Sample records for early exogenous estrogen

  1. Exogenous Estrogen as Mediator of Racial Differences in Bioactive Insulin-Like Growth Factor-I Levels Among Postmenopausal Women

    PubMed Central

    Vitolins, Mara Z.; Paskett, Electra D.; Chang, Shine

    2015-01-01

    Background. The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race–IGF-I relationship in postmenopausal women. Methods. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women’s Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race–IGF-I relationship, we used the Baron–Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Results. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race–IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Conclusions. Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. PMID:25238773

  2. Exogenous estrogen as mediator of racial differences in bioactive insulin-like growth factor-I levels among postmenopausal women.

    PubMed

    Jung, Su Yon; Vitolins, Mara Z; Paskett, Electra D; Chang, Shine

    2015-04-01

    The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race-IGF-I relationship in postmenopausal women. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women's Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race-IGF-I relationship, we used the Baron-Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race-IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Reproductive factors, exogenous estrogen use and risk of Parkinson’s disease

    PubMed Central

    Simon, Kelly Claire; Chen, Honglei; Gao, Xiang; Schwarzschild, Michael A.; Ascherio, Alberto

    2009-01-01

    To determine if reproductive factors or exogenous estrogen are associated with risk of Parkinson’s disease (PD), we conducted a prospective study with 22 years of follow-up among post-menopausal participants in the Nurses’ Health Study. Relative risks (RRs) and 95% confidence intervals (CIs) of PD were estimated from a Cox proportional hazards model adjusting for potential confounders. Risk of PD was not significantly associated with any of the reproductive factors measured or exogenous estrogen use. Use of post-menopausal hormones, however, may modify the associations of smoking and caffeine intake with PD risk. The inverse relation between smoking and PD risk was attenuated among ever users of post-menopausal hormones (p for interaction = 0.05). Similar results were obtained for caffeine (p for interaction = 0.09). In exploratory analyses, women using progestin-only hormones were found to have an increased PD risk, but this result was based on a very small number of cases (n=4). In this large longitudinal study, we found no evidence of a beneficial effect of exogenous or endogenous estrogens on risk of PD. The use of post-menopausal hormone use may interact with other risk factors, but findings are preliminary and need confirmation in other populations. PMID:19424986

  4. EFFECTS OF EXOGENOUS ESTROGEN ON MATE SELECTION OF HOUSE FINCHES

    EPA Science Inventory

    Concern about the potential for endocrine disrupting chemicals to interfere with normal breeding behaviors of wildlife has prompted this study of effects of exogenous estrogen on mate selection in songbirds. The house finch (Carpodacus mexicanus) was selected as a model as it is ...

  5. A summary of the influence of exogenous estrogen administration across the lifespan on the GH/IGF-1 axis and implications for bone health.

    PubMed

    Southmayd, Emily A; De Souza, Mary Jane

    2017-02-01

    Bone growth, development, and remodeling are modulated by numerous circulating hormones. Throughout the lifespan, the extent to which each of the hormones impacts bone differs. Understanding the independent and combined impact of these hormones on controlling bone remodeling allows for the development of more informed decision making regarding pharmacology, specifically the use of hormonal medication, at all ages. Endocrine control of bone health in women is largely dictated by the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis and the hypothalamic-pituitary-ovarian (HPO) axis. Growth hormone, secreted from the pituitary gland, stimulates cells in almost every tissue to secrete IGF-1, although the majority of circulating IGF-1 is produced hepatically. Indeed, systemic IGF-1 concentrations have been found to be correlated with bone mineral density (BMD) in both pre- and post-menopausal women and is often used as a marker of bone formation. Sex steroids produced by the ovaries, namely estradiol, mediate bone resorption through binding to estrogen receptors on osteoclasts and osteoblasts. Specifically, by increasing osteoclast apoptosis and decreasing osteoblast apoptosis, adequate estrogen levels prevent excessive bone resorption, which helps to explain the rapid decline in bone mass that occurs with the menopausal decrease in estrogen production. Though there are documented correlations between endogenous estrogen concentrations and GH/IGF-1 dynamics, this relationship changes across the lifespan as sex-steroid dynamics fluctuate and, possibly, as tissue responsiveness to GH stimulation decreases. Aside from the known role of endogenous sex steroids on bone health, the impact of exogenous estrogen administration is of interest, as exogenous formulations further modulate GH and IGF-1 production. However, the effect and extent of GH and IGF-1 modulation seems to be largely dependent on age at administration and route of administration. Specifically

  6. Immunosuppression Following Exposure to Exogenous Estrogens

    DTIC Science & Technology

    1983-08-01

    and laboratory animals aad has been associated with endo- metrial cancer, breast cancer, and vaginal adenocarcinoma (McLachlan, 1980). In mice, DES ... DES ), a nonsteroidal synthet- ic estrogen with potent estrogenic activity was examined. This compound has been employed as a therapeutic agent in...humans as well as a growth promotant in livestock (McMartin, 1978). There is mounting evidence, however, that DES is potentially carcinogenic in humans

  7. Estrogens and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, J.A.; Newbold, R.R.

    1987-11-01

    The normal development of the genital organs of mammals, including humans, is under hormonal control. A role for the female sex hormone estrogen in this process is still unclear. However, exposure of experimental animals or humans to the potent exogenous estrogen, diethylstilbestrol (DES), results in persistent differentiation effects. Since many chemicals in the environment are weakly estrogenic, the possibility of hormonally altered differentiation must be considered.

  8. Environmental estrogens alter early development in Xenopus laevis.

    PubMed

    Bevan, Cassandra L; Porter, Donna M; Prasad, Anita; Howard, Marthe J; Henderson, Leslie P

    2003-04-01

    A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents are believed to have deleterious effects on development by disrupting hormone-sensitive processes. We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p-DDE, or the synthetic androgen, 17 alpha-methyltestosterone at concentrations ranging from 10 nM to 10 microM and examined them at tailbud stages (approximately 48 hr of treatment). Exposure to the three environmental estrogens, as well as to the natural estrogen 17 beta-estradiol, increased mortality, induced morphologic deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-derived melanocytes in tailbud stage embryos. Although neural crest-derived melanocytes were markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest cells, was not affected, suggesting that the disruption induced by these compounds with respect to melanocyte development may occur at later stages of their differentiation. Co-incubation of embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce abnormalities in body shape and in melanocyte differentiation but did not block the effects of methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens induces deleterious effects on early vertebrate development but also that different environmental estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest that the differentiation of neural crest-derived melanocytes may be particularly sensitive to the disruptive actions of these ubiquitous chemical contaminants.

  9. Estrogens in Male Physiology.

    PubMed

    Cooke, Paul S; Nanjappa, Manjunatha K; Ko, CheMyong; Prins, Gail S; Hess, Rex A

    2017-07-01

    Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues. Copyright © 2017 the American Physiological Society.

  10. Growth, intake, and health of Holstein heifer calves fed an enhanced preweaning diet with or without postweaning exogenous estrogen.

    PubMed

    Geiger, A J; Parsons, C L M; James, R E; Akers, R M

    2016-05-01

    Research has shown that changes in nutrition both before and after weaning can affect mammary development. Additionally, estrogen is known to be a potent mammogenic stimulant. Our objectives were to determine effects of altered preweaning feeding and exogenous estradiol postweaning on growth, intake, and health. Thirty-six Holstein heifer calves were reared on (1) a restricted milk replacer (MR) diet fed at 0.44kg powder dry matter (DM)/day [R; 20.9% crude protein (CP), 19.8% fat, DM basis], or (2) an enhanced MR fed at 1.08kg powder DM/d (EH; 28.9% CP, 26.2% fat, DM basis). The MR feeding was reduced 50% during wk 8 to prepare for weaning. Starter was offered after wk 4 but balanced between treatments. Body weight and frame were measured weekly with intakes and health monitored daily. At weaning, a subset of calves were slaughtered (n=6/diet). Enhanced-fed calves had greater carcass, thymus, liver, spleen, and mammary gland (parenchyma and mammary fat pad) weights. The EH calves also had greater average daily gain (ADG) starting during wk 1 (0.36 vs. -0.06kg/d) and lasting through wk 7 (1.00 vs. 0.41kg/d). Remaining calves received estrogen implants or placebo and were slaughtered at the end of wk 10, creating 4 treatments: (1) R, (2) R + estrogen (R-E2), (3) EH, and (4) EH + estrogen (EH-E2). Postweaning ADG was similar between R, EH, and EH-E2 calves, but greater in R-E2 calves than E calves. The EH-E2 calves had the heaviest mammary glands, and R-E2 calves had heavier mammary glands than R calves. The EH calves consumed more MR DM, CP, and fat preweaning. The R-fed calves consumed more starter DM preweaning. Fecal score was greater for EH calves (1.74 vs. 1.50) preweaning, but days medicated did not differ. Fecal scores were lower for R-E2 calves postweaning. Improved preweaning feeding of calves increased body weights and frame measures. Differences in body weights remained postweaning. Enhanced-fed calves showed greater ADG during the preweaning period but

  11. Estrogenicity of parabens revisited: impact of parabens on early pregnancy and an uterotrophic assay in mice.

    PubMed

    Shaw, Jordan; deCatanzaro, Denys

    2009-07-01

    Parabens, a class of preservatives routinely added to cosmetics, pharmaceuticals, and foods, have estrogenic properties. Given that intrauterine implantation of fertilized ova in inseminated females can be disrupted by minute levels of exogenous estrogens, we assessed the impact of parabens upon early gestation. In Experiment 1, butylparaben was administered subcutaneously in several doses ranging from 0.05 to 35 mg/animal/day to inseminated CF-1 mice on days 1-4 of pregnancy. Butylparaben exposure did not affect litter size, the number of pups born, postnatal day 3 litter weights, or the number of pups surviving to postnatal day 5. In contrast, administration of 500 ng/animal/day 17beta-estradiol terminated all pregnancies. In Experiment 2, propylparaben was subcutaneously administered to inseminated CF-1 mice on gestational days 1-4. Dams were sacrificed on gestation day 6 and the number of implantation sites was counted. Propylparaben had no impact on the number of implantation sites observed. Since Experiments 1 and 2 did not yield the anticipated results, an uterotrophic assay was conducted in Experiment 3 to re-evaluate the in vivo estrogenicity of parabens. Ovariectomized CF-1 and CD-1 mice were administered butylparaben in doses ranging from 0.735 to 35 mg per animal for three consecutive days. Mice were sacrificed on the fourth day, and uterine mass was recorded. There was no effect of butylparaben on uterine wet or dry mass at any dose in either strain. In contrast, administration of 17beta-estradiol consistently increased uterine mass in both strains. These data indicate that the estrogen-sensitive period of implantation is not vulnerable to paraben exposure, and that the in vivo estrogenicity of parabens may not be as potent as previously reported.

  12. Estrogen Effects on Wound Healing

    PubMed Central

    Horng, Huann-Cheng; Chang, Wen-Hsun; Yeh, Chang-Ching; Huang, Ben-Shian; Chang, Chia-Pei; Chen, Yi-Jen; Tsui, Kuan-Hao

    2017-01-01

    Wound healing is a physiological process, involving three successive and overlapping phases—hemostasis/inflammation, proliferation, and remodeling—to maintain the integrity of skin after trauma, either by accident or by procedure. Any disruption or unbalanced distribution of these processes might result in abnormal wound healing. Many molecular and clinical data support the effects of estrogen on normal skin homeostasis and wound healing. Estrogen deficiency, for example in postmenopausal women, is detrimental to wound healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment may reverse these effects. Understanding the role of estrogen on skin might provide further opportunities to develop estrogen-related therapy for assistance in wound healing. PMID:29099810

  13. Endogenous and Exogenous Estrogen, Cognitive Function and Dementia in Postmenopausal Women: Evidence from Epidemiologic Studies and Clinical Trials

    PubMed Central

    Laughlin, Gail A.

    2009-01-01

    There are more than 200 published scientific papers showing that estrogen has favorable effects on brain tissue and physiology in cell culture and animal models including nonhuman primates. The biological plausibility for a neuroprotective estrogen effect is overwhelming. However, most studies of endogenous estrogen and cognitive decline or dementia fail to show protection, and some suggest harm. Failure to find any consistent association might reflect the limitations of a single time of estrogen assay or poor assay sensitivity. More than half of the observational studies of hormone therapy suggest benefit. Nearly all long term clinical trials fail to show benefit and the longer trials tend to show harm. Failure to adequately adjust for self-selection of healthier and wealthier women and publication bias could account for some, or all, of the protective effect attributed to estrogen in observational studies. Overall, the evidence does not convincingly support the prescription of early or late postmenopausal estrogen therapy to preserve cognitive function or prevent dementia. PMID:19401958

  14. Feeding a higher plane of nutrition and providing exogenous estrogen increases mammary gland development in Holstein heifer calves.

    PubMed

    Geiger, A J; Parsons, C L M; Akers, R M

    2016-09-01

    Feeding heifers a higher plane of nutrition postweaning but before puberty can negatively affect mammary gland development and future milk yield. However, enhanced nutrition preweaning may promote development and future production. Our objectives were to determine the effects of enhanced feeding preweaning and exogenous estrogen immediately postweaning on mammary gland development and the composition of the mammary parenchyma (PAR) and mammary fat pad (MFP). Thirty-six Holstein heifer calves (<1 wk old) were reared on 1 of 2 dietary treatments for 8 wk: (1) a restricted milk replacer fed at 0.45 kg/d (R; 20% crude protein, 20% fat), or (2) an enhanced milk replacer fed at 1.13 kg/d (EH; 28% crude protein, 25% fat). Upon weaning, calves from each diet (n=6) were given either a placebo or estrogen implant for 2 wk, creating 4 treatments: R, R + estrogen (R-E2), EH, and EH + estrogen (EH-E2). Calves were housed individually with ad libitum access to water. Starter feeding began at wk 5 and was balanced between treatments. Udders were evaluated by palpation and physical measurements weekly. Subsets of calves were killed at weaning (n=6 per diet) and at the conclusion of the trial (n=6 per treatment). Udders were removed, dissected, and weighed. At wk 8, EH calves had longer front and rear teats. Providing estrogen to EH calves increased the length of rear teats during wk 9 and 10. Enhanced-fed calves had 5.2-fold more trimmed mammary gland mass than R calves. Providing estrogen to EH calves further increased mammary gland weight. Masses of PAR and MFP were markedly greater for EH calves than for R calves (e.g., 7.3-fold greater PAR tissue). Estrogen increased the mass of both PAR and MFP in EH calves. Feeding a higher plane of nutrition increased total protein, DNA, and fat in the MFP and total protein and DNA in the PAR. Dual-energy x-ray absorptiometry estimates of mammary fat mass were highly correlated with biochemical analyses of fat content. From histological

  15. Bioavailable Insulin-Like Growth Factor-I Inversely Related to Weight Gain in Postmenopausal Women regardless of Exogenous Estrogen

    PubMed Central

    Jung, Su Yon; Hursting, Stephen D.; Guindani, Michele; Vitolins, Mara Z.; Paskett, Electra; Chang, Shine

    2014-01-01

    Background Weight gain, insulin-like growth factor-I (IGF-I) levels, and excess exogenous steroid hormone use are putative cancer risk factors, yet their interconnected pathways have not been fully characterized. This cross-sectional study investigated the relationship between plasma IGF-I levels and weight gain according to body mass index (BMI), leptin levels, and exogenous estrogen use among postmenopausal women. Methods This study included 794 postmenopausal women who enrolled in an ancillary study of the Women's Health Initiative Observational Study between February 1995 and July 1998. The relationship between IGF-I levels and weight gain was analyzed using ordinal logistic regression. We used the molar ratio of IGF-I to IGF binding protein-3 (IGF-I/IGFBP-3) or circulating IGF-I levels adjusting for IGFBP-3 as a proxy of bioavailable IGF-I. The plasma concentrations were expressed as quartiles. Results Among the obese group, women in the third quartile (Q3) of IGF-I and highest quartile of IGF-I/IGFBP-3 were less likely to gain weight (>3% from baseline) than were women in the first quartiles (Q1). Among the normal weight group, women in Q2 and Q3 of IGF-I/IGFBP-3 were 70% less likely than those in Q1 to gain weight. Among current estrogen users, Q3 of IGF-I/IGFBP-3 had 0.5 times the odds of gaining weight than Q1. Conclusions Bioavailable IGF-I levels were inversely related to weight gain overall. Impact Although weight gain was not consistent with increases in IGF-I levels among postmenopausal women in this report, avoidance of weight gain as a strategy to reduce cancer risk may be recommend. PMID:24363252

  16. Reproductive failure of the red shiner (Cyprinella lutrensis) after exposure to an exogenous estrogen

    USGS Publications Warehouse

    McGree, M.M.; Winkelman, D.L.; Vieira, N.K.M.; Vajda, A.M.

    2010-01-01

    Endocrine disrupting chemicals (EDCs) have been detected in surface waters worldwide and can lead to developmental and reproductive disruption in exposed fishes. In the US Great Plains, EDCs are impacting streams and rivers and may be causing adverse reproductive effects. To examine how estrogenic EDCs might affect reproductive success of plains fishes, we experimentally exposed male red shiners (Cyprinella lutrensis) to exogenous 17b-estradiol. We characterized the effects of estradiol on male gonadal histology and secondary sexual characteristics, determined whether exposure reduced reproductive success, and examined the effects of depuration. Adults were exposed to a mean concentration of 70 ng L-1 estradiol, a solvent control, or a water control for at least 83 days. Male exposure to estradiol resulted in elevated plasma vitellogenin concentrations, changes in spermatogenesis, reduced mating coloration and tubercles, altered mating behaviors, and reduced reproductive success with no viable progeny produced. Reproductive endpoints improved upon depuration (28 days). Exposure to estradiol had significant adverse effects on red shiners, indicating that wild populations may face developmental and reproductive difficulties if they are chronically exposed to estradiol.

  17. Exogenous estrogen protects mice from the consequences of obesity and alcohol.

    PubMed

    Holcomb, Valerie B; Hong, Jina; Núñez, Nomelí P

    2012-06-01

    Breast cancer is the second leading cause of cancer death among American women. Risk factors for breast cancer include obesity, alcohol consumption, and estrogen therapy. In the present studies, we determine the simultaneous effects of these three risk factors on wingless int (Wnt)-1 mammary tumor growth. Ovariectomized female mice were fed diets to induce different body weights (calorie restricted, low fat, high fat), provided water or 20% alcohol, implanted with placebo or estrogen pellets and injected with Wnt-1 mouse mammary cancer cells. Our results show that obesity promoted the growth of Wnt-1 tumors and induced fatty liver. Tumors tended to be larger in alcohol-consuming mice and alcohol exacerbated fatty liver in obese mice. Estrogen treatment promoted weight loss in obese mice, which was associated with the suppression of tumor growth and fatty liver. In summary, we show that estrogen protects against obesity, which is associated with the inhibition of fatty liver and tumor growth.

  18. Estrogen-induced myelotoxicity in dogs: A review

    PubMed Central

    Sontas, Hasan B.; Dokuzeylu, Banu; Turna, Ozge; Ekici, Hayri

    2009-01-01

    Exogenous estrogens used for therapeutic purposes or endogenous estrogen sources such as functional Sertoli cell or ovarian granulosa cell tumors may cause bone marrow toxicity in dogs. The condition is characterized by hematologic abnormalities including thrombocytopenia, anemia, and leukocytosis or leukopenia. Despite intensive therapy with blood or platelet-rich transfusions, broad-spectrum antibiotics, steroids, and bone marrow stimulants, prognosis is unfavorable. Due to the the risk of stimulating the development of uterine diseases and the potential for inducing aplastic anemia, estrogen use in dogs is best avoided where possible. This paper describes the causes of estrogen-induced myelotoxicity, the clinical presentation of the patients, the diagnosis, and the treatment options in the dog. PMID:20046604

  19. Estrogen Metabolites Are Not Associated With Colorectal Cancer Risk In Postmenopausal Women

    PubMed Central

    Falk, Roni T.; Dallal, Cher M.; Lacey, James V.; Bauer, Douglas C.; Buist, Diana SM; Cauley, Jane A.; Hue, Trisha F.; LaCroix, Andrea; Tice, Jeffrey A.; Pfeiffer, Ruth M.; Xu, Xia; Veenstra, Timothy D.; Brinton, Louise A.

    2015-01-01

    Background A potential protective role for estrogen in colon carcinogenesis has been suggested based on exogenous hormone use, but it is unclear from previous studies whether endogenous estrogens are related to colorectal cancer (CRC) risk. These few prior studies focused on parent estrogens; none evaluated effects of estrogen metabolism in postmenopausal women. Methods We followed 15,595 women (ages 55–80) enrolled in B~FIT (Breast and Bone Follow-up to the Fracture Intervention Trial (FIT)) who donated blood between 1992 and 1993 for cancer through December 2004. A panel of 15 estrogen metabolites (EM), including estradiol and estrone, were measured in serum from 187 CRC cases and a subcohort of 501 women not using exogenous hormones at blood draw. We examined EM individually, grouped by pathway (hydroxylation at the C-2, C-4, or C-16 position), and by ratios of the groupings using Cox proportional hazards regression models. Results No significant associations were seen for estrone (HRQ4 v Q1=1.15, 95% CI=0.69–1.93, ptrend=0.54), estradiol (HRQ4 v Q1= 0.98, 95% CI=0.58–1.64, ptrend>0.99) or total EM (the sum of all EM; HRQ4 v Q1=1.35. 95% CI=0.81–2.24, ptrend=0.33). Most metabolites in the 2-, 4- or 16-pathway were unrelated to risk, although a borderline trend in risk was associated with high levels of 17-epiestriol. Conclusion Circulating estrogens and their metabolites were generally unrelated to CRC risk in postmenopausal women. Impact Additional studies are needed to understand how exogenous estrogen may prevent CRC PMID:26104910

  20. Decreased serum estrogen improves fat graft retention by enhancing early macrophage infiltration and inducing adipocyte hypertrophy.

    PubMed

    Mok, Hsiaopei; Feng, Jingwei; Hu, Wansheng; Wang, Jing; Cai, Junrong; Lu, Feng

    2018-06-18

    Fat grafting is a commonly used procedure; however, the mechanisms that regulate graft outcomes are not clear. Estrogen has been associated with vascularization, inflammation and fat metabolism, yet its role in fat grafting is unclear. Mice were implanted with 17β-estradiol pellets (high estrogen, HE), underwent ovariectomy (low estrogen level, OVX) or sham surgery (normal estrogen level, CON). 45 days later, inguinal fat of mice was autografted subcutaneously. At 1, 2, 4, and 12 weeks post-transplantation, grafts were dissected, weighed, and assessed for histology, angiogenesis and inflammation level. Serum estrogen level correlated to estrogen manipulation. 12 weeks after autografting, the retention rate was significantly higher in the OVX (79% ± 30%) than in the HE (16% ± 8%) and CON (35% ± 13%) groups. OVX-grafts had the least necrosis and most hypertrophic fat. OVX recruited the most pro-inflammatory macrophages and demonstrated a faster dead tissue removal process, however a higher fibrogenic tendency was found in this group. HE grafts had the most Sca1+ local stem cells and CD31  +  capillary content; however, with a low level of acute inflammation and insufficient adipokine PPAR-γ expression, their retention rate was impaired. Elevated serum estrogen increased stem cell density and early vascularization; however, by inhibiting the early inflammation, it resulted in delayed necrotic tissue removal and finally led to impaired adipose restoration. A low estrogen level induced favorable inflammation status and adipocyte hypertrophy to improve fat graft retention, but a continuing decreased estrogen level led to fat graft fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Do factors related to endogenous and exogenous estrogens modify the relationship between obesity and risk of colorectal adenomas in women?

    PubMed

    Wolf, Lesley A; Terry, Paul D; Potter, John D; Bostick, Roberd M

    2007-04-01

    Obesity has consistently been associated with increased colorectal cancer risk in men, but not in women. In the absence of postmenopausal hormone use (PMH), adipose-derived estrogen is the primary determinant of circulating estrogen levels in postmenopausal women, perhaps ameliorating the mitogenic effects of obesity in this group. Using data from a case-control study in the United States, we examined associations among obesity, potential modifying effects of factors related to endogenous and exogenous estrogen levels, and risk of colorectal adenoma. Cases (n = 219) were women of ages 30 to 74 years with colonoscopy proven, incident, sporadic, pathology-confirmed, adenomatous polyps of the colon and rectum. Two control groups were recruited: colonoscopy-confirmed polyp-free women (n = 438) and age- and zip code frequency-matched women randomly selected from the community (n = 247). Multivariate odds ratios and 95% confidence intervals (95% CI) for obese [body mass index (BMI) >or=30.0; compared with nonobese, BMI <25.0] premenopausal women were 2.09 (95% CI, 0.81-5.41) versus colonoscopy controls, and 5.18 (95% CI, 1.40-19.32) versus population controls. For PMH users, the corresponding odds ratios were 0.29 (95% CI, 0.12-0.70) versus colonoscopy controls and 0.64 (95% CI, 0.23-1.83) versus population controls. There was no significant association of BMI with adenoma risk for PMH nonusers. Findings for waist-to-hip ratio were similar to those for BMI. These data support the hypothesis that risk for colorectal adenoma may be increased with obesity among premenopausal women but decreased among postmenopausal women, especially if they also take PMH.

  2. Impact of smoking on estrogenic efficacy.

    PubMed

    Ruan, X; Mueck, A O

    2015-02-01

    Depending on the type, duration and intensity of cigarette smoking, the efficacy of endogenous and exogenous estrogen can be reduced or completely cancelled. Not only does smoking diminish the beneficial effects of estrogen on hot flushes and urogenital symptoms and its positive effects on lipid metabolism, but smoking also can reduce estrogen's ability to prevent osteoporosis and perhaps also cardiovascular diseases. This is mainly caused by dose-dependent elevated hepatic clearance, partially in conjunction with lower estrogen levels, and has been demonstrated so far only with oral estrogen applications. Compensation for the failure of therapeutic action should not be made by increasing the dose in smokers since this might result in the production of potentially mutagenic estrogen metabolites associated with a higher risk of breast cancer. Since the favorable effects of estrogens seem to be not lost in smokers when estrogens are applied transdermally, this route should be preferred in smokers. The most important conclusion from the data presented is that the effects of smoking are very complex and dependent on a multiplicity of factors, so that different types of clinically relevant negative effects must be expected. Women who continue to smoke despite all warnings should be informed that smoking, in addition to all its other negative effects, can also jeopardize the success of hormone replacement therapy.

  3. Estrogen promotes cutaneous wound healing via estrogen receptor β independent of its antiinflammatory activities

    PubMed Central

    Campbell, Laura; Emmerson, Elaine; Davies, Faith; Gilliver, Stephen C.; Krust, Andre; Chambon, Pierre; Ashcroft, Gillian S.

    2010-01-01

    Post-menopausal women have an increased risk of developing a number of degenerative pathological conditions, linked by the common theme of excessive inflammation. Systemic estrogen replacement (in the form of hormone replacement therapy) is able to accelerate healing of acute cutaneous wounds in elderly females, linked to its potent antiinflammatory activity. However, in contrast to many other age-associated pathologies, the detailed mechanisms through which estrogen modulates skin repair, particularly the cell type–specific role of the two estrogen receptors, ERα and ERβ, has yet to be determined. Here, we use pharmacological activation and genetic deletion to investigate the role of both ERα and ERβ in cutaneous tissue repair. Unexpectedly, we report that exogenous estrogen replacement to ovariectomised mice in the absence of ERβ actually delayed wound healing. Moreover, healing in epidermal-specific ERβ null mice (K14-cre/ERβL2/L2) largely resembled that in global ERβ null mice. Thus, the beneficial effects of estrogen on skin wound healing are mediated by epidermal ERβ, in marked contrast to most other tissues in the body where ERα is predominant. Surprisingly, agonists to both ERα and ERβ are potently antiinflammatory during skin repair, indicating clear uncoupling of inflammation and overall efficiency of repair. Thus, estrogen-mediated antiinflammatory activity is not the principal factor in accelerated wound healing. PMID:20733032

  4. Ritonavir binds to and downregulates estrogen receptors: molecular mechanism of promoting early atherosclerosis.

    PubMed

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Estrogenic Environmental Chemicals and Drugs: Mechanisms for Effects on the Developing Male Urogenital System

    PubMed Central

    Taylor, Julia A.; Richter, Catherine A.; Ruhlen, Rachel L.; vom Saal, Frederick S.

    2011-01-01

    Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures. PMID:21827855

  6. Long-term effects of early life exposure to environmental estrogens on ovarian function: Role of epigenetics

    PubMed Central

    Cruz, Gonzalo; Foster, Warren; Paredes, Alfonso; Yi, Kun Don; Uzumcu, Mehmet

    2014-01-01

    Estrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is thought that developmental exposure to environmental estrogens can disrupt neural and reproductive tract development potentially resulting in long-term alterations in neurobehavior and reproductive function. Many chemicals have been shown to have estrogenic activity whereas others affect estrogen production and turnover resulting in disruption of estrogen signaling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on estrogen sensitive target tissues. Hence, alternative mechanisms are thought to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including estrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying disruption of ovarian follicular development. In addition, we discuss how exposure to environmental estrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology. PMID:25040227

  7. Distinct Effects of Estrogen on Mouse Maternal Behavior: The Contribution of Estrogen Synthesis in the Brain

    PubMed Central

    Murakami, Gen

    2016-01-01

    to exogenous estrogen treatment, and thereby results in different effects on maternal behavior. PMID:27007402

  8. Response of adult mouse uterus to early disruption of estrogen receptor-alpha signaling is influenced by Krüppel-like factor 9

    USDA-ARS?s Scientific Manuscript database

    Inappropriate early exposure of the hormone-responsive uterus to estrogenic compounds is associated with increased risk for adult reproductive diseases including endometrial cancers. While the dysregulation of estrogen receptor-alpha (ESR1) signaling is a well-acknowledged early event in tumor initi...

  9. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review.

    PubMed

    Jameera Begam, A; Jubie, S; Nanjan, M J

    2017-04-01

    Estrogens display intriguing tissue selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer. There are also strong evidences to show that both endogenous and exogenous estrogens are involved in the pathogenesis of breast cancer. Tamoxifen has been the only drug of choice for more than 30years to treat patients with estrogen related (ER) positive breast tumors. There is a need therefore, for identifying newer, potential and novel candidates for breast cancer. Keeping this in view, the present review focuses on selective estrogen receptor modulators and estrogen antagonists such as sulfatase and aromatase inhibitors involved in breast cancer therapy. A succinct and critical overview of the structure of estrogen receptors, their signaling and involvement in breast carcinogenesis are herein described. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Exogenous and endogenous hormones and breast cancer

    PubMed Central

    ChenMD, Wendy Y.

    2008-01-01

    Exposure to higher levels of both exogenous and endogenous hormone is associated with breast cancer risk. Because of the association between breast cancer and HRT, only the minimal duration of HRT use is recommended for symptom control, and it is not recommended for chronic disease management. Current research issues include the role of progestins, other types of HRT, duration of unopposed estrogen use, and characteristics of cancers that develop on HRT. Circulating sex steroid levels are associated with breast cancer risk, but multiple issues need to be addressed before they are used routinely in clinical practice. Current research issues include measurement of levels for routine clinical practice, integration with standard breast cancer risk models and genetic polymorphism data, and applicability to estrogen-receptor-negative cancers. PMID:18971119

  11. Early-life estrogen exposure and uterine pathogenesis: ?A model for gene-environment interactions

    EPA Science Inventory

    Aberrant cellular differentiation early in life can contribute to increased cancer risk later in life. In a classic model of this effect, female mice exposed on postnatal day (PND) 1-5 to the synthetic estrogen diethylstilbestrol (DES) have a high incidence of uterine carcinoma. ...

  12. The role of estrogen in cutaneous ageing and repair.

    PubMed

    Wilkinson, Holly N; Hardman, Matthew J

    2017-09-01

    Combined advances in modern medical practice and increased human longevity are driving an ever-expanding elderly population. Females are particularly at risk of age-associated pathology, spending more of their lives in a post-menopausal state. Menopause, denoted by a rapid decline in serum sex steroid levels, accelerates biological ageing across the body's tissues. Post-menopause physiological changes are particularly noticeable in the skin, which loses structural architecture and becomes prone to damage. The sex steroid most widely discussed as an intrinsic contributor to skin ageing and pathological healing is 17β-estradiol (or estrogen), although many others are involved. Estrogen deficiency is detrimental to many wound-healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment widely reverses these effects. Over recent decades, many of the molecular and cellular correlates to estrogen's beneficial effect on normal skin homeostasis and wound healing have been reported. However, disparities still exist, particularly in the context of mechanistic studies investigating estrogen receptor signalling and its potential cellular effects. New molecular techniques, coupled with increased understanding of estrogen in skin biology, will provide further opportunities to develop estrogen receptor-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. GPER Mediates Non-Genomic Effects of Estrogen.

    PubMed

    Pupo, Marco; Maggiolini, Marcello; Musti, Anna Maria

    2016-01-01

    Estrogens are important modulators of a broad spectrum of physiological functions in humans. However, despite their beneficial actions, a number of lines of evidence correlate the sustained exposure to exogenous estrogen with increased risk of the onset of various cancers. Mainly these steroid hormones induce their effects by binding and activating estrogen receptors (ERα and ERβ). These receptors belong to the family of ligand-regulated transcription factors, and upon activation they regulate the expression of different target genes by binding directly to specific DNA sequences. On the other hand, in recent years it has become clear that the G protein-coupled estrogen receptor 30 (GPR30/GPER) is able to mediate non-genomic action of estrogens in different cell contexts. In particular, GPER has been shown to specifically bind estrogens, and in turn to functionally cross-react with diverse cell signaling systems such as the epidermal growth factor receptor (EGFR) pathway, the Notch signaling pathway and the mitogen-activated protein kinases (MAPK) pathway. In this chapter we will present some of the different experimental techniques currently used to demonstrate the functional role of GPER in mediating non-genomic actions of estrogens, such as the dual luciferase assay, assessment of the involvement of GPER in the stimulation of cell migration in breast cancer cell lines and in cancer-associated fibroblasts, and chromatin immunoprecipitation assay. Overall, the experimental procedures described herein represent key instruments for assessing the biological role of GPER in mediating non-genomic signals of estrogen.

  14. EFFECTS OF EXTROGENOUS ESTROGEN ON MATE SELECTION OF HOUSE FINCHES

    EPA Science Inventory

    Effects of exogenous estrogen on mate selection of house finches. Clark, J., Fairbrother, A*. Parametrix, Inc., Corvallis, OR; Brewer, L., EBA, Inc., Sisters, OR; Bennett, R.S., USEPA, Mid-Continent Ecology Division, Duluth, MN.

    Concern about the potential for endocrine...

  15. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Jin; Wang, Ying; Su, Ke

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist formore » E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.« less

  16. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it?

    PubMed Central

    Koebele, Stephanie V.; Bimonte-Nelson, Heather A.

    2015-01-01

    Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A “brain profile,” or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static – it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a “Goldilocks” phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to

  17. Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors.

    PubMed

    Albini, A; Rosano, C; Angelini, G; Amaro, A; Esposito, A I; Maramotti, S; Noonan, D M; Pfeffer, U

    2014-01-01

    Observations on the role of ovarian hormones in breast cancer growth, as well as interest in contraception, stimulated research into the biology of estrogens. The identification of the classical receptors ERα and ERβ and the transmembrane receptor GPER and the resolution of the structure of the ligand bound to its receptor established the principal molecular mechanisms of estrogen action. The presence of estrogen-like compounds in many plants used in traditional medicine or ingested as food ingredients, phytoestrogens, as well as the estrogenic activities of many industrial pollutants and pesticides, xenoestrogens, have prompted investigations into their role in human health. Phyto- and xenoestrogens bind to the estrogen receptors with a lower affinity than the endogenous estrogens and can compete or substitute the hormone. Xenoestrogens, which accumulate in the body throughout life, are believed to increase breast cancer risk, especially in cases of prenatal and prepuberal exposure whereas the role of phytoestrogens is still a matter of debate. At present, the application of phytoestrogens appears to be limited to the treatment of post-menopausal symptoms in women where the production of endogenous estrogens has ceased. In this review we discuss chemistry, structure and classification, estrogen signaling and the consequences of the interactions of estrogens, phytoestrogens and xenoestrogens with their receptors, the complex interactions of endogenous and exogenous ligands, the evaluation of the health risks related to xenoestrogens, and the perspectives toward the synthesis of potent third generation selective estrogen receptor modulators (SERMs).

  18. Exogenous Hormonal Regulation in Breast Cancer Cells by Phytoestrogens and Endocrine Disruptors

    PubMed Central

    Albini, A.; Rosano, C.; Angelini, G.; Amaro, A.; Esposito, A.I.; Maramotti, S.; Noonan, D.M.; Pfeffer, U.

    2014-01-01

    Observations on the role of ovarian hormones in breast cancer growth, as well as interest in contraception, stimulated research into the biology of estrogens. The identification of the classical receptors ERα and ERβ and the transmembrane receptor GPER and the resolution of the structure of the ligand bound to its receptor established the principal molecular mechanisms of estrogen action. The presence of estrogen-like compounds in many plants used in traditional medicine or ingested as food ingredients, phytoestrogens, as well as the estrogenic activities of many industrial pollutants and pesticides, xenoestrogens, have prompted investigations into their role in human health. Phyto- and xenoestrogens bind to the estrogen receptors with a lower affinity than the endogenous estrogens and can compete or substitute the hormone. Xenoestrogens, which accumulate in the body throughout life, are believed to increase breast cancer risk, especially in cases of prenatal and prepuberal exposure whereas the role of phytoestrogens is still a matter of debate. At present, the application of phytoestrogens appears to be limited to the treatment of post-menopausal symptoms in women where the production of endogenous estrogens has ceased. In this review we discuss chemistry, structure and classification, estrogen signaling and the consequences of the interactions of estrogens, phytoestrogens and xenoestrogens with their receptors, the complex interactions of endogenous and exogenous ligands, the evaluation of the health risks related to xenoestrogens, and the perspectives toward the synthesis of potent third generation selective estrogen receptor modulators (SERMs). PMID:24304271

  19. Estrogen treatment up-regulates female genes but does not suppress all early testicular markers during rainbow trout male-to-female gonadal transdifferentiation.

    PubMed

    Vizziano-Cantonnet, Denise; Baron, Daniel; Mahè, Sophie; Cauty, Chantal; Fostier, Alexis; Guiguen, Yann

    2008-11-01

    In non-mammalian vertebrates, estrogens are key players in ovarian differentiation, but the mechanisms by which they act remain poorly understood. The present study on rainbow trout was designed to investigate whether estrogens trigger the female pathway by activating a group of early female genes (i.e. cyp19a1, foxl2a, foxl2b, fst, bmp4, and fshb) and by repressing early testicular markers (i.e. dmrt1, nr0b1, sox9a1 and sox9a2). Feminization was induced in genetically all-male populations using 17alpha-ethynylestradiol (EE2, 20 mg/kg of food during 2 months). The expression profiles of 100 candidate genes were obtained by real-time RT-PCR and 45 expression profiles displayed a significant differential expression between control populations (males and females) and EE2-treated populations. These expression profiles were grouped in five temporally correlated expression clusters. The estrogen treatment induced most of the early ovarian differentiation genes (foxl2a, foxl2b, fst, bmp4, and fshb) and in particular foxl2a, which was strongly and quickly up-regulated. Simultaneously, Leydig cell genes, involved in androgen synthesis, as well as some Sertoli cell markers (amh, sox9a2) were strongly repressed. However, in contrast to our initial hypothesis, some genes considered as essential for mammalian and fish testis differentiation were not suppressed during the early process of estrogen-induced feminization (dmrt1, nr0b1, sox9a1 and pax2a) and some were even strongly up-regulated (nr0b1, sox9a1and pax2a). In conclusion, estrogens trigger male-to-female transdifferentiation by up-regulating most ovarian specific genes and this up-regulation appears to be crucial for an effective feminization, but estrogens do not concomitantly down-regulate all the testicular differentiation markers.

  20. Triple-negative breast cancer risk in women is defined by the defect of estrogen signaling: preventive and therapeutic implications

    PubMed Central

    Suba, Zsuzsanna

    2014-01-01

    Epidemiologic studies strongly support that triple-negative breast cancers (TNBCs) may be distinct entities as compared with estrogen receptor (ER)+ tumors, suggesting that the etiologic factors, clinical characteristics, and therapeutic possibilities may vary by molecular subtypes. Many investigations propose that reproductive factors and exogenous hormone use differently or even quite inversely affect the risk of TNBCs and ER+ cancers. Controversies concerning the exact role of even the same risk factor in TNBC development justify that the biological mechanisms behind the initiation of both TNBCs and non-TNBCs are completely obscure. To arrive at a comprehensive understanding of the etiology of different breast cancer subtypes, we should also reconsider our traditional concepts and beliefs regarding cancer risk factors. Malignancies are multicausal, but the disturbance of proper estrogen signaling seems to be a crucial risk factor for the development of mammary cancers. The grade of defect in metabolic and hormonal equilibrium is directly associated with TNBC risk for women during their whole life. Inverse impact of menopausal status or parity on the development of ER+ and ER− breast cancers may not be possible; these controversial results derive from the misinterpretation of percentage-based statistical evaluations. Exogenous or parity-associated excessive estrogen supply is suppressive against breast cancer, though the lower the ER expression of tumors, the weaker the anticancer capacity. In women, the most important preventive strategy against breast cancers – included TNBCs – is the strict control and maintenance of hormonal equilibrium from early adolescence through the whole lifetime, particularly during the periods of great hormonal changes. PMID:24482576

  1. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase.

    PubMed

    Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H

    2001-02-01

    Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.

  2. The human estrogen receptor can regulate exogenous but not endogenous vitellogenin gene promoters in a Xenopus cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiler-Tuyns, A.; Merillat, A.M.; Haefliger, D.N.

    Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5{prime} flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogeninmore » minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells.« less

  3. Cellular and molecular effects of developmental exposure to diethylstilbestrol: implications for other environmental estrogens.

    PubMed Central

    Newbold, R

    1995-01-01

    Concerns have been raised regarding the role of environmental and dietary estrogens as possible contributors to an increased incidence of various abnormalities in estrogen-target tissues of both sexes. These abnormalities include breast cancer, endometriosis, fibroids, and uterine adenocarcinoma in females, as well as alterations in sex differentiation, decreased sperm concentrations, benign prostatic hyperplasia, prostatic cancer, testicular cancer, and reproductive problems in males. Whether these concerns are valid remains to be determined; however, studies with the potent synthetic estrogen diethylstilbestrol (DES) suggest that exogenous estrogen exposure during critical stages of development can result in permanent cellular and molecular alterations in the exposed organism. These alterations manifest themselves in the female and male as structural, functional, or long-term pathological changes including neoplasia. Although DES has potent estrogenic activity, it may be used as a model compound to study the effects of weaker environmental estrogens, many of which may fit into the category of endocrine disruptors. PMID:8593881

  4. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control.

    PubMed

    Catanese, Mary C; Vandenberg, Laura N

    2017-11-07

    Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Estrogen and Cytochrome P450 1B1 Contribute to Both Early- and Late-Stage Head and Neck Carcinogenesis

    PubMed Central

    Shatalova, Ekaterina G.; Klein-Szanto, Andres J.P.; Devarajan, Karthik; Cukierman, Edna; Clapper, Margie L.

    2010-01-01

    Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most common type of cancer in the U.S. The goal of this study was to evaluate the contribution of estrogens to the development of HNSCCs. Various cell lines derived from early- and late-stage head and neck lesions were used to: characterize the expression of estrogen synthesis and metabolism genes, including cytochrome P450 (CYP)1B1, examine the effect of estrogen on gene expression and evaluate the role of CYP1B1 and/or estrogen in cell motility, proliferation and apoptosis. Estrogen metabolism genes (CYP1B1, CYP1A1, catechol-o-methyltransferase, UDP-glucuronosyltransferase 1A1, and glutathione-S-transferase P1) and estrogen receptor (ER)β were expressed in cell lines derived from both premalignant (MSK-Leuk1) and malignant (HNSCC) lesions. Exposure to estrogen induced CYP1B1 2.3 to 3.6 fold relative to vehicle-treated controls (P=0.0004) in MSK-Leuk1 cells but not in HNSCC cells. CYP1B1 knockdown by shRNA reduced the migration and proliferation of MSK-Leuk1 cells by 57% and 45%, respectively. Exposure of MSK-Leuk1 cells to estrogen inhibited apoptosis by 26%, while supplementation with the antiestrogen fulvestrant restored estrogen-dependent apoptosis. Representation of the estrogen pathway in human head and neck tissues from 128 patients was examined using tissue microarrays. The majority of the samples exhibited immunohistochemical staining for ERβ (91.9%), CYP1B1 (99.4%) and 17β-estradiol (88.4%). CYP1B1 and ERβ were elevated in HNSCCs relative to normal epithelium (P=0.024 and 0.008, respectively). These data provide novel insight into the mechanisms underlying head and neck carcinogenesis and facilitate the identification new targets for chemopreventive intervention. PMID:21205741

  6. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    PubMed Central

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  7. Lifetime exposure to estrogens and Parkinson's disease in California teachers.

    PubMed

    Gatto, N M; Deapen, D; Stoyanoff, S; Pinder, R; Narayan, S; Bordelon, Y; Ritz, B

    2014-11-01

    Parkinson's disease (PD) is consistently observed to occur less frequently in women than men, prompting investigation into whether estrogen protects against neurodegeneration of dopaminergic neurons. We used baseline data in the California Teachers Study, a prospective cohort of women, to investigate whether reproductive factors indicating higher long-term estrogen levels are associated with PD using a nested case-control approach. We identified 228 PD cases and 3349 unaffected controls frequency matched by age and race. Women who reported using combined estrogen/progesterone therapy or progesterone only formulations had a 57% increase in PD risk (OR = 1.57, 95% CI = 1.06, 2.34) compared to never having used HT. Compared to women with menopause at 50-52 years, menopause at younger (<35-46 years: OR = 0.59, 95% CI = 0.37, 0.94) and older ages (≥53 years: OR = 0.54, 95% CI = 0.36, 0.83) had lower PD risk. A derived composite estrogen summary score for women's exposure to both endogenous and exogenous estrogens throughout life indicated that women with presumed higher cumulative lifetime levels of estrogen (a score of 3-5) had a significantly reduced PD risk [(OR = 0.57, 95% CI = 0.35, 0.91) relative to those with lower lifetime estrogen exposure or a composite estrogen summary score of 0-1]. These results provide some support for the hypothesis that lifelong high estrogen is protective in PD, suggesting that the level and persistence of exposure over the long term may be important in PD risk reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Androgens and estrogens in benign prostatic hyperplasia: past, present and future

    PubMed Central

    Nicholson, Tristan M.; Ricke, William A.

    2011-01-01

    Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology. While the precise molecular etiology remains unclear, sex steroids have been implicated in the development and maintenance of BPH. Sufficient data exists linking androgens and androgen receptor pathways to BPH and use of androgen reducing compounds, such as 5α-reductase inhibitors which block the conversion of testosterone into dihydrotestosterone, are a component of the standard of care for men with LUTS attributed to an enlarged prostate. However, BPH is a multifactorial disease and not all men respond well to currently available treatments, suggesting factors other than androgens are involved. Testosterone, the primary circulating androgen in men, can also be metabolized via CYP19/aromatase into the potent estrogen, estradiol-17β. The prostate is an estrogen target tissue and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of endogenous and exogenous estrogens in directly affecting prostate growth and differentiation in the context of BPH is an understudied area. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation signifying potential roles in BPH. Recent research has demonstrated that estrogen receptor signaling pathways may be important in the development and maintenance of BPH and LUTS; however, new models are needed to genetically dissect estrogen regulated molecular mechanisms involved in BPH. More work is needed to identify estrogens and associated signaling pathways in BPH in order to target BPH with dietary and therapeutic SERMs. PMID:21620560

  9. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  11. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish

    PubMed Central

    Romano, Shannon N.; Edwards, Hailey E.; Ryan, Kevin J.

    2017-01-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. PMID:29065151

  12. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish.

    PubMed

    Romano, Shannon N; Edwards, Hailey E; Souder, Jaclyn Paige; Ryan, Kevin J; Cui, Xiangqin; Gorelick, Daniel A

    2017-10-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels.

  13. Estrogenic Compounds, Estrogen Receptors and Vascular Cell Signaling in the Aging Blood Vessels

    PubMed Central

    Smiley, Dia A.; Khalil, Raouf A.

    2010-01-01

    The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERα, ERβ and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of

  14. Exogenous determinants of early-life conditions, and mortality later in life.

    PubMed

    van den Berg, Gerard J; Doblhammer, Gabriele; Christensen, Kaare

    2009-05-01

    We analyze causal effects of conditions early in life on the individual mortality rate later in life. Conditions early in life are captured by transitory features of the macro-environment around birth, notably the state of the business cycle around birth, but also food price deviations, weather indicators, and demographic indicators. We argue that these features can only affect high-age mortality by way of the individual early-life conditions. Moreover, they are exogenous from the individual point of view, which is a methodological advantage compared to the use of unique characteristics of the newborn individual or his or her family or household as early-life indicators. We collected national annual time-series data on the above-mentioned indicators, and we combine these to the individual data records from the Danish Twin Registry covering births in 1873-1906. The empirical analyses (mostly based on the estimation of duration models) indicate a significant negative causal effect of economic conditions early in life on individual mortality rates at higher ages. If the national economic performance in the year of birth exceeds its trend value (i.e., if the business cycle is favorable) then the mortality rate later in life is lower. The implied effect on the median lifetime of those who survive until age 35 is about 10 months. A systematic empirical exploration of all macro-indicators reveals that economic conditions in the first years after birth also affect mortality rates later in life.

  15. Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis

    PubMed Central

    Shafran, Yana; Zurgil, Naomi; Ravid-Hermesh, Orit; Sobolev, Maria; Afrimzon, Elena; Hakuk, Yaron; Shainberg, Asher; Deutsch, Mordechai

    2017-01-01

    Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence. PMID:29312577

  16. Recurrence of Cervical Cancer in Mice after Selective Estrogen Receptor Modulator Therapy

    PubMed Central

    Spurgeon, Megan E.; Chung, Sang-Hyuk; Lambert, Paul F.

    2015-01-01

    Estrogen and its nuclear receptor, estrogen receptor α, are necessary cofactors in the initiation and multistage progression of carcinogenesis in the K14E6/E7 transgenic mouse model of human papillomavirus–associated cervical cancer. Recently, our laboratory reported that raloxifene, a selective estrogen receptor modulator, promoted regression of high-grade dysplasia and cancer that arose in the cervix of K14E6/E7 transgenic mice treated long-term with estrogen. Herein, we evaluated the recurrence of cervical cancer after raloxifene therapy in our preclinical model of human papillomavirus–associated cervical carcinogenesis. We observed recurrence of cervical cancer in mice re-exposed to estrogen after raloxifene treatment, despite evidence suggesting the antagonistic effects of raloxifene persisted in the reproductive tract after treatment had ceased. We also observed recurrence of neoplastic disease in mice that were not retreated with exogenous estrogen, although the severity of disease was less. Recurrent neoplastic disease and cancers retained functional estrogen receptor α and responded to retreatment with raloxifene. Moreover, continuous treatment of mice with raloxifene prevented the emergence of recurrent disease seen in mice in which raloxifene was discontinued. These data suggest that cervical cancer cells are not completely eradicated by raloxifene and rapidly expand if raloxifene treatment is ceased. These findings indicate that a prolonged treatment period with raloxifene might be required to prevent recurrence of neoplastic disease and lower reproductive tract cancers. PMID:24418098

  17. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    PubMed

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  18. A crucial role for thiol antioxidants in estrogen-deficiency bone loss

    PubMed Central

    Lean, Jenny M.; Davies, Julie T.; Fuller, Karen; Jagger, Christopher J.; Kirstein, Barrie; Partington, Geoffrey A.; Urry, Zoë L.; Chambers, Timothy J.

    2003-01-01

    The mechanisms through which estrogen prevents bone loss are uncertain. Elsewhere, estrogen exerts beneficial actions by suppression of reactive oxygen species (ROS). ROS stimulate osteoclasts, the cells that resorb bone. Thus, estrogen might prevent bone loss by enhancing oxidant defenses in bone. We found that glutathione and thioredoxin, the major thiol antioxidants, and glutathione and thioredoxin reductases, the enzymes responsible for maintaining them in a reduced state, fell substantially in rodent bone marrow after ovariectomy and were rapidly normalized by exogenous 17-β estradiol. Moreover, administration of N-acetyl cysteine (NAC) or ascorbate, antioxidants that increase tissue glutathione levels, abolished ovariectomy-induced bone loss, while L-buthionine-(S,R)-sulphoximine (BSO), a specific inhibitor of glutathione synthesis, caused substantial bone loss. The 17-β estradiol increased glutathione and glutathione and thioredoxin reductases in osteoclast-like cells in vitro. Furthermore, in vitro NAC prevented osteoclast formation and NF-κB activation. BSO and hydrogen peroxide did the opposite. Expression of TNF-α, a target for NF-κB and a cytokine strongly implicated in estrogen-deficiency bone loss, was suppressed in osteoclasts by 17-β estradiol and NAC. These observations strongly suggest that estrogen deficiency causes bone loss by lowering thiol antioxidants in osteoclasts. This directly sensitizes osteoclasts to osteoclastogenic signals and entrains ROS-enhanced expression of cytokines that promote osteoclastic bone resorption. PMID:12975476

  19. Estrogen action and prostate cancer

    PubMed Central

    Nelles, Jason L; Hu, Wen-Yang; Prins, Gail S

    2011-01-01

    Early work on the hormonal basis of prostate cancer focused on the role of androgens, but more recently estrogens have been implicated as potential agents in the development and progression of prostate cancer. In this article, we review the epidemiological, laboratory and clinical evidence that estrogen may play a causative role in human prostate cancer, as well as rodent and grafted in vivo models. We then review recent literature highlighting potential mechanisms by which estrogen may contribute to prostate cancer, including estrogenic imprinting and epigenetic modifications, direct genotoxicity, hyperprolactinemia, inflammation and immunologic changes, and receptor-mediated actions. We discuss the work performed so far separating the actions of the different known estrogen receptors (ERs), ERα and ERβ, as well as G-protein-coupled receptor 30 and their specific roles in prostate disease. Finally, we predict that future work in this field will involve more investigations into epigenetic changes, experiments using new models of hormonal dysregulation in developing human prostate tissue, and continued delineation of the roles of the different ER subtypes, as well as their downstream signaling pathways that may serve as therapeutic targets. PMID:21765856

  20. Effects of transdermal estrogen replacement therapy on cardiovascular risk factors.

    PubMed

    Menon, Dileep V; Vongpatanasin, Wanpen

    2006-01-01

    key enzymes involved in plaque disruption, while transdermal estrogen does not have these adverse effects.Whether the advantages of transdermal estrogen with regards to these risk factors will translate into improved clinical outcomes remains to be determined. Two ongoing clinical trials, KEEPS (Kronos Early Estrogen Prevention Study) and ELITE (Early versus Late Intervention Trial with Estradiol) are likely to provide invaluable information regarding the role of oral versus transdermal estrogen in younger postmenopausal women.

  1. Estrogen in cardiovascular disease during systemic lupus erythematosus.

    PubMed

    Gilbert, Emily L; Ryan, Michael J

    2014-12-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in

  2. Estrogen in Cardiovascular Disease during Systemic Lupus Erythematosus

    PubMed Central

    Gilbert, Emily L.; Ryan, Michael J.

    2015-01-01

    Purpose Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. Methods PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. Findings The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against

  3. Effect of exogenous transforming growth factor β1 (TGF-β1) on early bovine embryo development.

    PubMed

    Barrera, Antonio D; García, Elina V; Miceli, Dora C

    2018-06-08

    SummaryDuring preimplantation development, embryos are exposed and have the capacity to respond to different growth factors present in the maternal environment. Among these factors, transforming growth factor β1 (TGF-β1) is a well known modulator of embryonic growth and development. However, its action during the first stages of development, when the embryo transits through the oviduct, has not been yet elucidated. The objective of the present study was to examine the effect of early exposure to exogenous TGF-β1 on embryo development and expression of pluripotency (OCT4, NANOG) and DNA methylation (DNMT1, DNMT3A, DNMT3B) genes in bovine embryos produced in vitro. First, gene expression analysis of TGF-β receptors confirmed a stage-specific expression pattern, showing greater mRNA abundance of TGFBR1 and TGFBR2 from the 2- to the 8-cell stage, before embryonic genome activation. Second, embryo culture for the first 48 h in serum-free CR1aa medium supplemented with 50 or 100 ng/ml recombinant TGF-β1 did not affect the cleavage and blastocyst rate (days 7 and 8). However, RT-qPCR analysis showed a significant increase in the relative abundance of NANOG and DNMT3A in the 8-cell stage embryos and expanded blastocysts (day 8) derived from TGF-β1 treated embryos. These results suggest an early action of exogenous TGF-β1 on the bovine embryo, highlighting the importance to provide a more comprehensive understanding of the role of TGF-β signalling during early embryogenesis.

  4. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging.

    PubMed

    Wend, Korinna; Wend, Peter; Krum, Susan A

    2012-01-01

    The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women's Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms.

  5. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    USGS Publications Warehouse

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  6. Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells.

    PubMed

    Mukhopadhyay, Keya De; Liu, Zhao; Bandyopadhyay, Abhik; Kirma, Nameer B; Tekmal, Rajeshwar R; Wang, Shui; Sun, Lu-Zhe

    2015-01-01

    In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα) positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis.

  7. Circulating microparticles and endogenous estrogen in newly menopausal women

    PubMed Central

    Jayachandran, M.; Litwiller, R. D.; Owen, W. G.; Miller, V. M.

    2011-01-01

    Background Estrogen modulates antithrombotic characteristics of the vascular endothelium and the interaction of blood elements with the vascular surface. A marker of these modulatory activities is formation of cell-specific microparticles. This study examined the relationship between blood-borne microparticles and endogenous estrogen at menopause. Methods Platelet activation and plasma microparticles were characterized from women being screened (n = 146) for the Kronos Early Estrogen Prevention Study. Women were grouped according to serum estrogen (< 20 pg/ml; low estrogen, n = 21 or > 40 pg/ml; high estrogen, n = 11). Results Age, body mass index, blood pressure and blood chemistries were the same in both groups. No woman was hypertensive, diabetic or a current smoker. Platelet counts, basal and activated expression of P-selectin on platelet membranes were the same, but activated expression of glycoprotein IIb/IIIa was greater in the high-estrogen group. Numbers of endothelium-, platelet-, monocyte- and granulocyte-derived microparticles were greater in the low-estrogen group. Of the total numbers of microparticles, those positive for phosphatidylserine and tissue factor were also greater in the low-estrogen group. Conclusion These results suggest that, with declines in endogenous estrogen at menopause, numbers of procoagulant microparticles increase and thus may provide a means to explore mechanisms for cardiovascular risk development in newly menopausal women. PMID:19051075

  8. Neural correlates of endogenous attention, exogenous attention and inhibition of return in touch.

    PubMed

    Jones, Alexander; Forster, Bettina

    2014-07-01

    Selective attention helps process the myriad of information constantly touching our body. Both endogenous and exogenous mechanisms are relied upon to effectively process this information; however, it is unclear how they relate in the sense of touch. In three tasks we contrasted endogenous and exogenous event-related potential (ERP) and behavioural effects. Unilateral tactile cues were followed by a tactile target at the same or opposite hand. Clear behavioural effects showed facilitation of expected targets both when the cue predicted targets at the same (endogenous predictive task) and opposite hand (endogenous counter-predictive task), and these effects also correlated with ERP effects of endogenous attention. In an exogenous task, where the cue was non-informative, inhibition of return (IOR) was observed. The electrophysiological results demonstrated early effects of exogenous attention followed by later endogenous attention modulations. These effects were independent in both the endogenous predictive and exogenous tasks. However, voluntarily directing attention away from a cued body part influenced the early exogenous marker (N80). This suggests that the two mechanisms are interdependent, at least when the task requires more demanding shifts of attention. The early marker of exogenous tactile attention, the N80, was not directly related to IOR, which may suggest that exogenous attention and IOR are not necessarily two sides of the same coin. This study adds valuable new insight into how we process and select information presented to our body, showing both independent and interdependent effects of endogenous and exogenous attention in touch. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Removal of estrogens and estrogenicity through drinking water treatment.

    PubMed

    Schenck, Kathleen; Rosenblum, Laura; Wiese, Thomas E; Wymer, Larry; Dugan, Nicholas; Williams, Daniel; Mash, Heath; Merriman, Betty; Speth, Thomas

    2012-03-01

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drinking waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conventional drinking water treatment using a natural water. Bench-scale studies utilizing chlorine, alum coagulation, ferric chloride coagulation, and powdered activated carbon (PAC) were conducted using Ohio River water spiked with three estrogens, 17β-estradiol, 17α-ethynylestradiol, and estriol. Treatment of the estrogens with chlorine, either alone or with coagulant, resulted in approximately 98% reductions in the concentrations of the parent estrogens, accompanied by formation of by-products. The MVLN reporter gene and MCF-7 cell proliferation assays were used to characterize the estrogenic activity of the water before and after treatment. The observed estrogenic activities of the chlorinated samples showed that estrogenicity of the water was reduced commensurate with removal of the parent estrogen. Therefore, the estrogen chlorination by-products did not contribute appreciably to the estrogenic activity of the water. Coagulation alone did not result in significant removals of the estrogens. However, addition of PAC, at a typical drinking water plant dose, resulted in removals ranging from approximately 20 to 80%.

  10. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Wen Min; Doucet, Michele; Huang, David

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found thatmore » CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a

  11. Endogenous estrogens and breast cancer risk: the case for prospective cohort studies.

    PubMed Central

    Toniolo, P G

    1997-01-01

    It is generally agreed that estrogens, and possibly androgens, are important in the etiology of breast cancer, but no consensus exists as to the precise estrogenic or androgenic environment that characterizes risk, or the exogenous factors that influence the hormonal milieu. Nearly all the epidemiological studies conducted in the 1970s and 1980s were hospital-based case-control studies in which specimen sampling was performed well after the clinical appearance of the disease. Early prospective cohort studies also had limitations in their small sample sizes or short follow-up periods. However, more recent case-control studies nested within large cohorts, such as the New York University Women's Health Study and the Ormoni e Dieta nell'Eziologia dei Tumori study in Italy, are generating new data indicating that increased levels of estrone, estradiol and bioavailable estradiol, as well as their androgenic precursors, may be associated with a 4- to 6-fold increase in the risk of postmenopausal breast cancer. Further new evidence, which complements and expands the observations from the latter studies, shows that women with the thickest bone density, which may be a surrogate for cumulated exposure to hormones, experience severalfold increased risk of subsequent breast cancer as compared to women with thin bones. These data suggests that endogenous sex hormones are a key factor in the etiology of postmenopausal breast cancer. New prospective cohort studies should be conducted to examine the role of endogenous sex hormones in blood and urine samples obtained early in the natural history of breast cancer jointly with an assessment of bone density and of other important risk factors, such as mammographic density, physical activity, body weight, and markers of individual susceptibility, which may confer increased risk through an effect on the metabolism of endogenous hormones or through specific metabolic responses to Western lifestyle and diet. PMID:9168000

  12. Aging, Estrogens, and Episodic Memory in Women

    PubMed Central

    Henderson, Victor W.

