Science.gov

Sample records for early fast-roll inflation

  1. CMB quadrupole depression produced by early fast-roll inflation: Monte Carlo Markov chains analysis of WMAP and SDSS data

    SciTech Connect

    Destri, C.; Vega, H. J. de; Sanchez, N. G.

    2008-07-15

    Generically, the classical evolution of the inflaton has a brief fast-roll stage that precedes the slow-roll regime. The fast-roll stage leads to a purely attractive potential in the wave equations of curvature and tensor perturbations (while the potential is purely repulsive in the slow-roll stage). This attractive potential leads to a depression of the CMB quadrupole moment for the curvature and B-mode angular power spectra. A single new parameter emerges in this way in the early universe model: the comoving wave number k{sub 1} characteristic scale of this attractive potential. This mode k{sub 1} happens to exit the horizon precisely at the transition from the fast-roll to the slow-roll stage. The fast-roll stage dynamically modifies the initial power spectrum by a transfer function D(k). We compute D(k) by solving the inflaton evolution equations. D(k) effectively suppresses the primordial power for kfast-roll stage and find the value k{sub 1}=0.266 Gpc{sup -1}. The quadrupole mode k{sub Q}=0.242 Gpc{sup -1} exits the horizon earlier than k{sub 1}, about one-tenth of an e-fold before the end of fast roll. We compare the fast-roll fit with a fit without fast roll but including a sharp lower cutoff on the primordial power. Fast roll provides a slightly better fit than a sharp cutoff for the temperature-temperature, temperature-E modes, and E modes-E modes. Moreover, our fits provide nonzero lower bounds for r, while the values of the other cosmological parameters are essentially those of the pure {lambda}CDM model. We display the real space two point C{sup TT}({theta}) correlator. The fact that k{sub Q} exits the horizon before the slow-roll stage implies an upper bound in the total number of e-folds N{sub tot} during inflation. Combining this with estimates during the

  2. Radiative corrections from heavy fast-roll fields during inflation

    SciTech Connect

    Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S.

    2015-06-09

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservably small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.

  3. CMB quadrupole suppression. II. The early fast roll stage

    SciTech Connect

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2006-12-15

    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds N{sub tot}{approx}59, there is a 10%-20% suppression of the CMB quadrupole and about 2%-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l{sup 2}. The suppression is much smaller for N{sub tot}>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N{sub tot}{approx}59.

  4. Preinflationary and inflationary fast-roll eras and their signatures in the low CMB multipoles

    SciTech Connect

    Destri, C.; Vega, H. J. de; Sanchez, N. G.

    2010-03-15

    We study the entire coupled evolution of the inflaton {phi}(t) and the scale factor a(t) for general initial conditions {phi}(t{sub 0}) and d{phi}(t{sub 0})/dt at a given initial time t{sub 0}. The generic early Universe evolution has three stages: decelerated fast roll followed by inflationary fast roll and then inflationary slow roll (an attractor always reached for generic initial conditions). This evolution is valid for all regular inflaton potentials v({phi}). In addition, we find a special (extreme) slow-roll solution starting at t=-{infinity} in which the fast-roll stages are absent. At some time t=t{sub *}, the evolution backwards in time from t{sub 0} reaches generically a mathematical singularity where a(t) vanishes and the Hubble parameter becomes singular. We determine the general behavior near the singularity. The classical homogeneous inflaton description turns to be valid for t-t{sub *}>10t{sub Planck} well before the beginning of inflation, quantum loop effects are negligible there. The singularity is never reached in the validity region of the classical treatment and therefore it is not a real physical phenomenon here. Fast-roll and slow-roll regimes are analyzed in detail including the equation of state evolution, both analytically and numerically. The characteristic time scale of the fast-roll era turns to be t{sub 1}=(1/m){radical}(V(0)/[3M{sup 4}]){approx}10{sup 4}t{sub Planck}, where V is the double-well inflaton potential, m is the inflaton mass, and M the energy scale of inflation. The whole evolution of the fluctuations along the decelerated and inflationary fast-roll and slow-roll eras is computed. The Bunch-Davies initial conditions are generalized for the present case in which the potential felt by the fluctuations can never be neglected. The fluctuations feel a singular attractive potential near the t=t{sub *} singularity (as in the case of a particle in a central singular potential) with exactly the critical strength (-1/4) allowing

  5. CMB dipole asymmetry from a fast roll phase

    SciTech Connect

    Mazumdar, Anupam; Wang, Lingfei

    2013-10-01

    The observed CMB (cosmic microwave background) dipole asymmetry cannot be explained by a single field model of inflation - it inevitably requires more than one field where one of the fields is responsible for amplifying the super-Hubble fluctuations beyond the pivot scale. Furthermore the current constraints on f{sub NL} and τ{sub NL} require that such an amplification cannot produce large non-Gaussianity. In this paper we propose a model to explain this dipole asymmetry from a spectator field, which is responsible for generating all the curvature perturbations, but has a temporary fast roll phase before the Hubble exit of the pivot scale. The current data prefers spectator scenario because it leaves no isocurvature perturbations. The spectator model will also satisfy the well-known constraints arising from quasars, and the quadrupole and octupole of the CMB.

