their analyses of human male and female reproductive behavior. Feminist evolutionists have criticized various evolutionary psychologists for perpetuating gender stereotypes, using questionable methodology, and exhibiting a chill toward feminism. Though these criticisms have been raised many times, the conflict itself has not been fully analyzed. Therefore, I reconsider this conflict, both in its origins and its implications. I find that the approaches and perspectives of feminist evolutionists and evolutionary psychologists are distinctly different, leading many of the former to work in behavioral ecology, primatology, and evolutionary biology. Invitingly to feminist evolutionists, these three fields emphasize social behavior and the influences of environmental variables; in contrast, evolutionary psychology has come to rely on assumptions deemphasizing the pliability of psychological mechanisms and the flexibility of human behavior. In behavioral ecology, primatology, and evolutionary biology, feminist evolutionists have found old biases easy to correct and new hypotheses practical to test, offering new insights into male and female behavior, explaining the emergence and persistence of patriarchy, and potentially bringing closer a prime feminist goal, sexual equality.

  7. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    PubMed

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  8. Evolutionary history and metabolic insights of ancient mammalian uricases

    PubMed Central

    Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.

    2014-01-01

    Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457

  9. Development of antibiotic regimens using graph based evolutionary algorithms.

    PubMed

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Which early life events or current environmental and lifestyle factors influence lung function in adolescents? - results from the GINIplus & LISAplus studies.

    PubMed

    Luzak, Agnes; Fuertes, Elaine; Flexeder, Claudia; Standl, Marie; von Berg, Andrea; Berdel, Dietrich; Koletzko, Sibylle; Heinrich, Joachim; Nowak, Dennis; Schulz, Holger

    2017-07-12

    Various factors may affect lung function at different stages in life. Since investigations that simultaneously consider several factors are rare, we examined the relative importance of early life, current environmental/lifestyle factors and allergic diseases on lung function in 15-year-olds. Best subset selection was performed for linear regression models to investigate associations between 21 diverse early life events and current factors with spirometric parameters (forced vital capacity, forced expiratory volume in 1 s and maximal mid-expiratory flow (FEF 25-75 )) in 1326 participants of the German GINIplus and LISAplus birth cohorts. To reduce model complexity, one model for each spirometric parameter was replicated 1000 times in random subpopulations (N = 884). Only those factors that were included in >70% of the replication models were retained in the final analysis. A higher peak weight velocity and early lung infections were the early life events prevalently associated with airflow limitation and FEF 25-75 . Current environmental/lifestyle factors at age 15 years and allergic diseases that were associated with lung function were: indoor second-hand smoke exposure, vitamin D concentration, body mass index (BMI) and asthma status. Sex and height captured the majority of the explained variance (>75%), followed by BMI (≤23.7%). The variance explained by early life events was comparatively low (median: 4.8%; range: 0.2-22.4%), but these events were consistently negatively associated with airway function. Although the explained variance was mainly captured by well-known factors included in lung function prediction equations, our findings indicate early life and current factors that should be considered in studies on lung health among adolescents.

  11. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing.

    PubMed

    Zhang, Rui; Deng, Patricia; Jacobson, Dionna; Li, Jin Billy

    2017-02-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.

  12. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing

    PubMed Central

    Jacobson, Dionna

    2017-01-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3’UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3’UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions. PMID:28166241

  13. Sexual Abuse Exposure Alters Early Processing of Emotional Words: Evidence from Event-Related Potentials

    PubMed Central

    Grégoire, Laurent; Caparos, Serge; Leblanc, Carole-Anne; Brisson, Benoit; Blanchette, Isabelle

    2018-01-01

    This study aimed to compare the time course of emotional information processing between trauma-exposed and control participants, using electrophysiological measures. We conceived an emotional Stroop task with two types of words: trauma-related emotional words and neutral words. We assessed the evoked cerebral responses of sexual abuse victims without post-traumatic stress disorder (PTSD) and no abuse participants. We focused particularly on an early wave (C1/P1), the N2pc, and the P3b. Our main result indicated an early effect (55–165 ms) of emotionality, which varied between non-exposed participants and sexual abuse victims. This suggests that potentially traumatic experiences modulate early processing of emotional information. Our findings showing neurobiological alterations in sexual abuse victims (without PTSD) suggest that exposure to highly emotional events has an important impact on neurocognitive function even in the absence of psychopathology. PMID:29379428

  14. Divergent response of the neritic carbonate factory to environmental changes during the Early Bajocian Event

    NASA Astrophysics Data System (ADS)

    Bodin, Stephane; Hönig, Martin; Krencker, Francois-Nicolas; Danisch, Jan; Kabiri, Lahcen

    2017-04-01

    The Early Bajocian witnessed a global environmental perturbation, characterized by faunal and floral turnovers and a positive carbon isotope excursion. In Italy, this environmental perturbation coincided with an eutrophication event and a carbonate crisis, but this has so far not been adequately reported from other settings, leaving doubt about the extent and nature of these phenomena. Here, we are reporting on an extensive neritic carbonate factory demise that occurs in the upper Lower Bajocian of the Central High Atlas of Morocco, more precisely in the upper Propinquans - lower Humphriesianum Zones. This demise coincided with the acme of the global carbon isotope perturbation, recorded by a 3‰ positive carbon isotope excursion in the bulk organic matter of Morocco. Recovery of the neritic carbonate system occurs during the Early to Late Bajocian transition. The duration of the neritic carbonate factory demise was therefore in the order of 1 Myr. Furthermore, we observe that the Lower Bajocian of Morocco is relatively enriched in arenitic siliciclastic deposits, suggesting increased weathering and nutrient levels along the northwestern margin of Africa during the Early Bajocian. However, comparison with neighboring European basins highlights the non-uniqueness and different timing of the response of shallow-water carbonates to the Early Bajocian environmental perturbations, as some regions present no sign of carbonate factory crisis. Hence, we postulate that local factors were important in mediating the response of neritic carbonate factories to this global environmental perturbation. We notably highlight the role of large Early Bajocian sea-level fluctuation as a trigger for carbonate factory change and demise in Morocco. Indeed, in the Central High Atlas Basin, transgressive intervals are seeing the development of a mud-dominated carbonate factory whereas regressive intervals are associated with grain-dominated carbonate factory. We speculate that the

  15. Modeling Tool for Decision Support during Early Days of an Anthrax Event.

    PubMed

    Rainisch, Gabriel; Meltzer, Martin I; Shadomy, Sean; Bower, William A; Hupert, Nathaniel

    2017-01-01

    Health officials lack field-implementable tools for forecasting the effects that a large-scale release of Bacillus anthracis spores would have on public health and hospitals. We created a modeling tool (combining inhalational anthrax caseload projections based on initial case reports, effects of variable postexposure prophylaxis campaigns, and healthcare facility surge capacity requirements) to project hospitalizations and casualties from a newly detected inhalation anthrax event, and we examined the consequences of intervention choices. With only 3 days of case counts, the model can predict final attack sizes for simulated Sverdlovsk-like events (1979 USSR) with sufficient accuracy for decision making and confirms the value of early postexposure prophylaxis initiation. According to a baseline scenario, hospital treatment volume peaks 15 days after exposure, deaths peak earlier (day 5), and recovery peaks later (day 23). This tool gives public health, hospital, and emergency planners scenario-specific information for developing quantitative response plans for this threat.

  16. The role of impact events play in redistributing and sequestering water on Early Mars

    NASA Astrophysics Data System (ADS)

    Osinski, G.; Tornabene, L. L.

    2017-12-01

    Impact cratering is one of the most fundamental geological process in the Solar System. Several workers have considered the effect that impact events may have had on the climate of Early Mars. The proposed effects range from impact-induced precipitation to the production of runaway stable climates to the impact delivery of climatically active gases. The role of impact events in forming hydrated minerals has been touched upon but remains debated. In this contribution, we focus on the role that impact events may have played in redistributing and sequestering water on Early Mars; a record that may still be preserved in the Noachian crust. It has been previously proposed that the sequestration of significant quantities of water may have occurred within various hydrated minerals, in particular clays, in the martian crust. There is undoubtedly no single origin for clay-bearing rocks on Mars and the purpose of this contribution is not to review all the possible formation mechanisms. What we do propose, however, is that it is theoretically possible for impact events to create all known occurrences of clays on Mars. We show that clays can form within and around impact craters in two main ways: through the solid-state devitrification of hydrous impact melts and/or impact-generated hydrothermal alteration. Neither of these mechanisms requires a warmer or wetter climate scenario on Early Mars. Notwithstanding the original origin of clays, any clays may be widely redistributed over the Martian surface in the ejecta deposits of large impact craters. However, ejecta deposits are much more complex than commonly thought, with evidence in many instances for two different types of ejecta deposits around martian craters. The first is a ballistic ejecta layer that is low-shock, melt-poor and low-temperature; it will likely not induce the formation of new clays through the mechanisms described above, but could redistribute pre-impact clays over 100's and 1000's of km over the martian

  17. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  18. Polymorphic Evolutionary Games.

    PubMed

    Fishman, Michael A

    2016-06-07

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Chromosomal polymorphism in mammals: an evolutionary perspective.

    PubMed

    Dobigny, Gauthier; Britton-Davidian, Janice; Robinson, Terence J

    2017-02-01

    Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species. © 2015 Cambridge Philosophical Society.

  20. First Evidence for a Massive Extinction Event Affecting Bees Close to the K-T Boundary

    PubMed Central

    Rehan, Sandra M.; Leys, Remko; Schwarz, Michael P.

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators. PMID:24194843

  1. First evidence for a massive extinction event affecting bees close to the K-T boundary.

    PubMed

    Rehan, Sandra M; Leys, Remko; Schwarz, Michael P

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators.

  2. Impact of COX2 genotype, ER status and body constitution on risk of early events in different treatment groups of breast cancer patients.

    PubMed

    Markkula, Andrea; Simonsson, Maria; Rosendahl, Ann H; Gaber, Alexander; Ingvar, Christian; Rose, Carsten; Jernström, Helena

    2014-10-15

    The COX2 rs5277 (306G>C) polymorphism has been associated with inflammation-associated cancers. In breast cancer, tumor COX-2 expression has been associated with increased estrogen levels in estrogen receptor (ER)-positive and activated Akt-pathway in ER-negative tumors. Our study investigated the impact of COX2 genotypes on early breast cancer events and treatment response in relation to tumor ER status and body constitution. In Sweden, between 2002 and 2008, 634 primary breast cancer patients, aged 25-99 years, were included. Disease-free survival was assessed for 570 rs5277-genotyped patients. Body measurements and questionnaires were obtained preoperatively. Clinical data, patient- and tumor-characteristics were obtained from questionnaires, patients' charts, population registries and pathology reports. Minor allele(C) frequency was 16.1%. Genotype was not linked to COX-2 tumor expression. Median follow-up was 5.1 years. G/G genotype was not associated with early events in patients with ER-positive tumors, adjusted HR 0.77 (0.46-1.29), but conferred an over 4-fold increased risk in patients with ER-negative tumors, adjusted HR 4.41 (1.21-16.02)(p(interaction) = 0.015). Chemotherapy-treated G/G-carriers with a breast volume ≥ 850 ml had an increased risk of early events irrespective of ER status, adjusted HR 8.99 (1.14-70.89). Endocrine-treated C-allele carriers with ER-positive tumors and a breast volume ≥ 850 ml had increased risk of early events, adjusted HR 2.30 (1.12-4.75). COX2 genotype, body constitution and ER status had a combined effect on the risk of early events and treatment response. The high risk for early events in certain subgroups of patients suggests that COX2 genotype in combination with body measurements may identify patients in need of more personalized treatment. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  3. Remembering the evolutionary Freud.

    PubMed

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  4. One health-one medicine: unifying human and animal medicine within an evolutionary paradigm.

    PubMed

    Currier, Russell W; Steele, James H

    2011-08-01

    One health is a concept since early civilization, which promoted the view that there was no major distinction between animal and human medicine. Although persisting through the 19th century, this common vision was then all but forgotten in the early 20th century. It is now experiencing a renaissance, coincident with an awakening of the role that evolutionary biology plays in human and animal health, including sexually transmitted infections (STIs). A number of STIs in humans have comparable infections in animals; likewise, both humans and animals have STIs unique to each mammalian camp. These similarities and differences offer opportunities for basic medical and public health studies, including evolutionary insights that can be gleaned from ongoing interdisciplinary investigation--especially with the molecular analytical tools available--in what can become a golden age of mutually helpful discovery. © 2011 New York Academy of Sciences.

  5. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    PubMed

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  6. Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties.

    PubMed

    Davis, Gregory K

    2012-09-01

    Evolutionary novelties represent challenges to biologists, particularly those who would like to understand the developmental and genetic changes responsible for their appearance. Most modern aphids possess two apparent evolutionary novelties: cyclical parthenogenesis (a life cycle with both sexual and asexual phases) and viviparity (internal development and live birth of progeny) in their asexual phase. Here I discuss the evolution of these apparent novelties from a developmental standpoint. Although a full understanding of the evolution of cyclical parthenogenesis and viviparity in aphids can seem a daunting task, these complex transitions can at least be broken down into a handful of steps. I argue that these should include the following: a differentiation of two developmentally distinct oocytes; de novo synthesis of centrosomes and modification of meiosis during asexual oogenesis; a loss or bypass of any cell cycle arrest and changes in key developmental events during viviparous oogenesis; and a change in how mothers specify the sexual vs. asexual fates of their progeny. Grappling with the nature of such steps and the order in which they occurred ought to increase our understanding and reduce the apparent novelty of complex evolutionary transitions. © 2012 Wiley Periodicals, Inc.

  7. The Earthquake Early Warning System In Southern Italy: Performance Tests And Next Developments

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Elia, L.; Martino, C.; Colombelli, S.; Emolo, A.; Festa, G.; Iannaccone, G.

    2011-12-01

    PRESTo (PRobabilistic and Evolutionary early warning SysTem) is the software platform for Earthquake Early Warning (EEW) in Southern Italy, that integrates recent algorithms for real-time earthquake location, magnitude estimation and damage assessment, into a highly configurable and easily portable package. The system is under active experimentation based on the Irpinia Seismic Network (ISNet). PRESTo processes the live streams of 3C acceleration data for P-wave arrival detection and, while an event is occurring, promptly performs event detection and provides location, magnitude estimations and peak ground shaking predictions at target sites. The earthquake location is obtained by an evolutionary, real-time probabilistic approach based on an equal differential time formulation. At each time step, it uses information from both triggered and not-yet-triggered stations. Magnitude estimation exploits an empirical relationship that correlates it to the filtered Peak Displacement (Pd), measured over the first 2-4 s of P-signal. Peak ground-motion parameters at any distance can be finally estimated by ground motion prediction equations. Alarm messages containing the updated estimates of these parameters can thus reach target sites before the destructive waves, enabling automatic safety procedures. Using the real-time data streaming from the ISNet network, PRESTo has produced a bulletin for about a hundred low-magnitude events occurred during last two years. Meanwhile, the performances of the EEW system were assessed off-line playing-back the records for moderate and large events from Italy, Spain and Japan and synthetic waveforms for large historical events in Italy. These tests have shown that, when a dense seismic network is deployed in the fault area, PRESTo produces reliable estimates of earthquake location and size within 5-6 s from the event origin time (To). Estimates are provided as probability density functions whose uncertainty typically decreases with time

  8. [Evolutionary medicine].

    PubMed

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Evolutionary awareness.

    PubMed

    Gorelik, Gregory; Shackelford, Todd K

    2014-08-27

    In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  10. Core principles of evolutionary medicine

    PubMed Central

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  11. Osteomyelitis in a Paleozoic reptile: ancient evidence for bacterial infection and its evolutionary significance

    NASA Astrophysics Data System (ADS)

    Reisz, Robert R.; Scott, Diane M.; Pynn, Bruce R.; Modesto, Sean P.

    2011-06-01

    We report on dental and mandibular pathology in Labidosaurus hamatus, a 275 million-year-old terrestrial reptile from North America and associate it with bacterial infection in an organism that is characterized by reduced tooth replacement. Analysis of the surface and internal mandibular structure using mechanical and CT-scanning techniques permits the reconstruction of events that led to the pathology and the possible death of the individual. The infection probably occurred as a result of prolonged exposure of the dental pulp cavity to oral bacteria, and this exposure was caused by injury to the tooth in an animal that is characterized by reduced tooth replacement cycles. In these early reptiles, the reduction in tooth replacement is an evolutionary innovation associated with strong implantation and increased oral processing. The dental abscess observed in L. hamatus, the oldest known infection in a terrestrial vertebrate, provides clear evidence of the ancient association between terrestrial vertebrates and their oral bacteria.

  12. Irregularities in Early Seismic Rupture Propagation for Large Events in a Crustal Earthquake Model

    NASA Astrophysics Data System (ADS)

    Lapusta, N.; Rice, J. R.; Rice, J. R.

    2001-12-01

    We study early seismic propagation of model earthquakes in a 2-D model of a vertical strike-slip fault with depth-variable rate and state friction properties. Our model earthquakes are obtained in fully dynamic simulations of sequences of instabilities on a fault subjected to realistically slow tectonic loading (Lapusta et al., JGR, 2000). This work is motivated by results of Ellsworth and Beroza (Science, 1995), who observe that for many earthquakes, far-field velocity seismograms during initial stages of dynamic rupture propagation have irregular fluctuations which constitute a "seismic nucleation phase". In our simulations, we find that such irregularities in velocity seismograms can be caused by two factors: (1) rupture propagation over regions of stress concentrations and (2) partial arrest of rupture in neighboring creeping regions. As rupture approaches a region of stress concentration, it sees increasing background stress and its moment acceleration (to which velocity seismographs in the far field are proportional) increases. After the peak in stress concentration, the rupture sees decreasing background stress and moment acceleration decreases. Hence a fluctuation in moment acceleration is created. If rupture starts sufficiently far from a creeping region, then partial arrest of rupture in the creeping region causes a decrease in moment acceleration. As the other parts of rupture continue to develop, moment acceleration then starts to grow again, and a fluctuation again results. Other factors may cause the irregularities in moment acceleration, e.g., phenomena such as branching and/or intermittent rupture propagation (Poliakov et al., submitted to JGR, 2001) which we have not studied here. Regions of stress concentration are created in our model by arrest of previous smaller events as well as by interactions with creeping regions. One such region is deep in the fault zone, and is caused by the temperature-induced transition from seismogenic to creeping

  13. Applying Evolutionary Anthropology

    PubMed Central

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  14. Applying evolutionary anthropology.

    PubMed

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  15. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads.

    PubMed

    Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G

    2009-02-01

    The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs

  16. Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes

    PubMed Central

    2008-01-01

    Background Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of Elaenia flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts. Results Our analyses resolve phylogenetic relationships among Elaenia species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various Elaenia taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main Elaenia clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions. Conclusion Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in Elaenia highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have played an important role in

  17. Behaviorism, Private Events, and the Molar View of Behavior

    PubMed Central

    Baum, William M

    2011-01-01

    Viewing the science of behavior (behavior analysis) to be a natural science, radical behaviorism rejects any form of dualism, including subjective–objective or inner–outer dualism. Yet radical behaviorists often claim that treating private events as covert behavior and internal stimuli is necessary and important to behavior analysis. To the contrary, this paper argues that, compared with the rejection of dualism, private events constitute a trivial idea and are irrelevant to accounts of behavior. Viewed in the framework of evolutionary theory or for any practical purpose, behavior is commerce with the environment. By its very nature, behavior is extended in time. The temptation to posit private events arises when an activity is viewed in too small a time frame, obscuring what the activity does. When activities are viewed in an appropriately extended time frame, private events become irrelevant to the account. This insight provides the answer to many philosophical questions about thinking, sensing, and feeling. Confusion about private events arises in large part from failure to appreciate fully the radical implications of replacing mentalistic ideas about language with the concept of verbal behavior. Like other operant behavior, verbal behavior involves no agent and no hidden causes; like all natural events, it is caused by other natural events. In a science of behavior grounded in evolutionary theory, the same set of principles applies to verbal and nonverbal behavior and to human and nonhuman organisms. PMID:22532740

  18. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.

    1994-01-01

    In rocks of late Paleoproterozoic and Mesoproterozoic age (ca. 1700-1000 million years ago), probable eukaryotic microfossils are widespread and well preserved, but assemblage and global diversities are low and turnover is slow. Near the Mesoproterozoic-Neoproterozoic boundary (1000 million years ago), red, green, and chromophytic algae diversified; molecular phylogenies suggest that this was part of a broader radiation of "higher" eukaryotic phyla. Observed diversity levels for protistan microfossils increased significantly at this time, as did turnover rates. Coincident with the Cambrian radiation of marine invertebrates, protistan microfossils again doubled in diversity and rates of turnover increased by an order of magnitude. Evidently, the Cambrian diversification of animals strongly influenced evolutionary rates, within clades already present in marine communities, implying an important role for ecology in fueling a Cambrian explosion that extends across kingdoms.

  19. Preserving the Past: An Early Interview Improves Delayed Event Memory in Children With Intellectual Disabilities

    PubMed Central

    Brown, Deirdre A; Lewis, Charlie N; Lamb, Michael E

    2015-01-01

    The influence of an early interview on children's (N = 194) later recall of an experienced event was examined in children with mild and moderate intellectual disabilities (CWID; 7–12 years) and typically developing (TD) children matched for chronological (7–12 years) or mental (4–9 years) age. Children previously interviewed were more informative, more accurate, and less suggestible. CWID (mild) recalled as much information as TD mental age matches, and were as accurate as TD chronological age matches. CWID (moderate) recalled less than TD mental age matches but were as accurate. Interviewers should elicit CWID's recall as early as possible and consider developmental level and severity of impairments when evaluating eyewitness testimony. PMID:25876042

  20. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    PubMed Central

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  1. Anthropology and the study of menopause: evolutionary, developmental, and comparative perspectives.

    PubMed

    Sievert, Lynnette Leidy

    2014-10-01

    This work aims to consider how the discipline of anthropology contributes to the study of menopause through evolutionary, developmental, and comparative perspectives. This study was a review of skeletal and ethnographic evidence for menopause and postreproductive life in humans' distant past, hypotheses for the evolution of menopause and long postreproductive life, variation in age at menopause with focus on childhood environments, and the study of variation in symptom experience across populations. Longevity, rather than capacity for menopause, sets humans apart from other primates. Skeletal evidence demonstrates that some Neanderthals and archaic Homo sapiens lived to the age at menopause and that at least one third of women in traditional foraging populations live beyond menopause. The evolutionary reasons for why women experience a long postreproductive life continue to be debated. A developmental perspective suggests that early childhood may be a critical time for the environment to irreversibly influence the number of oocytes or rate of follicular atresia and, ultimately, age at menopause. A comparative perspective examines symptom experience at midlife through participant observation, qualitative interviews, and quantitative instruments to gain a holistic understanding of the meaning, experience, and sociocultural context of menopause. An evolutionary perspective suggests that menopause is not a recent phenomenon among humans. A developmental perspective focuses on the influence of early childhood on ovarian function. A comparative perspective expands clinical norms and provides knowledge about the range of human variations.

  2. Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone

    PubMed Central

    Maamary, Peter G.; Ben Zakour, Nouri L.; Cole, Jason N.; Hollands, Andrew; Aziz, Ramy K.; Barnett, Timothy C.; Cork, Amanda J.; Henningham, Anna; Sanderson-Smith, Martina; McArthur, Jason D.; Venturini, Carola; Gillen, Christine M.; Kirk, Joshua K.; Johnson, Dwight R.; Taylor, William L.; Kaplan, Edward L.; Kotb, Malak; Nizet, Victor; Beatson, Scott A.; Walker, Mark J.

    2012-01-01

    The past 50 years has witnessed the emergence of new viral and bacterial pathogens with global effect on human health. The hyperinvasive group A Streptococcus (GAS) M1T1 clone, first detected in the mid-1980s in the United States, has since disseminated worldwide and remains a major cause of severe invasive human infections. Although much is understood regarding the capacity of this pathogen to cause disease, much less is known of the precise evolutionary events selecting for its emergence. We used high-throughput technologies to sequence a World Health Organization strain collection of serotype M1 GAS and reconstructed its phylogeny based on the analysis of core genome single-nucleotide polymorphisms. We demonstrate that acquisition of a 36-kb genome segment from serotype M12 GAS and the bacteriophage-encoded DNase Sda1 led to increased virulence of the M1T1 precursor and occurred relatively early in the molecular evolutionary history of this strain. The more recent acquisition of the phage-encoded superantigen SpeA is likely to have provided selection advantage for the global dissemination of the M1T1 clone. This study provides an exemplar for the evolution and emergence of virulent clones from microbial populations existing commensally or causing only superficial infection.—Maamary, P. G., Ben Zakour, N. L., Cole, J. N., Hollands, A., Aziz, R. K., Barnett, T. C., Cork, A. J., Henningham, A., Sanderson-Smith, M., McArthur, J. D., Venturini, C., Gillen, C. M., Kirk, J. K., Johnson, D. R., Taylor, W. L., Kaplan, E. L., Kotb, M., Nizet, V., Beatson, S. A., Walker, M. J. Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone. PMID:22878963

  3. The developmental basis of an evolutionary diversification of female gametophyte structure in Piper and Piperaceae

    PubMed Central

    Madrid, Eric N.; Friedman, William E.

    2009-01-01

    Background and Aims Fritillaria-type female gametophyte development is a complex, yet homoplasious developmental pattern that is interesting from both evolutionary and developmental perspectives. Piper (Piperaceae) was chosen for this study of Fritillaria-type female gametophyte development because Piperales represent a ‘hotspot’ of female gametophyte developmental evolution and have been the subject of several recent molecular phylogenetic analyses. This wealth of phylogenetic and descriptive data make Piper an excellent candidate for inferring the evolutionary developmental basis for the origin of Fritillaria-type female gametophytes. Methods Developing ovules of Piper peltatum were taken from greenhouse collections, embedded in glycol methacrylate, and serially sectioned. Light microscopy and laser scanning confocal microscopy were combined to produce three-dimensional computer reconstructions of developing female gametophytes. The ploidies of the developing embryos and endosperms were calculated using microspectrofluorometry. Key Results The data describe female gametophyte development in Piper with highly detailed three-dimensional models, and document two previously unknown arrangements of megaspore nuclei during early development. Also collected were microspectrofluorometric data that indicate that Fritillaria-type female gametophyte development in Piper results in pentaploid endosperm. Conclusions The three-dimensional models resolve previous ambiguities in developmental interpretations of Fritillaria-type female gametophytes in Piper. The newly discovered arrangements of megaspore nuclei that are described allow for the construction of explicit hypotheses of female gametophyte developmental evolution within Piperaceae, and more broadly throughout Piperales. These detailed hypotheses indicate that the common ancestor of Piperaceae minus Verhuellia had a Drusa-type female gametophyte, and that evolutionary transitions to derived tetrasporic female

  4. Tumor necrosis factor-α inhibitor treatment and the risk of incident cardiovascular events in patients with early rheumatoid arthritis: a nested case-control study.