    2009-01-01

    Objective To review the relation in midlife and beyond between estrogen exposures and episodic memory in women. Background Episodic memory performance declines with usual aging, and impairments in episodic memory often portend the development of Alzheimer's disease. In the laboratory, estradiol influences hippocampal function and animal learning. However, it is controversial whether estrogens affect memory after a woman's reproductive years. Method Focused literature review, including a summary of a systematic search of clinical trials of estrogens in which outcomes included an objective measure of episodic memory. Results The natural menopause transition is not associated with objective changes in episodic memory. Strong clinical trial evidence indicates that initiating estrogen-containing hormone therapy after about age 60 years does not benefit episodic memory. Clinical trial findings in middle-age women before age 60 are limited by smaller sample sizes and shorter treatment durations, but these also do not indicate substantial memory effects. Limited short-term evidence, however, suggests that estrogens may improve verbal memory after surgical menopause. Although hormone therapy initiation in old age increases dementia risk, observational studies raise the question of an early critical window during which midlife estrogen therapy reduces late-life Alzheimer's disease. However, almost no data address whether midlife estrogen therapy affects episodic memory in old age. Conclusions Episodic memory is not substantially impacted by the natural menopause transition or improved by use of estrogen-containing hormone therapy after age 60. Further research is needed to determine whether outcomes differ after surgical menopause or whether episodic memory later in life is modified by midlife estrogenic exposures. PMID:19996872

  13. Cancer genes induced by malathion and parathion in the presence of estrogen in breast cells.

    PubMed

    Calaf, G M; Roy, D

    2008-02-01

    The identification of genes involved in the process of neoplastic transformation is essential for analyzing the progression of breast cancer when induced by endogenous and exogenous agents, among which are the estrogens and the organophosphorous pesticides, respectively. It is important to consider the impact of such substances when they are present in combination. In vitro experimental models are needed in order to understand breast carcinogenesis. The aim of this work was to examine the effect of 17beta estradiol (estrogen) combined with either malathion or parathion on the transformation of human breast epithelial cells in vitro. Results showed that estrogen combined with either malathion or parathion altered cell proliferation and induced cell transformation as well as exhibited significant invasive capabilities as compared to the control MCF-10F cell line. Several genes were up-regulated by the effect of all of the treatments, such as the cyclins, cyclin D1 and cyclin-dependent kinase 4, IGFBP3 and IGFBP5, and keratin 18. The c-Ha-ras oncogene was up-regulated by the effect of malathion alone and with the combination of estrogen and either malathion or parathion. The DVL1 gene was up-regulated only with malathion alone and the combination of parathion with estrogen. Expression of the HSP 27, MCM2 and TP53 inducible protein 3 genes was up-regulated with malathion alone and with the combination of estrogen and either malathion or parathion while TP53 (Li-Fraumeni syndrome) was up-regulated by estrogen alone and malathion alone. Thus, we suggest that pesticides and estrogens affect human breast cells inducing molecular changes indicative of transformation.

  14. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples.

    PubMed

    Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E

    2014-04-01

    Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  15. Exposure to Zearalenone During Early Pregnancy Causes Estrogenic Multitoxic Effects in Mice.

    PubMed

    Kunishige, Kohji; Kawate, Noritoshi; Inaba, Toshio; Tamada, Hiromichi

    2017-03-01

    Although zearalenone (ZEN; Sigma Chemicals, St Louis, Missouri) is a well-known mycotoxin with estrogenic activity, the toxic effects of ZEN during pregnancy are unknown. This study compared the effects of daily subcutaneous injections of ZEN (2, 4, or 8 mg/kg) with those of 17β-estradiol (E2; [Sigma Chemicals] 0.8, 1.6, or 3.2 μg/kg) in mice. Injections were administered on gestational days (GDs) 1 to 5, the period including implantation which is sensitive to hormonal balance. The effects of ZEN or E2 were evaluated by comparing the number of live fetuses, their weight, and absorbed conceptuses on GD 18, with those in vehicle-treated controls. In addition, implantation, embryos in the oviducts and those in uteri without implantation sites were investigated on GD 5. In mice treated with the highest dose of ZEN or E2, decidual responses and plasma progesterone concentrations were measured on GDs 5 and 6, respectively, and delayed implantation was investigated on GDs 9 and 14. The results showed that treatment with ZEN, in a manner similar to that seen for E2, led to obstruction of essential processes for establishing and maintaining pregnancy, such as embryo migration from oviducts to uteri, the decidual response, and activation of luteal function. Zearalenone also induced delayed implantation and loss of conceptuses and at low doses caused a retarded growth of the fetuses after normal implantation. It was therefore concluded that ZEN causes multiple estrogenic toxic actions when administered during early pregnancy in mice.

  16. Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor beta.

    PubMed

    Chang, Yao-Ju; Yang, Chih-Hao; Liang, Ying-Ching; Yeh, Che-Ming; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2009-11-01

    Females and males are different in brain and behavior. These sex differences occur early during development due to a combination of genetic and hormonal factors and continue throughout the lifespan. Previous studies revealed that male rats exhibited significantly higher levels of contextual fear memory than female rats. However, it remains unknown whether a sex difference exists in the contextual fear extinction. To address this issue, male, normally cycling female, and ovariectomized (OVX) female Sprague-Dawley rats were subjected to contextual fear conditioning and extinction trials. Here we report that although male rats exhibited higher levels of freezing than cycling female rats after contextual fear conditioning, female rats subjected to conditioning in the proestrus and estrus stage exhibited an enhancement of fear extinction than male rats. An estrogen receptor (ER) beta agonist diarylpropionitrile but not an ERalpha agonist propyl-pyrazole-triol administration also enhanced extinction of contextual fear in OVX female rats, suggesting that estrogen-mediated facilitation of extinction involves the activation of ERbeta. Intrahippocampal injection of estradiol or diarylpropionitrile before extinction training in OVX female rats remarkably reduced the levels of freezing response during extinction trials. In addition, the locomotion or anxiety state of female rats does not vary across the ovarian cycle. These results reveal a crucial role for estrogen in mediating sexually dimorphic contextual fear extinction, and that estrogen-mediated enhancement of fear extinction involves the activation of ERbeta.

  17. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model

    PubMed Central

    Brake, Tiffany; Lambert, Paul F.

    2005-01-01

    Cervical cancer is a leading cause of death by cancer among women worldwide. High-risk human papillomaviruses (HPVs) are the major etiological agents for cervical cancer, but other factors likely contribute to cervical cancer, because these cancers commonly arise decades after initial exposure to HPV. Estrogen is thought to be one such cofactor; however, its temporal requirements in human cervical cancer are not known. Here we evaluate the temporal requirements of estrogen in cervical carcinogenesis in a mouse model for HPV-associated cervical cancer. Tumors arising in HPV16 transgenic mice treated with estrogen for 9 months were greatly increased in their size compared with tumors developing after 6 months of estrogen treatment. HPV16 transgenic mice treated 6 months with estrogen followed by 3 months without exogenous estrogen had significantly fewer tumors and the tumors were smaller and less aggressive than those arising in mice treated the full 9 months. Importantly, cervical cancers that arose in the mice treated the first 6 of 9 months with estrogen must have regressed, based upon the reduced incidence of cancers in these mice compared with those treated for 6 months with estrogen, then immediately analyzed. We conclude that estrogen plays a critical role not only in the genesis of cervical cancer but also in its persistence and continued development in this mouse model. These findings raise the clinically relevant possibility that, if human cervical cancer has a similar dependence on estrogen for continued tumor growth, then antiestrogen therapy may be effective in the treatment of cervical cancer. PMID:15699322

  18. Epidemiology of estrogen and dementia in women with Down syndrome.

    PubMed

    Schupf, Nicole; Lee, Joseph H; Pang, Deborah; Zigman, Warren B; Tycko, Benjamin; Krinsky-McHale, Sharon; Silverman, Wayne

    2018-01-01

    Several lines of investigation have shown a protective role for estrogen in Alzheimer's disease through a number of biological actions. This review examines studies of the role of estrogen-related factors in age at onset and risk for Alzheimer's disease in women with Down syndrome, a population at high risk for early onset of dementia. The studies are consistent in showing that early age at menopause and that low levels of endogenous bioavailable estradiol in postmenopausal women with Down syndrome are associated with earlier age at onset and overall risk for dementia. Polymorphisms in genes associated with estrogen receptor activity and in genes for estrogen biosynthesis affecting endogenous estrogen are related to age at onset and cumulative incidence of dementia, and may serve as biomarkers of risk. To date, no clinical trials of estrogen or hormone replacement therapy (ERT/HRT) have been published for women with Down syndrome. While findings from clinical trials of ERT or HRT for dementia have generally been negative among women in the neurotypical population, the short interval between menopause and onset of cognitive decline, together with a more positive balance between potential benefits and risks, suggests an opportunity to evaluate the efficacy of ERT/HRT for delaying or preventing dementia in this high risk population, although questions concerning the optimal formulation and timing of the hormone therapy are not yet resolved. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Changes in plasma volume during bed rest - Effects of menstrual cycle and estrogen administration

    NASA Technical Reports Server (NTRS)

    Fortney, S. M.; Beckett, W. S.; Carpenter, A. J.; Davis, J.; Drew, H.

    1988-01-01

    The effect of increased blood estrogen concentration, caused either during normal menstrual cycles or by exogenous administration of premarin, on the bed-rest (BR) induced decrease in plasma volume (PV) was investigated. In women who underwent duplicate 11-day BR without estrogen supplementation, the PV was found to decrease significantly, during the first 5 days of BR, to a lower level at which it remained for the rest of the BR period. In women who began BR in the periovulatory stage of the menstrual cycle, the loss of PV was delayed, while women who began BR during other stages of the cycle exhibited the usual trend of the PV decrease during the BR. In women who underwent a single 12-day BR period while taking premarin (1.25 mg/day), PV was found to decrease during the first 4-5 days of BR, but then returned toward the pre-BR level during the remainder of the BR, indicating that estrogens have a role in stabilizing body fluid volume.

  20. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  1. Transgenic Zebrafish Reveal Tissue-Specific Differences in Estrogen Signaling in Response to Environmental Water Samples

    PubMed Central

    Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to

  2. Modulation of steroidogenesis and estrogen signalling in the estuarine killifish (Fundulus heteroclitus) exposed to ethinylestradiol.

    PubMed

    Hogan, Natacha S; Currie, Suzanne; LeBlanc, Sacha; Hewitt, L Mark; MacLatchy, Deborah L

    2010-06-10

    Previous studies have shown that mummichog (Fundulus heteroclitus; a lunar, asynchronous-spawning killifish of the western Atlantic) exposed to 17alpha-ethynylestradiol (EE2) exhibit decreased plasma reproductive steroid levels, decreased gonadal steroid production, increased plasma vitellogenin, decreased fecundity and impaired fertilization. The objective of this study was to determine the potential mechanisms by which EE2 depresses gonadal steroidogenesis and influences estrogen signalling in the mummichog. Adult recrudesced fish were exposed to the potent synthetic estrogen, ethinylestradiol (EE2; 0-270ng/L) for 14 days. Following exposure, gonadal tissue was removed and incubated for 24h with stimulators of steroidogenesis, including forskolin; 25-OH cholesterol; or pregnenolone. Testosterone production was decreased in basal, forskolin-stimulated and pregnenolone-stimulated EE2-exposed males, indicating effects on the steroidogenic pathway both at and downstream of cholesterol mobilization to P450 side-chain cleavage (P450scc) and/or P450scc conversion of cholesterol to pregnenolone. Hepatic transcript levels of estrogen receptor alpha (ERalpha) and vitellogenin were increased in EE2-treated males compared to control recrudescing males and females confirming an estrogenic response. Hepatic heat shock protein 90 (Hsp90), a chaperoning molecule involved in estrogen signalling, was not affected by EE2 exposure at either the transcript or protein level. However, higher levels of Hsp90 observed in the membrane fractions of female fish raise interesting questions regarding the influence of gender on Hsp90's role in estrogen signalling. These results demonstrate that EE2 can alter steroid production at specific sites within the steroidogenic pathway and can stimulate hepatic estrogen signalling, providing important information regarding the molecular mechanisms underlying the endocrine response of the mummichog to exogenous estrogen.

  3. Contemporary Alternatives to Plant Estrogens for Menopause

    PubMed Central

    Geller, Stacie E.; Studee, Laura

    2006-01-01

    Objectives Every year, millions of women begin the peri-menopause and may experience a number of symptoms related to this transition. Many women are reluctant to use exogenous hormone therapy for treatment of menopausal symptoms and are turning to botanical and dietary supplements (BDS) for relief. This paper reviews the literature on alternatives to plant estrogens for relief of menopausal symptoms. Methods The MEDLINE database was searched for clinical trials of non-estrogenic plant extracts for menopausal symptoms. To be included, studies had to include peri- or postmenopausal women as subjects. All clinical trials (randomized-controlled trials, open trials, and comparison group studies) were included for this review. Results Black Cohosh appears to be one of the most effective botanicals for relief of vasomotor symptoms, while St. John’s wort can improve mood disorders related to the menopausal transition. Many other botanicals have limited evidence to demonstrate safety and efficacy for relief of symptoms related to menopause. Conclusions A growing body of evidence suggests that some botanicals and dietary supplements could result in improved clinical outcomes. Health care providers should discuss these issues with their patients so they can assist them in managing these alternative therapies through an evidence-based approach. PMID:16884867

  4. Early Estrogen Action: Stimulation of the Metabolism of High Molecular Weight and Ribosomal RNAs

    PubMed Central

    Luck, Dennis N.; Hamilton, Terrell H.

    1972-01-01

    Samples of RNA, isolated from uteri of ovariectomized adult rats treated with estrogen, have been analyzed on sucrose gradients. Treatment with estrogen either for 20 min or 2 hr increased the specific activity of all classes of uterine RNA, but produced no significant alteration in the distribution of radioactivity in the gradients, when animals received [3H]uridine intraperitoneally 15 min before they were killed. After labeling periods of 30 min, 1 hr, or 2 hr, however, the RNAs isolated from animals treated with estrogen had a smaller percentage of rapidly sedimenting (faster than 28S) species of RNA than did RNA from animals not treated with the hormone. The decreased percentage of high molecular weight RNA correlated with increases in both the specific activity of 28S and 18S RNA and the concentration of RNA in the whole organ. The labeled RNA of high molecular weight was also demonstrated, by the use of actinomycin D in vivo, to have a more rapid turnover rate in the estrogen-stimulated uterus. Our results indicate that estrogen increases not only the rate of synthesis of ribosomal RNA in the uterus of the ovariectomized adult rat, but also the rate or efficiency of processing of precursor RNA species of high molecular weight. PMID:4500546

  5. Characterization and Consequences of Estrogen Receptor Exon Five Deletion.

    DTIC Science & Technology

    1998-08-01

    and ending with ovulation), and the luteal or secretory phase (beginning with ovulation and ending with the onset of menses) (7). Early in the...7), the primary site of both progesterone and estrogen biosynthesis during the luteal phase 3 (estrogen production remains elevated through most of...the luteal phase, 250ug/day, and progesterone production peaks in the mid- luteal phase, 10-40mg/day) (7). If implantation does not occur gonadotropin

  6. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B

    2015-07-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. Copyright

  7. Estrogen administered after cardiac arrest and cardiopulmonary resuscitation ameliorates acute kidney injury in a sex- and age-specific manner.

    PubMed

    Ikeda, Mizuko; Swide, Thomas; Vayl, Alexandra; Lahm, Tim; Anderson, Sharon; Hutchens, Michael P

    2015-09-18

    There is a sex difference in the risk of ischemic acute kidney injury (AKI), and estrogen mediates the protective effect of female sex. We previously demonstrated that preprocedural chronic restoration of physiologic estrogen to ovariectomized female mice ameliorated AKI after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). In the present study, we hypothesized that male mice and aged female mice would benefit from estrogen administration after CA/CPR. We tested the effect of estrogen in a clinically relevant manner by administrating it after CA/CPR. CA/CPR was performed in young (10-15 weeks), middle-aged (43-48 weeks), and aged (78-87 weeks) C57BL/6 male and female mice. Mice received intravenous 17β-estradiol or vehicle 15 min after resuscitation. Serum chemistries and unbiased stereological assessment of renal injury were completed 24 h after CA. Regional renal cortical blood flow was measured by a laser Doppler, and renal levels of estrogen receptor alpha (ERα) and G protein-coupled estrogen receptor (GPER) were evaluated with immunoblotting. Post-arrest estrogen administration reduced injury in young males without significant changes in renal blood flow (percentage reduction compared with vehicle: serum urea nitrogen, 30 %; serum creatinine (sCr), 41 %; volume of necrotic tubules (VNT), 31 %; P < 0.05). In contrast, estrogen did not affect any outcomes in young females. In aged mice, estrogen significantly reduced sCr (80 %) and VNT (73 %) in males and VNT (51 %) in females. Serum estrogen levels in aged female mice after CA/CPR were the same as levels in male mice. With age, renal ERα was upregulated in females. Estrogen administration after resuscitation from CA ameliorates renal injury in young males and aged mice in both sexes. Because injury was small, young females were not affected. The protective effect of exogenous estrogen may be detectable with loss of endogenous estrogen in aged females and could be mediated by differences in renal

  8. Estrogen

    MedlinePlus

    ... life', the end of monthly menstrual periods). Some brands of estrogen are also used to treat vaginal ... prevent osteoporosis should consider a different treatment. Some brands of estrogen are also to relieve symptoms of ...

  9. Removal of Estrogens and Estrogenicity through Drinking Water Treatment

    EPA Science Inventory

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drining waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conven...

  10. The G protein-coupled estrogen receptor (GPER/GPR30) may serve as a prognostic marker in early-stage cervical cancer.

    PubMed

    Friese, Klaus; Kost, Bernd; Vattai, Aurelia; Marmé, Frederik; Kuhn, Christina; Mahner, Sven; Dannecker, Christian; Jeschke, Udo; Heublein, Sabine

    2018-01-01

    were detected. Finally, immunopositivity of GPER cyt was predictive for favourable overall as well as recurrence-free survival in cervical cancer of early stage (FIGO I). This retrospective study reports GPER cyt to be associated with improved overall and recurrence-free survival in early-stage cervical cancer. Further investigations are needed thus to determine whether this observation may be of clinical impact. Interestingly, Raloxifene-a GPER-activating selective estrogen receptor modulator-has recently been demonstrated to be preventive for cervical cancer relapse in mice. Whether this effect is only reliant on raloxifene blocking ERα or may also be related to activation of GPER remains to be determined.

  11. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization

    PubMed Central

    Mestre-Citrinovitz, Ana C.; Kleff, Veronika; Vallejo, Griselda

    2015-01-01

    Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets. PMID:25897495

  12. From the 90's to now: A brief historical perspective on more than two decades of estrogen neuroprotection.

    PubMed

    Engler-Chiurazzi, E B; Singh, M; Simpkins, J W

    2016-02-15

    Historical perspective abstract:From the 90's to now: a historical perspective on more than two decades of estrogen neuroprotection: In the early 90's, estrogens were known to exert organizational and activational effects on reproductive tissues and sexual behavior. As well, the role of sex and gonadal hormones in altering the risk for developing Alzheimer's Disease (AD) was only beginning to be elucidated. Preliminary investigations suggested that estrogen-containing therapies typically given for the management of disruptive menopausal symptoms could reduce AD risk, attenuate disease-associated cognitive deficits, and modulate brain substrates known to be dysregulated by the condition, such as the cholingeric system. The findings from our seminal paper demonstrating cognitive benefits and cholinergic impacts with exogenous estrogen treatment in a rodent model of surgical hormone depletion provided initial support for use of estrogen-containing therapies as a treatment for age-related brain disorders. We then went on to demonstrate neuroprotective actions of estrogen in several other in vivo and in vitro models of neurological challenge, including stroke and AD. Further, our findings of the chemical structure requirements for estrogen's neuroprotective effects identified a novel approach for optimizing future estrogen-containing hormone therapy options. These early efforts laid the groundwork for later, large-scale clinical investigations into the potential of estrogen-based menopausal hormone therapies for the prevention of a variety of age-related disorders. Although findings of these studies were equivocal, the neuroprotective actions of estrogen, and specifically 17β-estradiol, identified by early investigations, remain well-documented. Future development of interventions that optimize cognitive aging are crucial and, with proper understanding of the factors that influence the realization of beneficial impacts, estrogen-containing treatments may still be among

  13. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    PubMed

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  14. [Farmer's lung--a form of exogenous allergic alveolitis].

    PubMed

    Sambale, M; Liebetrau, G

    1990-11-15

    Exogenic allergic alveolitides are caused by organic dusts which contain bacteria, moulds or vegetable and animal antigens. The farmer's lung as a form of the exogenic allergic alveolitis is a rare disease. The uncharacteristic symptomatology in the initial phase and in particular the retarded beginning of the symptom after several hours handicap the timely recognition in an early phase of the disease so that curative therapeutic measures are rarely possible. The cases of the disease are found only at the chronic stage, at the stage of the pulmonary fibrosis. Then the prognosis is unfavourable. In the Central Clinic for Heart and Lung Diseases Bad Berka 1,110 patients with alveolitides and lung fibroses were diagnosed in the period from 1975 to 1988. 306 of them could be clarified as exogenic allergic alveolitis, 61 of them (19.8%) were farmer's lungs.

  15. Endogenous versus exogenous shocks in systems with memory

    NASA Astrophysics Data System (ADS)

    Sornette, D.; Helmstetter, A.

    2003-02-01

    Systems with long-range persistence and memory are shown to exhibit different precursory as well as recovery patterns in response to shocks of exogenous versus endogenous origins. By endogenous, we envision either fluctuations resulting from an underlying chaotic dynamics or from a stochastic forcing origin which may be external or be an effective coarse-grained description of the microscopic fluctuations. In this scenario, endogenous shocks result from a kind of constructive interference of accumulated fluctuations whose impacts survive longer than the large shocks themselves. As a consequence, the recovery after an endogenous shock is in general slower at early times and can be at long times either slower or faster than after an exogenous perturbation. This offers the tantalizing possibility of distinguishing between an endogenous versus exogenous cause of a given shock, even when there is no “smoking gun”. This could help in investigating the exogenous versus self-organized origins in problems such as the causes of major biological extinctions, of change of weather regimes and of the climate, in tracing the source of social upheaval and wars, and so on. Sornette et al., Volatility fingerprints of large stocks: endogenous versus exogenous, cond-mat/0204626 has already shown how this concept can be applied concretely to differentiate the effects on financial markets of the 11 September 2001 attack or of the coup against Gorbachev on 19 August 1991 (exogenous) from financial crashes such as October 1987 (endogenous).

  16. Estrogenic Mechanisms and Cardiac Responses Following Early Life Exposure to Bisphenol A (BPA) and Its Metabolite 4-Methyl-2,4-bis( p-hydroxyphenyl)pent-1-ene (MBP) in Zebrafish.

    PubMed

    Moreman, John; Takesono, Aya; Trznadel, Maciej; Winter, Matthew J; Perry, Alexis; Wood, Mark E; Rogers, Nicola J; Kudoh, Tetsuhiro; Tyler, Charles R

    2018-06-05

    Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.

  17. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 daysmore » after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.« less

  18. Estrogen Degraders and Estrogen Degradation Pathway Identified in an Activated Sludge.

    PubMed

    Chen, Yi-Lung; Fu, Han-Yi; Lee, Tzong-Huei; Shih, Chao-Jen; Huang, Lina; Wang, Yu-Sheng; Ismail, Wael; Chiang, Yin-Ru

    2018-05-15

    The environmental release and fate of estrogens are becoming an increasing public concern. Bacterial degradation has been considered the main process for eliminating estrogens from wastewater treatment plants. Various bacterial isolates are reportedly capable of aerobic estrogen degradation, and several estrogen degradation pathways have been proposed in proteobacteria and actinobacteria. However, the ecophysiological relevance of estrogen-degrading bacteria in the environment is unclear. In this study, we investigated the estrogen degradation pathway and corresponding degraders in activated sludge collected from the Dihua Sewage Treatment Plant, Taipei, Taiwan. Cultivation-dependent and cultivation-independent methods were used to assess estrogen biodegradation in the collected activated sludge. Estrogen metabolite profile analysis revealed the production of pyridinestrone acid and two A/B-ring cleavage products in activated sludge incubated with estrone (1 mM), which are characteristic of the 4,5- seco pathway. PCR-based functional assays detected sequences closely related to alphaproteobacterial oecC , a key gene of the 4,5- seco pathway. Metagenomic analysis suggested that Novosphingobium spp. are major estrogen degraders in estrone-amended activated sludge. Novosphingobium sp. strain SLCC, an estrone-degrading alphaproteobacterium, was isolated from the examined activated sludge. The general physiology and metabolism of this strain were characterized. Pyridinestrone acid and the A/B-ring cleavage products were detected in estrone-grown strain SLCC cultures. The production of pyridinestrone acid was also observed during the aerobic incubation of strain SLCC with 3.7 nM (1 μg/liter) estrone. This concentration is close to that detected in many natural and engineered aquatic ecosystems. The presented data suggest the ecophysiological relevance of Novosphingobium spp. in activated sludge. IMPORTANCE Estrogens, which persistently contaminate surface water

  19. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner

    PubMed Central

    Gertz, Jason; Reddy, Timothy E.; Varley, Katherine E.; Garabedian, Michael J.; Myers, Richard M.

    2012-01-01

    Endogenous estrogens that are synthesized in the body impact gene regulation by activating estrogen receptors in diverse cell types. Exogenous compounds that have estrogenic properties can also be found circulating in the blood in both children and adults. The genome-wide impact of these environmental estrogens on gene regulation is unclear. To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq to identify estrogen receptor 1 (ESR1; previously estrogen receptor α) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ESR1 binding sites and >50 gene expression changes, representing a subset of E2-induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ESR1 binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ESR1 binding site but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ESR1 on a genome-wide scale, although with lower potency resulting in less ESR1 binding sites and less gene expression changes compared to the endogenous estrogen, E2. PMID:23019147

  20. Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.

    PubMed

    Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine

    2012-11-01

    The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Estrogens and aging skin.

    PubMed

    Thornton, M Julie

    2013-04-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies.

  2. Reprint of: From the 90׳s to now: A brief historical perspective on more than two decades of estrogen neuroprotection.

    PubMed

    Engler-Chiurazzi, E B; Singh, M; Simpkins, J W

    2016-08-15

    Historical perspective abstract:From the 90׳s to now: a historical perspective on more than two decades of estrogen neuroprotection: In the early 90׳s, estrogens were known to exert organizational and activational effects on reproductive tissues and sexual behavior. As well, the role of sex and gonadal hormones in altering the risk for developing Alzheimer׳s Disease (AD) was only beginning to be elucidated. Preliminary investigations suggested that estrogen-containing therapies typically given for the management of disruptive menopausal symptoms could reduce AD risk, attenuate disease-associated cognitive deficits, and modulate brain substrates known to be dysregulated by the condition, such as the cholingeric system. The findings from our seminal paper demonstrating cognitive benefits and cholinergic impacts with exogenous estrogen treatment in a rodent model of surgical hormone depletion provided initial support for use of estrogen-containing therapies as a treatment for age-related brain disorders. We then went on to demonstrate neuroprotective actions of estrogen in several other in vivo and in vitro models of neurological challenge, including stroke and AD. Further, our findings of the chemical structure requirements for estrogen׳s neuroprotective effects identified a novel approach for optimizing future estrogen-containing hormone therapy options. These early efforts laid the groundwork for later, large-scale clinical investigations into the potential of estrogen-based menopausal hormone therapies for the prevention of a variety of age-related disorders. Although findings of these studies were equivocal, the neuroprotective actions of estrogen, and specifically 17β-estradiol, identified by early investigations, remain well-documented. Future development of interventions that optimize cognitive aging are crucial and, with proper understanding of the factors that influence the realization of beneficial impacts, estrogen-containing treatments may still be

  3. G protein-coupled estrogen receptor 1 (GPER, GPR 30) in normal human endometrium and early pregnancy decidua.

    PubMed

    Kolkova, Z; Noskova, V; Ehinger, A; Hansson, S; Casslén, B

    2010-10-01

    The recently identified trans-membrane G protein-coupled estrogen receptor 1 (GPER, GPR30) has been implicated in rapid non-genomic effects of estrogens. This focuses on expression and localization of GPER mRNA and protein in normal cyclic endometrium and early pregnancy decidua. Real-time PCR, western blotting, in situ hybridization and immuno-histochemistry were used. Endometrial expression of GPER mRNA was lower in the secretory phase than in the proliferative phase, and even lower in the decidua. The expression pattern was similar to that of ERα mRNA, but different from that of ERβ mRNA. Western blot detected GPER protein as a 54 kDa band in all endometrial and decidual samples. In contrast to the mRNA, GPER protein did not show cyclic variations. Apparently, a lower amount of mRNA is sufficient to maintain protein levels in the secretory phase. GPER mRNA was predominantly localized in the epithelium of mid- and late-proliferative phase endometrium, whereas expression in early proliferative and secretory glands could not be distinguished from the diffuse stromal signal, which was present throughout the cycle. Immuno-staining for GPER was stronger in glandular and luminal epithelium than in the stroma throughout the cycle. The cyclic variations of GPER mRNA obviously relate to strong epithelial expression in the proliferative phase, and the expression pattern suggests regulation by ovarian steroids. GPER protein is present in endometrial tissue throughout the cycle, and the epithelial localization suggests potential functions during sperm migration at mid-cycle, as well as decidualization and blastocyst implantation in the mid-secretory phase.

  4. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action.

    PubMed

    Bhavnani, Bhagu R; Stanczyk, Frank Z

    2014-07-01

    Oral conjugated equine estrogens (CEE) are the most used estrogen formulation for postmenopausal hormone therapy either alone or in combination with a progestin. CEE is most commonly used for the management of early menopausal symptoms such as hot flashes, vaginitis, insomnia, and mood disturbances. Additionally, if used at the start of the menopausal phase (age 50-59 years), CEE prevents osteoporosis and may in some women reduce the risk of cardiovascular disease (CVD) and Alzheimer's disease (AD). There appears to be a common mechanism through which estrogens can protect against CVD and AD. CEE is a natural formulation of an extract prepared from pregnant mares' urine. The product monogram lists the presence of only 10 estrogens consisting of the classical estrogens, estrone and 17β-estradiol, and a group of unique ring B unsaturated estrogens such as equilin and equilenin. The ring B unsaturated estrogens are formed by an alternate steroidogenic pathway in which cholesterol is not an obligatory intermediate. Both the route of administration and structure of these estrogens play a role in the overall pharmacology of CEE. In contrast to 17β-estradiol, ring B unsaturated estrogens express their biological effects mainly mediated by the estrogen receptor β and not the estrogen receptor α. All estrogen components of CEE are antioxidants, and some ring B unsaturated estrogens have several fold greater antioxidant activity than estrone and 17β-estradiol. The cardioprotective and neuroprotective effects of CEE appear to be, to some extent, due to its ability to prevent the formation of oxidized LDL and HDL, and by inhibiting or modulating some of the key proteases involved in programmed cell death (apoptosis) induced by the excess neurotransmitter glutamate and other neurotoxins. Selective combinations of ring B unsaturated estrogens have the potential of being developed as novel therapeutic agents for the prevention of cardiovascular disease and Alzheimer

  5. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    PubMed

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  6. The anticancer estrogen receptor antagonist tamoxifen impairs consolidation of inhibitory avoidance memory through estrogen receptor alpha.

    PubMed

    Lichtenfels, Martina; Dornelles, Arethuza da Silva; Petry, Fernanda Dos Santos; Blank, Martina; de Farias, Caroline Brunetto; Roesler, Rafael; Schwartsmann, Gilberto

    2017-11-01

    Over two-thirds of women with breast cancer have positive tumors for hormone receptors, and these patients undergo treatment with endocrine therapy, tamoxifen being the most widely used agent. Despite being very effective in breast cancer treatment, tamoxifen is associated with side effects that include cognitive impairments. However, the specific aspects and mechanisms underlying these impairments remain to be characterized. Here, we have investigated the effects of tamoxifen and interaction with estrogen receptors on formation of memory for inhibitory avoidance conditioning in female rats. In the first experiment, Wistar female rats received a single oral dose of tamoxifen (1, 3, or 10 mg/kg) or saline by gavage immediately after training and were tested for memory consolidation 24 h after training. In the second experiment, rats received a single dose of 1 mg/kg tamoxifen or saline by gavage 3 h after training and were tested 24 h after training for memory consolidation. In the third experiment, rats received a subcutaneous injection with estrogen receptor α agonist or estrogen receptor beta agonist 30 min before the training. After training, rats received a single oral dose of tamoxifen 1 mg/kg or saline and were tested 24 h after training. In the fourth experiment, rats were trained and tested 24 h later. Immediately after test, rats received a single dose of tamoxifen (1 mg/kg) or saline by gavage and were given four additional daily test trials followed by a re-instatement. Tamoxifen at 1 mg/kg impaired memory consolidation when given immediately after training and the estrogen receptor alpha agonist improved the tamoxifen-related memory impairment. Moreover, tamoxifen impairs memory consolidation of the test. These findings indicate that estrogen receptors regulate the early phase of memory consolidation and the effects of tamoxifen on memory consolidation.

  7. Membrane estrogen receptors - is it an alternative way of estrogen action?

    PubMed

    Soltysik, K; Czekaj, P

    2013-04-01

    The functions of estrogens are relatively well known, however the molecular mechanism of their action is not clear. The classical pathway of estrogen action is dependent on ERα and ERβ which act as transcription factors. The effects of this pathway occur within hours or days. In addition, so-called, non-classical mechanism of steroid action dependent on membrane estrogen receptors (mER) was described. In this mechanism the effects of estrogen action are observed in a much shorter time. Here we review the structure and cellular localization of mER, molecular basis of non-classical mER action, physiological role of mER as well as implications of mER action for cancer biology. Finally, some concerns about the new estrogen receptor - GPER and candidates for estrogen receptors - ER-X and ERx, are briefly discussed. It seems that mER is a complex containing signal proteins (signalosome), as IGF receptor, EGF receptor, Ras protein, adaptor protein Shc, non-receptor kinase c-Src and PI-3K, what rationalizes production of second messengers. Some features of membrane receptors are almost identical if compared to nuclear receptors. Probably, membrane and nuclear estrogen receptors are not separate units, but rather the components of a complex mechanism in which they both cooperate with each other. We conclude that the image of the estrogen receptor as a simple transcription factor is a far-reaching simplification. A better understanding of the mechanisms of estrogen action will help us to design more effective drugs affecting signal pathways depending on both membrane and nuclear receptors.

  8. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib

    PubMed Central

    Acharya, Sunil; Xu, Jia; Wang, Xiao; Jain, Shalini; Wang, Hai; Zhang, Qingling; Chang, Chia-Chi; Bower, Joseph; Arun, Banu; Seewaldt, Victoria; Yu, Dihua

    2016-01-01

    Tamoxifen and aromatase inhibitors (AIs) have shown efficacy in prevention of estrogen receptor-positive (ER+) breast cancer; however, there exists no proven prevention strategy for estrogen receptor-negative (ER-) breast cancer. Up to 40% of ER- breast cancers have human epidermal growth factor receptor 2 overexpression (HER2+), suggesting HER2 signaling might be a good target for chemoprevention for certain ER- breast cancers. Here, we tested the feasibility of the HER2-targeting agent lapatinib in prevention and/or early intervention of an ER-/HER2+ early-stage breast disease model. We found that lapatinib treatment forestalled the progression of atypical ductal hyperplasia (ADH)-like acini to ductal carcinoma in situ (DCIS)-like acini in ER-/HER2+ human mammary epithelial cells (HMECs) in 3D culture. Mechanistically, we found that inhibition of HER2/Akt signaling by lapatinib led to downregulation of GLUT4 and a reduced glucose uptake in HER2-overexpressing cells, resulting in decreased proliferation and increased apoptosis of these cells in 3D culture. Additionally, our data suggest that HER2-driven glycolytic metabolic dysregulation in ER-/HER2+ HMECs might promote early-stage breast disease progression, which can be reversed by lapatinib treatment. Furthermore, low-dose lapatinib treatment, starting at the early stages of mammary grand transformation in the MMTV-neu* mouse model, significantly delayed mammary tumor initiation and progression, extended tumor-free survival, which corresponded to effective inhibition of HER2/Akt signaling and downregulation of GLUT4 in vivo. Taken together, our results indicate that lapatinib, through its inhibition of key signaling pathways and tumor-promoting metabolic events, is a promising agent for the prevention/early intervention of ER-/HER2+ breast cancer progression. PMID:27293993

  9. Effects of Estrogen and Estrus Cycle on Pharmacokinetics, Absorption and Disposition of Genistein in Female Sprague-Dawley Rats

    PubMed Central

    Kulkarni, Kaustubh H.; Yang, Zhen; Tao, Niu; Hu, Ming

    2014-01-01

    Genistein is an active soy isoflavone with anticancer activities but it is unknown why it has a higher oral bioavailability in female than in male rats. Our study determined the effects of estrus cycle on genistein’s oral bioavailability. Female rats with various levels of estrogen were orally administered with genistein or used in a four-site rat intestinal perfusion experiment. Rats in “proestrus” group (with elevated estrogen) had significantly reduced (57% decrease, p<0.05) oral bioavailability of total genistein (aglycone+conjugates) than those in “metoestrus” group (with basal level of estrogen). Female ovariectomized rats, due to lack of estrogen, showed oral bioavailability of total genistein similar to the “metoestrus” group but higher (155% increase, p<0.05) than the “proestrus” group. Based on intestinal perfusion studies, the increased bioavailability was partially attributed to the higher (>100% increase, p<0.05) hepatic disposition via glucuronidation and possibly more efficient enterohepatic recycling of genistein in the “metoestrus” group. Furthermore, chronic exogenous supplementation of estradiol in ovariectomized rats significantly reduced (77%, p<0.05) the oral bioavailability of total genistein, mostly via increased sulfation (>10 folds) in liver, to a level comparable to those in the “proestrus” group. In conclusion, the oral bioavailability of total genistein was inversely proportional to elevated estrogen levels in female rats, which is partially mediated through the regulation of hepatic enzymes responsible disposition of genistein. PMID:22757747

  10. The selective estrogen receptor alpha agonist Org 37663 induces estrogenic effects but lacks antirheumatic activity: a phase IIa trial investigating efficacy and safety of Org 37663 in postmenopausal female rheumatoid arthritis patients receiving stable background methotrexate or sulfasalazine.

    PubMed

    van Vollenhoven, Ronald F; Houbiers, Jos G A; Buttgereit, Frank; In 't Hout, Joanna; Boers, Maarten; Leij, Susanne; Kvien, Tore K; Dijkmans, Ben A C; Szczepański, Leszek; Szombati, Istvan; Sierakowski, Stanislaw; Miltenburg, André M M

    2010-02-01

    Multiple lines of evidence suggest that sex hormones may play a role in the pathogenesis or clinical expression of rheumatoid arthritis (RA). Studies on the effects of exogenous estrogens in RA patients have yielded contradictory results. We undertook this study to determine the effects of the selective estrogen receptor alpha (ERalpha) agonist Org 37663 in patients with RA, in terms of both its estrogenic effects and its ability to ameliorate disease activity. A 10-week, multicenter, randomized, double-blind, placebo-controlled, parallel group, dose-finding, proof-of-concept trial was initiated to obtain data on the efficacy and safety of Org 37663 in postmenopausal female patients with RA who were receiving background treatment with either methotrexate or sulfasalazine. Patients were randomized to receive placebo or Org 37663 at doses of 4 mg/day, 15 mg/day, or 50 mg/week. The primary efficacy variable was the Disease Activity Score in 28 joints (DAS28). Org 37663 induced a clear biologic, estrogenic response in several organ systems, including a dose-related increase in levels of sex hormone binding globulin. However, the DAS28 decreased similarly for all treatment groups including placebo, indicating lack of clinical efficacy of Org 37663 in this trial. The observed lack of clinical benefit in RA patients treated with an ERalpha agonist, in association with a clear biologic response to the study drug, provides evidence that a biologically relevant ERalpha-mediated estrogenic effect is not associated with a clinically relevant effect on RA symptoms and signs.

  11. The genetics of response to estrogen treatment

    PubMed Central

    Langdahl, Bente L

    2009-01-01

    It has been demonstrated that the response to estrogen treatment in postmenopausal women shows considerable variability. It has been speculated that this at least partly could be determined by heritable factors. The most obvious genes to investigate in this context are the estrogen receptor genes. It has been demonstrated that women with short alleles of the TA-repeat polymorphism in the estrogen receptor α gene respond to hormone treatment with greater increases in bone mass at the lumbar spine. Also the two polymorphisms in the first intron of the same gene have been found to be associated with the response to estrogen. Several studies have found that women carrying the Pand the X-alleles respond to hormone therapy with greater increases in bone mass and sustain fewer fractures. Polymorphisms in the collagen type Iα1 have been found to influence BMD. Conflicting results have been obtained with respect to the influence of these genetic variants on postmenopausal bone loss and response to hormone treatment. Furthermore, two polymorphisms in the promoter of the transforming growth factor β gene and one polymorphism in the first exon of the osteoprotegerin gene have been demonstrated to interact with the response to hormone treatment in early postmenopausal women. The above mentioned results are obtained from relatively small studies and needs confirmation before the information can be used in the clinic. PMID:22461097

  12. A pilot retrospective study of the relationship between estrogen use and pancreatitis/pancreatic function in women with chronic abdominal pain.

    PubMed

    Lieb, John G; Toskes, Phillip P

    2013-05-10

    Estrogens are thought to cause pancreatitis by raising triglyceride levels but whether there are other effects on the pancreas is debatable. To better elucidate the relationship between estrogens and pancreatitis and pancreatic function in a pilot study. Our retrospectively collected database of 224 patients who had undergone secretin stimulation testing was queried for females with available medication histories, who were then divided into two groups: those taking estrogens (E) and those not on estrogens (N). Mann Whitney U and Fisher's exact tests were used. Seventy of the patients in the database were females with available medication histories. Thirty-five (50.0%) were taking estrogens. Twenty-nine (82.9%) of the E patients experienced any type of pancreatitis (i.e., acute pancreatitis, acute relapsing pancreatitis, chronic pancreatitis) while only 19 (54.3%) of the N patients did (P=0.019). During secretin stimulation testing, the peak bicarbonate levels for E and N patients were 80±18 and 90±23 mEq/L, respectively (P=0.058). When patients with any type of pancreatitis were excluded, E patients still displayed decreased peak bicarbonate levels in response to secretin (90±18 vs. 104±19 mEq/L; P=0.021). Weight, age, triglyceride levels, frequency of patients with cholecystectomy and biliary stones did not significantly differ between the two groups (E and N respectively). These pilot data suggest exogenous estrogens may be related to the development of acute pancreatitis and acute relapsing pancreatitis, and probably to a lesser degree chronic pancreatitis, perhaps through a triglyceride independent mechanism. During secretin stimulation testing, peak bicarbonate production may be diminished in women on estrogens (even in those who have never had pancreatitis). Further study is necessary to better define the relationship between estrogen use, pancreatitis, and pancreatic function.

  13. Estrogen plus Progestin and Risk of Benign Proliferative Breast Disease

    PubMed Central

    Rohan, Thomas E; Negassa, Abdissa; Chlebowski, Rowan T; Lasser, Norman L.; McTiernan, Anne; Schenken, Robert S.; Ginsberg, Mindy; Wassertheil-Smoller, Sylvia; Page, David L.

    2008-01-01

    Women with benign proliferative breast disease are at increased risk of subsequent breast cancer. Estrogens and progesterone exert proliferative effects on mammary epithelium and combined hormone replacement therapy has been associated with increased breast cancer risk. We tested the effect of conjugated equine estrogen plus progestin on risk of benign proliferative breast disease in the Women's Health Initiative (WHI) randomized controlled trial. In the WHI trial of estrogen plus progestin, 16608 postmenopausal women were randomly assigned either to 0.625 mg/d of conjugated equine estrogen plus 2.5 mg/d of medroxyprogesterone acetate or to placebo. Baseline and annual breast exams and mammograms were required. The trial was terminated early (average follow-up, 5.5 years). We identified women who had had a biopsy for benign breast disease and subjected histologic sections from the biopsies to standardized review. Overall, 178 incident cases of benign proliferative breast disease were ascertained in the estrogen plus progestin group and 99 in the placebo group. Use of estrogen plus progestin was associated with a 74% increase in risk of benign proliferative breast disease (hazard ratio 1.74, 95% CI 1.35-2.25). For benign proliferative breast disease without atypia the hazard ratio was 2.00 (95% CI 1.50-2.66), while for atypical hyperplasia it was 0.76 (95% CI 0.38-1.52). Risk varied little by levels of baseline characteristics. The results of this study suggest that use of estrogen plus progestin may increase the risk of benign proliferative breast disease. PMID:18725513

  14. Testosterone and estrogen impact social evaluations and vicarious emotions: A double-blind placebo-controlled study.

    PubMed

    Olsson, Andreas; Kopsida, Eleni; Sorjonen, Kimmo; Savic, Ivanka

    2016-06-01

    The abilities to "read" other peoples' intentions and emotions, and to learn from their experiences, are critical to survival. Previous studies have highlighted the role of sex hormones, notably testosterone and estrogen, in these processes. Yet it is unclear how these hormones affect social cognition and emotion using acute hormonal administration. In the present double-blind placebo-controlled study, we administered an acute exogenous dose of testosterone or estrogen to healthy female and male volunteers, respectively, with the aim of investigating the effects of these steroids on social-cognitive and emotional processes. Following hormonal and placebo treatment, participants made (a) facial dominance judgments, (b) mental state inferences (Reading the Mind in the Eyes Test), and (c) learned aversive associations through watching others' emotional responses (observational fear learning [OFL]). Our results showed that testosterone administration to females enhanced ratings of facial dominance but diminished their accuracy in inferring mental states. In men, estrogen administration resulted in an increase in emotional (vicarious) reactivity when watching a distressed other during the OFL task. Taken together, these results suggest that sex hormones affect social-cognitive and emotional functions at several levels, linking our results to neuropsychiatric disorders in which these functions are impaired. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Effects of estrogen and gender on cataractogenesis induced by high-LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, M.A.; Rusek, A.; Valluri, S.

    2010-02-01

    Planning for long-duration manned lunar and interplanetary missions requires an understanding of radiation-induced cataractogenesis. Previously, it was demonstrated that low-linear energy transfer (LET) irradiation with 10 Gy of {sup 60}Co {gamma} rays resulted in an increased incidence of cataracts in male rats compared to female rats. This gender difference was not due to differences in estrogen, since male rats treated with the major secreted estrogen 17-{beta}-estradiol (E2) showed an identical increase compared to untreated males. We now compare the incidence and rate of progression of cataracts induced by high-LET radiation in male and female Sprague-Dawley rats. Rats received a singlemore » dose of 1 Gy of 600 MeV {sup 56}Fe ions. Lens opacification was measured at 2-4 week intervals with a slit lamp. The incidence and rate of progression of radiation-induced cataracts was significantly increased in the animals in which estrogen was available from endogenous or exogenous sources. Male rats with E2 capsules implanted had significantly higher rates of progression compared to male rats with empty capsules implanted (P = 0.025) but not compared to the intact female rats. These results contrast with data obtained after low-LET irradiation and suggest the possibility that the different types of damage caused by high- and low-LET radiation may be influenced differentially by steroid sex hormones.« less

  16. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms.

  17. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure

    PubMed Central

    Jorgensen, Elisa M.; Alderman, Myles H.; Taylor, Hugh S.

    2016-01-01

    Bisphenol-A (BPA) is an environmentally ubiquitous estrogen-like endocrine-disrupting compound. Exposure to BPA in utero has been linked to female reproductive disorders, including endometrial hyperplasia and breast cancer. Estrogens are an etiological factor in many of these conditions. We sought to determine whether in utero exposure to BPA altered the global CpG methylation pattern of the uterine genome, subsequent gene expression, and estrogen response. Pregnant mice were exposed to an environmentally relevant dose of BPA or DMSO control. Uterine DNA and RNA were examined by using methylated DNA immunoprecipitation methylation microarray, expression microarray, and quantitative PCR. In utero BPA exposure altered the global CpG methylation profile of the uterine genome and subsequent gene expression. The effect on gene expression was not apparent until sexual maturation, which suggested that estrogen response was the primary alteration. Indeed, prenatal BPA exposure preferentially altered adult estrogen-responsive gene expression. Changes in estrogen response were accompanied by altered methylation that preferentially affected estrogen receptor-α (ERα)–binding genes. The majority of genes that demonstrated both altered expression and ERα binding had decreased methylation. BPA selectively altered the normal developmental programming of estrogen-responsive genes via modification of the genes that bind ERα. Gene–environment interactions driven by early life xenoestrogen exposure likely contributes to increased risk of estrogen-related disease in adults.—Jorgensen, E. M., Alderman, M. H., III, Taylor, H. S. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure. PMID:27312807

  18. Developmental Exposure to Estrogen Alters Differentiation and Epigenetic Programming in a Human Fetal Prostate Xenograft Model

    PubMed Central

    Saffarini, Camelia M.; McDonnell-Clark, Elizabeth V.; Amin, Ali; Huse, Susan M.; Boekelheide, Kim

    2015-01-01

    Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure. PMID:25799167

  19. Estrogenic activity of natural and synthetic estrogens in human breast cancer cells in culture.

    PubMed Central

    Zava, D T; Blen, M; Duwe, G

    1997-01-01

    We investigated the estrogenic activity of various environmental pollutants (xenobiotics), in particular the xenoestrogen o,p-DDT, and compared their effects with those of endogenous estrogens, phytoestrogens, and mycoestrogens on estrogen receptor binding capacity, induction of estrogen end products, and activation of cell proliferation in estrogen-sensitive human breast cancer cells in monolayer culture. We also quantified the levels of phytoestrogens in extracts of some common foods, herbs, and spices and in human saliva following consumption of a high phytoestrogen food source (soy milk) to compare phytoestrogen abundance and bioavailability relative to the reported xenoestrogen burden in humans. Results show that natural endogenous estrogens, phytoestrogens, mycoestrogens, and xenoestrogens bind estrogen receptor (ER) in intact cells, but demonstrate marked differences in their ability to induce end products of estrogen action and to regulate cell proliferation. All of the different classes of estrogens stimulated cell proliferation at concentrations that half-saturated ER, but only some classes were able to induce estrogen-regulated end products. Genistein, a common phytoestrogen found in soy foods, differed from the xenoestrogen DDT in its effects on cell proliferation and ability to induce estrogen-regulated end products. Moreover, we found that many of the foods, herbs, and spices commonly consumed by humans contain significant amounts of phytoestrogens, and consumption of soy milk, a phytoestrogen-rich food, markedly increases the levels of phytoestrogens in saliva. In conclusion, our in vitro results predict that a diet high in phytoestrogens would significantly reduce the binding of weak xenoestrogens to ER in target tissues in vivo. PMID:9168008

  20. The effect of grape seed extract on estrogen levels of postmenopausal women: a pilot study.

    PubMed

    Wahner-Roedler, Dietlind L; Bauer, Brent A; Loehrer, Laura L; Cha, Stephen S; Hoskin, Tanya L; Olson, Janet E

    2014-06-01

    The role of estrogens in breast cancer (BC) development is widely accepted, leading to the development of selective estrogen receptor modulators and aromatase inhibitors for BC treatment and prevention. However, because of potential adverse effects, healthy women with high risk of BC are hesitant to take them. Preliminary evidence from animal studies shows that grapes may have an aromatase-inhibiting effect, decreasing estrogen synthesis and increasing androgen precursors. We conducted a randomized, double-blind, dose-finding early-phase trial on the effect of grape seed extract (GSE) on estrogen levels. Postmenopausal women who met study inclusion criteria (N = 46) were randomly assigned to daily GSE at a dose of 200, 400, 600, or 800 mg for 12 weeks. Primary outcome was change in plasma levels of estrogen conjugates from baseline to 12 weeks posttreatment. Thirty-nine participants (84.8%) completed the study. GSE in the 4 daily doses did not significantly decrease estrogen or increase androgen precursors.

  1. ESTROGEN LEVELS DO NOT RISE WITH TESTOSTERONE TREATMENT FOR TRANSGENDER MEN.

    PubMed

    Chan, Kelly J; Jolly, Divya; Liang, Jennifer J; Weinand, Jamie D; Safer, Joshua D

    2018-04-01

    Existing transgender treatment guidelines suggest that for transmasculine treatment, there is a possible need for estrogen-lowering strategies adjunct to testosterone therapy. Further, guidelines advocate consideration of prophylactic female reproductive tissue surgeries for transgender men to avoid the possibility of estrogen-related health risks. Despite the paucity of objective data, some transgender men seek conversion inhibitors. We sought to determine estradiol levels in transgender men treated with testosterone therapy and the change in those levels with treatment, if any. Estradiol levels were extracted from the electronic medical records of 34 anonymized transgender men treated with testosterone therapy at the Endocrinology Clinic at Boston Medical Center. Data were sufficient to observe 6 years of follow-up. With increased testosterone levels in trans-gender men, a significant decrease in estradiol levels was noted. There was a significant negative correlation between testosterone levels and body mass index, which may serve to explain part of the mechanism for the fall in estradiol levels. Even though the fall in estradiol levels was significant statistically, the actual levels remained within the normal male range, even with 6 years of follow-up. These data suggest that when exogenous testosterone is used to achieve normal serum male testosterone levels for transgender men, it is converted to normal male levels of estradiol, with some decline in those estradiol levels that might be attributable to a fall in fat mass. There appears to be no role for aromatase conversion inhibitors or other estrogen-reducing strategies in trans-gender men. Abbreviation: BMI = body mass index.

  2. Estrogen levels modify scopolamine-induced amnesia in gonadally intact rats.

    PubMed

    de Macêdo Medeiros, André; Izídio, Geison Souza; Sousa, Diego Silveira; Macedo, Priscila Tavares; Silva, Anatildes Feitosa; Shiramizu, Victor Kenji Medeiros; Cabral, Alicia; Ribeiro, Alessandra Mussi; Silva, Regina Helena

    2014-08-04

    Previous studies suggested that estrogen plays a role in cognitive function by modulating the cholinergic transmission. However, most of the studies dealing with this subject have been conducted using ovariectomized rats. In the present study we evaluated the effects of physiological and supra-physiological variation of estrogen levels on scopolamine-induced amnesia in gonadally intact female rats. We used the plus-maze discriminative avoidance task (PMDAT) in order to evaluate anxiety levels and motor activity concomitantly to the memory performance. In experiment 1, female Wistar rats in each estrous cycle phase received scopolamine (1 mg/kg) or saline i.p. 20 min before the training session in the PMDAT. In experiment 2, rats in diestrus received estradiol valerate (1 mg/kg) or sesame oil i.m., and scopolamine (1 mg/kg) or saline i.p., 45 min and 20 min before the training, respectively. In experiment 3, rats in diestrus received scopolamine (1 mg/kg) or saline i.p. 20 min before the training, and estradiol valerate (1 mg/kg) or sesame oil i.m. immediately after the training session. In all experiments, a test session was performed 24 h later. The main results showed that: (1) scopolamine impaired retrieval and induced anxiolytic and hyperlocomotor effects in all experiments; (2) this cholinergic antagonist impaired acquisition only in animals in diestrus; (3) acute administration of estradiol valerate prevented the learning impairment induced by scopolamine and (4) interfered with memory consolidation process. The results suggest that endogenous variations in estrogen levels across the estrous cycle modulate some aspects of memory mediated by the cholinergic system. Indeed, specifically in diestrus, a stage with low estrogen levels, the impairment produced by scopolamine on the acquisition was counteracted by exogenous administration of the hormone, whereas the posttraining treatment potentiated the negative effects of scopolamine during the consolidation phase

  3. Estrogen-withdrawal migraine. I. Duration of exposure required and attempted prophylaxis by premenstrual estrogen administration.

    PubMed

    Somerville, B W

    1975-03-01

    The minimum exposure to estrogen required to cause estrogen-withdrawal migraine has been studied by giving long-acting estradiol valerate to four women and short-acting estradiol benzoate to two women. It was found that several days of exposure to high estrogen levels were needed to cause migraine on estrogen withdrawal. Oral administration of estrogen supplements in the form of estradiol valerate or as conjugated equine estrogens during the premenstrual phase in four women did not significantly affect plasma levels of estradiol, nor was it effective in preventing menstrual migraine.

  4. Thin metal organic frameworks coatings by cathodic electrodeposition for solid-phase microextraction and analysis of trace exogenous estrogens in milk.

    PubMed

    Lan, Hangzhen; Pan, Daodong; Sun, Yangying; Guo, Yuxing; Wu, Zhen

    2016-09-21

    Cathodic electrodeposition (CED) has received great attention in metal-organic frameworks (MOFs) synthesis due to its distinguished properties including simplicity, controllability, mild synthesis conditions, and product continuously. Here, we report the fabrication of thin (Et3NH)2Zn3(BDC)4 (E-MOF-5) film coated solid phase microextraction (SPME) fiber by a one-step in situ cathodic electrodeposition strategy. Several etched stainless steel fibers were placed in parallel in order to achieve simultaneously electrochemical polymerization. The influence of different polymerization parameters Et3NHCl concentration and polymerization time were evaluated. The proposed method requires only 20 min for the preparation of E-MOF-5 coating. The optimum coating showed excellent thermal stability and mechanical durability with a long lifetime of more than 120 repetitions SPME operations, and also exhibited higher extraction selectivity and capacity to four estrogens than commonly-used commercial PDMS coating. The limits of detection for the estrogens were 0.17-0.56 ng mL(-1). Fiber-to-fiber reproducibility (n = 8) was in the respective ranges of 3.5%-6.1% relative standard deviation (RSD) for four estrogens for triplicate measurements at 200 ng mL(-1). Finally, the (E-MOF-5) coated fiber was evaluated for ethinylestradiol (EE2), bisphenol A (BPA), diethylstilbestrol (DES), and hexestrol (HEX) extraction in the spiked milk samples. The extraction performance of this new coating was satisfied enough for repeatable use without obvious decline. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Exogenous carbonaceous matter in ancient martian sediments

    NASA Astrophysics Data System (ADS)

    Mojzsis, S. J.; Abramov, O.; Kereszturi, A.

    2015-12-01

    We re-evaluate the early evolution of an organic-matter rich (~10 wt. %) interplanetary dust particle flux to early Mars. Our work builds upon physical models that rely on plausible sources of exogenous debris and their dynamical rates of decay, the martian cratering record, and preservation of Noachian-Hesperian sedimentary units that have the potential to host organics. Post primary-accretionary scenarios that would have delivered abundant exogenous carbon to Mars can be imagined in two ways: a simple exponential decay with an approximately 100 Myr half-life, or as a "Sawtooth" timeline characterized by both faster-than-exponential decay from primary accretion and reduced total delivered mass. Indications are that a late bombardment spike was superposed on an otherwise broadly monotonic decline from primary accretion, of which two types are explored: a classical "Late Heavy Bombardment" (LHB) peak of impactors centered at ca. 3950 Ma and lasting 100 Myr, and a protracted bombardment typified by a sudden increase in impactor flux at ca. 4240-4100 Ma with a correspondingly longer decay time (400 Myr). Numerical models for each of the four bombardment scenarios explored in this work shows that exogenous organic matter could be a significant component of Noachian (ca. 4200-3700 Ma) and pre-Noachian (4500-4200 Ma) sediments. The discovery of organic-matter in martian sediments will be obfuscated by material of extra-areological origin. We predict that an earmark for the origin of this carbon would be correlated siderophile element abundances (e.g. Ni, Cr, and the platinoids). A time-dependent compositional relationship of C:HSEs would allow us to derive a chemochronology for pre-Hesperian (pre-3700 Ma) sedimentary units.

  6. Impact of Estrogens and Estrogen Receptor Alpha (ESR1) in Brain Lipid Metabolism.

    PubMed

    Morselli, Eugenia; de Souza Santos, Roberta; Gao, Su; Ávalos, Yenniffer; Criollo, Alfredo; Palmer, Biff F; Clegg, Deborah J

    2018-03-06

    Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.

  7. Estrogenic Exposure Alters the Spermatogonial Stem Cells in the Developing Testis, Permanently Reducing Crossover Levels in the Adult

    PubMed Central

    Vrooman, Lisa A.; Oatley, Jon M.; Griswold, Jodi E.; Hassold, Terry J.; Hunt, Patricia A.

    2015-01-01

    Bisphenol A (BPA) and other endocrine disrupting chemicals have been reported to induce negative effects on a wide range of physiological processes, including reproduction. In the female, BPA exposure increases meiotic errors, resulting in the production of chromosomally abnormal eggs. Although numerous studies have reported that estrogenic exposures negatively impact spermatogenesis, a direct link between exposures and meiotic errors in males has not been evaluated. To test the effect of estrogenic chemicals on meiotic chromosome dynamics, we exposed male mice to either BPA or to the strong synthetic estrogen, ethinyl estradiol during neonatal development when the first cells initiate meiosis. Although chromosome pairing and synapsis were unperturbed, exposed outbred CD-1 and inbred C3H/HeJ males had significantly reduced levels of crossovers, or meiotic recombination (as defined by the number of MLH1 foci in pachytene cells) by comparison with placebo. Unexpectedly, the effect was not limited to cells exposed at the time of meiotic entry but was evident in all subsequent waves of meiosis. To determine if the meiotic effects induced by estrogen result from changes to the soma or germline of the testis, we transplanted spermatogonial stem cells from exposed males into the testes of unexposed males. Reduced recombination was evident in meiocytes derived from colonies of transplanted cells. Taken together, our results suggest that brief exogenous estrogenic exposure causes subtle changes to the stem cell pool that result in permanent alterations in spermatogenesis (i.e., reduced recombination in descendent meiocytes) in the adult male. PMID:25615633

  8. Effects of estrogen on cerebrovascular function: age-dependent shifts from beneficial to detrimental in small cerebral arteries of the rat

    PubMed Central

    Deer, Rachel R.

    2016-01-01

    In the present study, interactions of age and estrogen in the modulation of cerebrovascular function were examined in small arteries <150 μM. The hypothesis tested was that age enhances deleterious effects of exogenous estrogen by augmenting constrictor prostanoid (CP)-potentiated reactivity of the female (F) cerebrovasculature. F Sprague-Dawley rats approximating key stages of “hormonal aging” in humans were studied: perimenopausal (mature multi-gravid, MA, cyclic, 5–6 mo of age) and postmenopausal (reproductively senescent, RS, acyclic 10–12 mo of age). Rats underwent bilateral ovariectomy and were given estrogen replacement therapy (E) or placebo (O) for 14–21 days. Vasopressin reactivity (VP, 10−12–10−7 M) was measured in pressurized middle cerebral artery segments, alone or in the presence of COX-1- (SC560, 1 μM) or COX-2- (NS398, 10 μM) selective inhibitors. VP-stimulated release of prostacyclin (PGI2) and thromboxane (TXA2) were assessed by radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites). VP-induced vasoconstriction was attenuated in ovariectomized + estrogen-replaced, multigravid adult rats (5–6 mo; MAE) but potentiated in older ovariectomized + estrogen-replaced, reproductively senescent rats (12–14 mo; RSE). SC560 and NS398 reduced reactivity similarly in ovariectomized multigravid adult rats (5–6 mo; MAO) and ovariectomized reproductively senescent rat (12–14 mo; RSO). In MAE, reactivity to VP was reduced to a greater extent by SC560 than by NS398; however, in RSE, this effect was reversed. VP-stimulated PGI2 was increased by estrogen, yet reduced by age. VP-stimulated TXA2 was increased by estrogen and age in RSE but did not differ in MAO and RSO. Taken together, these data reveal that the vascular effects of estrogen are distinctly age-dependent in F rats. In younger MA, beneficial and protective effects of estrogen are evident (decreased vasoconstriction, increased dilator prostanoid function). Conversely, in

  9. Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats.