  6. Inflation in the early universe.

    NASA Astrophysics Data System (ADS)

    Carmeli, M.

    1998-04-01

    In this talk it will be assumed that gravitation is negligible. Under this assumption, the receding velocities of galaxies and the distances between them in the Hubble expansion are united into a four-dimensional pseudo-Euclidean manifold, similarly to space and time in ordinary special relativity. The Hubble law is assumed and is written in an invariant way that enables one to derive a four-dimensional transformation which is similar to the Lorentz transformation. The parameter in the new transformation is the ratio between the cosmic time to the Hubble time. Accordingly, the new transformation relates physical quantities at different cosmic times in the limit of weak or negligible gravitation. The transformation is then applied to the problem of the expansion of the Universe at the very early stage when gravity was negligible and thus the transformation is applicable. The author calculates the ratio of the volumes of the Universe at two different times T1 and T2 after the big bang. The result conforms with the standard inflationary universe theory, but now it is obtained without assuming that the Universe is propelled by antigravity.

  7. Inflated Reward Value in Early Opiate Withdrawal

    PubMed Central

    Wassum, Kate M.; Greenfield, Venuz Y.; Linker, Kay E.; Maidment, Nigel T.; Ostlund, Sean B.

    2014-01-01

    Through incentive learning the emotional experience of a reward in a relevant need state (e.g., hunger for food) sets the incentive value that guides the performance actions that earn that reward when the need state is encountered again. Opiate withdrawal has been proposed as a need state in which, through experience, opiate value can be increased resulting in escalated opiate self-administration. Endogenous opioid transmission plays anatomically dissociable roles in the positive emotional experience of reward consumption and incentive learning. We, therefore, sought to determine if chronic opiate exposure and withdrawal produces a disruption in the fundamental incentive learning process such that reward seeking, even for non-opiate rewards, can become maladaptive, inconsistent with the emotional experience of reward consumption and irrespective of need. Rats trained to earn sucrose or water on a reward-seeking chain were treated with morphine (10-30 mg/k.g., s.c.) daily for 11 d prior to testing in withdrawal. Opiate withdrawn rats showed elevated reward-seeking actions, but only after they experienced the reward in withdrawal, an effect that was strongest in early (1-3 d), as opposed to late (14-16 d) withdrawal. This was sufficient to overcome a negative reward value change induced by sucrose experience in satiety and, in certain circumstances, was inconsistent with the emotional experience of reward consumption. Lastly, we found that early opiate withdrawal-induced inflation of reward value was blocked by inactivation of basolateral amygdala mu opioid receptors. These data suggest that in early opiate withdrawal the incentive learning process is disrupted resulting in maladaptive reward seeking. PMID:25081350

  8. Quantum slow-roll and quantum fast-roll inflationary initial conditions: CMB quadrupole suppression and further effects on the low CMB multipoles

    SciTech Connect

    Cao, F. J.; Vega, H. J. de; Sanchez, N. G.

    2008-10-15

    Quantum fast-roll initial conditions for the inflaton which are different from the classical fast-roll conditions and from the quantum slow-roll conditions can lead to inflation that lasts long enough. These quantum fast-roll initial conditions for the inflaton allow for kinetic energies of the same order of the potential energies and nonperturbative inflaton modes with nonzero wave numbers. Their evolution starts with a transitory epoch where the redshift due to the expansion succeeds to assemble the quantum excited modes of the inflaton in a homogeneous (zero mode) condensate, and the large value of the Hubble parameter succeeds to overdamp the fast roll of the redshifted inflaton modes. After this transitory stage the effective classical slow-roll epoch is reached. Most of the e-folds are produced during the slow-roll epoch, and we recover the classical slow-roll results for the scalar and tensor metric perturbations plus corrections. These corrections are important if scales which are horizon size today exited the horizon by the end of the transitory stage and, as a consequence, the lower cosmic microwave background (CMB) multipoles get suppressed or enhanced. Both for scalar and tensor metric perturbations, fast roll leads to a suppression of the amplitude of the perturbations (and of the low CMB multipoles), while the quantum precondensate epoch gives an enhancement of the amplitude of the perturbations (and of the low CMB multipoles). These two types of corrections can compete and combine in a scale dependent manner. They turn out to be smaller in new inflation than in chaotic inflation. These corrections arise as natural consequences of the quantum nonperturbative inflaton dynamics, and can allow a further improvement of the fitting of inflation plus the {lambda}CMB model to the observed CMB spectra. In addition, the corrections to the tensor metric perturbations will provide an independent test of this model. Thus, the effects of quantum inflaton fast-roll

  9. Gravitino condensates in the early universe and inflation

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2015-05-01

    We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local super-symmetry (supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) super-symmetry is "eaten" by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks the local supersymmetry (supergravity) dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-inflation-type phase. The higher-order curvature corrections of the (quantum) effective action of gravitino condensates induced by integrating out massive gravitino degrees of freedom in a curved space-time background, in the broken-supergravity phase, are responsible for inducing a scalar mode which inflates the Universe. The scenario is in agreement with Planck data phenomenology in a natural and phenomenologically-relevant range of parameters, namely Grand-Unified-Theory values for the super-symmetry breaking energy scale and dynamically-induced gravitino mass.