    PubMed

    Desai, Rishi J; Rao, Jaya K; Hansen, Richard A; Fang, Gang; Maciejewski, Matthew; Farley, Joel

    2014-11-01

    To compare the risk of cardiovascular (CV) events between use of tumor necrosis factor-α inhibitors (TNFi) and nonbiologic disease-modifying antirheumatic drugs (DMARD) in patients with early rheumatoid arthritis (RA). A nested case-control study was conducted using data from Truven's MarketScan commercial and Medicare claims database for patients with early RA who started treatment with either a TNFi or a nonbiologic DMARD between January 1, 2008, and December 31, 2010. Date of CV event diagnosis for cases was defined as the event date, and 12 age-matched and sex-matched controls were sampled using incidence density sampling. Drug exposure was defined into the following mutually exclusive categories hierarchically: (1) current use of TNFi (with or without nonbiologics), (2) past use of TNFi (with or without nonbiologics), (3) current use of nonbiologics only, and (4) past use of nonbiologics only. Current use was defined as any use in the period 90 days prior to the event date. Conditional logistic regression models were used to derive incidence rate ratios (IRR). From the cohort of patients with early RA, 279 cases of incident CV events and 3348 matched controls were identified. The adjusted risk of CV events was not significantly different between current TNFi users and current nonbiologic users (IRR 0.92, 95% CI 0.59-1.44). However, past users of nonbiologics showed significantly higher risk compared to current nonbiologic users (IRR 1.47, 95% CI 1.04-2.08). No differences in the CV risk were found between current TNFi and current nonbiologic DMARD treatment in patients with early RA.

  5. Evolutionary domestication in Drosophila subobscura.

    PubMed

    Simões, P; Rose, M R; Duarte, A; Gonçalves, R; Matos, M

    2007-03-01

    The domestication of plants and animals is historically one of the most important topics in evolutionary biology. The evolutionary genetic changes arising from human cultivation are complex because of the effects of such varied processes as continuing natural selection, artificial selection, deliberate inbreeding, genetic drift and hybridization of different lineages. Despite the interest of domestication as an evolutionary process, few studies of multicellular sexual species have approached this topic using well-replicated experiments. Here we present a comprehensive study in which replicated evolutionary trajectories from several Drosophila subobscura populations provide a detailed view of the evolutionary dynamics of domestication in an outbreeding animal species. Our results show a clear evolutionary response in fecundity traits, but no clear pattern for adult starvation resistance and juvenile traits such as development time and viability. These results supply new perspectives on the confounding of adaptation with other evolutionary mechanisms in the process of domestication.

  6. Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events.

    PubMed

    Botwey, Ransford Henry; Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G

    2014-01-01

    Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.

  7. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants.

    PubMed

    Mohanta, Tapan Kumar; Kumar, Pradeep; Bae, Hanhong

    2017-02-03

    Ca 2+ ion is a versatile second messenger that operate in a wide ranges of cellular processes that impact nearly every aspect of life. Ca 2+ regulates gene expression and biotic and abiotic stress responses in organisms ranging from unicellular algae to multi-cellular higher plants through the cascades of calcium signaling processes. In this study, we deciphered the genomics and evolutionary aspects of calcium signaling event of calmodulin (CaM) and calmodulin like- (CML) proteins. We studied the CaM and CML gene family of 41 different species across the plant lineages. Genomic analysis showed that plant encodes more calmodulin like-protein than calmodulins. Further analyses showed, the majority of CMLs were intronless, while CaMs were intron rich. Multiple sequence alignment showed, the EF-hand domain of CaM contains four conserved D-x-D motifs, one in each EF-hand while CMLs contain only one D-x-D-x-D motif in the fourth EF-hand. Phylogenetic analysis revealed that, the CMLs were evolved earlier than CaM and later diversified. Gene expression analysis demonstrated that different CaM and CMLs genes were express differentially in different tissues in a spatio-temporal manner. In this study we provided in detailed genome-wide identifications and characterization of CaM and CML protein family, phylogenetic relationships, and domain structure. Expression study of CaM and CML genes were conducted in Glycine max and Phaseolus vulgaris. Our study provides a strong foundation for future functional research in CaM and CML gene family in plant kingdom.

  8. Potential of Breastmilk Analysis to Inform Early Events in Breast Carcinogenesis: Rationale and Considerations

    PubMed Central

    Murphy, Jeanne; Sherman, Mark E.; Browne, Eva P.; Caballero, Ana I.; Punska, Elizabeth C.; Pfeiffer, Ruth M.; Yang, Hannah P.; Lee, Maxwell; Yang, Howard; Gierach, Gretchen L.; Arcaro, Kathleen F.

    2016-01-01

    This review summarizes methods related to the study of human breastmilk in etiologic and biomarkers research. Despite the importance of reproductive factors in breast carcinogenesis, factors that act early in life are difficult to study because young women rarely require breast imaging or biopsy, and analysis of critical circulating factors (e.g. hormones) is often complicated by the requirement to accurately account for menstrual cycle date. Accordingly, novel approaches are needed to understand how events such as pregnancy, breastfeeding, weaning, and post-weaning breast remodeling influence breast cancer risk. Analysis of breastmilk offers opportunities to understand mechanisms related to carcinogenesis in the breast, and to identify risk markers that may inform efforts to identify high-risk women early in the carcinogenic process. In addition, analysis of breastmilk could have value in early detection or diagnosis of breast cancer. In this article we describe the potential for using breastmilk to characterize the microenvironment of the lactating breast with the goal of advancing research on risk assessment, prevention, and detection of breast cancer. PMID:27107568

  9. Bacterial Actins? An Evolutionary Perspective

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  10. Relation of Cardiac Complications in the Early Phase of Community-Acquired Pneumonia to Long-Term Mortality and Cardiovascular Events.

    PubMed

    Cangemi, Roberto; Calvieri, Camilla; Falcone, Marco; Bucci, Tommaso; Bertazzoni, Giuliano; Scarpellini, Maria G; Barillà, Francesco; Taliani, Gloria; Violi, Francesco

    2015-08-15

    Community-acquired pneumonia (CAP) is complicated by cardiac events in the early phase of the disease. Aim of this study was to assess if these intrahospital cardiac complications may account for overall mortality and cardiovascular events occurring during a long-term follow-up. Three hundred one consecutive patients admitted to the University-Hospital, Policlinico Umberto I, with community-acquired pneumonia were prospectively recruited and followed up for a median of 17.4 months. Primary end point was the occurrence of death for any cause, and secondary end point was the occurrence of cardiovascular events (cardiovascular death, nonfatal myocardial infarction [MI], and stroke). During the intrahospital stay, 55 patients (18%) experienced a cardiac complication. Of these, 32 had an MI (29 non-ST-elevation MI and 3 ST-elevation MI) and 30 had a new episode of atrial fibrillation (7 nonmutually exclusive events). During the follow-up, 89 patients died (51% of patients with an intrahospital cardiac complication and 26% of patients without, p <0.001) and 73 experienced a cardiovascular event (47% of patients with and 19% of patients without an intrahospital cardiac complication, p <0.001). A Cox regression analysis showed that intrahospital cardiac complications, age, and Pneumonia Severity Index were significantly associated with overall mortality, whereas intrahospital cardiac complications, age, hypertension, and diabetes were significantly associated with cardiovascular events during the follow-up. In conclusion, this prospective study shows that intrahospital cardiac complications in the early phase of pneumonia are associated with an enhanced risk of death and cardiovascular events during long-term follow-up. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Evolutionary history of African mongoose rabies.

    PubMed

    Van Zyl, N; Markotter, W; Nel, L H

    2010-06-01

    Two biotypes or variants of rabies virus (RABV) occur in southern Africa. These variants are respectively adapted to hosts belonging to the Canidae family (the canid variant) and hosts belonging to the Herpestidae family (the mongoose variant). Due to the distinct host adaptation and differences in epidemiology and pathogenesis, it has been hypothesized that the two variants were introduced into Africa at different times. The objective of this study was to investigate the molecular phylogeny of representative RABV isolates of the mongoose variant towards a better understanding of the origins of this group. The study was based on an analysis of the full nucleoprotein and glycoprotein gene sequences of a panel of 27 viruses. Phylogenetic analysis of this dataset confirmed extended evolutionary adaptation of isolates in specific geographic areas. The evolutionary dynamics of this virus variant was investigated using Bayesian methodology, allowing for rate variation among viral lineages. Molecular clock analysis estimated the age of the African mongoose RABV to be approximately 200 years old, which is in concurrence with literature describing rabies in mongooses since the early 1800 s. (c) 2010 Elsevier B.V. All rights reserved.

  12. Evolutionary origins of mechanosensitive ion channels.

    PubMed

    Martinac, Boris; Kloda, Anna

    2003-01-01

    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  13. Open Issues in Evolutionary Robotics.

    PubMed

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  14. Approximate entropy analysis of event-related potentials in patients with early vascular dementia.

    PubMed

    Xu, Jin; Sheng, Hengsong; Lou, Wutao; Zhao, Songzhen

    2012-06-01

    This study investigated differences in event-related potential (ERP) parameters among early vascular dementia (VD) patients, healthy elder controls (ECs), and young controls (YCs). A visual "oddball" color identification task was performed while individuals' electroencephalograms (EEGs) were recorded. Approximate entropy (ApEn), a nonlinear measure, along with P300 latencies and amplitudes were used to analyze ERP data and compare these three groups. The patients with VD showed more complex ERP waveforms and higher ApEn values than did ECs while performing the visual task. It was further found that patients with VD showed reduced P300 amplitudes and increased latencies. The results indicate that patients with VD have fewer attention resources to devote to processing stimuli, lower speed of stimulus classification, and lower synchrony in their cortical activity during the response period. We suggest that ApEn, as a measure of ERP complexity, is a promising marker for early diagnosis of VD.

  15. A model of ecological and evolutionary consequences of color polymorphism.

    PubMed

    Forsman, Anders; Ahnesjö, Jonas; Caesar, Sofia; Karlsson, Magnus

    2008-01-01

    We summarize direct and indirect effects on fitness components of animal color pattern and present a synthesis of theories concerning the ecological and evolutionary dynamics of chromatic multiple niche polymorphisms. Previous endeavors have aimed primarily at identifying conditions that promote the evolution and maintenance of polymorphisms. We consider in a conceptual model also the reciprocal influence of color polymorphism on population processes and propose that polymorphism entails selective advantages that may promote the ecological success of polymorphic species. The model begins with an evolutionary branching event from mono- to polymorphic condition that, under the influence of correlational selection, is predicted to promote the evolution of physical integration of coloration and other traits (cf. multi-trait coevolution and complex phenotypes). We propose that the coexistence within a population of alternative ecomorphs with coadapted gene complexes promotes utilization of diverse environmental resources, population stability and persistence, colonization success, and range expansions, and enhances the evolutionary potential and speciation. Conversely, we predict polymorphic populations to be less vulnerable to environmental change and at lower risk of range contractions and extinctions compared with monomorphic populations. We offer brief suggestions as to how these falsifiable predictions may be tested.

  16. A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes

    PubMed Central

    McCole, Ruth B; Loughran, Noeleen B; Chahal, Mandeep; Fernandes, Luis P; Roberts, Roland G; Fraternali, Franca; O'Connell, Mary J; Oakey, Rebecca J

    2011-01-01

    Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths. PMID:21166792

  17. Deciphering the evolutionary history of open and closed mitosis.

    PubMed

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-11-17

    The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Deciphering the evolutionary history of open and closed mitosis

    PubMed Central

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-01-01

    Summary The origin of the nucleus at the prokaryote to eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the "closed" mitosis of some yeast but loses its integrity in the "open" mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and document patterns of mitotic nuclear variation within and among species and map them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. PMID:25458223

  19. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  20. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo.

    PubMed Central

    Knoll, A H

    1994-01-01

    In rocks of late Paleoproterozoic and Mesoproterozoic age (ca. 1700-1000 million years ago), probable eukaryotic microfossils are widespread and well preserved, but assemblage and global diversities are low and turnover is slow. Near the Mesoproterozoic-Neoproterozoic boundary (1000 million years ago), red, green, and chromophytic algae diversified; molecular phylogenies suggest that this was part of a broader radiation of "higher" eukaryotic phyla. Observed diversity levels for protistan microfossils increased significantly at this time, as did turnover rates. Coincident with the Cambrian radiation of marine invertebrates, protistan microfossils again doubled in diversity and rates of turnover increased by an order of magnitude. Evidently, the Cambrian diversification of animals strongly influenced evolutionary rates, within clades already present in marine communities, implying an important role for ecology in fueling a Cambrian explosion that extends across kingdoms. Images PMID:8041692

  1. Avian skin development and the evolutionary origin of feathers.

    PubMed

    Sawyer, Roger H; Knapp, Loren W

    2003-08-15

    The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that

  2. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  3. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  4. Predicting adverse obstetric outcome after early pregnancy events and complications: a review.

    PubMed

    van Oppenraaij, R H F; Jauniaux, E; Christiansen, O B; Horcajadas, J A; Farquharson, R G; Exalto, N

    2009-01-01

    BACKGROUND The aim was to evaluate the impact of early pregnancy events and complications as predictors of adverse obstetric outcome. METHODS We conducted a literature review on the impact of first trimester complications in previous and index pregnancies using Medline and Cochrane databases covering the period 1980-2008. RESULTS Clinically relevant associations of adverse outcome in the subsequent pregnancy with an odds ratio (OR) > 2.0 after complications in a previous pregnancy are the risk of perinatal death after a single previous miscarriage, the risk of very preterm delivery (VPTD) after two or more miscarriages, the risk of placenta praevia, premature preterm rupture of membranes, VPTD and low birthweight (LBW) after recurrent miscarriage and the risk of VPTD after two or more termination of pregnancy. Clinically relevant associations of adverse obstetric outcome in the ongoing pregnancy with an OR > 2.0 after complications in the index pregnancy are the risk of LBW and very low birthweight (VLBW) after a threatened miscarriage, the risk of pregnancy-induced hypertension, pre-eclampsia, placental abruption, preterm delivery (PTD), small for gestational age and low 5-min Apgar score after detection of an intrauterine haematoma, the risk of VPTD and intrauterine growth restriction after a crown-rump length discrepancy, the risk of VPTD, LBW and VLBW after a vanishing twin phenomenon and the risk of PTD, LBW and low 5-min Apgar score in a pregnancy complicated by severe hyperemesis gravidarum. CONCLUSIONS Data from our literature review indicate, by finding significant associations, that specific early pregnancy events and complications are predictors for subsequent adverse obstetric and perinatal outcome. Though, some of these associations are based on limited or small uncontrolled studies. Larger population-based controlled studies are needed to confirm these findings. Nevertheless, identification of these risks will improve obstetric care.

  5. Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses

    PubMed Central

    2013-01-01

    Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting

  6. Elevated Extinction Rates as a Trigger for Diversification Rate Shifts: Early Amniotes as a Case Study

    PubMed Central

    Brocklehurst, Neil; Ruta, Marcello; Müller, Johannes; Fröbisch, Jörg

    2015-01-01

    Tree shape analyses are frequently used to infer the location of shifts in diversification rate within the Tree of Life. Many studies have supported a causal relationship between shifts and temporally coincident events such as the evolution of “key innovations”. However, the evidence for such relationships is circumstantial. We investigated patterns of diversification during the early evolution of Amniota from the Carboniferous to the Triassic, subjecting a new supertree to analyses of tree balance in order to infer the timing and location of diversification shifts. We investigated how uneven origination and extinction rates drive diversification shifts, and use two case studies (herbivory and an aquatic lifestyle) to examine whether shifts tend to be contemporaneous with evolutionary novelties. Shifts within amniotes tend to occur during periods of elevated extinction, with mass extinctions coinciding with numerous and larger shifts. Diversification shifts occurring in clades that possess evolutionary innovations do not coincide temporally with the appearance of those innovations, but are instead deferred to periods of high extinction rate. We suggest such innovations did not cause increases in the rate of cladogenesis, but allowed clades to survive extinction events. We highlight the importance of examining general patterns of diversification before interpreting specific shifts. PMID:26592209

  7. Characteristics of long recovery early VLF events observed by the North African AWESOME Network

    NASA Astrophysics Data System (ADS)

    Naitamor, S.; Cohen, M. B.; Cotts, B. R. T.; Ghalila, H.; Alabdoadaim, M. A.; Graf, K.

    2013-08-01

    Lightning strokes are capable of initiating disturbances in the lower ionosphere, whose recoveries persist for many minutes. These events are remotely sensed via monitoring subionospherically propagating very low frequency (VLF) transmitter signals, which are perturbed as they pass through the region above the lightning stroke. In this paper we describe the properties and characteristics of the early VLF signal perturbations, which exhibit long recovery times using subionospheric VLF transmitter data from three identical receivers located at Algiers (Algeria), Tunis (Tunisia), and Sebha (Libya). The results indicate that the observation of long recovery events depends strongly on the modal structure of the signal electromagnetic field and the distance from the disturbed region and the receiver or transmitter locations. Comparison of simultaneously collected data at the three sites indicates that the role of the causative lightning stroke properties (e.g., peak current and polarity), or that of transient luminous events may be much less important. The dominant parameter which determines the duration of the recovery time and amplitude appears to be the modal structure of the subionospheric VLF probe signal at the ionospheric disturbance, where scattering occurs, and the subsequent modal structure that propagates to the receiver location.

  8. EFFECT OF ARSENICALS ON THE EXPRESSION OF CELL CYCLE PROTEINS AND EARLY SIGNALING EVENTS IN PRIMARY HUMAN KERATINOCYTES.

    EPA Science Inventory

    Effect of Arsenicals on the Expression of Cell Cycle Proteins and Early Signaling Events in Primary Human Keratinocytes.

    Mudipalli, A, Owen R. D. and R. J. Preston, Environmental Carcinogenesis Division, USEPA, RTP, NC 27711.

    Environmental exposure to arsenic is a m...

  9. Effects of tectonics and large scale climatic changes on the evolutionary history of Hyalomma ticks.

    PubMed

    Sands, Arthur F; Apanaskevich, Dmitry A; Matthee, Sonja; Horak, Ivan G; Harrison, Alan; Karim, Shahid; Mohammad, Mohammad K; Mumcuoglu, Kosta Y; Rajakaruna, Rupika S; Santos-Silva, Maria M; Matthee, Conrad A

    2017-09-01

    Hyalomma Koch, 1844 are ixodid ticks that infest mammals, birds and reptiles, to which 27 recognized species occur across the Afrotropical, Palearctic and Oriental regions. Despite their medical and veterinary importance, the evolutionary history of the group is enigmatic. To investigate various taxonomic hypotheses based on morphology, and also some of the mechanisms involved in the diversification of the genus, we sequenced and analysed data derived from two mtDNA fragments, three nuclear DNA genes and 47 morphological characters. Bayesian and Parsimony analyses based on the combined data (2242 characters for 84 taxa) provided maximum resolution and strongly supported the monophyly of Hyalomma and the subgenus Euhyalomma Filippova, 1984 (including H. punt Hoogstraal, Kaiser and Pedersen, 1969). A predicted close evolutionary association was found between morphologically similar H. dromedarii Koch, 1844, H. somalicum Tonelli Rondelli, 1935, H. impeltatum Schulze and Schlottke, 1929 and H. punt, and together they form a sister lineage to H. asiaticum Schulze and Schlottke, 1929, H. schulzei Olenev, 1931 and H. scupense Schulze, 1919. Congruent with morphological suggestions, H. anatolicum Koch, 1844, H. excavatum Koch, 1844 and H. lusitanicum Koch, 1844 form a clade and so also H. glabrum Delpy, 1949, H. marginatum Koch, 1844, H. turanicum Pomerantzev, 1946 and H. rufipes Koch, 1844. Wide scale continental sampling revealed cryptic divergences within African H. truncatum Koch, 1844 and H. rufipes and suggested that the taxonomy of these lineages is in need of a revision. The most basal lineages in Hyalomma represent taxa currently confined to Eurasia and molecular clock estimates suggest that members of the genus started to diverge approximately 36.25 million years ago (Mya). The early diversification event coincides well with the collision of the Indian and Eurasian Plates, an event that was also characterized by large scale faunal turnover in the region. Using S

  10. Disentangling the complex evolutionary history of the Western Palearctic blue tits (Cyanistes spp.) - phylogenomic analyses suggest radiation by multiple colonization events and subsequent isolation.

    PubMed

    Stervander, Martin; Illera, Juan Carlos; Kvist, Laura; Barbosa, Pedro; Keehnen, Naomi P; Pruisscher, Peter; Bensch, Staffan; Hansson, Bengt

    2015-05-01

    Isolated islands and their often unique biota continue to play key roles for understanding the importance of drift, genetic variation and adaptation in the process of population differentiation and speciation. One island system that has inspired and intrigued evolutionary biologists is the blue tit complex (Cyanistes spp.) in Europe and Africa, in particular the complex evolutionary history of the multiple genetically distinct taxa of the Canary Islands. Understanding Afrocanarian colonization events is of particular importance because of recent unconventional suggestions that these island populations acted as source of the widespread population in mainland Africa. We investigated the relationship between mainland and island blue tits using a combination of Sanger sequencing at a population level (20 loci; 12 500 nucleotides) and next-generation sequencing of single population representatives (>3 200 000 nucleotides), analysed in coalescence and phylogenetic frameworks. We found (i) that Afrocanarian blue tits are monophyletic and represent four major clades, (ii) that the blue tit complex has a continental origin and that the Canary Islands were colonized three times, (iii) that all island populations have low genetic variation, indicating low long-term effective population sizes and (iv) that populations on La Palma and in Libya represent relicts of an ancestral North African population. Further, demographic reconstructions revealed (v) that the Canary Islands, conforming to traditional views, hold sink populations, which have not served as source for back colonization of the African mainland. Our study demonstrates the importance of complete taxon sampling and an extensive multimarker study design to obtain robust phylogeographical inferences. © 2015 John Wiley & Sons Ltd.

  11. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.

    PubMed

    Cowman, P F; Bellwood, D R

    2011-12-01

    Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  12. Fewer invited talks by women in evolutionary biology symposia.

    PubMed

    Schroeder, J; Dugdale, H L; Radersma, R; Hinsch, M; Buehler, D M; Saul, J; Porter, L; Liker, A; De Cauwer, I; Johnson, P J; Santure, A W; Griffin, A S; Bolund, E; Ross, L; Webb, T J; Feulner, P G D; Winney, I; Szulkin, M; Komdeur, J; Versteegh, M A; Hemelrijk, C K; Svensson, E I; Edwards, H; Karlsson, M; West, S A; Barrett, E L B; Richardson, D S; van den Brink, V; Wimpenny, J H; Ellwood, S A; Rees, M; Matson, K D; Charmantier, A; Dos Remedios, N; Schneider, N A; Teplitsky, C; Laurance, W F; Butlin, R K; Horrocks, N P C

    2013-09-01

    Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  13. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial.

    PubMed

    Schwartz, G G; Olsson, A G; Ezekowitz, M D; Ganz, P; Oliver, M F; Waters, D; Zeiher, A; Chaitman, B R; Leslie, S; Stern, T

    2001-04-04

    Patients experience the highest rate of death and recurrent ischemic events during the early period after an acute coronary syndrome, but it is not known whether early initiation of treatment with a statin can reduce the occurrence of these early events. To determine whether treatment with atorvastatin, 80 mg/d, initiated 24 to 96 hours after an acute coronary syndrome, reduces death and nonfatal ischemic events. A randomized, double-blind trial conducted from May 1997 to September 1999, with follow-up through 16 weeks at 122 clinical centers in Europe, North America, South Africa, and Australasia. A total of 3086 adults aged 18 years or older with unstable angina or non-Q-wave acute myocardial infarction. Patients were stratified by center and randomly assigned to receive treatment with atorvastatin (80 mg/d) or matching placebo between 24 and 96 hours after hospital admission. Primary end point event defined as death, nonfatal acute myocardial infarction, cardiac arrest with resuscitation, or recurrent symptomatic myocardial ischemia with objective evidence and requiring emergency rehospitalization. A primary end point event occurred in 228 patients (14.8%) in the atorvastatin group and 269 patients (17.4%) in the placebo group (relative risk [RR], 0.84; 95% confidence interval [CI], 0.70-1.00; P =.048). There were no significant differences in risk of death, nonfatal myocardial infarction, or cardiac arrest between the atorvastatin group and the placebo group, although the atorvastatin group had a lower risk of symptomatic ischemia with objective evidence and requiring emergency rehospitalization (6.2% vs 8.4%; RR, 0.74; 95% CI, 0.57-0.95; P =.02). Likewise, there were no significant differences between the atorvastatin group and the placebo group in the incidence of secondary outcomes of coronary revascularization procedures, worsening heart failure, or worsening angina, although there were fewer strokes in the atorvastatin group than in the placebo group (12

  14. Middle Devonian to Early Carboniferous event stratigraphy of Devils Gate and Northern Antelope Range sections, Nevada, U.S.A

    USGS Publications Warehouse

    Sandberg, C.A.; Morrow, J.R.; Poole, F.G.; Ziegler, W.

    2003-01-01

    The classic type section of the Devils Gate Limestone at Devils Gate Pass is situated on the eastern slope of a proto-Antler forebulge that resulted from convergence of the west side of the North American continent with an ocean plate. The original Late Devonian forebulge, the site of which is now located between Devils Gate Pass and the Northern Antelope Range, separated the continental-rise to deep-slope Woodruff basin on the west from the backbulge Pilot basin on the east. Two connections between these basins are recorded by deeper water siltstone beds at Devils Gate; the older one is the lower tongue of the Woodruff Formation, which forms the basal unit of the upper member of the type Devils Gate, and the upper one is the overlying, thin lower member of the Pilot Shale. The forebulge and the backbulge Pilot basin originated during the middle Frasnian (early Late Devonian) Early hassi Zone, shortly following the Alamo Impact within the punctata Zone in southern Nevada. Evidence of this impact is recorded by coeval and reworked shocked quartz grains in the Northern Antelope Range and possibly by a unique bypass-channel or megatsunami-uprush sandy diamictite within carbonate-platform rocks of the lower member of the type Devils Gate Limestone. Besides the Alamo Impact and three regional events, two other important global events are recorded in the Devils Gate section. The semichatovae eustatic rise, the maximum Late Devonian flooding event, coincides with the sharp lithogenetic change at the discordant boundary above the lower member of the Devils Gate Limestone. Most significantly, the Devils Gate section contains the thickest and most complete rock record in North America across the late Frasnian linguiformis Zone mass extinction event. Excellent exposures include not only the extinction shale, but also a younger. Early triangularis Zone tsunamite breccia, produced by global collapse of carbonate platforms during a shallowing event that continued into the next

  15. The European ruminants during the "Microbunodon Event" (MP28, Latest Oligocene): impact of climate changes and faunal event on the ruminant evolution.