    PubMed

    Glendenning, Michele L; Lovekamp-Swan, Tara; Schreihofer, Derek A

    2008-11-14

    Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized and divided into placebo and estradiol-treated groups. Two weeks later, halothane-anesthetized rats underwent middle cerebral artery (MCA) occlusion by interparenchymal stereotactic injection of the potent vasoconstrictor endothelin 1 (180pmoles/2microl) near the middle cerebral artery. Laser-Doppler flowmetry (LDF) revealed similar reductions in cerebral blood flow in both groups. Animals were behaviorally evaluated before, and 2 days after, stroke induction, and infarct size was evaluated. In agreement with other models, estrogen treatment significantly reduced infarct size evaluated by both TTC and Fluoro-Jade staining and behavioral deficits associated with stroke. Stroke size was significantly correlated with LDF in both groups, suggesting that cranial perfusion measures can enhance success in this model.

  10. Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: a systematic review.

    PubMed

    Toffoletto, Simone; Lanzenberger, Rupert; Gingnell, Malin; Sundström-Poromaa, Inger; Comasco, Erika

    2014-12-01

    Ovarian hormones are pivotal for the physiological maintenance of the brain function as well as its response to environmental stimuli. There is mounting evidence attesting the relevance of endogenous ovarian hormones as well as exogenous estradiol and progesterone for emotional and cognitive processing. The present review systematically summarized current knowledge on sex steroid hormonal modulation of neural substrates of emotion and cognition revealed by functional magnetic resonance imaging (fMRI). Twenty-four studies of healthy naturally cycling and combined oral contraceptives (COC) user women, or women undergoing experimental manipulations, during their reproductive age, were included. Furthermore, six studies of premenstrual dysphoric disorder (PMDD), a hormonally based mood disorder, and three of gender dysphoria (GD), which provides an intriguing opportunity to examine the effect of high-dose cross-sex hormone therapy (CSHT) on brain functioning, were included. Globally, low (early follicular and the entire follicular phase for estrogen and progesterone, respectively) and high (COC, CSHT, late follicular and luteal phase for estrogen; COC, mid- and late-luteal phase for progesterone) hormonal milieu diversely affected the response of several brain regions including the amygdala, anterior cingulate cortex, and inferior frontal gyrus, but their functional recruitment across groups and domains was scattered. The constellation of findings provides initial evidence of the influence of sex steroid hormones on cortical and subcortical regions implicated in emotional and cognitive processing. Further well-powered and multimodal neuroimaging studies will be needed to identify the neural mechanism of functional brain alterations induced by sex steroid hormones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Matching cue size and task properties in exogenous attention.

    PubMed

    Burnett, Katherine E; d'Avossa, Giovanni; Sapir, Ayelet

    2013-01-01

    Exogenous attention is an involuntary, reflexive orienting response that results in enhanced processing at the attended location. The standard view is that this enhancement generalizes across visual properties of a stimulus. We test whether the size of an exogenous cue sets the attentional field and whether this leads to different effects on stimuli with different visual properties. In a dual task with a random-dot kinematogram (RDK) in each quadrant of the screen, participants discriminated the direction of moving dots in one RDK and localized one red dot. Precues were uninformative and consisted of either a large or a small luminance-change frame. The motion discrimination task showed attentional effects following both large and small exogenous cues. The red dot probe localization task showed attentional effects following a small cue, but not a large cue. Two additional experiments showed that the different effects on localization were not due to reduced spatial uncertainty or suppression of RDK dots in the surround. These results indicate that the effects of exogenous attention depend on the size of the cue and the properties of the task, suggesting the involvement of receptive fields with different sizes in different tasks. These attentional effects are likely to be driven by bottom-up mechanisms in early visual areas.

  12. Estrogen and Osteoporosis.

    ERIC Educational Resources Information Center

    Lindsay, Robert

    1987-01-01

    This article reviews the use of estrogen in the prevention and treatment of osteoporosis. Dosage levels, interactions with other factors, side effects, and the mechanism of estrogen action are discussed. (Author/MT)

  13. Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall.

    PubMed

    Ripperda, Christopher M; Maldonado, Pedro Antonio; Acevedo, Jesus F; Keller, Patrick W; Akgul, Yucel; Shelton, John M; Word, Ruth Ann

    2017-07-01

    Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury.

  14. Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall

    PubMed Central

    Ripperda, Christopher M.; Maldonado, Pedro Antonio; Acevedo, Jesus F.; Keller, Patrick W.; Akgul, Yucel; Shelton, John M.; Word, Ruth Ann

    2017-01-01

    Abstract Objective: Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Methods: Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). Results: MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Conclusions: Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury. PMID:28169915

  15. The Molecular, Cellular and Clinical Consequences of Targeting the Estrogen Receptor Following Estrogen Deprivation Therapy

    PubMed Central

    Fan, Ping; Maximov, Philipp Y.; Curpan, Ramona F.; Abderrahman, Balkees; Jordan, V. Craig

    2015-01-01

    During the past twenty years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed “morning after pill”, was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite “antiestrogen” resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER Modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women’s health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term Hormone Replacement Therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells. PMID:26052034

  16. VASCULAR ACTIONS OF ESTROGENS: FUNCTIONAL IMPLICATIONS

    PubMed Central

    Miller, Virginia M.; Duckles, Sue P.

    2009-01-01

    The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, it is the goal of this review to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared to men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. While consensus opinions are emphasized, controversial views are presented in order to stimulate future research. PMID:18579753

  17. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    PubMed Central

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2005-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl hydrocarbon receptor (AhR). In order to characterize compounds that mediate estrogenic activity in river water and sediment samples, we developed a tool based on the ER-αligand-binding domain, which permitted us to estimate contaminating estrogenic compound affinities. We designed a simple transactivation assay in which compounds of high affinity were captured by limited amounts of recombinant ER-αand whose capture led to a selective inhibition of transactivation. This approach allowed us to bring to light that water samples contain estrogenic compounds that display a high affinity for ERs but are present at low concentrations. In sediment samples, on the contrary, we showed that estrogenic compounds possess a low affinity and are present at high concentration. Finally, we used immobilized recombinant ER-αto separate ligands for ER and AhR that are present in river sediments. Immobilized ER-α, which does not retain dioxin-like compounds, enabled us to isolate and concentrate ER ligands to facilitate their further analysis. PMID:15743715

  18. A-C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions.

    PubMed

    Hanson, Alicia M; Perera, K L Iresha Sampathi; Kim, Jaekyoon; Pandey, Rajesh K; Sweeney, Noreena; Lu, Xingyun; Imhoff, Andrea; Mackinnon, Alexander Craig; Wargolet, Adam J; Van Hart, Rochelle M; Frick, Karyn M; Donaldson, William A; Sem, Daniel S

    2018-06-14

    Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC 50 s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.

  19. Effect of halogenated substituents on the metabolism and estrogenic effects of the equine estrogen, equilenin.

    PubMed

    Liu, Xuemei; Zhang, Fagen; Liu, Hong; Burdette, Joanna E; Li, Yan; Overk, Cassia R; Pisha, Emily; Yao, Jiaqin; van Breemen, Richard B; Swanson, Steven M; Bolton, Judy L

    2003-06-01

    Estrogen replacement therapy has been correlated with an increased risk for developing breast and endometrial cancers. One potential mechanism of estrogen carcinogenesis involves metabolism of estrogens to 2- and 4-hydroxylated catechols, which are further oxidized to electrophilic/redox active o-quinones that have the potential to both initiate and promote the carcinogenic process. Previously, we showed that the equine estrogens, equilin and equilenin, which are major components of the estrogen replacement formulation Premarin (Wyeth-Ayerst), are primarily metabolized to the catechol, 4-hydroxyequilenin. This catechol was found to autoxidize to an o-quinone causing oxidation and alkylation of DNA in vitro and in vivo. To block catechol formation from equilenin, 4-halogenated equilenin derivatives were synthesized. These derivatives were tested for their ability to bind to the estrogen receptor, induce estrogen sensitive genes, and their potential to form catechol metabolites. We found that the 4-fluoro derivatives were more estrogenic than the 4-chloro and 4-bromo derivatives as demonstrated by a higher binding affinity for estrogen receptors alpha and beta, an enhanced induction of alkaline phosphatase activity in Ishikawa cells, pS2 expression in S30 cells, and PR expression in Ishikawa cells. Incubation of these compounds with tyrosinase in the presence of GSH showed that the halogenated equilenin compounds formed less catechol GSH conjugates than the parent compounds, equilenin and 17beta-hydroxyequilenin. In addition, these halogenated compounds showed less cytotoxicity in the presence of tyrosinase than the parent compounds in S30 cells. Also, as stated above, the 4-fluoro derivatives showed similar estrogenic effects as compared with parent compounds; however, they were less toxic in S30 cells as compared to equilenin and 17beta-equilenin. Because 17beta-hydroxy-4-halogenated equilenin derivatives showed higher estrogenic effects than the halogenated

  20. Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: A review.

    PubMed

    Ma, Li; Yates, Scott R

    2018-06-03

    This review summarizes the characterization and quantification of interactions between dissolved organic matter (DOM) and estrogens as well as the effects of DOM on aquatic estrogen removal. DOM interacts with estrogens via binding or sorption mechanisms like π-π interaction and hydrogen bonding. The binding affinity is evaluated in terms of organic-carbon-normalized sorption coefficient (Log K OC ) which varies with types and composition of DOM. DOM has been suggested to be a more efficient sorbent compared with other matrices, such as suspended particulate matter, sediment and soil; likely associated with its large surface area and concentrated carbon content. As a photosensitizer, DOM enhanced estrogen photodegradation when the concentration of DOM was below a threshold value, and when above, the acceleration effect was not observed. DOM played a dual role in affecting biodegradation of estrogens depending on the recalcitrance of the DOM and the nutrition status of the degraders. DOM also acted as an electron shuttle (redox mediator) mediating the degradation of estrogens. DOM hindered enzyme-catalyzed removal of estrogens while enhanced their transformation during the simultaneous photo-enzymatic process. Membrane rejection of estrogens was pronounced for hydrophobic DOM with high aromaticity and phenolic moiety content. Elimination of estrogens via photolysis, biodegradation, enzymolysis and membrane rejection in the presence of DOM is initiated by sorption, accentuating the role of DOM as a mediator in regulating aquatic estrogen removal. Published by Elsevier B.V.

  1. Endoxifen, 4-Hydroxytamoxifen and an Estrogenic Derivative Modulate Estrogen Receptor Complex Mediated Apoptosis in Breast Cancer.

    PubMed

    Maximov, Philipp Y; Abderrahman, Balkees; Fanning, Sean W; Sengupta, Surojeet; Fan, Ping; Curpan, Ramona F; Quintana Rincon, Daniela Maria; Greenland, Jeffery A; Rajan, Shyamala S; Greene, Geoffrey L; Jordan, V Craig

    2018-05-08

    Estrogen therapy was used to treat advanced breast cancer in postmenopausal women for decades until the introduction of tamoxifen. Resistance to long-term estrogen deprivation (LTED) with tamoxifen and aromatase inhibitors used as a treatment for breast cancer inevitably occurs, but unexpectedly low dose estrogen can cause regression of breast cancer and increase disease free survival in some patients. This therapeutic effect is attributed to estrogen-induced apoptosis in LTED breast cancer. Here we describe modulation of the estrogen receptor liganded with antiestrogens (endoxifen, 4-hydroxytamoxifen) and an estrogenic triphenylethylene (TPE) EthoxyTPE (EtOXTPE) on estrogen-induced apoptosis in LTED breast cancer cells. Our results show that the angular TPE estrogen (EtOXTPE) is able to induce the ER-mediated apoptosis only at a later time compared to planar estradiol in these cells. Using RT-PCR, ChIP, Western blotting, molecular modelling and X-ray crystallography techniques we report novel conformations of the ER complex with an angular estrogen EtOXTPE and endoxifen. We propose that alteration of the conformation of the ER complexes, with changes in coactivator binding, governs estrogen-induced apoptosis through the PERK sensor system to trigger an Unfolded Protein Response (UPR). The American Society for Pharmacology and Experimental Therapeutics.

  2. The E-screen assay as a tool to identify estrogens: An update on estrogenic environmental pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, A.M.; Sonnenschein, C.; Chung, K.L.

    1995-10-01

    Estrogens are defined by their ability to induce the proliferation of cells of the female genital tract. The wide chemical diversity of estrogenic compounds precludes an accurate prediction of estrogenic activity on the basis of chemical structure. Rodent bioassays are not suited for the large-scale screening of chemicals before their release into the environment because of their cost, complexity, and ethical concerns. The E-SCREEN assay was developed to assess the estrogenicity of environmental chemicals using the proliferative effect of estrogens on their target cells as an end point. This quantitative assay compares the cell number achieved by similar inocula ofmore » MCF-7 cells in the absence of estrogens (negative control) and in the presence of 17{beta}-estradiol (positive control) and a range of concentrations of chemicals suspected to be estrogenic. Among the compounds tested, several {open_quotes}new{close_quotes} estrogens were found; alkylphenols, phthalates, some PCB congeners and hydroxylated PCBs, and the insecticides dieldrin, endosulfan, and toxaphene were estrogenic by the E-SCREEN assay. In addition, these compounds competed with estradiol for binding to the estrogen receptor and increased the levels of progesterone receptor and pS2 in MCF-7 cells, as expected from estrogen mimics. Recombinant human growth factors (bFGF, EGF, IGF-1) and insulin did not increase cell yields. The aims of the work summarized in this paper were (a) to validate the E-SCREEN assay; (b) to screen a variety of chemicals present in the environment to identify those that may be causing reproductive effects in wildlife and humans; (c) to assess whether environmental estrogens may act cumulatively; and finally (d) to discuss the reliability of this and other assays to screen chemicals for their estrogenicity before they are released into the environment. 57 refs., 3 figs., 9 tabs.« less

  3. Hepatic gene expression patterns following trauma-hemorrhage: effect of posttreatment with estrogen.

    PubMed

    Yu, Huang-Ping; Pang, See-Tong; Chaudry, Irshad H

    2013-01-01

    The aim of this study was to examine the role of estrogen on hepatic gene expression profiles at an early time point following trauma-hemorrhage in rats. Groups of injured and sham controls receiving estrogen or vehicle were killed 2 h after injury and resuscitation, and liver tissue was harvested. Complementary RNA was synthesized from each RNA sample and hybridized to microarrays. A large number of genes were differentially expressed at the 2-h time point in injured animals with or without estrogen treatment. The upregulation or downregulation of a cohort of 14 of these genes was validated by reverse transcription-polymerase chain reaction. This large-scale microarray analysis shows that at the 2-h time point, there is marked alteration in hepatic gene expression following trauma-hemorrhage. However, estrogen treatment attenuated these changes in injured animals. Pathway analysis demonstrated predominant changes in the expression of genes involved in metabolism, immunity, and apoptosis. Upregulation of low-density lipoprotein receptor, protein phosphatase 1, regulatory subunit 3C, ring-finger protein 11, pyroglutamyl-peptidase I, bactericidal/permeability-increasing protein, integrin, αD, BCL2-like 11, leukemia inhibitory factor receptor, ATPase, Cu transporting, α polypeptide, and Mk1 protein was found in estrogen-treated trauma-hemorrhaged animals. Thus, estrogen produces hepatoprotection following trauma-hemorrhage likely via antiapoptosis and improving/restoring metabolism and immunity pathways.

  4. Estrogen signaling through the G protein-coupled estrogen receptor regulates granulocyte activation in fish.

    PubMed

    Cabas, Isabel; Rodenas, M Carmen; Abellán, Emilia; Meseguer, José; Mulero, Victoriano; García-Ayala, Alfonsa

    2013-11-01

    Neutrophils are major participants in innate host responses. It is well known that estrogens have an immune-modulatory role, and some evidence exists that neutrophil physiology can be altered by these molecules. Traditionally, estrogens act via classical nuclear estrogen receptors, but the identification of a G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor that binds estradiol and other estrogens, has opened up the possibility of exploring additional estrogen-mediated effects. However, information on the importance of GPER for immunity, especially, in neutrophils is scant. In this study, we report that gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils, express GPER at both mRNA and protein levels. By using a GPER selective agonist, G1, it was found that GPER activation in vitro slightly reduced the respiratory burst of acidophilic granulocytes and drastically altered the expression profile of several genes encoding major pro- and anti-inflammatory mediators. In addition, GPER signaling in vivo modulated adaptive immunity. Finally, a cAMP analog mimicked the effects of G1 in the induction of the gene coding for PG-endoperoxide synthase 2 and in the induction of CREB phosphorylation, whereas pharmacological inhibition of protein kinase A superinduced PG-endoperoxide synthase 2. Taken together, our results demonstrate for the first time, to our knowledge, that estrogens are able to modulate vertebrate granulocyte functions through a GPER/cAMP/protein kinase A/CREB signaling pathway and could establish therapeutic targets for several immune disorders in which estrogens play a prominent role.

  5. Exogenous attention to fear: Differential behavioral and neural responses to snakes and spiders.

    PubMed

    Soares, Sandra C; Kessel, Dominique; Hernández-Lorca, María; García-Rubio, María J; Rodrigues, Paulo; Gomes, Nuno; Carretié, Luis

    2017-05-01

    Research has consistently shown that threat stimuli automatically attract attention in order to activate the defensive response systems. Recent findings have provided evidence that snakes tuned the visual system of evolving primates for their astute detection, particularly under challenging perceptual conditions. The goal of the present study was to measure behavioral and electrophysiological indices of exogenous attention to snakes, compared with spiders - matched for rated fear levels but for which sources of natural selection are less well grounded, and to innocuous animals (birds), which were presented as distracters, while participants were engaged in a letter discrimination task. Duration of stimuli, consisting in a letter string and a concurrent distracter, was either presented for 180 or 360ms to explore if the stimulus duration was a modulating effect of snakes in capturing attention. Results showed a specific early (P1) exogenous attention-related brain potential with maximal amplitude to snakes in both durations, which was followed by an enhanced late attention-related potential (LPP) showing enhanced amplitudes to spiders, particularly under the longer exposure durations. These results suggest that exogenous attention to different classes of threat stimuli follows a gradual process, with the most evolutionary-driven stimulus, i.e., snakes, being more efficient at attracting early exogenous attention, thus more dependent on bottom-up processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Estrogenic Activity of Hyperforin in MCF-7 Human Breast Cancer Cells Transfected with Estrogen Receptor.

    PubMed

    Kwon, Joseph; Oh, Kyung Seo; Cho, Se-Young; Bang, Mi Ae; Kim, Hwan Seon; Vaidya, Bipin; Kim, Duwoon

    2016-11-01

    Hyperforin, a major active compound of St. John's wort extract, affects estrogenic activity. In this study, the compound evoked estrogen response element-dependent luciferase activity and cell proliferation in MCF-7 cells. Hyperforin-induced cell proliferation was significantly inhibited by the estrogen receptor antagonist ICI 182,780. These results suggested that hyperforin had estrogenic and cell proliferation activities, which were stimulated via the estrogen receptor. Compared to 17 β -estradiol, hyperforin showed significantly lower estrogenic activity and cell proliferation. The mechanism underlying the estrogenic activity of hyperforin was unknown, therefore, in this study, for the first time, the expression and post-translational modification of proteins were determined and compared among control, 17 β -estradiol-treated, and hyperforin-treated cells using proteomic techniques. A total of 453 proteins were identified, of which 282 proteins were significantly modulated in hyperforin-treated cells compared to 17 β -estradiol-treated cells. Ingenuity pathway analysis also demonstrated that hyperforin treatment induced less cell proliferation than 17 β -estradiol by downregulating estrogen receptor 1. Protein network analysis showed that cell proliferation was regulated mainly by cyclin D1 and extracellular signal-regulated kinases. In conclusion, although, hyperforin exhibited lower estrogenic activity than 17 β -estradiol, the compound induced lower levels of cancer cell proliferation in vitro . Georg Thieme Verlag KG Stuttgart · New York.

  7. Alleviation of ischaemia-reperfusion injury by endogenous estrogen involves maintaining Bcl-2 expression via the ERα signalling pathway.

    PubMed

    Zhang, Zeng-Li; Qin, Pei; Liu, Yuhong; Zhang, Li-Xia; Guo, Hang; Deng, You-Liang; Yizhao-Liu; Hou, Yu-Shu; Wang, Li-Yang; Miao, Yi; Ma, Yu-Long; Hou, Wu-Gang

    2017-04-15

    The neuroprotective effects of estrogen against cerebral ischaemia have been confirmed by multiple basic and clinical studies. However, most of these studies used exogenous estrogen administered via different injection methods, and the neuroprotective effects of endogenous estrogen produced by ovaries during different phases of estrous cycle and the underlying mechanisms involved have rarely been explored. In this study, we first identified the stage of estrous cycle via vaginal smears and then measured serum estradiol levels at each phase via radioimmunoassay. We found that the estradiol level was highest in the proestrous and lowest in the diestrous. However, ovariectomy or treatment with the aromatase inhibitor letrozole significantly decreased estradiol levels compared to that of rats in diestrous. Western blotting showed that ovariectomy or letrozole treatment significantly decreased ERα and Bcl-2 protein expression and dramatically increased Bax protein expression compared with the rats in diestrous or proestrous. Rats also underwent 2h of ischaemia via middle cerebral artery occlusion followed by a 24-h reperfusion. Ovariectomy or letrozole treatment significantly decreased the neurological scores and the number of intact neurons detected via Nissl staining and dramatically increased the infarct volume detected via TTC staining and the extent of apoptosis detected via TUNEL staining and Western blotting for cleaved-caspase 3 protein expression. These results demonstrate that endogenous estrogen alleviates ischaemia-reperfusion injury by maintaining Bcl-2 expression via ERα signalling pathway and highlight the neuroprotective effects of endogenous estrogen during different stages of the estrous cycle, providing preliminary information on the underlying mechanism of this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study.

    PubMed

    Flores, Roberto; Shi, Jianxin; Fuhrman, Barbara; Xu, Xia; Veenstra, Timothy D; Gail, Mitchell H; Gajer, Pawel; Ravel, Jacques; Goedert, James J

    2012-12-21

    High systemic estrogen levels contribute to breast cancer risk for postmenopausal women, whereas low levels contribute to osteoporosis risk. Except for obesity, determinants of non-ovarian systemic estrogen levels are undefined. We sought to identify members and functions of the intestinal microbial community associated with estrogen levels via enterohepatic recirculation. Fifty-one epidemiologists at the National Institutes of Health, including 25 men, 7 postmenopausal women, and 19 premenopausal women, provided urine and aliquots of feces, using methods proven to yield accurate and reproducible results. Estradiol, estrone, 13 estrogen metabolites (EM), and their sum (total estrogens) were quantified in urine and feces by liquid chromatography/tandem mass spectrometry. In feces, β-glucuronidase and β-glucosidase activities were determined by realtime kinetics, and microbiome diversity and taxonomy were estimated by pyrosequencing 16S rRNA amplicons. Pearson correlations were computed for each loge estrogen level, loge enzymatic activity level, and microbiome alpha diversity estimate. For the 55 taxa with mean relative abundance of at least 0.1%, ordinal levels were created [zero, low (below median of detected sequences), high] and compared to loge estrogens, β-glucuronidase and β-glucosidase enzymatic activity levels by linear regression. Significance was based on two-sided tests with α=0.05. In men and postmenopausal women, levels of total urinary estrogens (as well as most individual EM) were very strongly and directly associated with all measures of fecal microbiome richness and alpha diversity (R≥0.50, P≤0.003). These non-ovarian systemic estrogens also were strongly and significantly associated with fecal Clostridia taxa, including non-Clostridiales and three genera in the Ruminococcaceae family (R=0.57-0.70, P=0.03-0.002). Estrone, but not other EM, in urine correlated significantly with functional activity of fecal β-glucuronidase (R=0.36, P=0

  9. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER.

    PubMed

    Zekas, Erin; Prossnitz, Eric R

    2015-10-15

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  10. The Measurement of Estrogens

    NASA Astrophysics Data System (ADS)

    Holder, Geoff; Makin, Hugh L. J.; Bradlow, H. Leon

    Biologists use the word ‘estrogen' when referring to molecules which have the ability to induce uterine growth or vaginal cornification in the immature or ovariectomized rodent. The word estrogen was derived from two Greek words - oistros meaning frenzy and gennein - to beget. Chemists and biochemists, however, often restrict their use of this term to molecules that contain a characteristic 18-carbon steroid nucleus with an aromatic (phenolic) A-ring, both those that are biologically active estrogens and those without biologic activity but which are of intrinsic interest, such as the estrogen conjugates. This chapter is concerned only with these steroid compounds. The structure and inter-relationship of some common estrogens are given in Fig. 8.1. In addition to the biological estrogens, there are a wide variety of both natural and synthetic compounds which have estrogenic activity when measured by one or another parameter. While many of the assay procedures described in this review are applicable to these compounds, their application to non C18-steroids will not be discussed here. Methodology for these non-steroidal compounds can be found in reviews by Wang et al. (2002), Wu et al. (2004), Muir (2006), and Delmonte and Rader (2006). While not wishing to downgrade the importance of previous work in the estrogen field, the authors have taken a deliberate decision to exclude most publications prior to 1975, not because these do not have value but simply because space is not unlimited and readers of the present chapter might be expected to be seeking information about methodology which is less than 30 years old. Readers seeking pre-1975 information in this area can find it in Oakey and Holder (1995).

  11. Estrogen and the female heart.

    PubMed

    Knowlton, A A; Korzick, D H

    2014-05-25

    Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system. Published by Elsevier Ireland Ltd.

  12. Estrogen supports urothelial defense mechanisms.

    PubMed

    Lüthje, Petra; Brauner, Hanna; Ramos, Nubia L; Ovregaard, Amanda; Gläser, Regine; Hirschberg, Angelica Lindén; Aspenström, Pontus; Brauner, Annelie

    2013-06-19

    Epidemiological data imply a role of estrogen in the pathogenesis of urinary tract infections (UTIs), although the underlying mechanisms are not well understood. However, it is thought that estrogen supplementation after menopause decreases the risk of recurrent infections. We sought to investigate the influence of estrogen on host-pathogen interactions and the consequences for UTI pathogenesis. We analyzed urothelial cells from menstruating and postmenopausal women before and after a 2-week period of estrogen supplementation, and also studied the influence of estradiol during Escherichia coli UTI in a mouse infection model. Important findings were confirmed in two human urothelial cell lines. We identified two epithelial defense mechanisms modulated by estrogen. Estrogen induced the expression of antimicrobial peptides, thereby enhancing the antimicrobial capacity of the urothelium and restricting bacterial multiplication. In addition, estrogen promoted the expression and redistribution of cell-cell contact-associated proteins, thereby strengthening the epithelial integrity and preventing excessive loss of superficial cells during infection. These two effects together may prevent bacteria from reaching deeper layers of the urinary tract epithelium and developing reservoirs that can serve as a source for recurrent infections. Thus, this study presents some underlying mechanisms for the beneficial effect of estradiol after menopause and supports the application of estrogen in postmenopausal women suffering from recurrent UTI.

  13. Exogenous attention facilitates location transfer of perceptual learning.

    PubMed

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.

  14. Exogenous attention facilitates location transfer of perceptual learning

    PubMed Central

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity. PMID:26426818

  15. Interaction between parathyroid hormone and endogenous estrogen in normal women.

    PubMed

    Buchanan, J R; Santen, R J; Cavaliere, A; Cauffman, S W; Greer, R B; Demers, L M

    1986-06-01

    It has been hypothesized that estrogens conserve bone substance by blocking the resorbing effect of parathyroid hormone (PTH). We evaluated this hypothesis by examining the relation of circulating PTH to endogenous estrogen fluctuation during four quarters of a single menstrual cycle in 20 normal women. The hypothesis predicts that PTH should vary directly with estrogen, since PTH should increase following estrogen elevation to satisfy physiologic demands for calcium. Contrary to the predicted direct variation, PTH remained constant throughout the menstrual cycle despite sharply fluctuating estrogen levels. Furthermore, PTH was negatively associated with estrone during the early follicular (r = -.65, P less than 0.005) and late follicular (r = -.84, P less than 0.0001) phases. We attempted to determine whether this unexpected relationship between estrone and PTH signified a direct physiologic link, by excluding factors which could have spuriously engendered the inverse correlation. Stepwise multiple regression and partial correlation showed that estrone contributed significantly to circulating PTH independent of the effects of dietary calcium, 25-hydroxyvitamin D, serum calcium, 1,25-dihydroxyvitamin D, phosphate, estradiol, progesterone, and body weight. Therefore, it is possible that the inverse correlation between estrone and PTH signified a direct physiologic link, as an artifactual cause for the relationship could not be identified. These data imply that estrone interacts with PTH, but not by blocking PTH-mediated bone resorption. We conclude that estrone is associated with reduced circulating PTH through an as yet undetermined mechanism.

  16. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta.

    PubMed

    Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki

    2004-01-01

    There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.

  17. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β

    PubMed Central

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-01-01

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ. PMID:28404976

  18. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    PubMed

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  19. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared tomore » 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater

  20. Early onset of puberty and early ovarian failure in CYP7B1 knockout mice.

    PubMed

    Omoto, Yoko; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Ake

    2005-02-22

    CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5alpha-androstane-3beta, 17beta-diol (3betaAdiol). 3betaAdiol is estrogenic in ERalpha or ERbeta positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1(-/-) mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3betaAdiol, CYP7B1 performs two major tasks: (i) it allows 3betaAdiol to have growth inhibitory effects through ERbeta and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3betaAdiol. When CYP7B1 is inactivated, 3betaAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen.

  1. Environmental estrogenic effects of alkylphenol ethoxylates.

    PubMed

    Nimrod, A C; Benson, W H

    1996-05-01

    Alkylphenol ethoxylates (APEs) and related compounds recently have been reported to be estrogenic because it has been demonstrated in laboratory studies that they mimic the effects of estradiol both in vitro and in vivo. Chemicals referred to as "environmental estrogens" are suspected of causing health effects in both humans and wildlife through disruption of the endocrine system. In this review, the occurrence, environmental fate, and biological effects of APEs are presented. To provide understanding of the potential for endocrine disruption due to environmental estrogens, the physiology of estrogens in mammals and fish is also reviewed. The estrogenic potency of other environmental estrogens is compared to the potency of APE degradation products. The reproductive effects of estrogenic compounds are considered when evaluating the potential health effects of APEs. Given the reported environmental concentrations and bioconcentration factors of APE products, the potential for these compounds to produce estrogenic effects in the environment appears low. Although questions concerning the physiological effects of APEs and other environmental estrogens remain unanswered, there are indications that research is in progress that will lead to better understanding of the risks to humans and wildlife.

  2. Dietary estrogens--a probable cause of infertility and liver disease in captive cheetahs.

    PubMed

    Setchell, K D; Gosselin, S J; Welsh, M B; Johnston, J O; Balistreri, W F; Kramer, L W; Dresser, B L; Tarr, M J

    1987-08-01

    The cheetah in the wild is "racing towards extinction" mostly due to habitat destruction. Its survival will probably depend on accelerated captive breeding. At this time, however, reproductive failure and liver disease threaten the future of the captive cheetah population. Histopathological evaluation of more than 100 cheetah livers identified venocclusive disease as the main hepatic lesion responsible for liver disease in this species. Analysis of the commercial feline diet by high-performance liquid chromatography and gas-liquid chromatography-mass spectrometry revealed large amounts of two phytoestrogens identified as daidzein and genistein. These compounds were found to be derived from a soybean product that was a component of the cheetah diet, and their concentrations both ranged from 18 to 35 micrograms/g diet. The adult cheetah consequently consumes approximately 50 mg/day of these weak estrogens. When extracts of the diet were tested for estrogenicity using a bioassay, a dose-related increase in uterine weight was observed. In 4 cheetahs studied, withdrawal of this feline diet by substitution with a chicken diet resulted in an improvement in conventional liver function tests and a normalization in the appearance of hepatic mitochondria. We conclude that the relatively high concentrations of phytoestrogens from soybean protein present in the commercial diet fed to captive cheetahs in North American zoos may be one of the major factors in the decline of fertility and in the etiology of liver disease in this species. The survival of the captive cheetah population could depend upon a simple change of diet by excluding exogenous estrogen.

  3. Estrogenic activity, estrogens, and calcium in runoff post-layer litter application from rainfall simulated events

    USDA-ARS?s Scientific Manuscript database

    Estrogens in runoff from fields fertilized with animal wastes have been implicated as endocrine disruptors of fish in recipient surface waters. The goal of this study was to measure estrogenic activity in runoff post-application of animal waste with the greatest potential for estrogenic activity - ...

  4. Estrogen, aging and the cardiovascular system

    PubMed Central

    Stice, James P.; Lee, Jennifer S.; Pechenino, Angela S.; Knowlton, Anne A.

    2014-01-01

    Estrogen is a powerful hormone with pleiotropic effects. Estrogens have potent antioxidant effects and are able to reduce inflammation, induce vasorelaxation and alter gene expression in both the vasculature and the heart. Estrogen treatment of cultured cardiac myocytes and endothelial cells rapidly activates NFκB, induces heat-shock protein (HSP)-72, a potent intracellular protective protein, and protects cells from simulated ischemia. In in vivo models, estrogens protect against ischemia and trauma/hemorrhage. Estrogens may decrease the expression of soluble epoxide hydrolase, which has deleterious effects on the cardiovascular system through metabolism of epoxyeicosatrienoic acids. Natural (endogenous) estrogens in premenopausal women appear to protect against cardiovascular disease and yet controlled clinical trials have not indicated a benefit from estrogen replacement postmenopause. Much remains to be understood in regards to the many properties of this powerful hormone and how changes in this hormone interact with aging-associated changes. The unexpected negative results of trials of estrogen replacement postmenopause probably arise from our lack of understanding of the many effects of this hormone. PMID:19371207

  5. Personal care products that contain estrogens or xenoestrogens may increase breast cancer risk.

    PubMed

    Donovan, Maryann; Tiwary, Chandra M; Axelrod, Deborah; Sasco, Annie J; Jones, Lovell; Hajek, Richard; Sauber, Erin; Kuo, Jean; Davis, Devra L

    2007-01-01

    Established models of breast cancer risk, such as the Gail model, do not account for patterns of the disease in women under the age of 35, especially in African Americans. With the possible exceptions of ionizing radiation or inheriting a known genetic mutation, most of the known risk factors for breast cancer are related to cumulative lifetime exposure to estrogens. Increased risk of breast cancer has been associated with earlier onset of menses or later age at menopause, nulliparity or late first parity, use of hormonal contraceptives or hormone replacement therapy, shorter lactation history, exposure to light at night, obesity, and regular ingestion of alcohol, all of which increase circulating levels of unbound estradiol. Among African Americans at all ages, use of hormone-containing personal care products (PCPs) is more common than among whites, as is premature appearance of secondary sexual characteristics among infants and toddlers. We hypothesize that the use of estrogen and other hormone-containing PCPs in young African American women accounts, in part, for their increased risk of breast cancer prior to menopause, by subjecting breast buds to elevated estrogen exposure during critical windows of vulnerability in utero and in early life. These early life and continuing exposures to estrogenic and xenoestrogenic agents may also contribute to the increased lethality of breast cancer in young women in general and in African American women of all ages. Public disclosure by manufacturers of proprietary hormonally active ingredients is required for this research to move forward.

  6. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    PubMed

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  7. Estrogens and Cognition: Friends or Foes?

    PubMed Central

    Korol, Donna L.; Pisani, Samantha L.

    2015-01-01

    Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings that show the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. PMID:26149525

  8. Estrogen via estrogen receptor beta partially inhibits mandibular condylar cartilage growth.

    PubMed

    Chen, J; Kamiya, Y; Polur, I; Xu, M; Choi, T; Kalajzic, Z; Drissi, H; Wadhwa, S

    2014-11-01

    Temporomandibular joint (TMJ) diseases predominantly afflict women, suggesting a role for female hormones in the disease process. However, little is known about the role of estrogen receptor (ER) signaling in regulating mandibular condylar cartilage growth. Therefore, the goal of this study was to examine the effects of altered estrogen levels on the mandibular condylar cartilage in wild type (WT) and ER beta Knockout (KO) mice. 21-day-old female WT (n = 37) and ER beta KO mice (n = 36) were either sham operated or ovariectomized, and treated with either placebo or estradiol. The mandibular condylar cartilage was evaluated by histomorphometry, proliferation was analyzed by double ethynyl-2'-deoxyuridine/bromodeoxyuridine (EdU/BrdU) labeling, and assays on gene and protein expression of chondrocyte maturation markers were performed. In WT mice, ovariectomy caused a significant increase in mandibular condylar cartilage cell numbers, a significant increase in Sox9 expression and a significant increase in proliferation compared with sham operated WT mice. In contrast, ovariectomy did not cause any of these effects in the ER beta KO mice. Estrogen replacement treatment in ovariectomized WT mice caused a significant decrease in ER alpha expression and a significant increase in Sost expression compared with ovariectomized mice treated with placebo. Estrogen replacement treatment in ovariectomized ER beta KO mice caused a significant increase in Col2 expression, no change in ER alpha expression, and a significant increase in Sost expression. Estrogen via ER beta inhibits proliferation and ER alpha expression while estrogen independent of ER beta induces Col2 and Sost expression. Copyright © 2014 China University of Geosciences (Beijing) and Peking University. Published by Elsevier Ltd. All rights reserved.

  9. Transient reversal of olfactory preference following castration in male rats: Implication for estrogen receptor involvement.

    PubMed

    Xiao, Kai; Chiba, Atsuhiko; Sakuma, Yasuo; Kondo, Yasuhiko

    2015-12-01

    We examined the effects of the sex steroid milieu on sexual odor preference of sexually-experienced male rats using an alternate choice paradigm after endocrine manipulations. Gonadally intact (GI) males showed a male typical preference, i.e. spent longer time sniffing estrous females than males or ovariectomized females. At 1-2 weeks after orchidectomy (ORx), the males exhibited a transient preference for sexually vigorous males, a female typical preference pattern, followed by a total loss of preference after 4 weeks. Subcutaneous implantation of a Silastic capsule containing formestane (4-OHA), an aromatase inhibitor, had no effect on the preference of gonadally intact rats, but successfully prevented the emergence of the female typical preference after ORx. Capsules containing testosterone (T), dihydrotestosterone (DHT), or estradiol benzoate (EB), but not those with cholesterol (CH), restored masculine typical preference in ORx males at 2 weeks after the placement. The feminine preference for males was observed at 2-3 weeks after removal of T or EB capsules, but not by the removal of DHT and CH capsules. The results suggest that either exogenous androgen or estrogen maintains the masculine typical odor preference. Estrogen itself or produced through aromatization of circulating T, induces a transient feminine typical preference at a certain decreased titer during its disappearance from the circulation. Estrogen at different titers might determine appearance of masculine or feminine typical olfactory preference in adult ORx rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Sustained attention is favored by progesterone during early luteal phase and visuo-spatial memory by estrogens during ovulatory phase in young women.

    PubMed

    Solís-Ortiz, S; Corsi-Cabrera, M

    2008-08-01

    Studies examining the influence of the menstrual cycle on cognitive function have been highly contradictory. The maintenance of attention is key to successful information processing, however how it co-vary with other cognitive functions and mood in function of phases of the menstrual cycle is not well know. Therefore, neuropsychological performance of nine healthy women with regular menstrual cycles was assessed during ovulation (OVU), early luteal (EL), late luteal (LL) and menstrual (MEN) phases. Neuropsychological test scores of sustained attention, executive functions, manual coordination, visuo-spatial memory, verbal fluency, spatial ability, anxiety and depression were obtained and submitted to a principal components analysis (PCA). Five eigenvectors that accounted the 68.31% of the total variance were identified. Performance of the sustained attention was grouped in an independent eigenvector (component 1), and the scores on verbal fluency and visuo-spatial memory were grouped together in an eigenvector (component 5), which explained 17.69% and 12.03% of the total variance, respectively. The component 1 (p<0.034) and the component 5 (p<0.003) showed significant variations during the menstrual cycle. Sustained attention showed an increase in the EL phase, when the progesterone is high. Visuo-spatial memory was increased, while that verbal fluency was decreased during the OVU phase, when the estrogens levels are high. These results indicate that sustained attention is favored by early luteal phase progesterone and do not covaried with any other neuropsychological variables studied. The influence of the estrogens on visuo-spatial memory was corroborated, and covaried inversely with verbal fluency.

  11. Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen

    PubMed Central

    Spurgeon, Megan E.; den Boon, Johan A.; Horswill, Mark; Barthakur, Sonalee; Forouzan, Omid; Rader, Janet S.; Beebe, David J.; Roopra, Avtar; Ahlquist, Paul; Lambert, Paul F.

    2017-01-01

    High-risk human papillomaviruses (HPVs) infect epithelial cells and are causally associated with cervical cancer, but HPV infection is not sufficient for carcinogenesis. Previously, we reported that estrogen signaling in the stromal tumor microenvironment is associated with cervical cancer maintenance and progression. We have now determined how HPV oncogenes and estrogen treatment affect genome-wide host gene expression in laser-captured regions of the cervical epithelium and stroma of untreated or estrogen-treated nontransgenic and HPV-transgenic mice. HPV oncogene expression in the cervical epithelium elicited significant gene-expression changes in the proximal stromal compartment, and estrogen treatment uniquely affected gene expression in the cervical microenvironment of HPV-transgenic mice compared with nontransgenic mice. Several potential estrogen-induced paracrine-acting factors were identified in the expression profile of the cervical tumor microenvironment. The microenvironment of estrogen-treated HPV-transgenic mice was significantly enriched for chemokine/cytokine activity and inflammatory and immune functions associated with carcinogenesis. This inflammatory signature included several proangiogenic CXCR2 receptor ligands. A subset of the same CXCR2 ligands was likewise increased in cocultures of early-passage cells from human cervical samples, with levels highest in cocultures of cervical fibroblasts and cancer-derived epithelial cells. Our studies demonstrate that high-risk HPV oncogenes profoundly reprogram the tumor microenvironment independently of and synergistically with estrogen. These observations illuminate important means by which HPVs can cause cancer through alterations in the tumor microenvironment. PMID:29073104

  12. Early onset of puberty and early ovarian failure in CYP7B1 knockout mice

    PubMed Central

    Omoto, Yoko; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Åke

    2005-01-01

    CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5α-androstane-3β, 17β-diol (3βAdiol). 3βAdiol is estrogenic in ERα or ERβ positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1–/– mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3βAdiol, CYP7B1 performs two major tasks: (i) it allows 3βAdiol to have growth inhibitory effects through ERβ and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3βAdiol. When CYP7B1 is inactivated, 3βAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen. PMID:15710898

  13. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  14. Estrogen Metabolism and Breast Cancer

    PubMed Central

    Samavat, Hamed; Kurzer, Mindy S

    2015-01-01

    There is currently accumulating evidence that endogenous estrogens play a critical role in the development of breast cancer. Estrogens and their metabolites have been studied in both pre- and postmenopausal women with more consistent results shown in the latter population, in part because of large hormonal variations during the menstrual cycle and far fewer studies having been performed in premenopausal women. In this review we describe in detail estrogen metabolism and associated genetic variations, and provide a critical review of the current literature regarding the role of estrogens and their metabolites in breast cancer risk. PMID:24784887

  15. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoformsmore » with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.« less

  16. [Equine estrogens vs. esterified estrogens in the climacteric and menopause. The controversy arrives in Mexico].

    PubMed

    Velasco-Murillo, V

    2001-01-01

    It exists controversies about if the effects and benefits of the esterified estrogens could be similar to those informed for equines, because its chemical composition and bioavailability are different. Esterified estrogens has not delta 8,9 dehydroestrone, and its absorption and level of maximum plasmatic concentrations are reached very fast. In United States of America and another countries, esterified estrogens has been marketed and using for treatment of climacteric syndrome and prevention of postmenopausal osteoporosis, based on the pharmacopoiea of that country, but the Food and Drug administration (FDA) has not yet authorized up today, a generic version of conjugated estrogens. In Instituto Mexicano del Seguro Social (IMSS) and another institutions of health sector in Mexico, starting in year 2000, it has been used esterified estrogens for medical treatment of climacteric and menopausal conditions. For this reason, in this paper we revised the most recent information about pharmacology, chemical composition, clinical use and costs of the conjugated estrogens with the purpose to guide the decisions to purchase this kind of drugs in Mexican heath institutions.

  17. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    PubMed

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-05-01

    With increased life expectancy, women will spend over three decades of life postmenopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions. Copyright © 2017 Endocrine Society.

  18. Importance of Extranuclear Estrogen Receptor-α and Membrane G Protein–Coupled Estrogen Receptor in Pancreatic Islet Survival

    PubMed Central

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P.S.; Ward, Robert D.; Clegg, Deborah J.; Marcelli, Marco; Korach, Kenneth S.; Mauvais-Jarvis, Franck

    2009-01-01

    OBJECTIVE We showed that 17β-estradiol (E2) favors pancreatic β-cell survival via the estrogen receptor-α (ERα) in mice. E2 activates nuclear estrogen receptors via an estrogen response element (ERE). E2 also activates nongenomic signals via an extranuclear form of ERα and the G protein–coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. RESEARCH DESIGN AND METHODS We used mice and islets deficient in estrogen receptor-α (αERKO−/−), estrogen receptor-β (βERKO−/−), estrogen receptor-α and estrogen receptor-β (αβERKO−/−), and GPER (GPERKO−/−); a mouse lacking ERα binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. RESULTS We show that ERα protection of islet survival is ERE independent and that E2 favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERβ plays a minor cytoprotective role compared to ERα. Accordingly, βERKO−/− mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERα and ERβ in mice does not synergize to provoke islet apoptosis. In αβERKO−/− mice and their islets, E2 partially prevents apoptosis suggesting that an alternative pathway compensates for ERα/ERβ deficiency. We find that E2 protection of islet survival is reproduced by a membrane-impermeant E2 formulation and a selective GPER agonist. Accordingly, GPERKO−/− mice are susceptible to streptozotocin-induced insulin deficiency. CONCLUSIONS E2 protects β-cell survival through ERα and ERβ via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in β-cells and identifies GPER as a target to protect islet survival. PMID:19587358

  19. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival.

    PubMed

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P S; Ward, Robert D; Clegg, Deborah J; Marcelli, Marco; Korach, Kenneth S; Mauvais-Jarvis, Franck

    2009-10-01

    We showed that 17beta-estradiol (E(2)) favors pancreatic beta-cell survival via the estrogen receptor-alpha (ERalpha) in mice. E(2) activates nuclear estrogen receptors via an estrogen response element (ERE). E(2) also activates nongenomic signals via an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. We used mice and islets deficient in estrogen receptor-alpha (alphaERKO(-/-)), estrogen receptor-beta (betaERKO(-/-)), estrogen receptor-alpha and estrogen receptor-beta (alphabetaERKO(-/-)), and GPER (GPERKO(-/-)); a mouse lacking ERalpha binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. We show that ERalpha protection of islet survival is ERE independent and that E(2) favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERbeta plays a minor cytoprotective role compared to ERalpha. Accordingly, betaERKO(-/-) mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERalpha and ERbeta in mice does not synergize to provoke islet apoptosis. In alphabetaERKO(-/-) mice and their islets, E(2) partially prevents apoptosis suggesting that an alternative pathway compensates for ERalpha/ERbeta deficiency. We find that E(2) protection of islet survival is reproduced by a membrane-impermeant E(2) formulation and a selective GPER agonist. Accordingly, GPERKO(-/-) mice are susceptible to streptozotocin-induced insulin deficiency. E(2) protects beta-cell survival through ERalpha and ERbeta via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in beta-cells and identifies GPER as a target to protect islet survival.

  20. Does estrogen play a role in response to adjuvant bone-targeted therapies?

    PubMed Central

    Russell, Kent; Amir, Eitan; Paterson, Alexander; Josse, Robert; Addison, Christina; Kuchuk, Iryna; Clemons, Mark

    2013-01-01

    Bone remains the most common site of breast cancer recurrence. The results of population studies, pre-clinical research and clinical studies in patients with metastatic disease provided a rationale for testing bone-targeted agents in the adjuvant setting. Despite the initial optimism, results from eight prospectively designed, randomized control studies powered to assess the value of adjuvant bone-targeted therapy in early breast cancer are conflicting. Data have shown that, where benefit exists, it tends to be in women with a “low estrogen environment”, either through menopause or suppression of ovarian function. In this manuscript, we review clinical data supporting the hypothesis that estrogen levels may play a part in explaining the response of patients to bone-targeted agents in the adjuvant setting. The results presented to date suggest that there may be data supporting a unifying role for estrogen in adjuvant trials. However, in the absence of any prospective randomized trials in which estrogen data has been systematically collected we cannot specifically answer this question. We await the results of the Oxford overview analysis of individual patient data with interest. PMID:26909288

  1. Evaluation of Follicular Synchronization Caused by Estrogen Administration and Its Reproductive Outcome

    PubMed Central

    Wu, Bi; Shi, Yan; Gong, Xia; Yu, Lin; Chen, Qiuju; Wang, Jian; Sun, Zhaogui

    2015-01-01

    To evaluate multiple follicular development synchronization after estrogen stimulation in prepubertal mice, follicular responsiveness to gonadotropin superovulation, the prospective reproductive potential and ovarian polycystic ovary syndrome (PCOS)-like symptoms at adulthood, prepubertal mice were intraperitoneally injected with estrogen to establish an animal model with solvent as control. When synchronized tertiary follicles in ovaries, in vitro oocyte maturation and fertilization rates, blastocyst formation rate, developmental potential into offspring by embryo transfer, adult fertility and PCOS-like symptoms, and involved molecular mechanisms were focused, it was found that estrogen stimulation (10μg/gBW) leads to follicular development synchronization at the early tertiary stage in prepubertal mice; reproduction from oocytes to offspring could be realized by means of the artificial reproductive technology though the model mice lost their natural fertility when they were reared to adulthood; and typical symptoms of PCOS, except changes in inflammatory pathways, were not remained up to adulthood. So in conclusion, estrogen can lead to synchronization in follicular development in prepubertal mice, but does not affect reproductive outcome of oocytes, and no typical symptoms of PCOS remained at adulthood despite changes related to inflammation. PMID:26010950

  2. Cross-sex testosterone therapy in ovariectomized mice: addition of low-dose estrogen preserves bone architecture.

    PubMed

    Goetz, Laura G; Mamillapalli, Ramanaiah; Devlin, Maureen J; Robbins, Amy E; Majidi-Zolbin, Masoumeh; Taylor, Hugh S

    2017-11-01

    Cross-sex hormone therapy (XHT) is widely used by transgender people to alter secondary sex characteristics to match their desired gender presentation. Here, we investigate the long-term effects of XHT on bone health using a murine model. Female mice underwent ovariectomy at either 6 or 10 wk and began weekly testosterone or vehicle injections. Dual-energy X-ray absorptiometry (DXA) was performed (20 wk) to measure bone mineral density (BMD), and microcomputed tomography was performed to compare femoral cortical and trabecular bone architecture. The 6-wk testosterone group had comparable BMD with controls by DXA but reduced bone volume fraction, trabecular number, and cortical area fraction and increased trabecular separation by microcomputed tomography. Ten-week ovariectomy/XHT maintained microarchitecture, suggesting that estrogen is critical for bone acquisition during adolescence and that late, but not early, estrogen loss can be sufficiently replaced by testosterone alone. Given these findings, we then compared effects of testosterone with effects of weekly estrogen or combined testosterone/low-dose estrogen treatment after a 6-wk ovariectomy. Estrogen treatment increased spine BMD and microarchitecture, including bone volume fraction, trabecular number, trabecular thickness, and connectivity density, and decreased trabecular separation. Combined testosterone-estrogen therapy caused similar increases in femur and spine BMD and improved architecture (increased bone volume fraction, trabecular number, trabecular thickness, and connectivity density) to estrogen therapy and were superior compared with mice treated with testosterone only. These results demonstrate estradiol is critical for bone acquisition and suggest a new cross-sex hormone therapy adding estrogens to testosterone treatments with potential future clinical implications for treating transgender youth or men with estrogen deficiency. Copyright © 2017 the American Physiological Society.

  3. Disruption of 3D MCF-12A Breast Cell Cultures by Estrogens – An In Vitro Model for ER-Mediated Changes Indicative of Hormonal Carcinogenesis

    PubMed Central

    Marchese, Stephanie; Silva, Elisabete

    2012-01-01

    Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular

  4. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan Rajagopalan

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful formore » targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.« less

  5. Estrogen Signaling in Metabolic Inflammation

    PubMed Central

    Monteiro, Rosário; Teixeira, Diana; Calhau, Conceição

    2014-01-01

    There is extensive evidence supporting the interference of inflammatory activation with metabolism. Obesity, mainly visceral obesity, is associated with a low-grade inflammatory state, triggered by metabolic surplus where specialized metabolic cells such as adipocytes activate cellular stress initiating and sustaining the inflammatory program. The increasing prevalence of obesity, resulting in increased cardiometabolic risk and precipitating illness such as cardiovascular disease, type 2 diabetes, fatty liver, cirrhosis, and certain types of cancer, constitutes a good example of this association. The metabolic actions of estrogens have been studied extensively and there is also accumulating evidence that estrogens influence immune processes. However, the connection between these two fields of estrogen actions has been underacknowledged since little attention has been drawn towards the possible action of estrogens on the modulation of metabolism through their anti-inflammatory properties. In the present paper, we summarize knowledge on the modification inflammatory processes by estrogens with impact on metabolism and highlight major research questions on the field. Understanding the regulation of metabolic inflammation by estrogens may provide the basis for the development of therapeutic strategies to the management of metabolic dysfunctions. PMID:25400333

  6. Exogenous fatty acid metabolism in bacteria.

    PubMed

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Modulation of pain by estrogens.

    PubMed

    Craft, Rebecca M

    2007-11-01

    It has become increasingly apparent that women suffer a disproportionate amount of pain during their lifetime compared to men. Over the past 15 years, a growing number of studies have suggested a variety of causes for this sex difference, from cellular to psychosocial levels of analysis. From a biological perspective, sexual differentiation of pain appears to occur similarly to sexual differentiation of other phenomena: it results in large part from organizational and activational effects of gonadal steroid hormones. The focus of this review is the activational effects of a single group of ovarian hormones, the estrogens, on pain in humans and animals. The effects of estrogens (estradiol being the most commonly examined) on experimentally induced acute pain vs. clinical pain are summarized. For clinical pain, the review is limited to a few syndromes for which there is considerable evidence for estrogenic involvement: migraine, temporomandibular disorder (TMD) and arthritis. Because estrogens can modulate the function of the nervous, immune, skeletal, and cardiovascular systems, estrogenic modulation of pain is an exceedingly complex, multi-faceted phenomenon, with estrogens producing both pro- and antinociceptive effects that depend on the extent to which each of these systems of the body is involved in a particular type of pain. Forging a more complete understanding of the myriad ways that estrogens can ameliorate vs. facilitate pain will enable us to better prevent and treat pain in both women and men.

  8. Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen.

    PubMed

    Dias, Amanda Cristina Vieira; Gomes, Frederico Wegenast; Bila, Daniele Maia; Sant'Anna, Geraldo Lippel; Dezotti, Marcia

    2015-10-01

    The estrogenicity of waters collected from an important hydrological system in Brazil (Paraiba do Sul and Guandu Rivers) was assessed using the yeast estrogen screen (YES) assay. Sampling was performed in rivers and at the outlets of conventional water treatment plants (WTP). The removal of estrogenic activity by ozonation and chlorination after conventional water treatment (clarification and sand filtration) was investigated employing samples of the Guandu River spiked with estrogens and bisphenol A (BPA). The results revealed a preoccupying incidence of estrogenic activity at levels higher than 1ngL(-1) along some points of the rivers. Another matter of concern was the number of samples from WTPs presenting estrogenicity surpassing 1ngL(-1). The oxidation techniques (ozonation and chlorination) were effective for the removal of estrogenic activity and the combination of both techniques led to good results using less amounts of oxidants. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effect of exogenous progesterone administration on luteal sensitivity to PGF during the early development of the corpus luteum in mares and cows.

    PubMed

    Garcia-Muñoz, A; Valldecabres-Torres, X; Newcombe, J R; Cuervo-Arango, J; Garcia-Rosello, E

    2017-12-01

    The objective of this study was to determine the effect of exogenous progesterone administration at ovulation and during the early development of the CL, on its future sensitivity to a single administration of PGF2a in mares and cows. Horse Retrospective reproductive data from an equine clinic in the UK during three breeding seasons were used. Mares were divided into: control group, cycles with single ovulations; double ovulation group cycles with asynchronous double ovulations; and PRID group: cycles with single ovulations and treatment with intravaginal progesterone device (CIDR) immediately after the ovulation. All mares were treated with d-cloprostenol (PGF) at either: (i) 88 hr; (ii) 96 hr; (iii) 104 hr; or (iv) 112 hr after the last ovulation. Cattle A total of nine non-lactating Holstein cows were used. All cows were administered PGF14 d apart and allocated to one of two groups control group GnRH was administered 56 hr after the second PGF administration. CIDR group CIDR was inserted at the same time of GnRH administration. All cows were administered PGF at 120 hr post-ovulation. The complete luteolysis rate of mares with double ovulation (66.7%) and those treated with exogenous progesterone (68.4%) was significantly higher than the rate of mares with single ovulation (35.6%) at 104 hr. In the cow, however, the treatment with CIDR did not increase the luteolytic response in cows treated at 120 hr post-ovulation. In conclusion, the degree of complete luteolysis can be influenced by increasing the concentration of progesterone during the early luteal development in mares. © 2017 Blackwell Verlag GmbH.

  10. Estrogens and cognition: Friends or foes?: An evaluation of the opposing effects of estrogens on learning and memory.

    PubMed

    Korol, Donna L; Pisani, Samantha L

    2015-08-01

    This article is part of a Special Issue "Estradiol and cognition". Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings showing that the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Vascular Effects of Estrogenic Menopausal Hormone Therapy

    PubMed Central

    Reslan, Ossama M.; Khalil, Raouf A.

    2011-01-01

    Cardiovascular disease (CVD) is more common in men and postmenopausal women (Post-MW) than premenopausal women (Pre-MW). Despite recent advances in preventive measures, the incidence of CVD in women has shown a rise that matched the increase in the Post-MW population. The increased incidence of CVD in Post-MW has been related to the decline in estrogen levels, and hence suggested vascular benefits of endogenous estrogen. Experimental studies have identified estrogen receptor ERα, ERβ and a novel estrogen binding membrane protein GPR30 (GPER) in blood vessels of humans and experimental animals. The interaction of estrogen with vascular ERs mediates both genomic and non-genomic effects. Estrogen promotes endothelium-dependent relaxation by increasing nitric oxide, prostacyclin, and hyperpolarizing factor. Estrogen also inhibits the mechanisms of vascular smooth muscle (VSM) contraction including [Ca2+]i, protein kinase C and Rho-kinase. Additional effects of estrogen on the vascular cytoskeleton, extracellular matrix, lipid profile and the vascular inflammatory response have been reported. In addition to the experimental evidence in animal models and vascular cells, initial observational studies in women using menopausal hormonal therapy (MHT) have suggested that estrogen may protect against CVD. However, randomized clinical trials (RCTs) such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women’s Health Initiative (WHI), which examined the effects of conjugated equine estrogens (CEE) in older women with established CVD (HERS) or without overt CVD (WHI), failed to demonstrate protective vascular effects of estrogen treatment. Despite the initial set-back from the results of MHT RCTs, growing evidence now supports the ‘timing hypothesis’, which suggests that MHT could increase the risk of CVD if started late after menopause, but may produce beneficial cardiovascular effects in younger women during the perimenopausal period. The choice of

  12. Estrogens, Neuroinflammation, and Neurodegeneration

    PubMed Central

    Villa, Alessandro; Vegeto, Elisabetta; Poletti, Angelo

    2016-01-01

    Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases. PMID:27196727

  13. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer.

    PubMed

    Mishra, Sweta; Tai, Qin; Gu, Xiang; Schmitz, James; Poullard, Ashley; Fajardo, Roberto J; Mahalingam, Devalingam; Chen, Xiaodong; Zhu, Xueqiong; Sun, Lu-Zhe

    2015-12-29

    The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERß) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer.

  14. The role of estrogens and estrogen receptor signaling pathways in cancer and infertility: the case of schistosomes.

    PubMed

    Botelho, Mónica C; Alves, Helena; Barros, Alberto; Rinaldi, Gabriel; Brindley, Paul J; Sousa, Mário

    2015-06-01

    Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. Schistosomiasis haematobia also appears to negatively influence fertility, and is particularly associated with female infertility. Given that estrogens and estrogen receptors are key players in human reproduction, we speculate that schistosome estrogen-like molecules may contribute to infertility through hormonal imbalances. Here, we review recent findings on the role of estrogens and estrogen receptors on both carcinogenesis and infertility associated with urogenital schistosomiasis and discuss the basic hormonal mechanisms that might be common in cancer and infertility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Estrogen Receptors: An Overview from Different Perspectives.

    PubMed

    Eyster, Kathleen M

    2016-01-01

    The estrogen receptors, ERα, ERβ, and GPER, mediate the effects of estrogenic compounds on their target tissues. Estrogen receptors are located in the tissues of the female reproductive tract and breast as one would expect, but also in tissues as diverse as bone, brain, liver, colon, skin, and salivary gland. The purpose of this discussion of the estrogen receptors is to provide a brief overview of the estrogen receptors and estrogen action from perspectives such as the historical, physiological, pharmacological, pathological, structural, and ligand perspectives.

  16. Exogenous spatial attention decreases audiovisual integration.

    PubMed

    Van der Stoep, N; Van der Stigchel, S; Nijboer, T C W

    2015-02-01

    Multisensory integration (MSI) and spatial attention are both mechanisms through which the processing of sensory information can be facilitated. Studies on the interaction between spatial attention and MSI have mainly focused on the interaction between endogenous spatial attention and MSI. Most of these studies have shown that endogenously attending a multisensory target enhances MSI. It is currently unclear, however, whether and how exogenous spatial attention and MSI interact. In the current study, we investigated the interaction between these two important bottom-up processes in two experiments. In Experiment 1 the target location was task-relevant, and in Experiment 2 the target location was task-irrelevant. Valid or invalid exogenous auditory cues were presented before the onset of unimodal auditory, unimodal visual, and audiovisual targets. We observed reliable cueing effects and multisensory response enhancement in both experiments. To examine whether audiovisual integration was influenced by exogenous spatial attention, the amount of race model violation was compared between exogenously attended and unattended targets. In both Experiment 1 and Experiment 2, a decrease in MSI was observed when audiovisual targets were exogenously attended, compared to when they were not. The interaction between exogenous attention and MSI was less pronounced in Experiment 2. Therefore, our results indicate that exogenous attention diminishes MSI when spatial orienting is relevant. The results are discussed in terms of models of multisensory integration and attention.