  10. Inflation.

    PubMed Central

    Guth, A H

    1993-01-01

    A short review of inflation is given, starting with a description of the underlying mechanism and the scenario of events. Four variations--old inflation, new inflation, chaotic inflation, and extended inflation--are discussed. It is claimed that the inflationary model provides a plausible explanation for (i) the large number of particles in the universe, (ii) the Hubble expansion, (iii) the large-scale uniformity of the universe, (iv) the nearness of the universe to a critical density, (v) the absence of magnetic monopoles, and (vi) the scale-invariant spectrum of microwave background fluctuations observed by COBE (Cosmic Background Explorer). Finally, it is argued that the plausibility of inflation is enhanced by the fact that inflation is eternal. Images Fig. 2 PMID:11607402

  11. The Early Universe: Searching for Evidence of Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as "inflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  12. Early history of inflatable penile prosthesis surgery: a view from someone who was there

    PubMed Central

    Mobley, David F

    2015-01-01

    The publication of the use of an inflatable penile prosthesis (IPP) in 1973 by Dr. FB Scott. changed the world of treatment options for erectile dysfunction (ED). Much has been written since then about techniques, improvements, management of difficult cases, complications and their management, and mechanical and device changes over time. Few reports, if any, are available in the medical literature regarding the early development, surgical techniques, and controversies surrounding its introduction to the world's urological community. This article is, for the most part, the observations of one who was “there” in the early and mid-1970's and was a witness to the history of this remarkable marvel of creativity, engineering, design, and to the personalities involved. PMID:25432494

  13. Early inflation to late-time acceleration in f(G) model

    NASA Astrophysics Data System (ADS)

    Dutta, Malay Krishna; Sarkar, Kaushik; Modak, B.

    2016-09-01

    We present some solutions in Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime in the modified theory of gravity with a general Gauss-Bonnet (GB) term f(G) and R2 including an ideal fluid. We present evolution of the universe introducing an ansatz without a prior choice of f(G) in one approach, while in other class of model, the solutions are obtained assuming few simple forms of f(G). Some of the solutions show early inflationary expansion, further in one solution the fluctuation of the deceleration parameter q is evident at the end of inflation. In all cases, late-time transition to accelerating universe at redshift z ˜ 0.7 is realizable.

  14. A New Look at Inflation: Economic Policy in the Early 1970s.

    ERIC Educational Resources Information Center

    Cagan, Phillip; And Others

    The volume, a sequel to "Economic Policy and Inflation in the Sixties" presents the diverse opinions of distinguished scholars on developments in the American economy since the institution of direct wage and price controls in August 1971. Gottfried Haberler considers the international aspects of recent United States inflation. William Fellner…

  15. A Little Inflation in the Early Universe at the QCD Phase Transition

    SciTech Connect

    Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2010-07-23

    We explore a scenario that allows for a strong first order phase transition of QCD at a non-negligible baryon number in the early Universe and its possible observable consequences. The main assumption is a quasistable QCD-vacuum state that leads to a short period of inflation, consequently diluting the net baryon to photon ratio to today's observed value. A strong mechanism for baryogenesis is needed to start out with a baryon asymmetry of order unity, e.g., as provided by Affleck-Dine baryogenesis. The cosmological implications are direct effects on primordial density fluctuations up to dark matter mass scales of M{sub max{approx}}1-10M{sub {center_dot},} change in the spectral slope up to M{sub max{approx}}10{sup 6}-10{sup 8}M{sub {center_dot},} production of strong primordial magnetic fields and a gravitational wave spectrum with present day peak strain amplitude of up to h{sub c}({nu}{sub peak}){approx}5x10{sup -15} around {nu}{sub peak{approx}}4x10{sup -8} Hz.

  16. A little inflation in the early universe at the QCD phase transition.

    PubMed

    Boeckel, Tillmann; Schaffner-Bielich, Jürgen

    2010-07-23

    We explore a scenario that allows for a strong first order phase transition of QCD at a non-negligible baryon number in the early Universe and its possible observable consequences. The main assumption is a quasistable QCD-vacuum state that leads to a short period of inflation, consequently diluting the net baryon to photon ratio to today's observed value. A strong mechanism for baryogenesis is needed to start out with a baryon asymmetry of order unity, e.g., as provided by Affleck-Dine baryogenesis. The cosmological implications are direct effects on primordial density fluctuations up to dark matter mass scales of M{max}∼1-10M{⊙}, change in the spectral slope up to M{max}∼10{6}-10{8}M{⊙}, production of strong primordial magnetic fields and a gravitational wave spectrum with present day peak strain amplitude of up to h{c}(ν{peak})∼5×10{-15} around ν{peak}∼4×10{-8}  Hz.