    PubMed

    Mennecart, Bastien

    2015-01-01

    The Earth already experienced numerous episodes of global warming and cooling. One of the latest impressive events of temperature rising was the Late Oligocene Warming that occurred around 25 Mya. An increase of the marine temperature of 2 to 4°C has been observed in a short time interval. In Europe, this major climatic event can be correlated to the continental faunal turnover "Microbunodon Event". This event is marked by a huge faunal turnover (40% of the ungulate fauna during the first 500k years) and environmental changes. Drier conditions associated to the appearance of the seasonality lead to new environmental conditions dominated by wooded savannahs. This is correlated to a major arrival of Asiatic immigrants. Moreover, from a homogenous fauna during the main part of the Oligocene, local climatic variations between the European Western coast and the more central Europe could have provided faunal regionalism during the latest Oligocene and earliest Miocene. Considering the ruminants, this event is the major ever known for this group in Europe. A total renewal at the family level occurred. Thanks to a precise stratigraphic succession, major evolutionary elements are highlighted. Typical Oligocene species, mainly Tragulina, were adapted to wooded environments and were leaves/fruits eaters. They disappeared at the end of MP27 or the early MP28. This corresponds to the appearance of the Asiatic immigrants. The Tragulina (Lophiomerycidae, Bachitheriidae) and stem Pecora gave way to more derived stem and maybe crown Pecora (e.g. "Amphitragulus", Babameryx, Dremotherium). These newcomers were adapted to more open environments and mixed feeding. The disappearance of the Tragulina is probably linked to environmental and vegetation changes, and competition. They give way to more derived ruminants having a more efficient metabolism in drier conditions and a better assimilation of less energetic food.

  16. Age-related differences in event-related potentials for early visual processing of emotional faces.

    PubMed

    Hilimire, Matthew R; Mienaltowski, Andrew; Blanchard-Fields, Fredda; Corballis, Paul M

    2014-07-01

    With advancing age, processing resources are shifted away from negative emotional stimuli and toward positive ones. Here, we explored this 'positivity effect' using event-related potentials (ERPs). Participants identified the presence or absence of a visual probe that appeared over photographs of emotional faces. The ERPs elicited by the onsets of angry, sad, happy and neutral faces were recorded. We examined the frontocentral emotional positivity (FcEP), which is defined as a positive deflection in the waveforms elicited by emotional expressions relative to neutral faces early on in the time course of the ERP. The FcEP is thought to reflect enhanced early processing of emotional expressions. The results show that within the first 130 ms young adults show an FcEP to negative emotional expressions, whereas older adults show an FcEP to positive emotional expressions. These findings provide additional evidence that the age-related positivity effect in emotion processing can be traced to automatic processes that are evident very early in the processing of emotional facial expressions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Early Events Leading to the Host Protective Th2 Immune Response to an Intestinal Nematode Parasite

    DTIC Science & Technology

    2005-01-01

    expansion, eosinophilia , and IL-4 production (51;52). Similar down regulations of Th2 associated cytokines were observed using monoclonal antibodies...1. Kightlinger,L.K., Seed,J.R., and Kightlinger,M.B., The epidemiology of Ascaris lumbricoides, Trichuris trichiura, and hookworm in children in...Copyright Statement The author hereby certifies that the use of any copyrighted material in the thesis manuscript entitled: “Early Events

  18. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition

    PubMed Central

    Shah, Jubin N.; Kirioukhova, Olga; Pawar, Pallavi; Tayyab, Muhammad; Mateo, Juan L.; Johnston, Amal J.

    2016-01-01

    Molecular dissection of apomixis – an asexual reproductive mode – is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis) and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might serve as (epi)genetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologs of meiotic genes ASYNAPTIC 1 (ASY1) and MULTIPOLAR SPINDLE 1 (MPS1) that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologs of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologs were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by global DNA

  19. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  20. Early Decrease in Respiration and Uncoupling Event Independent of Cytochrome c Release in PC12 Cells Undergoing Apoptosis

    PubMed Central

    Berghella, Libera; Ferraro, Elisabetta

    2012-01-01

    Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role in cell respiration. The switch between these two functions occurs at the moment of its release from mitochondria. This process is therefore extremely relevant for the fate of the cell. Since cytochrome c mediates respiration, we studied the changes in respiratory chain activity during the early stages of apoptosis in order to contribute to unravel the mechanisms of cytochrome c release. We found that, during staurosporine (STS)- induced apoptosis in PC12 cells, respiration is affected before the release of cytochrome c, as shown by a decrease in the endogenous uncoupled respiration and an uncoupling event, both occurring independently of cytochrome c release. The decline in the uncoupled respiration occurs also upon Bcl-2 overexpression (which inhibits cytochrome c release), while the uncoupling event is inhibited by Bcl-2. We also observed that the first stage of nuclear condensation during STS-induced apoptosis does not depend on the release of cytochrome c into the cytosol and is a reversibile event. These findings may contribute to understand the mechanisms affecting mitochondria during the early stages of apoptosis and priming them for the release of apoptogenic factors. PMID:22666257

  1. Evidence of resilience to past climate change in Southwest Asia: Early farming communities and the 9.2 and 8.2 ka events

    NASA Astrophysics Data System (ADS)

    Flohr, Pascal; Fleitmann, Dominik; Matthews, Roger; Matthews, Wendy; Black, Stuart

    2016-03-01

    Climate change is often cited as a major factor in social change. The so-called 8.2 ka event was one of the most pronounced and abrupt Holocene cold and arid events. The 9.2 ka event was similar, albeit of a smaller magnitude. Both events affected the Northern Hemisphere climate and caused cooling and aridification in Southwest Asia. Yet, the impacts of the 8.2 and 9.2 ka events on early farming communities in this region are not well understood. Current hypotheses for an effect of the 8.2 ka event vary from large-scale site abandonment and migration (including the Neolithisation of Europe) to continuation of occupation and local adaptation, while impacts of the 9.2 ka have not previously been systematically studied. In this paper, we present a thorough assessment of available, quality-checked radiocarbon (14C) dates for sites from Southwest Asia covering the time interval between 9500 and 7500 cal BP, which we interpret in combination with archaeological evidence. In this way, the synchronicity between changes observed in the archaeological record and the rapid climate events is tested. It is shown that there is no evidence for a simultaneous and widespread collapse, large-scale site abandonment, or migration at the time of the events. However, there are indications for local adaptation. We conclude that early farming communities were resilient to the abrupt, severe climate changes at 9250 and 8200 cal BP.

  2. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  3. A catastrophic event in Lake Geneva region during the Early Bronze Age?

    NASA Astrophysics Data System (ADS)

    Kremer, Katrina; Yrro, Blé; Marillier, François; Hilbe, Michael; Corboud, Pierre; Rachoud-Schneider, Anne-Marie; Girardclos, Stéphanie

    2013-04-01

    Similarly to steep oceanic continental margins, lake slopes can collapse, producing large sublacustrine landslides and tsunamis. Lake sediments are excellent natural archives of such mass movements and their study allows the reconstructions of these prehistoric events, such as the 563 AD large tsunami over Lake Geneva (Kremer et al, 2012). In Lake Geneva, more than 100 km of high-resolution seismic reflection profiles reveal the late Holocene sedimentation history. The seismic record shows a succession of five large lens-shaped seismic units (A to I), characterized by transparent/chaotic seismic facies with irregular lower boundaries, and interpreted as mass-movement deposits. These units are interbedded with parallel, continuous and strong amplitude reflections, interpreted as the 'background' lake sediments. The oldest dated mass movement (Unit D) covers a surface of 22 km2 in the deep basin, near the city of Lausanne. This deposit has an estimated minimum volume of 0.18 km3 and thus was very likely tsunamigenic (Kremer et al, 2012). A 12-m-long sediment core confirms the seismic interpretation of the mass movement unit and shows that the uppermost 3 m of Unit D are characterized by deformed hemipelagic sediments topped by a 5 cm thick turbidite. This deposit can be classified as a slump whose scar can be interpreted in the seismic data and visualized by multibeam bathymetry. This slump of Lausanne was likely triggered by an earthquake but a spontaneous slope collapse cannot be excluded (Girardclos et al, 2007). Radiocarbon dating of plant macro-remains reveals that the unit D happened during Early Bronze Age. Three other mass wasting deposits occurred during the same time period and may have been triggered during the same event, either by a single earthquake or by a tsunami generated by the slump of Lausanne. Although the exact trigger mechanism of the all these mass-wasting deposits remains unknown, a tsunami likely generated by this event may have affected the

  4. Membrane remodeling, an early event in benzo[alpha]pyrene-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence

    2010-02-15

    Benzo[alpha]pyrene (B[alpha]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[alpha]P-induced apoptotic process. In this study, we report that B[alpha]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[alpha]P exposure. B[alpha]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[alpha]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[alpha]P-related H{submore » 2}O{sub 2} formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[alpha]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[alpha]P altered the composition of plasma membrane microstructures through AhR and H{sub 2}O{sub 2} dependent-regulation of lipid biosynthesis. In F258 cells, the B[alpha]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.« less

  5. Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Da; Qian, Hong

    2011-09-01

    Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.

  6. Evolutionary Perspectives on Genetic and Environmental Risk Factors for Psychiatric Disorders.

    PubMed

    Keller, Matthew C

    2018-05-07

    Evolutionary medicine uses evolutionary theory to help elucidate why humans are vulnerable to disease and disorders. I discuss two different types of evolutionary explanations that have been used to help understand human psychiatric disorders. First, a consistent finding is that psychiatric disorders are moderately to highly heritable, and many, such as schizophrenia, are also highly disabling and appear to decrease Darwinian fitness. Models used in evolutionary genetics to understand why genetic variation exists in fitness-related traits can be used to understand why risk alleles for psychiatric disorders persist in the population. The usual explanation for species-typical adaptations-natural selection-is less useful for understanding individual differences in genetic risk to disorders. Rather, two other types of models, mutation-selection-drift and balancing selection, offer frameworks for understanding why genetic variation in risk to psychiatric (and other) disorders exists, and each makes predictions that are now testable using whole-genome data. Second, species-typical capacities to mount reactions to negative events are likely to have been crafted by natural selection to minimize fitness loss. The pain reaction to tissue damage is almost certainly such an example, but it has been argued that the capacity to experience depressive symptoms such as sadness, anhedonia, crying, and fatigue in the face of adverse life situations may have been crafted by natural selection as well. I review the rationale and strength of evidence for this hypothesis. Evolutionary hypotheses of psychiatric disorders are important not only for offering explanations for why psychiatric disorders exist, but also for generating new, testable hypotheses and understanding how best to design studies and analyze data.

  7. Climate change and evolutionary adaptation.

    PubMed

    Hoffmann, Ary A; Sgrò, Carla M

    2011-02-24

    Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.

  8. Coping with a life event in bipolar disorder: ambulatory measurement, signalling and early treatment.

    PubMed

    Knapen, Stefan E; Riemersma-van der Lek, Rixt F; Haarman, Bartholomeus C M; Schoevers, Robert A

    2016-10-13

    Disruption of the biological rhythm in patients with bipolar disorder is a known risk factor for a switch in mood. This case study describes how modern techniques using ambulatory assessment of sleep parameters can help in signalling a mood switch and start early treatment. We studied a 40-year-old woman with bipolar disorder experiencing a life event while wearing an actigraph to measure sleep-wake parameters. The night after the life event the woman had sleep later and shorter sleep duration. Adequate response of both the woman and the treating psychiatrist resulted in two normal nights with the use of 1 mg lorazepam, possibly preventing further mood disturbances. Ambulatory assessment of the biological rhythm can function as an add-on to regular signalling plans for prevention of episodes in patients with bipolar disorder. More research should be conducted to validate clinical applicability, proper protocols and to understand underlying mechanisms. 2016 BMJ Publishing Group Ltd.

  9. Breast cancer and psychosocial factors: early stressful life events, social support, and well-being.

    PubMed

    Ginzburg, Karni; Wrensch, Margaret; Rice, Terri; Farren, Georgianna; Spiegel, David

    2008-01-01

    The allostasis theory postulates that stress causes the body to activate physiologic systems in order to maintain stability. The authors sought to examine the relationship between earlier stress and later development of breast cancer (BC). Authors correlated discrete and interactive relationships of stressful life events, social support, and well-being during childhood and adolescence with the occurrence of BC in adulthood among 300 women with primary BC and 305 matched control subjects. BC patients and control subjects reported similar childhood experiences. Yet, although childhood stressful life events were associated with reports of less family support and well being among the controls, those in the BC group who experienced high stress in early childhood actually expressed higher levels of family support and well-being than did those who had experienced lower levels of stress. These findings may reflect a tendency toward a repressive coping style among the BC group, which may be either a risk factor for the disease or a result of having it.

  10. Inferring explicit weighted consensus networks to represent alternative evolutionary histories

    PubMed Central

    2013-01-01

    Background The advent of molecular biology techniques and constant increase in availability of genetic material have triggered the development of many phylogenetic tree inference methods. However, several reticulate evolution processes, such as horizontal gene transfer and hybridization, have been shown to blur the species evolutionary history by causing discordance among phylogenies inferred from different genes. Methods To tackle this problem, we hereby describe a new method for inferring and representing alternative (reticulate) evolutionary histories of species as an explicit weighted consensus network which can be constructed from a collection of gene trees with or without prior knowledge of the species phylogeny. Results We provide a way of building a weighted phylogenetic network for each of the following reticulation mechanisms: diploid hybridization, intragenic recombination and complete or partial horizontal gene transfer. We successfully tested our method on some synthetic and real datasets to infer the above-mentioned evolutionary events which may have influenced the evolution of many species. Conclusions Our weighted consensus network inference method allows one to infer, visualize and validate statistically major conflicting signals induced by the mechanisms of reticulate evolution. The results provided by the new method can be used to represent the inferred conflicting signals by means of explicit and easy-to-interpret phylogenetic networks. PMID:24359207

  11. Ecological theatre and the evolutionary game: how environmental and demographic factors determine payoffs in evolutionary games.

    PubMed

    Argasinski, K; Broom, M

    2013-10-01

    In the standard approach to evolutionary games and replicator dynamics, differences in fitness can be interpreted as an excess from the mean Malthusian growth rate in the population. In the underlying reasoning, related to an analysis of "costs" and "benefits", there is a silent assumption that fitness can be described in some type of units. However, in most cases these units of measure are not explicitly specified. Then the question arises: are these theories testable? How can we measure "benefit" or "cost"? A natural language, useful for describing and justifying comparisons of strategic "cost" versus "benefits", is the terminology of demography, because the basic events that shape the outcome of natural selection are births and deaths. In this paper, we present the consequences of an explicit analysis of births and deaths in an evolutionary game theoretic framework. We will investigate different types of mortality pressures, their combinations and the possibility of trade-offs between mortality and fertility. We will show that within this new approach it is possible to model how strictly ecological factors such as density dependence and additive background fitness, which seem neutral in classical theory, can affect the outcomes of the game. We consider the example of the Hawk-Dove game, and show that when reformulated in terms of our new approach new details and new biological predictions are produced.

  12. Evolutionary medicine.

    PubMed

    Swynghedauw, B

    2004-04-01

    Nothing in biology makes sense except in the light of evolution. Evolutionary, or darwinian, medicine takes the view that contemporary diseases result from incompatibility between the conditions under which the evolutionary pressure had modified our genetic endowment and the lifestyle and dietary habits in which we are currently living, including the enhanced lifespan, the changes in dietary habits and the lack of physical activity. An evolutionary trait express a genetic polymorphism which finally improve fitness, it needs million years to become functional. A limited genetic diversity is a necessary prerequisite for evolutionary medicine. Nevertheless, search for a genetic endowment would become nearly impossible if the human races were genetically different. From a genetic point of view, homo sapiens, is homogeneous, and the so-called human races have only a socio-economic definition. Historically, Heart Failure, HF, had an infectious origin and resulted from mechanical overload which triggered mechanoconversion by using phylogenically ancient pleiotropic pathways. Adaptation was mainly caused by negative inotropism. Recently, HF was caused by a complex remodelling caused by the trophic effects of mechanics, ischemia, senescence, diabetes and, neurohormones. The generally admitted hypothesis is that cancers were largely caused by a combination of modern reproductive and dietary lifestyles mismatched with genotypic traits, plus the longer time available for a confrontation. Such a concept is illustrated for skin and breast cancers, and also for the link between cancer risk and dietary habits.

  13. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.

    PubMed

    Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B

    2015-10-01

    Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further

  14. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice

    PubMed Central

    Nemmar, Abderrahim; Hemeiri, Ahmed Al; Hammadi, Naser Al; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Elwasila, Mohamed; Ali, Badreldin H; Adeghate, Ernest

    2015-01-01

    Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored “moasel” tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are

  15. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice.

    PubMed

    Nemmar, Abderrahim; Al Hemeiri, Ahmed; Al Hammadi, Naser; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Elwasila, Mohamed; Ali, Badreldin H; Adeghate, Ernest

    2015-03-01

    Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are early

  16. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN

    PubMed Central

    Hohmann, Nora; Wolf, Eva M.

    2015-01-01

    The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization. PMID:26410304

  17. Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations

    NASA Astrophysics Data System (ADS)

    Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.

    2017-12-01

    Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level

  18. Evolutionary principles and their practical application

    PubMed Central

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966

  19. Evolutionary principles and their practical application.

    PubMed

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  20. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions

    NASA Astrophysics Data System (ADS)

    Olsson, Lennart; Levit, Georgy S.; Hoßfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the

  1. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions.

    PubMed

    Olsson, Lennart; Levit, Georgy S; Hossfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of

  2. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed

  3. Claiming Darwin: Stephen Jay Gould in contests over evolutionary orthodoxy and public perception, 1977-2002.

    PubMed

    Sheldon, Myrna Perez

    2014-03-01

    This article analyzes the impact of the resurgence of American creationism in the early 1980s on debates within post-synthesis evolutionary biology. During this period, many evolutionists criticized Harvard biologist Stephen Jay Gould for publicizing his revisions to traditional Darwinian theory and opening evolution to criticism by creationists. Gould's theory of punctuated equilibrium was a significant source of contention in these disputes. Both he and his critics, including Richard Dawkins, claimed to be carrying the mantle of Darwinian evolution. By the end of the 1990s, the debate over which evolutionary thinkers were the rightful heirs to Darwin's evolutionary theory was also a conversation over whether Darwinism could be defended against creationists in the broader cultural context. Gould and others' claims to Darwin shaped the contours of a political, religious and scientific controversy. Copyright © 2014. Published by Elsevier Ltd.

  4. A Systematic Review of Early Warning Systems' Effects on Nurses' Clinical Performance and Adverse Events Among Deteriorating Ward Patients.

    PubMed

    Lee, Ju-Ry; Kim, Eun-Mi; Kim, Sun-Aee; Oh, Eui Geum

    2018-04-25

    Early warning systems (EWSs) are an integral part of processes that aim to improve the early identification and management of deteriorating patients in general wards. However, the widespread implementation of these systems has not generated robust data regarding nurses' clinical performance and patients' adverse events. This review aimed to determine the ability of EWSs to improve nurses' clinical performance and prevent adverse events among deteriorating ward patients. The PubMed, CINAHL, EMBASE, and Cochrane Library databases were searched for relevant publications (January 1, 1997, to April 12, 2017). In addition, a grey literature search evaluated several guideline Web sites. The main outcome measures were nurses' clinical performance (vital sign monitoring and rapid response team notification) and patients' adverse events (in-hospital mortality, cardiac arrest, and unplanned intensive care unit [ICU] admission). The search identified 888 reports, although only five studies fulfilled the inclusion criteria. The findings of these studies revealed that EWSs implementation had a positive effect on nurses' clinical performance, based on their frequency of documenting vital signs that were related to the patient's clinical deterioration. In addition, postimplementation reductions were identified for cardiac arrest, unplanned ICU admission, and unexpected death. It seems that EWSs can improve nurses' clinical performance and prevent adverse events (e.g., in-hospital mortality, unplanned ICU admission, and cardiac arrest) among deteriorating ward patients. However, additional high-quality evidence is needed to more comprehensively evaluate the effects of EWSs on these outcomes.

  5. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    PubMed

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  6. Parental Substance Abuse As an Early Traumatic Event. Preliminary Findings on Neuropsychological and Personality Functioning in Young Drug Addicts Exposed to Drugs Early

    PubMed Central

    Parolin, Micol; Simonelli, Alessandra; Mapelli, Daniela; Sacco, Marianna; Cristofalo, Patrizia

    2016-01-01

    Parental substance use is a major risk factor for child development, heightening the risk of drug problems in adolescence and young adulthood, and exposing offspring to several types of traumatic events. First, prenatal drug exposure can be considered a form of trauma itself, with subtle but long-lasting sequelae at the neuro-behavioral level. Second, parents' addiction often entails a childrearing environment characterized by poor parenting skills, disadvantaged contexts and adverse childhood experiences (ACEs), leading to dysfunctional outcomes. Young adults born from/raised by parents with drug problems and diagnosed with a Substance Used Disorder (SUD) themselves might display a particularly severe condition in terms of cognitive deficits and impaired personality function. This preliminary study aims to investigate the role of early exposure to drugs as a traumatic event, capable of affecting the psychological status of young drug addicts. In particular, it intends to examine the neuropsychological functioning and personality profile of young adults with severe SUDs who were exposed to drugs early in their family context. The research involved three groups, each consisting of 15 young adults (aged 18–24): a group of inpatients diagnosed with SUDs and exposed to drugs early, a comparison group of non-exposed inpatients and a group of non-exposed youth without SUDs. A neuropsychological battery (Esame Neuropsicologico Breve-2), an assessment procedure for personality disorders (Shedler-Westen Assessment Procedure-200) and the Symptom CheckList-90-Revised were administered. According to present preliminary results, young drug addicts exposed to drugs during their developmental age were characterized by elevated rates of neuropsychological impairments, especially at the expense of attentive and executive functions (EF); personality disorders were also common but did not differentiate them from non-exposed youth with SUDs. Alternative multi-focused prevention and

  7. Charles Darwin and the Origins of Plant Evolutionary Developmental Biology

    PubMed Central

    Friedman, William E.; Diggle, Pamela K.

    2011-01-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form. PMID:21515816

  8. Charles Darwin and the origins of plant evolutionary developmental biology.

    PubMed

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  9. The evolutionary origin of jaw yaw in mammals

    PubMed Central

    Grossnickle, David M.

    2017-01-01

    Theria comprises all but three living mammalian genera and is one of the most ecologically pervasive clades on Earth. Yet, the origin and early history of therians and their close relatives (i.e., cladotherians) remains surprisingly enigmatic. A critical biological function that can be compared among early mammal groups is mastication. Morphometrics and modeling analyses of the jaws of Mesozoic mammals indicate that cladotherians evolved musculoskeletal anatomies that increase mechanical advantage during jaw rotation around a dorsoventrally-oriented axis (i.e., yaw) while decreasing the mechanical advantage of jaw rotation around a mediolaterally-oriented axis (i.e., pitch). These changes parallel molar transformations in early cladotherians that indicate their chewing cycles included significant transverse movement, likely produced via yaw rotation. Thus, I hypothesize that cladotherian molar morphologies and musculoskeletal jaw anatomies evolved concurrently with increased yaw rotation of the jaw during chewing cycles. The increased transverse movement resulting from yaw rotation may have been a crucial evolutionary prerequisite for the functionally versatile tribosphenic molar morphology, which underlies the molars of all therians and is retained by many extant clades. PMID:28322334

  10. An Alternative Explanation for "Step-Like" Early VLF Event

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2016-12-01

    A newly-deployed array of VLF receivers along the East Coast of the United States is ideally suited for detecting VLF scattering from lightning-induced disturbances to the lower ionosphere. The array was deployed in May 2016, and one VLF receiver was deployed only 20 km from the NAA transmitter (24.0 kHz) in Cutler, Maine. The phase of the NAA signal at this closest site varies significantly with time, due simply to the impedance match of the transmitter varying with time. Additionally, both the amplitude and phase exhibit periods of rapid shifts that could possibly explain at least some "step-like" VLF scattering events. Here, we distinguish between "step-like" VLF scattering events and other events in that "step-like" events are typically not closely associated with a detected causative lightning flash and also tend to exhibit little or no recovery to ambient conditions after the event onset. We present an analysis of VLF observations from the East Coast array that demonstrates interesting examples of step-like VLF events far from the transmitter that are associated with step-like events very close to the transmitter. We conclude that step-like VLF events should be treated with caution, unless definitively associated with a causative lightning flash and/or detected using observations of multiple transmitter signals.

  11. Algorithmic Mechanism Design of Evolutionary Computation.

    PubMed

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  12. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  13. The complex evolutionary dynamics of ancient and recent polyploidy in Leucaena (Leguminosae; Mimosoideae).

    PubMed

    Govindarajulu, Rajanikanth; Hughes, Colin E; Alexander, Patrick J; Bailey, C Donovan

    2011-12-01

    The evolutionary history of Leucaena has been impacted by polyploidy, hybridization, and divergent allopatric species diversification, suggesting that this is an ideal group to investigate the evolutionary tempo of polyploidy and the complexities of reticulation and divergence in plant diversification. Parsimony- and ML-based phylogenetic approaches were applied to 105 accessions sequenced for six sequence characterized amplified region-based nuclear encoded loci, nrDNA ITS, and four cpDNA regions. Hypotheses for the origin of tetraploid species were inferred using results derived from a novel species tree and established gene tree methods and from data on genome sizes and geographic distributions. The combination of comprehensively sampled multilocus DNA sequence data sets and a novel methodology provide strong resolution and support for the origins of all five tetraploid species. A minimum of four allopolyploidization events are required to explain the origins of these species. The origin(s) of one tetraploid pair (L. involucrata/L. pallida) can be equally explained by two unique allopolyploidizations or a single event followed by divergent speciation. Alongside other recent findings, a comprehensive picture of the complex evolutionary dynamics of polyploidy in Leucaena is emerging that includes paleotetraploidization, diploidization of the last common ancestor to Leucaena, allopatric divergence among diploids, and recent allopolyploid origins for tetraploid species likely associated with human translocation of seed. These results provide insights into the role of divergence and reticulation in a well-characterized angiosperm lineage and into traits of diploid parents and derived tetraploids (particularly self-compatibility and year-round flowering) favoring the formation and establishment of novel tetraploids combinations.

  14. Designing and Securing an Event Processing System for Smart Spaces

    ERIC Educational Resources Information Center

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  15. Evolutionary inference via the Poisson Indel Process.

    PubMed

    Bouchard-Côté, Alexandre; Jordan, Michael I

    2013-01-22

    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.

  16. Evolutionary inference via the Poisson Indel Process

    PubMed Central

    Bouchard-Côté, Alexandre; Jordan, Michael I.