  17. Interactions between the cytomegalovirus promoter and the estrogen response element: implications for design of estrogen-responsive reporter plasmids.

    PubMed

    Derecka, K; Wang, C K; Flint, A P F

    2006-07-01

    We aimed to produce an estrogen-responsive reporter plasmid that would permit monitoring of estrogen receptor function in the uterus in vivo. The plasmid pBL-tk-CAT(+)ERE was induced by estrogen in bovine endometrial stromal cells. When the CAT gene was replaced by the secreted alkaline phosphatase SeAP, the resulting construct pBL-tk-SeAP(+)ERE remained estrogen responsive. However when the tk promoter was replaced by the cytomegalovirus (cmv) promoter, the resulting plasmid (pBL-cmv-SeAP(+)ERE) was not estrogen responsive. Inhibition of ERE function was not due to an effect in trans or due to lack of estrogen receptor. It was not due to an interaction between the cmv promoter and the SeAP gene. cmv promoter function was dependent on NF-kappaB, and mutagenesis in the NF-kappaB sites reduced basal reporter expression without imparting responsiveness to estrogen. A mutation in the TATA box also failed to impart estrogen responsiveness. Modeling of DNA accessibility indicated the ERE was inserted at a site accessible to transcription factors. We conclude that the cmv promoter inhibits ERE function in cis when the two sequences are located in the same construct, and that this effect does not involve an interaction between cmv and reporter gene, NF-kappaB sites or the TATA box, or DNA inaccessibility.

  18. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism.

    PubMed

    Sartorius, C A; Hanna, C T; Gril, B; Cruz, H; Serkova, N J; Huber, K M; Kabos, P; Schedin, T B; Borges, V F; Steeg, P S; Cittelly, D M

    2016-06-02

    Brain metastases (BM) are a devastating consequence of breast cancer. BM occur more frequently in patients with estrogen receptor-negative (ER-) breast cancer subtypes; HER2 overexpressing (HER2+) tumors and triple-negative (TN) (ER-, progesterone receptor-negative (PR-) and normal HER2) tumors. Young age is an independent risk factor for the development of BM, thus we speculated that higher circulating estrogens in young, pre-menopausal women could exert paracrine effects through the highly estrogen-responsive brain microenvironment. Using a TN experimental metastases model, we demonstrate that ovariectomy decreased the frequency of magnetic resonance imaging-detectable lesions by 56% as compared with estrogen supplementation, and that the combination of ovariectomy and letrozole further reduced the frequency of large lesions to 14.4% of the estrogen control. Human BM expressed 4.2-48.4% ER+ stromal area, particularly ER+ astrocytes. In vitro, E2-treated astrocytes increased proliferation, migration and invasion of 231BR-EGFP cells in an ER-dependent manner. E2 upregulated epidermal growth factor receptor (EGFR) ligands Egf, Ereg and Tgfa mRNA and protein levels in astrocytes, and activated EGFR in brain metastatic cells. Co-culture of 231BR-EGFP cells with E2-treated astrocytes led to the upregulation of the metastatic mediator S100 Calcium-binding protein A4 (S100A4) (1.78-fold, P<0.05). Exogenous EGF increased S100A4 mRNA levels in 231BR-EGFP cells (1.40±0.02-fold, P<0.01 compared with vehicle control) and an EGFR/HER2 inhibitor blocked this effect, suggesting that S100A4 is a downstream effector of EGFR activation. Short hairpin RNA-mediated S100A4 silencing in 231BR-EGFP cells decreased their migration and invasion in response to E2-CM, abolished their increased proliferation in co-cultures with E2-treated astrocytes and decreased brain metastatic colonization. Thus, S100A4 is one effector of the paracrine action of E2 in brain metastatic cells. These

  19. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism

    PubMed Central

    Sartorius, Carol A.; Hanna, Colton T.; Gril, Brunilde; Cruz, Hazel; Serkova, Natalie J.; Huber, Kendra M.; Kabos, Peter; Schedin, Troy B.; Borges, Virginia F.; Steeg, Patricia S.; Cittelly, Diana M.

    2015-01-01

    Brain metastases (BM) are a devastating consequence of breast cancer. BM occur more frequently in patients with estrogen receptor-negative (ER−) breast cancer subtypes; HER2 overexpressing (HER2+) tumors and triple-negative (TN) (ER−, progesterone receptor-negative (PR−) and normal HER2) tumors. Young age is an independent risk factor for development of BM, thus we speculated that higher circulating estrogens in young, pre-menopausal women could exert paracrine effects through the highly estrogen-responsive brain microenvironment. Using a TN experimental metastases model, we demonstrate that ovariectomy decreased the frequency of MRI detectable lesions by 56% as compared to estrogen supplementation, and that the combination of ovariectomy and letrozole further reduced the frequency of large lesions to 14.4% of the estrogen control. Human BM expressed 4.2-48.4% ER+ stromal area, particularly ER+ astrocytes. In vitro, E2-treated astrocytes increased proliferation, migration and invasion of 231BR-EGFP cells in an ER-dependent manner. E2 upregulated EGFR ligands Egf, Ereg, and Tgfa mRNA and protein levels in astrocytes, and activated EGFR in brain metastatic cells. Co-culture of 231BR-EGFP cells with E2-treated astrocytes led to upregulation of the metastatic mediator S100 Calcium-binding protein A4 (S100A4) (1.78-fold, P<0.05). Exogenous EGF increased S100A4 mRNA levels in 231BR-EGFP cells (1.40±0.02 fold, P<0.01 compared to vehicle-control) and an EGFR/HER2 inhibitor blocked this effect, suggesting that S100A4 is a downstream effector of EGFR activation. ShRNA-mediated S100A4 silencing in 231BR-EGFP cells decreased their migration and invasion in response to E2-CM, abolished their increased proliferation in co-cultures with E2-treated astrocytes, and decreased brain metastatic colonization. Thus, S100A4 is one effector of the paracrine action of E2 in brain metastatic cells. These studies provide a novel mechanism by which estrogens, acting through ER

  20. Fluorescent characteristics of estrogenic compounds in landfill leachate.

    PubMed

    Zhanga, Hua; Changb, Cheng-Hsuan; Lü, Fan; Su, Ay; Lee, Duu-Jong; He, Pin-Jing; Shao, Li-Ming

    2009-08-01

    Estrogens in landfill leachate could probably contaminate receiving water sources if not properly polished before discharge. This work measured, using an estrogen receptor-alpha competitor screening assay, the estrogenic potentials of leachate samples collected at a local sanitary landfill in Shanghai, China and their compounds fractionated by molecular weights. The chemical structures of the constituent compounds were characterized using fluorescence excitation and emission matrix (EEM). The organic matters of molecular weight <600 Da and of 3000-14,000 Da contributed most of the estrogenic potentials of the raw leachates. The former were considered as the typical endocrine disrupting compounds in dissolved state; while the latter the fulvic acids with high aromaticity that were readily adsorbed with estrogens (bound state). Statistical analysis on EEM peaks revealed that the chemical structures of noted estrogens in dissolved state and in bound state were not identical. Aerobic treatment effectively removed dissolved estrogens, but rarely removed those bound estrogens.

  1. Sex Hormones and the QT Interval: A Review

    PubMed Central

    Sedlak, Tara; Shufelt, Chrisandra; Iribarren, Carlos

    2012-01-01

    Abstract A prolonged QT interval is a marker for an increased risk of ventricular tachyarrhythmias. Both endogenous and exogenous sex hormones have been shown to affect the QT interval. Endogenous testosterone and progesterone shorten the action potential, and estrogen lengthens the QT interval. During a single menstrual cycle, progesterone levels, but not estrogen levels, have the dominant effect on ventricular repolarization in women. Studies of menopausal hormone therapy (MHT) in the form of estrogen-alone therapy (ET) and estrogen plus progesterone therapy (EPT) have suggested a counterbalancing effect of exogenous estrogen and progesterone on the QT. Specifically, ET lengthens the QT, whereas EPT has no effect. To date, there are no studies on oral contraception (OC) and the QT interval, and future research is needed. This review outlines the current literature on sex hormones and QT interval, including the endogenous effects of estrogen, progesterone, and testosterone and the exogenous effects of estrogen and progesterone therapy in the forms of MHT and hormone contraception. Further, we review the potential mechanisms and pathophysiology of sex hormones on the QT interval. PMID:22663191

  2. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens.

    PubMed

    Wang, Dan; Xie, Jiangbi; Zhu, Xiaocui; Li, Jinqiu; Zhao, Dongqin; Zhao, Meiping

    2014-05-15

    In this work, we demonstrate a novel estrogenic receptor fragment-based homogeneous fluorescent assay which enables rapid and sensitive detection of 17β-estradiol (E2) and other highly potent estrogens. A modified human estrogenic receptor fragment (N-His × 6-hER270-595-C-Strep tag II) has been constructed that contains amino acids 270-595 of wild-type human estrogenic receptor α (hER270-595) and two specific tags (6 × His and Strep tag II) fused to the N and C terminus, respectively. The designed receptor protein fragment could be easily produced by prokaryotic expression with high yield and high purity. The obtained protein exhibits high binding affinity to E2 and the two tags greatly facilitate the application of the recombinant protein. Taking advantage of the unique spectroscopic properties of coumestrol (CS), a fluorescent phytoestrogen, a CS/hER270-595-based fluorescent assay has been developed which can sensitively respond to E2 within 1.0 min with a linear working range from 0.1 to 20 ng/mL and a limit of detection of 0.1 ng/mL. The assay was successfully applied for rapid detection of E2 in the culture medium of rat hippocampal neurons. The method also holds great potential for high-throughput monitoring the variation of estrogen levels in complex biological fluids, which is crucial for investigation of the molecular basis of various estrogen-involved processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERα36 and GPR30/GPER1.

    PubMed

    Pelekanou, Vasiliki; Kampa, Marilena; Kiagiadaki, Foteini; Deli, Alexandra; Theodoropoulos, Panayiotis; Agrogiannis, George; Patsouris, Efstratios; Tsapis, Andreas; Castanas, Elias; Notas, George

    2016-02-01

    Estrogens are known modulators of monocyte/macrophage functions; however, the underlying mechanism has not been clearly defined. Recently, a number of estrogen receptor molecules and splice variants were identified that exert different and sometimes opposing actions. We assessed the expression of estrogen receptors and explored their role in mediating estrogenic anti-inflammatory effects on human primary monocytes. We report that the only estrogen receptors expressed are estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30/G-protein estrogen receptor 1, in a sex-independent manner. 17-β-Estradiol inhibits the LPS-induced IL-6 inflammatory response, resulting in inhibition of NF-κB transcriptional activity. This is achieved via a direct physical interaction of ligand-activated estrogen receptor-α 36-kDa splice variant with the p65 component of NF-κB in the nucleus. G-protein coupled receptor 30/G-protein estrogen receptor 1, which also physically interacts with estrogen receptor-α 36-kDa splice variant, acts a coregulator in this process, because its inhibition blocks the effect of estrogens on IL-6 expression. However, its activation does not mimic the effect of estrogens, on neither IL-6 nor NF-κB activity. Finally, we show that the estrogen receptor profile observed in monocytes is not modified during their differentiation to macrophages or dendritic cells in vitro and is shared in vivo by macrophages present in atherosclerotic plaques. These results position estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30 as important players and potential therapeutic targets in monocyte/macrophage-dependent inflammatory processes. © Society for Leukocyte Biology.

  4. The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+

    PubMed Central

    Rybalchenko, Volodymyr; Grillo, Michael A.; Gastinger, Matthew J.; Rybalchenko, Nataliya; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Ca2+ release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca2+-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical “non-genomic” effects mediated by estrogen receptors (ER) include rapid Ca2+ release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of co-localization between RyR type 2 (RyR2) and ER type β (ERβ) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ERβ (ERβ1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca2+] concentrations of 100 nM, suggesting a synergistic action of ERβ1 and Ca2+ in RyR activation, and a potential contribution to Ca2+-induced Ca2+ release rather than to basal intracellular Ca2+ concentration level at rest. This RyR/ERβ interaction has potential effects on cellular physiology, including roles of shorter ERβ isoforms and modulation of the RyR/ERβ complexes by exogenous estrogens. PMID:19899956

  5. Coexposure to phytoestrogens and bisphenol a mimics estrogenic effects in an additive manner.

    PubMed

    Katchy, Anne; Pinto, Caroline; Jonsson, Philip; Nguyen-Vu, Trang; Pandelova, Marchela; Riu, Anne; Schramm, Karl-Werner; Samarov, Daniel; Gustafsson, Jan-Åke; Bondesson, Maria; Williams, Cecilia

    2014-03-01

    Endocrine-disrupting chemicals (EDC) are abundant in our environment. A number of EDCs, including bisphenol A (BPA) can bind to the estrogen receptors (ER), ERα and ERβ, and may contribute to estrogen-linked diseases such as breast cancer. Early exposure is of particular concern; many EDCs cross the placenta and infants have measurable levels of, eg, BPA. In addition, infants are frequently fed soy-based formula (SF) that contains phytoestrogens. Effects of combined exposure to xeno- and phytoestrogens are poorly studied. Here, we extensively compared to what extent BPA, genistein, and an extract of infant SF mimic estrogen-induced gene transcription and cell proliferation. We investigated ligand-specific effects on ER activation in HeLa-ERα and ERβ reporter cells; on proliferation, genome-wide gene regulation and non-ER-mediated effects in MCF7 breast cancer cells; and how coexposure influenced these effects. The biological relevance was explored using enrichment analyses of differentially regulated genes and clustering with clinical breast cancer profiles. We demonstrate that coexposure to BPA and genistein, or SF, results in increased functional and transcriptional estrogenic effects. Using statistical modeling, we determine that BPA and phytoestrogens act in an additive manner. The proliferative and transcriptional effects of the tested compounds mimic those of 17β-estradiol, and are abolished by cotreatment with an ER antagonist. Gene expression profiles induced by each compound clustered with poor prognosis breast cancer, indicating that exposure may adversely affect breast cancer prognosis. This study accentuates that coexposure to BPA and soy-based phytoestrogens results in additive estrogenic effects, and may contribute to estrogen-linked diseases, including breast cancer.

  6. Coexposure to Phytoestrogens and Bisphenol A Mimics Estrogenic Effects in an Additive Manner

    PubMed Central

    Katchy, Anne; Pinto, Caroline; Williams, Cecilia

    2014-01-01

    Endocrine-disrupting chemicals (EDC) are abundant in our environment. A number of EDCs, including bisphenol A (BPA) can bind to the estrogen receptors (ER), ERα and ERβ, and may contribute to estrogen-linked diseases such as breast cancer. Early exposure is of particular concern; many EDCs cross the placenta and infants have measurable levels of, eg, BPA. In addition, infants are frequently fed soy-based formula (SF) that contains phytoestrogens. Effects of combined exposure to xeno- and phytoestrogens are poorly studied. Here, we extensively compared to what extent BPA, genistein, and an extract of infant SF mimic estrogen-induced gene transcription and cell proliferation. We investigated ligand-specific effects on ER activation in HeLa-ERα and ERβ reporter cells; on proliferation, genome-wide gene regulation and non-ER–mediated effects in MCF7 breast cancer cells; and how coexposure influenced these effects. The biological relevance was explored using enrichment analyses of differentially regulated genes and clustering with clinical breast cancer profiles. We demonstrate that coexposure to BPA and genistein, or SF, results in increased functional and transcriptional estrogenic effects. Using statistical modeling, we determine that BPA and phytoestrogens act in an additive manner. The proliferative and transcriptional effects of the tested compounds mimic those of 17β-estradiol, and are abolished by cotreatment with an ER antagonist. Gene expression profiles induced by each compound clustered with poor prognosis breast cancer, indicating that exposure may adversely affect breast cancer prognosis. This study accentuates that coexposure to BPA and soy-based phytoestrogens results in additive estrogenic effects, and may contribute to estrogen-linked diseases, including breast cancer. PMID:24284790

  7. The Dual Estrogen Receptor α Inhibitory Effects of the Tissue-Selective Estrogen Complex for Endometrial and Breast Safety

    PubMed Central

    Han, Sang Jun; Begum, Khurshida; Foulds, Charles E.; Hamilton, Ross A.; Bailey, Suzanna; Malovannaya, Anna; Chan, Doug; Qin, Jun

    2016-01-01

    The conjugated estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) is designed to minimize the undesirable effects of estrogen in the uterus and breast tissues and to allow the beneficial effects of estrogen in other estrogen-target tissues, such as the bone and brain. However, the molecular mechanism underlying endometrial and breast safety during TSEC use is not fully understood. Estrogen receptor α (ERα)–estrogen response element (ERE)–DNA pull-down assays using HeLa nuclear extracts followed by mass spectrometry–immunoblotting analyses revealed that, upon TSEC treatment, ERα interacted with transcriptional repressors rather than coactivators. Therefore, the TSEC-mediated recruitment of transcriptional repressors suppresses ERα-mediated transcription in the breast and uterus. In addition, TSEC treatment also degraded ERα protein in uterine tissue and breast cancer cells, but not in bone cells. Interestingly, ERα-ERE-DNA pull-down assays also revealed that, upon TSEC treatment, ERα interacted with the F-box protein 45 (FBXO45) E3 ubiquitin ligase. The loss-of- and gain-of-FBXO45 function analyses indicated that FBXO45 is involved in TSEC-mediated degradation of the ERα protein in endometrial and breast cells. In preclinical studies, these synergistic effects of TSEC on ERα inhibition also suppressed the estrogen-dependent progression of endometriosis. Therefore, the endometrial and breast safety effects of TSEC are associated with synergy between the selective recruitment of transcriptional repressors to ERα and FBXO45-mediated degradation of the ERα protein. PMID:26487511

  8. ANALYSIS OF LAGOON SAMPLES FROM DIFFERENT CONCENTRATED ANIMAL FEEDING OPERATIONS FOR ESTROGENS AND ESTROGEN CONJUGATES

    EPA Science Inventory

    Although Concentrated Animal Feeding Operations CAFOs) have been identified as potentially important sources for the release of estrogens into the environment, information is lacking on the concentrations of estrogens in whole lagoon effluents (including suspended solids)which ar...

  9. Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women I: Serum levels, variability and the basis for urinary biomonitoring of serum estrogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleck, Stefanie C.; Twaddle, Nathan C.; Churchwell, Mona I.

    Biomonitoring of human exposure to estrogens most frequently focuses on environmental and dietary estrogens, and infrequently includes measures of exposure to potent endogenous estrogens present in serum. Pregnancy is a developmentally sensitive period during which “added” serum estrogenicity exceeding normal intra-individual daily variability may be of particular relevance. Here, we made repeated measurements of serum concentrations of estrone (E1), estradiol (E2), estriol (E3), estetrol (E4), daidzein (DDZ), genistein (GEN) and bisphenol A (BPA) in thirty pregnant women using ultra-performance liquid chromatography coupled with tandem mass spectrometry detection (UPLC-MS/MS) and electrospray ionization (ESI). Serum E1, E2, and E3 concentrations varied significantlymore » (coefficients of variation 9–10%) with broad ranges across the cohort: 1.61–85.1 nM, 9.09–69.7 nM, and 1.5–36.3 nM respectively. BPA (undetected, estimated from total exposure), DDZ and GEN concentrations were 1-5 orders of magnitude lower. The 24-h urinary elimination profiles of endogenous estrogens were each strongly correlated with their corresponding serum concentrations (Pearson's Correlation Coefficients of 0.83 (E1), 0.84 (E2) and 0.94 (E3)). Lastly, a multivariate regression analysis produced equations for estimating serum concentrations of E1, E2, E3, E4, GEN and DDZ from urinary elimination rates and gestation period, an important step towards non-invasive biomonitoring for assessment of “added” estrogenicity during pregnancy.« less

  10. Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women I: Serum levels, variability and the basis for urinary biomonitoring of serum estrogenicity

    DOE PAGES

    Fleck, Stefanie C.; Twaddle, Nathan C.; Churchwell, Mona I.; ...

    2018-03-13

    Biomonitoring of human exposure to estrogens most frequently focuses on environmental and dietary estrogens, and infrequently includes measures of exposure to potent endogenous estrogens present in serum. Pregnancy is a developmentally sensitive period during which “added” serum estrogenicity exceeding normal intra-individual daily variability may be of particular relevance. Here, we made repeated measurements of serum concentrations of estrone (E1), estradiol (E2), estriol (E3), estetrol (E4), daidzein (DDZ), genistein (GEN) and bisphenol A (BPA) in thirty pregnant women using ultra-performance liquid chromatography coupled with tandem mass spectrometry detection (UPLC-MS/MS) and electrospray ionization (ESI). Serum E1, E2, and E3 concentrations varied significantlymore » (coefficients of variation 9–10%) with broad ranges across the cohort: 1.61–85.1 nM, 9.09–69.7 nM, and 1.5–36.3 nM respectively. BPA (undetected, estimated from total exposure), DDZ and GEN concentrations were 1-5 orders of magnitude lower. The 24-h urinary elimination profiles of endogenous estrogens were each strongly correlated with their corresponding serum concentrations (Pearson's Correlation Coefficients of 0.83 (E1), 0.84 (E2) and 0.94 (E3)). Lastly, a multivariate regression analysis produced equations for estimating serum concentrations of E1, E2, E3, E4, GEN and DDZ from urinary elimination rates and gestation period, an important step towards non-invasive biomonitoring for assessment of “added” estrogenicity during pregnancy.« less

  11. EADB: An Estrogenic Activity Database for Assessing ...

    EPA Pesticide Factsheets

    Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body’s endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many endocrine disruptors are estrogenic and affect the normal estrogen signaling pathways. However, ERs can also serve as therapeutic targets for various medical conditions, such as menopausal symptoms, osteoporosis, and ER-positive breast cancer. Because of the decades-long interest in the safety and therapeutic utility of estrogenic chemicals, a large number of chemicals have been assayed for estrogenic activity, but these data exist in various sources and different formats that restrict the ability of regulatory and industry scientists to utilize them fully for assessing risk-benefit. To address this issue, we have developed an Estrogenic Activity Database (EADB; http://www.fda.gov/ScienceResearch/ BioinformaticsTools/EstrogenicActivityDatabaseEADB/default. htm) and made it freely available to the public. EADB contains 18,114 estrogenic activity data points collected for 8212 chemicals tested in 1284 binding, reporter gene, cell proliferation, and in vivo assays in 11 different species. The chemicals cover a broad chemical structure space and the data span a wide range of activities. A set of tools allow users to access EADB and evaluate potential endocrine activity of

  12. Female Mice Avoid Male Odor from the Same Strain via the Vomeronasal System in an Estrogen-Dependent Manner.

    PubMed

    Yano, Saori; Sakamoto, Kentaro Q; Habara, Yoshiaki

    2015-11-01

    Inbreeding avoidance is essential to providing offspring with genetic diversity. Females' mate choice is more crucial than males' for successful reproduction because of the high cost of producing gametes and limited chances to mate. However, the mechanism of female inbreeding avoidance is still unclear. To elucidate the mechanism underlying inbreeding avoidance by females, we conducted Y-maze behavioral assays using BALB/c and C57BL/6 female mice. In both strains, the avoidance of male urine from the same strain was lower in the low estrogen phase than in the high estrogen phase. The estrous cycle-dependent avoidance was completely prevented by vomeronasal organ (VNO) removal. To assess the regulation of the vomeronasal system by estrogen, the neural excitability was evaluated by immunohistochemistry of the immediate early gene products. Although estrogen did not affect neural excitability in the VNO, estrogen enhanced the neural excitability of the mitral cell layer in the AOB induced by urine from the cognate males. These results suggest that female mice avoid odor from genetically similar males in an estrogen-dependent manner via the vomeronasal system and the excitability of the mitral cells in the AOB is presumed to be regulated by estrogen. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  14. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress.

    PubMed

    Wang, Hao; Sun, Xuming; Lin, Marina S; Ferrario, Carlos M; Van Remmen, Holly; Groban, Leanne

    2018-04-25

    Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss. Copyright © 2018 Elsevier Inc. All rights

  15. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  16. Steinach and Young, Discoverers of the Effects of Estrogen on Male Sexual Behavior and the "Male Brain".

    PubMed

    Södersten, Per

    2015-01-01

    In the 1930s, Eugen Steinach's group found that estradiol induces lordosis in castrated rats and reduces the threshold dose of testosterone that is necessary for the induction of ejaculation, and that estradiol-treated intact rats display lordosis as well as mounting and ejaculation. The bisexual, estrogen-sensitive male had been demonstrated. Another major, albeit contrasting, discovery was made in the 1950s, when William Young's group reported that male guinea pigs and prenatally testosterone-treated female guinea pigs are relatively insensitive to estrogen when tested for lordosis as adults. Reduced estrogen sensitivity was part of the new concept of organization of the neural tissues mediating the sexual behavior of females into tissues similar to those of males. The importance of neural organization by early androgen stimulation was realized immediately and led to the discovery of a variety of sex differences in the brains of adult animals. By contrast, the importance of the metabolism of testosterone into estrogen in the male was recognized only after a delay. While the finding that males are sensitive to estrogen was based on Bernhard Zondek's discovery in 1934 that testosterone is metabolized into estrogen in males, the finding that males are insensitive to estrogen was based on the hypothesis that testosterone-male sexual behavior is the typical relationship in the male. It is suggested that this difference in theoretical framework explains the discrepancies in some of the reported results.

  17. Bioassay of estrogenicity and chemical analyses of estrogens in streams across the United States associated with livestock operations

    USGS Publications Warehouse

    Alvarez, David A.; Shappell, Nancy W.; Billey, L.O.; Bermudez, Dietrich S.; Wilson, Vickie S.; Kolpin, Dana W.; Perkins, Stephanie D.; Evans, Nicola; Foreman, William T.; Gray, James L.; Shipitalo, J.M.; Meyer, Michael T.

    2013-01-01

    Animal manures, used as a nitrogen source for crop production, are often associated with negative impacts on nutrient levels in surface water. The concentrations of estrogens in streams from these manures also are of concern due to potential endocrine disruption in aquatic species. Streams associated with livestock operations were sampled by discrete samples (n = 38) or by time-integrated polar organic chemical integrative samplers (POCIS,n = 19). Samples were analyzed for estrogens by gas chromatography-tandem mass spectrometry (GC-MSM2) and estrogenic activity was assessed by three bioassays: Yeast Estrogen Screen (YES), T47D-KBluc Assay, MCF-7 Estrogenicity Screen (E-Screen). Samples were collected from 19 streams within small (∼1-30 km2) watersheds in 12 U.S. states representing a range of hydrogeologic conditions, dominated by: dairy (3), grazing beef (3), feedlot cattle (1); swine (5); poultry (3); and 4 areas where no livestock were raised or manure was applied. Water samples were consistently below the United Kingdom proposed Lowest Observable Effect Concentration for 17b-estradiol in fish (10 ng/L) in all watersheds, regardless of land use. Estrogenic activity was often higher in samples during runoff conditions following a period of manure application. Estrone was the most commonly detected estrogen (13 of 38 water samples, mean 1.9, maximum 8.3 ng/L). Because of the T47D-KBluc assay’s sensitivity towards estrone (1.4 times 17β-estradiol) it was the most sensitive method for detecting estrogens, followed by the E-Screen, GC-MS2, and YES. POCIS resulted in more frequent detections of estrogens than discrete water samples across all sites, even when applying the less-sensitive YES bioassay to the POCIS extracts.

  18. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  19. [The biological and clinical relevance of estrogen metabolome].

    PubMed

    Kovács, Krisztián; Vásárhelyi, Barna; Mészáros, Katalin; Patócs, Attila; Karvaly, Gellért

    2017-06-01

    Considerable knowledge has been gathered on the physiological role of estrogens. However, fairly little information is available on the role of compounds produced in the breakdown process of estrone and estradiol wich may play a role in various diseases associated with estrogen impact. To date, approximately 15 extragonadal estrogen-related compounds have been identified. These metabolites may exert protective, or, instead, pro-inflammatory and/or pro-oncogenic activity in a tissue-specific manner. Systemic and local estrogen metabolite levels are not necesserily correlated, which may promote the diagnostic significance of the locally produced estrogen metabolites in the future. The aim of the present study is a bibliographic review of the extragonadal metabolome in peripheral tissues, and to highlight the role of the peripheral tissue homeostasis of estrogens as well as the non-hormonal biological activity and clinical significance of the estrogen metabolome. Orv Hetil. 2017; 158(24): 929-937.

  20. Melatonin affects the dynamic steady-state equilibrium of estrogen sulfates in human umbilical vein endothelial cells by regulating the balance between estrogen sulfatase and sulfotransferase.

    PubMed

    González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel

    2015-12-01

    Melatonin is known to reduce the growth of endocrine-responsive breast cancers by interacting with estrogen signaling pathways. Estrogens play an important role in breast cancer, but also in various types of tissues, including vascular tissue. Estrogen sulfatase (STS) converts inactive estrogen sulfates into active estrogens, whereas estrogen sulfotransferase (EST) sulfonates estrogens to estrogen sulfates. Therefore, STS and EST are considered to be involved in the regulation of local estrogen levels in hormone‑dependent tumors and in non-pathologic tissues, such as those of the vascular system. Estrogens have a major impact on the vasculature, influencing vascular function, the expression of adhesion proteins, angiogenesis and the inflammatory state. In this study, we investigated the status of STS and EST in human umbilical vein endothelial cells (HUVECs) and the modulatory effects of melatonin. Both STS and EST were highly expressed in the HUVECs. The enzymatic activity correlated with the expression levels in these cells. Our findings also demonstrated that melatonin, at physiological concentrations, modulated the synthesis and transformation of biologically active estrogens in HUVECs through the inhibition of STS activity and expression, and the stimulation of EST activity and expression. Since melatonin decreased the STS levels and increased the EST levels, it modified the dynamic steady‑state equilibrium of estrogen sulfates by increasing the inactive estrogen levels and decreasing the active estrogen levels. Therefore, melatonin may modulate the known different biological actions of estrogens in endothelial cells, as well as in estrogen-dependent tumors and non-pathologic tissues.

  1. Genetically-induced Estrogen Receptor Alpha mRNA (Esr1) Overexpression Does Not Adversely Affect Fertility or Penile Development in Male Mice

    PubMed Central

    Heath, John; Abdelmageed, Yazeed; Braden, Tim D.; Williams, Carol S.; Williams, John W.; Paulose, Tessie; Hernandez-Ochoa, Isabel; Gupta, Rupesh; Flaws, Jodi A.; Goyal, Hari O.

    2011-01-01

    Previously, we reported that estrogen receptor alpha mRNA (Esr1) or protein (ESR1) overexpression resulting from neonatal exposure to estrogens in rats was associated with infertility and mal-developed penis characterized by reduced length and weight and abnormal accumulation of fat cells. The objective of this study was to determine if mutant male mice overexpressing Esr1 are naturally infertile or have reduced fertility and/or develop abnormal penis. The fertility parameters, including fertility and fecundity indices, numbers of days from the day of cohabitation to the day of delivery, and numbers of pups per female, were not altered from controls, as a result of Esr1 overexpression. Likewise, penile morphology, including the length, weight, and diameter and os penis development, was not altered from controls. Conversely, weights of the seminal vesicles and bulbospongiosus and levator ani (BS/LA) muscles were significantly (P < 0.05) lower as compared to controls; however, the weight of the testis, the morphology of the testis and epididymis, and the plasma and testicular testosterone concentration were not different from controls. Hence, the genetically-induced Esr1 overexpression alone, without an exogenous estrogen exposure during the neonatal period, is unable to adversely affect the development of the penis as well as other male reproductive organs, except limited, but significant, reductions in weights of the seminal vesicles and BS/LA muscles. PMID:20930192

  2. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors.

    PubMed

    Madureira, Tânia Vieira; Malhão, Fernanda; Pinheiro, Ivone; Lopes, Célia; Ferreira, Nádia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo

    2015-12-01

    Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol-EE2) at 1, 10 and 50μM; (2) an ER antagonist (ICI 182,780) at 10 and 50μM; and (3) mixtures of both (Mix I-10μM EE2 and 50μM ICI; Mix II-1μM EE2 and 10μM ICI and Mix III-1μM EE2 and 50μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A-VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase-Uox, 17β-hydroxysteroid dehydrogenase 4-17β-HSD4, peroxin 11α-Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα mRNA increased after all EE2 treatments, while ERβ-1 had an inverse pattern. The EE2 action was reversed by ICI 182,780 in a concentration-dependent manner, for VtgA, ERα and Uox. Overall, our data show the great value of primary brown trout hepatocytes to study the effects of estrogenic/anti-estrogenic inputs in peroxisome kinetics and in ER and PPARα signaling, backing the still open hypothesis of crosstalk interactions between these pathways and calling for more mechanistic

  3. Insulin, estrogen, inflammatory markers, and risk of benign proliferative breast disease.

    PubMed

    Catsburg, Chelsea; Gunter, Marc J; Chen, Chu; Cote, Michele L; Kabat, Geoffrey C; Nassir, Rami; Tinker, Lesley; Wactawski-Wende, Jean; Page, David L; Rohan, Thomas E

    2014-06-15

    Women with benign proliferative breast disease (BPBD) are at increased risk for developing breast cancer. Evidence suggests that accumulation of adipose tissue can influence breast cancer development via hyperinsulinemia, increased estrogen, and/or inflammation. However, there are limited data investigating these pathways with respect to risk of BPBD. We evaluated serologic markers from these pathways in a case-control study of postmenopausal women nested within the Women's Health Initiative Clinical Trial. Cases were the 667 women who developed BPBD during follow-up, and they were matched to 1,321 controls. Levels of insulin, estradiol, C-reactive protein (CRP), and adiponectin were measured in fasting serum collected at baseline. Conditional logistic regression models were used to estimate ORs for the association of each factor with BPBD risk. Among nonusers of hormone therapy, fasting serum insulin was associated with a statistically significant increase in risk of BPBD (OR for highest vs. lowest quartile = 1.80; 95% confidence interval, CI, 1.16-2.79; Ptrend = 0.003) as were levels of estradiol (OR for highest vs. lowest tertile = 1.89; 95% CI, 1.26-2.83; Ptrend = 0.02) and CRP (OR for highest vs. lowest quartile = 2.46; 95% CI, 1.59-3.80; Ptrend < 0.001). Baseline adiponectin level was inversely associated with BPBD risk (OR for highest vs. lowest quartile = 0.47; 95% CI, 0.31-0.71; Ptrend < 0.001). These associations persisted after mutual adjustment, but were not observed among users of either estrogen alone or of estrogen plus progestin hormone therapy. Our results indicate that serum levels of estrogen, insulin, CRP, and adiponectin are independent risk factors for BPBD and suggest that the estrogen, insulin, and inflammation pathways are associated with the early stages of breast cancer development. ©2014 American Association for Cancer Research.

  4. Atypical hyperplasia, proliferative fibrocystic change, and exogenous hormone use.

    PubMed

    Zera, R T; Danielson, D; Van Camp, J M; Schmidt-Steinbrunn, B; Hong, J; McCoy, M; Anderson, W R; Linzie, B M; Rodriguez, J L

    2001-10-01

    The association between breast cancer development and exogenous hormone use (EHU) is suggested by indirect clinical evidence. We undertook this study to better define the relationship that EHU has with proliferative fibrocystic change (PFC) and atypical hyperplasia (AH). Women diagnosed with AH without associated carcinoma from January 1990 to December 1999 were compared with control subjects who underwent breast biopsy procedures during the same interval and who were diagnosed with either a proliferative fibrocystic change (PFC) or a nonproliferative fibrocystic change (NPFC). EHU was defined as the use of estrogen or progesterone taken together or separately within 3 months of biopsy. EHU was significantly higher in patients with AH compared with women with NPFC (P =.01). This observation was also significant if all proliferative change (both AH and PFC) was compared with NPFC (P =.03); it was not significant when PFC alone was compared with NPFC. No significant difference in EHU was demonstrated between women with AH and those with PFC. There is strong association between AH and EHU. These results support the theory that a continuum exists between hyperplasia and carcinoma and that EHU may influence the transition from one to the other in an undefined subset of women. We encourage our patients with AH to discontinue EHU.

  5. A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal

    PubMed Central

    Heyworth, Clare; Gale, Karin; Dexter, Michael; May, Gillian; Enver, Tariq

    1999-01-01

    The transcription factor GATA-2 is expressed in hematopoietic stem and progenitor cells and is functionally implicated in their survival and proliferation. We have used estrogen and tamoxifen-inducible forms of GATA-2 to modulate the levels of GATA-2 in the IL-3-dependent multipotential hematopoietic progenitor cell model FDCP mix. Ligand-dependent induction of exogenous GATA-2 activity did not rescue cells deprived of IL-3 from apoptosis. However, induction of GATA-2 activity in cells cultured in IL-3 blocked factor-dependent self-renewal but not factor-dependent survival: Cells undergo cell cycle arrest and cease proliferating but do not apoptose. This was accompanied by differentiation down the monocytic and granulocytic pathways. Differentiation occurred in the presence of IL-3 and did not require addition of exogenous differentiation growth factors such as G-CSF or GM-CSF normally required to induce granulomonocytic differentiation of FDCP-mix cells. Conversely, EPO-dependent erythroid differentiation was inhibited by GATA-2 activation. These biological effects were obtained with levels of exogenous GATA-2 representing less than twofold increases over endogenous GATA-2 levels and were not observed in cells overexpressing GATA-1/ER. Similar effects on proliferation and differentiation were also observed in primary progenitor cells, freshly isolated from murine bone marrow and transduced with a GATA-2/ER-containing retrovirus. Taken together, these data suggest that threshold activities of GATA-2 in hematopoietic progenitor cells are a critical determinant in influencing self-renewal versus differentiation outcomes. PMID:10421636

  6. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    PubMed

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  7. The Estrogen Receptor-α in Osteoclasts Mediates the Protective Effects of Estrogens on Cancellous But Not Cortical Bone

    PubMed Central

    Martin-Millan, Marta; Almeida, Maria; Ambrogini, Elena; Han, Li; Zhao, Haibo; Weinstein, Robert S.; Jilka, Robert L.; O'Brien, Charles A.; Manolagas, Stavros C.

    2010-01-01

    Estrogens attenuate osteoclastogenesis and stimulate osteoclast apoptosis, but the molecular mechanism and contribution of these effects to the overall antiosteoporotic efficacy of estrogens remain controversial. We selectively deleted the estrogen receptor (ER)α from the monocyte/macrophage cell lineage in mice (ERαLysM−/−) and found a 2-fold increase in osteoclast progenitors in the marrow and the number of osteoclasts in cancellous bone, along with a decrease in cancellous bone mass. After loss of estrogens these mice failed to exhibit the expected increase in osteoclast progenitors, the number of osteoclasts in bone, and further loss of cancellous bone. However, they lost cortical bone indistinguishably from their littermate controls. Mature osteoclasts from ERαLysM−/− were resistant to the proapoptotic effect of 17β-estradiol. Nonetheless, the effects of estrogens on osteoclasts were unhindered in mice bearing an ERα knock-in mutation that prevented binding to DNA. Moreover, a polymeric form of estrogen that is not capable of stimulating the nuclear-initiated actions of ERα was as effective as 17β-estradiol in inducing osteoclast apoptosis in cells with the wild-type ERα. We conclude that estrogens attenuate osteoclast generation and life span via cell autonomous effects mediated by DNA-binding-independent actions of ERα. Elimination of these effects is sufficient for loss of bone in the cancellous compartment in which complete perforation of trabeculae by osteoclastic resorption precludes subsequent refilling of the cavities by the bone-forming osteoblasts. However, additional effects of estrogens on osteoblasts, osteocytes, and perhaps other cell types are required for their protective effects on the cortical compartment, which constitutes 80% of the skeleton. PMID:20053716

  8. Sensitive periods for 17β-estradiol exposure during immune system development in sea bass head kidney.

    PubMed

    Seemann, Frauke; Knigge, Thomas; Duflot, Aurélie; Marie, Sabine; Olivier, Stéphanie; Minier, Christophe; Monsinjon, Tiphaine

    2016-06-01

    An increasing body of evidence suggests that sex steroids play an important role in the development and regulation of vertebrate immune defense. Therefore, compounds with estrogenic activity may influence the immune system via receptor-mediated pathways. The presence of estrogen receptors in immune cells and organs during the early stages of development may indicate that female steroid hormones are involved in the maturation of the fish immune system. This is of particular importance, as some marine fish are probably exposed to sources of exogenous estrogens while they reside in their estuarine nursery grounds. In this study, the influence of 17β-estradiol (E2) on estrogen receptor and cytokine gene expression was assessed in juvenile sea bass (Dicentrarchus labrax) together with characterization of the head kidney leukocyte populations and corresponding phagocytic activity during organ regionalization from 98 to 239 dph. E2 exposure, beginning at 90 dph resulted in indirect and delayed modifications of interleukin 1β and estrogen receptor α gene expression, which may affect B-lymphocyte proliferation in the sea bass head kidney. The E2 treatment of 120 dph fish led to an increase in estrogen receptor β2 and a decrease in transforming growth factor β1 gene expression, which coincided with decreased phagocytic activity of head kidney lymphocytes and monocytes/macrophages. Additionally, these changes were observed during developmental periods described as critical phases for B-lymphocyte development in mammals. Consequently, exogenous estrogens have the potential to modify the innate immune response in juvenile sea bass and to exert detrimental effects on head kidney development. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Distribution of aromatase and sex steroid receptors in the baculum during the rat life cycle: effects of estrogen during the early development of the baculum.

    PubMed

    Yonezawa, Tomohiro; Higashi, Mayuko; Yoshioka, Kazuki; Mutoh, Ken-ichiro

    2011-07-01

    The baculum, also called os penis, plays an important role during copulation. However, the hormonal regulation of its development remains to be elucidated. To determine the direct involvement of sex steroids in the development of the baculum of rats, the distributions of androgen receptors (ARs), aromatase, and estrogen receptor alpha (ESR1) were observed immunohistochemically. On Postnatal Day 1, the rudiment of the baculum expressed ARs, aromatase, and ESR1. In the proximal segment of the baculum of neonatal rats, ARs were expressed in the parosteal layer but not in the periosteum or osteoblasts. Aromatase was expressed from the parosteal layer to the endosteum, particularly in the inner osteogenic layer. ESR1 was also abundantly expressed in almost all cells from the parosteal layer to the endosteum. ARs, aromatase, and ESR1 were all abundantly expressed during the neonatal period in the hyaline cartilage of the proximal segment and in fibrocartilage of the distal segment of the baculum. Expression in all the tissues was attenuated in an age-dependent manner and became quite weak at puberty. To determine the effect of estrogen on the growth of the baculum, the aromatase inhibitor 1,4,6-androstatrien-3,17-dione (ATD) was subcutaneously injected daily into pregnant rats from Days 19 to 23 of gestation and into pups on postnatal Days 1, 3, 5, 7, and 9. On Day 10, the length of the baculum in the ATD-treated rats was significantly shorter than that in the controls, although the body weight did not change. These findings suggest that not only androgen but also locally aromatized estrogen is involved in the early growth and development of the baculum.

  10. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer

    PubMed Central

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M.; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-01-01

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence. PMID:27092883

  11. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer.

    PubMed

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-05-10

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette-Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence.

  12. Estrogen receptor 1 and 2 mRNA expression and protein localization in the porcine endometrium during the estrous cycle and early pregnancy

    USDA-ARS?s Scientific Manuscript database

    Between d 10 and 12 of gestation, the pig embryo undergoes elongation and produces estrogen, which serves as the key molecule for maternal recognition of pregnancy. Around d 15 of gestation, the embryo begins its superficial implantation with the endometrium and a second spike in estrogen occurs fro...

  13. Estrogen synthesis and signaling pathways during ageing: from periphery to brain

    PubMed Central

    Cui, Jie; Shen, Yong; Li, Rena

    2012-01-01

    Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissue as liver, heart, muscle, bone and brain. The tissue-specific estrogen synthesis is consistent with a diversity of estrogen actions. Here, we will focus on tissue and cell-specific estrogen synthesis and estrogen receptor signaling. This review will include three parts: (I) tissue and cell-specific estrogen synthesis and metabolism, (II) tissue and cell-specific distribution of estrogen receptors and signaling and (III) tissue-specific estrogen function and related disorders, including cardiovascular diseases, osteoporosis, Alzheimer's disease and Parkinson disease. This comprehensive review provides new insights into estrogens by giving a better understanding of the tissue-specific estrogen effects and their roles in various diseases. PMID:23348042

  14. Estrogen and Progestin (Hormone Replacement Therapy)

    MedlinePlus

    ... progestin are two female sex hormones. Hormone replacement therapy works by replacing estrogen hormone that is no ... Progestin is added to estrogen in hormone replacement therapy to reduce the risk of uterine cancer in ...

  15. Visible propagation from invisible exogenous cueing.

    PubMed

    Lin, Zhicheng; Murray, Scott O

    2013-09-20

    Perception and performance is affected not just by what we see but also by what we do not see-inputs that escape our awareness. While conscious processing and unconscious processing have been assumed to be separate and independent, here we report the propagation of unconscious exogenous cueing as determined by conscious motion perception. In a paradigm combining masked exogenous cueing and apparent motion, we show that, when an onset cue was rendered invisible, the unconscious exogenous cueing effect traveled, manifesting at uncued locations (4° apart) in accordance with conscious perception of visual motion; the effect diminished when the cue-to-target distance was 8° apart. In contrast, conscious exogenous cueing manifested in both distances. Further evidence reveals that the unconscious and conscious nonretinotopic effects could not be explained by an attentional gradient, nor by bottom-up, energy-based motion mechanisms, but rather they were subserved by top-down, tracking-based motion mechanisms. We thus term these effects mobile cueing. Taken together, unconscious mobile cueing effects (a) demonstrate a previously unknown degree of flexibility of unconscious exogenous attention; (b) embody a simultaneous dissociation and association of attention and consciousness, in which exogenous attention can occur without cue awareness ("dissociation"), yet at the same time its effect is contingent on conscious motion tracking ("association"); and (c) underscore the interaction of conscious and unconscious processing, providing evidence for an unconscious effect that is not automatic but controlled.

  16. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants.

    PubMed

    Conley, Justin M; Evans, Nicola; Mash, Heath; Rosenblum, Laura; Schenck, Kathleen; Glassmeyer, Susan; Furlong, Ed T; Kolpin, Dana W; Wilson, Vickie S

    2017-02-01

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated water samples were assayed for estrogenic activity using T47D-KBluc cells and analyzed by liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) for natural and synthetic estrogens (including estrone, 17β-estradiol, estriol, and ethinyl estradiol). None of the estrogens were detected above the LC-FTMS quantification limits in treated samples and only 5 source waters had quantifiable concentrations of estrone, whereas 3 treated samples and 16 source samples displayed in vitro estrogenicity. Estrone accounted for the majority of estrogenic activity in respective samples, however the remaining samples that displayed estrogenic activity had no quantitative detections of known estrogenic compounds by chemical analyses. Source water estrogenicity (max, 0.47ng 17β-estradiol equivalents (E2Eq) L -1 ) was below levels that have been linked to adverse effects in fish and other aquatic organisms. Treated water estrogenicity (max, 0.078ngE2EqL -1 ) was considerably below levels that are expected to be biologically relevant to human consumers. Overall, the advantage of using in vitro techniques in addition to analytical chemical determinations was displayed by the sensitivity of the T47D-KBluc bioassay, coupled with the ability to measure cumulative effects of mixtures, specifically when unknown chemicals may be present. Published by Elsevier B.V.

  17. Aerobic Exercise, Estrogens, and Breast Cancer Risk

    DTIC Science & Technology

    2011-11-01

    on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism in sedentary, eumenorrheic, healthy premenopausal women...changes in menstrual cycle length, and 4) limited changes in estrogen metabolism. The resulting increases in urinary 2-hydroxyestrone levels and 2...effects of a 16-week, aerobic exercise intervention on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism of young

  18. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio).

    PubMed

    Goundadkar, Basavaraj B; Katti, Pancharatna

    2017-09-01

    The present study is an attempt to investigate the effects of long-term (75days) exposure to environmental estrogens (EE) on the swimming behaviour of zebrafish (Danio rerio). Adult zebrafish were exposed semi-statically to media containing commonly detected estrogenic water contaminants (EE2, DES and BPA) at a concentration (5ng/L) much lower than environmentally recorded levels. Time spent in swimming, surface preference, patterns and path of swimming were recorded (6mins) for each fish using two video cameras on day 15, 30 60 and 75. Video clips were analysed using a software program. Results indicate that chronic exposure to EE leads to increased body weight and size of females, reduced (P<0.05) swimming time, delay in latency, increased (P<0.05) immobility, erratic movements and freezing episodes. We conclude that estrogenic contamination of natural aquatic systems induces alterations in locomotor behaviour and associated physiological disturbances in inhabitant fish fauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson's disease.

    PubMed

    Håkansson, Anna; Westberg, Lars; Nilsson, Staffan; Buervenich, Silvia; Carmine, Andrea; Holmberg, Björn; Sydow, Olof; Olson, Lars; Johnels, Bo; Eriksson, Elias; Nissbrandt, Hans

    2005-02-05

    The multifunctional cytokine interleukin-6 (IL-6) is involved in inflammatory processes in the central nervous system and increased levels of IL-6 have been found in patients with Parkinson's disease (PD). It is known that estrogen inhibits the production of IL-6, via action on estrogen receptors, thereby pointing to an important influence of estrogen on IL-6. In a previous study, we reported an association between a G/A single nucleotide polymorphism (SNP) at position 1730 in the gene coding for estrogen receptor beta (ERbeta) and age of onset of PD. To investigate the influence of a G/C SNP at position 174 in the promoter of the IL-6 gene, and the possible interaction of this SNP and the ERbeta G-1730A SNP on the risk for PD, the G-174C SNP was genotyped, by pyrosequencing, in 258 patients with PD and 308 controls. A significantly elevated frequency of the GG genotype of the IL-6 SNP was found in the patient group and this was most obvious among patients with an early age of onset (early age of onset, than respective GG genotype when analyzed separately. Our results indicate that the G-174C SNP in the IL-6 promoter may influence the risk for developing PD, particularly regarding early age of onset PD, and that the effect is modified by interaction of the G-1730A SNP in the ERbeta gene. (c) 2004 Wiley-Liss, Inc.

  20. Estrogen receptor status of breast cancer in Ontario

    PubMed Central

    McKeown-Eyssen, Gail E.; Rogers-Melamed, Iris; Clarke, E. Aileen

    1985-01-01

    Data from a number of studies of breast cancer have suggested that after the ages associated with the menopause the rates of estrogen-receptor-positive tumours increase with age, whereas the rates of estrogen-receptor-negative tumours do not. Previous investigators studied cases in specific treatment centres, so there was a possibility that the findings were influenced by differences in patterns of case referral by age. A review of all the cases of breast cancer diagnosed in Ontario women in 1981 and assayed for estrogen receptors, however, confirmed the earlier findings. The results showed that the incidence of estrogen-receptor-positive and estrogen-receptor-negative tumours increased at about the same rate before age 45, but thereafter an increase in incidence was seen only for estrogen-receptor-positive tumours. These differences in patterns of incidence suggest the possibility that the two types of tumour may have different etiologic factors. PMID:4063915

  1. Estrogen Injection

    MedlinePlus

    ... used to treat hot flushes (hot flashes; sudden strong feelings of heat and sweating) and/or vaginal ... the symptoms of certain types of prostate (a male reproductive organ) cancer. The conjugated estrogens form of ...

  2. Insights into Rapid Modulation of Neuroplasticity by Brain Estrogens

    PubMed Central

    Woolfrey, Kevin M.; Penzes, Peter

    2013-01-01

    Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits

  3. Estrogens and Androgens in Skeletal Physiology and Pathophysiology

    PubMed Central

    Almeida, Maria; Laurent, Michaël R.; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A.; Bouillon, Roger; Vanderschueren, Dirk

    2016-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. PMID:27807202

  4. Estrogens and Androgens in Skeletal Physiology and Pathophysiology.

    PubMed

    Almeida, Maria; Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C

    2017-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. Copyright © 2017 the American Physiological Society.

  5. Estrogen and colorectal cancer incidence and mortality.

    PubMed

    Lavasani, Sayeh; Chlebowski, Rowan T; Prentice, Ross L; Kato, Ikuko; Wactawski-Wende, Jean; Johnson, Karen C; Young, Alicia; Rodabough, Rebecca; Hubbell, F Allan; Mahinbakht, Ali; Simon, Michael S

    2015-09-15

    The preponderance of observational studies describe an association between the use of estrogen alone and a lower incidence of colorectal cancer. In contrast, no difference in the incidence of colorectal cancer was seen in the Women's Health Initiative (WHI) randomized, placebo-controlled trial with estrogen alone after a mean intervention of 7.1 years and cumulative follow-up of 13.2 years. This study extends these findings by providing detailed analyses of the effects of estrogen alone on the histology, grade, and stage of colorectal cancer, relevant subgroups, and deaths from and after colorectal cancer. The WHI study was a randomized, double-blind, placebo-controlled trial involving 10,739 postmenopausal women with prior hysterectomy. Participants were assigned to conjugated equine estrogen at 0.625 mg/d (n = 5279) or a matching placebo (n = 5409). Rates of colorectal cancer diagnoses and deaths from and after colorectal cancer were assessed throughout the study. Colorectal cancer rates in the estrogen-alone and placebo groups were comparable: 0.14% and 0.12% per year, respectively (hazard ratio [HR], 1.13; 95% confidence interval [CI], 0.83-1.58; P = .43). Bowel screening examinations were comparable between the 2 groups throughout the study. The grade, stage, and location of colorectal cancer did not differ between the randomization groups. There were more colorectal cancer deaths in the estrogen-alone group (34 [0.05%] vs 24 [0.03%]; HR, 1.46, 95% CI, 0.86-2.46; P = .16), but the difference was not statistically significant. The colorectal cancer incidence was higher for participants with a history of colon polyp removal in the estrogen-alone group (0.23% vs 0.02%; HR, 13.47; nominal 95% CI, 1.76-103.0; P < .001). The use of estrogen alone in postmenopausal women with prior hysterectomy does not influence the incidence of colorectal cancer or deaths from or after colorectal cancer. A possibly higher risk of colorectal cancer in women with

  6. ANALYSIS OF LAGOON SAMPLES FROM DIFFERENT CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFOS) FOR ESTROGENS AND ESTROGEN CONJUGATES (PRESENTATION)

    EPA Science Inventory

    Although Concentrated Animal Feeding Operations (CAFOs) have been identified as potentially important sources for the release of estrogens into the environment, information is lacking on the concentrations of estrogens in whole lagoon effluents (including suspended solids) which ...

  7. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc)

    EPA Science Inventory

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. For example, children have circulating E2concentrations rang...

  8. Estrogenic modulation of auditory processing: a vertebrate comparison

    PubMed Central

    Caras, Melissa L.

    2013-01-01

    Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and may provide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances. PMID:23911849

  9. Extracellular matrix integrity: a possible mechanism for differential clinical effects among selective estrogen receptor modulators and estrogens?

    PubMed

    Cox, David A; Helvering, Leah M

    2006-03-09

    Recent gene microarray studies have illustrated heterogeneity in gene expression changes not only between estrogens and selective estrogen receptor modulators (SERMs), but also across different SERM molecules. In ovariectomized rats, this phenomenon was observed with respect to a number of genes involved in collagen turnover and extracellular matrix (ECM) integrity in the uterus and vaginal tissues. Preliminary mechanistic data suggest that these effects on ECM integrity may have relevance in the context of the effect of estrogens and some SERMs to increase the risk of pelvic organ prolapse and the incidence of urinary incontinence in postmenopausal women. Given the pivotal role of ECM integrity and collagen turnover in other tissues and disease states, these processes may provide a fruitful target for future research into the mechanisms for the heterogeneous pharmacology of estrogens and SERMs across different cell types and target tissues.

  10. Dissociated overexpression of cathepsin D and estrogen receptor alpha in preinvasive mammary tumors.

    PubMed

    Roger, P; Daures, J P; Maudelonde, T; Pignodel, C; Gleizes, M; Chapelle, J; Marty-Double, C; Baldet, P; Mares, P; Laffargue, F; Rochefort, H

    2000-05-01

    The role of estrogen as a promoter agent of sporadic breast cancer has been considered by assaying, in benign breast disease (BBD) and in situ carcinomas (CIS), 2 markers, the estrogen receptor alpha (ERalpha) and cathepsin D (cath-D) involved in estrogen action on mammary tissue. ERalpha and cath-D were assayed by quantitative immunohistochemistry using an image analyzer in 170 lesions of varying histological risk (94 BBD and 76 CIS), and in "normal" glands close to these lesions. The ERalpha level increased significantly in proliferative BBD with atypia (P < .001), in non-high-grade CIS (P < .001), and in adjacent "normal" glands. ERalpha level was decreased in high-grade ductal CIS (DCIS) and also in adjacent "normal" glands. Cath-D level increased in ductal proliferative BBD (P < or = .01) and in high-grade DCIS (P < or = .003), but not in the other lesions. After menopause, ERalpha level was increased (P = .012) but not cath-D level. According to Mac Neman test, the high-grade DCIS were predominantly ERalpha negative and cath-D positive (P = .0017), and the other CIS were predominantly ERalpha positive and cath-D negative (P = .0002). The 2 markers are overexpressed early in premalignant lesions, but independently. This dissociation suggests a branched model of mammary carcinogenesis involving 1 estrogen-independent pathway with high cath-D and low ERalpha levels (including high-grade DCIS) and 1 estrogen-dependent pathway, with high ERalpha level (including proliferative BBD with atypia and low-grade DCIS). We propose that ERalpha-negative breast cancers may develop directly from high-grade DCIS and that ERalpha assay in preinvasive lesions should be considered in prevention trials with antiestrogens.

  11. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  12. Quantum chemical studies of estrogenic compounds

    USDA-ARS?s Scientific Manuscript database

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  13. Nonylphenol and estrogenic activity in aquatic environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanghe, T.; Devriese, G.; Verstraete, W.

    1999-03-01

    The authors surveyed a series of surface waters and sewage treatment plants in Flanders (north of Belgium) for the presence of estrogenic activity and a xeno-estrogenic compound para-nonylphenol (NP), respectively. The surface waters of rural origin, used for drinking water production were free of significant levels of estrogenic activity and NP. Domestic sewage, after proper treatment, appeared to be no major source of this chemical. Yet, in some industrial effluents and surface waters of highly industrialized regions, NP and/or estrogenic activity was prominent, that is, <1 to 122 {micro}g NP/L and 11 to 42 {micro}g NP/L, respectively. This is becausemore » of the ongoing use of NP polyethoxylates in industry. The response of the recombinant yeast estrogen assay to the environmental samples tested was not consistent with the detected concentrations of NP. Standard addition of a natural estrogen, 17{beta}-estradiol, generated no or a reduced response compared to the standard curve concentration. Application of humic acids to standard series of NP and 17{beta}-estradiol resulted in a dose-dependent decrease of the estrogenic response. It appears that this bioassay is subject to considerable interferences due to the complexity of environmental samples. Parallel implementation of extensive chemical screening for xenobiotics and use of the bioassay are needed for adequate assessment of the potential estrogenic hazard to avoid false negative evaluations.« less

  14. Estrogens and progression of diabetic kidney damage.

    PubMed

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Elliot, Sharon J

    2011-01-01

    It is generally accepted that estrogens affect and modulate the development and progression of chronic kidney diseases (CKD) not related to diabetes. Clinical studies have indeed demonstrated that the severity and rate of progression of renal damage tends to be greater among men, compared with women. Experimental studies also support the notion that female sex is protective and male sex permissive, for the development of CKD in non-diabetics, through the opposing actions of estrogens and testosterone. However, when we consider diabetes-induced kidney damage, in the setting of either type 1 or type 2 diabetes, the contribution of gender to the progression of renal disease is somewhat uncertain. Previous studies on the effects of estrogens in the pathogenesis of progressive kidney damage have primarily focused on mesangial cells. More recently, data on the effects of estrogens on podocytes, the cell type whose role may include initiation of progressive diabetic renal disease, became available. The aim of this review will be to summarize the main clinical and experimental data on the effects of estrogens on the progression of diabetes-induced kidney injury. In particular, we will highlight the possible biological effects of estrogens on podocytes, especially considering those critical for the pathogenesis of diabetic kidney damage.

  15. Estrogen Abolishes Latent Inhibition in Ovariectomized Female Rats

    ERIC Educational Resources Information Center

    Nofrey, Barbara S.; Ben-Shahar, Osnat M.; Brake, Wayne G.

    2008-01-01

    Estrogen is frequently prescribed as a method of birth control and as hormone replacement therapy for post-menopausal women with varied effects on cognition. Here the effects of estrogen on attention were examined using the latent inhibition (LI) behavioral paradigm. Ovariectomized (OVX) female rats were given either estrogen benzoate (EB, 10 or…

  16. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    PubMed

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Repression of Osteoblast Maturation by ERRα Accounts for Bone Loss Induced by Estrogen Deficiency

    PubMed Central

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency. PMID:23359549

  18. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency.

    PubMed

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.

  19. Nicotine and estrogen synergistically exacerbate cerebral ischemic injury.

    PubMed

    Raval, A P; Hirsch, N; Dave, K R; Yavagal, D R; Bramlett, H; Saul, I

    2011-05-05

    The greater incidence of myocardial infarction, cardiac arrest, and ischemic stroke among women who smoke and use oral contraception (OC) compared to women who do not smoke and who do or do not use OC may be due in part to how nicotine influences endocrine function in women. For example, we recently demonstrated that chronic exposure to nicotine, the addictive agent in tobacco smoke responsible for the elevated risk of cardiac arrest, abolishes the endogenous or exogenous 17β-estradiol-conferred protection of the hippocampus against global cerebral ischemia (a potential outcome of cardiac arrest) in naive or ovariectomized female rats. In the current study we examined the hypotheses that (1) a synergistic deleterious effect of nicotine plus oral contraceptives exacerbates post-ischemic hippocampal damage in female rats, and (2) nicotine directly inhibits estrogen-mediated intracellular signaling in the hippocampus. To test first hypothesis and to simulate smoking behavior-induced nicotine levels in the human body, we implanted osmotic pumps containing nicotine in the female rats for 16 days. Furthermore, we mimicked the use of oral contraceptives in females by administering oral contraceptives orally to the rat. Rats exposed to either nicotine alone or in combination with oral contraceptives were subjected to an episode of cerebral ischemia and the resultant brain damage was quantified. These results showed for the first time that nicotine with oral contraceptives did indeed exacerbate post-ischemic CA1 damage as compared to nicotine alone in naive female rats. In ex vivo hippocampal slice cultures, we found that nicotine alone or with 17β-estradiol directly hinders estrogen receptors-mediated phosphorylation of cyclic-AMP element binding protein, a process required for neuronal survival and also exacerbates ischemic damage. Thus, nicotine can affect the outcome of cerebral ischemia by influencing brain endocrine function directly rather than through indirect

  20. Exogenous Attention Enables Perceptual Learning.

    PubMed

    Szpiro, Sarit F A; Carrasco, Marisa

    2015-12-01

    Practice can improve visual perception, and these improvements are considered to be a form of brain plasticity. Training-induced learning is time-consuming and requires hundreds of trials across multiple days. The process of learning acquisition is understudied. Can learning acquisition be potentiated by manipulating visual attentional cues? We developed a protocol in which we used task-irrelevant cues for between-groups manipulation of attention during training. We found that training with exogenous attention can enable the acquisition of learning. Remarkably, this learning was maintained even when observers were subsequently tested under neutral conditions, which indicates that a change in perception was involved. Our study is the first to isolate the effects of exogenous attention and to demonstrate its efficacy to enable learning. We propose that exogenous attention boosts perceptual learning by enhancing stimulus encoding. © The Author(s) 2015.