  17. Double inflation

    SciTech Connect

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The ..cap omega..-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig.

  18. Symmetron inflation

    SciTech Connect

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan E-mail: whkinney@buffalo.edu

    2014-01-01

    We define a new inflationary scenario in which inflation starts naturally after the Big Bang when the energy density drops below some critical value. As a model, we use recently proposed symmetron field whose effective potential depends on the energy density of the environment. At high densities, right after the Big Bang, the potential for the symmetron is trivial, and the field sits in equilibrium at the bottom of the potential. When the density drops below some critical value, the potential changes its shape into a symmetry breaking potential, and the field starts rolling down. This scenario does not require any special initial conditions for inflation to start. We also construct a concrete model with two fields, i.e. with symmetron as an inflaton and an additional scalar field which describes the matter content in the early universe. For the simplest coupling, the amplitude and shape of the power spectrum are the same as in the single field slow-roll inflation.

  19. Hybrid inflation in the complex plane

    SciTech Connect

    Buchmüller, W.; Domcke, V.; Schmitz, K. E-mail: valerie.domcke@sissa.it E-mail: kai.schmitz@ipmu.jp

    2014-07-01

    Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane — an important fact, which has been neglected in all previous studies. Based on the δ N formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: the fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.

  20. Generation of gravitational waves during early structure formation between cosmic inflation and reheating

    SciTech Connect

    Jedamzik, Karsten; Lemoine, Martin; Martin, Jérôme E-mail: lemoine@iap.fr

    2010-04-01

    In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m{sup 2}φ{sup 2}/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors.

  1. Signatures of the very early Universe: Inflation, spatial curvature, and large scale anomalies

    NASA Astrophysics Data System (ADS)

    Aslanyan, Grigor; Easther, Richard

    2015-06-01

    A short inflationary phase may not erase all traces of the primordial Universe. Associated observables include both spatial curvature and "anomalies" in the microwave background or large-scale structure. The present curvature ΩK ,0 reflects the initial curvature, ΩK ,start , and the angular size of anomalies depends on kstart, the comoving horizon size at the onset of inflation. We estimate posteriors for ΩK ,start and kstart using current data and simulations, and show that if either quantity is measured to have a nonzero value, both are likely to be observable. Mappings from ΩK ,start and kstart to present-day observables depend strongly on the primordial equation of state; ΩK ,0 spans 10 orders of magnitude for a given ΩK ,start, while a simple and general relationship connects ΩK ,0 and kstart. We show that current bounds on ΩK ,0 imply that if kstart is measurable, the curvature was already small when inflation began. Finally, since the energy density changes slowly during inflation, primordial gravitational wave constraints require that a short inflationary phase be preceded by a nontrivial preinflationary phase with critical implications for the expected value of ΩK ,start.

  2. Natural inflation

    SciTech Connect

    Frieman, J.A.

    1991-02-01

    A pseduo-Nambu-Goldstone boson, with a potential of the form V({phi}) = {Lambda}{sup 4}(1 {plus minus} cos({phi}/f)), can naturally give rise to an epoch of inflation in the early universe. Successful inflation can be achieved if f {approximately} m{sub pl} and {Lambda} {approximately} m{sub GUT}. Such mass scales arise in particle physics models with a gauge group that becomes strongly interacting a the GUT scale, e.g., as is expected to happen in the hidden sector of superstring theories. The density fluctuation spectrum is a non-scale-invariant power law, with extra power on large scales. 12 refs., 3 figs.

  3. A simple model of universe describing the early inflation and the late accelerated expansion in a symmetric manner

    SciTech Connect

    Chavanis, Pierre-Henri

    2013-07-23

    We construct a simple model of universe which 'unifies' vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} having a linear component p = αρc{sup 2} and a polytropic component p = kρ{sup 1+1/n}c{sup 2}. For α= 1/3, n= 1 and k=−4/(3ρ{sub P}), where ρ{sub P}= 5.1610{sup 99} g/m{sup 3} is the Planck density, this equation of state describes the transition between the vacuum energy era and the radiation era. For t≥ 0, the universe undergoes an inflationary expansion that brings it from the Planck size l{sub P}= 1.6210{sup −35} m to a size a{sub 1}= 2.6110{sup −6} m on a timescale of about 23.3 Planck times t{sub P}= 5.3910{sup −44} s (early inflation). When t > t{sub 1}= 23.3t{sub P}, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ℏ plays the role of finite size effects (the standard Big Bang theory is recovered for ℏ= 0). For α= 0, n=−1 and k=−ρ{sub Λ}, where ρ{sub Λ}= 7.0210{sup −24} g/m{sup 3} is the cosmological density, the equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a{sub 2}= 0.204l{sub Λ}. corresponding to a time t{sub 2}= 0.203t{sub Λ} where l{sub Λ}= 4.38 10{sup 26} m is the cosmological length and t{sub Λ}= 1.46 10{sup 18} s the cosmological time. The present universe turns out to be just at the transition between these two periods (t{sub 0}∼t{sub 2}). Our model gives the same results as the standard