    2013-01-01

    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114–124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments. PMID:23275296

  17. Cooperative combinatorial optimization: evolutionary computation case study.

    PubMed

    Burgin, Mark; Eberbach, Eugene

    2008-01-01

    This paper presents a formalization of the notion of cooperation and competition of multiple systems that work toward a common optimization goal of the population using evolutionary computation techniques. It is proved that evolutionary algorithms are more expressive than conventional recursive algorithms, such as Turing machines. Three classes of evolutionary computations are introduced and studied: bounded finite, unbounded finite, and infinite computations. Universal evolutionary algorithms are constructed. Such properties of evolutionary algorithms as completeness, optimality, and search decidability are examined. A natural extension of evolutionary Turing machine (ETM) model is proposed to properly reflect phenomena of cooperation and competition in the whole population.

  18. Conversion events in gene clusters

    PubMed Central

    2011-01-01

    Background Gene clusters containing multiple similar genomic regions in close proximity are of great interest for biomedical studies because of their associations with inherited diseases. However, such regions are difficult to analyze due to their structural complexity and their complicated evolutionary histories, reflecting a variety of large-scale mutational events. In particular, conversion events can mislead inferences about the relationships among these regions, as traced by traditional methods such as construction of phylogenetic trees or multi-species alignments. Results To correct the distorted information generated by such methods, we have developed an automated pipeline called CHAP (Cluster History Analysis Package) for detecting conversion events. We used this pipeline to analyze the conversion events that affected two well-studied gene clusters (α-globin and β-globin) and three gene clusters for which comparative sequence data were generated from seven primate species: CCL (chemokine ligand), IFN (interferon), and CYP2abf (part of cytochrome P450 family 2). CHAP is freely available at http://www.bx.psu.edu/miller_lab. Conclusions These studies reveal the value of characterizing conversion events in the context of studying gene clusters in complex genomes. PMID:21798034

  19. Evolutionary inevitability of sexual antagonism.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2014-02-07

    Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.

  20. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?

    PubMed Central

    2008-01-01

    Background Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD) occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub- or neo-functionalization of many duplicated genes. Results In this paper, we studied in a wide range of Actinopterygians the duplication and fate of the androgen receptor (AR, NR3C4), a nuclear receptor known to play a key role in sex-determination in vertebrates. The pattern of AR gene duplication is consistent with an early WGD event: it has been duplicated into two genes AR-A and AR-B after the split of the Acipenseriformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. Genomic and syntenic analyses in addition to lack of PCR amplification show that one of the duplicated copies, AR-B, was lost in several basal Clupeocephala such as Cypriniformes (including the model species zebrafish), Siluriformes, Characiformes and Salmoniformes. Interestingly, we also found that, in basal teleost fish (Osteoglossiformes and Anguilliformes), the two copies remain very similar, whereas, specifically in Percomorphs, one of the copies, AR-B, has accumulated substitutions in both the ligand binding domain (LBD) and the DNA binding domain (DBD). Conclusion The comparison of the mutations present in these divergent AR-B with those known in human to be implicated in complete, partial or mild androgen insensitivity syndrome suggests that the existence of two distinct AR duplicates may be correlated to specific functional differences that may be connected to the well

  1. A coupled classification - evolutionary optimization model for contamination event detection in water distribution systems.

    PubMed

    Oliker, Nurit; Ostfeld, Avi

    2014-03-15

    This study describes a decision support system, alerts for contamination events in water distribution systems. The developed model comprises a weighted support vector machine (SVM) for the detection of outliers, and a following sequence analysis for the classification of contamination events. The contribution of this study is an improvement of contamination events detection ability and a multi-dimensional analysis of the data, differing from the parallel one-dimensional analysis conducted so far. The multivariate analysis examines the relationships between water quality parameters and detects changes in their mutual patterns. The weights of the SVM model accomplish two goals: blurring the difference between sizes of the two classes' data sets (as there are much more normal/regular than event time measurements), and adhering the time factor attribute by a time decay coefficient, ascribing higher importance to recent observations when classifying a time step measurement. All model parameters were determined by data driven optimization so the calibration of the model was completely autonomic. The model was trained and tested on a real water distribution system (WDS) data set with randomly simulated events superimposed on the original measurements. The model is prominent in its ability to detect events that were only partly expressed in the data (i.e., affecting only some of the measured parameters). The model showed high accuracy and better detection ability as compared to previous modeling attempts of contamination event detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Modeling Temporal Processes in Early Spacecraft Design: Application of Discrete-Event Simulations for Darpa's F6 Program

    NASA Technical Reports Server (NTRS)

    Dubos, Gregory F.; Cornford, Steven

    2012-01-01

    While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".

  3. Infrared outbursts as potential tracers of common-envelope events in high-mass X-ray binary formation

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia M.; Bulik, Tomasz; Gómez-Morán, Ada Nebot

    2018-06-01

    Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims: We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods: We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results: Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions: The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.

  4. A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems

    NASA Astrophysics Data System (ADS)

    Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam

    2018-04-01

    Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods

  5. Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1999-02-10

    Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and theymore » suggest that EPSAs may be more robust on larger, more complex problems.« less

  6. A Time Scale for Major Events in Early Mars Crustal Evolution

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.

    2004-01-01

    The population of visible and buried impact basins > 200 km diameter revealed by high resolution gridded MOLA data and the cumulative frequency curves derived for these pvide a basis for a chronology of major events in early martian history. The relative chronology can be given in terms of N(200) crater retention ages; 'absolute ages' can be assigued using the Hartmann-Neukum (H&N) model chronology. In terms of billions of H&N years, the crustal dichotomy formed by large impact basins at 4.12 +/- 0.08 BYA (N(200) = 3.0-3.2) and the global magnetic field died at about or slightly before the same time (4.15 +/- 0.08 BYA (N(200) = 3.5). In this chronology, the buried lowlands are approx. 120 my younger than the buried highlands, approx. 160 my younger than the highlands overall and approx. 340 my younger than the oldest crater retention surface we see, defined by the largest impact basins.

  7. On the origins of anticipation as an evolutionary framework: functional systems perspective

    NASA Astrophysics Data System (ADS)

    Kurismaa, Andres

    2015-08-01

    This paper discusses the problem of anticipation from an evolutionary and systems-theoretical perspective, developed in the context of Russian/Soviet evolutionary biological and neurophysiological schools in the early and mid-twentieth century. On this background, an outline is given of the epigenetic interpretation of anticipatory capacities formulated and substantiated by the eminent Russian neurophysiologist academician Peter K. Anokhin in the framework of functional systems theory. It is considered that several key positions of this theory are well confirmed by recent evidence on anticipation as an evolutionarily basic adaptive capacity, possibly inherent to the organization of life. In the field of neuroscience, the theory of functional systems may potentially facilitate future studies at the intersection of learning, development and evolution by representing an integrative approach to the problem of anticipation.

  8. Early Molecular Events in Murine Gastric Epithelial Cells Mediated by Helicobacter pylori CagA.

    PubMed

    Banerjee, Aditi; Basu, Malini; Blanchard, Thomas G; Chintalacharuvu, Subba R; Guang, Wei; Lillehoj, Erik P; Czinn, Steven J

    2016-10-01

    Murine models of Helicobacter pylori infection are used to study host-pathogen interactions, but lack of severe gastritis in this model has limited its usefulness in studying pathogenesis. We compared the murine gastric epithelial cell line GSM06 to the human gastric epithelial AGS cell line to determine whether similar events occur when cultured with H. pylori. The lysates of cells infected with H. pylori isolates or an isogenic cagA-deficient mutant were assessed for translocation and phosphorylation of CagA and for activation of stress pathway kinases by immunoblot. Phosphorylated CagA was detected in both cell lines within 60 minutes. Phospho-ERK 1/2 was present within several minutes and distinctly present in GSM06 cells at 60 minutes. Similar results were obtained for phospho-JNK, although the 54 kDa phosphoprotein signal was dominant in AGS, whereas the lower molecular weight band was dominant in GSM06 cells. These results demonstrate that early events in H. pylori pathogenesis occur within mouse epithelial cells similar to human cells and therefore support the use of the mouse model for the study of acute CagA-associated host cell responses. These results also indicate that reduced disease in H. pylori-infected mice may be due to lack of the Cag PAI, or by differences in the mouse response downstream of the initial activation events. © 2016 John Wiley & Sons Ltd.

  9. Jurassic carbonate microfacies, sea-level changes and the Toarcian anoxic event in the Tethys Himalaya (South Tibet)

    NASA Astrophysics Data System (ADS)

    Han, Zhong; Hu, Xiumian; Garzanti, Eduardo

    2016-04-01

    Detailed microfacies analysis of carbonate rocks from the Tingri and Nyalam areas of South Tibet allowed us to reconstruct the evolution of sedimentary environments during the Early to Middle Jurassic. Based on texture, sedimentary structure, grain composition and fossil content of about 500 thin sections, 17 microfacies overall were identified, and three evolutionary stages were defined. Stage 1 (Rhaetian?-lower Sinemurian Zhamure Formation) was characterized by siliciclastic and mixed siliciclastic-carbonate sedimentation on a barrier shore environment, stage 2 (upper Sinemurian-Pliensbachian Pupuga Formation) by high-energy grainstones with rich benthic faunas thriving on a carbonate platform, and stage 3 (Toarcian-lower Bajocian Nieniexiongla Formation) by low-energy mudstones intercalated with frequent storm layers on a carbonate ramp. Besides, Carbon isotope analyses (δ13Ccarb and δ13Corg) were performed on the late Pliensbachian-early Toarcian interval, and the organic matter recorded a pronounced stepped negative excursion -4.5‰ corresponding to characteristics of the early Toarcian oceanic anoxic event globally, which began just below the stage 2-stage 3 facies shifting boundary. The comparison between the Tethys Himalaya (South Tibet) and the tropical/subtropical zones of the Western Tethys and Panthalassa was carried out to discuss the factors controlling sedimentary evolution. The change from stage 1 to stage 2 was possibly induced by sea-level rise, when the Tibetan Tethys Himalaya was located at tropical/subtropical latitudes in suitable climatic and ecological conditions for carbonate sedimentation. The abrupt change from stage 2 to stage 3 is interpreted as a consequence of the early Toarcian oceanic anoxic event, accompanied by obvious carbon-isotope negative excursion and sea-level rise. The failed recovery from the carbonate crisis in the early Bajocian, with continuing deposition on a low-energy carbonate ramp, is ascribed to the tectonic

  10. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis

    PubMed Central

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W.; Nakhleh, Luay

    2016-01-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  11. Nemo: an evolutionary and population genetics programming framework.

    PubMed

    Guillaume, Frédéric; Rougemont, Jacques

    2006-10-15

    Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.

  12. Early event-related brain potentials that reflect interest for content information in the media.

    PubMed

    Adachi, Shinobu; Morikawa, Koji; Nittono, Hiroshi

    2012-03-28

    This study investigated the relationship between event-related brain potentials (ERPs) to abridged content information in the media and the subsequent decisions to view the full content. Student volunteers participated in a task that simulated information selection on the basis of the content information. Screenshots of television clips and headlines of news articles on the Web were used as content information for the image condition and the headline condition, respectively. Following presentation of a stimulus containing content information, participants decided whether or not they would view the full content by pressing a select or a reject button. When the select button was pressed, participants were presented with a television clip or a news article. When the reject button was pressed, participants continued on to the next trial, without viewing further. In comparison with rejected stimuli, selected stimuli elicited a larger negative component, with a peak latency of ∼250 ms. The increase in the negative component was independent of the type of visual stimulus. These results suggest that interest toward content information is reflected in early-stage event-related brain potential responses.

  13. Evolutionary thinking: "A conversation with Carter Phipps about the role of evolutionary thinking in modern culture".

    PubMed

    Hunt, Tam

    2014-12-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps.

  14. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles.

    PubMed

    Pereira, Anieli G; Sterli, Juliana; Moreira, Filipe R R; Schrago, Carlos G

    2017-08-01

    Despite their complex evolutionary history and the rich fossil record, the higher level phylogeny and historical biogeography of living turtles have not been investigated in a comprehensive and statistical framework. To tackle these issues, we assembled a large molecular dataset, maximizing both taxonomic and gene sampling. As different models provide alternative biogeographical scenarios, we have explicitly tested such hypotheses in order to reconstruct a robust biogeographical history of Testudines. We scanned publicly available databases for nucleotide sequences and composed a dataset comprising 13 loci for 294 living species of Testudines, which accounts for all living genera and 85% of their extant species diversity. Phylogenetic relationships and species divergence times were estimated using a thorough evaluation of fossil information as calibration priors. We then carried out the analysis of historical biogeography of Testudines in a fully statistical framework. Our study recovered the first large-scale phylogeny of turtles with well-supported relationships following the topology proposed by phylogenomic works. Our dating result consistently indicated that the origin of the main clades, Pleurodira and Cryptodira, occurred in the early Jurassic. The phylogenetic and historical biogeographical inferences permitted us to clarify how geological events affected the evolutionary dynamics of crown turtles. For instance, our analyses support the hypothesis that the breakup of Pangaea would have driven the divergence between the cryptodiran and pleurodiran lineages. The reticulated pattern in the ancestral distribution of the cryptodiran lineage suggests a complex biogeographic history for the clade, which was supposedly related to the complex paleogeographic history of Laurasia. On the other hand, the biogeographical history of Pleurodira indicated a tight correlation with the paleogeography of the Gondwanan landmasses. Copyright © 2017 Elsevier Inc. All rights

  15. Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy

    PubMed Central

    Zozomová-Lihová, Judita; Krak, Karol; Mandáková, Terezie; Shimizu, Kentaro K.; Španiel, Stanislav; Vít, Petr; Lysak, Martin A.

    2014-01-01

    Background and Aims Recently formed allopolyploid species represent excellent subjects for exploring early stages of polyploid evolution. The hexaploid Cardamine schulzii was regarded as one of the few nascent allopolyploid species formed within the past ∼150 years that presumably arose by autopolyploidization of a triploid hybrid, C. × insueta; however, the most recent investigations have shown that it is a trigenomic hybrid. The aims of this study were to explore the efficiency of progenitor-specific microsatellite markers in detecting the hybrid origins and genome composition of these two allopolyploids, to estimate the frequency of polyploid formation events, and to outline their evolutionary potential for long-term persistence and speciation. Methods Flow-cytometric ploidy-level screening and genotyping by progenitor-specific microsatellite markers (20 microsatellite loci) were carried out on samples focused on hybridizing populations at Urnerboden, Switzerland, but also including comparative material of the parental species from other sites in the Alps and more distant areas. Key Results It was confirmed that hybridization between the diploids C. amara and C. rivularis auct. gave rise to triploid C. × insueta, and it is inferred that this has occurred repeatedly. Evidence is provided that C. schulzii comprises three parental genomes and supports its origin from hybridization events between C. × insueta and the locally co-occurring hypotetraploid C. pratensis, leading to two cytotypes of C. schulzii: hypopentaploid and hypohexaploid. Each cytotype of C. schulzii is genetically uniform, suggesting their single origins. Conclusions Persistence of C. schulzii has presumably been achieved only by perennial growth and clonal reproduction. This contrasts with C. × insueta, in which multiple origins and occasional sexual reproduction have generated sufficient genetic variation for long-term survival and evolutionary success. This study illustrates a complex

  16. Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling

    NASA Technical Reports Server (NTRS)

    Brown, Matthew; Johnston, Mark D.

    2013-01-01

    Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.

  17. Evolutionary genomics of LysM genes in land plants.

    PubMed

    Zhang, Xue-Cheng; Cannon, Steven B; Stacey, Gary

    2009-08-03

    The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin) and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns) and lipo-chitin (nodulation factors) in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. We show that LysM-containing proteins display a wide range of complex domain architectures. However, only a simple core architecture is conserved across kingdoms. Each individual kingdom appears to have evolved a distinct array of domain architectures. We show that early plant lineages acquired four characteristic architectures and progressively lost several primitive architectures. We report plant LysM phylogenies and associated gene, protein and genomic features, and infer the relative timing of duplications of LYK genes. We report a domain architecture catalogue of LysM proteins across all kingdoms. The unique pattern of LysM protein domain architectures indicates the presence of distinctive evolutionary paths in individual kingdoms. We describe a comparative and evolutionary genomics study of LysM genes in plant kingdom. One of the two groups of tandemly arrayed plant LYK genes likely resulted from an ancient genome duplication followed by local genomic rearrangement, while the origin of the other groups of tandemly arrayed LYK genes remains obscure. Given the fact that no animal LysM motif-containing genes have been functionally characterized, this study provides clues to functional characterization of plant LysM genes and is also informative with regard to evolutionary and functional studies of animal LysM genes.

  18. Evolutionary Conflict Between Maternal and Paternal Interests: Integration with Evolutionary Endocrinology.

    PubMed

    Mokkonen, Mikael; Koskela, Esa; Mappes, Tapio; Mills, Suzanne C

    2016-08-01

    Conflict between mates, as well as conflict between parents and offspring are due to divergent evolutionary interests of the interacting individuals. Hormone systems provide genetically based proximate mechanisms for mediating phenotypic adaptation and maladaptation characteristic of evolutionary conflict between individuals. Testosterone (T) is among the most commonly studied hormones in evolutionary biology, and as such, its role in shaping sexually dimorphic behaviors and physiology is relatively well understood, but its role in evolutionary conflict is not as clear. In this review, we outline the genomic conflicts arising within the family unit, and incorporate multiple lines of evidence from the bank vole (Myodes glareolus) system to outline how T impacts traits associated with reproduction and survival, resulting in a sexually antagonistic genetic trade-off in fitness. A major prediction arising from this work is that lower T is favored in females, whereas the optimal T level in males fluctuates in relation to social and ecological factors. We additionally discuss future directions to further integrate endocrinology into the study of sexual and parent-offspring conflicts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  19. Early events in geotropism of seedling shoots

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.

    1985-01-01

    Developments during the first ten minutes of geotropic stimulation in plant seedling shoots are reviewed. Topics include induction and curvature; early processes; the relationship between auxin, electric field, calcium, and differential growth; gravity reception leading to Went-Cholodny transport; and comparison of root and shoot. Early processes reviewed are sedimentation of amyloplasts, release of ethylene, rise of electrical and auxin asymmetry, redistribution of calcium, asymmetric vascular transport, increase in tendency to deposit callose, and simulation of putative exocytotic voltage transients.

  20. Experimental geobiology links evolutionary intensification of rooting systems and weathering

    NASA Astrophysics Data System (ADS)

    Quirk, Joe; Beerling, David; Leake, Jonathan

    2016-04-01

    The evolution of mycorrhizal fungi in partnership with early land plants over 440 million years ago led to the greening of the continents by plants of increasing biomass, rooting depth, nutrient demand and capacity to alter soil minerals, culminating in modern forested ecosystems. The later co-evolution of trees and rooting systems with arbuscular mycorrhizal (AM) fungi, together driving the biogeochemical cycling of elements and weathering of minerals in soil to meet subsequent increased phosphorus demands is thought to constitute one the most important biotic feedbacks on the geochemical carbon cycle to emerge during the Phanerozoic, and fundamentally rests on the intensifying effect of trees and their root-associating mycorrhizal fungal partners on mineral weathering. Here I present experimental and field evidence linking these evolutionary events to a mechanistic framework whereby: (1) as plants evolved in stature, biomass, and rooting depth, their mycorrhizal fungal partnerships received increasing amounts of plant photosynthate; (2) this enabled intensification of plant-driven fungal weathering of rocks to release growth-limiting nutrients; (3) in turn, this increased land-to-ocean export of Ca and P and enhanced ocean carbonate precipitation impacting the global carbon cycle and biosphere-geosphere-ocean-atmosphere interactions over the past 410 Ma. Our findings support an over-arching hypothesis that evolution has selected plant and mycorrhizal partnerships that have intensified mineral weathering and altered global biogeochemical cycles.

  1. Integrating genomics into evolutionary medicine.

    PubMed

    Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi

    2014-12-01

    The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  3. Toward a unifying framework for evolutionary processes.

    PubMed

    Paixão, Tiago; Badkobeh, Golnaz; Barton, Nick; Çörüş, Doğan; Dang, Duc-Cuong; Friedrich, Tobias; Lehre, Per Kristian; Sudholt, Dirk; Sutton, Andrew M; Trubenová, Barbora

    2015-10-21

    The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Practical advantages of evolutionary computation

    NASA Astrophysics Data System (ADS)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  5. Clades reach highest morphological disparity early in their evolution

    PubMed Central

    Hughes, Martin; Gerber, Sylvain; Wills, Matthew Albion

    2013-01-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the “big five” mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing. PMID:23884651

  6. Possible evolutionary origins of human female sexual fluidity.

    PubMed

    Kanazawa, Satoshi

    2017-08-01

    I propose an evolutionary theory of human female sexual fluidity and argue that women may have been evolutionarily designed to be sexually fluid in order to allow them to have sex with their cowives in polygynous marriage and thus reduce conflict and tension inherent in such marriage. In addition to providing an extensive definition and operationalization of the concept of sexual fluidity and specifying its ultimate function for women, the proposed theory can potentially solve several theoretical and empirical puzzles in evolutionary psychology and sex research. Analyses of the National Longitudinal Study of Adolescent Health (Add Health) confirm the theory's predictions that: (i) women (but not men) who experience increased levels of sexual fluidity have a larger number of children (suggesting that female sexual fluidity, if heritable, may be evolutionarily selected); (ii) women (but not men) who experience marriage or parenthood early in adult life subsequently experience increased levels of sexual fluidity; and (iii) sexual fluidity is significantly positively correlated with known markers of unrestricted sexual orientation among women whereas it is significantly negatively correlated with such markers among men. © 2016 Cambridge Philosophical Society.

  7. Ecological and evolutionary genomics of marine photosynthetic organisms.

    PubMed

    Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric

    2013-02-01

    Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.

  8. Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus.

    PubMed

    Yong, Luok Wen; Yu, Jr-Kai

    2016-08-01

    Vertebrate mineralized skeletal tissues are widely considered as an evolutionary novelty. Despite the importance of these tissues to the adaptation and radiation of vertebrate animals, the evolutionary origin of vertebrate skeletal tissues remains largely unclear. Cephalochordates (Amphioxus) occupy a key phylogenetic position and can serve as a valuable model for studying the evolution of vertebrate skeletal tissues. Here we summarize recent advances in amphioxus developmental biology and comparative genomics that can help to elucidate the evolutionary origins of the vertebrate skeletal tissues and their underlying developmental gene regulatory networks (GRN). By making comparisons to the developmental studies in vertebrate models and recent discoveries in paleontology and genomics, it becomes evident that the collagen matrix-based connective tissues secreted by the somite-derived cells in amphioxus likely represent the rudimentary skeletal tissues in chordates. We propose that upon the foundation of this collagenous precursor, novel tissue mineralization genes that arose from gene duplications were incorporated into an ancestral mesodermal GRN that makes connective and supporting tissues, leading to the emergence of highly-mineralized skeletal tissues in early vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Did Photosymbiont Bleaching Lead to the Demise of Planktic Foraminifer Morozovella at the Early Eocene Climatic Optimum?

    PubMed

    Luciani, Valeria; D'Onofrio, Roberta; Dickens, Gerald R; Wade, Bridget S

    2017-11-01

    The symbiont-bearing mixed-layer planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of early Paleogene tropical-subtropical oceans. A marked and permanent switch in the abundance of these genera is known to have occurred at low-latitude sites at the beginning of the Early Eocene Climatic Optimum (EECO), such that the relative abundance of Morozovella permanently and significantly decreased along with a progressive reduction in the number of species; concomitantly, the genus Acarinina almost doubled its abundance and diversified. Here we examine planktic foraminiferal assemblages and stable isotope compositions of their tests at Ocean Drilling Program Site 1051 (northwest Atlantic) to detail the timing of this biotic event, to document its details at the species level, and to test a potential cause: the loss of photosymbionts (bleaching). We also provide stable isotope measurements of bulk carbonate to refine the stratigraphy at Site 1051 and to determine when changes in Morozovella species composition and their test size occurred. We demonstrate that the switch in Morozovella and Acarinina abundance occurred rapidly and in coincidence with a negative carbon isotope excursion known as the J event (~53 Ma), which marks the start of the EECO. We provide evidence of photosymbiont loss after the J event from a size-restricted δ 13 C analysis. However, such inferred bleaching was transitory and also occurred in the acarininids. The geologically rapid switch in planktic foraminiferal genera during the early Eocene was a major evolutionary change within marine biota, but loss of photosymbionts was not the primary causal mechanism.

  10. Did Photosymbiont Bleaching Lead to the Demise of Planktic Foraminifer Morozovella at the Early Eocene Climatic Optimum?

    PubMed Central

    D'Onofrio, Roberta; Dickens, Gerald R.; Wade, Bridget S.

    2017-01-01

    Abstract The symbiont‐bearing mixed‐layer planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of early Paleogene tropical–subtropical oceans. A marked and permanent switch in the abundance of these genera is known to have occurred at low‐latitude sites at the beginning of the Early Eocene Climatic Optimum (EECO), such that the relative abundance of Morozovella permanently and significantly decreased along with a progressive reduction in the number of species; concomitantly, the genus Acarinina almost doubled its abundance and diversified. Here we examine planktic foraminiferal assemblages and stable isotope compositions of their tests at Ocean Drilling Program Site 1051 (northwest Atlantic) to detail the timing of this biotic event, to document its details at the species level, and to test a potential cause: the loss of photosymbionts (bleaching). We also provide stable isotope measurements of bulk carbonate to refine the stratigraphy at Site 1051 and to determine when changes in Morozovella species composition and their test size occurred. We demonstrate that the switch in Morozovella and Acarinina abundance occurred rapidly and in coincidence with a negative carbon isotope excursion known as the J event (~53 Ma), which marks the start of the EECO. We provide evidence of photosymbiont loss after the J event from a size‐restricted δ13C analysis. However, such inferred bleaching was transitory and also occurred in the acarininids. The geologically rapid switch in planktic foraminiferal genera during the early Eocene was a major evolutionary change within marine biota, but loss of photosymbionts was not the primary causal mechanism. PMID:29398777

  11. Stressful Life Events and Predictors of Post-traumatic Growth among High-Risk Early Emerging Adults.

    PubMed

    Arpawong, Thalida E; Rohrbach, Louise A; Milam, Joel E; Unger, Jennifer B; Land, Helen; Sun, Ping; Spruijt-Metz, Donna; Sussman, Steve

    2016-01-01

    Stressful life events (SLEs) may elicit positive psychosocial change among youth, referred to as Post-traumatic Growth (PTG). We assessed types of SLEs experienced, degree to which participants reported PTG, and variables predicting PTG across 24 months among a sample of high risk, ethnically diverse early emerging adults. Participants were recruited from alternative high schools ( n = 564; mean age=16.8; 65% Hispanic). Multi-level regression models were constructed to examine the impact of environmental (SLE quantity, severity) and personal factors (hedonic ability, perceived stress, developmental stage, future time orientation) on a composite score of PTG. The majority of participants reported positive changes resulted from their most life-altering SLE of the past two years. Predictors of PTG included fewer SLEs, less general stress, having a future time perspective, and greater identification with the developmental stage of Emerging Adulthood. Findings suggest intervention targets to foster positive adaptation among early emerging adults who experience frequent SLEs.