  1. Exogenous Attention Enables Perceptual Learning

    PubMed Central

    Szpiro, Sarit F. A.; Carrasco, Marisa

    2015-01-01

    Practice can improve visual perception, and these improvements are considered to be a form of brain plasticity. Training-induced learning is time-consuming and requires hundreds of trials across multiple days. The process of learning acquisition is understudied. Can learning acquisition be potentiated by manipulating visual attentional cues? We developed a protocol in which we used task-irrelevant cues for between-groups manipulation of attention during training. We found that training with exogenous attention can enable the acquisition of learning. Remarkably, this learning was maintained even when observers were subsequently tested under neutral conditions, which indicates that a change in perception was involved. Our study is the first to isolate the effects of exogenous attention and to demonstrate its efficacy to enable learning. We propose that exogenous attention boosts perceptual learning by enhancing stimulus encoding. PMID:26502745

  2. Estrogen-dependent changes in serum iron levels as a translator of the adverse effects of estrogen during infection: a conceptual framework.

    PubMed

    Hamad, Mawieh; Awadallah, Samir

    2013-12-01

    Elevated levels of estrogen often associate with increased susceptibility to infection. This has been attributed to the ability of estrogen to concomitantly enhance the growth and virulence of pathogens and suppress host immunity. But the exact mechanism of how estrogen mediates such effects, especially in cases where the pathogen and/or the immune components in question do not express estrogen receptors, has yet to be elucidated. Here we propose that translating the adverse effects of estrogen during infection is dependent to a significant degree upon its ability to manipulate iron homeostasis. For elevated levels of estrogen alter the synthesis and/or activity of several factors involved in iron metabolism including hypoxia inducible factor 1α (HIF-1α) and hepcidin among others. This leads to the inhibition of hepcidin synthesis in hepatocytes and the maintenance of ferroportin (FPN) integrity on the surface of iron-releasing duodenal enterocytes, hepatocytes, and macrophages. Intact FPN permits the continuous efflux of dietary and stored iron into the circulation, which further enhances pathogen growth and virulence on the one hand and suppresses host immunity on the other. This new conceptual framework may help explain a multitude of disparate clinical and experimental observations pertinent to the relationship between estrogen and infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Is Estrogen a Therapeutic Target for Glaucoma?

    PubMed Central

    Dewundara, Samantha; Wiggs, Janey; Sullivan, David A.; Pasquale, Louis R.

    2016-01-01

    Objective To provide an overview of the association between estrogen and glaucoma. Methods A literature synthesis of articles published in peer review journals screened through May 05, 2015 using the PubMed database. Key words used were “estrogen and glaucoma,” “reproductive factors and glaucoma,” “estrogen, nitric oxide and eye.” Forty three journal articles were included. Results Markers for lifetime estrogen exposure have been measured by several studies and show that the age of menarche onset, oral contraceptive (OC) use, bilateral oophorectomy, age of menopause onset and duration between menarche to menopause are associated with primary open angle (POAG) risk. The Blue Mountain Eye Study found a significantly increased POAG risk with later (>13 years) compared with earlier (≤12 years) age of menarche. Nurses’ Health Study (NHS) investigators found that OC use of greater than 5 years was associated with a 25% increased risk of POAG. The Mayo Clinic Cohort Study of Oophorectomy and Aging found that women who underwent bilateral oophorectomy before age 43 had an increased risk of glaucoma. The Rotterdam Study found that women who went through menopause before reaching the age of 45 years had a higher risk of open-angle glaucoma (2.6-fold increased risk) while the NHS showed a reduced risk of POAG among women older than 65 who entered menopause after age ≥ 54 years. Increased estrogen states may confer a reduced risk of glaucoma or glaucoma related traits such as reduced intraocular pressure (IOP). Pregnancy, a hyperestrogenemic state, is associated with decreased IOP during the third trimester. Though the role of post-menopausal hormone (PMH) use in the reduction of IOP is not fully conclusive, PMH use may reduce the risk of POAG. From a genetic epidemiologic perspective, estrogen metabolic pathway single nucleotide polymorphisms (SNPs) were associated with POAG in women and polymorphisms in endothelial nitric oxide synthase, a gene receptive to

  4. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    PubMed

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.

  5. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor α or β, rapidly enhances social learning.

    PubMed

    Ervin, Kelsy Sharice Jean; Mulvale, Erin; Gallagher, Nicola; Roussel, Véronique; Choleris, Elena

    2015-08-01

    Social learning is a highly adaptive process by which an animal acquires information from a conspecific. While estrogens are known to modulate learning and memory, much of this research focuses on individual learning. Estrogens have been shown to enhance social learning on a long-term time scale, likely via genomic mechanisms. Estrogens have also been shown to affect individual learning on a rapid time scale through cell-signaling cascades, rather than via genomic effects, suggesting they may also rapidly influence social learning. We therefore investigated the effects of 17β-estradiol and involvement of the estrogen receptors (ERs) using the ERα agonist propyl pyrazole triol, the ERβ agonist diarylpropionitrile, and the G protein-coupled ER 1 (GPER1) agonist G1 on the social transmission of food preferences (STFP) task, within a time scale that focused on the rapid effects of estrogens. General ER activation with 17β-estradiol resulted in a modest facilitation of social learning, with mice showing a preference up to 30min of testing. Specific activation of the GPER1 also rapidly enhanced social learning, with mice showing a socially learned preference up to 2h of testing. ERα activation instead shortened the expression of a socially learned food preference, while ERβ activation had little to no effects. Thus, rapid estrogenic modulation of social learning in the STFP may be the outcome of competing action at the three main receptors. Hence, estrogens' rapid effects on social learning likely depend on the specific ERs present in brain regions recruited during social learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Longitudinal changes in menopausal symptoms comparing women randomized to low-dose oral conjugated estrogens or transdermal estradiol plus micronized progesterone versus placebo: the Kronos Early Estrogen Prevention Study.

    PubMed

    Santoro, Nanette; Allshouse, Amanda; Neal-Perry, Genevieve; Pal, Lubna; Lobo, Rogerio A; Naftolin, Frederick; Black, Dennis M; Brinton, Eliot A; Budoff, Matthew J; Cedars, Marcelle I; Dowling, N Maritza; Dunn, Mary; Gleason, Carey E; Hodis, Howard N; Isaac, Barbara; Magnani, Maureen; Manson, JoAnn E; Miller, Virginia M; Taylor, Hugh S; Wharton, Whitney; Wolff, Erin; Zepeda, Viola; Harman, S Mitchell

    2017-03-01

    The objective of the present study was to compare the efficacy of two forms of menopausal hormone therapy in alleviating vasomotor symptoms, insomnia, and irritability in early postmenopausal women during 4 years. A total of 727 women, aged 42 to 58, within 3 years of their final menstrual period, were randomized to receive oral conjugated estrogens (o-CEE) 0.45 mg (n = 230) or transdermal estradiol (t-E2) 50 μg (n = 225; both with micronized progesterone 200 mg for 12 d each mo), or placebos (PBOs; n = 275). Menopausal symptoms were recorded at screening and at 6, 12, 24, 36, and 48 months postrandomization. Differences in proportions of women with symptoms at baseline and at each follow-up time point were compared by treatment arm using exact χ tests in an intent-to-treat analysis. Differences in treatment effect by race/ethnicity and body mass index were tested using generalized linear mixed effects modeling. Moderate to severe hot flashes (from 44% at baseline to 28.3% for PBO, 7.4% for t-E2, and 4.2% for o-CEE) and night sweats (from 35% at baseline to 19% for PBO, 5.3% for t-E2, and 4.7% for o-CEE) were reduced significantly by 6 months in women randomized to either active hormone compared with PBO (P < 0.001 for both symptoms), with no significant differences between the active treatment arms. Insomnia and irritability decreased from baseline to 6 months postrandomization in all groups. There was an intermittent reduction in insomnia in both active treatment arms versus PBO, with o-CEE being more effective than PBO at 36 and 48 months (P = 0.002 and 0.05) and t-E2 being more effective than PBO at 48 months (P = 0.004). Neither hormone treatment significantly affected irritability compared with PBO. Symptom relief for active treatment versus PBO was not significantly modified by body mass index or race/ethnicity. Recently postmenopausal women had similar and substantial reductions in hot flashes and night sweats with lower

  7. Brain Sex Matters: estrogen in cognition and Alzheimer’s disease

    PubMed Central

    Li, Rena; Cui, Jie; Shen, Yong

    2014-01-01

    Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and the brain. During the past decade, increasing evidence suggests that brain estrogen can not only be synthesized by neurons, but also by astrocytes. Brain estrogen also works locally at the site of synthesis in paracrine and/or intracrine fashion to maintain important tissue-specific functions. Here, we will focus on the biology of brain estrogen and its impact on cognitive function and Alzheimer’s disease. This comprehensive review provides new insights into brain estrogens by presenting a better understanding of the tissue-specific estrogen effects and their roles in healthy ageing and cognitive function. PMID:24418360

  8. Estrogens and Coronary Artery Disease: New Clinical Perspectives.

    PubMed

    Meyer, M R; Barton, M

    2016-01-01

    In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development. © 2016 Elsevier Inc. All rights reserved.

  9. Mechanism of estrogen activation of c-myc oncogene expression.

    PubMed

    Dubik, D; Shiu, R P

    1992-08-01

    The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.

  10. Postmenopausal estrogen and progestin effects on the serum proteome

    PubMed Central

    2009-01-01

    Background Women's Health Initiative randomized trials of postmenopausal hormone therapy reported intervention effects on several clinical outcomes, with some important differences between estrogen alone and estrogen plus progestin. The biologic mechanisms underlying these effects, and these differences, have yet to be fully elucidated. Methods Baseline serum samples were compared with samples drawn 1 year later for 50 women assigned to active hormone therapy in both the estrogen-plus-progestin and estrogen-alone randomized trials, by applying an in-depth proteomic discovery platform to serum pools from 10 women per pool. Results In total, 378 proteins were quantified in two or more of the 10 pooled serum comparisons, by using strict identification criteria. Of these, 169 (44.7%) showed evidence (nominal P < 0.05) of change in concentration between baseline and 1 year for one or both of estrogen-plus-progestin and estrogen-alone groups. Quantitative changes were highly correlated between the two hormone-therapy preparations. A total of 98 proteins had false discovery rates < 0.05 for change with estrogen plus progestin, compared with 94 for estrogen alone. Of these, 84 had false discovery rates <0.05 for both preparations. The observed changes included multiple proteins relevant to coagulation, inflammation, immune response, metabolism, cell adhesion, growth factors, and osteogenesis. Evidence of differential changes also was noted between the hormone preparations, with the strongest evidence in growth factor and inflammation pathways. Conclusions Serum proteomic analyses yielded a large number of proteins similarly affected by estrogen plus progestin and by estrogen alone and identified some proteins and pathways that appear to be differentially affected between the two hormone preparations; this may explain their distinct clinical effects. PMID:20034393

  11. Cumulative estrogen exposure and prospective memory in older women.

    PubMed

    Hesson, Jacqueline

    2012-10-01

    This study looked at cumulative lifetime estrogen exposure, as estimated with a mathematical index (Index of Cumulative Estrogen Exposure (ICEE)) that included variables (length of time on estrogen therapy, age at menarche and menopause, postmenopausal body mass index, time since menopause, nulliparity and duration of breastfeeding) known to influence estrogen levels across the life span, and performance on prospective and retrospective memory measures in a group of 50 postmenopausal women (mean age=69.3years) who, if they were current or former users of estrogen therapy, had started therapy within 5years of menopause. The ICEE was found to be a significant predictor of performance on the Prospective Memory task (F(1)=4.21, p=.046, η(p)(2)=.084). No significant relationship was noted between the ICEE and performance on measures of retrospective memory. The results suggest that the level of cumulative lifetime exposure to estrogen a woman has influences her prospective memory performance later in life and that the influence of reproductive and biological markers of endogenous estrogen exposure are relevant factors to consider when studying the effect of estrogen therapy on cognitive functioning in postmenopausal women. In addition, the finding that performance on a measure of prospective memory, but not performance on measures of retrospective memory, was associated with the ICEE adds further support to the theory that the frontal cortex may be especially sensitive to estrogen. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The Endocrine Role of Estrogens on Human Male Skeleton

    PubMed Central

    Rochira, Vincenzo; Kara, Elda; Carani, Cesare

    2015-01-01

    Before the characterization of human and animal models of estrogen deficiency, estrogen action was confined in the context of the female bone. These interesting models uncovered a wide spectrum of unexpected estrogen actions on bone in males, allowing the formulation of an estrogen-centric theory useful to explain how sex steroids act on bone in men. Most of the principal physiological events that take place in the developing and mature male bone are now considered to be under the control of estrogen. Estrogen determines the acceleration of bone elongation at puberty, epiphyseal closure, harmonic skeletal proportions, the achievement of peak bone mass, and the maintenance of bone mass. Furthermore, it seems to crosstalk with androgen even in the determination of bone size, a more androgen-dependent phenomenon. At puberty, epiphyseal closure and growth arrest occur when a critical number of estrogens is reached. The same mechanism based on a critical threshold of serum estradiol seems to operate in men during adulthood for bone mass maintenance via the modulation of bone formation and resorption in men. This threshold should be better identified in-between the ranges of 15 and 25 pg/mL. Future basic and clinical research will optimize strategies for the management of bone diseases related to estrogen deficiency in men. PMID:25873947

  13. Seasonal variation of red clover (Trifolium pratense L., Fabaceae) isoflavones and estrogenic activity

    PubMed Central

    Booth, Nancy L.; Overk, Cassia R.; Yao, Ping; Totura, Steve; Deng, Yunfan; Hedayat, A. S.; Bolton, Judy L.; Pauli, Guido F.; Farnsworth, Norman R.

    2007-01-01

    Red clover (Trifolium pratense L., Fabaceae) dietary supplements are currently used to treat menopausal symptoms because of their high content of the mildly estrogenic isoflavones daidzein, genistein, formononetin and biochanin A. These compounds are estrogenic in vitro and in vivo, but little information exists on the best time to harvest red clover fields to maximize content of the isoflavones and thus make an optimal product. Samples of cultivated red clover aboveground parts and flower heads were collected in parallel over one growing season in northeastern Illinois. Generally, autohydrolytic extracts of aboveground parts contained more isoflavones and had more estrogenic activity in Ishikawa endometrial cells, compared with extracts of flower heads. Daidzein and genistein content peaked around June to July, while formononetin and biochanin A content peaked in early September. Flower head and total aboveground parts extracts exhibited differential estrogenic activity in an Ishikawa (endometrial) cell-based alkaline phosphatase (AP) induction assay, whereas nondifferential activity was observed for most extracts tested in an MCF-7 (breast) cell proliferation assay when tested at the same final concentrations. Ishikawa assay results could be mapped onto the extracts’ content of individual isoflavones, but MCF-7 results did not show such a pattern. These results suggest that significant metabolism of isoflavones may occur in MCF-7 cells, but not in Ishikawa cells, and therefore caution is advised in the choice of bioassay used for the biological standardization of botanical dietary supplements. PMID:16478248

  14. GPR30: A G protein-coupled receptor for estrogen.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B; Sklar, Larry A

    2007-02-01

    Estrogen is a critical steroid in human physiology exerting its effect both at the transcriptional level as well as at the level of rapid intracellular signaling through second messengers. Many of estrogen's transcriptional effects have long been known to be mediated through classical nuclear steroid receptors but recent studies also demonstrate the existence of a 7-transmembrane G protein-coupled receptor, GPR30 that responds to estrogen with rapid cellular signaling. There is currently controversy over the ability of classical estrogen receptors to recapitulate GPR30-mediated signaling mechanisms and vice versa. This article will summarize recent literature and address the relationship between GPR30 and conventional estrogen receptor signaling.

  15. Steinach and Young, Discoverers of the Effects of Estrogen on Male Sexual Behavior and the “Male Brain”1,2

    PubMed Central

    2015-01-01

    Abstract In the 1930s, Eugen Steinach’s group found that estradiol induces lordosis in castrated rats and reduces the threshold dose of testosterone that is necessary for the induction of ejaculation, and that estradiol-treated intact rats display lordosis as well as mounting and ejaculation. The bisexual, estrogen-sensitive male had been demonstrated. Another major, albeit contrasting, discovery was made in the 1950s, when William Young’s group reported that male guinea pigs and prenatally testosterone-treated female guinea pigs are relatively insensitive to estrogen when tested for lordosis as adults. Reduced estrogen sensitivity was part of the new concept of organization of the neural tissues mediating the sexual behavior of females into tissues similar to those of males. The importance of neural organization by early androgen stimulation was realized immediately and led to the discovery of a variety of sex differences in the brains of adult animals. By contrast, the importance of the metabolism of testosterone into estrogen in the male was recognized only after a delay. While the finding that males are sensitive to estrogen was based on Bernhard Zondek’s discovery in 1934 that testosterone is metabolized into estrogen in males, the finding that males are insensitive to estrogen was based on the hypothesis that testosterone–male sexual behavior is the typical relationship in the male. It is suggested that this difference in theoretical framework explains the discrepancies in some of the reported results. PMID:26601123

  16. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  17. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Estrogens (total, in pregnancy) test system. 862... Test Systems § 862.1270 Estrogens (total, in pregnancy) test system. (a) Identification. As estrogens (total, in pregnancy) test system is a device intended to measure total estrogens in plasma, serum, and...

  18. Differential neonatal imprinting and regulation by estrogen of estrogen receptor subtypes alpha and beta and of the truncated estrogen receptor product (TERP-1) mRNA expression in the male rat pituitary.

    PubMed

    Tena-Sempere, M; Barreiro, M L; González, L C; Pinilla, L; Aguilar, E

    2001-11-01

    Two distinct nuclear estrogen receptors (ERs) have been identified, the classical one, renamed ERalpha, and the more recently cloned ERbeta. In a variety of tissues, gene expression of both receptor subtypes results in the generation of multiple transcripts encoding the full-length as well as several alternately spliced isoforms. In the rat pituitary, a truncated, tissue-specific variant of ERalpha, called TERP-1, has been identified and found able to modulate ERalpha and ERbeta activity. So far, its pattern of expression and hormonal regulation have been mostly studied in females. The present study was designed to analyze the pattern of expression of TERP-1 mRNA in the male rat pituitary at different stages of postnatal development, and to evaluate the impact of neonatal imprinting and estrogen treatment upon TERP-1 expression in the male pituitary. Assessment of TERP-1 mRNA levels by semi-quantitative RT-PCR, using a variant-specific primer pair, revealed that TERP-1 is also expressed in the male rat pituitary. Relative mRNA expression levels changed markedly during postnatal development, with moderate expression of the TERP-1 transcript at birth, barely detectable levels during the infantile-prepubertal period, and maximal values in adulthood. Expression of TERP-1 was sensitive to neonatal estrogen exposure, which resulted in a significant, persistent increase in mRNA levels from the infantile period until puberty. This phenomenon was not mimicked by neonatal blockade of endogenous GnRH. In addition, estrogen was able to acutely up-regulate pituitary TERP-1 mRNA expression levels in prepubertal (30-day-old) and adult (75-day-old) males. Interestingly, neonatal imprinting as well as acute estrogen treatment resulted in opposite effects on TERP-1 and full-length ERalpha and ERbeta transcripts, the latter being decreased under both conditions. In conclusion, our data indicate that TERP-1 mRNA is expressed in a developmentally regulated manner in the male rat

  19. Effect of vaginal estrogen on pessary use

    PubMed Central

    Dessie, Sybil G.; Armstrong, Katherine; Modest, Anna M.; Hacker, Michele R.

    2016-01-01

    Introduction and hypothesis Many providers recommend concurrent estrogen therapy with pessary use to limit complications; however, limited data exist to support this practice. We hypothesized that vaginal estrogen supplementation decreases incidence of pessary-related complications and discontinuation. Methods We performed a retrospective cohort study of women who underwent a pessary fitting from 1 January 2007 through 1 September 2013 at one institution; participants were identified by billing code and were eligible if they were post-menopausal and had at least 3 months of pessary use and 6 months of follow-up. All tests were two sided, and P values < 0.05 were considered statistically significant. Results Data from 199 women were included; 134 used vaginal estrogen and 65 did not. Women who used vaginal estrogen had a longer median follow-up time (29.5 months) compared with women who did not (15.4 months) and were more likely to have at least one pessary check (98.5 % vs 86.2 %, P < 0.001). Those in the estrogen group were less likely to discontinue using their pessary (30.6 % vs 58.5 %, P < 0.001) and less likely to develop increased vaginal discharge than women who did not [hazard ratio (HR) 0.31, 95 % confidence interval (CI) 0.17–0.58]. Vaginal estrogen was not protective against erosions (HR 0.93, 95 % CI 0.54–1.6) or vaginal bleeding (HR 0.78, 95 % CI 0.36–1.7). Conclusions Women who used vaginal estrogen exhibited a higher incidence of continued pessary use and lower incidence of increased vaginal discharge than women who did not. PMID:26992727

  20. Treatment of BG-1 Ovarian Cancer Cells Expressing Estrogen Receptors with Lambda-cyhalothrin and Cypermethrin Caused a Partial Estrogenicity Via an Estrogen Receptor-dependent Pathway

    PubMed Central

    Kim, Cho-Won; Go, Ryeo-Eun

    2015-01-01

    Synthetic pyrethroids (SPs) are the most common pesticides which are recently used for indoor pest control. The widespread use of SPs has resulted in the increased exposure to wild animals and humans. Recently, some SPs are suspected as endocrine disrupting chemicals (EDCs) and have been assessed for their potential estrogenicity by adopting various analyzing assays. In this study, we examined the estrogenic effects of lambda-cyhalothrin (LC) and cypermethrin (CP), the most commonly used pesticides in Korea, using BG-1 ovarian cancer cells expressing estrogen receptors (ERs). To evaluate the estrogenic activities of two SPs, LC and CP, we employed MTT assay and reverse-transcription polymerase chain reaction (RT-PCR) in LC or CP treated BG-1 ovarian cancer cells. In MTT assay, LC (10−6 M) and CP (10−5 M) significantly induced the growth of BG-1 cancer cells. LC or CP-induced cell growth was antagonized by addition of ICI 182,720 (10−8 M), an ER antagonist, suggesting that this effect appears to be mediated by an ER-dependent manner. Moreover, RT-PCR results showed that transcriptional level of cyclin D1, a cell cycle-regulating gene, was significantly up-regulated by LC and CP, while these effects were reversed by co-treatment of ICI 182,780. However, p21, a cyclin D-ckd-4 inhibitor gene, was not altered by LC or CP. Moreover, ERα expression was not significantly changed by LC and CP, while downregulated by E2. Finally, in xenografted mouse model transplanted with human BG-1 ovarian cancer cells, E2 significantly increased the tumor volume compare to a negative control, but LC did not. Taken together, these results suggest that LC and CP may possess estrogenic potentials by stimulating the growth of BG-1 ovarian cancer cells via partially ER signaling pathway associated with cell cycle as did E2, but this estrogenic effect was not found in in vivo mouse model. PMID:26877835

  1. Caffeine, coffee and tea intake and urinary estrogens and estrogen metabolites in premenopausal women

    PubMed Central

    Sisti, Julia S.; Hankinson, Susan E.; Caporaso, Neil E.; Gu, Fangyi; Tamimi, Rulla M.; Rosner, Bernard; Xu, Xia; Ziegler, Regina; Eliassen, A. Heather

    2015-01-01

    Background Prior studies have found weak inverse associations between breast cancer and caffeine and coffee intake, possibly mediated through their effects on sex hormones. Methods High-performance liquid chromatography/tandem mass spectrometry was used to quantify levels of 15 individual estrogens and estrogen metabolites (EM) among 587 premenopausal women in the Nurses’ Health Study II with mid-luteal phase urine samples and caffeine, coffee and/or tea intakes from self-reported food frequency questionnaires. Multivariate linear mixed models were used to estimate geometric means of individual EM, pathways and ratios by intake categories, and P-values for tests of linear trend. Results Compared to women in the lowest quartile of caffeine consumption, those in the top quartile had higher urinary concentrations of 16α-hydroxyestrone (28% difference; P-trend=0.01) and 16-epiestriol (13% difference; P-trend=0.04), and a decreased parent estrogens/2-, 4-, 16-pathway ratio (P-trend=0.03). Coffee intake was associated with higher 2-catechols, including 2-hydroxyestradiol (57% difference, ≥4 cups/day vs. ≤6 cups/week; P-trend=0.001) and 2-hydroxyestrone (52% difference; P-trend=0.001), and several ratio measures. Decaffeinated coffee was not associated with 2-pathway metabolism, but women in the highest (vs. lowest) category of intake (≥2 cups/day vs. ≤1–3 cups/month) had significantly lower levels of two 16-pathway metabolites, estriol (25% difference; P-trend=0.01) and 17-epiestriol (48% difference; Ptrend=0.0004). Tea intake was positively associated with 17-epiestriol (52% difference; Ptrend=0.01). Conclusion Caffeine and coffee intake were both associated with profiles of estrogen metabolism in premenopausal women. Impact Consumption of caffeine and coffee may alter patterns of premenopausal estrogen metabolism. PMID:26063478

  2. Caffeine, coffee, and tea intake and urinary estrogens and estrogen metabolites in premenopausal women.

    PubMed

    Sisti, Julia S; Hankinson, Susan E; Caporaso, Neil E; Gu, Fangyi; Tamimi, Rulla M; Rosner, Bernard; Xu, Xia; Ziegler, Regina; Eliassen, A Heather

    2015-08-01

    Prior studies have found weak inverse associations between breast cancer and caffeine and coffee intake, possibly mediated through their effects on sex hormones. High-performance liquid chromatography/tandem mass spectrometry was used to quantify levels of 15 individual estrogens and estrogen metabolites (EM) among 587 premenopausal women in the Nurses' Health Study II with mid-luteal phase urine samples and caffeine, coffee, and/or tea intakes from self-reported food frequency questionnaires. Multivariate linear mixed models were used to estimate geometric means of individual EM, pathways, and ratios by intake categories, and P values for tests of linear trend. Compared with women in the lowest quartile of caffeine consumption, those in the top quartile had higher urinary concentrations of 16α-hydroxyestrone (28% difference; Ptrend = 0.01) and 16-epiestriol (13% difference; Ptrend = 0.04), and a decreased parent estrogens/2-, 4-, 16-pathway ratio (Ptrend = 0.03). Coffee intake was associated with higher 2-catechols, including 2-hydroxyestradiol (57% difference, ≥4 cups/day vs. ≤6 cups/week; Ptrend = 0.001) and 2-hydroxyestrone (52% difference; Ptrend = 0.001), and several ratio measures. Decaffeinated coffee was not associated with 2-pathway metabolism, but women in the highest (vs. lowest) category of intake (≥2 cups/day vs. ≤1-3 cups/month) had significantly lower levels of two 16-pathway metabolites, estriol (25% difference; Ptrend = 0.01) and 17-epiestriol (48% difference; Ptrend = 0.0004). Tea intake was positively associated with 17-epiestriol (52% difference; Ptrend = 0.01). Caffeine and coffee intake were both associated with profiles of estrogen metabolism in premenopausal women. Consumption of caffeine and coffee may alter patterns of premenopausal estrogen metabolism. ©2015 American Association for Cancer Research.

  3. Influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment.

    PubMed

    Huang, Danlian; Xu, Juanjuan; Zeng, Guangming; Lai, Cui; Yuan, Xingzhong; Luo, Xiangying; Wang, Cong; Xu, Piao; Huang, Chao

    2015-08-01

    As lead is one of the most hazardous heavy metals in river ecosystem, the influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment with high moisture content were studied at laboratory scale. The dynamic changes of urease, catalase, protease activities, organic matter content, and exchangeable or ethylenediaminetetraacetic acid (EDTA)-extractable Pb concentration in sediment were monitored during different levels of exogenous lead infiltrating into sediment. At the early stage of incubation, the activities of catalase and protease were inhibited, whereas the urease activities were enhanced with different levels of exogenous lead. Organic matter content in polluted sediment with exogenous lead was lower than control and correlated with enzyme activities. In addition, the effects of lead on the three enzyme activities were strongly time-dependent and catalase activities showed lower significant difference (P < 0.05) than urease and protease. Correlations between catalase activities and EDTA-extractable Pb in the experiment were significantly negative. The present findings will improve the understandings about the ecotoxicological mechanisms in sediment.

  4. The human oxytocin gene promoter is regulated by estrogens.

    PubMed

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  5. Behaviour of estrogenic endocrine-disrupting chemicals in permeable carbonate sands.

    PubMed

    Shepherd, Benjamin O; Erler, Dirk V; Tait, Douglas R; van Zwieten, Lukas; Kimber, Stephen; Eyre, Bradley D

    2015-08-01

    The remediation of four estrogenic endocrine-disrupting compounds (EDCs), estrone (E1), estradiol (E2), ethinylestradiol (EE2) and estriol (E3), was measured in saturated and unsaturated carbonate sand-filled columns dosed with wastewater from a sewage treatment plant. The estrogen equivalency (EEQ) of inlet wastewater was 1.2 ng L(-1) and was remediated to an EEQ of 0.5 ng L(-1) through the unsaturated carbonate sand-filled columns. The high surface area of carbonate sand and associated high microbial activity may have assisted the degradation of these estrogens. The fully saturated sand columns showed an increase in total estrogenic potency with an EEQ of 2.4 ng L(-1), which was double that of the inlet wastewater. There was a significant difference (P < 0.05) in total estrogenic potency between aerobic and anaerobic columns. The breakdown of conjugated estrogens to estrogenic EDCs formed under long residence time and reducing conditions may have been responsible for the increase in the fully saturated columns. This may also be explained by the desorption of previously sorbed estrogenic EDCs. The effect of additional filter materials, such as basalt sediment and coconut fibre, on estrogenic EDC reduction was also tested. None of these amendments provided improvements in estrogen remediation relative to the unamended unsaturated carbonate sand columns. Aerobic carbonate sand filters have good potential to be used as on-site wastewater treatment systems for the reduction of estrogenic EDCs. However, the use of fully saturated sand filters, which are used to promote denitrification, and the loss of nitrogen as N2 were shown to cause an increase in EEQ. The potential for the accumulation of estrogenic EDCs under anaerobic conditions needs to be considered when designing on-site sand filtration systems required to reduce nitrogen. Furthermore, the accumulation of estrogens under anaerobic conditions such as under soil absorption systems or leachate fields has the

  6. Exogenous spatial attention influences figure-ground assignment.

    PubMed

    Vecera, Shaun P; Flevaris, Anastasia V; Filapek, Joseph C

    2004-01-01

    In a hierarchical stage account of vision, figure-ground assignment is thought to be completed before the operation of focal spatial attention. Results of previous studies have supported this account by showing that unpredictive, exogenous spatial precues do not influence figure-ground assignment, although voluntary attention can influence figure-ground assignment. However, in these studies, attention was not summoned directly to a region in a figure-ground display. In three experiments, we addressed the relationship between figure-ground assignment and visuospatial attention. In Experiment 1, we replicated the finding that exogenous precues do not influence figure-ground assignment when they direct attention outside of a figure-ground stimulus. In Experiment 2, we demonstrated that exogenous attention can influence figure-ground assignment if it is directed to one of the regions in a figure-ground stimulus. In Experiment 3, we demonstrated that exogenous attention can influence figure-ground assignment in displays that contain a Gestalt figure-ground cue; this result suggests that figure-ground processes are not entirely completed prior to the operation of focal spatial attention. Exogenous spatial attention acts as a cue for figure-ground assignment and can affect the outcome of figure-ground processes.

  7. Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-α-positive breast cancer

    PubMed Central

    Casneuf, Tineke; Axel, Amy E; King, Peter; Alvarez, John D; Werbeck, Jillian L; Verhulst, Tinne; Verstraeten, Karin; Hall, Brett M; Sasser, A Kate

    2016-01-01

    Introduction Interleukin-6 (IL-6) is an important growth factor for estrogen receptor-α (ERα)-positive breast cancer, and elevated serum IL-6 is associated with poor prognosis. Methods The role of the phosphorylated signal transducer and activator of transcription 3 pathway was investigated in ERα-positive breast cancer. A panel of cell lines was treated with exogenous IL-6. An IL-6 specific gene signature was generated by profiling ten ERα-positive breast cancer cell lines alone or following treatment with 10 ng/mL recombinant IL-6 or human marrow stromal cell-conditioned media, with or without siltuximab (a neutralizing anti-IL-6 antibody) and grown in three-dimensional tumor microenvironment-aligned cultures for 4 days, 5 days, or 6 days. The established IL-6 signature was validated against 36 human ERα-positive breast tumor samples with matched serum. A comparative MCF-7 xenograft murine model was utilized to determine the role of IL-6 in estrogen-supplemented ERα-positive breast cancer to assess the efficacy of anti-IL-6 therapy in vivo. Results In eight of nine ERα-positive breast cancer cell lines, recombinant IL-6 increased phosphorylation of tyrosine 705 of STAT3. Differential gene expression analysis identified 17 genes that could be used to determine IL-6 pathway activation by combining their expression intensity into a pathway activation score. The gene signature included a variety of genes involved in immune cell function and migration, cell growth and apoptosis, and the tumor microenvironment. Validation of the IL-6 gene signature in 36 matched human serum and ERα-positive breast tumor samples showed that patients with a high IL-6 pathway activation score were also enriched for elevated serum IL-6 (≥10 pg/mL). When human IL-6 was provided in vivo, MCF-7 cells engrafted without the need for estrogen supplementation, and addition of estrogen to IL-6 did not further enhance engraftment. Subsequently, we prophylactically treated mice at MCF-7

  8. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    PubMed Central

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  9. Characterization of estrogens, testosterone, and cortisol in normal bottlenose dolphin (Tursiops truncatus) pregnancy.

    PubMed

    Steinman, Karen J; Robeck, Todd R; O'Brien, Justine K

    2016-01-15

    The goal of this study was to describe profiles of serum estrogens, testosterone and cortisol during normal pregnancy in bottlenose dolphins. Predominant estrogens in all categories of dolphin sera pools during estrus and pregnancy (EARLY: Days 0-120; MID: Days 121-240; LATE: Days 241 to parturition; Day 0=day of conception) were estrone/estrone conjugates (E1-C) and estriol (E3). Serum samples collected throughout 101 normal pregnancies were analyzed for E1-C, E3, testosterone (T) and cortisol (CORT). E1-C was higher (P<0.05) during LATE compared to EARLY and MID, and higher (P<0.05) in nulliparous than multiparous females. E1-C concentrations were also inversely associated with maternal age (P=0.05). E3 was higher (P<0.05) in EARLY than MID and LATE, and higher overall for nulliparous than multiparous females, but concentrations were similar among gestational stages when parity was excluded from analyses. Analysis by indexed month post-conception (IMPC) demonstrated that E1-C increased from IMPC 9 and peaked at IMPC 11. E3 was significantly elevated during IMPC 1, decreased until IMPC 6 and peaked at IMPC 11. T increased (P<0.05) at IMPC 3 and continued to increase throughout gestation (P<0.05). CORT was higher (P<0.05) during LATE compared to EARLY and MID (P<0.05), peaked during IMPC 12, and was not affected by parity. Hormone profiles were not influenced by fetal sex. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. GAS6 is an estrogen-inducible gene in mammary epithelial cells

    PubMed Central

    Mo, Rigen; Zhu, Yiwei Tony; Zhang, Zhongyi; Rao, Sambasiva M.; Zhu, Yi-Jun

    2007-01-01

    To identify estrogen responsive genes in mammary glands, microarray assays were performed. Twenty genes were found to be up-regulated while 16 genes were repressed in the 9h estrogen treated glands. The induction of GAS6, one of the genes up-regulated by estrogen, was confirmed by RNase protection assay. Furthermore, GAS6 was also demonstrated to be induced by estrogen in ER positive breast cancer cells. Analysis of GAS6 promoter revealed that GAS6 promoter was regulated by estrogen. An estrogen response element (ERE) was identified in the GAS6 promoter. Electrophoretic mobility shift assay revealed that ERα interacted with the ERE in the GAS6 promoter. Chromatin immunoprecipitation demonstrated that ERα was recruited to the GAS6 promoter upon estrogen stimulation. These results suggested that GAS6 is an estrogen target gene in mammary epithelial cells. PMID:17174935

  11. Estrogen stimulated migration and invasion of estrogen receptor-negative breast cancer cells involves an ezrin-dependent crosstalk between G protein-coupled receptor 30 and estrogen receptor beta signaling.

    PubMed

    Zhou, Kewen; Sun, Peng; Zhang, Yaxing; You, Xinchao; Li, Ping; Wang, Tinghuai

    2016-07-01

    Estrogen mediates important cellular activities in estrogen receptor negative (ER-) breast cancer cells via membrane associated G protein-coupled receptor 30 (GPR30). However, the biological role and mechanism of estrogen action on cell motility and invasion in this aggressive kind of tumors remains poorly understood. We showed here that treatment with 17β-estradiol (E2) in ER-negative cancer cells resulted in ezrin-dependent cytoskeleton rearrangement and elicited a stimulatory effect on cell migration and invasion. Mechanistically, E2 induced ezrin activation was mediated by distinct mechanisms in different cell contexts. In SK-BR-3 cells with a high GPR30/ERβ ratio, silencing of GPR30 was able to abolish E2 induced ERK1/2, AKT phosphorylation and ezrin activation, whereas in MDA-MB-231 cells with low GPR30/ERβ ratio, E2 stimulated ezrin activation was mediated by the ERβ/PI3K/AKT signaling pathway. Importantly, we showed that activation of GPR30 signaling significantly prevents ERβ activation induced ezrin phosphorylation, cell migration and invasion, indicating an antagonist effect between GPR30 and ERβ signaling in MDA-MB-231 cells. These findings highlight the important interplay between different estrogen receptors in estrogen induced cell motility and invasiveness in ER-negative breast cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mixture interactions of xenoestrogens with endogenous estrogens.

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. These environmental estrogens originate from various sources including concentrated animal feedlot operations (CAFO), m...

  13. Aromatase and estrogen receptors in male reproduction.

    PubMed

    Carreau, Serge; Delalande, Christelle; Silandre, Dorothée; Bourguiba, Sonia; Lambard, Sophie

    2006-02-26

    Aromatase is a terminal enzyme which transforms irreversibly androgens into estrogens and it is present in the endoplasmic reticulum of numerous tissues. We have demonstrated that mature rat germ cells express a functional aromatase with a production of estrogens equivalent to that of Leydig cells. In humans in addition to Leydig cells, we have shown the presence of aromatase in ejaculated spermatozoa and in immature germ cells. In most tissues, high affinity estrogen receptors, ERalpha and/or ERbeta, mediate the role of estrogens. Indeed, in human spermatozoa, we have successfully amplified ERbeta mRNA but the protein was not detectable. Using ERalpha antibody we have detected two proteins in human immature germ cells: one at the expected size 66 kDa and another at 46 kDa likely corresponding to the ERalpha isoform lacking exon 1. In spermatozoa only the 46 kDa isoform was present, and we suggest that it may be located on the membrane. In addition, in men genetically deficient in aromatase, it is reported that alterations of spermatogenesis occur both in terms of the number and motility of spermatozoa. All together, these observations suggest that endogenous estrogens are important in male reproduction.

  14. Longitudinal Changes in Menopausal Symptoms Comparing Women Randomized to Low-Dose Oral Conjugated Estrogens or Transdermal Estradiol Plus Micronized Progesterone Versus Placebo: the Kronos Early Estrogen Prevention Study (KEEPS)

    PubMed Central

    Santoro, Nanette; Allshouse, Amanda; Neal-Perry, Genevieve; Pal, Lubna; Lobo, Rogerio A.; Naftolin, Frederick; Black, Dennis M.; Brinton, Eliot A.; Budoff, Matthew J.; Cedars, Marcelle I.; Dowling, N. Maritza; Dunn, Mary; Gleason, Carey E.; Hodis, Howard N.; Isaac, Barbara; Magnani, Maureen; Manson, JoAnn E.; Miller, Virginia M.; Taylor, Hugh S.; Wharton, Whitney; Wolff, Erin; Zepeda, Viola; Harman, S. Mitchell

    2016-01-01

    Objective To compare the efficacy of two forms of menopausal hormone therapy in alleviating vasomotor symptoms, insomnia, and irritability in early menopausal women over four years. Methods 727 women, aged 42–58, within three years of their final menstrual period were randomized to receive oral conjugated estrogens (o-CEE) 0.45 mg (n=230) or transdermal estradiol (t-E2) 50mcg (n=225; both with micronized progesterone 200mg for 12 days each month), or placebos (PBO; n=275). Menopausal symptoms were recorded at screening and at 6, 12, 24, 36 and 48 months post-randomization. Differences in proportions of women with symptoms at baseline and at each followup timepoint were compared by treatment arm using exact chi-square tests in an intent-to-treat (ITT) analysis. Differences in treatment effect by race/ethnicity and body mass index (BMI) were tested using generalized linear mixed effects modeling. Results Moderate-to-severe hot flashes (from 44% at baseline to 28.3% for PBO, 7.4% for t-E2 and 4.2% for o-CEE) and night sweats (from 35% at baseline to 19% for PBO, 5.3% for t-E2 and 4.7% for o-CEE) were reduced significantly by 6 months in women randomized to either active hormone compared to PBO (P<0.001 for both symptoms), with no significant differences between the active treatment arms. Insomnia and irritability decreased from baseline to 6 months post randomization in all groups. There was an intermittent reduction in insomnia in both active treatment arms vs PBO, with o-CEE more effective than PBO at 36 and 48 months (p=0.002mad 0.05) and t-E2 more effective than PBO at 48 months (p=0.004). Neither hormone treatment significantly affected irritability compared to PBO. Symptom relief for active treatment vs PBO was not significantly modified by BMI or race/ethnicity. Conclusions Recently-menopausal women had similar and substantial reductions in hot flashes and night sweats with lower than conventional doses of oral or transdermal estrogen. These reductions were

  15. Cumulative Estrogen Exposure and Prospective Memory in Older Women

    ERIC Educational Resources Information Center

    Hesson, Jacqueline

    2012-01-01

    This study looked at cumulative lifetime estrogen exposure, as estimated with a mathematical index (Index of Cumulative Estrogen Exposure (ICEE)) that included variables (length of time on estrogen therapy, age at menarche and menopause, postmenopausal body mass index, time since menopause, nulliparity and duration of breastfeeding) known to…

  16. 21 CFR 310.515 - Patient package inserts for estrogens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Patient package inserts for estrogens. 310.515... package inserts for estrogens. (a) Requirement for a patient package insert. FDA concludes that the safe... patient package insert containing information concerning the drug's benefits and risks. An estrogen drug...

  17. Characterization of an estrogen-responsive element implicated in regulation of the rainbow trout estrogen receptor gene.

    PubMed

    Le Dréan, Y; Lazennec, G; Kern, L; Saligaut, D; Pakdel, F; Valotaire, Y

    1995-08-01

    We previously reported that the expression of the rainbow trout estrogen receptor (rtER) gene is markedly increased by estradiol (E2). In this paper, we have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyl transferase (CAT), linked to 5' flanking regions of the rtER gene promoter, to identify cis-elements responsible for E2 inducibility. Deletion analysis localized an estrogen-responsive element (ERE), at position +242, with one mutation on the first base compared with the consensus sequence. This element confers estrogen responsiveness to CAT reporter linked to both the herpes simplex virus thymidine kinase promoter and the homologous rtER promoter. Moreover, using a 0.2 kb fragment of the rtER promoter encompassing the ERE and the rtER DNA binding domain obtained from a bacterial expression system, DNase I footprinting experiments demonstrated a specific protection covering 20 bp (+240/+260) containing the ERE sequence. Based on these studies, we believe that this ERE sequence, identified in the rtER gene promoter, may be a major cis-acting element involved in the regulation of the gene by estrogen.

  18. Determination of the Role of Estrogen Receptors and Estrogen Regulated Genes in B Cell Autoreactivity

    DTIC Science & Technology

    2008-07-01

    signaling strength was a consequence of enhanced expression of CD22 , an inhibitory regulator of the BCR. We now know this conjecture is incorrect as...estrogen causes an upregulation of CD22 in ERα-/- and ERβ-/- mice (Fig 4a) but there is no associated estrogen-induced reduction of BCR signalling... CD22 expression (Fig 4b). We believe the discrepancy between the analysis of genetically manipulated mice given estradiol and wildtype mice given

  19. A role for G-protein coupled estrogen receptor (GPER) in estrogen-induced carcinogenesis: Dysregulated glandular homeostasis, survival and metastasis.

    PubMed

    Filardo, Edward J

    2018-02-01

    Mechanisms of carcinogenesis by estrogen center on its mitogenic and genotoxic potential on tumor target cells. These models suggest that estrogen receptor (ER) signaling promotes expansion of the transformed population and that subsequent accumulation of somatic mutations that drive cancer progression occur via metabolic activation of cathecol estrogens or by epigenetic mechanisms. Recent findings that GPER is linked to obesity, vascular pathology and immunosuppression, key events in the development of metabolic syndrome and intra-tissular estrogen synthesis, provides an alternate view of estrogen-induced carcinogenesis. Consistent with this concept, GPER is directly associated with clinicopathological indices that predict cancer progression and poor survival in breast and gynecological cancers. Moreover, GPER manifests cell biological responses and a microenvironment conducive for tumor development and cancer progression, regulating cellular responses associated with glandular homeostasis and survival, invading surrounding tissue and attracting a vascular supply. Thus, the cellular actions attributed to GPER fit well with the known molecular mechanisms of G-protein coupled receptors, GPCRs, namely, their ability to transactivate integrins and EGF receptors and alter the interaction between glandular epithelia and their extracellular environment, affecting epithelial-to-mesenchymal transition (EMT) and allowing for tumor cell survival and dissemination. This perspective reviews the molecular and cellular responses manifested by GPER and evaluates its contribution to female reproductive cancers as diseases that progress as a result of dysregulated glandular homeostasis resulting in chronic inflammation and metastasis. This review is organized in sections as follows: I) a brief synopsis of the current state of knowledge regarding estrogen-induced carcinogenesis, II) a review of evidence from clinical and animal-based studies that support a role for GPER in cancer

  20. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells.

    PubMed

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERalpha and ERbeta expression in both cell lines - and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERalpha in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERbeta. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer.

  1. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells

    PubMed Central

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Introduction Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. Methods We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERα and ERβ expression in both cell lines – and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Results Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERα in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex™ exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERβ. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. Conclusion The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer. PMID:17986353

  2. Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β

    PubMed Central

    Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo

    2016-01-01

    Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions. PMID:26812056

  3. Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer

    PubMed Central

    Lecomte, Sylvain; Charlier, Thierry D.; Pakdel, Farzad

    2017-01-01

    The number and amount of man-made chemicals present in the aquatic environment has increased considerably over the past 50 years. Among these contaminants, endocrine-disrupting chemicals (EDCs) represent a significant proportion. This family of compounds interferes with normal hormonal processes through multiple molecular pathways. They represent a potential risk for human and wildlife as they are suspected to be involved in the development of diseases including, but not limited to, reprotoxicity, metabolic disorders, and cancers. More precisely, several studies have suggested that the increase of breast cancers in industrialized countries is linked to exposure to EDCs, particularly estrogen-like compounds. Estrogen receptors alpha (ERα) and beta (ERβ) are the two main transducers of estrogen action and therefore important targets for these estrogen-like endocrine disrupters. More than 70% of human breast cancers are ERα-positive and estrogen-dependent, and their development and growth are not only influenced by endogenous estrogens but also likely by environmental estrogen-like endocrine disrupters. It is, therefore, of major importance to characterize the potential estrogenic activity from contaminated surface water and identify the molecules responsible for the hormonal effects. This information will help us understand how environmental contaminants can potentially impact the development of breast cancer and allow us to fix a maximal limit to the concentration of estrogen-like compounds that should be found in the environment. The aim of this review is to provide an overview of emerging estrogen-like compounds in the environment, sum up studies demonstrating their direct or indirect interactions with ERs, and link their presence to the development of breast cancer. Finally, we emphasize the use of in vitro and in vivo methods based on the zebrafish model to identify and characterize environmental estrogens. PMID:28914763

  4. Direct radioimmunoassay of urinary estrogen and pregnanediol glucuronides during the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanczyk, F.Z.; Miyakawa, I.; Goebelsmann, U.

    Assays measuring immunoreactive estrone glucuronide (E/sub 1/G), estradiol-3-glucuronide (E/sub 2/-3G), estradiol-17..beta..-glucuronide (E/sub 2/-17G), estriol-3-glucuronide (E/sub 3/-3G), estriol-16..cap alpha..-glucuronide (E/sub 3/-16G), and pregnanediol-3..cap alpha..-glucuronide (Pd-3G) directly in diluted urine were developed and validated. These estrogen and pregnanediol glucuronide fractions were measured in aliquots of 24-hour and overnight samples of urine collected daily from seven women for one menstrual cycle. Urinary hormone excretion was correlated with daily serum estradiol (E/sub 2/), progesterone (P), and lutenizing hormonee (LH) levels. A sharp midcycle LH peak preceded by a preovulatory rise in serum E/sub 2/ and followed by luteal phase serum P levels were notedmore » in each of the seven apparently ovulatory cycles. Twenty-four-hour and overnight urinary excretion patterns of estrogen glucuronides were similar to those of serum E/sub 2/. Of the five estrogen glucuronide fractions tested, excretion of E/sub 2/-17G exhibited the earliest and steepest ascending slope of the preovulatory estrogen surge and correlated best with serum E/sub 2/ levels. Urinary excretion of E/sub 1/-G, E/sub 2/-3G, and E/sub 3/-16G also showed an early and steep preovulatory rise and preceded that of E/sub 3/-3G, whereas urinary excretion of E/sub 3/-3G exhibited the poorest correlation with serum E/sub 2/ concentrations. The urinary excretion of Pd-3G rose parallel to serum P levels and was markedly elevated 2 to 3 days after the midcycle LH peak in both 24-hour and overnight collections of urine. These results indicate that among the urinary estrogen conjugate fractions tested, E/sub 2/-17G is the one that most suitably predicts ovulation.« less

  5. Acyl-coenzyme A oxidases 1 and 3 in brown trout (Salmo trutta f. fario): Can peroxisomal fatty acid β-oxidation be regulated by estrogen signaling?

    PubMed

    Madureira, Tânia Vieira; Castro, L Filipe C; Rocha, Eduardo

    2016-02-01

    Acyl-coenzyme A oxidases 1 (Acox1) and 3 (Acox3) are key enzymes in the regulation of lipid homeostasis. Endogenous and exogenous factors can disrupt their normal expression/activity. This study presents for the first time the isolation and characterization of Acox1 and Acox3 in brown trout (Salmo trutta f. fario). Additionally, as previous data point to the existence of a cross-talk between two nuclear receptors, namely peroxisome proliferator-activated receptors and estrogen receptors, it was here evaluated after in vitro exposures of trout hepatocytes the interference caused by ethynylestradiol in the mRNA levels of an inducible (by peroxisome proliferators) and a non-inducible oxidase. The isolated Acox1 and Acox3 show high levels of sequence conservation compared to those of other teleosts. Additionally, it was found that Acox1 has two alternative splicing isoforms, corresponding to 3I and 3II isoforms of exon 3 splicing variants. Both isoforms display tissue specificity, with Acox1-3II presenting a more ubiquitous expression in comparison with Acox1-3I. Acox3 was expressed in almost all brown trout tissues. According to real-time PCR data, the highest estrogenic stimulus was able to cause a down-regulation of Acox1 and an up-regulation of Acox3. So, for Acox1 we found a negative association between an estrogenic input and a directly activated PPARα target gene. In conclusion, changes in hormonal estrogenic stimulus may impact the mobilization of hepatic lipids to the gonads, with ultimate consequences in reproduction. Further studies using in vivo assays will be fundamental to clarify these issues.

  6. Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis

    PubMed Central

    Li, Chenggang; Li, Na; Liu, Xiaolei; Zhang, Erik Y.; Sun, Yang; Masuda, Kouhei; Li, Jing; Sun, Julia; Morrison, Tasha; Li, Xiangke; Chen, Yuanguang; Wang, Jiang; Karim, Nagla A.; Zhang, Yi; Blenis, John; Reginato, Mauricio J.; Henske, Elizabeth P.; Yu, Jane J.

    2016-01-01

    Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of anoikis. We report here that estrogen increased LAM patient–derived cells’ resistance to anoikis in vitro, accompanied by decreased accumulation of the proapoptotic protein Bim, an activator of anoikis. The resistance to anoikis was reversed by the proteasome inhibitor, bortezomib. Treatment of LAM patient–derived cells with estrogen plus bortezomib promoted anoikis compared with estrogen alone. Depletion of Bim by siRNA in TSC2-deficient cells resulted in anoikis resistance. Treatment of mice with bortezomib reduced estrogen-promoted lung colonization of TSC2-deficient cells. Importantly, molecular depletion of Bim by siRNA in Tsc2-deficient cells increased lung colonization in a mouse model. Collectively, these data indicate that Bim plays a key role in estrogen-enhanced survival of LAM patient–derived cells under detached conditions that occur with dissemination. Thus, targeting Bim may be a plausible future treatment strategy in patients with LAM. PMID:27882343

  7. Testing the Uterotrophic Activity of Perfluorooctanoic Acid (PFOA) in the Immature CD-1 Mouse

    EPA Science Inventory

    The uterotrophic assay is an in vivo screening tool used to determine the estrogenic or anti-estrogenic potential of an exogenously administered compound. Recent studies reported that PFOA increased activity of estrogen-responsive genes in fish, some in association with liver tum...

  8. S-ketamine influences strategic allocation of attention but not exogenous capture of attention.

    PubMed

    Fuchs, Isabella; Ansorge, Ulrich; Huber-Huber, Christoph; Höflich, Anna; Lanzenberger, Rupert

    2015-09-01

    We investigated whether s-ketamine differentially affects strategic allocation of attention. In Experiment 1, (1) a less visible cue was weakly masked by the onsets of competing placeholders or (2) a better visible cue was not masked because it was presented in isolation. Both types of cue appeared more often opposite of the target (75%) than at target position (25%). With this setup, we tested for strategic attention shifts to the opposite side of the cues and for exogenous attentional capture toward the cue's side in a short cue-target interval, as well as for (reverse) cueing effects in a long cue-target interval after s-ketamine and after placebo treatment in a double-blind within-participant design. We found reduced strategic attention shifts after cues presented without placeholders for the s-ketamine compared to the placebo treatment in the short interval, indicating an early effect on the strategic allocation of attention. No differences between the two treatments were found for exogenous attentional capture by less visible cues, suggesting that s-ketamine does not affect exogenous attentional capture in the presence of competing distractors. Experiment 2 confirmed that the competing onsets of the placeholders prevented the strategic cueing effect. Taken together, the results indicate that s-ketamine affects strategic attentional capture, but not exogenous attentional capture. The findings point to a more prominent role of s-ketamine during top-down controlled forms of attention that require suppression of automatic capture than during automatic capture itself. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The Endogenous-Exogenous Partition in Attribution Theory

    ERIC Educational Resources Information Center

    Kruglanski, Arie W.

    1975-01-01

    Within lay explanation of actions, several significant inferences are assumed to follow from the partition between endogenous and exogenous attributions. An endogenous action is judged to constitute an end in itself; an exogenous action is judged to serve as a means to some further end. (Editor/RK)

  10. EXOGENOUS CYTOCHROME C RESTORES MYOCARDIAL CYTOCHROME OXIDASE ACTIVITY INTO THE LATE PHASE OF SEPSIS

    PubMed Central

    Piel, David A.; Deutschman, Clifford S.; Levy, Richard J.

    2009-01-01

    Mitochondrial dysfunction is thought to play a role in the pathogenesis of a variety of disease states, including sepsis. An acquired defect in oxidative phosphorylation potentially causes sepsis-induced organ dysfunction. Cytochrome oxidase (CcOX), the terminal oxidase of the respiratory chain, is competitively inhibited early in sepsis and progresses, becoming noncompetitive during the late phase. We have previously demonstrated that exogenous cytochrome c can overcome myocardial CcOX competitive inhibition and improve cardiac function during murine sepsis at the 24-h point. Here, we evaluate the effect of exogenous cytochrome c on CcOX activity and survival in mice at the later time points. Exogenous cytochrome c (800 μg) or saline was intravenously injected 24 h after cecal ligation and puncture (CLP) or sham operation. Steady-state mitochondrial cytochrome c levels and heme c content increased significantly 48 h post-CLP and remained elevated at 72 h in cytochrome c-injected mice compared with saline injection. Cecal ligation and puncture inhibited CcOX at 48 h in saline-injected mice. However, cytochrome c injection abrogated this inhibition and restored CcOX kinetic activity to sham values at 48 h. Survival after CLP to 96 h after cytochrome c injection approached 50% compared with only 15% after saline injection. Thus, a single injection of exogenous cytochrome c 24 h post-CLP repletes mitochondrial substrate levels for up to 72 h, restores myocardial COX activity, and significantly improves survival. PMID:18414235

  11. CENTRAL SEROUS CHORIORETINOPATHY IN POSTMENOPAUSAL WOMEN RECEIVING EXOGENOUS TESTOSTERONE.

    PubMed

    Conway, Mandi D; Noble, Jason A; Peyman, Gholam A

    2017-01-01

    Central serous chorioretinopathy (CSR) is a serous detachment of the neurosensory retina commonly associated with male sex, Type-A personality and corticosteroid use. Exogenous administration of androgens and development of CSR in men has been reported. Only one case of CSR in a postmenopausal woman receiving exogenous androgen therapy has been reported. The authors describe three cases of chronic CSR in postmenopausal women receiving exogenous testosterone therapy. Diagnosis was based on characteristic clinical, fluorescein angiographic, and optical coherence tomography findings. The three women were being treated with exogenous testosterone and progesterone therapy for symptoms of menopause and libido loss. Average age at presentation was 54.7 years (53-56 years), average duration of exogenous androgen use was 61 months (36-87 months), with average 19.7-month follow-up. Resolution of symptoms seemed correlated with cessation of androgen use despite treatment with oscillatory photodynamic therapy and intravitreal pharmacotherapy with antivascular endothelial growth factor agents. Exogenous testosterone is increasingly prescribed for menopausal symptoms and libido loss. Treatment with oscillatory photodynamic therapy, supplemental bevacizumab intravitreal pharmacotherapy, and cessation of exogenous androgen therapy was successful in three cases of chronic, therapy-resistant CSR. Ophthalmologists should inquire about androgen usage in patients who present with CSR, especially in the setting of therapy resistance.

  12. Estrogen-Cholinergic Interactions: Implications for Cognitive Aging

    PubMed Central

    Newhouse, Paul; Dumas, Julie

    2015-01-01

    While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  13. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Casanova-Nakayama, Ayako; Wernicke von Siebenthal, Elena; Kropf, Christian; Oldenberg, Elisabeth; Segner, Helmut

    2018-03-21

    Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss , and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs-head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the

  14. Estrogen signaling is not required for prostatic bud patterning or for its disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgeier, Sarah Hicks; Vezina, Chad M.; Lin, T.-M.

    2009-08-15

    Estrogens play an important role in prostatic development, health, and disease. While estrogen signaling is essential for normal postnatal prostate development, little is known about its prenatal role in control animals. We tested the hypothesis that estrogen signaling is needed for normal male prostatic bud patterning. Budding patterns were examined by scanning electron microscopy of urogenital sinus epithelium from wild-type mice, mice lacking estrogen receptor (ER){alpha}, ER{beta}, or both, and wild-type mice exposed to the antiestrogen ICI 182,780. Budding phenotypes did not detectably differ among any of these groups, strongly suggesting that estrogen signaling is not needed to establish themore » prototypical prostatic budding pattern seen in control males. This finding contributes to our understanding of the effects of low-level estrogen exposure on early prostate development. In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can greatly alter the pattern in which prostatic buds form and reduce their number. For several reasons, including a prior observation that inhibitory effects of TCDD on prostatic budding in rats depend heavily on the sex of adjacent fetuses, we tested the hypothesis that estrogen signaling is needed for TCDD to disrupt prostatic budding. However, budding did not detectably differ among wild-type mice, or mice lacking ER{alpha}, ER{beta}, or both, that were exposed prenatally to TCDD (5 {mu}g/kg on embryonic day 13.5). Nor did ICI 182,780 detectably affect the response to TCDD. These results strongly suggest that estrogen signaling is not needed for TCDD to inhibit prostatic epithelial budding.« less

  15. Estrogen Receptors Alpha and Beta in Bone

    PubMed Central

    Khalid, Aysha B.; Krum, Susan A.

    2016-01-01

    Estrogens are important for bone metabolism via a variety of mechanisms in osteoblasts, osteocytes, osteoclasts, immune cells and other cells to maintain bone mineral density. Estrogens bind to estrogen receptor alpha (ERα) and ERβ, and the roles of each of these receptors are beginning to be elucidated through whole body and tissue-specific knockouts of the receptors. In vitro and in vivo experiments have shown that ERα and ERβ antagonize each other in bone and in other tissues. This review will highlight the role of these receptors in bone, with particular emphasis on their antagonism. PMID:27072516

  16. Estrogen receptor ligands: a patent review update.

    PubMed

    Paterni, Ilaria; Bertini, Simone; Granchi, Carlotta; Macchia, Marco; Minutolo, Filippo

    2013-10-01

    The role of estrogens is mostly mediated by two nuclear receptors (ERα and ERβ) and a membrane-associated G-protein (GPR30 or GPER), and it is not limited to reproduction, but it extends to the skeletal, cardiovascular and central nervous systems. Various pathologies such as cancer, inflammatory, neurodegenerative and metabolic diseases are often associated with dysfunctions of the estrogenic system. Therapeutic interventions by agents that affect the estrogenic signaling pathway might be useful in the treatment of many dissimilar diseases. The massive chemodiversity of ER ligands, limited to patented small molecules, is herein reviewed. The reported compounds are classified on the basis of their chemical structures. Non-steroidal derivatives, which mostly consist of diphenolic compounds, are further segregated into chemical classes based on their central scaffold. Estrogens have been used for almost a century and their earlier applications have concerned interventions in the female reproductive functions, as well as the treatment of some estrogen-dependent cancers and osteoporosis. Since the discovery of ERβ in 1996, the patent literature has started to pay a progressively increasing attention to this newer receptor subtype, which holds promise as a target for new indications, most of which still need to be clinically validated.

  17. Early intervention with an estrogen receptor β-selective phytoestrogenic formulation prolongs survival, improves spatial recognition memory, and slows progression of amyloid pathology in a female mouse model of Alzheimer's disease.