  4. A simple model of universe describing the early inflation and the late accelerated expansion in a symmetric manner

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2013-07-01

    We construct a simple model of universe which "unifies" vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c2 = αρ+kρ1+1/n having a linear component p = αρc2 and a polytropic component p = kρ1+1/nc2. For α = 1/3, n = 1 and k = -4/(3ρP), where ρP = 5.161099 g/m3 is the Planck density, this equation of state describes the transition between the vacuum energy era and the radiation era. For t >= 0, the universe undergoes an inflationary expansion that brings it from the Planck size lP = 1.6210-35 m to a size a1 = 2.6110-6 m on a timescale of about 23.3 Planck times tP = 5.3910-44 s (early inflation). When t > t1 = 23.3tP, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ℏ plays the role of finite size effects (the standard Big Bang theory is recovered for ℏ = 0). For α = 0, n = -1 and k = -ρΛ, where ρΛ = 7.0210-24 g/m3 is the cosmological density, the equation of state p/c2 = αρ+kρ1+1/n describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a2 = 0.204lΛ. corresponding to a time t2 = 0.203tΛ where lΛ = 4.38 1026 m is the cosmological length and tΛ = 1.46 1018 s the cosmological time. The present universe turns out to be just at the transition between these two periods (t0 ~ t2). Our model gives the same results as the standard ΛCDM model for t >> tP and completes it by incorporating a phase of early inflation for t < 23.3tP in a very natural manner. Furthermore, it reveals a nice "symmetry" between the early and the late

  5. Does a phase transition in the early universe produce the conditions needed for inflation\\?

    NASA Astrophysics Data System (ADS)

    Mazenko, Gene F.; Unruh, William G.; Wald, Robert M.

    1985-01-01

    In the standard ``new inflationary scenario,'' it is assumed that when the Higgs field φ is cooled below its phase-transition temperature Tc it is found in a metastable state which has negligible kinetic and spatial-derivative energy but has large, positive potential energy V0. Hence, in this picture, the stress-energy tensor of φ is of the form Tab=-V0gab and remains of this form until the state becomes unstable and ``rolls down the hill'' to its true minimum at φ=φc. With this stress-energy tensor Einstein's equation for a Robertson-Walker model predicts expansion of the universe on an exponential time scale, i.e., inflation. We argue here that, at least in many possible models this standard picture of the behavior of φ as it is cooled to Tc and below is wrong. Rather than be ``supercooled'' to a state with φ~=0 locally, the field should rapidly form domains with φ near +/-φc. The dynamics of the phase transition is governed by the growth and coalescence of these domains, not by a ``roll down the hill'' of the spatially averaged value of φ. Furthermore, the stress-energy tensor of φ does not take the form needed to produce inflation. Our arguments are based mainly on physical reasoning, but they are supported by the known behavior of certain condensed-matter systems. We believe that our description of dynamical behavior near the phase transition is applicable to a wide class of field-theory models considered in inflation-in particular, to models where φ is not coupled to other fields and Coleman-Weinberg gauge-coupled models with g2~1-although precise criteria for the applicability of our arguments have not been obtained.

  6. Cosmic Inflation

    ScienceCinema

    Lincoln, Don

    2016-07-12

    In 1964, scientists discovered a faint radio hiss coming from the heavens and realized that the hiss wasn’t just noise. It was a message from eons ago; specifically the remnants of the primordial fireball, cooled to about 3 degrees above absolute zero. Subsequent research revealed that the radio hiss was the same in every direction. The temperature of the early universe was uniform to at better than a part in a hundred thousand. And this was weird. According to the prevailing theory, the two sides of the universe have never been in contact. So how could two places that had never been in contact be so similar? One possible explanation was proposed in 1979. Called inflation, the theory required that early in the history of the universe, the universe expanded faster than the speed of light. Confused? Watch this video as Fermilab’s Dr. Don Lincoln makes sense of this mind-bending idea.

  7. Cosmic Inflation

    SciTech Connect

    Lincoln, Don

    2015-11-21

    In 1964, scientists discovered a faint radio hiss coming from the heavens and realized that the hiss wasn’t just noise. It was a message from eons ago; specifically the remnants of the primordial fireball, cooled to about 3 degrees above absolute zero. Subsequent research revealed that the radio hiss was the same in every direction. The temperature of the early universe was uniform to at better than a part in a hundred thousand. And this was weird. According to the prevailing theory, the two sides of the universe have never been in contact. So how could two places that had never been in contact be so similar? One possible explanation was proposed in 1979. Called inflation, the theory required that early in the history of the universe, the universe expanded faster than the speed of light. Confused? Watch this video as Fermilab’s Dr. Don Lincoln makes sense of this mind-bending idea.