  12. Agricultural management affects evolutionary processes in a migratory songbird

    USGS Publications Warehouse

    Perlut, N.G.; Freeman-Gallant, C. R.; Strong, A.M.; Donovan, T.M.; Kilpatrick, C.W.; Zalik, N.J.

    2008-01-01

    Hay harvests have detrimental ecological effects on breeding songbirds, as harvesting results in nest failure. Importantly, whether harvesting also affects evolutionary processes is not known. We explored how hay harvest affected social and genetic mating patterns, and thus, the overall opportunity for sexual selection and evolutionary processes for a ground-nesting songbird, the Savannah sparrow (Passerculus sandwichensis). On an unharvested field, 55% of females were in polygynous associations, and social polygyny was associated with greater rates of extra-pair paternity (EPP). In this treatment, synchrony explained variation in EPP rates, as broods by more synchronous females had more EPP than broods by asynchronous females. In contrast, on a harvested field, simultaneous nest failure caused by haying dramatically decreased the overall incidence of EPP by increasing the occurrence of social monogamy and, apparently, the ability of polygynous males to maintain paternity in their own nests. Despite increased social and genetic monogamy, these haying-mediated changes in mating systems resulted in greater than twofold increase in the opportunity for sexual selection. This effect arose, in part, from a 30% increase in the variance associated with within-pair fertilization success, relative to the unharvested field. This effect was caused by a notable increase (+110%) in variance associated with the quality of social mates following simultaneous nest failure. Because up to 40% of regional habitat is harvested by early June, these data may demonstrate a strong population-level effect on mating systems, sexual selection, and consequently, evolutionary processes. ?? 2008 The Authors.

  13. Exploring the feasibility of a nationwide earthquake early warning system in Italy

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Zollo, A.; Brondi, P.; Colombelli, S.; Elia, L.; Martino, C.

    2015-04-01

    When accompanied by appropriate training and preparedness of a population, Earthquake Early Warning Systems (EEWS) are effective and viable tools for the real-time reduction of societal exposure to seismic events in metropolitan areas. The Italian Accelerometric Network, RAN, which consists of about 500 stations installed over all the active seismic zones, as well as many cities and strategic infrastructures in Italy, has the potential to serve as a nationwide early warning system. In this work, we present a feasibility study for a nationwide EEWS in Italy obtained by the integration of the RAN and the software platform PRobabilistic and Evolutionary early warning SysTem (PRESTo). The performance of the RAN-PRESTo EEWS is first assessed by testing it on real strong motion recordings of 40 of the largest earthquakes that have occurred during the last 10 years in Italy. Furthermore, we extend the analysis to regions that did not experience earthquakes by considering a nationwide grid of synthetic sources capable of generating Gutenberg-Richter sequences corresponding to the one adopted by the seismic hazard map of the Italian territory. Our results indicate that the RAN-PRESTo EEWS could theoretically provide for higher seismic hazard areas reliable alert messages within about 5 to 10 s and maximum lead times of about 25 s. In case of large events (M > 6.5), this amount of lead time would be sufficient for taking basic protective measures (e.g., duck and cover, move away from windows or equipment) in tens to hundreds of municipalities affected by large ground shaking.

  14. Asynchronous spatial evolutionary games.

    PubMed

    Newth, David; Cornforth, David

    2009-02-01

    Over the past 50 years, much attention has been given to the Prisoner's Dilemma as a metaphor for problems surrounding the evolution and maintenance of cooperative and altruistic behavior. The bulk of this work has dealt with the successfulness and robustness of various strategies. Nowak and May (1992) considered an alternative approach to studying evolutionary games. They assumed that players were distributed across a two-dimensional (2D) lattice, interactions between players occurred locally, rather than at long range as in the well mixed situation. The resulting spatial evolutionary games display dynamics not seen in their well-mixed counterparts. An assumption underlying much of the work on spatial evolutionary games is that the state of all players is updated in unison or in synchrony. Using the framework outlined in Nowak and May (1992), we examine the effect of various asynchronous updating schemes on the dynamics of spatial evolutionary games. There are potential implications for the dynamics of a wide variety of spatially extended systems in biology, physics and chemistry.

  15. Evolutionary pattern search algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less

  16. Origin and early evolution of photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  17. Ecology of hemiepiphytism in fig species is based on evolutionary correlation of hydraulics and carbon economy.

    PubMed

    Hao, Guang-You; Goldstein, Guillermo; Sack, Lawren; Holbrook, N Michele; Liu, Zhi-Hui; Wang, Ai-Ying; Harrison, Rhett D; Su, Zhi-Hui; Cao, Kun-Fang

    2011-11-01

    Woody hemiepiphytic species (Hs) are important components of tropical rain forests, and they have been hypothesized to differ from non-hemiepiphytic tree species (NHs) in adaptations relating to water relations and carbon economy; but few studies have been conducted comparing ecophysiological traits between the two growth forms especially in an evolutionary context. Using common-garden plants of the genus Ficus, functional traits related to plant hydraulics and carbon economy were compared for seven NHs and seven Hs in their adult terrestrial "tree-like" growth phase. We used phylogenetically independent contrasts to test the hypothesis that differences in water availability selected for contrasting suites of traits in Hs and NHs, driving evolutionary correlations among functional traits including hydraulic conductivity and photosynthetic traits. Species of the two growth forms differed in functional traits; Hs had substantially lower xylem hydraulic conductivity and stomatal conductance, and higher instantaneous photosynthetic water use efficiency. Leaf morphological and structural traits also differed strikingly between the two growth forms. The Hs had significantly smaller leaves, higher leaf mass per area (LMA), and smaller xylem vessel lumen diameters. Across all the species, hydraulic conductivity was positively correlated with leaf gas exchange indicating high degrees of hydraulic-photosynthetic coordination. More importantly, these correlations were supported by correlations implemented on phylogenetic independent contrasts, suggesting that most trait correlations arose through repeated convergent evolution rather than as a result of chance events in the deep nodes of the lineage. Vatiation in xylem hydraulic conductivity was also centrally associated with a suite of other functional traits related to carbon economy and growth, such as LMA, water use efficiency, leaf nutrient concentration, and photosynthetic nutrient use efficiency, indicating important

  18. Event-by-Event Simulations of Early Gluon Fields in High Energy Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Nickel, Matthew; Rose, Steven; Fries, Rainer

    2017-09-01

    Collisions of heavy ions are carried out at ultra relativistic speeds at the Relativistic Heavy Ion Collider and the Large Hadron Collider to create Quark Gluon Plasma. The earliest stages of such collisions are dominated by the dynamics of classical gluon fields. The McLerran-Venugopalan (MV) model of color glass condensate provides a model for this process. Previous research has provided an analytic solution for event averaged observables in the MV model. Using the High Performance Research Computing Center (HPRC) at Texas A&M, we have developed a C++ code to explicitly calculate the initial gluon fields and energy momentum tensor event by event using the analytic recursive solution. The code has been tested against previously known analytic results up to fourth order. We have also have been able to test the convergence of the recursive solution at high orders in time and studied the time evolution of color glass condensate.

  19. Evolutionary Debunking Arguments

    PubMed Central

    Kahane, Guy

    2011-01-01

    Evolutionary debunking arguments (EDAs) are arguments that appeal to the evolutionary origins of evaluative beliefs to undermine their justification. This paper aims to clarify the premises and presuppositions of EDAs—a form of argument that is increasingly put to use in normative ethics. I argue that such arguments face serious obstacles. It is often overlooked, for example, that they presuppose the truth of metaethical objectivism. More importantly, even if objectivism is assumed, the use of EDAs in normative ethics is incompatible with a parallel and more sweeping global evolutionary debunking argument that has been discussed in recent metaethics. After examining several ways of responding to this global debunking argument, I end by arguing that even if we could resist it, this would still not rehabilitate the current targeted use of EDAs in normative ethics given that, if EDAs work at all, they will in any case lead to a truly radical revision of our evaluative outlook. PMID:21949447

  20. Asymmetric Evolutionary Games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  1. Asymmetric Evolutionary Games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  2. High-resolution carbonate isotopic study of the Mural Formation (Cerro Pimas section), Sonora, México: Implications for early Albian oceanic anoxic events

    NASA Astrophysics Data System (ADS)

    Madhavaraju, J.; Lee, Yong Il; Scott, R. W.; González-León, C. M.; Jenkyns, H. C.; Saucedo-Samaniego, J. C.; Ramasamy, S.

    2018-03-01

    The 420-m thick stratigraphic section of the Mural Formation that is exposed in the Cerro Pimas area of northern Sonora, Mexico, is composed of limestone lithofacies ranging from bioclastic wackestone to boundstone, whose biota is characterized by low diversity. Prominent age-diagnostic fossils are benthic foraminifera and long-ranging calcareous algae that indicate the Aptian/Albian boundary is close to the base of the Los Coyotes Member. The carbonates of this formation have negative to positive δ13C values (-4.63 to +2.6‰) and highly depleted δ18O values that range from -12.74 to -8.34‰. The absence of correlation between δ13C and δ18O values supports a primary marine origin for the δ13C values of these limestones. The carbon-isotopic curve of the Cerro Pimas stratigraphic section has well-defined δ13C segments (C8 - C15) that compare with published curves of similar age. In the lower part of the early Albian Los Coyotes Member, the presence of OAE 1b is indicated by an increase followed by a decrease in δ13C values, suggesting correlation with the Kilian Event. The middle part of the Los Coyotes Member has a significant negative carbon-isotope excursion correlated with the globally recognizable early Albian Paquier event. Moreover, another significant negative carbon-isotope shift is observed in the upper part of the Los Coyotes Member, which can be correlated with the Leenhardt Event. The occurrence of the Kilian, Paquier and Leenhardt Events (OAE 1b cluster) in the Cerro Pimas stratigraphy confirms the global nature of these early Albian disturbances of the carbon cycle.

  3. Core principles of evolutionary medicine: A Delphi study.

    PubMed

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  4. Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia.

    PubMed

    Estrada-Peña, Agustín; Álvarez-Jarreta, Jorge; Cabezas-Cruz, Alejandro

    2018-04-12

    The life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of

  5. Conceptual Barriers to Progress Within Evolutionary Biology

    PubMed Central

    Laland, Kevin N.; Odling-Smee, John; Feldman, Marcus W.; Kendal, Jeremy

    2011-01-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, “niche construction”. This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory. PMID:21572912

  6. Conceptual Barriers to Progress Within Evolutionary Biology.

    PubMed

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  7. Enhanced tocopherol levels during early germination events in Chamaerops humilis var. humilis seeds.

    PubMed

    Siles, Laura; Alegre, Leonor; Tijero, Verónica; Munné-Bosch, Sergi

    2015-10-01

    Most angiosperms accumulate vitamin E in the form of tocopherols in seeds, exerting a protective antioxidant role. However, several palm trees principally accumulate tocotrienols, rather than tocopherols, in seeds, as it occurs in other monocots. To unravel the protective role of either tocopherols or tocotrienols against lipid peroxidation during seed germination in Chamaerops humilis var. humilis; seed viability, natural and induced germination capacity, seed water content, malondialdehyde levels (as an indicator of the extent of lipid peroxidation) and vitamin E levels (including both tocopherols and tocotrienols) were examined at various germination phases in a simulated, natural seed bank. At the very early stages of germination (operculum removal), malondialdehyde levels increased 2.8-fold, to decrease later up to 74%, thus indicating a transient lipid peroxidation at early stages of germination. Tocopherol levels were absent in quiescent seeds and did not increase during operculum removal, but increased later presumably dampening malondialdehyde accumulation. Thereafter, tocopherols continued increasing, while lipid peroxidation levels decreased. By contrast, tocotrienols levels remained constant or even decreased as germination progressed, showing no correlation with lipid peroxidation levels. We hypothesize that despite their high tocotrienol content, seeds synthesize tocopherols during germination to protect lipids from peroxidation events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Early life events and motor development in childhood and adolescence: a longitudinal study.

    PubMed

    Grace, Tegan; Bulsara, Max; Robinson, Monique; Hands, Beth

    2016-05-01

    Few studies have reported on early life risk factors for motor development outcomes past childhood. Antenatal, perinatal and neonatal factors affecting motor development from late childhood to adolescence were explored. As sex differences in motor development have been previously reported, males and females were examined separately. Participants (n = 2868) were from the Western Australian Pregnancy Cohort Study. Obstetric and neonatal data were examined to determine factors related to motor development at 10 (n = 1622), 14 (n = 1584) and 17 (n = 1221) years. The Neuromuscular Development Index (NDI) of the McCarron Assessment of Motor Development determined offspring motor proficiency. Linear mixed models were developed to allow for changes in motor development over time. Maternal pre-eclampsia, Caesarean section and low income were negatively related to male and female motor outcomes. Lower percentage of optimal birthweight was related to a lower male NDI. Younger maternal age, smoking during early pregnancy and stress during later pregnancy were related to lower female NDIs. Events experienced during pregnancy were related to motor development into late adolescence. Males and females were influenced differently by antenatal and perinatal risk factors; this may be due to sex-specific developmental pathways. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  9. High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae)

    PubMed Central

    He, Tianhua; Fowler, William M.; Causley, Casey L.

    2015-01-01

    Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea. PMID:26607493

  10. Indirect Effects of Attributional Style for Positive Events on Depressive Symptoms Through Self-Esteem During Early Adolescence.

    PubMed

    Rueger, Sandra Yu; George, Rachel

    2017-04-01

    Research on adolescent depression has overwhelmingly focused on risk factors, such as stressful negative events and cognitive vulnerabilities, but much important information can be gained by focusing on protective factors. Thus, the current study aimed to broaden understanding on adolescent depression by considering the role of two positive elements as protective factors, attributional style for positive events and self-esteem, in a model of depression. The sample included 491 middle school students (52 % female; n = 249) with an age range from 12 to 15 years (M = 13.2, SD = .70). The sample was ethnically/racially diverse, with 55 % White, 22 % Hispanic, 10 % Asian American, 3 % African American, and 10 % Biracial/Other. Correlational analyses indicated significant cross-sectional and longitudinal associations between an enhancing attributional style (internal, stable, global attributions for positive events), self-esteem and depressive symptoms. Further, prospective analyses using bootstrapping methodology demonstrated significant indirect effects of an enhancing attributional style on decreases in depressive symptoms through its effects on self-esteem. These findings highlight the importance of considering attributional style for positive events as a protective factor in the developmental course of depressive symptoms during early adolescence.

  11. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: evidence from a new genus and species, Grimmenodon aureum

    PubMed Central

    Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen

    2017-01-01

    ABSTRACT A new genus and species of pycnodontiform fishes, Grimmenodon aureum, from marginal marine, marine-brackish lower Toarcian (Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum, gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian (Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum, gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum. Journal of Vertebrate Paleontology. DOI: 10

  12. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: evidence from a new genus and species, Grimmenodon aureum.

    PubMed

    Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen

    2017-07-04

    A new genus and species of pycnodontiform fishes, Grimmenodon aureum , from marginal marine, marine-brackish lower Toarcian ( Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum , gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian ( Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum , gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum . Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1344679.

  13. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  14. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    PubMed Central

    2008-01-01

    Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a

  15. Crossover between structured and well-mixed networks in an evolutionary prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Dai, Qionglin; Cheng, Hongyan; Li, Haihong; Li, Yuting; Zhang, Mei; Yang, Junzhong

    2011-07-01

    In a spatial evolutionary prisoner’s dilemma game (PDG), individuals interact with their neighbors and update their strategies according to some rules. As is well known, cooperators are destined to become extinct in a well-mixed population, whereas they could emerge and be sustained on a structured network. In this work, we introduce a simple model to investigate the crossover between a structured network and a well-mixed one in an evolutionary PDG. In the model, each link j is designated a rewiring parameter τj, which defines the time interval between two successive rewiring events for link j. By adjusting the rewiring parameter τ (the mean time interval for any link in the network), we could change a structured network into a well-mixed one. For the link rewiring events, three situations are considered: one synchronous situation and two asynchronous situations. Simulation results show that there are three regimes of τ: large τ where the density of cooperators ρc rises to ρc,∞ (the value of ρc for the case without link rewiring), small τ where the mean-field description for a well-mixed network is applicable, and moderate τ where the crossover between a structured network and a well-mixed one happens.

  16. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus.

    PubMed

    Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H

    2014-12-01

    In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Research traditions and evolutionary explanations in medicine.

    PubMed

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  18. Safety evaluation of laninamivir octanoate hydrate through analysis of adverse events reported during early post-marketing phase vigilance.

    PubMed

    Nakano, Takashi; Okumura, Akihisa; Tanabe, Takuya; Niwa, Shimpei; Fukushima, Masato; Yonemochi, Rie; Eda, Hisano; Tsutsumi, Hiroyuki

    2013-06-01

    Abnormal behavior and delirium are common in children with influenza. While abnormal behavior and delirium are considered to be associated with influenza encephalopathy, an increased risk of such neuropsychiatric symptoms in patients receiving neuraminidase inhibitor treatment is suspected. Laninamivir octanoate hydrate, recently approved in Japan, is a long-acting neuraminidase inhibitor. It is important to establish a safety profile for laninamivir early, based on post-marketing experiences. Spontaneous safety reports collected in the early post-marketing phase vigilance were analyzed. Adverse events of interest such as abnormal behavior/delirium, dizziness/vertigo, respiratory disorders, shock/syncope, and any other serious events were intensively reviewed by the Safety Evaluation Committee. Abnormal behavior/delirium was a frequently reported event. Almost all the reported cases were considered to be due to influenza and not laninamivir. There were 32 cases of abnormal behavior/delirium that could lead to dangerous accidents, and these were observed more frequently in males and teenagers. Syncope probably related to the act of inhalation per se of laninamivir was reported during this survey. This safety review revealed that the safety profile of laninamivir for abnormal behavior/delirium and syncope was similar to that of other neuraminidase inhibitors. As stated in the labeling, teenage patients inhaling laninamivir should remain under constant parental supervision for at least 2 days and should be closely monitored for behavioral changes to prevent serious accidents associated with abnormal behavior/delirium. Furthermore, to avoid syncope because of inhalation, patients should be instructed to inhale in a relaxed sitting position.

  19. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evolutionary history of Pacific salmon in dynamic environments

    PubMed Central

    Waples, Robin S; Pess, George R; Beechie, Tim

    2008-01-01

    Contemporary evolution of Pacific salmon (Oncorhynchus spp.) is best viewed in the context of the evolutionary history of the species and the dynamic ecosystems they inhabit. Speciation was complete by the late Miocene, leaving c. six million years for intraspecific diversification. Following the most recent glacial maximum, large areas became available for recolonization. Current intraspecific diversity is thus the product of recent evolution overlaid onto divergent historical lineages forged during recurrent episodes of Pleistocene glaciation. In northwestern North America, dominant habitat features have been relatively stable for the past 5000 years, but salmon ecosystems remain dynamic because of disturbance regimes (volcanic eruptions, landslides, wildfires, floods, variations in marine and freshwater productivity) that occur on a variety of temporal and spatial scales. These disturbances both create selective pressures for adaptive responses by salmon and inhibit long-term divergence by periodically extirpating local populations and creating episodic dispersal events that erode emerging differences. Recent anthropogenic changes are replicated pervasively across the landscape and interrupt processes that allow natural habitat recovery. If anthropogenic changes can be shaped to produce disturbance regimes that more closely mimic (in both space and time) those under which the species evolved, Pacific salmon should be well-equipped to deal with future challenges, just as they have throughout their evolutionary history. PMID:25567626

  1. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Brachial-ankle pulse wave velocity predicts decline in renal function and cardiovascular events in early stages of chronic kidney disease.

    PubMed

    Yoon, Hye Eun; Shin, Dong Il; Kim, Sung Jun; Koh, Eun Sil; Hwang, Hyeon Seok; Chung, Sungjin; Shin, Seok Joon

    2013-01-01

    In this study, we investigated the predictive capacity of the brachial-ankle aortic pulse wave velocity (baPWV), a marker of arterial stiffness, for the decline in renal function and for cardiovascular events in the early stages of chronic kidney disease (CKD). Two hundred forty-one patients who underwent a comprehensive check-up were included and were divided into two groups according to their estimated glomerular filtration rates (eGFR): patients with CKD categories G2, G3a and G3b (30 ≤ eGFR < 90 ml/min/1.73m(2), eGFR < 90 group; n=117) and those with eGFR ≥ 90 ml/min/1.73 m(2) (eGFR ≥ 90 group; n=124). The change in renal function, the eGFR change, was determined by the slope of eGFR against time. We analysed whether baPWV was associated with eGFR change or predicted cardiovascular events. baPWV was independently associated with eGFR change in a multivariate analysis of the total patients (β=-0.011, p=0.011) and remained significantly associated with eGFR change in a subgroup analysis of the eGFR < 90 group (β=-0.015, p=0.035). baPWV was independently associated with cardiovascular events (odds ratio=1.002, p=0.048) in the eGFR < 90 group, but not in the eGFR ≥ 90 group. The receiver operative characteristic curve analysis showed that 1,568 cm/sec was the cut-off value of baPWV for predicting CV events in the eGFR < 90 group (area under curve=0.691, p=0.03) CONCLUSIONS: In patients with early stages of CKD, baPWV was independently associated with the decline in renal function and short-term cardiovascular events.

  3. Early Spatial and Temporal Events of Human T-Lymphotropic Virus Type 1 Spread following Blood-Borne Transmission in a Rabbit Model of Infection ▿

    PubMed Central

    Haynes, Rashade A. H.; Zimmerman, Bevin; Millward, Laurie; Ware, Evan; Premanandan, Christopher; Yu, Lianbo; Phipps, Andrew J.; Lairmore, Michael D.

    2010-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell leukemia/lymphoma (ATL) and is associated with a variety of lymphocyte-mediated disorders. HTLV-1 transmission occurs by transmission of infected cells via breast-feeding by infected mothers, sexual intercourse, and contaminated blood products. The route of exposure and early virus replication events are believed to be key determinants of virus-associated spread, antiviral immune responses, and ultimately disease outcomes. The lack of knowledge of early events of HTLV-1 spread following blood-borne transmission of the virus in vivo hinders a more complete understanding of the immunopathogenesis of HTLV-1 infections. Herein, we have used an established animal model of HTLV-1 infection to study early spatial and temporal events of the viral infection. Twelve-week-old rabbits were injected intravenously with cell-associated HTLV-1 (ACH-transformed R49). Blood and tissues were collected at defined intervals throughout the study to test the early spread of the infection. Antibody and hematologic responses were monitored throughout the infection. HTLV-1 intracellular Tax and soluble p19 matrix were tested from ex vivo cultured lymphocytes. Proviral copy numbers were measured by real-time PCR from blood and tissue mononuclear leukocytes. Our data indicate that intravenous infection with cell-associated HTLV-1 targets lymphocytes located in both primary lymphoid and gut-associated lymphoid compartments. A transient lymphocytosis that correlated with peak virus detection parameters was observed by 1 week postinfection before returning to baseline levels. Our data support emerging evidence that HTLV-1 promotes lymphocyte proliferation preceding early viral spread in lymphoid compartments to establish and maintain persistent infection. PMID:20219918

  4. Evolutionary rescue in vertebrates: evidence, applications and uncertainty

    PubMed Central

    Vander Wal, E.; Garant, D.; Festa-Bianchet, M.; Pelletier, F.

    2013-01-01

    The current rapid rate of human-driven environmental change presents wild populations with novel conditions and stresses. Theory and experimental evidence for evolutionary rescue present a promising case for species facing environmental change persisting via adaptation. Here, we assess the potential for evolutionary rescue in wild vertebrates. Available information on evolutionary rescue was rare and restricted to abundant and highly fecund species that faced severe intentional anthropogenic selective pressures. However, examples from adaptive tracking in common species and genetic rescues in species of conservation concern provide convincing evidence in favour of the mechanisms of evolutionary rescue. We conclude that low population size, long generation times and limited genetic variability will result in evolutionary rescue occurring rarely for endangered species without intervention. Owing to the risks presented by current environmental change and the possibility of evolutionary rescue in nature, we suggest means to study evolutionary rescue by mapping genotype → phenotype → demography → fitness relationships, and priorities for applying evolutionary rescue to wild populations. PMID:23209171

  5. Evolutionary genetics of plant adaptation.

    PubMed

    Anderson, Jill T; Willis, John H; Mitchell-Olds, Thomas

    2011-07-01

    Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Evolutionary disarmament in interspecific competition.

    PubMed

    Kisdi, E; Geritz, S A

    2001-12-22

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.

  7. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution

    PubMed Central

    Clarke, Thomas H.; Garb, Jessica E.; Hayashi, Cheryl Y.; Arensburger, Peter; Ayoub, Nadia A.

    2015-01-01

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). PMID:26058392

  8. Evolutionary dynamics from a variational principle.

    PubMed

    Klimek, Peter; Thurner, Stefan; Hanel, Rudolf

    2010-07-01

    We demonstrate with a thought experiment that fitness-based population dynamical approaches to evolution are not able to make quantitative, falsifiable predictions about the long-term behavior of some evolutionary systems. A key characteristic of evolutionary systems is the ongoing endogenous production of new species. These novel entities change the conditions for already existing species. Even Darwin's Demon, a hypothetical entity with exact knowledge of the abundance of all species and their fitness functions at a given time, could not prestate the impact of these novelties on established populations. We argue that fitness is always a posteriori knowledge--it measures but does not explain why a species has reproductive success or not. To overcome these conceptual limitations, a variational principle is proposed in a spin-model-like setup of evolutionary systems. We derive a functional which is minimized under the most general evolutionary formulation of a dynamical system, i.e., evolutionary trajectories causally emerge as a minimization of a functional. This functional allows the derivation of analytic solutions of the asymptotic diversity for stochastic evolutionary systems within a mean-field approximation. We test these approximations by numerical simulations of the corresponding model and find good agreement in the position of phase transitions in diversity curves. The model is further able to reproduce stylized facts of timeseries from several man-made and natural evolutionary systems. Light will be thrown on how species and their fitness landscapes dynamically coevolve.