    PubMed

    Zhao, Liqin; Mao, Zisu; Chen, Shuhua; Schneider, Lon S; Brinton, Roberta D

    2013-01-01

    Our recent developments have yielded a novel phytoestrogenic formulation, referred to as the phyto-β-SERM formulation, which exhibits an 83-fold binding selectivity for the estrogen receptor subtype β (ERβ) over ERα. Earlier studies indicate that the phyto-β-SERM formulation is neuroprotective and promotes estrogenic mechanisms in the brain while devoid of feminizing activity in the periphery. Further investigation in a mouse model of human menopause indicates that chronic exposure to the phyto-β-SERM formulation at a clinically relevant dosage prevents/alleviates menopause-related climacteric symptoms. This study assessed the efficacy, in an early intervention paradigm, of the phyto-β-SERM formulation in the regulation of early stages of physical and neurological changes associated with Alzheimer's disease (AD) in a female triple transgenic mouse model of AD. Results demonstrated that, when initiated prior to the appearance of AD pathology, a 9-month dietary supplementation with the phyto-β-SERM formulation promoted physical health, prolonged survival, improved spatial recognition memory, and attenuated amyloid-β deposition and plaque formation in the brains of treated AD mice. In comparison, dietary supplementation of a commercial soy extract preparation showed no effect on cognitive measures, although it appeared to have a positive impact on amyloid pathology. In overall agreement with the behavioral and histological outcomes, results from a gene expression profiling analysis offered insights on the underlying molecular mechanisms associated with the two dietary treatments. In particular, the data suggests that there may be a crosstalk between ERβ and glycogen synthase kinase 3 signaling pathways that could play a role in conferring ERβ-mediated neuroprotection against AD. Taken together, these results support the therapeutic potential of the phyto-β-SERM formulation for prevention and/or early intervention of AD, and warrants further investigations

  18. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a

    PubMed Central

    Seredynski, Aurore L.; Balthazart, Jacques; Ball, Gregory F.

    2015-01-01

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER–mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. SIGNIFICANCE STATEMENT The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  19. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    PubMed

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  20. VEGF-A is increased in exogenous endophthalmitis.

    PubMed

    Seamone, Mark E; Lewis, Darrell R; Haidl, Ian D; Gupta, R Rishi; O' Brien, Daniel M; Dickinson, John; Samad, Arif; Marshall, Jean S; Cruess, Alan F

    2017-06-01

    Exogenous endophthalmitis is an ophthalmologic emergency defined by panocular inflammation. Vascular endothelial growth factor A (VEGF-A) contributes to inflammation by promoting chemotaxis of monocytes and granulocytes and by increasing vascular permeability. The purpose of this article is to determine if VEGF-A is elevated in the vitreous samples obtained from individuals with exogenous endophthalmitis. Vitreous samples from individuals with exogenous endophthalmitis (n = 18) were analyzed via Luminex assay and enzyme-linked immunosorbent assay for the cytokines VEGF-A, tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-8 (chemokine [CXCL]-8), IL-1β, IL-10, IL-12p70, IL-33, interferon (IFN)-γ, IFN-α, IFN-β, chemokine ligand (CCL)-3, IL-2, IL-5, IL-15, CXCL-10, CCL-2, IL-1Ra, CCL-5, IL-17, and CCL-11. Vitreous samples obtained at the time of macular hole surgery served as controls (n = 8). Concentrations of VEGF-A were significantly elevated in vitreous samples from individuals with exogenous endophthalmitis compared with macular hole (p < 0.001). VEGF-A was significantly upregulated in individuals with exogenous endophthalmitis after cataract surgery (p = 0.001), vitrectomy (p = 0.024), and intravitreal injection (p = 0.012). VEGF-A concentrations were similar in both culture-positive and culture-negative populations (p > 0.05). In a linear regression model, levels of VEGF-A correlated significantly with the chemokine CXCL-8 (p = 0.028). We demonstrate that VEGF-A is potently upregulated in exogenous endophthalmitis. This observation provides a foundation for future studies of targeted VEGF-A blockade in the management of endophthalmitis. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  1. Premature menopause or early menopause and risk of ischemic stroke

    PubMed Central

    Rocca, Walter A.; Grossardt, Brandon R.; Miller, Virginia M.; Shuster, Lynne T.; Brown, Robert D.

    2011-01-01

    Objective The general consensus has been that estrogen is invariably a risk factor for ischemic stroke (IS). We reviewed new observational studies that challenge this simple conclusion. Methods This was a review of observational studies of the association of premature or early menopause with stroke or IS published in English from 2006 through 2010. Results Three cohort studies showed an increased risk of all stroke in women who underwent bilateral oophorectomy compared with women who conserved their ovaries before age 50 years. The increased risk of stroke was reduced by hormonal therapy (HT) in one of the studies, suggesting that estrogen deprivation is involved in the association. Four additional observational studies showed an association of all stroke or IS with the early onset of menopause or with a shorter lifespan of ovarian activity. In three of the seven studies, the association was restricted to IS. Age at menopause was more important than type of menopause (natural vs induced). Conclusions The findings from seven recent observational studies challenge the consensus that estrogen is invariably a risk factor for IS and can be reconciled by a unifying timing hypothesis. We hypothesize that estrogen is protective for IS before age 50 years and may become a risk factor for IS after age 50 years or, possibly, after age 60 years. These findings are relevant to women who experienced premature or early menopause, or to women considering prophylactic bilateral oophorectomy before the onset of natural menopause. PMID:21993082

  2. The role of estrogens for male bone health.

    PubMed

    Ohlsson, Claes; Vandenput, Liesbeth

    2009-06-01

    Sex steroids are important for the growth and maintenance of both the female and the male skeleton. However, the relative contribution of androgens versus estrogens in the regulation of the male skeleton is unclear. Experiments using mice with inactivated sex steroid receptors demonstrated that both activation of the estrogen receptor (ER)alpha and activation of the androgen receptor result in a stimulatory effect on both the cortical and trabecular bone mass in males. ERbeta is of no importance for the skeleton in male mice while it modulates the ERalpha-action on bone in female mice. Previous in vitro studies suggest that the membrane G protein-coupled receptor GPR30 also might be a functional ER. Our in vivo analyses of GPR30-inactivated mice revealed no function of GPR30 for estrogen-mediated effects on bone mass but it is required for normal regulation of the growth plate and estrogen-mediated insulin-secretion. Recent clinical evidence suggests that a threshold exists for estrogen effects on bone in men: rates of bone loss and fracture risk seem to be the highest in men with estradiol levels below this threshold. Taken together, even though these findings do not exclude an important role for testosterone in male skeletal homeostasis, it is now well-established that estrogens are important regulators of bone health in men.

  3. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice.

    PubMed

    Pazos, Michael A; Kraus, Thomas A; Muñoz-Fontela, César; Moran, Thomas M

    2012-01-01

    Pregnancy is a leading risk factor for severe complications during an influenza virus infection. Women infected during their second and third trimesters are at increased risk for severe cardiopulmonary complications, premature delivery, and death. Here, we establish a murine model of aerosolized influenza infection during pregnancy. We find significantly altered innate antiviral responses in pregnant mice, including decreased levels of IFN-β, IL-1α, and IFN-γ at early time points of infection. We also find reduced cytotoxic T cell activity and delayed viral clearance. We further demonstrate that pregnancy levels of the estrogen 17-β-estradiol are able to induce key anti-inflammatory phenotypes in immune responses to the virus independently of other hormones or pregnancy-related stressors. We conclude that elevated estrogen levels result in an attenuated anti-viral immune response, and that pregnancy-associated morbidities occur in the context of this anti-inflammatory phenotype.

  4. Vitellogenin detection in Caiman latirostris (Crocodylia: Alligatoridae): a tool to assess environmental estrogen exposure in wildlife.

    PubMed

    Rey, Florencia; Ramos, Jorge G; Stoker, Cora; Bussmann, Leonardo E; Luque, Enrique H; Muñoz-de-Toro, Mónica

    2006-03-01

    Environmental pollution with endocrine disrupting compounds (EDCs) has adverse effects on the ecosystem's health. Caiman latirostris are widely distributed in South American aquatic ecosystems. Caimans have physiological and ecological characteristics that make them particularly vulnerable to EDCs exposure and suitable candidate as a sentinel species. Vitellogenin (Vtg) is a yolk pre-cursor protein synthesized by the liver of non-mammalian vertebrates and induced in response to estrogen. Purified plasma Vtg from caimans injected with estradiol-17beta (E2) was used to generate a polyclonal anti-body. Anti-body specificity was assessed using Western blot. The antiserum was also effective in detecting turtle Vtg, exhibiting high cross-reactivity with Vtg from Phrynops hilarii and Trachemys scripta dorbigni. We developed a specific and highly sensitive ELISA for caiman Vtg. This method has a detection limit of 0.1 ng/ml of plasma. The ELISA did not detect Vtg in plasma of non-induced male caimans. Induction of Vtg in male caimans was evaluated in response to one or two (7 days apart) doses of E2. Due to its high sensitivity, ELISA allows to measure the small increases in plasma Vtg after exposure to exogenous estrogen. A priming effect was observed following the second E2 dose, with a tenfold increase in circulating Vtg. Hepatic synthesis was confirmed by immunohistochemistry. The results presented herein suggest that detection of plasma Vtg in male caimans might become a valuable tool in biomonitoring xenoestrogen exposure in a polluted environment.

  5. IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells

    PubMed Central

    Freund, Ariane; Chauveau, Corine; Brouillet, Jean-Paul; Lucas, Annick; Lacroix, Matthieu; Licznar, Anne; Vignon, Françoise; Lazennec, Gwendal

    2003-01-01

    Estrogen receptor (ER) status is an important parameter in breast cancer management as ER-positive breast cancers have a better prognosis than ER-negative tumors. This difference comes essentially from the lower aggressiveness and invasiveness of ER-positive tumors. Here, we demonstrate, that IL-8 was clearly overexpressed in most ER-negative breast, ovary cell lines and breast tumor samples tested, whereas no significant IL-8 level could be detected in ER-positive breast or ovarian cell lines. We have also cloned human IL-8 from ER-negative MDA-MB-231 cells and we show that IL-8 produced by breast cancer cells is identical to monocyte-derived IL-8. Interestingly, the invasion potential of ER-negative breast cancer cells is associated at least in part with expression of interleukin-8 (IL-8), but not with IL-8 receptors levels. Moreover, IL-8 increases the invasiveness of ER-positive breast cancer cells by 2 fold, thus confirming the invasion-promoting role of IL-8. On the other hand, exogenous expression of estrogen receptors in ER-negative cells led to a decrease of IL-8 levels. In summary, our data show that IL-8 expression is negatively linked to ER-status of breast and ovarian cancer cells. We also support the idea that IL-8 expression is associated with a higher invasiveness potential of cancer cells in vitro, which suggests that IL-8 could be a novel marker of tumor aggressiveness. PMID:12527894

  6. Evaluation of estrogen and G protein-coupled estrogen receptor 1 (GPER) levels in drug-naïve patients with attention deficit hyperactivity disorder (ADHD).

    PubMed

    Sahin, Nilfer; Altun, Hatice; Kurutaş, Ergül Belge; Fındıklı, Ebru

    2018-05-20

    Estrogen has a crucial role in the regulation of reproductive and neuroendocrine function and exerts its effects through two classes of receptors, nuclear and membrane estrogen receptors (mERs). G protein-coupled estrogen receptor 1 (GPER) is a member of mERs, and despite limited research on the levels of GPER in patients with psychiatric diseases, a role of GPER in such conditions has been suggested. Here we evaluated serum estrogen and GPER levels in children with attention deficit hyperactivity disorder (ADHD) in relation to their age- and gender-matched healthy controls. A total of 82 children were included in the study, 47 drug- naïve patients with ADHD (age: 6-12 years; male/female: 34/13) and 35 healthy controls (age: 6-12 years; male/female: 19/16). The subgroups according to ADHD types were inattentive, hyperactive/impulsive, and combined. Serum estrogen was measured using an immunoassay system, while serum GPER was determined using a commercial sandwich enzyme-linked immunosorbent assay kit. Estrogen levels in children with ADHD were similar as in control group, while GPER levels were significantly lower in ADHD group compared to controls (p < 0.05). Logistic regression analysis showed a significant association between GPER levels and ADHD (p < 0.05), and no association between estrogen levels and ADHD (p > 0.05). No significant differences were found in GPER and estrogen levels between ADHD subgroups (p > 0.05). To the best of our knowledge, this study is the first to investigate estrogen and GPER levels in ADHD. Our preliminary findings suggest a relationship between serum GPER levels and ADHD, and this should be further investigated.

  7. Window Of Opportunity: Estrogen As A Treatment For Ischemic Stroke✰

    PubMed Central

    Liu, Ran; Yang, Shao-Hua

    2013-01-01

    The neuroprotection research in the last 2 decades has witnessed a growing interest in the functions of estrogens as neuroprotectants against neurodegenerative diseases including stroke. The neuroprotective action of estrogens has been well demonstrated in both in vitro and in vivo models of ischemic stroke. However, the major conducted clinical trials so far have raised concern for the protective effect of estrogen replacement therapy in postmenopausal women. The discrepancy could be partly due to the mistranslation between the experimental stroke research and clinical trials. While predominant experimental studies tested the protective action of estrogens on ischemic stroke using acute treatment paradigm, the clinical trials have mainly focused on the effect of estrogen replacement therapy on the primary and secondary stroke prevention which has not been adequately addressed in the experimental stroke study. Although the major conducted clinical trials have indicated that estrogen replacement therapy has an adverse effect and raise concern for long term estrogen replacement therapy for stroke prevention, these are not appropriate for assessing the potential effects of acute estrogen treatment on stroke protection. The well established action of estrogen in the neurovascular unit and its potential interaction with recombinant tissue plasminogen activator (rtPA) makes it a candidate for the combined therapy with rtPA for the acute treatment of ischemic stroke. On the other hand, the “critical period” and newly emerged “biomarkers window” hypotheses have indicated that many clinical relevant factors have been underestimated in the experimental ischemic stroke research. The development and application of ischemic stroke models that replicate the clinical condition is essential for further evaluation of acute estrogen treatment on ischemic stroke which might provide critical information for future clinical trials. PMID:23340160

  8. Influence of different estrogens on neuroplasticity and cognition in the hippocampus.

    PubMed

    Barha, Cindy K; Galea, Liisa A M

    2010-10-01

    Estrogens modulate the morphology and function of the hippocampus. Recent studies have focused on the effects of different types of estrogens on neuroplasticity in the hippocampus and cognition. There are three main forms of estrogens found in mammals: estradiol, estrone, and estriol. The vast majority of studies have used estradiol to investigate the effects of estrogens on the brain. This review focuses on the effects of different estrogens on adult hippocampal neurogenesis, synaptic plasticity in the hippocampus, and cognition in female rats. Different forms of estrogens modulate neuroplasticity and cognition in complex and intriguing ways. Specifically, estrogens upregulate adult hippocampal neurogenesis (via cell proliferation) and synaptic protein levels in the hippocampus in a time- and dose-dependent manner. Low levels of estradiol facilitate spatial working memory and contextual fear conditioning while high levels of estradiol impair spatial working, spatial reference memory and contextual fear conditioning. In addition, estrone impairs contextual fear conditioning. Advances in our knowledge of how estrogens exert their effects on the brain may ultimately lead to refinements in targeted therapies for cognitive impairments at all stages of life. However caution should be taken in interpreting current research and in conducting future studies as estrogens likely work differently in males than in females. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory.

    PubMed

    Edwards, Thea M; Morgan, Howard E; Balasca, Coralia; Chalasani, Naveen K; Yam, Lauren; Roark, Alison M

    2018-01-01

    The Yeast Estrogen Screen (YES) is used to detect estrogenic ligands in environmental samples and has been broadly applied in studies of endocrine disruption. Estrogenic ligands include both natural and manmade "Environmental Estrogens" (EEs) found in many consumer goods including Personal Care Products (PCPs), plastics, pesticides, and foods. EEs disrupt hormone signaling in humans and other animals, potentially reducing fertility and increasing disease risk. Despite the importance of EEs and other Endocrine Disrupting Chemicals (EDCs) to public health, endocrine disruption is not typically included in undergraduate curricula. This shortcoming is partly due to a lack of relevant laboratory activities that illustrate the principles involved while also being accessible to undergraduate students. This article presents an optimized YES for quantifying ligands in personal care products that bind estrogen receptors alpha (ERα) and/or beta (ERβ). The method incorporates one of the two colorimetric substrates (ortho-nitrophenyl-β-D-galactopyranoside (ONPG) or chlorophenol red-β-D-galactopyranoside (CPRG)) that are cleaved by β-galactosidase, a 6-day refrigerated incubation step to facilitate use in undergraduate laboratory courses, an automated application for LacZ calculations, and R code for the associated 4-parameter logistic regression analysis. The protocol has been designed to allow undergraduate students to develop and conduct experiments in which they screen products of their choosing for estrogen mimics. In the process, they learn about endocrine disruption, cell culture, receptor binding, enzyme activity, genetic engineering, statistics, and experimental design. Simultaneously, they also practice fundamental and broadly applicable laboratory skills, such as: calculating concentrations; making solutions; demonstrating sterile technique; serially diluting standards; constructing and interpolating standard curves; identifying variables and controls; collecting

  10. Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory

    PubMed Central

    Edwards, Thea M.; Morgan, Howard E.; Balasca, Coralia; Chalasani, Naveen K.; Yam, Lauren; Roark, Alison M.

    2018-01-01

    The Yeast Estrogen Screen (YES) is used to detect estrogenic ligands in environmental samples and has been broadly applied in studies of endocrine disruption. Estrogenic ligands include both natural and manmade "Environmental Estrogens" (EEs) found in many consumer goods including Personal Care Products (PCPs), plastics, pesticides, and foods. EEs disrupt hormone signaling in humans and other animals, potentially reducing fertility and increasing disease risk. Despite the importance of EEs and other Endocrine Disrupting Chemicals (EDCs) to public health, endocrine disruption is not typically included in undergraduate curricula. This shortcoming is partly due to a lack of relevant laboratory activities that illustrate the principles involved while also being accessible to undergraduate students. This article presents an optimized YES for quantifying ligands in personal care products that bind estrogen receptors alpha (ERα) and/or beta (ERβ). The method incorporates one of the two colorimetric substrates (ortho-nitrophenyl-β-D-galactopyranoside (ONPG) or chlorophenol red-β-D-galactopyranoside (CPRG)) that are cleaved by β-galactosidase, a 6-day refrigerated incubation step to facilitate use in undergraduate laboratory courses, an automated application for LacZ calculations, and R code for the associated 4-parameter logistic regression analysis. The protocol has been designed to allow undergraduate students to develop and conduct experiments in which they screen products of their choosing for estrogen mimics. In the process, they learn about endocrine disruption, cell culture, receptor binding, enzyme activity, genetic engineering, statistics, and experimental design. Simultaneously, they also practice fundamental and broadly applicable laboratory skills, such as: calculating concentrations; making solutions; demonstrating sterile technique; serially diluting standards; constructing and interpolating standard curves; identifying variables and controls; collecting

  11. Explaining Cigarette Smoking: An Endogenous-Exogenous Analysis.

    ERIC Educational Resources Information Center

    McKillip, Jack

    Kruglanski's endogenous-exogenous partition, when applied to reasons given by smokers for smoking cigarettes, distinguishes two types of actions: (1) endogenous reasons implying that the behavior of consuming the cigarette is the goal of the action and the actor is positive toward the behavior, and (2) exogenous reasons implying that the behavior…

  12. Estrogen-cholinergic interactions: Implications for cognitive aging.

    PubMed

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. Published by Elsevier Inc.

  13. Estrogen-associated severe hypertriglyceridemia with pancreatitis.

    PubMed

    Aljenedil, Sumayah; Hegele, Robert A; Genest, Jacques; Awan, Zuhier

    Estrogen, whether therapeutic or physiologic, can cause hypertriglyceridemia. Hypertriglyceridemia-induced pancreatitis is a rare complication. We report 2 women who developed estrogen-associated severe hypertriglyceridemia with pancreatitis. The first patient developed pancreatitis secondary to hypertriglyceridemia associated with in vitro fertilization cycles. Marked reduction in her triglyceride was achieved with dietary restrictions and fibrate. The second patient developed pancreatitis secondary to hypertriglyceridemia during her pregnancies. She was noncompliant with the treatment; therefore, her triglyceride remained high after delivery. In both patients, no hypertriglyceridemia-associated genes mutations were identified, although the second patient had strong polygenic susceptibility to hypertriglyceridemia. Estrogen-induced severe hypertriglyceridemia with pancreatitis can be a life-threatening condition. Screening in high-risk patients is crucial to prevent subsequent complications. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  14. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    PubMed Central

    2010-01-01

    Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are vulnerable to very

  15. Association between Use of Exogenous Testosterone Therapy and Risk of Venous Thrombotic Events among Exogenous Testosterone Treated and Untreated Men with Hypogonadism.

    PubMed

    Li, Hu; Benoit, Karin; Wang, Wei; Motsko, Stephen

    2016-04-01

    Limited information exists about whether exogenous testosterone therapy is associated with a risk of venous thrombotic events. We investigated via cohort and nested case-control analyses whether exogenous testosterone therapy is associated with the risk of venous thrombotic events in men with hypogonadism. Databases were reviewed to identify men prescribed exogenous testosterone therapy and/or men with a hypogonadism diagnosis. Propensity score 1:1 matching was used to select patients for cohort analysis. Cases (men with venous thrombotic events) were matched 1:4 with controls (men without venous thrombotic events) for the nested case-control analysis. Primary outcome was defined as incident idiopathic venous thrombotic events. Cox regression and conditional logistic regression were used to assess HRs and ORs, respectively. Sensitivity analyses were also performed. A total of 102,650 exogenous testosterone treated and 102,650 untreated patients were included in cohort analysis after matching, and 2,785 cases and 11,119 controls were included in case-control analysis. Cohort analysis revealed a HR of 1.08 for all testosterone treated patients (95% CI 0.91, 1.27, p = 0.378). Case-control analysis resulted in an OR of 1.02 (95% CI 0.92, 1.13, p = 0.702) for current exogenous testosterone therapy exposure and an OR of 0.92 (95% CI 0.82, 1.03, p = 0.145) for past exogenous testosterone therapy exposure. These results remained nonstatistically significant after stratifying by exogenous testosterone therapy administration route and age category. Most sensitivity analyses yielded consistent results. No significant association was found between exogenous testosterone therapy and incidents of idiopathic or overall venous thrombotic events in men with hypogonadism. However, some discrepant findings exist for the association between injectable formulations and the risk of overall venous thrombotic events. Copyright © 2016 American Urological Association Education and Research

  16. The Role and Use of Estrogens Following Trauma.

    PubMed

    Weniger, Maximilian; Angele, Martin K; Chaudry, Irshad H

    2016-09-01

    Several lines of evidence indicate that female sex is a protective factor in trauma and hemorrhage. In both clinical and experimental studies, proestrus females have been shown to have better chances of survival and reduced rates of posttraumatic sepsis. Estrogen receptors are expressed in a variety of tissues and exert genomic, as well as nongenomic effects. By improving cardiac, pulmonary, hepatic, and immune function, estrogens have been shown to prolong survival in animal models of hemorrhagic shock. Despite encouraging results from experimental studies, retrospective clinical studies have not clearly pointed to advantages of estrogens following trauma-hemorrhage, which may be due to insufficient study design. Therefore, this review aims to give an overview on the current evidence and emphasizes on the importance of further clinical investigation on estrogens following trauma.

  17. An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water

    PubMed Central

    Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.

    2010-01-01

    Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that

  18. Determination of estrogenic potential in waste water without sample extraction.

    PubMed

    Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester

    2013-09-15

    This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was estrogenic potential was 92-98%. Daytime estrogenic potential values varied significantly. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Estrogen replacement therapy, Alzheimer's disease, and mild cognitive impairment.

    PubMed

    Mulnard, Ruth A; Corrada, Marìa M; Kawas, Claudia H

    2004-09-01

    This article highlights the latest findings regarding estrogen replacement therapy in the treatment and prevention of Alzheimer's disease (AD) and mild cognitive impairment in women. Despite considerable evidence from observational studies, recent randomized clinical trials of conjugated equine estrogens, alone and in combination with progestin, have shown no benefit for either the treatment of established AD or for the short-term prevention of AD, mild cognitive impairment, or cognitive decline. Based on the evidence, there is no role at present for estrogen replacement therapy in the treatment or prevention of AD or cognitive decline, despite intriguing results from the laboratory and from observational studies. However, numerous questions remain about the biologic effects of estrogens on brain structure and function. Additional basic and clinical investigations are necessary to examine different forms and dosages of estrogens, other populations, and the relevance of timing and duration of exposure.

  20. Analysis of exogenous components of mortality risks.

    PubMed

    Blinkin, V L

    1998-04-01

    A new technique for deriving exogenous components of mortality risks from national vital statistics has been developed. Each observed death rate Dij (where i corresponds to calendar time (year or interval of years) and j denotes the number of corresponding age group) was represented as Dij = Aj + BiCj, and unknown quantities Aj, Bi, and Cj were estimated by a special procedure using the least-squares principle. The coefficients of variation do not exceed 10%. It is shown that the term Aj can be interpreted as the endogenous and the second term BiCj as the exogenous components of the death rate. The aggregate of endogenous components Aj can be described by a regression function, corresponding to the Gompertz-Makeham law, A(tau) = gamma + beta x e alpha tau, where gamma, beta, and alpha are constants, tau is age, A(tau) [symbol: see text] tau = tau j identical to A(tau j) identical to Aj and tau j is the value of age tau in jth age group. The coefficients of variation for such a representation does not exceed 4%. An analysis of exogenous risk levels in the Moscow and Russian populations during 1980-1995 shows that since 1992 all components of exogenous risk in the Moscow population had been increasing up to 1994. The greatest contribution to the total level of exogenous risk was lethal diseases, and their death rate was 387 deaths per 100,000 persons in 1994, i.e., 61.9% of all deaths. The dynamics of exogenous mortality risk change during 1990-1994 in the Moscow population and in the Russian population without Moscow had been identical: the risk had been increasing and its value in the Russian population had been higher than that in the Moscow population.

  1. Chronic estrogen deficiency leads to molecular aberrations related to neurodegenerative changes in follitropin receptor knockout female mice.

    PubMed

    Tam, J; Danilovich, N; Nilsson, K; Sairam, M R; Maysinger, D

    2002-01-01

    The follitropin receptor knockout (FORKO) mouse undergoes ovarian failure, thereby providing an animal model to investigate the consequences of the depletion of circulating estrogen in females. The estrogen deficiency causes marked defects in the female reproductive system, obesity, and skeletal abnormalities. In light of estrogen's known pleiotropic effects in the nervous system, our study examined the effects of genetically induced estrogen-testosterone imbalance on this system in female FORKO mice. Circulating concentrations of 17-beta-estradiol (E2) in FORKO mice are significantly decreased (FORKO -/-: 1.13+/-0.34 pg/ml; wild-type +/+: 17.6+/-3.5 pg/ml, P<0.0001, n=32-41); in contrast, testosterone levels are increased (-/-: 37.7+/-2.3 pg/ml; wild-type +/+: 3.9+/-1.7 pg/ml, P<0.005, n=25-33). The focus was on the activities of key enzymes in the central cholinergic and peripheral nervous systems, on dorsal root ganglia (DRGs) capacity for neurite outgrowth, and on the phosphorylation state of structural neurofilament (NF) proteins. Choline acetyltransferase activity was decreased in several central cholinergic structures (striatum 50+/-3%, hippocampus 24+/-2%, cortex 12+/-3%) and in DRGs (11+/-6%). Moreover, we observed aberrations in the enzymatic activities of mitogen-activated protein kinases (extracellular-regulated kinase and c-Jun N-terminal kinase) in the hippocampus, DRGs, and sciatic nerves. Hippocampal and sensory ganglia samples from FORKO mice contained hyper-phosphorylated NFs. Finally, explanted ganglia of FORKO mice displayed decreased neurite outgrowth (20-50%) under non-treated conditions and when treated with E2 (10 nM). Our results demonstrate that genetic depletion of circulating estrogen leads to biochemical and morphological changes in central and peripheral neurons, and underlie the importance of estrogen in the normal development and functioning of the nervous system. In particular, the findings suggest that an early and persisting

  2. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  3. Rapid control of male typical behaviors by brain-derived estrogens

    PubMed Central

    Cornil, Charlotte A.; Ball, Gregory F.; Balthazart, Jacques

    2012-01-01

    Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanism that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators. PMID:22983088

  4. A preliminary study on the occurrence and dissipation of estrogen in livestock wastewater.

    PubMed

    Tang, Xianjin; Naveedullah; Hashmi, Muhammad Zaffar; Zhang, Hu; Qian, Mingrong; Yu, Chunna; Shen, Chaofeng; Qin, Zhihui; Huang, Ronglang; Qiao, Jiani; Chen, Yingxu

    2013-04-01

    Livestock wastewater has high estrogen activity because animal excreta contain estrogen. In the past, when biological technologies were applied to treat livestock wastewater, the removal efficiency of estrogen pollutants was always ignored. Therefore, the efficiency of estrogen removal by anaerobic/aerobic (A/O) treatment and by up flow anaerobic sludge blanket and step-fed sequencing batch reactor (UASB-SFSBR) treatment was investigated in the present study. The results showed that the A/O treatment had no significant estrogenic removal ability, whereas the removal rates of estrogen after UASB-SFSBR treatment reached approximately 78 %, as measured by liquid chromatography and tandem mass spectrometry. The estrogen concentration decreased from 31.5 ng/L to an undetectable level according to the yeast estrogen screen analysis. We found differences between the estrogen removal rates measured by the chemical assay and those measured using the bioassay. More attention must be paid to the removal of estrogen pollutants in livestock wastewater to reduce the environmental risk.

  5. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    PubMed

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  6. Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism

    PubMed Central

    2017-01-01

    Many women consider botanical dietary supplements (BDSs) as safe alternatives to hormone therapy for menopausal symptoms. However, the effect of BDSs on breast cancer risk is largely unknown. In the estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens to 4-hydroxylated catechols, which are oxidized to genotoxic quinones that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed 2-hydroxylation represents a detoxification pathway. The current study evaluated the effects of red clover, a popular BDS used for women’s health, and its isoflavones, biochanin A (BA), formononetin (FN), genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy estrogen metabolites (2-MeOE1, 4-MeOE1) were measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A) and ER-positive breast cancer cells (MCF-7) were derived from normal breast epithelial tissue and ER+ breast cancer tissue. Red clover extract (RCE, 10 μg/mL) and isoflavones had no effect on estrogen metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments downregulated CYP1A1 expression and enhanced genotoxic metabolism (4-MeOE1/CYP1B1 > 2-MeOE1/CYP1A1). Experiments with the isoflavones showed that the AhR agonists (BA, FN) preferentially induced CYP1B1 expression as well as 4-MeOE1. In contrast, the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated isoflavone-induced XRE-luciferase reporter activity and reversed GN and DZ induced downregulation of CYP1A1 expression. Overall, these studies show that red clover and its isoflavones have differential effects on estrogen metabolism in “normal” vs breast cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic metabolism, and the ER agonists downregulate the detoxification pathway. These data may suggest that especially breast

  7. Environmental impact of estrogens on human, animal and plant life: A critical review.

    PubMed

    Adeel, Muhammad; Song, Xiaoming; Wang, Yuanyuan; Francis, Dennis; Yang, Yuesuo

    2017-02-01

    Since the inception of global industrialization, steroidal estrogens have become an emerging and serious concern. Worldwide, steroid estrogens including estrone, estradiol and estriol, pose serious threats to soil, plants, water resources and humans. Indeed, estrogens have gained notable attention in recent years, due to their rapidly increasing concentrations in soil and water all over the world. Concern has been expressed regarding the entry of estrogens into the human food chain which in turn relates to how plants take up and metabolism estrogens. In this review we explore the environmental fate of estrogens highlighting their release through effluent sources, their uptake, partitioning and physiological effects in the ecological system. We draw attention to the potential risk of intensive modern agriculture and waste disposal systems on estrogen release and their effects on human health. We also highlight their uptake and metabolism in plants. We use MEDLINE and other search data bases for estrogens in the environment from 2005 to the present, with the majority of our sources spanning the past five years. Published acceptable daily intake of estrogens (μg/L) and predicted no effect concentrations (μg/L) are listed from published sources and used as thresholds to discuss reported levels of estrogens in the aquatic and terrestrial environments. Global levels of estrogens from river sources and from Waste Water Treatment Facilities have been mapped, together with transport pathways of estrogens in plants. Estrogens at polluting levels have been detected at sites close to waste water treatment facilities and in groundwater at various sites globally. Estrogens at pollutant levels have been linked with breast cancer in women and prostate cancer in men. Estrogens also perturb fish physiology and can affect reproductive development in both domestic and wild animals. Treatment of plants with steroid estrogen hormones or their precursors can affect root and shoot

  8. The Distinct Effects of Estrogen and Hydrostatic Pressure on Mesenchymal Stem Cells Differentiation: Involvement of Estrogen Receptor Signaling.

    PubMed

    Zhao, Ying; Yi, Fei-Zhou; Zhao, Yin-Hua; Chen, Yong-Jin; Ma, Heng; Zhang, Min

    2016-10-01

    This study aimed to investigate the differential and synergistic effects of mechanical stimulation and estrogen on the proliferation and osteogenic or chondrogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs) and the roles of estrogen receptor (ER) in them. BMSCs were isolated and cultured using the whole bone marrow adherence method, and flow cytometry was used to identify the surface marker molecules of BMSCs. Cells were pre-treated with 1 nM 17β-estradiol or 1 nM of the estrogen receptor antagonist tamoxifen. Then, the cells were stimulated with hydrostatic pressure. Assessment included flow cytometry analysis of the cell cycle; immunofluorescent staining for F-actin; protein quantification for MAPK protein; and mRNA analysis for Col I, OCN, OPN and BSP after osteogenic induction and Sox-9, Aggrecan and Col-II after chondrogenic induction. Hydrostatic pressure (90 kPa/1 h) and 1 nM 17β-estradiol enhanced the cellular proliferation ability and the cytoskeleton activity but without synergistic biological effects. Estrogen activated ERKs and JNKs simultaneously and promoted the osteogenic differentiation, whereas the pressure just caused JNK-1/2 activation and promoted the chondrogenic differentiation of BMSCs. Estrogen had antagonism effect on chondrogenic promotion of hydrostatic pressure. Mechanobiological effects of hydrostatic pressure are closely associated with ERα activity. MAPK molecules and F-actin were likely to be important mediator molecules in the ER-mediated mechanotransduction of BMSCs.

  9. Designer interface peptide grafts target estrogen receptor alpha dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K., E-mail: pbiswas@tougaloo.edu

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization.more » Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  10. Measuring estrogens in women, men, and children: Recent advances 2012-2017.

    PubMed

    Smy, Laura; Straseski, Joely

    2018-05-22

    The measurement of estrogens is important for diagnosing and monitoring the health of women, men, and children. For example, for postmenopausal women or women undergoing treatment for breast cancer with aromatase inhibitors, the measurement of extremely low concentrations of estrogens in serum, especially estradiol, is problematic but essential for proper medical care. Achieving superb analytical sensitivity and specificity has been and continues to be a challenge for the clinical laboratory, but is a challenge that is being taken seriously. Focusing on publications from 2012 to 2017, this review will provide an overview of recent research in the development of methods to accurately and precisely measure estrogens, including a variety of estrogen metabolites. Additionally, the latest in clinical research involving estrogen measurement in women, men, and children will be presented to provide an update on the association of estrogens with diseases or conditions such as breast cancer, precocious puberty, infertility, and pregnancy. This research update will provide context as to why estrogen measurement is important and why laboratories are working hard to support the recommendations made by the Endocrine Society regarding estrogen measurement. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Estrogenic effects of marijuana smoke condensate and cannabinoid compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soo Yeun; Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746; Oh, Seung Min

    Chronic exposure to marijuana produces adverse effects on the endocrine and reproductive systems in humans; however, the experimental evidence for this presented thus far has not been without controversy. In this study, the estrogenic effect of marijuana smoke condensate (MSC) was evaluated using in vitro bioassays, viz., the cell proliferation assay, the reporter gene assay, and the ER competitive binding assay. The results of these assays were compared with those of three major cannabinoids, i.e., THC, CBD, and CBN. The estrogenic effect of MSC was further confirmed by the immature female rat uterotrophic assay. MSC stimulated the estrogenicity related tomore » the ER-mediated pathway, while neither THC, CBD, nor CBN did. Moreover, treatment with 10 and 25 mg/kg MSC induced significant uterine response, and 10 mg/kg MSC resulted in an obvious change in the uterine epithelial cell appearance. MSC also enhanced the IGFBP-1 gene expression in a dose-dependent manner. To identify the constituents of MSC responsible for its estrogenicity, the MSC fractionated samples were examined using another cell proliferation assay, and the estrogenic active fraction was analyzed using GC-MS. In the organic acid fraction that showed the strongest estrogenic activity among the seven fractions of MSC, phenols were identified. Our results suggest that marijuana abuse is considered an endocrine-disrupting factor. Furthermore, these results suggest that the phenolic compounds contained in MSC play a role in its estrogenic effect.« less

  12. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  13. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc)

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  14. Endogenous versus Exogenous Origins of Crises

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Are large biological extinctions such as the Cretaceous/Tertiary KT boundary due to a meteorite, extreme volcanic activity or self-organized critical extinction cascades? Are commercial successes due to a progressive reputation cascade or the result of a well orchestrated advertisement? Determining the chain of causality for Xevents in complex systems requires disentangling interwoven exogenous and endogenous contributions with either no clear signature or too many signatures. Here, I review several efforts carried out with collaborators which suggest a general strategy for understanding the organizations of several complex systems under the dual effect of endogenous and exogenous fluctuations. The studied examples are: internet download shocks, book sale shocks, social shocks, financial volatility shocks, and financial crashes. Simple models are offered to quantitatively relate the endogenous organization to the exogenous response of the system. Suggestions for applications of these ideas to many other systems are offered.

  15. Evidence of estrogen modulation on memory processes for emotional content in healthy young women.

    PubMed

    Pompili, Assunta; Arnone, Benedetto; D'Amico, Mario; Federico, Paolo; Gasbarri, Antonella

    2016-03-01

    It is well accepted that emotional content can affect memory, interacting with the encoding and consolidation processes. The aim of the present study was to verify the effects of estrogens in the interplay of cognition and emotion. Images from the International Affective Pictures System, based on valence (pleasant, unpleasant and neutral), maintaining arousal constant, were viewed passively by two groups of young women in different cycle phases: a periovulatory group (PO), characterized by high level of estrogens and low level of progesterone, and an early follicular group (EF), characterized by low levels of both estrogens and progesterone. The electrophysiological responses to images were measured, and P300 peak was considered. One week later, long-term memory was tested by means of free recall. Intra-group analysis displayed that PO woman had significantly better memory for positive images, while EF women showed significantly better memory for negative images. The comparison between groups revealed that women in the PO phase had better memory performance for positive pictures than women in the EF phase, while no significant differences were found for negative and neutral pictures. According to the free recall results, the subjects in the PO group showed greater P300 amplitude, and shorter latency, for pleasant images compared with women in the EF group. Our results showed that the physiological hormonal fluctuation of estrogens during the menstrual cycle can influence memory, at the time of encoding, during the processing of emotional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rapid effects of estrogens on short-term memory: Possible mechanisms.

    PubMed

    Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena

    2018-06-01

    Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy

    PubMed Central

    Pedram, Ali; Razandi, Mahnaz; Narayanan, Ramesh; Dalton, James T.; McKinsey, Timothy A.; Levin, Ellis R.

    2013-01-01

    The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-β-estradiol on the production, localization, and functions of prohypertrophic (class I) and antihypertrophic (class II) HDACs in cultured neonatal rat cardiomyocytes. 17-β-Estradiol or estrogen receptor β agonists dipropylnitrile and β-LGND2 comparably suppressed angiotensin II–induced HDAC2 (class I) production, HDAC-activating phosphorylation, and the resulting prohypertrophic mRNA expression. In contrast, estrogenic compounds derepressed the opposite effects of angiotensin II on the same parameters for HDAC4 and 5 (class II), resulting in retention of these deacetylases in the nucleus to inhibit hypertrophic gene expression. Key aspects were confirmed in vivo from the hearts of wild-type but not estrogen receptor β (ERβ) gene–deleted mice administered angiotensin II and estrogenic compounds. Our results identify a novel dual regulation of cardiomyocyte HDACs, shown here for the antihypertrophic sex steroid acting at ERβ. This mechanism potentially supports using ERβ agonists as HDAC modulators to treat cardiac disease. PMID:24152730

  18. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle.

    PubMed

    Trenti, Annalisa; Tedesco, Serena; Boscaro, Carlotta; Trevisi, Lucia; Bolego, Chiara; Cignarella, Andrea

    2018-03-15

    Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.

  19. Estrogen receptor α is required for oviductal transport of embryos

    PubMed Central

    Li, Shuai; O’Neill, Sofia R. S.; Zhang, Yong; Holtzman, Michael J.; Takemaru, Ken-Ichi; Korach, Kenneth S.; Winuthayanon, Wipawee

    2017-01-01

    Newly fertilized embryos spend the first few days within the oviduct and are transported to the uterus, where they implant onto the uterine wall. An implantation of the embryo before reaching the uterus could result in ectopic pregnancy and lead to maternal death. Estrogen is necessary for embryo transport in mammals; however, the mechanism involved in estrogen-mediated cellular function within the oviduct remains unclear. In this study, we show in mouse models that ciliary length and beat frequency of the oviductal epithelial cells are regulated through estrogen receptor α (ESR1) but not estrogen receptor β (ESR2). Gene profiling indicated that transcripts in the WNT/β-catenin (WNT/CTNNB1) signaling pathway were regulated by estrogen in mouse oviduct, and inhibition of this pathway in a whole oviduct culture system resulted in a decreased embryo transport distance. However, selective ablation of CTNNB1 from the oviductal ciliated cells did not affect embryo transport, possibly because of a compensatory mechanism via intact CTNNB1 in the adjacent secretory cells. In summary, we demonstrated that disruption of estrogen signaling in oviductal epithelial cells alters ciliary function and impairs embryo transport. Therefore, our findings may provide a better understanding of etiology of the ectopic pregnancy that is associated with alteration of estrogen signals.—Li, S., O’Neill, S. R. S., Zhang, Y., Holtzman, M. J., Takemaru, K.-I., Korach, K. S., Winuthayanon, W. Estrogen receptor α is required for oviductal transport of embryos. PMID:28082352

  20. Exogenous acetaldehyde as a tool for modulating wine color and astringency during fermentation.

    PubMed

    Sheridan, Marlena K; Elias, Ryan J

    2015-06-15

    Wine tannins undergo modifications during fermentation and storage that can decrease their perceived astringency and increase color stability. Acetaldehyde acts as a bridging compound to form modified tannins and polymeric pigments that are less likely to form tannin-protein complexes than unmodified tannins. Red wines are often treated with oxygen in order to yield acetaldehyde, however this approach can lead to unintended consequences due to the generation of reactive oxygen species. The present study employs exogenous acetaldehyde at relatively low and high treatment concentrations during fermentation to encourage tannin modification without promoting potentially deleterious oxidation reactions. The high acetaldehyde treatment significantly increased polymeric pigments in the wine without increasing concentrations of free and sulfite-bound acetaldehyde. Protein-tannin precipitation was also significantly decreased with the addition of exogenous acetaldehyde. These results indicate a possible treatment of wines early in their production to increase color stability and lower astringency of finished wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Estrogen rapidly enhances incisional pain of ovariectomized rats primarily through the G protein-coupled estrogen receptor.

    PubMed

    An, Guanghui; Li, Wenhui; Yan, Tao; Li, Shitong

    2014-06-11

    It has become increasingly apparent that the pain threshold of females and males varies in an estrogen dependent manner. To investigate the modulation of pain by estrogen and the molecular mechanisms involved in this process. A total of 48 rats were ovariectomized (OVX). At 14 and 20 days after OVX, rats were divided into eight groups: groups 1-4 were administered drugs intravenously (IV); groups 5-8 were administered through intrathecal (IT) catheter. Hind paw incision was made in all animals to determine incisional pain. Paw withdraw threshold (PWT) was tested prior to and 24 h after incision. The test drugs were applied 24 h after the incision. Rats were either IV or IT administered with: 17-β-estradiol (E2), G protein-coupled estrogen receptor (GPER)-selective agonist (G1), GPER-selective antagonist (G15) and E2 (G15+E2), or solvent. Before and 30 min after IV drug administration and 20 min during the IT catheter administration, PWT was tested and recorded. 24 h after incisional surgery, the PWT of all rats significantly decreased. Both in the IV group and IT group: administration of E2 and G1 significantly decreased PWT. Neither administration of G15+E2 nor solvent significantly changed PWT. Estrogen causes rapid reduction in the mechanical pain threshold of OVX rats via GPER.

  2. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice

    PubMed Central

    Tuscher, Jennifer J.; Szinte, Julia S.; Starrett, Joseph R.; Krentzel, Amanda A.; Fortress, Ashley M.; Remage-Healey, Luke; Frick, Karyn M.

    2016-01-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in dorsal hippocampus observed 30 min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. PMID:27178577

  3. Estrogen Receptors Modulation of Anxiety-Like Behavior.

    PubMed

    Borrow, A P; Handa, R J

    2017-01-01

    Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. © 2017 Elsevier Inc. All rights reserved.

  4. Estrogenic exposure affects metamorphosis and alters sex ratios in the northern leopard frog (Rana pipiens): identifying critically vulnerable periods of development.

    PubMed

    Hogan, Natacha S; Duarte, Paula; Wade, Michael G; Lean, David R S; Trudeau, Vance L

    2008-05-01

    During the transformation from larval tadpole to juvenile frog, there are critical periods of metamorphic development and sex differentiation that may be particularly sensitive to endocrine disruption. The aim of the present study was to identify sensitive developmental periods for estrogenic endocrine disruption in the northern leopard frog (Rana pipiens) using short, targeted exposures to the synthetic estrogen, ethinylestradiol (EE2). Post-hatch tadpoles (Gosner stage 27) were exposed over five distinct periods of metamorphosis: early (stage 27-30), mid (stage 30-36), early and mid (stage 27-36), late (stage 36-42), and the entire metamorphic period (chronic; stage 27-42). For each period, animals were sampled immediately following the EE2 exposure and at metamorphic climax (stage 42). The effects of EE2 on metamorphic development and sex differentiation were assessed through measures of length, weight, developmental stage, days to metamorphosis, sex ratios and incidence of gonadal intersex. Our results show that tadpoles exposed to EE2 during mid-metamorphosis were developmentally delayed immediately following exposure and took 2 weeks longer to reach metamorphic climax. In the unexposed groups, there was low proportion (0.15) of intersex tadpoles at stage 30 and gonads appeared to be morphologically distinct (male and female) in all individuals by stage 36. Tadpoles exposed early in development displayed a strong female-biased sex ratio compared to the controls. Moreover, these effects were also seen at metamorphic climax, approximately 2-3 months after the exposure period, demonstrating that transient early life-stage exposure to estrogen can induce effects on the reproductive organs that persist into the beginning of adult life-stages.

  5. Neonatal uterine and vaginal cell proliferation and adenogenesis are independent of estrogen receptor 1 (ESR1) in the mouse.

    PubMed

    Nanjappa, Manjunatha K; Medrano, Theresa I; March, Amelia G; Cooke, Paul S

    2015-03-01

    Neonatal uterus and vagina express estrogen receptor 1 (ESR1) and respond mitogenically to exogenous estrogens. However, neonatal ovariectomy does not inhibit preweaning uterine cell proliferation, indicating that this process is estrogen independent. Extensive literature suggests that ESR1 can be activated by growth factors in a ligand-independent manner and drive uterine cell proliferation. Alternatively, neonatal uterine cell proliferation could be ESR1 independent despite its obligatory role in adult luminal epithelial proliferation. To determine ESR1's role in uterine and vaginal development, we analyzed cell proliferation, apoptosis, and uterine gland development (adenogenesis) in wild-type (WT) and Esr1 knockout (Esr1KO) mice from Postnatal Day 2 to Postnatal Day 60. Uterine and vaginal cell proliferation, apoptosis, and uterine adenogenesis were comparable in WT and Esr1KO mice before weaning. By Days 29-60, glands had regressed, and uterine cell proliferation was reduced in Esr1KO mice in contrast to continued adenogenesis and proliferation in WT. Apoptosis in Esr1KO uterine epithelium was not increased compared to WT at any age, indicating that differences in cell proliferation, rather than apoptosis, cause divergence of uterine size in these two groups at puberty. Similarly, vaginal epithelial proliferation was reduced, and the epithelium became atrophic in Esr1KO mice by 29 days of age and later in Esr1KO mice. These results indicate that preweaning uterine and vaginal development is ESR1 independent but becomes dependent on ESR1 by Day 29 on. It is not yet clear what mechanisms drive preweaning vaginal and uterine development, but ligand-independent activation of ESR1 is not involved. © 2015 by the Society for the Study of Reproduction, Inc.

  6. BIOCHEMICAL AND ANALYTICAL CHARACTERIZATION OF ESTROGENICALLY ACTIVE WASTEWATER: COMPARISON OF FIELD EXTRAPOLATIONS TO THE MEASURED CONCENTRATION OF ESTROGENS IN SEWAGE EFFLUENT

    EPA Science Inventory

    Estrogenically active wastewater was observed at two municipal wastewater treatment plants (WWTPs) utilizing caged male channel catfish in a previous study. The focus of this investigation was to identify and characterize the compound(s) responsible for this estrogenic response. ...

  7. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products.

    PubMed

    Myers, Sharon L; Yang, Chun Z; Bittner, George D; Witt, Kristine L; Tice, Raymond R; Baird, Donna D

    2015-05-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products.

  8. Src-JNK Potentiation of Estrogen Receptor AF-1; Mechanism, and Role in Estrogen Action in Breast Cancer

    DTIC Science & Technology

    2002-08-01

    an increase in estrogen receptor activity. A second objective is to understand the potential role of Src in estrogen induced mammary ductal development ...bPcis i on to The Ser-ilS-dependent link wt GR- t KaroBio AB, a Swedish pharmaceutical development company with CBP is in addition to the Ser-1l8...the ECL detection kit (Amersham Pharmacia Biotech ). phoresis, stained with Coomassic Blue to monitor expression, and sub- Fluorescence Microscopy

  9. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-05

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. Copyright © 2016. Published by Elsevier B.V.

  10. The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis

    PubMed Central

    Clegg, Deborah J.; Hevener, Andrea L.

    2013-01-01

    Estrogens play a fundamental role in the physiology of the reproductive, cardiovascular, skeletal, and central nervous systems. In this report, we review the literature in both rodents and humans on the role of estrogens and their receptors in the control of energy homeostasis and glucose metabolism in health and metabolic diseases. Estrogen actions in hypothalamic nuclei differentially control food intake, energy expenditure, and white adipose tissue distribution. Estrogen actions in skeletal muscle, liver, adipose tissue, and immune cells are involved in insulin sensitivity as well as prevention of lipid accumulation and inflammation. Estrogen actions in pancreatic islet β-cells also regulate insulin secretion, nutrient homeostasis, and survival. Estrogen deficiency promotes metabolic dysfunction predisposing to obesity, the metabolic syndrome, and type 2 diabetes. We also discuss the effect of selective estrogen receptor modulators on metabolic disorders. PMID:23460719

  11. Exogenous reinfection of tuberculosis in a low-burden area.

    PubMed

    Schiroli, Consuelo; Carugati, Manuela; Zanini, Fabio; Bandera, Alessandra; Di Nardo Stuppino, Silvia; Monge, Elisa; Morosi, Manuela; Gori, Andrea; Matteelli, Alberto; Codecasa, Luigi; Franzetti, Fabio

    2015-12-01

    Recurrence of tuberculosis (TB) can be the consequence of relapse or exogenous reinfection. The study aimed to assess the factors associated with exogenous TB reinfection. Prospective cohort study based on the TB database, maintained at the Division of Infectious Diseases, Luigi Sacco Hospital (Milan, Italy). Time period: 1995-2010. (1) ≥2 episodes of culture-confirmed TB; (2) cure of the first episode of TB; (3) availability of one Mycobacterium tuberculosis isolate for each episode. Genotyping of the M. tuberculosis strains to differentiate relapse and exogenous reinfection. Logistic regression analysis was used to assess the influence of risk factors on exogenous reinfections. Of the 4682 patients with TB, 83 were included. Of these, exogenous reinfection was diagnosed in 19 (23 %). It was independently associated with absence of multidrug resistance at the first episode [0, 10 (0.01-0.95), p = 0.045] and with prolonged interval between the first TB episode and its recurrence [7.38 (1.92-28.32) p = 0.004]. However, TB relapses occurred until 4 years after the first episode. The risk associated with being foreign born, extrapulmonary site of TB, and HIV infection was not statistically significant. In the relapse and re-infection cohort, one-third of the patients showed a worsened drug resistance profile during the recurrent TB episode. Exogenous TB reinfections have been documented in low endemic areas, such as Italy. A causal association with HIV infection could not be confirmed. Relapses and exogenous reinfections shared an augmented risk of multidrug resistance development, frequently requiring the use of second-line anti-TB regimens.

  12. Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis.

    PubMed

    Morthorst, Jane E; Korsgaard, Bodil; Bjerregaard, Poul

    2016-02-01

    Pregnant eelpout were exposed via the water to known endocrine disrupting compounds (EDCs) to clarify if EDCs could be causing the increased eelpout fry malformation frequencies observed in coastal areas receiving high anthropogenic input. The presence of a teratogenic window for estrogen-induced malformations was also investigated by starting the exposure at different times during eelpout pregnancy. Both 17α-ethinylestradiol (EE2) (17.8 ng/L) and pyrene (0.5 μg/L) significantly increased fry malformation frequency whereas 4-t-octylphenol (4-t-OP) up to 14.3 μg/L did not. Vitellogenin was significantly induced by EE2 (5.7 and 17.8 ng/L) but not by 4-t-OP and pyrene. A critical period for estrogen-induced fry malformations was identified and closed between 14 and 22 days post fertilization (dpf). Exposure to 17β-estradiol (E2) between 0 and 14 dpf caused severe malformations and severity increased the closer exposure start was to fertilization, whereas malformations were absent by exposure starting later than 14 dpf. Data on ovarian fluid volume and larval length supported the suggested teratogenic window. Larval mortality also increased when exposure started right after fertilization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Role of Estrogens in the Regulation of Liver Lipid Metabolism.

    PubMed

    Palmisano, Brian T; Zhu, Lin; Stafford, John M

    2017-01-01

    Before menopause, women are protected from atherosclerotic heart disease associated with obesity relative to men. Sex hormones have been proposed as a mechanism that differentiates this risk. In this review, we discuss the literature around how the endogenous sex hormones and hormone treatment approaches after menopause regulate fatty acid, triglyceride, and cholesterol metabolism to influence cardiovascular risk.The important regulatory functions of estrogen signaling pathways with regard to lipid metabolism have been in part obscured by clinical trials with hormone treatment of women after menopause, due to different formulations, routes of delivery, and pairings with progestins. Oral hormone treatment with several estrogen preparations increases VLDL triglyceride production. Progestins oppose this effect by stimulating VLDL clearance in both humans and animals. Transdermal estradiol preparations do not increase VLDL production or serum triglycerides.Many aspects of sex differences in atherosclerotic heart disease risk are influenced by the distributed actions of estrogens in the muscle, adipose, and liver. In humans, 17β-estradiol (E2) is the predominant circulating estrogen and signals through estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled estrogen receptor (GPER). Over 1000 human liver genes display a sex bias in their expression, and the top biological pathways are in lipid metabolism and genes related to cardiovascular disease. Many of these genes display variation depending on estrus cycling in the mouse. Future directions will likely rely on targeting estrogens to specific tissues or specific aspects of the signaling pathways in order to recapitulate the protective physiology of premenopause therapeutically after menopause.

  14. Effects of the conjugated equine estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) on mammary gland and breast cancer in mice.

    PubMed

    Song, Yan; Santen, Richard J; Wang, Ji-ping; Yue, Wei

    2012-12-01

    A tissue-selective estrogen complex (TSEC), combining a selective estrogen receptor modulator, bazedoxifene (BZA), with conjugated equine estrogen (CEE), represents a novel strategy of menopausal hormone therapy without involving a progestin. We hypothesized that the antiestrogenic properties of BZA can also block the estrogenic effects of CEE on breast tissue and thereby prevent breast cancer in women. To test our hypothesis, the effects of estradiol (E(2)), CEE, and BZA on mammary gland and breast cancer xenografts were assessed in mouse models. In immature castrate mice, BZA completely blocked CEE- or E(2)-stimulated ductal and terminal end bud growth of mammary gland as well as estrogen-responsive gene expression. As a positive control, E(2) stimulated tumor growth in nude mice bearing MCF-7 xenografts. This effect was completely blocked by BZA as were E(2)-stimulated expression of PR, pS2 (trefoil factor 1), cMyc, and AREG; the enhancement of Ki67 and proliferating cell nuclear antigen (PCNA); and the antiapoptotic effect. CEE was much less potent than E(2) in stimulating Ki67, reducing apoptosis, and stimulating gene expression, but all effects were blocked by BZA. Unexpectedly, CEE alone, even at high doses, did not stimulate tumor growth. As confirmation of its absorption and deconjugation, CEE caused a 6-fold increase in uterine weight and stimulation of gene expression. These data support our hypothesis that the net effect of the CEE/BZA TSEC is to block estrogen action in benign and malignant breast tissue. These findings provide a rationale for a clinical study to determine whether this TSEC prevents breast cancer in women.

  15. Rapid Actions of Xenoestrogens Disrupt Normal Estrogenic Signaling

    PubMed Central

    Watson, Cheryl S.; Hu, Guangzhen; Paulucci-Holthauzen, Adriana A.

    2014-01-01

    Some chemicals used in consumer products or manufacturing (eg. plastics, surfactants, pesticides, resins) have estrogenic activities; these xenoestrogens (XEs) chemically resemble physiological estrogens and are one of the major categories of synthesized compounds that disrupt endocrine actions. Potent rapid actions of XEs via nongenomic mechanisms contribute significantly to their disruptive effects on functional endpoints (eg. cell proliferation/death, transport, peptide release). Membrane-initiated hormonal signaling in our pituitary cell model is predominantly driven by mERα with mERβ and GPR30 participation. We visualized ERα on plasma membranes using many techniques in the past (impeded ligands, antibodies to ERα ) and now add observations of epitope proximity with other membrane signaling proteins. We have demonstrated a range of rapid signals/protein activations by XEs including: calcium channels, cAMP/PKA, MAPKs, G proteins, caspases, and transcription factors. XEs can cause disruptions of the oscillating temporal patterns of nongenomic signaling elicited by endogenous estrogens. Concentration effects of XEs are nonmonotonic (a trait shared with natural hormones), making it difficult to design efficient (single concentration) toxicology tests to monitor their harmful effects. A plastics monomer, Bisphenol A, modified by waste treatment (chlorination) and other processes causes dephosphorylation of extracellular-regulated kinases, in contrast to having no effects as it does in genomic signaling. Mixtures of XEs, commonly found in contaminated environments, disrupt the signaling actions of physiological estrogens even more severely than do single XEs. Understanding the features of XEs that drive these disruptive mechanisms will allow us to redesign useful chemicals that exclude estrogenic or anti-estrogenic activities. PMID:24269739

  16. Molecular imaging provides novel insights on estrogen receptor activity in mouse brain.

    PubMed

    Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana

    2008-01-01

    Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.

  17. Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain

    PubMed Central

    Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana

    2009-01-01

    Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application candidates as an innovative methodology for the study and development of drugs targeting brain estrogen receptors. PMID:19123998

  18. Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer

    PubMed Central

    Stein, Rebecca A.; Chang, Ching-yi; Kazmin, Dmitri A.; Way, James; Schroeder, Thies; Wergin, Melanie; Dewhirst, Mark W.; McDonnell, Donald P.

    2009-01-01

    Expression of estrogen-related receptor alpha (ERRα) has recently been shown to carry negative prognostic significance in breast and ovarian cancers. The specific role of this orphan nuclear receptor in tumor growth and progression, however, is yet to be fully understood. The significant homology between estrogen receptor alpha (ERα) and ERRα initially suggested that these receptors may have similar transcriptional targets. Using the well-characterized ERα-positive MCF-7 breast cancer cell line, we sought to gain a genome-wide picture of ERα-ERRα cross-talk using an unbiased microarray approach. In addition to generating a host of novel ERRα target genes, this study yielded the surprising result that most ERRα-regulated genes are unrelated to estrogen-signaling. The relatively small number of genes regulated by both ERα and ERRα led us to expand our study to the more aggressive and less clinically treatable ERα-negative class of breast cancers. In this setting we found that ERRα expression is required for the basal level of expression of many known and novel ERRα target genes. Introduction of an siRNA directed to ERRα into the highly aggressive breast carcinoma MDA-MB-231 cell line dramatically reduced the migratory potential of these cells. Although stable knockdown of ERRα expression in MDA-MB-231 cells had no impact on in vitro cell proliferation, a significant reduction of tumor growth rate was observed when these cells were implanted as xenografts. Our results confirm a role for ERRα in breast cancer growth and highlight it as a potential therapeutic target for estrogen receptor-negative breast cancer. PMID:18974123

  19. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    NASA Astrophysics Data System (ADS)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  20. Estetrol, a Fetal Selective Estrogen Receptor Modulator, Acts on the Vagina of Mice through Nuclear Estrogen Receptor α Activation.

    PubMed

    Benoit, Thibaut; Valera, Marie-Cecile; Fontaine, Coralie; Buscato, Melissa; Lenfant, Francoise; Raymond-Letron, Isabelle; Tremollieres, Florence; Soulie, Michel; Foidart, Jean-Michel; Game, Xavier; Arnal, Jean-Francois

    2017-11-01

    The genitourinary syndrome of menopause has a negative impact on quality of life of postmenopausal women. The treatment of vulvovaginal atrophy includes administration of estrogens. However, oral estrogen treatment is controversial because of its potential risks on venous thrombosis and breast cancer. Estetrol (E4) is a natural estrogen synthesized exclusively during pregnancy by the human fetal liver and initially considered as a weak estrogen. However, E4 was recently evaluated in phase 1 to 2 clinical studies and found to act as an oral contraceptive in combination with a progestin, without increasing the level of coagulation factors. We recently showed that E4 stimulates uterine epithelial proliferation through nuclear estrogen receptor (ER) α, but failed to elicit endothelial responses. Herein, we first evaluated the morphological and functional impacts of E4 on the vagina of ovariectomized mice, and we determined the molecular mechanism mediating these effects. Vaginal epithelial proliferation and lubrication after stimulation were found to increase after E4 chronic treatment. Using a combination of pharmacological and genetic approaches, we demonstrated that these E4 effects on the vagina are mediated by nuclear ERα activation. Altogether, we demonstrate that the selective activation of nuclear ERα is both necessary and sufficient to elicit functional and structural effects on the vagina, and therefore E4 appears promising as a therapeutic option to improve vulvovaginal atrophy. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine

    PubMed Central

    Venugopal, Divya; Zahid, Muhammad; Mailander, Paula C; Meza, Jane L.; Rogan, Eleanor G.; Cavalieri, Ercole L.; Chakravarti, Dhrubajyoti

    2009-01-01

    A growing number of studies indicate that breast cancer initiation is related to abnormal estrogen oxidation to form an excess of estrogen-3,4-quinones, which react with DNA to form depurinating adducts and induce mutations. This mechanism is often called estrogen genotoxicity. 4-catechol estrogens, precursors of the estrogen-3,4-quinones, were previously shown to account for most of the transforming and tumorigenic activity. We examined whether estrogen-induced transformation can be reduced by inhibiting the oxidation of a 4-catechol estrogen to its quinone. We demonstrate that E6 cells (a normal mouse epithelial cell line) can be transformed by a single treatment with a catechol estrogen or its quinone. The transforming activities of 4-hydroxyestradiol and estradiol-3,4-quinone were comparable. N-acetylcysteine, a common antioxidant, inhibited the oxidation of 4-hydroxyestradiol to the quinone and consequent formation of DNA adducts. It also drastically reduced estrogen-induced transformation of E6 cells. These results strongly implicate estrogen genotoxicity in mammary cell transformation. Since N-acetylcysteine is well-tolerated in clinical studies, it may be a promising candidate for breast cancer prevention. PMID:18226522

  2. Estrogen biology: new insights into GPER function and clinical opportunities.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2014-05-25

    Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    PubMed

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  5. The penis: a new target and source of estrogen in male reproduction.