  8. Use of Inflated Foley Catheters to Prevent Early Empty Pelvis Complications Following Pelvic Exenteration.

    PubMed

    Bacalbasa, Nicolae; Tomescu, Dana; Balescu, Irina

    2015-10-01

    For most patients with bulky pelvic tumors, pelvic exenteration remains the only curative option. Although initially reported as a palliative procedure, nowadays it is rather performed with curative intent. Once the resectional phase is ended, a large defect will remain at the level of the pelvic diaphragm, predisposing to severe complications which are generically included under the name of empty pelvis syndrome. It has been widely demonstrated that this type of complication is associated with severe mortality, even if the patient is free of any pelvic recurrence. We present the case of a 56-year-old patient submitted to total pelvic exenteration for locally invasive previously chemo-irradiated cervical cancer who presented six months after surgery with a severe enteroperineal fistula. We decided to reoperate on the patient; intraoperatively we found recurrence on both pelvic walls and an enteroperineal fistula caused by tumoral invasion. We performed an intestinal resection with enteroenteral anastomosis. In order to isolate the intestinal loops from the unresectable pelvic recurrence, in the pelvis we placed three Foley catheters inflated with 60 ml of saline each, in order to hold the intestinal loops away from the pelvic wall. The postoperative course was uneventful. The urinary cathethers were removed after six weeks.

  9. Inflatable wing

    DOEpatents

    Sebrell, Wayne A.

    1976-01-01

    An inflatable structure for use as an aerodynamic surface. The structure is formed from a series of cylindrical pressure chambers which are inflated to deploy the structure from its stored condition. Varying cylinder sizes yield aerodynamically curved surfaces.

  10. Power suppression at large scales in string inflation

    SciTech Connect

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar E-mail: sddownes@physics.tamu.edu

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  11. Soft inflation

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Junichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  12. Automorphic inflation

    NASA Astrophysics Data System (ADS)

    Schimmrigk, Rolf

    2015-09-01

    A framework of inflation is formulated based on symmetry groups and their associated automorphic functions. In this setting the inflaton multiplet takes values in a curved target space constructed from a continuous group G and a discrete subgroup Γ. The dynamics of inflationary models is essentially determined by the choice of the pair (G , Γ) and a function Φ on the group G. Automorphic inflation provides a natural structure in which the shift symmetry of large field inflation arises as one of generators of Γ. The model of j-inflation is discussed as an example of modular inflation associated with the special linear group.

  13. No-scale inflation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-05-01

    Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on R+{R}2 gravity, with a tilted spectrum of scalar perturbations: {n}s∼ 0.96, and small values of the tensor-to-scalar perturbation ratio r\\lt 0.1, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.

  14. Fuller Employment with Less Inflation.

    ERIC Educational Resources Information Center

    Siegel, Irving H.

    This series of 10 essays, written at various times since the mid-1960s, explores the U.S. economy's proneness to both high inflation and high unemployment during this period. The essays present ideas that the author believes could have reined in price increases in the early stages, and that presently could speed the reduction of inflation and…

  15. Galileon inflation

    SciTech Connect

    Burrage, Clare; Rham, Claudia de; Seery, David; Tolley, Andrew J. E-mail: Claudia.deRham@unige.ch E-mail: andrew.j.tolley@case.edu

    2011-01-01

    Galileon inflation is a radiatively stable higher derivative model of inflation. The model is determined by a finite number of relevant operators which are protected by a covariant generalization of the Galileon shift symmetry.We show that the nongaussianity of the primordial density perturbation generated during an epoch of Galileon inflation is a particularly powerful observational probe of these models and that, when the speed of sound is small, f{sub NL} can be larger than the usual result f{sub NL}∝c{sub s}{sup −2}.

  16. Inflatable wing

    DOEpatents

    Priddy, Tommy G.

    1988-01-01

    An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.

  17. Sgoldstino inflation

    SciTech Connect

    Achúcarro, Ana; Ortiz, Pablo; Mooij, Sander; Postma, Marieke E-mail: smooij@nikhef.nl E-mail: mpostma@nikhef.nl

    2012-08-01

    We discuss the possibility that inflation is driven by the sgoldstino, the superpartner of the goldstino. Unlike in generic supergravity scenarios, the sgoldstino decouples from all other fields in the theory, which allows for a simple and robust inflationary model. We argue that the two-field model given by this single complex scalar correctly captures the full multifield inflationary phenomenology. On the other hand, the assumption of stability, along the entire inflationary trajectory, of the supersymmetry-preserving sector that is integrated out leads to supplementary constraints on the parent supergravity. We investigate small field, large field and hybrid sgoldstino inflation scenarios and provide some working examples. They are subject to the usual fine-tuning issues that are common to all supergravity models of inflation. We comment on some other recently proposed sgoldstino inflation models.