  9. Impaired Early Attentional Processes in Parkinson’s Disease: A High-Resolution Event-Related Potentials Study

    PubMed Central

    Bocquillon, Perrine; Bourriez, Jean-Louis; Palmero-Soler, Ernesto; Defebvre, Luc; Derambure, Philippe; Dujardin, Kathy

    2015-01-01

    Introduction The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. A previous study using the P3 component of the event-related potentials suggested that a reduced ability to resist interference could be responsible for attention disorders at early stages of Parkinson’s disease (PD), with a possible role of the dorsolateral prefrontal cortex (DLPFC). Methods Our objective was to better determine the origin of this impairment, by studying an earlier ERP component, the N2, and its subcomponents, as they reflect early inhibition processes and as they are known to have sources in the anterior cingulate cortex (ACC), which is involved together with the DLPFC in inhibition processes. Fifteen early-stage PD patients and 15 healthy controls (HCs) performed a three-stimulus visual oddball paradigm, consisting in detecting target inputs amongst standard stimuli, while resisting interference from distracter ones. A 128-channel electroencephalogram was recorded during this task and the generators of the N2 subcomponents were identified using standardized weighted low-resolution electromagnetic tomography (swLORETA). Results PD patients displayed fewer N2 generators than HCs in both the DLPFC and the ACC, for all types of stimuli. In contrast to controls, PD patients did not show any differences between their generators for different N2 subcomponents. Conclusion Our data suggest that impaired inhibition in PD results from dysfunction of the DLPFC and the ACC during the early stages of attentional processes. PMID:26135906

  10. Risk sensitivity as an evolutionary adaptation

    NASA Astrophysics Data System (ADS)

    Hintze, Arend; Olson, Randal S.; Adami, Christoph; Hertwig, Ralph

    2015-02-01

    Risk aversion is a common behavior universal to humans and animals alike. Economists have traditionally defined risk preferences by the curvature of the utility function. Psychologists and behavioral economists also make use of concepts such as loss aversion and probability weighting to model risk aversion. Neurophysiological evidence suggests that loss aversion has its origins in relatively ancient neural circuitries (e.g., ventral striatum). Could there thus be an evolutionary origin to risk aversion? We study this question by evolving strategies that adapt to play the equivalent mean payoff gamble. We hypothesize that risk aversion in this gamble is beneficial as an adaptation to living in small groups, and find that a preference for risk averse strategies only evolves in small populations of less than 1,000 individuals, or in populations segmented into groups of 150 individuals or fewer - numbers thought to be comparable to what humans encountered in the past. We observe that risk aversion only evolves when the gamble is a rare event that has a large impact on the individual's fitness. As such, we suggest that rare, high-risk, high-payoff events such as mating and mate competition could have driven the evolution of risk averse behavior in humans living in small groups.

  11. The instrumental seismicity of the Barents and Kara sea region: relocated event catalog from early twentieth century to 1989

    NASA Astrophysics Data System (ADS)

    Morozov, Alexey Nikolaevich; Vaganova, Natalya V.; Asming, Vladimir E.; Konechnaya, Yana V.; Evtyugina, Zinaida A.

    2018-05-01

    We have relocated seismic events registered within the Barents and Kara sea region from early twentieth century to 1989 with a view to creating a relocated catalog. For the relocation, we collected all available seismic bulletins from the global network using data from the ISC Bulletin (International Seismological Centre), ISC-GEM project (International Seismological Centre-Global Earthquake Model), EuroSeismos project, and by Soviet seismic stations from Geophysical Survey of the Russian Academy of Sciences. The location was performed by applying a modified method of generalized beamforming. We have considered several travel time models and selected one with the best location accuracy for ground truth events. Verification of the modified method and selection of the travel time model were performed using data on four nuclear explosions that occurred in the area of the Novaya Zemlya Archipelago and in the north of the European part of Russia. The modified method and the Barents travel time model provide sufficient accuracy for event location in the region. The relocation procedure was applied to 31 of 36 seismic events registered within the Barents and Kara sea region.

  12. An EAS event observed in the early stage of development

    NASA Astrophysics Data System (ADS)

    Barroso, S. L. C.; Beggio, P. C.; de Carvalho, A. O.; Chinellato, J. A.; Mariano, A.; de Oliveira, R.; Shibuya, E. H.; Brazil-Japan Collaboration of Chacaltaya Emulsion Chamber Experiment

    2008-01-01

    Since 1969 the experiments of Brazil-Japan Collaboration showed the occurrence of a series of events, showing a region with a high concentration of electromagnetic particles, surrounded by isolated and/or groups of showers. These events were named "halo events" or "super-families". Currently, we have more than a dozen of such events. The first of them, due to its aspect, was named "Andromeda". We present here the main characteristics of a similar halo event, named C21S087I075. It has a halo region with many high energy showers in its border. Other small energy showers spread over the central and surrounding blocks (S088, S100, S101, I074). These isolated showers, classified as of hadronic or electromagnetic origin, present a fractional energy distribution compatible with that of a Centauro candidate event (C16S087I037), reported at this symposium [S.L.C. Barroso, P.C. Beggio, J.A. Chinellato, A.O. Carvalho, A. Mariano, R. Oliveira, E.H. Shibuya, in this issue of XIV ISVHECRI]. Moreover, the lateral distribution in the halo region is similar to that observed in other 3 halo events.

  13. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary

  14. Evolutionary institutionalism.

    PubMed

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  15. Evolutionary foundations for cancer biology.

    PubMed

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  16. Structural symmetry in evolutionary games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-10-06

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be 'evolutionarily equivalent' in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term 'homogeneous' should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. © 2015 The Author(s).

  17. Structural symmetry in evolutionary games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436

  18. Evolutionary foundations for cancer biology

    PubMed Central

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles—cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations—provide a foundation for understanding, preventing, and treating cancer. PMID:23396885

  19. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  20. Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    PubMed Central

    Goodier, Sarah A. M.; Cotterill, Fenton P. D.; O'Ryan, Colleen; Skelton, Paul H.; de Wit, Maarten J.

    2011-01-01

    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic

  1. Evolutionary origins of leadership and followership.

    PubMed

    Van Vugt, Mark

    2006-01-01

    Drawing upon evolutionary logic, leadership is reconceptualized in terms of the outcome of strategic interactions among individuals who are following different, yet complementary, decision rules to solve recurrent coordination problems. This article uses the vast psychological literature on leadership as a database to test several evolutionary hypotheses about the origins of leadership and followership in humans. As expected, leadership correlates with initiative taking, trait measures of intelligence, specific task competencies, and several indicators of generosity. The review finds no link between leadership and dominance. The evolutionary analysis accounts for reliable age, health, and sex differences in leadership emergence. In general, evolutionary theory provides a useful, integrative framework for studying leader-follower relationships and generates various novel research hypotheses.

  2. Finding the signal in the noise: Could social media be utilized for early hospital notification of multiple casualty events?

    PubMed Central

    Moore, Sara; Wakam, Glenn; Hubbard, Alan E.; Cohen, Mitchell J.

    2017-01-01

    Introduction Delayed notification and lack of early information hinder timely hospital based activations in large scale multiple casualty events. We hypothesized that Twitter real-time data would produce a unique and reproducible signal within minutes of multiple casualty events and we investigated the timing of the signal compared with other hospital disaster notification mechanisms. Methods Using disaster specific search terms, all relevant tweets from the event to 7 days post-event were analyzed for 5 recent US based multiple casualty events (Boston Bombing [BB], SF Plane Crash [SF], Napa Earthquake [NE], Sandy Hook [SH], and Marysville Shooting [MV]). Quantitative and qualitative analysis of tweet utilization were compared across events. Results Over 3.8 million tweets were analyzed (SH 1.8 m, BB 1.1m, SF 430k, MV 250k, NE 205k). Peak tweets per min ranged from 209–3326. The mean followers per tweeter ranged from 3382–9992 across events. Retweets were tweeted a mean of 82–564 times per event. Tweets occurred very rapidly for all events (<2 mins) and represented 1% of the total event specific tweets in a median of 13 minutes of the first 911 calls. A 200 tweets/min threshold was reached fastest with NE (2 min), BB (7 min), and SF (18 mins). If this threshold was utilized as a signaling mechanism to place local hospitals on standby for possible large scale events, in all case studies, this signal would have preceded patient arrival. Importantly, this threshold for signaling would also have preceded traditional disaster notification mechanisms in SF, NE, and simultaneous with BB and MV. Conclusions Social media data has demonstrated that this mechanism is a powerful, predictable, and potentially important resource for optimizing disaster response. Further investigated is warranted to assess the utility of prospective signally thresholds for hospital based activation. PMID:28982201

  3. Survival Outcomes and Effect of Early vs. Deferred cART Among HIV-Infected Patients Diagnosed at the Time of an AIDS-Defining Event: A Cohort Analysis

    PubMed Central

    Mussini, Cristina; Johnson, Margaret; d'Arminio Monforte, Antonella; Antinori, Andrea; Gill, M. John; Sighinolfi, Laura; Uberti-Foppa, Caterina; Borghi, Vanni; Sabin, Caroline

    2011-01-01

    Objectives We analyzed clinical progression among persons diagnosed with HIV at the time of an AIDS-defining event, and assessed the impact on outcome of timing of combined antiretroviral treatment (cART). Methods Retrospective, European and Canadian multicohort study.. Patients were diagnosed with HIV from 1997–2004 and had clinical AIDS from 30 days before to 14 days after diagnosis. Clinical progression (new AIDS event, death) was described using Kaplan-Meier analysis stratifying by type of AIDS event. Factors associated with progression were identified with multivariable Cox regression. Progression rates were compared between those starting early (<30 days after AIDS event) or deferred (30–270 days after AIDS event) cART. Results The median (interquartile range) CD4 count and viral load (VL) at diagnosis of the 584 patients were 42 (16, 119) cells/µL and 5.2 (4.5, 5.7) log10 copies/mL. Clinical progression was observed in 165 (28.3%) patients. Older age, a higher VL at diagnosis, and a diagnosis of non-Hodgkin lymphoma (NHL) (vs. other AIDS events) were independently associated with disease progression. Of 366 patients with an opportunistic infection, 178 (48.6%) received early cART. There was no significant difference in clinical progression between those initiating cART early and those deferring treatment (adjusted hazard ratio 1.32 [95% confidence interval 0.87, 2.00], p = 0.20). Conclusions Older patients and patients with high VL or NHL at diagnosis had a worse outcome. Our data suggest that earlier initiation of cART may be beneficial among HIV-infected patients diagnosed with clinical AIDS in our setting. PMID:22043301

  4. Evolutionary disarmament in interspecific competition.

    PubMed Central

    Kisdi, E.; Geritz, S. A.

    2001-01-01

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races. PMID:11749715

  5. Paleomagnetic and Geochronologic Data from Central Asia: Inferences for Early Paleozoic Tectonic Evolution and Timing of Worldwide Glacial Events

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Meert, J. G.; Levashova, N.; Grice, W. C.; Gibsher, A.; Rybanin, A.

    2007-12-01

    The Neoproterozoic to early Paleozoic Ural-Mongol belt that runs through Central Asia is crucial for determining the enigmatic amalgamation of microcontinents that make up the Eurasian subcontinent. Two unique models have been proposed for the evolution of Ural-Mongol belt. One involves a complex assemblage of cratonic blocks that have collided and rifted apart during diachronous opening and closing of Neoproterozoic to Devonian aged ocean basins. The opposing model of Sengor and Natal"in proposes a long-standing volcanic arc system that connected Central Asian blocks with the Baltica continent. The Aktau-Mointy and Dzabkhan microcontinents in Kazakhstan and Central Mongolia make up the central section of the Ural-Mongol belt, and both contain glacial sequences characteristic of the hypothesized snowball earth event. These worldwide glaciations are currently under considerable debate, and paleomagnetic data from these microcontients are a useful contribution to the snowball controversy. We have sampled volcanic and sedimentary sequences in Central Mongolia, Kazakhstan and Kyrgyzstan for paleomagnetic and geochronologic study. U-Pb data, 13C curves and abundant fossil records place age constraints on sequences that contain glacial deposits of the hypothesized snowball earth events. Carbonates in the Zavkhan Basin in Mongolia are likely remagnetized, but fossil evidence within the sequence suggests a readjusted age control on two glacial events that were previously labeled as Sturtian and Marinoan. U-Pb ages from both Kazakhstan and Mongolian volcanic sequences imply a similar evolution history of the areas as part of the Ural-Mongol fold belt, and these ages paired with paleomagnetic and 13C records have important tectonic implications. We will present these data in order to place better constraints on the Precambrian to early Paleozoic tectonic evolution of Central Asia and the timing of glacial events recorded in the area.

  6. Excessive Heat Events and National Security: Building Resilience based on Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Vintzileos, A.

    2017-12-01

    Excessive heat events (EHE) affect security of Nations in multiple direct and indirect ways. EHE are the top cause for morbidity/mortality associated to any atmospheric extremes. Higher energy consumption used for cooling can lead to black-outs and social disorder. EHE affect the food supply chain reducing crop yield and increasing the probability of food contamination during delivery and storage. Distribution of goods during EHE can be severely disrupted due to mechanical failure of transportation equipment. EHE during athletic events e.g., marathons, may result to a high number of casualties. Finally, EHE may also affect military planning by e.g. reducing hours of exercise and by altering combat gear. Early warning systems for EHE allow for building resilience. In this paper we first define EHE as at least two consecutive heat days; a heat day is defined as a day with a maximum heat index with probability of occurrence that exceeds a certain threshold. We then use retrospective forecasts performed with a multitude of operational models and show that it is feasible to forecast EHE at forecast lead of week-2 and week-3 over the contiguous United States. We finally introduce an improved definition of EHE based on an intensity index and investigate forecast skill of the predictive system in the tropics and subtropics.

  7. Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.

    PubMed

    Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2017-10-01

    While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.

  8. Architecture of an Antagonistic Tree/Fungus Network: The Asymmetric Influence of Past Evolutionary History

    PubMed Central

    Vacher, Corinne; Piou, Dominique; Desprez-Loustau, Marie-Laure

    2008-01-01

    Background Compartmentalization and nestedness are common patterns in ecological networks. The aim of this study was to elucidate some of the processes shaping these patterns in a well resolved network of host/pathogen interactions. Methology/Principal Findings Based on a long-term (1972–2005) survey of forest health at the regional scale (all French forests; 15 million ha), we uncovered an almost fully connected network of 51 tree taxa and 157 parasitic fungal species. Our analyses revealed that the compartmentalization of the network maps out the ancient evolutionary history of seed plants, but not the ancient evolutionary history of fungal species. The very early divergence of the major fungal phyla may account for this asymmetric influence of past evolutionary history. Unlike compartmentalization, nestedness did not reflect any consistent phylogenetic signal. Instead, it seemed to reflect the ecological features of the current species, such as the relative abundance of tree species and the life-history strategies of fungal pathogens. We discussed how the evolution of host range in fungal species may account for the observed nested patterns. Conclusion/Significance Overall, our analyses emphasized how the current complexity of ecological networks results from the diversification of the species and their interactions over evolutionary times. They confirmed that the current architecture of ecological networks is not only dependant on recent ecological processes. PMID:18320058

  9. Dynamic selective environments and evolutionary traps in human-dominated landscapes.

    PubMed

    Rodewald, Amanda D; Shustack, Daniel P; Jones, Todd M

    2011-09-01

    Human activities can alter selective environments in ways that can reduce the usefulness of certain ornamental traits as honest signals of individual quality and, in some cases, may create evolutionary traps, where rapid changes in selective environments result in maladaptive behavioral decisions. Using the sexually dichromatic, socially monogamous Northern Cardinal (Cardinalis cardinalis) as a model, we hypothesized that urbanization would erode the relationship between plumage coloration and reproductive success. Because the exotic Amur honeysuckle (Lonicera maackii) provides carotenoids, is a preferred habitat attribute, and increases vulnerability to nest predation, we predicted the presence of an evolutionary trap, whereby the brightest males would achieve the lowest reproductive success. Working at 14 forests in Ohio, USA, 2006-2008, we measured plumage color, monitored reproduction, and quantified habitat within territories. In rural landscapes, the brightest males bred earliest in the season and secured more preferred territories; however, annual reproduction declined with plumage brightness. Coloration of urban males was not associated with territory attributes or reproduction. Female redness across all landscapes was negatively related to reproduction. Poor reproductive performance of otherwise higher-quality males probably resulted from preferences for honeysuckle, which reduces annual reproduction when used as a nesting substrate early in the season. In this way, exotic shrubs prompted an evolutionary trap that was avoided in urban forests where anthropogenic resources disassociated male color and reproductive phenology and success. Our study illustrates how modified selective environments in human-dominated landscapes might shape microevolutionary processes in wild bird populations.

  10. Modeling long recovery early events (LOREs) produced by lightning-induced ionization of the nighttime upper mesosphere

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2017-07-01

    We present results of a cylindrically symmetric, coupled electrodynamic, and photochemical model which simulates diffuse ionization of the middle atmosphere induced by strong lightning discharges (peak currents >150 kA). Scattering of subionospherically propagating, very low frequency radio waves is then evaluated using the Long-Wave Propagation Capability code. Some modeled sprite halos exhibit continued electron density growth up to timescales of seconds due to O- detachment, though it is not yet clear how this might relate to the slower onset durations (>20 ms) of some early VLF events. Modeled electron density enhancements in sprite halos, capable of strong VLF scattering, can persist for long periods of time (greater than hundreds of seconds) even at lower altitudes where their recovery is initially controlled by fast attachment processes. Consequently, our modeling results indicate that both typical recovery (20 to 240 s) and long recovery (LOREs, >300 s) VLF scattering events can be explained by scattering from conductivity changes associated with sprite halos. In contrast, modeled scattered fields resulting from elve-associated conductivity changes, though exhibiting long recovery times, are too weak to sufficiently explain typical LORE observations. Theoretical scattering from structured ionization events (e.g., sprites columns and gigantic jets) is not considered in this work.

  11. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts

    PubMed Central

    Troupin, Cécile; Dacheux, Laurent; Tanguy, Marion; Sabeta, Claude; Blanc, Hervé; Bouchier, Christiane; Vignuzzi, Marco; Holmes, Edward C.; Bourhy, Hervé

    2016-01-01

    The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics. PMID:27977811

  12. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts.

    PubMed

    Troupin, Cécile; Dacheux, Laurent; Tanguy, Marion; Sabeta, Claude; Blanc, Hervé; Bouchier, Christiane; Vignuzzi, Marco; Duchene, Sebastián; Holmes, Edward C; Bourhy, Hervé

    2016-12-01

    The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics.

  13. Gender Inequality in Interaction--An Evolutionary Account

    ERIC Educational Resources Information Center

    Hopcroft, Rosemary L.

    2009-01-01

    In this article I argue that evolutionary theorizing can help sociologists and feminists better understand gender inequality. Evolutionary theory explains why control of the sexuality of young women is a priority across most human societies both past and present. Evolutionary psychology has extended our understanding of male violence against…

  14. Early Verb Learning: How Do Children Learn How to Compare Events?

    PubMed Central

    Childers, Jane B.; Parrish, Rebecca; Olson, Christina V.; Burch, Clare; Fung, Gavin; McIntyre, Kevin

    2015-01-01

    An important problem verb learners must solve is how to extend verbs. Children could use cross-situational information to guide their extensions, however comparing events is difficult. Two studies test whether children benefit from initially seeing a pair of similar events (‘progressive alignment’) while learning new verbs, and whether this influence changes with age. In Study 1, 2 ½- and 3 ½-year-old children participated in an interactive task. Children who saw a pair of similar events and then varied events were able to extend verbs at test, differing from a control group; children who saw two pairs of varied events did not differ from the control group. In Study 2, events were presented on a monitor. Following the initial pair of events that varied by condition, a Tobii x120 eye tracker recorded 2 ½-, 3 ½- and 4 ½-year-olds’ fixations to specific elements of events (AOIs) during the second pair of events, which were the same across conditions. After seeing the pair of events that were highly similar, 2 ½-year-olds showed significantly longer fixation durations to agents and to affected objects as compared to the all varied condition. At test, 3 ½-year-olds were able to extend the verb, but only in the progressive alignment condition. These results are important because they show children’s visual attention to relevant elements in dynamic events is influenced by their prior comparison experience, and they show that young children benefit from seeing similar events as they learn to compare events to each other. PMID:27092030

  15. Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis.

    PubMed

    He, Peng; Huang, Sheng; Xiao, Guanghui; Zhang, Yuzhou; Yu, Jianing

    2016-12-01

    RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.

  16. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  17. Clustering Genes of Common Evolutionary History

    PubMed Central

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-01-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent—due to events such as incomplete lineage sorting or horizontal gene transfer—it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such “process-agnostic” approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  18. The conceptual framework of evolutionary morphology in the studies of Ernst Haeckel and Fritz Müller.

    PubMed

    Breidbach, Olaf

    2006-03-01

    In his Gastraea studies Ernst Haeckel characterized the initial stages of the animal embryo, describing complete and incomplete cleavages in various groups, until the gastrula stage. Thereby, he was able to point out various degrees of developmental diversification in these initial stages of development. As the functional meaning of such cleavages was not clear however, it was difficult to argue about putative functional adaptations. Information about the consequences for tissue formation initiated in this primary phase of development was simply lacking. Haeckel could only provide a vague picture of a highly diversified but systematically inconsistent distribution of various types of early embryogenesis. Thereby he discusses phylogenetically preserved (palingenetic) stages of development and adaptations to certain specific situations of the embryo (cenogenesis). To decide whether such types, in the initial stages of embryogenesis, are ceno- or phaenogenetic is quite difficult. Reference to the highly diversified distribution of certain types within specific groups is an indication that there is no strict adaptive pressure on these early parts of embryonic development. This makes it possible to formulate - as Haeckel did it - the idea, that in these initial phases palingenetic attributes are dominant. Thus, he tried to use these early phases of development for the classification of larger systematic units. The result is a concept of an evolutionary morphology, that was, however, never elaborated in detail by Haeckel. Therefore, it remained without effect for evolutionary biology. On the contrary, following the Darwinian approach towards a comparative analysis of embryogenesis, Fritz Müller presented a series of examples for a comparative developmental biology that allowed one to interpret certain morphological characteristics as the outcome of common evolutionary histories within different species. For various crustacean species, he was able to demonstrate that

  19. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  20. Reflections on some early events related to behavior analysis of child development

    PubMed Central

    Bijou, Sidney W.

    1996-01-01

    A series of events related to the early application of behavioral principles to child behavior and development is described. The events began in the 1930s at Columbia University with a solicited letter from John B. Watson suggesting a master's degree thesis problem, and continued through the 1950s and 1960s at the University of Washington. Specifically, these happenings resulted in (a) research demonstrating that Skinner's laboratory method for studying nonhuman organisms could be profitably applied to the laboratory study of young normal children; (b) a demonstration that by successive approximations, a normal child can be operantly conditioned to respond to an arbitrary situation; (c) research showing that the effects of simple schedules of reinforcement obtained with nonhuman organisms could be duplicated in young normal and retarded children; (d) the demonstration that Skinner's operant laboratory method could be adapted to study young children in field situations; (e) research showing that operant principles can be successfully applied to the treatment of a young autistic boy with a serious visual handicap; (f) laboratory studies showing that mothers can be trained to treat their own young children who have behavior problems; (g) an in-home study demonstrating that a mother can treat her own child who has behavior problems; (h) a demonstration that operant principles can be applied effectively to teaching reading, writing, and arithmetic to children with retardation; and (i) publication of a book, Child Development: A Systematic and Empirical Theory, in collaboration with Donald M. Baer, by Prentice Hall in their Century Psychological Series. PMID:22478239

  1. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  2. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  3. Transcriptomic dose-and-time-course indicators of early key events in a cytotoxicity-mediated mode of action for rodent urinary bladder tumorigenesis

    EPA Science Inventory

    TRANSCRIPTOMIC DOSE- AND TIME-COURSE INDICATORS OF EARLY KEY EVENTS IN A CYTOTOXICITY-MEDIATED MODE OF ACTION FOR RODENT URINARY BLADDER TUMORIGENESISDiuron is a substituted urea compound used globally as an herbicide. Urinary bladder tumors were induced in rats after chronic die...

  4. A qualitative study evaluating causality attribution for serious adverse events during early phase oncology clinical trials.

    PubMed

    Mukherjee, Som D; Coombes, Megan E; Levine, Mitch; Cosby, Jarold; Kowaleski, Brenda; Arnold, Andrew

    2011-10-01

    In early phase oncology trials, novel targeted therapies are increasingly being tested in combination with traditional agents creating greater potential for enhanced and new toxicities. When a patient experiences a serious adverse event (SAE), investigators must determine whether the event is attributable to the investigational drug or not. This study seeks to understand the clinical reasoning, tools used and challenges faced by the researchers who assign causality to SAE's. Thirty-two semi-structured interviews were conducted with medical oncologists and trial coordinators at six Canadian academic cancer centres. Interviews were recorded and transcribed verbatim. Individual interview content analysis was followed by thematic analysis across the interview set. Our study found that causality assessment tends to be a rather complex process, often without complete clinical and investigational data at hand. Researchers described using a common processing strategy whereby they gather pertinent information, eliminate alternative explanations, and consider whether or not the study drug resulted in the SAE. Many of the interviewed participants voiced concern that causality assessments are often conducted quickly and tend to be highly subjective. Many participants were unable to identify any useful tools to help in assigning causality and welcomed more objectivity in the overall process. Attributing causality to SAE's is a complex process. Clinical trial researchers apply a logical system of reasoning, but feel that the current method of assigning causality could be improved. Based on these findings, future research involving the development of a new causality assessment tool specifically for use in early phase oncology clinical trials may be useful.

  5. Evolutionary contributions to the study of human fertility.

    PubMed

    Sear, Rebecca

    2015-01-01

    Demography, lacking an overarching theoretical framework of its own, has drawn on theories in many other social sciences to inform its analyses. The aim of this paper is to bring to the demographic community's attention research in the evolutionary sciences on fertility, and to demonstrate that evolutionary theory can be another useful tool in the demographer's toolkit. I first dispel some myths which impede the incorporation of evolutionary theory into demography: I make it clear that evolutionary explanations do not assume that all human behaviour is hardwired and functions to maximize genetic fitness; that they are able to explain variation in human behaviour; and that they are not necessarily alternatives to social science explanations. I then describe the diversity of work on fertility by evolutionary researchers, particularly human evolutionary ecologists and cultural evolutionists, and illustrate the usefulness of the evolutionary approach with examples of its application to age at first birth and the fertility transition.

  6. Multiple-Threshold Event Detection and Other Enhancements to the Virtual Seismologist (VS) Earthquake Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Caprio, M.; Cua, G. B.; Heaton, T. H.; Clinton, J. F.; Wiemer, S.