    PubMed

    Mowa, C N; Jesmin, S; Miyauchi, T

    2006-01-01

    In the past decade, interest and knowledge in the role of estrogen in male reproduction and fertility has gained significant momentum. More recently, the cellular distribution and activity of estrogen receptors (alpha and beta)(ER) and aromatase (estrogen synthesis) has been reported in the penis, making the penis the latest "frontier" in the study of estrogen in male reproduction. ER and aromatase are broadly and abundantly expressed in various penile compartments and cell types (erectile tissues, urethral epithelia, vascular and neuronal cells), suggesting the complexity and significance of the estrogen-ER system in penile events. Unraveling this complexity is important and will require utilization of the various resources that are now at our disposal including, animal models and human lacking or deficient in ER and aromatase and the use of advanced and sensitive techniques. Some of the obvious areas that require our attention include: 1) a comprehensive mapping of ER-alpha and -beta cellular expression in the different penile compartments and subpopulations of cells, 2) delineation of the specific roles of estrogen in the different subpopulations of cells, 3) establishing the relationship of the estrogen-ER system with the androgen-androgen receptor system, if any, and 4) characterizing the specific penile phenotypes in human and animals lacking or deficient in estrogen and ER. Some data generated thus far, although preliminary, appear to challenge the long held dogma that, overall, androgens have a regulatory monopoly of penile development and function.

  6. The Role of Hypothalamic Estrogen Receptors in Metabolic Regulation

    PubMed Central

    Frank, Aaron; Brown, Lynda M.; Clegg, Deborah J.

    2014-01-01

    Estrogens regulate key features of metabolism, including food intake, body weight, energy expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are two ”classical“ estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate aspects of the metabolic syndrome in both men and women. Much of our understanding of the metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1−/−); these mice display aspects of the metabolic syndrome, including increased body weight, increased visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1 in specific tissues and neuronal populations as being critical for regulating food intake, energy expenditure, body fat distribution and adipose tissue function. This review will focus predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of energy homeostasis and metabolism. PMID:24882636

  7. The role of hypothalamic estrogen receptors in metabolic regulation.

    PubMed

    Frank, Aaron; Brown, Lynda M; Clegg, Deborah J

    2014-10-01

    Estrogens regulate key features of metabolism, including food intake, body weight, energy expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are two 'classical' estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate aspects of the metabolic syndrome in both men and women. Much of our understanding of the metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1(-/-)); these mice display aspects of the metabolic syndrome, including increased body weight, increased visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1 in specific tissues and neuronal populations as being critical for regulating food intake, energy expenditure, body fat distribution and adipose tissue function. This review will focus predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of energy homeostasis and metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Reproductive period, endogenous estrogen exposure and dementia incidence among women in Latin America and China; A 10/66 population-based cohort study.

    PubMed

    Prince, Martin J; Acosta, Daisy; Guerra, Mariella; Huang, Yueqin; Jimenez-Velazquez, Ivonne Z; Llibre Rodriguez, Juan J; Salas, Aquiles; Sosa, Ana Luisa; Chua, Kia-Chong; Dewey, Michael E; Liu, Zhaorui; Mayston, Rosie; Valhuerdi, Adolfo

    2018-01-01

    Exposure to endogenous estrogen may protect against dementia, but evidence remains equivocal. Such effects may be assessed more precisely in settings where exogenous estrogen administration is rare. We aimed to determine whether reproductive period (menarche to menopause), and other indicators of endogenous estrogen exposure are inversely associated with dementia incidence. Population-based cohort studies of women aged 65 years and over in urban sites in Cuba, Dominican Republic, Puerto Rico and Venezuela, and rural and urban sites in Peru, Mexico and China. Sociodemographic and risk factor questionnaires were administered to all participants, including ages at menarche, birth of first child, and menopause, and parity, with ascertainment of incident 10/66 dementia, and mortality, three to five years later. 9,428 women participated at baseline, with 72-98% responding by site. The 'at risk' cohort comprised 8,466 dementia-free women. Mean age varied from 72.0 to 75.4 years, lower in rural than urban sites and in China than in Latin America. Mean parity was 4.1 (2.4-7.2 by site), generally higher in rural than urban sites. 6,854 women with baseline reproductive period data were followed up for 26,463 person years. There were 692 cases of incident dementia, and 895 dementia free deaths. Pooled meta-analysed fixed effects, per year, for reproductive period (Adjusted Sub-Hazard Ratio [ASHR] 1.001, 95% CI 0.988-1.015) did not support any association with dementia incidence, with no evidence for effect modification by APOE genotype. No association was observed between incident dementia and; ages at menarche, birth of first child, and menopause: nulliparity; or index of cumulative endogenous estrogen exposure. Greater parity was positively associated with incident dementia (ASHR 1.030, 95% CI 1.002-1.059, I2 = 0.0%). We found no evidence to support the theory that natural variation in cumulative exposure to endogenous oestrogens across the reproductive period influences

  9. Reproductive period, endogenous estrogen exposure and dementia incidence among women in Latin America and China; A 10/66 population-based cohort study

    PubMed Central

    Acosta, Daisy; Guerra, Mariella; Jimenez-Velazquez, Ivonne Z.; Salas, Aquiles; Sosa, Ana Luisa; Valhuerdi, Adolfo

    2018-01-01

    Background Exposure to endogenous estrogen may protect against dementia, but evidence remains equivocal. Such effects may be assessed more precisely in settings where exogenous estrogen administration is rare. We aimed to determine whether reproductive period (menarche to menopause), and other indicators of endogenous estrogen exposure are inversely associated with dementia incidence. Methods Population-based cohort studies of women aged 65 years and over in urban sites in Cuba, Dominican Republic, Puerto Rico and Venezuela, and rural and urban sites in Peru, Mexico and China. Sociodemographic and risk factor questionnaires were administered to all participants, including ages at menarche, birth of first child, and menopause, and parity, with ascertainment of incident 10/66 dementia, and mortality, three to five years later. Results 9,428 women participated at baseline, with 72–98% responding by site. The ‘at risk’ cohort comprised 8,466 dementia-free women. Mean age varied from 72.0 to 75.4 years, lower in rural than urban sites and in China than in Latin America. Mean parity was 4.1 (2.4–7.2 by site), generally higher in rural than urban sites. 6,854 women with baseline reproductive period data were followed up for 26,463 person years. There were 692 cases of incident dementia, and 895 dementia free deaths. Pooled meta-analysed fixed effects, per year, for reproductive period (Adjusted Sub-Hazard Ratio [ASHR] 1.001, 95% CI 0.988–1.015) did not support any association with dementia incidence, with no evidence for effect modification by APOE genotype. No association was observed between incident dementia and; ages at menarche, birth of first child, and menopause: nulliparity; or index of cumulative endogenous estrogen exposure. Greater parity was positively associated with incident dementia (ASHR 1.030, 95% CI 1.002–1.059, I2 = 0.0%). Conclusions We found no evidence to support the theory that natural variation in cumulative exposure to endogenous

  10. Involvement of BDNF/TrkB and ERK/CREB axes in nitroglycerin-induced rat migraine and effects of estrogen on these signals in the migraine

    PubMed Central

    Guo, Jiu-Qing; Deng, Hui-Hui; Bo, Xiao

    2017-01-01

    ABSTRACT Migraine is a highly prevalent headache disorder, especially in women. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinases (TrkB), as well as extracellular signal-regulated kinase (ERK) and its downstream target c-AMP-responsive element binding protein (CREB) are strongly associated with the transmission of nociceptive information. However, the involvement of these substances in migraine has rarely been examined. In the present study, intraperitoneal injection of nitroglycerin (NTC) successfully induced rat migraine attack, as evidenced by behavioral testing. The location and abundance of these substances in the migraine model were determined by immunohistochemistry, real-time polymerase chain reaction (RT-PCR), western blot and enzyme-linked immunosorbant assays (ELISA). Results showed that BDNF, TrkB, phosphor(p)-ERK and p-CREB were up-regulated in the brain neurons of both male and female rats with NTG-induced migraine compared to non-migraine control, whereas their expression levels were decreased in headache-free intervals of the migraine compared to migraine attacks. Estrogen is an important contributor to migraine. Female ovariectomized rats showed significant reduction in the expression of BDNF, TrkB, p-CREB and p-ERK in both attacks and intervals of NTG-induced migraine, relative to rats that have their ovaries. But, intraperitoneal administration of exogenous estrogen recovered their expression in ovariectomized rats. Collectively, this study unveiled a positive correlation of BDNF/TrkB and ERK/CREB axes in NTG-induced migraine and promoting effects of estrogen on their signals in the migraine. These findings contribute to further understanding the pathogenesis of migraine in the molecular basis. PMID:27875242

  11. Estrogen: The necessary evil for human health, and ways to tame it.

    PubMed

    Patel, Seema; Homaei, Ahmad; Raju, Akondi Butchi; Meher, Biswa Ranjan

    2018-06-01

    Estrogen is a pivotal enzyme for survival and health in both genders, though their quantum, tropism, tissue-specific distribution, and receptor affinity varies with different phases of life. Converted from androgen via aromatase enzyme, this hormone is indispensable to glucose homeostasis, immune robustness, bone health, cardiovascular health, fertility, and neural functions. However, estrogen is at the center of almost all human pathologies as well-infectious, autoimmune, metabolic to degenerative. Both hypo and hyper level of estrogen has been linked to chronic and acute diseases. While normal aging is supposed to lower its level, leading to tissue degeneration (bone, muscle, neural etc.), and metabolite imbalance (glucose, lipid etc.), the increment in inflammatory agents in day-to-day life are enhancing the estrogen (or estrogen mimic) level, fueling 'estrogen dominance'. The resultant excess estrogen is inducing an overexpression of estrogen receptors (ERα and ERβ), harming tissues, leading to autoimmune diseases, and neoplasms. The unprecedented escalation in the polycystic ovary syndrome, infertility, breast cancer, ovary cancer, and gynecomastia cases are indicating that this sensitive hormone is getting exacerbated. This critical review is an effort to analyze the dual, and opposing facets of estrogen, via understanding its crosstalk with other hormones, enzymes, metabolites, and drugs. Why estrogen level correction is no trivial task, and how it can be restored to normalcy by a disciplined lifestyle with wise dietary and selective chemical usage choices has been discussed. Overall, our current state of knowledge does not disclose the full picture of estrogen's pleiotropic importance. Hence, this review should be a resource for general public as well as researchers to work in that direction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Estrogen Inhibits Dlk1/FA1 Production: A Potential Mechanism for Estrogen Effects on Bone Turnover

    PubMed Central

    Abdallah, B. M.; Bay-Jensen, A.; Srinivasan, B.; Tabassi, N. C.; Garnero, P.; Delaissé, J.; Khosla, S.; Kassem, M.

    2011-01-01

    We have recently identified Dlk1/FA1 (Delta-like 1/FA1) as a novel regulator of bone mass that functions to mediate bone loss, under estrogen deficiency, in mice. In this report, we investigated the effects of estrogen (E)-deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (s-CTx and s-osteocalcin), were measured in two cohorts: a group of pre- and postmenopausal women (n=100) and a group of postmenopausal women, where half had received estrogen replacement therapy (ERT) (n=166). s-Dlk1/FA1, and s-CTX were elevated in postmenopausal E-deficient compared to premenopausal E-replete women (both; P<0.001). s-Dlk1/FA1 was correlated with s-CTX (r=0.30, P<0.01). ERT, in postmenopausal women, decreased s-Dlk1/FA1, as well as s-CTX and s-osteoclacin (all; P<0.0001). Changes in s-Dlk1 were significantly correlated with those observed in s-CTx (r=0.18, P<0.05) and s-osteocalcin (r=0.28, P<0.001). In conclusion, s-Dlk1/FA1 is influenced by E-deficiency and is correlated with bone turnover. Increased levels of s-Dlk1/FA1 in post-menopausal women may be a mechanism mediating the effects estrogen deficiency on bone turnover. PMID:21681814

  13. Transport and fate of estrogenic hormones in slurry-treated soil monoliths.

    PubMed

    Laegdsmand, Mette; Andersen, Henrik; Jacobsen, Ole Hørbye; Halling-Sørensen, Bent

    2009-01-01

    The naturally occurring hormones, such as 17-beta-estradiol, 17-alpha-estradiol, and estrone, present in livestock manure may have detrimental environmental effects if released into surface waters. In areas where manure application is intensive, estrogens have been found in surface waters in concentrations known to affect the endocrine system of fish and amphibians. How the estrogens reach the surface waters is unclear. To investigate whether leaching through the soil profile plays a significant role, we conducted leaching experiments on intact soil cores. Lysimeter soil monoliths (60 cm in diameter and 100 cm long) were excavated from two sites in Denmark (one loamy and one sandy soil). The soil monoliths were treated with pig slurry containing estrogenic hormones and amended with an estrogen tracer (17-alpha-ethinylestradiol) and a conservative tracer (bromide). 17-alpha-ethinylestradiol is a synthetic analog of 17-beta-estradiol with sorption characteristics and molecular structure similar to those of the naturally occurring estrogens in slurry. The monoliths were exposed to a short-term irrigation event (12 h) followed by a long-term semi-field experiment (16 wk), during which leaching of natural estrogens and tracers was followed. Estrogens from slurry were transported to a depth of 1 m in loamy soil and sandy soil. The estrogen concentrations in the leachate were at a level known to affect the endocrine system of aquatic organisms.

  14. INTRODUCTION OF THE VITELLOGENIN GENE IN EARLY LIFE STAGE FATHEAD MINNOWS AS AN EFFECTIVE EXPOSURE INDICATOR FOR ESTROGENIC COMPOUNDS

    EPA Science Inventory

    Vitellogenin (Vg) gene expression in adult male fathead minnows (FHM) has previously been used successfully to detect exposures to estrogenic compounds in aquatic systems; however, sample volume(s)required for >24h exposure durations and the logistics of sampling pose some limita...

  15. Effect of estrogens on skin aging and the potential role of SERMs

    PubMed Central

    Stevenson, Susan; Thornton, Julie

    2007-01-01

    In humans, structural and functional changes attributable to aging are more visibly evident in the skin than in any other organ. Estrogens have significant effects on skin physiology and modulate epidermal keratinocytes, dermal fibroblasts and melanocytes, in addition to skin appendages including the hair follicle and the sebaceous gland. Importantly, skin aging can be significantly delayed by the administration of estrogen. This paper reviews the effects of estrogens on skin and the mechanisms by which estrogens can alleviate the changes due to aging that occur in human skin. The relevance of estrogen replacement therapy (HRT) in post-menopausal women and the potential value of selective estrogen receptor modulators (SERMs) as a therapy for diminishing skin aging are also highlighted. PMID:18044179

  16. Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens.

    PubMed

    Newbold, R R; Liehr, J G

    2000-01-15

    Catechol estrogens may mediate estrogen-induced carcinogenesis because 4-hydroxyestradiol induces DNA damage and renal tumors in hamsters, and this metabolite is formed in the kidney and estrogen target tissues by a specific estrogen 4-hydroxylase. We examined the carcinogenic potential of catechol estrogen in an experimental model previously reported to result in a high incidence of uterine adenocarcinoma after neonatal exposure to diethylstilbestrol. Outbred female CD-1 mice were treated with 2- or 4-hydroxyestradiol, 17beta-estradiol, or 17alpha-ethinyl estradiol on days 1-5 of neonatal life (2 microg/pup/day) and sacrificed at 12 or 18 months of age. Mice treated with 17beta-estradiol or 17a-ethinyl estradiol had a total uterine tumor incidence of 7% or 43%, respectively. 2-Hydroxyestradiol induced tumors in 12% of the mice, but 4-hydroxyestradiol was the most carcinogenic estrogen, with a 66% incidence of uterine adenocarcinoma. Both 2- and 4-hydroxylated catechols were estrogenic and increased uterine wet weights in these neonates. These data demonstrate that both 2- and 4-hydroxyestradiol are carcinogenic metabolites. The high tumor incidence induced by 4-hydroxyestradiol supports the postulated role of this metabolite in hormone-associated cancers.

  17. The effect of tamoxifen and raloxifene on estrogen metabolism and endometrial cancer risk.

    PubMed

    Williams-Brown, Marian Y; Salih, Sana M; Xu, Xia; Veenstra, Timothy D; Saeed, Muhammad; Theiler, Shaleen K; Diaz-Arrastia, Concepcion R; Salama, Salama A

    2011-09-01

    Selective estrogen receptor modulators (SERMs) demonstrate differential endometrial cancer (EC) risk. While tamoxifen (TAM) use increases the risk of endometrial hyperplasia and malignancy, raloxifene (RAL) has neutral effects on the uterus. How TAM increases the risk of EC and why TAM and RAL differentially modulate the risk for EC, however, remain elusive. Here, we tested the hypothesis that TAM increases the risk for EC, at least in part, by enhancing the local estrogen biosynthesis and directing estrogen metabolism towards the formation of genotoxic and hormonally active estrogen metabolites. In addition, the differential effects of TAM and RAL in EC risk are attributed to their differential effect on estrogen metabolism/metabolites. The endometrial cancer cell line (Ishikawa cells) and the nonmalignant immortalized human endometrial glandular cell line (EM1) were used for the study. The profile of estrogen/estrogen metabolites (EM), depurinating estrogen-DNA adducts, and the expression of estrogen-metabolizing enzymes in cells treated with 17β-estradiol (E2) alone or in combination with TAM or RAL were investigated using high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS(2)), ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and Western blot analysis, respectively. TAM significantly increased the total EM and enhanced the formation of hormonally active and carcinogenic estrogen metabolites, 4-hydroxestrone (4-OHE1) and 16α-hydroxyestrone, with concomitant reduction in the formation of antiestrogenic and anticarcinogenic 2-hydroxyestradiol and 2-methoxyestradiol. Furthermore, TAM increased the formation of depurinating estrogen-DNA adducts 4-OHE1 [2]-1-N7Guanine and 4-OHE1 [2]-1-N3 Adenine. TAM-induced alteration in EM and depurinating DNA adduct formation is associated with altered expression of estrogen metabolizing enzymes CYP1A1, CYP1B1, COMT, NQO1, and SF-1 as revealed by

  18. The New Biology of Estrogen-induced Apoptosis Applied to Treat and Prevent Breast Cancer

    PubMed Central

    Jordan, V Craig

    2014-01-01

    The successful use of high dose synthetic estrogens to treat post-menopausal metastatic breast cancer, is the first effective “chemical therapy” proven in clinical trial to treat any cancer. This review documents the clinical use of estrogen for breast cancer treatment or estrogen replacement therapy (ERT) for postmenopausal hysterectomized women which can either result in breast cancer cell growth or breast cancer regression. This has remained a paradox since the 1950s until the discovery of the new biology of estrogen induced apoptosis at the end of the 20th century. The key to triggering apoptosis with estrogen is the selection of breast cancer cell populations that are resistant to long term estrogen deprivation. However, through trial and error estrogen independent growth occurs. At the cellular level, estrogen induced apoptosis is dependent upon the presence of the estrogen receptor (ER) which can be blocked by non-steroidal or steroidal anti-estrogens. The shape of an estrogenic ligand programs the conformation of the ER complex which in turn can modulate estrogen induced apoptosis: class I planar estrogens (eg: estradiol) trigger apoptosis after 24 hours whereas class II angular estrogens (eg: bisphenol triphenylethylene) delay the process until after 72 hours. This contrasts with paclitaxel that causes G2 blockade with immediate apoptosis. The process is complete within 24 hours. Estrogen induced apoptosis is modulated by glucocorticoids and cSrc inhibitors but the target mechanism for estrogen action is genomic and not through a non-genomic pathway. The process is step wise through the creation of endoplasmic reticulum stress and, inflammatory responses that then initiate an unfolded protein response. This in turn initiates apoptosis through the intrinsic pathway (mitochondrial) with subsequent recruitment of the extrinsic pathway (death receptor) to complete the process. The symmetry of the clinical and laboratory studies now permits the creation of

  19. Expression of the IGF and the aromatase/estrogen receptor systems in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche.

    PubMed

    Belgorosky, Alicia; Baquedano, María Sonia; Guercio, Gabriela; Rivarola, Marco A

    2009-03-01

    Adrenarche is a process of postnatal sexual maturation occurring in higher primates, in which there is an increase in the secretion of adrenal androgens. It is the consequence of a process of postnatal organogenesis characterized by the development of a new zone in the adrenal cortex, the zona reticularis (ZR). The mechanism of this phenomenon remains poorly understood, suggesting that it might be a multifactorial event. A relationship between circulating IGF-I, insulin sensitivity, and adrenal androgens has been postulated. Boys and girls have different patterns of changes in insulin sensitivity at puberty, perhaps secondary to differences in the estrogen milieu. Estrogen effects may also play a role in premature adrenarche. Peripheral or local IGF-1 actions could regulate adrenal progenitor cell proliferation and migration. Since adrenal progenitor cells as well as IGF-I and the IGF-R1 are located in the outer zone of the adrenal cortex during childhood and adolescence, this peripheral cell layer, below the capsule, may contain undifferentiated progenitor cells. Therefore, the IGF-R1 signaling pathway might positively modulate the proliferation and migration of adrenal progenitor cell to stimulate the development of adrenal zones, including ZR. However, no evidence of a direct action of IGF-I on ZR was found. In addition, a role for estrogens in the ontogenesis of ZR is suggested by the presence of aromatase (CYP19) in the subcapsular zona glomerulosa and in the adrenal medulla. Estrogens produced locally could act on ZR by interacting with estrogen receptor beta (ERbeta), but not alpha, and membrane estrogen receptor GPR-30. An estradiol-induced increase in DHEA/cortisol ratio was indeed seen in cultures of adrenocortical cells from post-adrenarche adrenals. In summary, several lines of evidence point to the action of multiple factors, such as local adrenal maturational changes and peripheral metabolic signals, on postnatal human adrenal gland ZR formation.

  20. Identifying the Tautomeric Form of a Deoxyguanosine-Estrogen Quinone Intermediate.

    PubMed

    Stack, Douglas E

    2015-09-10

    Mechanistic insights into the reaction of an estrogen o-quinone with deoxyguanosine has been further investigated using high level density functional calculations in addition to the use of 4-hyroxycatecholestrone (4-OHE₁) regioselectivity labeled with deuterium at the C1-position. Calculations using the M06-2X functional with large basis sets indicate the tautomeric form of an estrogen-DNA adduct present when glycosidic bonds cleavage occurs is comprised of an aromatic A ring structure. This tautomeric form was further verified by use of deuterium labelling of the catechol precursor use to form the estrogen o-quinone. Regioselective deuterium labelling at the C1-position of the estrogen A ring allows discrimination between two tautomeric forms of a reaction intermediate either of which could be present during glycosidic bond cleavage. HPLC-MS analysis indicates a reactive intermediate with a m/z of 552.22 consistent with a tautomeric form containing no deuterium. This intermediate is consistent with a reaction mechanism that involves: (1) proton assisted Michael addition; (2) re-aromatization of the estrogen A ring; and (3) glycosidic bond cleavage to form the known estrogen-DNA adduct, 4-OHE₁-1-N7Gua.

  1. Experimental study on the estrogen-like effect of boric Acid.

    PubMed

    Wang, Yadong; Zhao, Yingzheng; Chen, Xiaoyu

    2008-02-01

    There are now considerable evidences that boric acid has reproductive and developmental toxicity, but it is uncertain whether such toxicity is caused by estrogen-like effect. Our objective is to determine the estrogen-like effect of boric acid. Proliferation assay of MCF-7 human breast cancer cells, uterotrophic assay, measure assay of the estradiol (E2), proliferation assay of mucous membrane cells, and assay of estrogen receptor were conducted in this study. Boric acid could increase the weight of uterus of ovariectomized SD rats and the height of epithelium cells of mucous membrane, enhance the expression of the proliferating cell nucleus antigen, and reduce the density of estrogen receptors. However, boric acid could not affect the level of estradiol in serum and stimulate the proliferation of MCF-7 human breast cancer cells. In this study, boric acid exhibited the estrogen-like effect in vivo.

  2. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System

    PubMed Central

    Menazza, Sara; Murphy, Elizabeth

    2016-01-01

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to two nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue specific co-activators and co-repressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as GPER to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long term effects. The kinase signaling pathways can also mediate transcriptional changes, and can synergize with the estrogen receptor to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER-membrane signaling mechanisms. PMID:26838792

  3. Estrogen receptor-targeted optical imaging of breast cancer cells with near-infrared fluorescent dye

    NASA Astrophysics Data System (ADS)

    Jose, Iven; Deodhar, Kodand; Chiplunkar, Shuba V.; Patkar, Meena

    2010-02-01

    Molecular imaging provides the in vivo characterization of cellular molecular events involved in normal and pathologic processes. With the advent of optical molecular imaging, specific molecules, proteins and genes may be tagged with a luminescent reporter and visualized in small animals. This powerful new tool has pushed in vivo optical imaging to the forefront as it allows for direct determination of drug bio-distribution and uptake kinetics as well as an indicator of biochemical activity and drug efficacy. Although optical imaging encompasses diverse techniques and makes use of various wavelengths of light, a great deal of excitement in molecular research lies in the use of tomographic and fluorescence techniques to image living tissues with near-infrared (NIR) light. Nonionizing, noninvasive near-infrared optical imaging has great potential to become promising alternative for breast cancer detection. Fluorescence spectroscopy studies of human tissue suggest that a variety of lesions show distinct fluorescence spectra compared to those of normal tissue. It has also been shown that exogenous dyes exhibit selective uptake in neoplastic lesions and may offer the best contrast for optical imaging. Use of exogenous agents would provide fluorescent markers, which could serve to detect embedded tumors in the breast. In particular, the ability to monitor the fluorescent yield and lifetime may also enable biochemical specificity if the fluorophore is sensitive to a specific metabolite, such as oxygen. As a first step, we have synthesized and characterized one such NIR fluorescent dye conjugate, which could potentially be used to detect estrogen receptors (ER)[2] . The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of indocyanine green (ICG) cyanine dye, bis-1, 1-(4-sulfobutyl) indotricarbocyanine-5- carboxylic acid, sodium salt. The ester formed was found to have an extra binding ability with the receptor cites as

  4. Estrogenic modulation of inflammation-related genes in male rats following volume overload

    PubMed Central

    McLarty, Jennifer L.; Meléndez, Giselle C.; Levick, Scott P.; Bennett, Shanté; Sabo-Attwood, Tara; Brower, Gregory L.

    2012-01-01

    Our laboratory has previously reported significant increases of the proinflammatory cytokine TNF-α in male hearts secondary to sustained volume overload. These elevated levels of TNF-α are accompanied by left ventricular (LV) dilatation and cardiac dysfunction. In contrast, estrogen has been shown to protect against this adverse cardiac remodeling in both female and male rats. The purpose of this study was to determine whether estrogen has an effect on inflammation-related genes that contribute to this estrogen-mediated cardioprotection. Myocardial volume overload was induced by aortocaval fistula in 8 wk old male Sprague-Dawley rats (n = 30), and genes of interest were identified using an inflammatory PCR array in Sham, Fistula, and Fistula + Estrogen-treated (0.02 mg/kg per day beginning 2 wk prior to fistula) groups. A total of 55 inflammatory genes were modified (≥2-fold change) at 3 days postfistula. The number of inflammatory gene was reduced to 21 genes by estrogen treatment, whereas 13 genes were comparably modulated in both fistula groups. The most notable were TNF-α, which was downregulated by estrogen, and the TNF-α receptors, which were differentially regulated by estrogen. Specific genes related to arachidonic acid metabolism were downregulated by estrogen, including cyclooxygenase-1 and -2. Finally, gene expression for the β1-integrin cell adhesion subunit was significantly upregulated in the LV of estrogen-treated animals. Protein levels reflected the changes observed at the gene level. These data suggest that estrogen provides its cardioprotective effects, at least in part, via genomic modulation of numerous inflammation-related genes. PMID:22274565

  5. Effect of protracted estrogen administration on the thyroid of Ames dwarf mice.

    PubMed

    Vidal, S; Cameselle-Teijeiro, J; Horvath, E; Kovacs, K; Bartke, A

    2001-04-01

    The effect of protracted estrogen administration on estrogen receptor expression and cellular composition of the thyroid was examined in genetically thyrotropin (TSH)-deficient female Ames dwarf mice (df/df) to reveal whether estrogen might act independently from TSH. inducing changes in thyroid morphology and function. To evaluate such changes, the thyroid from four estrogen-implanted Ames dwarf mice, four sham-implanted Ames dwarf mice and four sham-implanted normal littermate mice were investigated histologically, immunohistochemically and morphometrically. Our morphologic study demonstrated significant differences in the colloid areas of normal and dwarf mice (P<0.001). The correlation observed between this parameter and body weights (r=0.610, P<0.05) and thyroid weights (r=0.729, P<0.01) suggests that the decrease in the colloid areas is not a result of abnormal folliculogenesis but is in direct correlation with the small thyroid and body size of dwarf mice. Although two types of estrogen receptors are known to exist in the present study, only the alpha (ERalpha) variant was found in the thyroid. ERalpha immunoreactivity was detected in the nuclei of parafollicular cells but not of the follicular epithelium. No significant differences were reported in ER expression between estrogen-implanted dwarf mice and sham-implanted dwarf mice, suggesting that estrogen receptor expression in the thyroid is independent of circulating estrogen levels. In spite of the absence of ERalpha in follicular cells, protracted estrogen administration affected mainly the follicular cells. Our results suggest that when TSH is absent estrogens may exert a negative feedback on the activity of follicular cells.

  6. Gestational hypothyroidism: development of mild hypothyroidism in early pregnancy in previously euthyroid women.

    PubMed

    Hammond, Karen R; Cataldo, Nicholas A; Hubbard, Janice A; Malizia, Beth A; Steinkampf, Michael P

    2015-06-01

    To determine the proportion of euthyroid women attending a fertility practice who develop hypothyroidism in very early pregnancy (gestational hypothyroidism [GHT]), and to examine the association of GHT with exogenous gonadotropin treatment. Retrospective cohort study. A private reproductive medicine practice. All healthy women (N = 94) with infertility or recurrent pregnancy loss, TSH level <2.5 mIU/L, negative thyroid peroxidase antibodies at initial evaluation, and not taking thyroid medication, who conceived during an 18-month period. Usual fertility care; 30 women who had received exogenous gonadotropins. Serum TSH level at the time of pregnancy detection. Gestational hypothyroidism (TSH ≥ 2.5 mIU/L) developed in 23 of 94 women (24%). The mean increase in serum TSH level from initial evaluation to early pregnancy was 0.45 ± 0.08 [SE] mIU/L. There was a trend toward the association of GHT with use of exogenous gonadotropins. Gestational hypothyroidism was positively associated with initial prepregnancy TSH level. Euthyroid women may develop mild hypothyroidism in early pregnancy, especially after exogenous gonadotropin treatment. Appropriate vigilance will allow for timely levothyroxine treatment. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Phosphoinositide 3-Kinase p110δ Mediates Estrogen- and FSH-Stimulated Ovarian Follicle Growth

    PubMed Central

    Li, Qian; He, Hui; Zhang, Yin-Li; Li, Xiao-Meng; Guo, Xuejiang; Huo, Ran; Bi, Ye; Li, Jing

    2013-01-01

    In the mammalian ovary, primordial follicles are generated early in life and remain dormant for prolonged periods. Their growth resumes via primordial follicle activation, and they continue to grow until the preovulatory stage under the regulation of hormones and growth factors, such as estrogen, FSH, and IGF-1. Both FSH and IGF-1 activate the phosphatidylinositol-3 kinase (PI3K)/Akt (acute transforming retrovirus thymoma protein kinase) signaling pathway in granulosa cells (GCs), yet it remains inconclusive whether the PI3K pathway is crucial for follicle growth. In this study, we investigated the p110δ isoform (encoded by the Pik3cd gene) of PI3K catalytic subunit expression in the mouse ovary and its function in fertility. Pik3cd-null females were subfertile, exhibited fewer growing follicles and more atretic antral follicles in the ovary, and responded poorly to exogenous gonadotropins compared with controls. Ovary transplantation showed that Pik3cd-null ovaries responded poorly to FSH stimulation in vitro; this confirmed that the follicle growth defect was intrinsically ovarian. In addition, estradiol (E2)-stimulated follicle growth and GC proliferation in preantral follicles was impaired in Pik3cd-null ovaries. FSH and E2 substantially activated the PI3K/Akt pathway in GCs of control mice but not in those of Pik3cd-null mice. However, primordial follicle activation and oocyte meiotic maturation were not affected by Pik3cd knockout. Taken together, our findings indicate that the p110δ isoform of the PI3K catalytic subunit is a key component of the PI3K pathway for both FSH and E2-stimulated follicle growth in ovarian GCs; however, it is not required for primordial follicle activation and oocyte development. PMID:23820902

  8. The selective estrogen enzyme modulators in breast cancer: a review.

    PubMed

    Pasqualini, Jorge R

    2004-06-07

    It is well established that increased exposure to estradiol (E(2)) is an important risk factor for the genesis and evolution of breast tumors, most of which (approximately 95-97%) in their early stage are estrogen-sensitive. However, two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissular concentrations of these hormones are significantly higher than those found in the plasma or in the area of the breast considered as normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these hormones. Several factors could be implicated in this process, including higher uptake of steroids from plasma and local formation of the potent E(2) by the breast cancer tissue itself. This information extends the concept of 'intracrinology' where a hormone can have its biological response in the same organ where it is produced. There is substantial information that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of E(2) from circulating precursors. Two principal pathways are implicated in the last steps of E(2) formation in breast cancer tissues: the 'aromatase pathway' which transforms androgens into estrogens, and the 'sulfatase pathway' which converts estrone sulfate (E(1)S) into E(1) by the estrone-sulfatase. The final step of steroidogenesis is the conversion of the weak E(1) to the potent biologically active E(2) by the action of a reductive 17beta-hydroxysteroid dehydrogenase type 1 activity (17beta-HSD-1). Quantitative evaluation indicates that in human breast tumor E(1)S 'via sulfatase' is a much more likely precursor for E(2) than is androgens 'via aromatase'. Human breast cancer tissue contains all the enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of E(2) biosynthesis. This tissue also contains sulfotransferase for the formation of the

  9. Association of environmental chemicals & estrogen metabolites in children.

    PubMed

    Ihde, Erin Speiser; Loh, Ji Meng; Rosen, Lawrence

    2015-12-17

    The prevalence of pediatric hormonal disorders and hormonally-sensitive cancers are rising. Chemicals including bisphenol A (BPA), phthalates, parabens, 4-nonylphenol (4NP) and triclosan have been linked to disruption of endocrine pathways and altered hormonal status in both animal and human studies. Additionally, changes in estrogen metabolism have been associated with pediatric endocrine disorders and linked to estrogen-dependent cancers. The main objective of the study was to measure the presence of these environmental chemicals in prepubescent children and assess the relationship between chemical metabolites and estrogen metabolism. 50 subjects (25 male, 25 female) were recruited from the principal investigator's existing patient population at his pediatric primary care office. The first 5 boys and 5 girls in each age group (4 through 8 years old inclusive) who presented for annual examinations were included, as long as they were Tanner Stage I (prepubertal) on physical exam, without diagnosis of hormonally-related condition and/or cancer and able to give a urine sample. Urine samples were collected in glass containers for analysis of chemical and estrogen metabolites. Study kits and lab analysis were provided by Genova Diagnostics (Duluth, GA). Summary statistics for the concentrations of each chemical metabolite as well as estrogen metabolites were computed (minimum, maximum, median and inter-quartile range) for males only, for females only and for all subjects. Comparisons between groups (e.g. males v. females) were assessed using the nonparametric Wilcoxon test, since the data was skewed. The correlation between concentrations of chemical metabolites and estrogen metabolites in prepubescent children were examined by the Spearman's correlation coefficient (ρ). 100 % of subjects had detectable levels of at least five chemicals [corrected] in their urine, and 74 % had detectable levels of eight or more chemicals. 28 % of subjects had measurable levels of 4NP

  10. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    PubMed

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.

  11. Extent of Vascular Remodeling Is Dependent on the Balance Between Estrogen Receptor α and G-Protein-Coupled Estrogen Receptor.

    PubMed

    Gros, Robert; Hussain, Yasin; Chorazyczewski, Jozef; Pickering, J Geoffrey; Ding, Qingming; Feldman, Ross D

    2016-11-01

    Estrogens are important regulators of cardiovascular function. Some of estrogen's cardiovascular effects are mediated by a G-protein-coupled receptor mechanism, namely, G-protein-coupled estrogen receptor (GPER). Estradiol-mediated regulation of vascular cell programmed cell death reflects the balance of the opposing actions of GPER versus estrogen receptor α (ERα). However, the significance of these opposing actions on the regulation of vascular smooth muscle cell proliferation or migration in vitro is unclear, and the significance in vivo is unknown. To determine the effects of GPER activation in vitro, we studied rat aortic vascular smooth muscle cells maintained in primary culture. GPER was reintroduced using adenoviral gene transfer. Both estradiol and G1, a GPER agonist, inhibited both proliferation and cell migration effects that were blocked by the GPER antagonist, G15. To determine the importance of the GPER-ERα balance in regulating vascular remodeling in a rat model of carotid ligation, we studied the effects of upregulation of GPER expression versus downregulation of ERα. Reintroduction of GPER significantly attenuated the extent of medial hypertrophy and attenuated the extent of CD45 labeling. Downregulation of ERα expression comparably attenuated the extent of medial hypertrophy and inflammation after carotid ligation. These studies demonstrate that the balance between GPER and ERα regulates vascular remodeling. Receptor-specific modulation of estrogen's effects may be an important new approach in modifying vascular remodeling in both acute settings like vascular injury and perhaps in longer term regulation like in hypertension. © 2016 American Heart Association, Inc.

  12. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products

    PubMed Central

    Myers, Sharon L.; Yang, Chun Z.; Bittner, George D.; Witt, Kristine L.; Tice, Raymond R.; Baird, Donna D.

    2014-01-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products. PMID:24849798

  13. Analytical techniques for steroid estrogens in water samples - A review.

    PubMed

    Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza

    2016-12-01

    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30.

    PubMed

    Revankar, Chetana M; Mitchell, Hugh D; Field, Angela S; Burai, Ritwik; Corona, Cesear; Ramesh, Chinnasamy; Sklar, Larry A; Arterburn, Jeffrey B; Prossnitz, Eric R

    2007-08-17

    Estrogen mediates its effects through multiple cellular receptors. In addition to the classical nuclear estrogen receptors (ERalpha and ERbeta), estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPCR) GPR30. Although estrogen is a cell-permeable ligand, it is often assumed that all GPCRs function solely as cell surface receptors. Our previous results showed that GPR30 appeared to be expressed predominantly in the endoplasmic reticulum. A critical question that arises is whether this localization represents the site of functional receptor. To address this question, we synthesized a collection of cell-permeable and cell-impermeable estrogen derivatives. We hypothesized that if functional GPR30 were expressed at the cell surface, both permeable and impermeable derivatives would show activity. However, if functional GPR30 were predominantly intracellular, like ERalpha, only the permeable ligands should show activity. Cell permeability was assessed using cells expressing ERalpha as a model intracellular estrogen-binding receptor. Our results reveal that despite exhibiting similar binding affinities for GPR30, only the cell-permeable ligands are capable of stimulating rapid calcium mobilization and phosphoinositide 3-kinase (PI3K) activation. We conclude that GPR30 expressed intracellularly is capable of initiating cellular signaling and that there is insufficient GPR30 expressed on the cell surface to initiate signaling in response to impermeable ligands in the cell lines examined. To our knowledge, this is the first definitive demonstration of a functional intracellular transmembrane estrogen receptor.

  15. Regulation of baboon fetal ovarian development by placental estrogen: onset of puberty is delayed in offspring deprived of estrogen in utero.

    PubMed

    Pepe, Gerald J; Lynch, Terrie J; Albrecht, Eugene D

    2013-12-01

    Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen.

  16. Effect-related monitoring: estrogen-like substances in groundwater.

    PubMed

    Kuch, Bertram; Kern, Frieder; Metzger, Jörg W; von der Trenck, Karl Theo

    2010-02-01

    Concentration monitoring as a basis for risk assessment is a valid approach only if there is an unambiguous relation between concentration and effect. In many cases, no such unambiguous relation exists, since various substances can exert the same effect with differing potencies. If some or all of these substances contributing to a biological effect are unknown, effect-related monitoring becomes indispensable. Endocrine-disrupting substances in water bodies, including the groundwater, are a prominent example of such a case. The aim of the investigations described here was to detect hormonally active substances in the groundwater downstream of obsolete landfills by using the E-screen assay and to possibly assign the biological effect to individual chemical compounds by means of instrumental analyses carried out in parallel. Grab samples of the groundwater were collected downstream from abandoned landfills and prepared by liquid/liquid extraction. The total estrogenic activity in these samples was determined in vitro by applying the E-screen assay. The human breast cancer cells (MCF-7) used in the E-screen proliferate in response to the presence of estrogenically active compounds. Expressed in concentration units of the reference substance 17beta-estradiol (E2), the test system allows the quantification of estrogenicity with a limit of detection (LOD) in the range of 0.1 ng/L. Aliquots of the samples were screened using gas chromatography/mass spectrometry (GC/MS) in order to quantify known estrogenically active substances and to identify unknown compounds. Estrogen-positive samples were extracted at different pH values, split into acidic, neutral, and basic fractions and analyzed by GC/MS, searching for individual components that display estrogenic activity. Estrogenic activity exceeding the LOD and the provisional benchmark of 0.5 ng E2/L was found at three out of seven abandoned waste disposal sites tested. The low concentrations of known xenoestrogens such as

  17. Estrogenic effects of nonylphenol and octylphenol isomers in vitro by recombinant yeast assay (RYA) and in vivo with early life stages of zebrafish.

    PubMed

    Puy-Azurmendi, E; Olivares, A; Vallejo, A; Ortiz-Zarragoitia, M; Piña, B; Zuloaga, O; Cajaraville, M P

    2014-01-01

    Commercial OP and NP are complex isomer mixtures that can be individually present in the environment, showing different estrogenic potencies. The aims of this study were to establish the estrogenic potency of some AP isomers in comparison to the commercial NP (cNP) mixture in vitro and to investigate in vivo their possible effects during the embryo and larval development of zebrafish. An in vitro estrogen receptor-based recombinant yeast assay was used to test the estrogenicity of specific AP isomers (22-OP, 33-OP, 22-NP, 33-NP and 363-NP) and cNP. The EC₅₀ was in the range of 0.6-7.7 mg/L. Both OP isomers and 363-NP exhibited higher estrogenic activity than cNP. For in vivo experiments, one-day postfertilisation (dpf) embryos were exposed to cNP (50, 250 and 500 μg/L), 363-NP and 33-OP (50 μg/L), 17β-estradiol (100 ng/L) and DMSO (0.01% v/v) for 4weeks. After exposure fish were maintained for 2 weeks in clean water in order to evaluate a possible recovery. Fish of groups exposed to cNP and 363-NP were the last to hatch. Histological alterations were not observed after 7, 28 or 42 dpf. Exposure to 33-OP increased transcriptional levels of erα, vtg and cyp19a1b genes. However, transcriptional response in E2 exposure was observed at later stages and with higher fold induction levels. Exposure to cNP decreased levels of erα whereas increased levels of rxrγ and cyp19a1b. Exposure to 363-NP did not cause changes in transcriptional levels of studied genes. The differences in response of the OP isomer compared to the NP isomer in zebrafish could be related to the rapid decay in concentration of the latter. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    PubMed

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  19. Diagnostic utility of dermatoscopy in hydroquinone-induced exogenous ochronosis.

    PubMed

    Mishra, Sunil N; Dhurat, Rachita S; Deshpande, Deepal J; Nayak, Chitra S

    2013-04-01

      Hydroquinone is the preferred topical bleaching agent used in the treatment of melasma. The adverse effects of its chronic use are confetti-like depigmentation and exogenous ochronosis. Exogenous ochronosis manifests clinically with gray-brown or blue-black hyperpigmentation, as well as pinpoint hyperchromic caviar-like papules over the malar region. Dermatoscopic findings of ochronosis are unique and point towards a clue for its diagnosis.   Three cases of suspected hydroquinone-induced exogenous ochronosis while treating melasma were subjected to dermatoscopy and histopathology studies.   Dermatoscopy in the areas of caviar-like hyperpigmentation revealed accentuation of the normal pseudo-rete of the facial skin with amorphous densely-pigmented structures obliterating some follicular opening and multiple thin, short arciform structures. On histopathological examination, curved ochre-colored structures, 'banana-shaped' fibers, were seen in the dermis of all patients.   Exogenous ochronosis is difficult to treat. Dermatologists should be able to differentiate it from melasma and immediately discontinue hydroquinone. Exogenous ochronosis has characteristic features on dermatoscopy which may obviate the need for an invasive procedure of biopsy for its diagnosis. © 2012 The International Society of Dermatology.

  20. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple

    PubMed Central

    Wu, Hsing-Jung; Oh, Ji Won; Spandau, Dan F.; Tholpady, Sunil; Diaz, Jesus; Schroeder, Laura J.; Offutt, Carlos D.; Glick, Adam B.; Plikus, Maksim V.; Koyama, Sachiko

    2017-01-01

    Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts. PMID:28289136

  1. Exogenous sample contamination. Sources and interference.

    PubMed

    Cornes, Michael P

    2016-12-01

    Clinical laboratory medicine is involved in the vast majority of patient care pathways. It has been estimated that pathology results inform 60-70% of critical patient care decisions. The primary goal of the laboratory is to produce precise and accurate results which reflect the true situation in vivo. It is not surprising that interference occurs in laboratory analysis given the complexity of some of the assays used to perform them. Interference is defined as "the effect of a substance upon any step in the determination of the concentration or catalytic activity of the metabolite". Exogenous interferences are defined as those that derive from outside of the body and are therefore not normally found in a specimen and can cause either a positive or negative bias in analytical results. Interferences in analysis can come from various sources and can be classified as endogenous or exogenous. Exogenous substances could be introduced at any point in the sample journey. The laboratory must take responsibility for the quality of results produced. It has a responsibility to have processes in place to identify and minimise the occurrence and effect contamination and interference. To do this well the laboratory needs to work with clinicians and manufacturers. Failure to identify an erroneous result could have an impact on patient care, patient safety and also on hospital budgets. However it is not always easy to recognise interferences. This review summarises the types and sources of exogenous interference and some steps to minimise the impact they have. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  2. Circulatory Estrogen Level Protects Against Breast Cancer in Obese Women

    PubMed Central

    Suba, Zsuzsanna

    2013-01-01

    Literary data suggest apparently ambiguous interaction between menopausal status and obesity-associated breast cancer risk based on the principle of the carcinogenic capacity of estrogen. Before menopause, breast cancer incidence is relatively low and adiposity is erroneously regarded as a protective factor against this tumor conferred by the obesity associated defective estrogen-synthesis. By contrast, in postmenopausal cases, obesity presents a strong risk factor for breast cancer being mistakenly attributed to the presumed excessive estrogen-production of their adipose-tissue mass. Obesity is associated with dysmetabolism and endangers the healthy equilibrium of sexual hormone-production and regular menstrual cycles in women, which are the prerequisites not only for reproductive capacity but also for somatic health. At the same time, literary data support that anovulatory infertility is a very strong risk for breast cancer in young women either with or without obesity. In the majority of premenopausal women, obesity associated insulin resistance is moderate and may be counteracted by their preserved circulatory estrogen level. Consequently, it is not obesity but rather the still sufficient estrogen-level, which may be protective against breast cancer in young adult females. In obese older women, never using hormone replacement therapy (HRT) the breast cancer risk is high, which is associated with their continuous estrogen loss and increasing insulin-resistance. By contrast, obese postmenopausal women using HRT, have a decreased risk for breast cancer as the protective effect of estrogen-substitution may counteract to their obesity associated systemic alterations. The revealed inverse correlation between circulatory estrogen-level and breast cancer risk in obese women should advance our understanding of breast cancer etiology and promotes primary prevention measures. New patents recommend various methods for the prevention and treatment of obesity

  3. High-throughput screening and mechanism-based evaluation of estrogenic botanical extracts

    PubMed Central

    Overk, Cassia R.; Yao, Ping; Chen, Shaonong; Deng, Shixing; Imai, Ayano; Main, Matthew; Schinkovitz, Andreas; Farnsworth, Norman R.; Pauli, Guido F.; Bolton, Judy L.

    2009-01-01

    Symptoms associated with menopause can greatly affect the quality of life for women. Botanical dietary supplements have been viewed by the public as safe and effective despite a lack of evidence indicating a urgent necessity to standardize these supplements chemically and biologically. Seventeen plants were evaluated for estrogenic biological activity using standard assays: competitive estrogen receptor (ER) binding assay for both alpha and beta subtypes, transient transfection of the estrogen response element luciferase plasmid into MCF-7 cells expressing either ER alpha or ER beta, and the Ishikawa alkaline phosphatase induction assay for both estrogenic and antiestrogenic activities. Based on the combination of data pooled from these assays, the following was determined: a) a high rate of false positive activity for the competitive binding assays, b) some extracts had estrogenic activity despite a lack of ability to bind the ER, c) one extract exhibited selective estrogen receptor modulator (SERM) activity, and d) several extracts show additive/synergistic activity. Taken together, these data indicate a need to reprioritize the order in which the bioassays are performed for maximal efficiency of programs involving bioassay-guided fractionation. In addition, possible explanations for the conflicts in the literature over the estrogenicity of Cimicifuga racemosa (black cohosh) are suggested. PMID:18473738

  4. Is there a role for estrogen activity assays? Recombinant cell bioassay for estrogen: Development and applications.

    PubMed

    Klein, Karen Oerter

    2015-07-01

    There are many questions which cannot be answered without a very sensitive estradiol assay. A recombinant cell bioassay (RCBA) for estradiol was developed in 1994. The sensitivity of the bioassay is 0.02-0.2 pg/ml (0.07-0.7 pmol/L), more than 20 times more sensitive than commercial RIAs and 10 times more sensitive than newer mass spectrometry assays. The RCBA for estradiol opened the door to study low levels of estradiol equivalents (EE) across the physiological spectrum of life from prepubertal children through menopause and across the spectrum from normal physiology, in boys as well as girls, to pathology, including: premature thelarche; estradiol suppression in children treated with GnRH analogues for precocious puberty; aromatase inhibition in boys with growth hormone deficiency; the differences between oral and transdermal routes of estrogen administration in girls with Turner's syndrome; women with breast cancer treated with aromatase inhibitors; and women with urogenital atrophy treated with low dose vaginal estrogen. A bioassay also allows study of endocrine disruptors, like phytoestrogens and other environmental compounds, which are relevant to public health and alternative medicine options. This paper reviews the assay and the last 20 years of applications. A bioassay for estrogen has a role because measuring biological effect is theoretically useful, increasing the understanding of physiology in addition to biochemical levels, giving different information than other assays, and opening the door to measure very low levels of estrogen activity in both humans and the environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants

    EPA Science Inventory

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...

  6. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    PubMed Central

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  7. GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release.

    PubMed

    Filardo, Edward J; Thomas, Peter

    2005-10-01

    Heterotrimeric G proteins and seven-transmembrane-spanning (7TM) receptors are implicated in rapid estrogen signaling. The orphan 7TM receptor GPR30 is linked to estrogen-mediated activation of adenylyl cyclase, release of epidermal growth factor (EGF)-related ligands, and specific estrogen binding. GPR30 acts independently of estrogen receptors, ERalpha and ERbeta, and probably functions as a heptahelical ER. 7TM receptors elicit signals that stimulate second messengers, and convey intracellular signals via EGF receptors. Identification of GPR30 as a Gs-coupled 7TM receptor that triggers release of heparin-binding EGF establishes its role in cell signaling cascades initiated by estrogens, and explains their capacity to activate second messengers and promote EGF-like effects. Thus, estrogen can signal by the same mechanism as various other hormones, through a specific 7TM receptor.

  8. Effect of Topical Estrogen in the Mangement of Traumatic Facial Wounds

    PubMed Central

    Ghazizadeh Hashemi, Seyed Amirhosein; Barati, Behrooz; Mohammadi, Hosein; Saeidi, Masumeh; Bahreini, Abbas; Kiani, Mohammad Ali

    2016-01-01

    Introduction: Acute skin wound healing is a complicated process comprising various phases. Recent animal studies have shown that steroid sex hormones such as estrogen maybe helpful in the regulation of several pathophysiologic stages that are involved in wound healing. In this study we examined the effects of topical estrogen in the treatment of traumatic facial wounds. Materials and Methods: Patients referred to Luqman Hospital, Tehran with traumatic wounds were enrolled in this case-control study into two groups of equal size. From the second week of the study, topical estrogen (0.625 mg conjugated topical estrogen ointment) was administered in the case group, while the control group received a Eucerin dressing only. The two groups were then compared in terms of wound healing rate on Day 7,14, and 30. Results: Thirty patients with mean age of 16.02+36.23 years were compared in the control and estrogen-treated groups. After treatment, no scars or keloids were observed in either group. The wound area in the estrogen group was lower than that in the control group on Day 14 and 30, but the difference was not significant (P>0.05). Healing rates in the control group on Day 14 (7.1+42.3 vs.50.3+4.9 mm2) and Day 30 (1.9+93.5 vs. + 97.3+0.6 mm2) (were lower than those in the estrogen group, but the differences were not significant (P>0.05). Findings show that the required time for wound healing in the estrogen-treated group was lower than that in the control group, but the difference was not significant (P>0.05). Conclusion: Based on this study, topical estrogen has no effect on the rate of wound healing or the rate of wound area. PMID:26878003

  9. Effect of Topical Estrogen in the Mangement of Traumatic Facial Wounds.

    PubMed

    Ghazizadeh Hashemi, Seyed Amirhosein; Barati, Behrooz; Mohammadi, Hosein; Saeidi, Masumeh; Bahreini, Abbas; Kiani, Mohammad Ali

    2016-01-01

    Acute skin wound healing is a complicated process comprising various phases. Recent animal studies have shown that steroid sex hormones such as estrogen maybe helpful in the regulation of several pathophysiologic stages that are involved in wound healing. In this study we examined the effects of topical estrogen in the treatment of traumatic facial wounds. Patients referred to Luqman Hospital, Tehran with traumatic wounds were enrolled in this case-control study into two groups of equal size. From the second week of the study, topical estrogen (0.625 mg conjugated topical estrogen ointment) was administered in the case group, while the control group received a Eucerin dressing only. The two groups were then compared in terms of wound healing rate on Day 7,14, and 30. Thirty patients with mean age of 16.02+36.23 years were compared in the control and estrogen-treated groups. After treatment, no scars or keloids were observed in either group. The wound area in the estrogen group was lower than that in the control group on Day 14 and 30, but the difference was not significant (P>0.05). Healing rates in the control group on Day 14 (7.1+42.3 vs.50.3+4.9 mm2) and Day 30 (1.9+93.5 vs. + 97.3+0.6 mm2) (were lower than those in the estrogen group, but the differences were not significant (P>0.05). Findings show that the required time for wound healing in the estrogen-treated group was lower than that in the control group, but the difference was not significant (P>0.05). Based on this study, topical estrogen has no effect on the rate of wound healing or the rate of wound area.

  10. Bioassay- versus analytically-derived estrogen equivalents: Ramifications for monitoring

    EPA Science Inventory

    Due to concern for possible endocrine-related effects on aquatic vertebrates, environmental estrogens (EEs) are a growing focus of surface water contaminant monitoring programs. Some efforts utilize measurement of a targeted set of chemicals known to act as estrogen receptor (ER)...

  11. Targeted estrogen delivery reverses the metabolic syndrome

    PubMed Central

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; García-Cáceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrabě; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschöp, Matthias H

    2013-01-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

  12. Characterizing the Estrogenic Potential of 1060 Environmental ...

    EPA Pesticide Factsheets

    In order to detect environmental chemicals that pose a risk of endocrine disruption, high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals are needed. Alteration of estrogen signaling has been implicated in a variety of adverse health effects including cancer promotion, reproductive deficits, and vascular effects. Here we investigate the estrogenic potential of 1060 chemicals of environmental relevance using a real-time measure of growth kinetics by electrode impedance in the estrogen-responsive human ductal carcinoma, T47D cell line. Cells were treated in concentration response and measurements of cellular impedance were recorded every hour for six days. Progestens, androgens, and mineralocortocoids (progesterone, dihydrotestosterone, aldosterone) invoked a biphasic impedance signature that contrasted with the anticipated exponential impedance observed in response to known estrogen receptor agonists (17β-estradiol, genestein, bisphenol-A, nonylphenol, 4-tert-octylphenol). Several compounds, including bisphenol-A, and genestein caused impedance comparable to that of 17β-estradiol, although at much higher concentrations. Additionally, trenbolone and cyproterone acetate invoked the characteristic biphasic signature observed with other endogenous steroid hormones. The continuous real-time nature of this assay allows for the rapid detection of differential growth characteristics not easily detected by traditional cell prol

  13. Exogenous (automatic) attention to emotional stimuli: a review.

    PubMed

    Carretié, Luis

    2014-12-01

    Current knowledge on the architecture of exogenous attention (also called automatic, bottom-up, or stimulus-driven attention, among other terms) has been mainly obtained from studies employing neutral, anodyne stimuli. Since, from an evolutionary perspective, exogenous attention can be understood as an adaptive tool for rapidly detecting salient events, reorienting processing resources to them, and enhancing processing mechanisms, emotional events (which are, by definition, salient for the individual) would seem crucial to a comprehensive understanding of this process. This review, focusing on the visual modality, describes 55 experiments in which both emotional and neutral irrelevant distractors are presented at the same time as ongoing task targets. Qualitative and, when possible, meta-analytic descriptions of results are provided. The most conspicuous result is that, as confirmed by behavioral and/or neural indices, emotional distractors capture exogenous attention to a significantly greater extent than do neutral distractors. The modulatory effects of the nature of distractors capturing attention, of the ongoing task characteristics, and of individual differences, previously proposed as mediating factors, are also described. Additionally, studies reviewed here provide temporal and spatial information-partially absent in traditional cognitive models-on the neural basis of preattention/evaluation, reorienting, and sensory amplification, the main subprocesses involved in exogenous attention. A model integrating these different levels of information is proposed. The present review, which reveals that there are several key issues for which experimental data are surprisingly scarce, confirms the relevance of including emotional distractors in studies on exogenous attention.

  14. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice.

    PubMed

    Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M

    2016-07-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: Is there toxicology beyond paracelsus?

    PubMed

    Nadal, Angel; Fuentes, Esther; Ripoll, Cristina; Villar-Pazos, Sabrina; Castellano-Muñoz, Manuel; Soriano, Sergi; Martinez-Pinna, Juan; Quesada, Ivan; Alonso-Magdalena, Paloma

    2018-02-01

    Endocrine Disrupting Chemicals (EDCs), including bisphenol-A (BPA) do not act as traditional toxic chemicals inducing massive cell damage or death in an unspecific manner. EDCs can work upon binding to hormone receptors, acting as agonists, antagonists or modulators. Bisphenol-A displays estrogenic activity and, for many years it has been classified as a weak estrogen, based on the classic transcriptional action of estrogen receptors serving as transcription factors. However, during the last two decades our knowledge about estrogen signaling has advanced considerably. It is now accepted that estrogen receptors ERα and ERβ activate signaling pathways outside the nucleus which may or may not involve transcription. In addition, a new membrane estrogen receptor, GPER, has been proposed. Pharmacological and molecular evidence, along with results obtained in genetically modified mice, demonstrated that BPA, and its substitute BPS, are potent estrogens acting at nanomolar concentrations via extranuclear ERα, ERβ, and GPER. The different signaling pathways activated by BPA and BPS explain the well-known estrogenic effects of low doses of EDCs as well as non-monotonic dose-response relationships. These signaling pathways may help to explain the actions of EDCs with estrogenic activity in the etiology of different pathologies, including type-2 diabetes and obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Testicular Dysgenesis Syndrome and the Estrogen Hypothesis: A Quantitative Meta-Analysis

    PubMed Central

    Martin, Olwenn V.; Shialis, Tassos; Lester, John N.; Scrimshaw, Mark D.; Boobis, Alan R.; Voulvoulis, Nikolaos

    2008-01-01

    Background Male reproductive tract abnormalities such as hypospadias and cryptorchidism, and testicular cancer have been proposed to comprise a common syndrome together with impaired spermatogenesis with a common etiology resulting from the disruption of gonadal development during fetal life, the testicular dysgenesis syndrome (TDS). The hypothesis that in utero exposure to estrogenic agents could induce these disorders was first proposed in 1993. The only quantitative summary estimate of the association between prenatal exposure to estrogenic agents and testicular cancer was published over 10 years ago, and other systematic reviews of the association between estrogenic compounds, other than the potent pharmaceutical estrogen diethylstilbestrol (DES), and TDS end points have remained inconclusive. Objectives We conducted a quantitative meta-analysis of the association between the end points related to TDS and prenatal exposure to estrogenic agents. Inclusion in this analysis was based on mechanistic criteria, and the plausibility of an estrogen receptor (ER)-α–mediated mode of action was specifically explored. Results We included in this meta-analysis eight studies investigating the etiology of hypospadias and/or cryptorchidism that had not been identified in previous systematic reviews. Four additional studies of pharmaceutical estrogens yielded a statistically significant updated summary estimate for testicular cancer. Conclusions The doubling of the risk ratios for all three end points investigated after DES exposure is consistent with a shared etiology and the TDS hypothesis but does not constitute evidence of an estrogenic mode of action. Results of the subset analyses point to the existence of unidentified sources of heterogeneity between studies or within the study population. PMID:18288311

  17. Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis.