  18. Deflating inflation.

    PubMed

    Serb, C

    1998-05-20

    The pundits warn that health care inflation is roaring back to life, with double-digit premium hikes. Yet that ignores the power of employers to just say no, according to an analysis by KPMG Peat Marwick.

  19. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  20. Inflation and inflation uncertainty: A dynamic framework

    NASA Astrophysics Data System (ADS)

    Berument, M. Hakan; Yalcin, Yeliz; Yildirim, Julide

    2012-10-01

    This paper aims to investigate the direct relationship between inflation and inflation uncertainty by employing a dynamic method for the monthly country-region-place United States data for the time period 1976-2007. While the bulk of previous studies has employed GARCH models in investigating the link between inflation and inflation uncertainty, in this study Stochastic Volatility in Mean models are used to capture the shocks to inflation uncertainty within a dynamic framework. These models allow researchers to assess the dynamic effects of innovations in inflation as well as inflation volatility on inflation and inflation volatility over time, by incorporating the unobserved volatility as an explanatory variable in the mean (inflation) equation. Empirical findings suggest that innovations in inflation volatility increases inflation. This evidence is robust across various definitions of inflation and different sub-periods.

  1. The Effective Theory of Inflation in the Standard Model of the Universe and the CMB+LSS Data Analysis

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; Destri, C.; de Vega, H. J.; Sanchez, N. G.

    effective theory of inflation clearly prefer new inflation. Study of higher degree inflaton potentials shows that terms of degree higher than 4 do not affect the fit in a significant way. In addition, a horizon exit happens for \\varphi/[√ {N}M Pl] ˜ 0.9, making higher order terms in the potential w negligible. We summarize the physical effects of generic initial conditions (different from Bunch-Davies) on the scalar and tensor perturbations during slow roll and introduce the transfer function D(k), which encodes the observable initial condition effects on the power spectra. These effects are more prominent in the low CMB multipoles: a change in the initial conditions during slow roll can account for the observed CMB quadrupole suppression. Slow-roll inflation is generically preceded by a short, fast-roll stage. Bunch-Davies initial conditions are the natural initial conditions for the fast-roll perturbations. During fast roll, the potential in the wave equations of curvature and tensor perturbations is purely attractive and leads to a suppression of the curvature and tensor CMB quadrupoles. An MCMC analysis of the WMAP+SDSS data including fast roll shows that the quadrupole mode exits the horizon about 0.2 e-fold before fast roll ends and its amplitude gets suppressed. In addition, fast roll fixes the initial inflation redshift to be zinit = 0.9 × 1056 and the total number of e-folds of inflation to be Ntot ≃ 64. Fast roll fits the TT, the TE and the EE modes well, reproducing the quadrupole suppression. A thorough study of the quantum loop corrections reveals that they are very small and are controlled by powers of (H/MPl)2 10-9, a conclusion that validates the reliability of the effective theory of inflation. The present review shows how powerful the Ginsburg-Landau effective theory of inflation is in predicting observables that are being or will soon be contrasted with observations.

  2. Inflatable wing

    SciTech Connect

    Priddy, T.G.

    1988-02-16

    An inflatable aerodynamic wing structure is described comprising: (a) an airfoil having at least two air-tight inflatable tubular enclosure means made of a first flexible material and extending along a spanwise axis; (b) top and bottom reinforcement member means made of a second stiff fabric material and connecting at least two air-tight inflatable tubular enclosure means together for transfer of inflation pressure-induced tensile stress from the enclosure means to the top and bottom reinforcement member means; (c) rigid hoops shaped to provide airfoil definition and spaced from each other along the spanwise axis and extending generally perpendicular thereto, the air-tight inflatable tubular enclosure means extending through the airfoil definition hoops and fastened thereto through the top and bottom reinforcement member means, the rigid hoops collapsing into each other for stacked stowage upon deflation of the enclosure means; and (d) means for forming an airfoil outer surface, made of a third thin, flexible and collapsible material, about substantially the entire tubular enclosure means and the top and bottom reinforcement member means, such that the area of a cross-section of the tubular enclosure means is much smaller than the area of a cross-section of the airfoil outer surface.

  3. Inflation from gravitino condensates

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2015-07-01

    We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local supersymmetry(supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) supersymmetry is “eaten” by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks supergravity dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-type inflation, in the massive gravitino phase. This inflationary phase is associated with scalar modes hidden in the higher order curvature corrections of the effective action arising from integrating out massive gravitino degrees of freedom. The scenario is in agreement with Planck data phenomenology in a natural and phenomenologically-relevant range of parameters, namely Grand-Unified-Theory values for the supersymmetry breaking energy scale and dynamically-induced gravitino mass. A hill-top inflation, on the other hand, which could also occur in the model, whereby the role of the inflaton field is played by the gravitino condensate itself, would require significant fine tuning in the inflaton's wave function renormalisation and thus may be discarded on naturalness grounds.