    2009-12-01

    The Virtual Seismologist (VS) algorithm is a Bayesian approach to earthquake early warning (EEW) being implemented by the Swiss Seismological Service at ETH Zurich. The application of Bayes’ theorem in earthquake early warning states that the most probable source estimate at any given time is a combination of contributions from a likelihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS algorithm was one of three EEW algorithms involved in the California Integrated Seismic Network (CISN) real-time EEW testing and performance evaluation effort. Its compelling real-time performance in California over the last three years has led to its inclusion in the new USGS-funded effort to develop key components of CISN ShakeAlert, a prototype EEW system that could potentially be implemented in California. A significant portion of VS code development was supported by the SAFER EEW project in Europe. We discuss recent enhancements to the VS EEW algorithm. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to be declared an event to reduce false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and it requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) to a hybrid on-site/regional approach capable of providing a continuously evolving stream of EEW

  7. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    PubMed

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  8. Bats, Primates, and the Evolutionary Origins and Diversification of Mammalian Gammaherpesviruses

    PubMed Central

    Rojas-Anaya, Edith; Kolokotronis, Sergios-Orestis; Taboada, Blanca; Loza-Rubio, Elizabeth; Méndez-Ojeda, Maria L.; Osterrieder, Nikolaus

    2016-01-01

    ABSTRACT Gammaherpesviruses (γHVs) are generally considered host specific and to have codiverged with their hosts over millions of years. This tenet is challenged here by broad-scale phylogenetic analysis of two viral genes using the largest sample of mammalian γHVs to date, integrating for the first time bat γHV sequences available from public repositories and newly generated viral sequences from two vampire bat species (Desmodus rotundus and Diphylla ecaudata). Bat and primate viruses frequently represented deep branches within the supported phylogenies and clustered among viruses from distantly related mammalian taxa. Following evolutionary scenario testing, we determined the number of host-switching and cospeciation events. Cross-species transmissions have occurred much more frequently than previously estimated, and most of the transmissions were attributable to bats and primates. We conclude that the evolution of the Gammaherpesvirinae subfamily has been driven by both cross-species transmissions and subsequent cospeciation within specific viral lineages and that the bat and primate orders may have potentially acted as superspreaders to other mammalian taxa throughout evolutionary history. PMID:27834200

  9. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals

    PubMed Central

    2011-01-01

    Background Scleractinian corals are currently a focus of major interest because of their ecological importance and the uncertain fate of coral reefs in the face of increasing anthropogenic pressure. Despite this, remarkably little is known about the evolutionary origins of corals. The Scleractinia suddenly appear in the fossil record about 240 Ma, but the range of morphological variation seen in these Middle Triassic fossils is comparable to that of modern scleractinians, implying much earlier origins that have so far remained elusive. A significant weakness in reconstruction(s) of early coral evolution is that deep-sea corals have been poorly represented in molecular phylogenetic analyses. Results By adding new data from a large and representative range of deep-water species to existing molecular datasets and applying a relaxed molecular clock, we show that two exclusively deep-sea families, the Gardineriidae and Micrabaciidae, diverged prior to the Complexa/Robusta coral split around 425 Ma, thereby pushing the evolutionary origin of scleractinian corals deep into the Paleozoic. Conclusions The early divergence and distinctive morphologies of the extant gardineriid and micrabaciid corals suggest a link with Ordovician "scleractiniamorph" fossils that were previously assumed to represent extinct anthozoan skeletonized lineages. Therefore, scleractinian corals most likely evolved from Paleozoic soft-bodied ancestors. Modern shallow-water Scleractinia, which are dependent on symbionts, appear to have had several independent origins from solitary, non-symbiotic precursors. The Scleractinia have survived periods of massive climate change in the past, suggesting that as a lineage they may be less vulnerable to future changes than often assumed. PMID:22034946

  10. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    PubMed Central

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  11. Evolutionary relevance facilitates visual information processing.

    PubMed

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  12. Evolutionary and mechanistic theories of aging.

    PubMed

    Hughes, Kimberly A; Reynolds, Rose M

    2005-01-01

    Senescence (aging) is defined as a decline in performance and fitness with advancing age. Senescence is a nearly universal feature of multicellular organisms, and understanding why it occurs is a long-standing problem in biology. Here we present a concise review of both evolutionary and mechanistic theories of aging. We describe the development of the general evolutionary theory, along with the mutation accumulation, antagonistic pleiotropy, and disposable soma versions of the evolutionary model. The review of the mechanistic theories focuses on the oxidative stress resistance, cellular signaling, and dietary control mechanisms of life span extension. We close with a discussion of how an approach that makes use of both evolutionary and molecular analyses can address a critical question: Which of the mechanisms that can cause variation in aging actually do cause variation in natural populations?

  13. Mean-Potential Law in Evolutionary Games

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  14. Mean-Potential Law in Evolutionary Games.

    PubMed

    Nałęcz-Jawecki, Paweł; Miękisz, Jacek

    2018-01-12

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  15. Gene family size conservation is a good indicator of evolutionary rates.

    PubMed

    Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen

    2010-08-01

    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.

  16. Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates

    PubMed Central

    Pereira, Joana; Johnson, Warren E.; O’Brien, Stephen J.; Jarvis, Erich D.; Zhang, Guojie; Gilbert, M. Thomas P.; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322

  17. Emergence of evolutionary cycles in size-structured food webs.

    PubMed

    Ritterskamp, Daniel; Bearup, Daniel; Blasius, Bernd

    2016-11-07

    The interplay of population dynamics and evolution within ecological communities has been of long-standing interest for ecologists and can give rise to evolutionary cycles, e.g. taxon cycles. Evolutionary cycling was intensely studied in small communities with asymmetric competition; the latter drives the evolutionary processes. Here we demonstrate that evolutionary cycling arises naturally in larger communities if trophic interactions are present, since these are intrinsically asymmetric. To investigate the evolutionary dynamics of a trophic community, we use an allometric food web model. We find that evolutionary cycles emerge naturally for a large parameter ranges. The origin of the evolutionary dynamics is an intrinsic asymmetry in the feeding kernel which creates an evolutionary ratchet, driving species towards larger bodysize. We reveal different kinds of cycles: single morph cycles, and coevolutionary and mixed cycling of complete food webs. The latter refers to the case where each trophic level can have different evolutionary dynamics. We discuss the generality of our findings and conclude that ongoing evolution in food webs may be more frequent than commonly believed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  19. Evolutionary Glycomics: Characterization of Milk Oligosaccharides in Primates

    PubMed Central

    Tao, Nannan; Wu, Shuai; Kim, Jaehan; An, Hyun Joo; Hinde, Katie; Power, Michael L.; Gagneux, Pascal; German, J. Bruce; Lebrilla, Carlito B.

    2011-01-01

    Free oligosaccharides are abundant components of mammalian milk and have primary roles as prebiotic compounds, in immune defense, and in brain development. Mass spectrometry-based technique is applied to profile milk oligosaccharides from apes (chimpanzee, gorilla, and siamang), new world monkeys (golden lion tamarin and common marmoset), and an old world monkey (rhesus). The purpose of this study was to evaluate the patterns of primate milk oligosaccharide composition from a phylogenetic perspective in order to assess the extent to which the compositions of hMOs derives from ancestral, primate patterns as opposed to more recent evolutionary events. Milk oligosaccharides were quantitated by nanoflow liquid chromatography on chip-based devices. The relative abundances of fucosylated and sialylated milk oligosaccharides in primates were also determined. For a systematic and comprehensive study of evolutionary patterns of milk oligosaccharides, cluster analysis of primate milk was performed using the chromatographic profile. In general, the oligosaccharides in primate milk, including humans, are more complex and exhibit greater diversity compared to the ones in non-primate milk. A detailed comparison of the oligosaccharides across evolution revealed non-sequential developmental pattern, i.e. that primate milk oligosaccharides do not necessarily cluster according to the primate phylogeny. This report represents the first comprehensive and quantitative effort to profile and elucidate the structures of free milk oligosaccharides so that they can be related to glycan function in different primates. PMID:21214271

  20. Early events in xenograft development from the human embryonic stem cell line HS181--resemblance with an initial multiple epiblast formation.

    PubMed

    Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars

    2011-01-01

    Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.

  1. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences.

    PubMed

    Nasser, Waleed; Beres, Stephen B; Olsen, Randall J; Dean, Melissa A; Rice, Kelsey A; Long, S Wesley; Kristinsson, Karl G; Gottfredsson, Magnus; Vuopio, Jaana; Raisanen, Kati; Caugant, Dominique A; Steinbakk, Martin; Low, Donald E; McGeer, Allison; Darenberg, Jessica; Henriques-Normark, Birgitta; Van Beneden, Chris A; Hoffmann, Steen; Musser, James M

    2014-04-29

    We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD(+)-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.

  2. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences

    PubMed Central

    Nasser, Waleed; Beres, Stephen B.; Olsen, Randall J.; Dean, Melissa A.; Rice, Kelsey A.; Long, S. Wesley; Kristinsson, Karl G.; Gottfredsson, Magnus; Vuopio, Jaana; Raisanen, Kati; Caugant, Dominique A.; Steinbakk, Martin; Low, Donald E.; McGeer, Allison; Darenberg, Jessica; Henriques-Normark, Birgitta; Van Beneden, Chris A.; Hoffmann, Steen; Musser, James M.

    2014-01-01

    We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD+-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide. PMID:24733896

  3. Evo-devo of human adolescence: beyond disease models of early puberty

    PubMed Central

    2013-01-01

    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research. PMID:23627891

  4. Cytokine Signatures Associated With Early Onset, Active Lesions and Late Cicatricial Events of Retinochoroidal Commitment in Infants With Congenital Toxoplasmosis.

    PubMed

    Carneiro, Ana Carolina Aguiar Vasconcelos; Machado, Anderson Silva; Béla, Samantha Ribeiro; Costa, Julia Gatti Ladeia; Andrade, Gláucia Manzan Queiroz; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Coelho-Dos-Reis, Jordana Grazziela; Ferro, Eloisa Amália Vieira; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Martins-Filho, Olindo Assis

    2016-06-15

    Ocular toxoplasmosis is a prominent and severe condition of high incidence in Brazil. The current study provides new insights into the immunological events that can be associated with retinochoroiditis in the setting of congenital toxoplasmosis in human infants. Flow cytometry of intracytoplasmic cytokines in leukocyte subsets following in vitro short-term antigenic recall in infants with congenital T. gondii infection. Our data demonstrates that whereas neutrophils and monocytes from T. gondii-infected infants display a combination of proinflammatory and regulatory cytokine profiles, natural killer cells showed a predominantly proinflammatory profile upon in vitro T. gondii stimulation. The proinflammatory response of CD4(+) and CD8(+) T cells, characterized by the production of interferon γ (IFN-γ) and interleukin 17 in patients with an active retinochoroidal lesion, revealed the presence of IFN-γ and tumor necrosis factor α during early and late immunological events. This specific proinflammatory pattern is associated with early events and active retinochoroidal lesion, whereas a robust monocyte-derived interleukin 10-mediated profile is observed in children with cicatricial ocular lesions. These findings support the existence of a progressive immunological environment concomitant with the initial, apical, and cicatricial phases in the process of retinochoroidal lesion formation in infants with congenital toxoplasmosis that may be relevant in the establishment of stage-specific clinical management. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized ‘four-winged’ gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged ‘peltopleurid’ Peripeltopleurus, from the Middle Triassic (Ladinian, 235–242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the ‘cranial specialization–asymmetrical caudal fin–enlarged paired fins–scale reduction’ sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. PMID:25568155

  6. Transmissible cancers in an evolutionary context.

    PubMed

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for

  7. Evolutionary computation in zoology and ecology.

    PubMed

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  8. Evolutionary computation in zoology and ecology

    PubMed Central

    2017-01-01

    Abstract Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species’ niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate. PMID:29492029

  9. Evolutionary accounts of human behavioural diversity

    PubMed Central

    Brown, Gillian R.; Dickins, Thomas E.; Sear, Rebecca; Laland, Kevin N.

    2011-01-01

    Human beings persist in an extraordinary range of ecological settings, in the process exhibiting enormous behavioural diversity, both within and between populations. People vary in their social, mating and parental behaviour and have diverse and elaborate beliefs, traditions, norms and institutions. The aim of this theme issue is to ask whether, and how, evolutionary theory can help us to understand this diversity. In this introductory article, we provide a background to the debate surrounding how best to understand behavioural diversity using evolutionary models of human behaviour. In particular, we examine how diversity has been viewed by the main subdisciplines within the human evolutionary behavioural sciences, focusing in particular on the human behavioural ecology, evolutionary psychology and cultural evolution approaches. In addition to differences in focus and methodology, these subdisciplines have traditionally varied in the emphasis placed on human universals, ecological factors and socially learned behaviour, and on how they have addressed the issue of genetic variation. We reaffirm that evolutionary theory provides an essential framework for understanding behavioural diversity within and between human populations, but argue that greater integration between the subfields is critical to developing a satisfactory understanding of diversity. PMID:21199836

  10. Technical Performance Scores are strongly associated with early mortality, postoperative adverse events, and intensive care unit length of stay-analysis of consecutive discharges for 2 years.

    PubMed

    Nathan, Meena; Karamichalis, John; Liu, Hua; Gauvreau, Kimberley; Colan, Steven; Saia, Matthew; Pigula, Frank; Fynn-Thompson, Francis; Emani, Sitaram; Baird, Christopher; Mayer, John E; del Nido, Pedro J

    2014-01-01

    Previous work in our institution has indicated that the Technical Performance Score (TPS) is highly associated with early outcomes in select subsets of procedures and age groups. We hypothesized that the TPS could predict early outcomes in a wide range of diagnoses and age groups. Consecutive patients discharged from January 2011 to March 2013 were prospectively evaluated. The TPS was assigned according to the discharge echocardiographic findings and the need for reinterventions in the anatomic area of interest. Case complexity was determined using Risk Adjustment for Congenital Heart Surgery (RACHS-1) categories. Early mortality and postoperative adverse events were recorded. Relationships between the TPS and outcomes were assessed after adjusting for the baseline patient characteristics. The median age of the 1926 patients was 1.8 years (range, 0 days to 68 years). Bypass was used in 1740 (90%); 322 (17%) were neonates, 520 (27%) infants, 873 (45%) children, 211 (11%) adults. TPS was class 1 (optimal) in 956 (50%), class 2 (adequate) in 584 (30%), and class 3 (inadequate) in 226 (12%); 160 patients (8%) could not be scored. A total of 51 early deaths (2.6%) and 111 adverse events (5.7%) occurred. On univariate analysis, age, RACHS-1 category, and TPS were significantly associated with mortality and the occurrence of adverse events. On multivariate modeling, class 3 (inadequate) TPS was strongly associated with mortality (odds ratio, 16.9; 95% confidence interval, 6.7-42.9; P < .001), adverse events (odds ratio, 6.9; 95% confidence interval, 4.1-11.6; P < .001), and postoperative intensive care unit length of stay (coefficient, 2.3; 95% confidence interval, 2.0-2.6; P < .001) after adjusting for other covariates. The TPS is strongly associated with early outcomes across a wide range of ages and disease complexity and can serve as important tool for self-assessment and quality improvement. Copyright © 2014 The American Association for Thoracic Surgery

  11. Evolutionary games on graphs

    NASA Astrophysics Data System (ADS)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  12. Ecological and evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.

    2002-01-01

    Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.

  13. A Note on Evolutionary Algorithms and Its Applications

    ERIC Educational Resources Information Center

    Bhargava, Shifali

    2013-01-01

    This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.

  14. Characterizing behavioural ‘characters’: an evolutionary framework

    PubMed Central

    Araya-Ajoy, Yimen G.; Dingemanse, Niels J.

    2014-01-01

    Biologists often study phenotypic evolution assuming that phenotypes consist of a set of quasi-independent units that have been shaped by selection to accomplish a particular function. In the evolutionary literature, such quasi-independent functional units are called ‘evolutionary characters’, and a framework based on evolutionary principles has been developed to characterize them. This framework mainly focuses on ‘fixed’ characters, i.e. those that vary exclusively between individuals. In this paper, we introduce multi-level variation and thereby expand the framework to labile characters, focusing on behaviour as a worked example. We first propose a concept of ‘behavioural characters’ based on the original evolutionary character concept. We then detail how integration of variation between individuals (cf. ‘personality’) and within individuals (cf. ‘individual plasticity’) into the framework gives rise to a whole suite of novel testable predictions about the evolutionary character concept. We further propose a corresponding statistical methodology to test whether observed behaviours should be considered expressions of a hypothesized evolutionary character. We illustrate the application of our framework by characterizing the behavioural character ‘aggressiveness’ in wild great tits, Parus major. PMID:24335984

  15. Geography and host species shape the evolutionary dynamics of U genogroup infectious hematopoietic necrosis virus.

    PubMed

    Black, Allison; Breyta, Rachel; Bedford, Trevor; Kurath, Gael

    2016-07-01

    Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus that infects wild and cultured salmonids throughout the Pacific Coastal United States and Canada, from California to Alaska. Although infection of adult fish is usually asymptomatic, juvenile infections can result in high mortality events that impact salmon hatchery programs and commercial aquaculture. We used epidemiological case data and genetic sequence data from a 303 nt portion of the viral glycoprotein gene to study the evolutionary dynamics of U genogroup IHNV in the Pacific Northwestern United States from 1971 to 2013. We identified 114 unique genotypes among 1,219 U genogroup IHNV isolates representing 619 virus detection events. We found evidence for two previously unidentified, broad subgroups within the U genogroup, which we designated 'UC' and 'UP'. Epidemiologic records indicated that UP viruses were detected more frequently in sockeye salmon ( Oncorhynchus nerka ) and in coastal waters of Washington and Oregon, whereas UC viruses were detected primarily in Chinook salmon ( Oncorhynchus tshawytscha ) and steelhead trout ( Oncorhynchus mykiss ) in the Columbia River Basin, which is a large, complex watershed extending throughout much of interior Washington, Oregon, and Idaho. These findings were supported by phylogenetic analysis and by F ST . Ancestral state reconstruction indicated that early UC viruses in the Columbia River Basin initially infected sockeye salmon but then emerged via host shifts into Chinook salmon and steelhead trout sometime during the 1980s. We postulate that the development of these subgroups within U genogroup was driven by selection pressure for viral adaptation to Chinook salmon and steelhead trout within the Columbia River Basin.

  16. Pleistocene evolutionary history of the Clouded Apollo (Parnassius mnemosyne): genetic signatures of climate cycles and a 'time-dependent' mitochondrial substitution rate.

    PubMed

    Gratton, P; Konopiński, M K; Sbordoni, V

    2008-10-01

    Genetic data are currently providing a large amount of new information on past distribution of species and are contributing to a new vision of Pleistocene ice ages. Nonetheless, an increasing number of studies on the 'time dependency' of mutation rates suggest that date assessments for evolutionary events of the Pleistocene might be overestimated. We analysed mitochondrial (mt) DNA (COI) sequence variation in 225 Parnassius mnemosyne individuals sampled across central and eastern Europe in order to assess (i) the existence of genetic signatures of Pleistocene climate shifts; and (ii) the timescale of demographic and evolutionary events. Our analyses reveal a phylogeographical pattern markedly influenced by the Pleistocene/Holocene climate shifts. Eastern Alpine and Balkan populations display comparatively high mtDNA diversity, suggesting multiple glacial refugia. On the other hand, three widely distributed and spatially segregated lineages occupy most of northern and eastern Europe, indicating postglacial recolonization from different refugial areas. We show that a conventional 'phylogenetic' substitution rate cannot account for the present distribution of genetic variation in this species, and we combine phylogeographical pattern and palaeoecological information in order to determine a suitable intraspecific rate through a Bayesian coalescent approach. We argue that our calibrated 'time-dependent' rate (0.096 substitutions/ million years), offers the most convincing time frame for the evolutionary events inferred from sequence data. When scaled by the new rate, estimates of divergence between Balkan and Alpine lineages point to c. 19 000 years before present (last glacial maximum), and parameters of demographic expansion for northern lineages are consistent with postglacial warming (5-11 000 years before present).

  17. Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics.

    PubMed

    Sveinsson, Saemundur; McDill, Joshua; Wong, Gane K S; Li, Juanjuan; Li, Xia; Deyholos, Michael K; Cronk, Quentin C B

    2014-04-01

    Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5-9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. A previously unknown paleopolyploidy event that occurred 20-40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research.

  18. Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics

    PubMed Central

    Sveinsson, Saemundur; McDill, Joshua; Wong, Gane K. S.; Li, Juanjuan; Li, Xia; Deyholos, Michael K.; Cronk, Quentin C. B.

    2014-01-01

    Background and Aims Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5–9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. Methods Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. Key Results A previously unknown paleopolyploidy event that occurred 20–40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. Conclusions The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research. PMID:24380843

  19. Graphing evolutionary pattern and process: a history of techniques in archaeology and paleobiology.

    PubMed

    Lyman, R Lee

    2009-02-01

    Graphs displaying evolutionary patterns are common in paleontology and in United States archaeology. Both disciplines subscribed to a transformational theory of evolution and graphed evolution as a sequence of archetypes in the late nineteenth and early twentieth centuries. U.S. archaeologists in the second decade of the twentieth century, and paleontologists shortly thereafter, developed distinct graphic styles that reflected the Darwinian variational model of evolution. Paleobiologists adopted the view of a species as a set of phenotypically variant individuals and graphed those variations either as central tendencies or as histograms of frequencies of variants. Archaeologists presumed their artifact types reflected cultural norms of prehistoric artisans and the frequency of specimens in each type reflected human choice and type popularity. They graphed cultural evolution as shifts in frequencies of specimens representing each of several artifact types. Confusion of pattern and process is exemplified by a paleobiologist misinterpreting the process illustrated by an archaeological graph, and an archaeologist misinterpreting the process illustrated by a paleobiological graph. Each style of graph displays particular evolutionary patterns and implies particular evolutionary processes. Graphs of a multistratum collection of prehistoric mammal remains and a multistratum collection of artifacts demonstrate that many graph styles can be used for both kinds of collections.

  20. Child murder by parents and evolutionary psychology.

    PubMed

    Friedman, Susan Hatters; Cavney, James; Resnick, Phillip J

    2012-12-01

    This article explores the contribution of evolutionary theory to the understanding of causation and motive in filicide cases and also reviews special issues in the forensic evaluation of alleged perpetrators of filicide. Evolutionary social psychology seeks to understand the context in which our brains evolved, to understand human behaviors. The authors propose evolutionary theory as a framework theory to meaningfully appreciate research about filicide. Using evolutionary psychology as a theoretical lens, this article reviews the research on filicide over the past 40 years, and describes epidemiologic and typologic studies of filicide, and theoretical analyses from a range of disciplines. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. High resolution chronology of late Cretaceous-early Tertiary events determined from 21,000 yr orbital-climatic cycles in marine sediments

    NASA Technical Reports Server (NTRS)

    Herbert, Timothy D.; Dhondt, Steven

    1988-01-01

    A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.

  2. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jing; Rocke, David M.; Perry, George

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  3. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE PAGES

    Xia, Jing; Rocke, David M.; Perry, George; ...

    2014-01-01

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  4. The lacustrine record of the Dan-C2 hyperthermal event of the Boltysh Impact Crater, Ukraine

    NASA Astrophysics Data System (ADS)

    Ebinghaus, Alena; Jolley, David W.

    2015-04-01

    Vegetation response to rapid climate change in the geological record is a fundamental element in our understanding of ancient environments; however, the relationships between climate change, plant ecosystems and geological processes are still not fully understood. The filling of the K/Pg Boltysh meteorite crater, Ukraine, comprise a complete terrestrial sedimentological, palynological and δ13C record of the negative carbon isotope excursion of the early Danian hyperthermal episode. The meteorite impact formed a crater of c. 24 km in diameter at c. 65.2 Ma, which was filled with more than 500 m of organic- and fossil-rich claystones, siltstones and marls, interbedded with sandstones and less frequently gravelly sandstones. The sedimentary succession indicates a deep lake setting that was characterised by fluvial input of reworked basement material via a marginal delta system. Palynological investigations indicate a post-impact early- to mid-successional flora followed by a barren zone which coincides with the age of the Chicxulub impact and therefore argues for a series of impact events at the K/Pg boundary. This barren zone was succeeded by a fern spike marking an initial plant re-colonization. The following palynoflora suggests moisture availability oscillations (MAOs) reflecting 41 k.y. obliquity cycles, which can be correlated with lithological fluctuations during lake evolution. The aim is to conduct a detailed, complete facies analysis, and to correlate lake evolutionary aspects with climatic oscillations and vegetation change within the catchment area. This study will be compared with records of similar hyperthermal events, such as the Paleocene-Eocene Thermal Maximum (PETM) in the Western Interior in North America. This integrated approach will help to better understand the controlling factors of global warming events, and their effects on ancient sedimentary environments and ecosystems.

  5. Evolutionary models of interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.

    1987-01-01

    The goal of evolutionary models of interstellar chemistry is to understand how interstellar clouds came to be the way they are, how they will change with time, and to place them in an evolutionary sequence with other celestial objects such as stars. An improved Mark II version of an earlier model of chemistry in dynamically evolving clouds is presented. The Mark II model suggests that the conventional elemental C/O ratio less than one can explain the observed abundances of CI and the nondetection of O2 in dense clouds. Coupled chemical-dynamical models seem to have the potential to generate many observable discriminators of the evolutionary tracks. This is exciting, because, in general, purely dynamical models do not yield enough verifiable discriminators of the predicted tracks.

  6. Sprites and Early ionospheric VLF perturbations

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos; Amvrosiadi, Nino; Cotts, Ben; van der Velde, Oscar; Chanrion, Olivier; Neubert, Torsten

    2010-05-01

    Past studies have shown a correlation between sprites and early VLF perturbations, but the reported correlation varies widely from ~ 50% to 100%. The present study resolves these large discrepancies by analyzing several case studies of sprite and narrowband VLF observations, in which multiple transmitter-receiver VLF links with great circle paths (GCPs) passing near a sprite-producing thunderstorm were available. In this setup, the multiple links act in a complementary way that makes the detection of early VLF perturbations much more probable compared to a single VLF link that can miss several of them, a fact that was overlooked in past studies. The evidence shows that sprites are accompanied by early VLF perturbations in a one-to-one correspondence. This implies that the sprite generation mechanism may cause also sub-ionospheric conductivity disturbances that produce early VLF events. However, the one-to-one "sprite to early" event relationship, if viewed conversely as "early to sprite", appears not to be always reciprocal. This is because the number of early events detected in some cases was considerably larger than the number of sprites. Since the great majority of the early events not accompanied by sprites was caused by positive cloud to ground (+CG) lightning discharges, it is possible that sprites or sprite halos were concurrently present in these events as well but were missed by the sprite-watch detection system. In order for this option to be resolved we need more studies using highly sensitive optical systems capable of detecting weaker sprites, sprite halos and elves.

  7. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice

    PubMed Central

    Hogan, Chad H.; Oldenburg, Darby G.; Kara, Mehmet

    2018-01-01

    Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host. PMID:29390024

  8. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice.

    PubMed

    Van Skike, Nick D; Minkah, Nana K; Hogan, Chad H; Wu, Gary; Benziger, Peter T; Oldenburg, Darby G; Kara, Mehmet; Kim-Holzapfel, Deborah M; White, Douglas W; Tibbetts, Scott A; French, Jarrod B; Krug, Laurie T

    2018-02-01

    Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host.

  9. Evolutionary dynamics of Newcastle disease virus

    USGS Publications Warehouse

    Miller, P.J.; Kim, L.M.; Ip, Hon S.; Afonso, C.L.

    2009-01-01

    A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution. ?? 2009 Elsevier Inc.

  10. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  11. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  12. Seismology-based early identification of dam-formation landquake events.