    PubMed

    Martin, Olwenn V; Shialis, Tassos; Lester, John N; Scrimshaw, Mark D; Boobis, Alan R; Voulvoulis, Nikolaos

    2008-02-01

    Male reproductive tract abnormalities such as hypospadias and cryptorchidism, and testicular cancer have been proposed to comprise a common syndrome together with impaired spermatogenesis with a common etiology resulting from the disruption of gonadal development during fetal life, the testicular dysgenesis syndrome (TDS). The hypothesis that in utero exposure to estrogenic agents could induce these disorders was first proposed in 1993. The only quantitative summary estimate of the association between prenatal exposure to estrogenic agents and testicular cancer was published over 10 years ago, and other systematic reviews of the association between estrogenic compounds, other than the potent pharmaceutical estrogen diethylstilbestrol (DES), and TDS end points have remained inconclusive. We conducted a quantitative meta-analysis of the association between the end points related to TDS and prenatal exposure to estrogenic agents. Inclusion in this analysis was based on mechanistic criteria, and the plausibility of an estrogen receptor (ER)-alpha-mediated mode of action was specifically explored. We included in this meta-analysis eight studies investigating the etiology of hypospadias and/or cryptorchidism that had not been identified in previous systematic reviews. Four additional studies of pharmaceutical estrogens yielded a statistically significant updated summary estimate for testicular cancer. The doubling of the risk ratios for all three end points investigated after DES exposure is consistent with a shared etiology and the TDS hypothesis but does not constitute evidence of an estrogenic mode of action. Results of the subset analyses point to the existence of unidentified sources of heterogeneity between studies or within the study population.

  18. Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway.

    PubMed

    Cao, Lin-Ying; Ren, Xiao-Min; Li, Chuan-Hai; Zhang, Jing; Qin, Wei-Ping; Yang, Yu; Wan, Bin; Guo, Liang-Hong

    2017-10-03

    Numerous studies have indicated estrogenic disruption effects of bisphenol A (BPA) analogues. Previous mechanistic studies were mainly focused on their genomic activities on nuclear estrogen receptor pathway. However, their nongenomic effects through G protein-coupled estrogen receptor (GPER) pathway remain poorly understood. Here, using a SKBR3 cell-based fluorescence competitive binding assay, we found six BPA analogues bound to GPER directly, with bisphenol AF (BPAF) and bisphenol B (BPB) displaying much higher (∼9-fold) binding affinity than BPA. Molecular docking also demonstrated the binding of these BPA analogues to GPER. By measuring calcium mobilization and cAMP production in SKBR3 cells, we found the binding of these BPA analogues to GPER lead to the activation of subsequent signaling pathways. Consistent with the binding results, BPAF and BPB presented higher agonistic activity than BPA with the lowest effective concentration (LOEC) of 10 nM. Moreover, based on the results of Boyden chamber and wound-healing assays, BPAF and BPB displayed higher activity in promoting GPER mediated SKBR3 cell migration than BPA with the LOEC of 100 nM. Overall, we found two BPA analogues BPAF and BPB could exert higher estrogenic effects than BPA via GPER pathway at nanomolar concentrations.

  19. Urinary estrogen profile determination in young Finnish vegetarian and omnivorous women.

    PubMed

    Adlercreutz, H; Fotsis, T; Bannwart, C; Hämäläinen, E; Bloigu, S; Ollus, A

    1986-01-01

    For a long time it has been postulated that diet may influence estrogen metabolism and in this way affect breast cancer risk. In order to investigate possible effects of variations of dietary fiber intake on estrogen metabolism, the urinary estrogen profile (13 estrogens), including the catecholestrogens, was determined in one 72-h summer and one winter sample collected in the midfollicular phase of the menstrual cycle by 11 lactovegetarian and 12 omnivorous young Finnish women. Urinary estrogens were purified by ion-exchange chromatography and the quantitative determination was carried out by capillary gas chromatography-mass spectrometry. Detailed records of the subjects' diet during one 5-day period in summer and one in winter were obtained and dietary fiber intake calculated. The mean difference with regard to intake of total fiber in the two dietary groups was 3 g/day in the summer (not significant) and 5 g/day in the winter (P less than 0.05), the mean (geometric) consumption being 23 and 19 g/day by the vegetarian and omnivorous women, respectively. Within the groups we found seasonal variation in fiber intake only for the omnivorous women. During winter, compared to summer, the omnivorous women consumed significantly less grain (P less than 0.001), vegetable (P less than 0.02) and total fiber (P less than 0.02). The excretion of 13 estrogens was remarkably constant in the omnivoric group but a significant seasonal variation of total and individual catecholestrogens and of estrone was observed in the vegetarians (P less than 0.05-0.005). The quantitatively most important estrogen was 2-hydroxyestrone, followed by estrone, estriol, 2-hydroxyestradiol, 4-hydroxyestrone and estradiol, the three latter being excreted in similar amounts. Between the dietary groups there were no significant differences in excretion of total or individual urinary estrogens in any season or between the mean values for both seasons. However, numerous significant (P less than 0

  20. Exogenic and endogenic Europa minerals

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.

    2016-12-01

    The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).

  1. Contraceptive, estrogenic and anti-estrogenic potentials of methanolic root extract of Carpolobia lutea in rodents.

    PubMed

    Ettebong, Ette Okon; Nwafor, Paul Alozie; Ekpo, Memfin; Ajibesin, Kola Kayode

    2011-10-01

    Several plants are used in herbal medicine for family planning. Carpolobia lutea is a medicinal plant in South Eastern Nigeria used for family planning. The study was designed to investigate the contraceptive, estrogenic and antiestrogenic potentials of the methanolic root extract of Carpolobia lutea in both rats and mice. The contraceptive effect of extract (7 - 21mg/kg) administered by intraperitoneal route for four days in divided doses was tested in mice and rats. Sexually-active males were introduced on day 5 at the ratio of 3F:1M and kept with these females till the end of the experiment. Investigations on the estrogenic and antiestrogenic property of the extract (7-21mg/kg) were done in immature rats that had undergone surgical removal of both ovaries. The effects of the extract (vaginal opening, vaginal cornification, uterine wet weight) were compared with 17-beta-estradiol (0.1µg/rat/day) as standard drug. Twenty-four hours later, the animals were sacrificed following the last dose and the weights of uterus, kidney, liver and small intestine were recorded. The extract prevented conception in both mice and rats for two gestational periods. Significant changes (p<0.05-0.001) were observed in the length and weight of pups relative to control. There were no abnormalities observed in the pups over thirty days. In ovariectomized immature young rats, the extract showed estrogenic effect (vaginal opening, vaginal cornification and increased uterine wet weight) in low doses while in high doses, it showed anti-estrogenic effect. These findings agree with the traditional use of Carpolobia lutea in the control of fertility. The contraceptive property of the extract may be associated with the direct effects of its chemical constituents.

  2. Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling.

    PubMed

    Kang, Lianguo; Zhang, Xintian; Xie, Yan; Tu, Yaping; Wang, Dong; Liu, Zhenming; Wang, Zhao-Yi

    2010-04-01

    Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-alpha36, a variant of ER-alpha. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-alpha36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-alpha36 via an activator protein 1 binding site. Both 17beta-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-alpha36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-alpha36, such as transcription activation activity of a VP16-ER-alpha36 fusion protein and activation of the MAPK/ERK1/2 in ER-alpha36-expressing cells. ER-alpha36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca(2+) mobilization only in ER-alpha36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-alpha36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-alpha36. Thus, the ER-alpha variant ER-alpha36, not GPR30, is involved in nongenomic estrogen signaling.

  3. Neuro-estrogens rapidly regulate sexual motivation but not performance

    PubMed Central

    Seredynski, Aurore L.; Balthazart, Jacques; Christophe, Virginie J.; Ball, Gregory F.; Cornil, Charlotte A.

    2013-01-01

    Estrogens exert pleiotropic effects on reproductive traits, which include differentiation and activation of reproductive behaviors and the control of the secretion of gonadotropins. Estrogens also profoundly affect non-reproductive traits such as cognition and neuroprotection. These effects are usually attributed to nuclear receptor binding and subsequent regulation of target gene transcription. Estrogens also affect neuronal activity and cell-signaling pathways via faster, membrane-initiated events. How these two types of actions that operate in distinct time scales interact in the control of complex behavioral responses is poorly understood. Here, we show that the central administration of estradiol rapidly increases the expression of sexual motivation, as assessed by several measures of sexual motivation produced in response to the visual presentation of a female but not sexual performance in male Japanese quail. This effect is mimicked by membrane-impermeable analogs of estradiol, indicating that it is initiated at the cell membrane. Conversely, blocking the action of estrogens or their synthesis by a single intracereboventricular injection of estrogen receptor antagonists or aromatase inhibitors respectively decreases sexual motivation within minutes without affecting performance. The same steroid has thus evolved complementary mechanisms to regulate different behavioral components (motivation vs. performance) in distinct temporal domains (long- vs. short-term) so that diverse reproductive activities can be properly coordinated to improve reproductive fitness. Given the pleiotropic effects exerted by estrogens, other responses controlled by these steroids might also depend on a slow genomic regulation of neuronal plasticity underlying behavioral activation and an acute control of motivation to engage in behavior. PMID:23283331

  4. Evaluation of a recombinant yeast cell estrogen screening assay.

    PubMed Central

    Coldham, N G; Dave, M; Sivapathasundaram, S; McDonnell, D P; Connor, C; Sauer, M J

    1997-01-01

    A wide range of chemicals with diverse structures derived from plant and environmental origins are reported to have hormonal activity. The potential for appreciable exposure of humans to such substances prompts the need to develop sensitive screening methods to quantitate and evaluate the risk to the public. Yeast cells transformed with plasmids encoding the human estrogen receptor and an estrogen responsive promoter linked to a reporter gene were evaluated for screening compounds for estrogenic activity. Relative sensitivity to estrogens was evaluated by reference to 17 beta-estradiol (E2) calibration curves derived using the recombinant yeast cells, MCF-7 human breast cancer cells, and a prepubertal mouse uterotrophic bioassay. The recombinant yeast cell bioassay (RCBA) was approximately two and five orders of magnitude more sensitive to E2 than MCF-7 cells and the uterotrophic assay, respectively. The estrogenic potency of 53 chemicals, including steroid hormones, synthetic estrogens, environmental pollutants, and phytoestrogens, was measured using the RCBA. Potency values produced with the RCBA relative to E2 (100) included estrone (9.6), diethylstilbestrol (74.3), tamoxifen (0.0047), alpha-zearalanol (1.3), equol (0.085), 4-nonylphenol (0.005), and butylbenzyl phathalate (0.0004), which were similar to literature values but generally higher than those produced by the uterotrophic assay. Exquisite sensitivity, absence of test compound biotransformation, ease of use, and the possibility of measuring antiestrogenic activity are important attributes that argue for the suitability of the RCBA in screening for potential xenoestrogens to evaluate risk to humans, wildlife, and the environment. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:9294720

  5. A novel pathway to detect and cope with exogenous dsDNA.

    PubMed

    Kobayashi, Shouhei; Haraguchi, Tokuko

    2015-01-01

    How a living cell responds to exogenous materials is one of the fundamental questions in the life sciences. In particular, understanding the mechanisms by which a cell recognizes exogenous double-stranded DNA (dsDNA) is important for immunology research because it will facilitate the control of pathogen infections that entail the presence of exogenous dsDNA in the cytoplasm of host cells. Several cytosolic dsDNA sensor proteins that trigger innate immune responses have been identified and the downstream signaling pathways have been investigated. However, the events that occur at the site of exogenous dsDNA when it is exposed to the cytosol of the host cell remain unknown. Using dsDNA-coated polystyrene beads incorporated into living cells, we recently found that barrier-to-autointegration factor (BAF) binds to the exogenous dsDNA immediately after its appearance in the cytosol and plays a role in DNA avoidance of autophagy. Our findings reveal a novel pathway in which BAF plays a key role in the detection of and response to exogenous dsDNA.

  6. Regulation of Baboon Fetal Ovarian Development by Placental Estrogen: Onset of Puberty Is Delayed in Offspring Deprived of Estrogen In Utero1

    PubMed Central

    Pepe, Gerald J.; Lynch, Terrie J.; Albrecht, Eugene D.

    2013-01-01

    ABSTRACT Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen. PMID:24132960

  7. Combinations of Physiologic Estrogens with Xenoestrogens Alter ERK Phosphorylation Profiles in Rat Pituitary Cells

    PubMed Central

    Jeng, Yow-Jiun; Watson, Cheryl S.

    2011-01-01

    Background Estrogens are potent nongenomic phospho-activators of extracellular-signal–regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. Objectives We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). Methods We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Results Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. Conclusions XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause). PMID:20870566

  8. Binding and transactivation of the largemouth bass estrogen receptors by model compounds

    EPA Science Inventory

    Environmental estrogens (EEs) are chemicals in the environment that can elicit adverse effects on estrogen (E2) signaling by binding with the estrogen receptors (ERs). In largemouth bass (LMB), the physiological actions of E2 are primarily mediated via three receptors (ERα, ERßb ...

  9. Exercise, Eating, Estrogen, and Osteoporosis.

    ERIC Educational Resources Information Center

    Brown, Jim

    1986-01-01

    Osteoporosis affects millions of people, especially women. Three methods for preventing or managing osteoporosis are recommended: (1) exercise; (2) increased calcium intake; and (3) estrogen replacement therapy. (CB)

  10. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells.

    PubMed

    Liu, Li; Ma, Hongyue; Tang, Yuping; Chen, Wenxing; Lu, Yin; Guo, Jianming; Duan, Jin-Ao

    2012-01-01

    The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Novel Locally Active Estrogens Accelerate Cutaneous Wound Healing-Part 2.

    PubMed

    Brufani, Mario; Rizzi, Nicoletta; Meda, Clara; Filocamo, Luigi; Ceccacci, Francesca; D'Aiuto, Virginia; Bartoli, Gabriele; Bella, Angela La; Migneco, Luisa M; Bettolo, Rinaldo Marini; Leonelli, Francesca; Ciana, Paolo; Maggi, Adriana

    2017-05-31

    Estrogen deprivation is associated with delayed healing, while estrogen replacement therapy (ERT) accelerates acute wound healing and protects against development of chronic wounds. However, current estrogenic molecules have undesired systemic effects, thus the aim of our studies is to generate new molecules for topic administration that are devoid of systemic effects. Following a preliminary study, the new 17β-estradiol derivatives 1 were synthesized. The estrogenic activity of these novel compounds was evaluated in vitro using the cell line ERE-Luc B17 stably transfected with an ERE-Luc reporter. Among the 17β-estradiol derivatives synthesized, compounds 1e and 1f showed the highest transactivation potency and were therefore selected for the study of their systemic estrogenic activity. The study of these compounds in the ERE-Luc mouse model demonstrated that both compounds lack systemic effects when administered in the wound area. Furthermore, wound-healing experiments showed that 1e displays a significant regenerative and anti-inflammatory activity. It is therefore confirmed that this class of compounds are suitable for topical administration and have a clear beneficial effect on wound healing.

  12. GPR30: a novel therapeutic target in estrogen-related disease.

    PubMed

    Prossnitz, Eric R; Sklar, Larry A; Oprea, Tudor I; Arterburn, Jeffrey B

    2008-03-01

    Estrogen is a crucial hormone in human physiology that regulates a multitude of biological processes. It is also an important target in many diseases such as cancer and skeletal, neurological and immunological conditions. The actions of estrogen have traditionally been ascribed to one of two closely related classical nuclear hormone receptors, ERalpha and ERbeta, which are best characterized for regulating gene expression. Recent studies have revealed the contribution of a novel estrogen receptor GPR30, which belongs to the family of seven-transmembrane G-protein-coupled receptors, to many of the rapid biological responses to estrogen. Many drugs, such as tamoxifen and fulvestrant, which seem to selectively inhibit the activities of the classical estrogen receptors, are in widespread clinical use. However, recent results indicate that these same drugs activate multiple cellular-signaling pathways via GPR30. Unraveling the pharmacological profiles and specificities of ERalpha, ERbeta and GPR30 will be vital for understanding not only the physiological roles of each receptor but also for the development of the next generation of receptor-specific drugs.

  13. Role of estrogens in anterior pituitary gland remodeling during the estrous cycle.

    PubMed

    Zárate, S; Zaldivar, V; Jaita, G; Magri, L; Radl, D; Pisera, D; Seilicovich, A

    2010-01-01

    In this review, we analyze the action of estrogens leading to the remodeling of the anterior pituitary gland, especially during the estrous cycle. Proliferation and death of anterior pituitary cells and especially lactotropes is regulated by estrogens, which act by sensitizing these cells to both mitotic and apoptotic stimuli such as TNF-alpha, FasL and dopamine. During the estrous cycle, the changing pattern of gonadal steroids is thought to modulate both cell proliferation and death in the anterior pituitary gland, estrogens being key players in cell turnover. The mechanisms involved in estrogen-modulated cell renewal in the anterior pituitary gland during the estrous cycle could include an increase in the expression of proapoptotic cytokines as well as the increase in the Bax/Bcl-2 ratio at proestrus, when estrogen levels are highest and a peak of apoptosis, in particular of lactotropes, is evident in this gland. Estrogens exert rapid antimitogenic and proapoptotic actions in the anterior pituitary through membrane-associated estrogen receptors, a mechanism that might also be involved in remodeling of this gland during the estrous cycle. Copyright (c) 2010 S. Karger AG, Basel.

  14. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer

    PubMed Central

    Bak, Min Ji; Das Gupta, Soumyasri; Wahler, Joseph; Suh, Nanjoo

    2016-01-01

    Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer. PMID:27016037

  15. Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina.

    PubMed

    Miyagawa, Shinichi; Iguchi, Taisen

    2015-10-20

    Estrogen-mediated actions in female reproductive organs are tightly regulated, mainly through estrogen receptor 1 (ESR1). The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing the homeostasis of stratified squamous epithelia. To address the role of ESR1-mediated tissue events during homeostasis, we analyzed mice with a vaginal epithelium-specific knockout of Esr1 driven by keratin 5-Cre (K5-Esr1KO). We show here that loss of epithelial ESR1 in the vagina resulted in aberrant epithelial cell proliferation in the suprabasal cell layers and led to failure of keratinized differentiation. Gene expression analysis showed that several known estrogen target genes, including erbB growth factor ligands, were not induced by estrogen in the K5-Esr1KO mouse vagina. Organ culture experiments revealed that the addition of erbB growth factor ligands, such as amphiregulin, could activate keratinized differentiation in the absence of epithelial ESR1. Thus, epithelial ESR1 integrates estrogen and growth factor signaling to mediate regulation of cell proliferation in squamous differentiation, and our results provide new insights into estrogen-mediated homeostasis in female reproductive organs.

  16. Screening for estrogenic and antiestrogenic activities of plants growing in Egypt and Thailand

    PubMed Central

    El-Halawany, Ali M.; El Dine, Riham Salah; Chung, Mi Hwa; Nishihara, Tsutomu; Hattori, Masao

    2011-01-01

    Background: There is a growing demand for the discovery of new phytoestrogens to be used as a safe and effective hormonal replacement therapy. Materials and Methods: The methanol extracts of 40 plants from the Egyptian and Thailand folk medicines were screened for their estrogen agonist and antagonist activities. The estrogenic and antiestrogenic effects of the tested extracts were carried out using the yeast two-hybrid assay system expressing ERα and ERβ. In addition, all the extracts were subjected to a naringinase treatment and retested for their estrogenic activity. Results: The methanol extracts of Derris reticulata and Dracaena lourieri showed the most potent estrogenic activity on both estrogen-receptor subtypes, while, the methanol extracts of Butea monosperma, Erythrina fusca, and Dalbergia candenatensis revealed significant estrogenic activity on ERβ only. Nigella sativa, Sophora japonica, Artabotrys harmandii, and Clitorea hanceana showed estrogenic effect only after naringinase treatment. The most potent antiestrogenic effect was revealed by Aframomum melegueta, Dalbergia candenatensis, Dracena loureiri, and Mansonia gagei. PMID:21772754

  17. Development of a recombinant human ovarian (BG1) cell line containing estrogen receptor α and β for improved detection of estrogenic/antiestrogenic chemicals

    PubMed Central

    Brennan, Jennifer C.; Bassal, Arzoo; He, Guochun; Denison, Michael S.

    2016-01-01

    Estrogenic endocrine disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, there is a critical need for rapidly detecting these chemicals. We developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the USEPA and OECD as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only one of the two known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells and qRT-PCR confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα and ERβ-selective chemicals. PMID:26139245

  18. Endogenous versus exogenous generic reference pricing for pharmaceuticals.

    PubMed

    Antoñanzas, F; Juárez-Castelló, C A; Rodríguez-Ibeas, R

    2017-12-01

    In this paper we carry out a vertical differentiation duopoly model applied to pharmaceutical markets to analyze how endogenous and exogenous generic reference pricing influence competition between generic and branded drugs producers. Unlike the literature, we characterize for the exogenous case the equilibrium prices for all feasible relevant reference prices. Competition is enhanced after the introduction of a reference pricing system. We also compare both reference pricing systems on welfare grounds, assuming two different objective functions for health authorities: (i) standard social welfare and (ii) gross consumer surplus net of total pharmaceutical expenditures. We show that regardless of the objective function, health authorities will never choose endogenous reference pricing. When health authorities are paternalistic, the exogenous reference price that maximizes standard social welfare is such that the price of the generic drug is the reference price while the price of the branded drug is higher than the reference price. When health authorities are not paternalistic, the optimal exogenous reference price is such that the price of the branded drug is the reference price while the price of the generic drug is lower than the reference price.

  19. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer.

    PubMed

    Bouras, Toula; Southey, Melissa C; Chang, Andy C; Reddel, Roger R; Willhite, Dorian; Glynne, Richard; Henderson, Michael A; Armes, Jane E; Venter, Deon J

    2002-03-01

    Differences in gene expression are likely to explain the phenotypic variation between hormone-responsive and hormone-unresponsive breast cancers. In this study, DNA microarray analysis of approximately 10,000 known genes and 25,000 expressed sequence tag clusters was performed to identify genes induced by estrogen and repressed by the pure antiestrogen ICI 182 780 in vitro that correlated with estrogen receptor (ER) expression in primary breast carcinomas in vivo. Stanniocalcin (STC) 2 was identified as one of the genes that fulfilled these criteria. DNA microarray hybridization showed a 3-fold induction of STC2 mRNA expression in MCF-7 cells in < or = 3 h of estrogen exposure and a 3-fold repression in the presence of antiestrogen (one-way ANOVA, P < 0.0005). In 13 ER-positive and 12 ER-negative breast carcinomas, the microarray-derived mRNA levels observed for STC2 correlated with tumor ER mRNA (Pearson's correlation, r = 0.85; P < 0.0001) and ER protein status (Spearman's rank correlation, r = 0.73; P < 0.0001). The expression profile of STC2 was further confirmed by in situ hybridization and immunohistochemistry on a larger cohort of 236 unselected breast carcinomas using tissue microarrays. STC2 mRNA and protein expression were found to be associated with tumor ER status (Fisher's exact test, P < 0.005). The related gene, STC1, was also examined and shown to be associated with ER status in breast carcinomas (Fisher's exact test, P < 0.05). This study demonstrates the feasibility of using global gene expression data derived from an in vitro model to pinpoint novel estrogen-responsive genes of potential clinical relevance.

  20. Black tea and D. candidum extracts play estrogenic activity via estrogen receptor α-dependent signaling pathway

    PubMed Central

    Wang, Yongsen; Sun, Jing; Zhang, Kun; Hu, Xin; Sun, Yuchu; Sheng, Jun; Fu, Xueqi

    2018-01-01

    In recent years, phytoestrogens have been shown as useful selective estrogen receptor modulators. The estrogen-like effects of black tea (BT) and D. candidum (DC), as well as the combination of the two herbs, have remained largely elusive. This study aims to investigate the phytoestrogenic effect of BT and DC extract, and the possible mechanism. The effects on T47D (ER+ cell line) proliferation were evaluated by using MTT assay. The S phase proportion of ER+ cells was determined by using flow cytometry. The estrogen antagonist ICI 182,780 was applied to block the ER function. The activation of ER-mediated PI3K/AKT and ERK signal pathways were observed by using western blot. Expression of ERα and PGR, as well as PS2 and Cyclin D1 were detected by using western blot and real-time quantitative PCR. Firstly, our results found that BT and DC extracts promoted cell proliferation in ER-positive cells, and this effect was ER-dependent. Besides, BT and DC extracts increased the S-phase cell number. Next, PI3K, AKT and ERK pathways below ER were activated by phytoestrogen treatment, and this activation was blocked by the ER antagonist. Moreover, prolonged BT and DC treatments increased the expression of ESR1 and PGR. Consistently, the mRNA levels of not only ESR1 and PGR but also estrogen-dependent effectors ps2 and cyclin D1, were increased by phytoestrogens and blocked by ICI 182,780. Taken Together, BT and DC extracts have phytoestrogenic effects, and this may provide new ideas and experimental basis for the development and application of phytoestrogens. PMID:29422998

  1. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton

    USDA-ARS?s Scientific Manuscript database

    Estrogen withdrawal in women due to natural or artificial menopause is followed by rapid bone loss, osteoporosis, and a high fracture risk. Replacement with estrogen prevents this bone loss and reduces the risk of fracture. Estrogen uses two mechanisms to exert this effect: it inhibits bone resorpti...

  2. Selective estrogen receptor modulators and risk for coronary heart disease.

    PubMed

    Cano, A; Hermenegildo, C; Oviedo, P; Tarín, J J

    2007-04-01

    Coronary heart disease (CHD) is the leading cause of death in women in most countries. Atherosclerosis is the main biological process determining CHD. Clinical data support the notion that CHD is sensitive to estrogens, but debate exists concerning the effects of the hormone on atherosclerosis and its complications. Selective estrogen receptor modulators (SERMs) are compounds capable of binding the estrogen receptor to induce a functional profile distinct from estrogens. The possibility that SERMs may shift the estrogenic balance on cardiovascular risk towards a more beneficial profile has generated interest in recent years. There is considerable information on the effects of SERMs on distinct areas that are crucial in atherogenesis. The complexity derived from the diversity of variables affecting their mechanism of action plus the differences between compounds make it difficult to delineate one uniform trend for SERMs. The present picture, nonetheless, is one where SERMs seem less powerful than estrogens in atherosclerosis protection, but more gentle with advanced forms of the disease. The recent publication of the Raloxifene Use for The Heart (RUTH) study has confirmed a neutral effect for raloxifene. Prothrombotic states may favor occlusive thrombi at sites occupied by atheromatous plaques. Platelet activation has received attention as an important determinant of arterial thrombogenesis. Although still sparse, available evidence globally suggests neutral or beneficial effects for SERMs.

  3. Estrogen Biology: New Insights into GPER Function and Clinical Opportunities

    PubMed Central

    Prossnitz, Eric R.; Barton, Matthias

    2014-01-01

    Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen’s rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and certain drugs such as SERMs and SERDs in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine. PMID:24530924

  4. Obesity, Insulin Resistance and Diabetes: Sex Differences and Role of Estrogen Receptors

    PubMed Central

    Meyer, Matthias R.; Clegg, Deborah J.; Prossnitz, Eric R.; Barton, Matthias

    2010-01-01

    Obesity increases the risk of coronary artery disease through insulin resistance, diabetes, arterial hypertension, and dyslipidemia. The prevalence of obesity has increased worldwide and is particularly high among middle-aged women and men. After menopause, women are at an increased risk to develop visceral obesity due to the loss of endogenous ovarian hormone production. Effects of estrogens are classically mediated by the two nuclear estrogen receptors (ERs) α and β. In addition, more recent research has shown that the intracellular transmembrane G protein-coupled estrogen receptor, GPER, originally designated as GPR30, also mediates some of the actions attributed to estrogens. Estrogen and its receptors are important regulators of body weight and insulin sensitivity not only in women, but also in men as demonstrated by ER mutations in rodents and humans. This article reviews the role of sex hormones and estrogen receptors in the context of obesity, insulin sensitivity and diabetes as well as the related clinical issues in females and males. PMID:21281456

  5. Estrogen: A master regulator of bioenergetic systems in the brain and body

    PubMed Central

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer’s disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. PMID:23994581

  6. Estrogen and the aging brain: an elixir for the weary cortical network.

    PubMed

    Dumitriu, Dani; Rapp, Peter R; McEwen, Bruce S; Morrison, John H

    2010-08-01

    The surprising discovery in 1990 that estrogen modulates hippocampal structural plasticity launched a whole new field of scientific inquiry. Over the past two decades, estrogen-induced spinogenesis has been described in several brain areas involved in cognition in a number of species, in both sexes and on multiple time scales. Exploration into the interaction between estrogen and aging has illuminated some of the hormone's neuroprotective effects, most notably on age-related cognitive decline in nonhuman primates. Although there is still much to be learned about the mechanisms by which estrogen exerts its actions, key components of the signal transduction pathways are beginning to be elucidated and nongenomic actions via membrane bound estrogen receptors are of particular interest. Future studies are focused on identifying the most clinically relevant hormone treatment, as well as the potential identification of new therapeutics that can prevent or reverse age-related cognitive impairment by intercepting specific signal transduction pathways initiated by estrogen.

  7. Estrogen: a master regulator of bioenergetic systems in the brain and body.

    PubMed

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. [Expression of receptors of estrogens and androgens in the testicular appendices].

    PubMed

    Paredes Esteban, R M; Luque Barona, R J; Velasco Sánchez, B; Rodríguez Vargas, J; Lorite, A; García Ruiz, M

    2008-07-01

    The appendices or hidátides of the testicle are structures that are considered an embryonic rest. In testicular hidátide estrogen receivers have been demonstrated but in the epididimys the results vary. Has been theorized that the elevation of the estrogen levels in the puberty can produce an inflammation and torsion of hidátide, nevertheless, in the epididimys in which the estrogen expression is not clear (and also they are twisted) the theory is put in doubt. This controversy takes us to the accomplishment of this work. A prospective study is made in 20 testicular appendices, of which 7 from the epididimys are extirpated of patients to whom an escrotal exploration is made in the development of surgery of processes of the inguino-escrotal channel (hidroceles, hernias). Optical microscopy and inmunohistoquímical study are analyzed by means of using prediluted monoclonales antibodies, for receivers of estrogens, androgens and proliferative index. The results were proceed and analyzed by means of SPSS statistical program. All hidátides, testicular and from the epididimarys expressed receivers for estrogens without significant difference among them, not existing differences as far as the location of receiving sayings within the three compartments of hidátide. The number of estrogen receivers was in relation to the age of the patient. Only hidátides from the epididimys fundamentally expressed receivers of located androgens and at level of ductus. We have not found significant relation between the proliferative index and the expression of estrogen receivers. The proliferative index was more elevated at level of ductus. 1) As much the testicular appendices as those from the epididimays expressed receivers of estrogens at level of the three compartments. It makes think about a same embryonic origin, although only the epididimal ones expressed androgen receivers. 2) the observation of estrogen receivers in both types of hidátides, as well as the relation of the

  9. Exogenic and endogenic albedo and color patterns on Europa

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1986-01-01

    New global and high-resolution multispectral mosaics of Europa have been produced from the Voyager imaging data. Photometric normalizations are based on multiple-image techniques that explicitly account for intrinsic albedo variations through pixel-by-pixel solutions. The exogenic color and albedo pattern on Europa is described by a second-order function of the cosine of the angular distance from the apex of orbital motion. On the basis of this second-order function and of color trends that are different on the leading and trailing hemispheres, the exogenic pattern is interpreted as being due to equilibrium between two dominant processes: (1) impact gardening and (2) magnetospheric interactions, including sulfur-ion implantation and sputtering redistribution. Removal of the model exogenic pattern in the mosaics reveals the endogenic variations, consisting of only two major units: darker (redder) and bright materials. Therefore Europa's visual spectral reflectivity is simple, having one continuous exogenic pattern and two discrete endogenic units.

  10. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio).

    PubMed

    Peyton, Candace; Thomas, Peter

    2011-07-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.

  11. Health Impacts of Estrogens in the Environment, Considering Complex Mixture Effects

    PubMed Central

    Filby, Amy L.; Neuparth, Teresa; Thorpe, Karen L.; Owen, Richard; Galloway, Tamara S.; Tyler, Charles R.

    2007-01-01

    Background Environmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established. Objectives We assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent). Methods Growth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17α-ethinyl-estradiol (EE2)], and to EE2 alone. Results In addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes. Conclusion These data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures. PMID:18087587

  12. Ezetimibe prevents the formation of estrogen-induced cholesterol gallstones in mice

    PubMed Central

    de Bari, Ornella; Wang, Helen H.; Portincasa, Piero; Paik, Chang-Nyol; Liu, Min; Wang, David Q.-H.

    2014-01-01

    Background Estrogen is an important risk factor for cholesterol cholelithiasis not only in women of childbearing age taking oral contraceptives and postmenopausal women undergoing hormone replacement therapy, but also in male patients receiving estrogen therapy for prostatic cancer. In women, hormonal changes occurring during pregnancy markedly increase the risk of developing gallstones. We investigated whether the potent cholesterol absorption inhibitor ezetimibe could prevent the formation of estrogen-induced cholesterol gallstones in mice. Design Following ovariectomy, female AKR mice were implanted subcutaneously with pellets releasing 17β-estradiol at 6 μg/day and fed a lithogenic diet supplemented with ezetimibe in doses of 0 or 8 mg/kg/day for 8 weeks. Cholesterol crystallization and gallstone prevalence, lipid concentrations and composition in bile, and biliary lipid output were analyzed by physical-chemical methods. Intestinal cholesterol absorption efficiency was determined by fecal dual-isotope ratio methods. Results Ezetimibe inhibited intestinal cholesterol absorption, while significantly reducing hepatic secretion of biliary cholesterol. Consequently, bile was desaturated through the formation of numerous unsaturated micelles and gallstones were prevented by ezetimibe in mice exposed to high doses of estrogen and fed the lithogenic diet. Ezetimibe did not influence mRNA levels of the classical estrogen receptors α (ERα) and ERβ, as well as a novel estrogen receptor the G protein-coupled receptor 30 (GPR30) in the liver. Conclusions Ezetimibe protects against the estrogen-mediated lithogenic actions on gallstone formation in mice. Our finding may provide an efficacious novel strategy for the prevention of cholesterol gallstones in high-risk subjects, especially those exposed to high levels of estrogen. PMID:25303682

  13. G Protein-Coupled Estrogen Receptor in Energy Homeostasis and Obesity Pathogenesis

    PubMed Central

    Shi, Haifei; Dharshan Senthil Kumar, Shiva Priya; Liu, Xian

    2013-01-01

    Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states. PMID:23317786

  14. Modeling mixtures of environmental estrogens found in U.S. surface waters with an in vitro estrogen mediated transcriptionai activation assay (T47D-KBluc).

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. Environmental estrogens can come from various sources including concentrated animal feedlot operations (CAFO), municipa...

  15. Arsenic abrogates the estrogen-signaling pathway in the rat uterus

    PubMed Central

    2010-01-01

    Background Arsenic, a major pollutant of water as well as soil, is a known endocrine disruptor, and shows adverse effects on the female reproductive physiology. However, the exact molecular events leading to reproductive dysfunctions as a result of arsenic exposure are yet to be ascertained. This report evaluates the effect and mode of action of chronic oral arsenic exposure on the uterine physiology of mature female albino rats. Methods The effect of chronic oral exposure to arsenic at the dose of 4 microg/ml for 28 days was evaluated on adult female albino rats. Hematoxylin-eosin double staining method evaluated the changes in the histological architecture of the uterus. Circulating levels of gonadotropins and estradiol were assayed by enzyme-linked immunosorbent assay. Expression of the estrogen receptor and estrogen-induced genes was studied at the mRNA level by RT-PCR and at the protein level by immunohistochemistry and western blot analysis. Results Sodium arsenite treatment decreased circulating levels of estradiol in a dose and time-dependent manner, along with decrease in the levels of both LH and FSH. Histological evaluation revealed degeneration of luminal epithelial cells and endometrial glands in response to arsenic treatment, along with reduction in thickness of the longitudinal muscle layer. Concomitantly, downregulation of estrogen receptor (ER alpha), the estrogen-responsive gene - vascular endothelial growth factor (VEGF), and G1 cell cycle proteins, cyclin D1 and CDK4, was also observed. Conclusion Together, the results indicate that arsenic disrupted the circulating levels of gonadotropins and estradiol, led to degeneration of luminal epithelial, stromal and myometrial cells of the rat uterus and downregulated the downstream components of the estrogen signaling pathway. Since development and functional maintenance of the uterus is under the influence of estradiol, arsenic-induced structural degeneration may be attributed to the reduction in

  16. Novel Metal Ion Based Estrogen Mimics for Molecular Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajagopalan, Raghavan

    The overall objective of the SBIR Phase I proposal is to prepare and evaluate a new class of {sup 99m}Tc or {sup 94m}Tc containing estrogen-like small molecules ('estrogen mimics') for SPECT or PET molecular imaging of estrogen receptor positive (ER+) tumors. In this approach, the metal ion is integrated into the estrone skeleton by isosteric substitution of a carbon atom in the steroidal structure to give new class of mimics that are topologically similar to the native estrogen (Fig. 1). Although both N{sub 2}S{sub 2} and N{sub 3}S mimics 1 and 2 were considered as target structures, molecular modeling studymore » revealed that the presence of the acetyl group at position-15 in the N{sub 3}S mimic 2 causes steric hinderance toward binding of 2 to SHBG. Therefore, initial efforts were directed at the synthesis and evaluation of the N{sub 2}S{sub 2} mimic 1.« less

  17. Estrogens are essential for male pubertal periosteal bone expansion.

    PubMed

    Bouillon, Roger; Bex, Marie; Vanderschueren, Dirk; Boonen, Steven

    2004-12-01

    The skeletal response to estrogen therapy was studied in a 17-yr-old boy with congenital aromatase deficiency. As expected, estrogen therapy (1 mg estradiol valeriate/d from age 17 until 20 yr) normalized total and free testosterone and reduced the rate of bone remodeling. Dual-energy x-ray absorptiometry-assessed areal bone mineral density (BMD) of the lumbar spine and femoral neck increased significantly (by 23% and 14%, respectively), but peripheral quantitative computed tomography at the ultradistal radius revealed no gain of either trabecular or cortical volumetric BMD. The increase in areal BMD was thus driven by an increase in bone size. Indeed, longitudinal bone growth (height, +8.5%) and especially cross-sectional area of the radius (+46%) and cortical thickness (+12%), as measured by peripheral quantitative computed tomography, increased markedly during estrogen treatment. These findings demonstrate that androgens alone are insufficient, whereas estrogens are essential for the process of pubertal periosteal bone expansion typically associated with the male bone phenotype.

  18. ROLE OF ESTROGEN RECEPTOR-α ON FOOD DEMAND ELASTICITY

    PubMed Central

    Minervini, Vanessa; Rowland, Neil E.; Robertson, Kimberly L.; Foster, Thomas C.

    2016-01-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  19. Role of estrogen receptor-α on food demand elasticity.

    PubMed

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. © Society for the Experimental Analysis of Behavior.

  20. Long-term health consequences of premature or early menopause and considerations for management

    PubMed Central

    Faubion, Stephanie S.; Kuhle, Carol L.; Shuster, Lynne T.; Rocca, Walter A.

    2015-01-01

    Aim To review the current evidence concerning the long-term harmful effects of premature or early menopause, and to discuss some of the clinical implications. Material and methods Narrative review of the literature. Results Women undergoing premature or early menopause, either following bilateral salpingo-oophorectomy or because of primary ovarian insufficiency, experience the early loss of estrogen and other ovarian hormones. The long-term consequences of premature or early menopause include adverse effects on cognition, mood, cardiovascular, bone, and sexual health, as well as an increased risk of early mortality. The use of hormone therapy has been shown to lessen some, although not all of these risks. Therefore, multiple medical societies recommend providing hormone therapy at least until the natural age of menopause. It is important to individualize hormone therapy for women with early estrogen deficiency, and higher dosages may be needed to approximate physiological concentrations found in premenopausal women. It is also important to address the psychological impact of early menopause and to review the options for fertility and the potential need for contraception, if the ovaries are intact. Conclusions Women who undergo premature or early menopause should receive individualized hormone therapy and counseling. PMID:25845383

  1. The role of estrogen in pubertal skeletal physiology: epiphyseal maturation and mineralization of the skeleton.

    PubMed

    Frank, G R

    1995-06-01

    The year 1994 is likely to be remembered by many endocrinologists as the year in which dramatic new light was shed on the role played by estrogen in human skeletal physiology. It was in 1994 that two new syndromes were described, each representing a human model in which estrogen action was lacking. The first case was a female with an aromatase defect and a resultant inability to synthesize estrogen, and the second case was a man with an estrogen receptor gene defect that resulted in a non-functioning estrogen receptor and complete estrogen resistance. By examining the phenotypes of these two individuals, we were able, for the first time, to see what pubertal skeletal changes occur in the absence of estrogen action and directly extrapolate the role of estrogen in skeletal physiology. What has become abundantly clear is that it is estrogen and not androgen that is responsible for pubertal epiphyseal maturation and skeletal mineralization.

  2. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    ERIC Educational Resources Information Center

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  3. Estrogens and human papilloma virus oncogenes regulate human ether-à-go-go-1 potassium channel expression.

    PubMed

    Díaz, Lorenza; Ceja-Ochoa, Irais; Restrepo-Angulo, Iván; Larrea, Fernando; Avila-Chávez, Euclides; García-Becerra, Rocío; Borja-Cacho, Elizabeth; Barrera, David; Ahumada, Elías; Gariglio, Patricio; Alvarez-Rios, Elizabeth; Ocadiz-Delgado, Rodolfo; Garcia-Villa, Enrique; Hernández-Gallegos, Elizabeth; Camacho-Arroyo, Ignacio; Morales, Angélica; Ordaz-Rosado, David; García-Latorre, Ethel; Escamilla, Juan; Sánchez-Peña, Luz Carmen; Saqui-Salces, Milena; Gamboa-Dominguez, Armando; Vera, Eunice; Uribe-Ramírez, Marisela; Murbartián, Janet; Ortiz, Cindy Sharon; Rivera-Guevara, Claudia; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2009-04-15

    Ether-à-go-go-1 (Eag1) potassium channels are potential tools for detection and therapy of numerous cancers. Here, we show human Eag1 (hEag1) regulation by cancer-associated factors. We studied hEag1 gene expression and its regulation by estradiol, antiestrogens, and human papillomavirus (HPV) oncogenes (E6/E7). Primary cultures from normal placentas and cervical cancer tissues; tumor cell lines from cervix, choriocarcinoma, keratinocytes, and lung; and normal cell lines from vascular endothelium, keratinocytes, and lung were used. Reverse transcription-PCR (RT-PCR) experiments and Southern blot analysis showed Eag1 expression in all of the cancer cell types, normal trophoblasts, and vascular endothelium, in contrast to normal keratinocytes and lung cells. Estradiol and antiestrogens regulated Eag1 in a cell type-dependent manner. Real-time RT-PCR experiments in HeLa cells showed that Eag1 estrogenic regulation was strongly associated with the expression of estrogen receptor-alpha. Eag1 protein was detected by monoclonal antibodies in normal placenta and placental blood vessels. Patch-clamp recordings in normal trophoblasts treated with estradiol exhibited potassium currents resembling Eag1 channel activity. Eag1 gene expression in keratinocytes depended either on cellular immortalization or the presence of HPV oncogenes. Eag1 protein was found in keratinocytes transfected with E6/E7 HPV oncogenes. Cell proliferation of E6/E7 keratinocytes was decreased by Eag1 antibodies inhibiting channel activity and by the nonspecific Eag1 inhibitors imipramine and astemizole; the latter also increased apoptosis. Our results propose novel oncogenic mechanisms of estrogen/antiestrogen use and HPV infection. We also suggest Eag1 as an early indicator of cell proliferation leading to malignancies and a therapeutic target at early stages of cellular hyperproliferation.

  4. Neuroprotective Effects of Nonfeminizing Estrogens in Retinal Photoreceptor Neurons

    PubMed Central

    Nixon, Everett; Simpkins, James W.

    2012-01-01

    Purpose. Retinal diseases such as macular degeneration and glaucoma are disorders that target specific retinal neurons that can ultimately lead to vision loss. Under these conditions and pathologies, retinal neurons can die via apoptosis that may be due to increased oxidative stress. The neuroprotective effects of 17β-estradiol (E2) and three synthetic nonfeminizing estrogen analogs (ZYC-26, ZYC-23, and ZYC-3) were investigated to examine their abilities to protect retinal neurons against glutamate toxicity. Methods. Using an in vitro model of glutamate-induced cell death in 661W cells, a mouse cone photoreceptor cell line, shown to express both estrogen receptors (ERs) via immunoblotting, was pretreated with E2 and its analogs and cell viability were assessed. Results. It was observed that E2 and estrogen analogs, ZYC-26 and ZYC-3, were protective against a 5 mM glutamate insult in 661W cells. The neuroprotective abilities of ZYC-26 and ZYC-3 were autonomous of estrogen receptor-α (ERα) and ERβ demonstrated by their ability to protect in the presence of ICI 182780, a pan-ER antagonist with a high affinity for the estrogen receptor. Treatment with PPT and DPN, ERα- and ERβ-specific agonists, respectively, did not protect the 661W cells from the glutamate insult. Studying the membrane ER (mER) or GPR30 did show that activation of the receptor by G1 protected the retinal neuron from insult, whereas G15, an antagonist of the mER was not able to antagonize the protection previously seen. Conclusions. These data demonstrate that nonfeminizing estrogens may emerge as useful compounds for neuroprotection of retinal cells. PMID:22700711

  5. Exogenous temporal cues enhance recognition memory in an object-based manner.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2010-11-01

    Exogenous attention enhances the perception of attended items in both a space-based and an object-based manner. Exogenous attention also improves recognition memory for attended items in the space-based mode. However, it has not been examined whether object-based exogenous attention enhances recognition memory. To address this issue, we examined whether a sudden visual change in a task-irrelevant stimulus (an exogenous cue) would affect participants' recognition memory for items that were serially presented around a cued time. The results showed that recognition accuracy for an item was strongly enhanced when the visual cue occurred at the same location and time as the item (Experiments 1 and 2). The memory enhancement effect occurred when the exogenous visual cue and an item belonged to the same object (Experiments 3 and 4) and even when the cue was counterpredictive of the timing of an item to be asked about (Experiment 5). The present study suggests that an exogenous temporal cue automatically enhances the recognition accuracy for an item that is presented at close temporal proximity to the cue and that recognition memory enhancement occurs in an object-based manner.

  6. Assessment of Health Effects of Exogenous Urea: Summary and Key Findings.

    PubMed

    Dickerson, Aisha S; Lee, Janice S; Keshava, Channa; Hotchkiss, Andrew; Persad, Amanda S

    2018-05-01

    Urea has been utilized as a reductant in diesel fuels to lower emission of nitrogen oxides, igniting interest in probable human health hazards associated with exposure to exogenous urea. Here, we summarize and update key findings on potential health effects of exogenous urea, including carcinogenicity. No definitive target organs for oral exposure were identified; however, results in animal studies suggest that the liver and kidney could be potential target organs of urea toxicity. The available human-subject literature suggests that the impact on lung function is minimal. Based on the literature on exogenous urea, we concluded that there was inadequate information to assess the carcinogenic potential of urea, or perform a quantitative assessment to derive reference values. Given the limited information on exogenous urea, additional research to address gaps for exogenous urea should include long-term cancer bioassays, two-generation reproductive toxicity studies, and mode-of-action investigations.

  7. Long non-coding RNA MIAT is estrogen-responsive and promotes estrogen-induced proliferation in ER-positive breast cancer cells.

    PubMed

    Li, Yuehua; Jiang, Baohong; Wu, Xiaoping; Huang, Qin; Chen, Wenqi; Zhu, Hongbo; Qu, Xiaofei; Xie, Liming; Ma, Xin; Huang, Guo

    2018-05-21

    Estrogen drives the development and progression of estrogen receptor (ER)-positive breast cancer. However, the detailed mechanism underlying ER-driven carcinogenesis remains unclear despite extensive studies. Previously reports indicated higher expression of long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) in ER-positive breast cancer tissues than in ER-negative tissues. However, the functional relevance of MIAT in ER-positive breast cancer tumorigenesis was poorly understood. Here, we investigated the role of lncRNA MIAT in ER-positive breast cancer cells. MIAT was over-expressed in ER-positive breast cancer tissues and ER-positive breast cancer cell line MCF-7. Activating estrogen signaling by diethylstilbestrol (DES) led to a dose- and time-dependent up-regulation of MIAT in MCF-7 cells that was dependent on ERα, as evidenced by ERα silencing and pharmacological inhibition using ER antagonist ICI 182780. Silencing MIAT decreased DES-induced MCF-7 cell proliferation while overexpressing MIAT increased MCF-7 cell proliferation. Further mechanistic study identified that MIAT was critical for G1 to S phase cell cycle transition. Taken together, these results suggest that lncRNA MIAT is an estrogen-inducible lncRNA and a key regulator in ER-positive breast cancer cell growth. MIAT could serve as a potential biomarker and promising therapeutic target for ER-positive breast cancer. Copyright © 2018. Published by Elsevier Inc.

  8. Bone Marrow Oxytocin Mediates the Anabolic Action of Estrogen on the Skeleton*

    PubMed Central

    Colaianni, Graziana; Sun, Li; Di Benedetto, Adriana; Tamma, Roberto; Zhu, Ling-Ling; Cao, Jay; Grano, Maria; Yuen, Tony; Colucci, Sylvia; Cuscito, Concetta; Mancini, Lucia; Li, Jianhua; Nishimori, Katsuhiko; Bab, Itai; Lee, Heon-Jin; Iqbal, Jameel; Young, W. Scott; Rosen, Clifford; Zallone, Alberta; Zaidi, Mone

    2012-01-01

    Estrogen uses two mechanisms to exert its effect on the skeleton: it inhibits bone resorption by osteoclasts and, at higher doses, can stimulate bone formation. Although the antiresorptive action of estrogen arises from the inhibition of the MAPK JNK, the mechanism of its effect on the osteoblast remains unclear. Here, we report that the anabolic action of estrogen in mice occurs, at least in part, through oxytocin (OT) produced by osteoblasts in bone marrow. We show that the absence of OT receptors (OTRs) in OTR−/− osteoblasts or attenuation of OTR expression in silenced cells inhibits estrogen-induced osteoblast differentiation, transcription factor up-regulation, and/or OT production in vitro. In vivo, OTR−/− mice, known to have a bone formation defect, fail to display increases in trabecular bone volume, cortical thickness, and bone formation in response to estrogen. Furthermore, osteoblast-specific Col2.3-Cre+/OTRfl/fl mice, but not TRAP-Cre+/OTRfl/fl mice, mimic the OTR−/− phenotype and also fail to respond to estrogen. These data attribute the phenotype of OTR deficiency to an osteoblastic rather than an osteoclastic defect. Physiologically, feed-forward OT release in bone marrow by a rising estrogen concentration may facilitate rapid skeletal recovery during the latter phases of lactation. PMID:22761429

  9. The role of estrogen and androgen receptors in bone health and disease

    PubMed Central

    2014-01-01

    Mouse models with cell-specific deletion of the estrogen receptor (ER) α, the androgen receptor (AR) or the receptor activator of nuclear factor κB ligand (RANKL), as well as cascade-selective estrogenic compounds have provided novel insights into the function and signalling of ERα and AR. The studies reveal that the effects of estrogens on trabecular versus cortical bone mass are mediated by direct effects on osteoclasts and osteoblasts, respectively. The protection of cortical bone mass by estrogens is mediated via ERα, using a non-nucleus-initiated mechanism. By contrast, the AR of mature osteoblasts is indispensable for the maintenance of trabecular bone mass in male mammals, but not required for the anabolic effects of androgens on cortical bone. Most unexpectedly, and independently of estrogens, ERα in osteoblast progenitors stimulates Wnt signalling and periosteal bone accrual in response to mechanical strain. RANKL expression in B lymphocytes, but not T lymphocytes, contributes to the loss of trabecular bone caused by estrogen deficiency. In this Review, we summarize this evidence and discuss its implications for understanding the regulation of trabecular and cortical bone mass; the integration of hormonal and mechanical signals; the relative importance of estrogens versus androgens in the male skeleton; and, finally, the pathogenesis and treatment of osteoporosis. PMID:24042328

  10. Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina

    PubMed Central

    Miyagawa, Shinichi; Iguchi, Taisen

    2015-01-01

    Estrogen-mediated actions in female reproductive organs are tightly regulated, mainly through estrogen receptor 1 (ESR1). The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing the homeostasis of stratified squamous epithelia. To address the role of ESR1-mediated tissue events during homeostasis, we analyzed mice with a vaginal epithelium-specific knockout of Esr1 driven by keratin 5-Cre (K5-Esr1KO). We show here that loss of epithelial ESR1 in the vagina resulted in aberrant epithelial cell proliferation in the suprabasal cell layers and led to failure of keratinized differentiation. Gene expression analysis showed that several known estrogen target genes, including erbB growth factor ligands, were not induced by estrogen in the K5-Esr1KO mouse vagina. Organ culture experiments revealed that the addition of erbB growth factor ligands, such as amphiregulin, could activate keratinized differentiation in the absence of epithelial ESR1. Thus, epithelial ESR1 integrates estrogen and growth factor signaling to mediate regulation of cell proliferation in squamous differentiation, and our results provide new insights into estrogen-mediated homeostasis in female reproductive organs. PMID:26438838

  11. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms.

    PubMed

    Laredo, Sarah A; Villalon Landeros, Rosalina; Trainor, Brian C

    2014-10-01

    Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    EPA Pesticide Factsheets

    Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational models on high-throughput screening data to screen thousands of chemicals against the estrogen receptor.This dataset is associated with the following publication:Mansouri , K., A. Abdelaziz, A. Rybacka, A. Roncaglioni, A. Tropsha, A. Varnek, A. Zakharov, A. Worth, A. Richard , C. Grulke , D. Trisciuzzi, D. Fourches, D. Horvath, E. Benfenati , E. Muratov, E.B. Wedebye, F. Grisoni, G.F. Mangiatordi, G.M. Incisivo, H. Hong, H.W. Ng, I.V. Tetko, I. Balabin, J. Kancherla , J. Shen, J. Burton, M. Nicklaus, M. Cassotti, N.G. Nikolov, O. Nicolotti, P.L. Andersson, Q. Zang, R. Politi, R.D. Beger , R. Todeschini, R. Huang, S. Farag, S.A. Rosenberg, S. Slavov, X. Hu, and R. Judson. (Environmental Health Perspectives) CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 1-49, (2016).

  13. Estrogen Receptors Modulation of Anxiety-Like Behavior

    PubMed Central

    Borrow, A.P.; Handa, R.J.

    2018-01-01

    Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens’ effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic–pituitary–adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. PMID:28061972

  14. Autoimmune estrogen dermatitis in an infertile female.

    PubMed

    Elcin, Gonca; Gülseren, Duygu; Bayraktar, Miyase; Gunalp, Serdar; Gurgan, Timur

    2017-06-01

    Autoimmune estrogen dermatitis is a cyclical cutaneous eruption that occurs premenstrually and goes to the rapid resolution within a few days of menstrual cycles. The disorder has variable clinical manifestations consisting of macules, papules, vesicles, urticarial lesions, bullae, eczematous plaques, and erythema multiforme-like lesions. Herein, we present a case of a 30-year-old woman with attacks of edema and erosions involving the oral and genital mucosal sites on every first day of her menstruation period. She had also multiple endocrinological problems such as hypotroidism and infertility. To determine the sex hormon sensitivity, intradermal skin tests were performed. Based on her personal history and skin test findings, a diagnosis of autoimmune estrogen dermatitis was made. After the oophorectomy, she was free from the skin and mucosal symptoms. We propose that it is important to suspect the diagnosis of autoimmune estrogen dermatitis in patients who present with recurrent cylic eruptions and it must be kept in mind that these patients might have a concomitant infertility.

  15. Development of a recombinant human ovarian (BG1) cell line containing estrogen receptor α and β for improved detection of estrogenic/antiestrogenic chemicals.

    PubMed

    Brennan, Jennifer C; Bassal, Arzoo; He, Guochun; Denison, Michael S

    2016-01-01

    Estrogenic endocrine-disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, a critical need exists for rapidly detecting these chemicals. The authors developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the US Environmental Protection Agency (USEPA) and Organisation for Economic Co-operation and Development (OECD) as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only 1 of the 2 known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells, and quantitative reverse-transcription polymerase chain reaction confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual-ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα- and ERβ-selective chemicals. © 2015 SETAC.

  16. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2009-09-01

    GPR30, now named GPER1 (G protein-coupled estrogen receptor1) or GPER here, was first identified as an orphan 7-transmembrane G protein-coupled receptor by multiple laboratories using either homology cloning or differential expression and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. The actions of estrogen are extensive in the body and are thought to be mediated predominantly by classical nuclear estrogen receptors that act as transcription factors/regulators. Nevertheless, certain aspects of estrogen function remain incompatible with the generally accepted mechanisms of classical estrogen receptor action. Many recent studies have revealed that GPER contributes to some of the actions of estrogen, including rapid signaling events and rapid transcriptional activation. With the introduction of GPER-selective ligands and GPER knockout mice, the functions of GPER are becoming more clearly defined. In many cases, there appears to be a complex interplay between the two receptor systems, suggesting that estrogen-mediated physiological responses may be mediated by either receptor or a combination of both receptor types, with important medical implications.

  17. Evolutionary origins of the estrogen signaling system: insights from amphioxus

    PubMed Central

    Tarrant, AM; Novillo, A; Yacci, P; Ciaccia, L; Vajda, S; Chuang, G-Y; Kozakov, D; Greytak, SR; Sawyer, S; Hoover, C; Cotter, K

    2011-01-01

    Classically, the estrogen signaling system has two core components: cytochrome P450 aromatase (CYP19), the enzyme complex that catalyzes the rate limiting step in estrogen biosynthesis; and estrogen receptors (ERs), ligand activated transcription factors that interact with the regulatory region of target genes to mediate the biological effects of estrogen. While the importance of estrogens for regulation of reproduction, development and physiology has been well-documented in gnathostome vertebrates, the evolutionary origins of estrogen as a hormone are still unclear. As invertebrates within the phylum Chordata, cephalochordates (e.g. the amphioxus of the genus Branchiostoma) are among the closest invertebrate relatives of the vertebrates and can provide critical insight into the evolution of vertebrate-specific molecules and pathways. To address this question, this paper briefly reviews relevant earlier studies that help to illuminate the history of the aromatase and ER genes, with a particular emphasis on insights from amphioxus and other invertebrates. We then present new analyses of amphioxus aromatase and ER sequence and function, including an in silico model of the amphioxus aromatase protein, and CYP19 gene analysis. CYP19 shares a conserved gene structure with vertebrates (9 coding exons) and moderate sequence conservation (40% amino acid identity with human CYP19). Modeling of the amphioxus aromatase substrate binding site and simulated docking of androstenedione in comparison to the human aromatase shows that the substrate binding site is conserved and predicts that androstenedione could be a substrate for amphioxus CYP19. The amphioxus ER is structurally similar to vertebrate ERs, but differs in sequence and key residues of the ligand binding domain. Consistent with results from other laboratories, amphioxus ER did not bind radiolabeled estradiol, nor did it modulate gene expression on anestrogen-responsive element (ERE) in the presence of estradiol, 4

  18. Estrogens of multiple classes and their role in mental health disease mechanisms.

    PubMed

    Watson, Cheryl S; Alyea, Rebecca A; Cunningham, Kathryn A; Jeng, Yow-Jiun

    2010-08-09

    Gender and sex hormones can influence a variety of mental health states, including mood, cognitive development and function, and vulnerability to neurodegenerative diseases and brain damage. Functions of neuronal cells may be altered by estrogens depending upon the availability of different physiological estrogenic ligands; these ligands and their effects vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, or the intercession of competing nonphysiological ligands (either intentional or unintentional, beneficial to health or not). Here we review evidence for how different estrogens (physiological and environmental/dietary), acting via different estrogen receptor subtypes residing in alternative subcellular locations, influence brain functions and behavior. We also discuss the families of receptors and transporters for monoamine neurotransmitters and how they may interact with the estrogenic signaling pathways.

  19. A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements.

    PubMed

    Powers, Chelsea N; Setzer, William N

    2015-01-01

    The purpose of this study is to use a molecular docking approach to identify potential estrogen mimics or anti-estrogens in phytochemicals found in popular dietary herbal supplements. In this study, 568 phytochemicals found in 17 of the most popular herbal supplements sold in the United States were built and docked with two isoforms of the estrogen receptor, ERα and ERβ (a total of 27 different protein crystal structures). The docking results revealed six strongly docking compounds in Echinacea, three from milk thistle (Silybum marianum), three from Gingko biloba, one from Sambucus nigra, none from maca (Lepidium meyenii), five from chaste tree (Vitex agnus-castus), two from fenugreek (Trigonella foenum-graecum), and two from Rhodiola rosea. Notably, of the most popular herbal supplements for women, there were numerous compounds that docked strongly with the estrogen receptor: Licorice (Glycyrrhiza glabra) had a total of 26 compounds strongly docking to the estrogen receptor, 15 with wild yam (Dioscorea villosa), 11 from black cohosh (Actaea racemosa), eight from muira puama (Ptychopetalum olacoides or P. uncinatum), eight from red clover (Trifolium pratense), three from damiana (Turnera aphrodisiaca or T. diffusa), and three from dong quai (Angelica sinensis). Of possible concern were the compounds from men's herbal supplements that exhibited strong docking to the estrogen receptor: Gingko biloba had three compounds, gotu kola (Centella asiatica) had two, muira puama (Ptychopetalum olacoides or P. uncinatum) had eight, and Tribulus terrestris had six compounds. This molecular docking study has revealed that almost all popular herbal supplements contain phytochemical components that may bind to the human estrogen receptor and exhibit selective estrogen receptor modulation. As such, these herbal supplements may cause unwanted side effects related to estrogenic activity.

  20. Estrogen reduces endoplasmic reticulum stress to protect against glucotoxicity induced-pancreatic β-cell death.

    PubMed

    Kooptiwut, Suwattanee; Mahawong, Pitchnischa; Hanchang, Wanthanee; Semprasert, Namoiy; Kaewin, Suchada; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai

    2014-01-01

    Estrogen can improve glucose homeostasis not only in diabetic rodents but also in humans. However, the molecular mechanism by which estrogen prevents pancreatic β-cell death remains unclear. To investigate this issue, INS-1 cells, a rat insulinoma cell line, were cultured in medium with either 11.1mM or 40mM glucose in the presence or the absence of estrogen. Estrogen significantly reduced apoptotic β-cell death by decreasing nitrogen-induced oxidative stress and the expression of the ER stress markers GRP 78, ATF6, P-PERK, PERK, uXBP1, sXBP1, and CHOP in INS-1 cells after prolonged culture in medium with 40mM glucose. In contrast, estrogen increased the expression of survival proteins, including sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA-2), Bcl-2, and P-p38, in INS-1 cells after prolonged culture in medium with 40mM glucose. The cytoprotective effect of estrogen was attenuated by addition of the estrogen receptor (ERα and ERβ) antagonist ICI 182,780 and the estrogen membrane receptor inhibitor G15. We showed that estrogen decreases not only oxidative stress but also ER stress to protect against 40mM glucose-induced pancreatic β-cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.