    PubMed

    Chao, Wei-An; Zhao, Li; Chen, Su-Chin; Wu, Yih-Min; Chen, Chi-Hsuan; Huang, Hsin-Hua

    2016-01-12

    Flooding resulting from the bursting of dams formed by landquake events such as rock avalanches, landslides and debris flows can lead to serious bank erosion and inundation of populated areas near rivers. Seismic waves can be generated by landquake events which can be described as time-dependent forces (unloading/reloading cycles) acting on the Earth. In this study, we conduct inversions of long-period (LP, period ≥20 s) waveforms for the landquake force histories (LFHs) of ten events, which provide quantitative characterization of the initiation, propagation and termination stages of the slope failures. When the results obtained from LP waveforms are analyzed together with high-frequency (HF, 1-3 Hz) seismic signals, we find a relatively strong late-arriving seismic phase (dubbed Dam-forming phase or D-phase) recorded clearly in the HF waveforms at the closest stations, which potentially marks the time when the collapsed masses sliding into river and perhaps even impacting the topographic barrier on the opposite bank. Consequently, our approach to analyzing the LP and HF waveforms developed in this study has a high potential for identifying five dam-forming landquake events (DFLEs) in near real-time using broadband seismic records, which can provide timely warnings of the impending floods to downstream residents.

  13. Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus.

    PubMed

    Zhu, Henan; Hughes, Joseph; Murcia, Pablo R

    2015-05-01

    Influenza A viruses (IAVs) are maintained mainly in wild birds, and despite frequent spillover infections of avian IAVs into mammals, only a small number of viruses have become established in mammalian hosts. A new H3N2 canine influenza virus (CIV) of avian origin emerged in Asia in the mid-2000s and is now circulating in dog populations of China and South Korea, and possibly in Thailand. The emergence of CIV provides new opportunities for zoonotic infections and interspecies transmission. We examined 14,764 complete IAV genomes together with all CIV genomes publicly available since its first isolation until 2013. We show that CIV may have originated as early as 1999 as a result of segment reassortment among Eurasian and North American avian IAV lineages. We also identified amino acid changes that might have played a role in CIV emergence, some of which have not been previously identified in other cross-species jumps. CIV evolves at a lower rate than H3N2 human influenza viruses do, and viral phylogenies exhibit geographical structure compatible with high levels of local transmission. We detected multiple intrasubtypic and heterosubtypic reassortment events, including the acquisition of the NS segment of an H5N1 avian influenza virus that had previously been overlooked. In sum, our results provide insight into the adaptive changes required by avian viruses to establish themselves in mammals and also highlight the potential role of dogs to act as intermediate hosts in which viruses with zoonotic and/or pandemic potential could originate, particularly with an estimated dog population of ∼ 700 million. Influenza A viruses circulate in humans and animals. This multihost ecology has important implications, as past pandemics were caused by IAVs carrying gene segments of both human and animal origin. Adaptive evolution is central to cross-species jumps, and this is why understanding the evolutionary processes that shape influenza A virus genomes is key to elucidating

  14. Evolutionary perspectives on ageing.

    PubMed

    Reichard, Martin

    2017-10-01

    From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microgravity Effects on the Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Results from the SyNRGE Experiment

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.; Roberts, Michael

    2012-01-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of microgravity on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species for th legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early biomolecular events associated with infection and nodulation in Petri Dish Fixation Units (PDFU's).

  16. Evolutionary analysis of the kinesin light chain genes in the yellow fever mosquito Aedes aegypti: gene duplication as a source for novel early zygotic genes.

    PubMed

    Biedler, James K; Tu, Zhijian

    2010-07-08

    codon shows promoter activity at least as early as 3 hours in the developing Ae. aegypti embryo. The AaKLC2.1 promoter activity reached ~1600 fold over the negative control at 5 hr after egg deposition. Transcriptome profiling by use of high throughput sequencing technologies has proven to be a valuable method for the identification and discovery of early and transient zygotic genes. The evolutionary investigation of the KLC gene family reveals that duplication is a source for the evolution of new genes that play a role in the dynamic process of early embryonic development. AaKLC2.1 may provide a promoter for early zygotic-specific transgene expression, which is a key component of the Medea gene drive system.

  17. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    ERIC Educational Resources Information Center

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  18. Using Evolutionary Theory to Guide Mental Health Research.

    PubMed

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  19. Using Evolutionary Theory to Guide Mental Health Research

    PubMed Central

    Mulsant, Benoit H.; McKenzie, Kwame; Andrews, Paul W.

    2016-01-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating “normally” (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. PMID:27254091

  20. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  1. The association between high on-treatment platelet reactivity and early recurrence of ischemic events after minor stroke or TIA.

    PubMed

    Rao, Zilong; Zheng, Huaguang; Wang, Fei; Wang, Anxin; Liu, Liping; Dong, Kehui; Zhao, Xingquan; Wang, Yilong; Cao, Yibin

    2017-08-01

    To evaluate the role of HTPR in predicting early recurrence of ischemic events in patients with minor ischemic stroke or high-risk TIA. From January 2014 to September 2014, a single center continuously enrolled patients with minor ischemic stroke or high-risk TIA and gave them antiplatelet therapy consisting of aspirin with clopidogrel. HTPR was assessed by TEG after 7 days of antiplatelet therapy and detected CYP2C19 genotype. The incidence of recurrent ischemic events was assessed 3 months after onset. The incidence of recurrent ischemic events was compared between the HTPR and NTPR groups with the Kaplan-Meier method, and multivariate Cox proportional hazards models were used to determine the risk factors associated with recurrent ischemic events. We enrolled 278 eligible patients with minor ischemic stroke or high-risk TIA. Through TEG testing, patients with HTPR were 22.7%, and carriers were not associated with HTPR to ADP by TEG-ADP(%) (p = 0.193). A total of 265 patients completed 3 months of follow-up, and Kaplan-Meier analysis showed that patients with HTPR had a higher percentage of recurrent ischemic events compared with patients with NTPR (p = 0.002). In multivariate Cox proportional hazards models, history of ischemic stroke or TIA (HR 4.45, 95% CI 1.77-11.16, p = 0.001) and HTPR (HR 3.34, 95% CI 1.41-7.91, p = 0.006) was independently associated with recurrent ischemic events. In patients with minor stroke or TIA, the prevalence of HTPR was 22.7%, and HTPR was independently associated with recurrent ischemic events.

  2. A teleofunctional account of evolutionary mismatch.

    PubMed

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  3. Evolutionary public health: introducing the concept.

    PubMed

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    PubMed

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  5. The evolutionary ecology of molecular replicators

    PubMed Central

    2016-01-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology. PMID:27853598

  6. The evolutionary ecology of molecular replicators.

    PubMed

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  7. Evolutionary heritage influences Amazon tree ecology.

    PubMed

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  8. Evolutionary heritage influences Amazon tree ecology

    PubMed Central

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  9. Risk of Cerebrovascular Events in Elderly Patients After Radiation Therapy Versus Surgery for Early-Stage Glottic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Julian C.; Kruser, Tim J.; Gondi, Vinai

    Purpose: Comprehensive neck radiation therapy (RT) has been shown to increase cerebrovascular disease (CVD) risk in advanced-stage head-and-neck cancer. We assessed whether more limited neck RT used for early-stage (T1-T2 N0) glottic cancer is associated with increased CVD risk, using the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Methods and Materials: We identified patients ≥66 years of age with early-stage glottic laryngeal cancer from SEER diagnosed from 1992 to 2007. Patients treated with combined surgery and RT were excluded. Medicare CPT codes for carotid interventions, Medicare ICD-9 codes for cerebrovascular events, and SEER data for stroke as the causemore » of death were collected. Similarly, Medicare CPT and ICD-9 codes for peripheral vascular disease (PVD) were assessed to serve as an internal control between treatment groups. Results: A total of 1413 assessable patients (RT, n=1055; surgery, n=358) were analyzed. The actuarial 10-year risk of CVD was 56.5% (95% confidence interval 51.5%-61.5%) for the RT cohort versus 48.7% (41.1%-56.3%) in the surgery cohort (P=.27). The actuarial 10-year risk of PVD did not differ between the RT (52.7% [48.1%-57.3%]) and surgery cohorts (52.6% [45.2%-60.0%]) (P=.89). Univariate analysis showed an increased association of CVD with more recent diagnosis (P=.001) and increasing age (P=.001). On multivariate Cox analysis, increasing age (P<.001) and recent diagnosis (P=.002) remained significantly associated with a higher CVD risk, whereas the association of RT and CVD remained not statistically significant (HR=1.11 [0.91-1.37,] P=.31). Conclusions: Elderly patients with early-stage laryngeal cancer have a high burden of cerebrovascular events after surgical management or RT. RT and surgery are associated with comparable risk for subsequent CVD development after treatment in elderly patients.« less

  10. Evolutionary cell biology: two origins, one objective.

    PubMed

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  11. How to Identify and Interpret Evolutionary Tree Diagrams

    ERIC Educational Resources Information Center

    Kong, Yi; Anderson, Trevor; Pelaez, Nancy

    2016-01-01

    Evolutionary trees are key tools for modern biology and are commonly portrayed in textbooks to promote learning about biological evolution. However, many people have difficulty in understanding what evolutionary trees are meant to portray. In fact, some ideas that current professional biologists depict with evolutionary trees are neither clearly…

  12. The Incidence and Predictors of Early- and Mid-Term Clinically Relevant Neurological Events After Transcatheter Aortic Valve Replacement in Real-World Patients.

    PubMed

    Bosmans, Johan; Bleiziffer, Sabine; Gerckens, Ulrich; Wenaweser, Peter; Brecker, Stephen; Tamburino, Corrado; Linke, Axel

    2015-07-21

    Transcatheter aortic valve replacement (TAVR) enables treatment of high-risk patients with symptomatic aortic stenosis without open-heart surgery; however, the benefits are mitigated by the potential for neurological events. This study sought to determine the timing and causes of clinically relevant neurological events after self-expandable TAVR. We enrolled 1,015 patients, of whom 996 underwent TAVR with a self-expandable system at 44 TAVR-experienced centers in Europe, Colombia, and Israel. Neurological events were evaluated for 3 distinct time periods: periprocedural (0 to 1 days post TAVR); early (2 to 30 days); and late (31 to 730 days). In this real-world study, neurological events were first referred to the site neurologist and then reviewed by an independent neurologist. The overall stroke rate was 1.4% through the first day post-procedure, 3.0% at 30 days, and 5.6% at 2 years. There were no significant predictors of periprocedural stroke or stroke/transient ischemic attack (TIA) combined. Significant predictors of early stroke were acute kidney injury (p = 0.03), major vascular complication (p = 0.04), and female sex (p = 0.04). For stroke/TIA combined, prior atrial fibrillation (p = 0.03) and major vascular complication (p = 0.009) were predictive. Coronary artery bypass graft surgery was the only significant predictor of late stroke (p = 0.007) or late stroke/TIA (p = 0.06). Treatment of high-risk patients with aortic stenosis using a self-expandable system was associated with a low stroke rate at short- and long-term follow-up. Multivariable predictors of clinically relevant neurological events differed on the basis of the timing after TAVR. (CoreValve Advance International Post Market Study; NCT01074658). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree.

    PubMed

    Kacar, B; Hanson-Smith, V; Adam, Z R; Boekelheide, N

    2017-09-01

    Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO, or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen-sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem-bearing, oxygen-evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the

  14. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2001-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity. However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold. One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumbersome binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back and Dasgupta and Michalesicz. We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  15. Evolutionary bottlenecks in brackish water habitats drive the colonization of fresh water by stingrays.

    PubMed

    Kirchhoff, K N; Hauffe, T; Stelbrink, B; Albrecht, C; Wilke, T

    2017-08-01

    Species richness in freshwater bony fishes depends on two main processes: the transition into and the diversification within freshwater habitats. In contrast to bony fishes, only few cartilaginous fishes, mostly stingrays (Myliobatoidei), were able to colonize fresh water. Respective transition processes have been mainly assessed from a physiological and morphological perspective, indicating that the freshwater lifestyle is strongly limited by the ability to perform osmoregulatory adaptations. However, the transition history and the effect of physiological constraints on the diversification in stingrays remain poorly understood. Herein, we estimated the geographic pathways of freshwater colonization and inferred the mode of habitat transitions. Further, we assessed habitat-related speciation rates in a time-calibrated phylogenetic framework to understand factors driving the transition of stingrays into and the diversification within fresh water. Using South American and Southeast Asian freshwater taxa as model organisms, we found one independent freshwater colonization event by stingrays in South America and at least three in Southeast Asia. We revealed that vicariant processes most likely caused freshwater transition during the time of major marine incursions. The habitat transition rates indicate that brackish water species switch preferably back into marine than forth into freshwater habitats. Moreover, our results showed significantly lower diversification rates in brackish water lineages, whereas freshwater and marine lineages exhibit similar rates. Thus, brackish water habitats may have functioned as evolutionary bottlenecks for the colonization of fresh water by stingrays, probably because of the higher variability of environmental conditions in brackish water. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Evolutionary psychology and intelligence research.

    PubMed

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative variation on a monomorphic design allows us to incorporate heritable individual differences in evolved adaptations. The Savanna-IQ Interaction Hypothesis, which is one consequence of the integration of evolutionary psychology and intelligence research, can potentially explain why less intelligent individuals enjoy TV more, why liberals are more intelligent than conservatives, and why night owls are more intelligent than morning larks, among many other findings. The general approach proposed here will allow us to integrate evolutionary psychology with any other aspect of differential psychology. Copyright 2010 APA, all rights reserved.

  17. The relative importance of regional, local, and evolutionary factors structuring cryptobenthic coral-reef assemblages

    NASA Astrophysics Data System (ADS)

    Ahmadia, Gabby N.; Tornabene, Luke; Smith, David J.; Pezold, Frank L.

    2018-03-01

    Factors shaping coral-reef fish species assemblages can operate over a wide range of spatial scales (local versus regional) and across both proximate and evolutionary time. Niche theory and neutral theory provide frameworks for testing assumptions and generating insights about the importance of local versus regional processes. Niche theory postulates that species assemblages are an outcome of evolutionary processes at regional scales followed by local-scale interactions, whereas neutral theory presumes that species assemblages are formed by largely random processes drawing from regional species pools. Indo-Pacific cryptobenthic coral-reef fishes are highly evolved, ecologically diverse, temporally responsive, and situated on a natural longitudinal diversity gradient, making them an ideal group for testing predictions from niche and neutral theories and effects of regional and local processes on species assemblages. Using a combination of ecological metrics (fish density, diversity, assemblage composition) and evolutionary analyses (testing for phylogenetic niche conservatism), we demonstrate that the structure of cryptobenthic fish assemblages can be explained by a mixture of regional factors, such as the size of regional species pools and broad-scale barriers to gene flow/drivers of speciation, coupled with local-scale factors, such as the relative abundance of specific microhabitat types. Furthermore, species of cryptobenthic fishes have distinct microhabitat associations that drive significant differences in assemblage community structure between microhabitat types, and these distinct microhabitat associations are phylogenetically conserved over evolutionary timescales. The implied differential fitness of cryptobenthic fishes across varied microhabitats and the conserved nature of their ecology are consistent with predictions from niche theory. Neutral theory predictions may still hold true for early life-history stages, where stochastic factors may be more

  18. Developmental Needs and Early Childhood Education: Evolutionary, My Dear Watson

    ERIC Educational Resources Information Center

    Henry, Margaret

    2004-01-01

    Examining the processes of natural selection, described by Darwin in "The Origin of Species", casts light on our own species' fundamental needs and on the far greater role that early childhood educators can play in their fulfillment. The second section of this paper analyzes how our fundamental needs emerge in a sequence underpinned by the…

  19. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    PubMed

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-06-08

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Conservation: evolutionary values for all 10,000 birds.

    PubMed

    Lovette, Irby J

    2014-05-19

    Many biologists and conservation practitioners believe that preserving evolutionary diversity should be a priority. An innovative new study measures the evolutionary distinctness of all the world's birds and identifies the species and locations that capture the highest fraction of avian evolutionary history. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The spectral absorption coefficient at 254 nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources.

    PubMed

    Stadler, H; Klock, E; Skritek, P; Mach, R L; Zerobin, W; Farnleitner, A H

    2010-01-01

    Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005-2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254 nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper. Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n>800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated.

  2. Evolutionary pattern of pandemic influenza (H1N1) 2009 virus in the late phases of the 2009 pandemic.

    PubMed Central

    Valli, Maria Beatrice; Meschi, Silvia; Selleri, Marina; Zaccaro, Paola; Ippolito, Giuseppe; Capobianchi, Maria Rosaria; Menzo, Stefano

    2010-01-01

    Influenza A( H1N1)v has spread rapidly in all parts of the globe in 2009 as a true pandemic, although fortunately a clinically mild one. The relevant evolutionary steps for the new virus to adapt to human populations occurred very early during the pandemic, before the end of April. Of the several resulting clades or clusters, clade 7 appeared later and proved more successful, substituting all other early clades before the bulk of the worldwide infections occurred. PMID:20228856

  3. Relationship between early and late stages of information processing: an event-related potential study

    PubMed Central

    Portella, Claudio; Machado, Sergio; Arias-Carrión, Oscar; Sack, Alexander T.; Silva, Julio Guilherme; Orsini, Marco; Leite, Marco Antonio Araujo; Silva, Adriana Cardoso; Nardi, Antonio E.; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2012-01-01

    The brain is capable of elaborating and executing different stages of information processing. However, exactly how these stages are processed in the brain remains largely unknown. This study aimed to analyze the possible correlation between early and late stages of information processing by assessing the latency to, and amplitude of, early and late event-related potential (ERP) components, including P200, N200, premotor potential (PMP) and P300, in healthy participants in the context of a visual oddball paradigm. We found a moderate positive correlation among the latency of P200 (electrode O2), N200 (electrode O2), PMP (electrode C3), P300 (electrode PZ) and the reaction time (RT). In addition, moderate negative correlation between the amplitude of P200 and the latencies of N200 (electrode O2), PMP (electrode C3), P300 (electrode PZ) was found. Therefore, we propose that if the secondary processing of visual input (P200 latency) occurs faster, the following will also happen sooner: discrimination and classification process of this input (N200 latency), motor response processing (PMP latency), reorganization of attention and working memory update (P300 latency), and RT. N200, PMP, and P300 latencies are also anticipated when higher activation level of occipital areas involved in the secondary processing of visual input rise (P200 amplitude). PMID:23355929

  4. Evolutionary dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.

    2005-01-01

    Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.

  5. Evolutionary origins of a novel host plant detoxification gene in butterflies.

    PubMed

    Fischer, Hanna M; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2008-05-01

    Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.

  6. The topology of evolutionary novelty and innovation in macroevolution

    PubMed Central

    2017-01-01

    Sewall Wright's fitness landscape introduced the concept of evolutionary spaces in 1932. George Gaylord Simpson modified this to an adaptive, phenotypic landscape in 1944 and since then evolutionary spaces have played an important role in evolutionary theory through fitness and adaptive landscapes, phenotypic and functional trait spaces, morphospaces and related concepts. Although the topology of such spaces is highly variable, from locally Euclidean to pre-topological, evolutionary change has often been interpreted as a search through a pre-existing space of possibilities, with novelty arising by accessing previously inaccessible or difficult to reach regions of a space. Here I discuss the nature of evolutionary novelty and innovation within the context of evolutionary spaces, and argue that the primacy of search as a conceptual metaphor ignores the generation of new spaces as well as other changes that have played important evolutionary roles. This article is part of the themed issue ‘Process and pattern in innovations from cells to societies’. PMID:29061895

  7. An Evolutionary Landscape of A-to-I RNA Editome across Metazoan Species

    PubMed Central

    Hung, Li-Yuan; Chen, Yen-Ju; Mai, Te-Lun; Chen, Chia-Ying; Yang, Min-Yu; Chiang, Tai-Wei; Wang, Yi-Da

    2018-01-01

    Abstract Adenosine-to-inosine (A-to-I) editing is widespread across the kingdom Metazoa. However, for the lack of comprehensive analysis in nonmodel animals, the evolutionary history of A-to-I editing remains largely unexplored. Here, we detect high-confidence editing sites using clustering and conservation strategies based on RNA sequencing data alone, without using single-nucleotide polymorphism information or genome sequencing data from the same sample. We thereby unveil the first evolutionary landscape of A-to-I editing maps across 20 metazoan species (from worm to human), providing unprecedented evidence on how the editing mechanism gradually expands its territory and increases its influence along the history of evolution. Our result revealed that highly clustered and conserved editing sites tended to have a higher editing level and a higher magnitude of the ADAR motif. The ratio of the frequencies of nonsynonymous editing to that of synonymous editing remarkably increased with increasing the conservation level of A-to-I editing. These results thus suggest potentially functional benefit of highly clustered and conserved editing sites. In addition, spatiotemporal dynamics analyses reveal a conserved enrichment of editing and ADAR expression in the central nervous system throughout more than 300 Myr of divergent evolution in complex animals and the comparability of editing patterns between invertebrates and between vertebrates during development. This study provides evolutionary and dynamic aspects of A-to-I editome across metazoan species, expanding this important but understudied class of nongenomically encoded events for comprehensive characterization. PMID:29294013

  8. Does silent reading speed in normal adult readers depend on early visual processes? evidence from event-related brain potentials.

    PubMed

    Korinth, Sebastian Peter; Sommer, Werner; Breznitz, Zvia

    2012-01-01

    Little is known about the relationship of reading speed and early visual processes in normal readers. Here we examined the association of the early P1, N170 and late N1 component in visual event-related potentials (ERPs) with silent reading speed and a number of additional cognitive skills in a sample of 52 adult German readers utilizing a Lexical Decision Task (LDT) and a Face Decision Task (FDT). Amplitudes of the N170 component in the LDT but, interestingly, also in the FDT correlated with behavioral tests measuring silent reading speed. We suggest that reading speed performance can be at least partially accounted for by the extraction of essential structural information from visual stimuli, consisting of a domain-general and a domain-specific expertise-based portion. © 2011 Elsevier Inc. All rights reserved.

  9. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    PubMed Central

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  10. Realizing Aspects by Transforming for Events

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Havelund, Klaus; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We explore the extent to which concerns can be separated in programs by program transformation with respect to the events required by these concerns. We describe our early work on developing a system to perform event-driven transformation and discuss possible applications of this approach.

  11. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2000-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves 1997). However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold (Glover 1998). One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumber-some binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back (1996) and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  12. Comparative Phylogeographic Analyses Illustrate the Complex Evolutionary History of Threatened Cloud Forests of Northern Mesoamerica

    PubMed Central

    Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo

    2013-01-01

    Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage

  13. Comparative phylogeography reveals deep lineages and regional evolutionary hotspots in the Mojave and Sonoran Deserts

    USGS Publications Warehouse

    Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.

    2013-01-01

    Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would

  14. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  15. Reconstructing evolutionary trees in parallel for massive sequences.

    PubMed

    Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam

    2017-12-14

    Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .

  16. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management

    PubMed Central

    Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf

    2014-01-01

    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries. PMID:26430388

  17. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management.

    PubMed

    Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf

    2014-03-01

    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.

  18. The influence of deficient retro-aortic rim on technical success and early adverse events following device closure of secundum atrial septal defects: An Analysis of the IMPACT Registry®.

    PubMed

    O'Byrne, Michael L; Gillespie, Matthew J; Kennedy, Kevin F; Dori, Yoav; Rome, Jonathan J; Glatz, Andrew C

    2017-01-01

    Concern regarding aortic erosion has focused attention on the retro-aortic rim in patients undergoing device closure of atrial septal defects (ASD), but its effect on early outcomes is not well studied. A multicenter retrospective cohort study of patients undergoing device occlusion of ASD between 1/2011-10/2014 was performed, using data from the IMproving Pediatric and Adult Congenital Treatment Registry. Subjects were divided between those with retro-aortic rim <5 and ≥5 mm. Primary outcomes were technical failure and major early adverse events. Case times were measured as surrogates of technical complexity. The effect of deficient retro-aortic rim on primary outcomes was assessed using hierarchical logistic regression, adjusting for other suspected covariates and assessing whether they represent independent risk factors RESULTS: 1,564 subjects (from 77 centers) were included, with deficient retro-aortic rim present in 40%. Technical failure occurred in 91 subjects (5.8%) and a major early adverse event in 64 subjects (4.1%). Adjusting for known covariates, the presence of a deficient retro-aortic rim was not significantly associated with technical failure (OR: 1.3, 95% CI: 0.9-2.1) or major early adverse event (OR: 0.7, 95% CI: 0.4-1. 2). Total case (P = 0.01) and fluoroscopy time (P = 0.02) were greater in subjects with deficient rim, but sheath time was not significantly different (P = 0.07). Additional covariates independently associated with these outcomes were identified. Deficient retro-aortic rim was highly prevalent but not associated with increased risk of technical failure or early adverse events. Studies with longer follow-up are necessary to assess other outcomes, including device erosion. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Evolutionary cell biology: Two origins, one objective

    PubMed Central

    Lynch, Michael; Field, Mark C.; Goodson, Holly V.; Malik, Harmit S.; Pereira-Leal, José B.; Roos, David S.; Turkewitz, Aaron P.; Sazer, Shelley

    2014-01-01

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology. PMID:25404324

  20. Treatment decisions and the impact of adverse events before and during extended endocrine therapy in postmenopausal early breast cancer.

    PubMed

    Blok, Erik J; Kroep, Judith R; Meershoek-Klein Kranenbarg, Elma; Duijm-de Carpentier, Marjolijn; Putter, Hein; Liefers, Gerrit-Jan; Nortier, Johan W R; Rutgers, Emiel J Th; Seynaeve, Caroline M; van de Velde, Cornelis J H

    2018-05-01

    Extended endocrine therapy beyond 5 years for postmenopausal breast cancer has been studied within multiple phase III trials. Treatment compliance in these trials is generally poor. In this analysis, we aimed to determine factors that were associated with participation in the phase III Investigation on the Duration of Extended Adjuvant Letrozole (IDEAL) trial and with early treatment discontinuation, and how this influenced survival outcome. In the IDEAL trial, postmenopausal patients were randomised between 2.5 or 5 years of extended letrozole, after completing 5 years of endocrine therapy for hormone receptor-positive early breast cancer. A subgroup of this population participated earlier in the Tamoxifen Exemestane Adjuvant Multinational trial (5 years of exemestane or 2.5 years of tamoxifen followed by exemestane as primary adjuvant therapy) in which we explored which factors were determinative for enrolment in the IDEAL study. In the IDEAL cohort, we evaluated which factors predicted for early treatment discontinuation and the effect of early treatment discontinuation on disease-free survival (DFS). Nodal status, younger age and adjuvant chemotherapy were significantly associated with higher enrolment in the IDEAL trial. In the IDEAL cohort, adverse events (AEs), the type of primary endocrine therapy and the interval between primary and extended therapy were associated with early treatment discontinuation. Among the reported AEs, depressive feelings (56%) were most frequently associated with early treatment discontinuation. Early treatment discontinuation was not associated with worse DFS (hazard ratio [HR] = 1.02, 95% confidence interval = 0.76-1.37). In this analysis, we found that risk factors were most strongly associated enrolment in the IDEAL trial. In contrast, patient experiences were the most significant factors leading to early treatment discontinuation, with no effect on DFS. Copyright © 2018 Elsevier Ltd. All rights reserved.