  4. Catastrophic inflation

    NASA Astrophysics Data System (ADS)

    Downes, Sean; Dutta, Bhaskar; Sinha, Kuver

    2011-09-01

    We study inflection point inflation using singularity theory, which relates degenerate critical points of functions to their local behavior. This approach illuminates universal features of small-field models and gives analytic control over parametrized families of scalar potentials near inflationary solutions. The behavior of the scalar potential is tied to the number of physical input parameters, which determines a set of universality classes. Within these classes, we obtain universal scaling relations for density perturbations and the scale of inflation. In specific models, we show that the scale of supersymmetry breaking also possesses scaling behavior. We illustrate this general structure with a specific example: the racetrack inflation model in type IIB string theory, with the inflaton being the real part of the Kähler modulus, and the input parameters being flux dependent quantities that appear in the four-dimensional N=1 superpotential.

  5. Quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1998-04-01

    We show that a large class of two-field models of single-bubble open inflation does not lead to infinite open universes, as was previously thought, but to an ensemble of very large but finite inflating ``islands.'' The reason is that the quantum tunneling responsible for the nucleation of the bubble does not occur simultaneously along both field directions and equal-time hypersurfaces in the open universe are not synchronized with equal-density or fixed-field hypersurfaces. The most probable tunneling trajectory corresponds to a zero value of the inflaton field; large values, necessary for the second period of inflation inside the bubble, only arise as localized fluctuations. The interior of each nucleated bubble will contain an infinite number of such inflating regions of comoving size of order γ-1, where γ is the supercurvature eigenvalue, which depends on the parameters of the model. Each one of these islands will be a quasi-open universe. Since the volume of the hyperboloid is infinite, inflating islands with all possible values of the field at their center will be realized inside of a single bubble. We may happen to live in one of those patches of comoving size d<~γ-1, where the universe appears to be open. In particular, we consider the ``supernatural'' model proposed by Linde and Mezhlumian. There, an approximate U(1) symmetry is broken by a tunneling field in a first order phase transition, and slow-roll inflation inside the nucleated bubble is driven by the pseudo Goldstone field. We find that the excitations of the pseudo Goldstone field produced by the nucleation and subsequent expansion of the bubble place severe constraints on this model. We also discuss the coupled and uncoupled two-field models.

  6. Inflatable Pole

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    1995-01-01

    Lightweight, portable tool reaches object at height or across gap. Extends reach up to 20 feet (6 meters). When not in use, tool collapses to 3 to 5 percent of its inflated length. Developed for use as self-rescue device by astronaut who becomes untethered outside spacecraft: astronaut uses pole to reach grapple on spacecraft and pull to it. Useful on Earth as rescue device or in performing routine tasks like changing high light bulb without ladder. When task with inflatable pole completed, operator opens vent valve to deflate tube. Operator then opens gun, removes fabric cover, and repacks tube.

  7. Trapped Inflation

    SciTech Connect

    Green, Daniel; Horn, Bart; Senatore, Leonardo; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept.

    2009-06-19

    We analyze a distinctive mechanism for inflation in which particle production slows down a scalar field on a steep potential, and show how it descends from angular moduli in string compactifications. The analysis of density perturbations - taking into account the integrated effect of the produced particles and their quantum fluctuations - requires somewhat new techniques that we develop. We then determine the conditions for this effect to produce sixty e-foldings of inflation with the correct amplitude of density perturbations at the Gaussian level, and show that these requirements can be straightforwardly satisfied. Finally, we estimate the amplitude of the non-Gaussianity in the power spectrum and find a significant equilateral contribution.

  8. Natural inflation and quantum gravity.

    PubMed

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models. PMID:25933305

  9. Natural inflation and quantum gravity.

    PubMed

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  10. Inflation Basics

    SciTech Connect

    Green, Dan

    2014-03-01

    The last few years have yielded remarkable discoveries in physics. In particle physics it appears that a fundamental scalar field exists. The Higgs boson is measured to have a mass of about 126 GeV and to have spin zero and positive parity. The Higgs field is the first fundamental scalar to be discovered in physics. The Cosmic Microwave Background, CMB, is known to have a uniform temperature to parts per 105 but has well measured fluctuations which are thought to evolve gravitationally to provide the seeds of the current structure of the Universe. In addition, the Universe appears to contain, at present, an unknown “dark energy” which is presently the majority energy density of the Universe, larger than either matter or radiation. This may, indeed, be a fundamental scalar field like the Higgs. “Big Bang” (BB) cosmology is a very successful “standard model” in cosmology. However, it cannot explain the uniformity of the CMB because the CMB consists of many regions not causally connected in the context of the BB model. In addition, the Universe appears to be spatially flat. However in BB cosmology the present spatial curvature is not stable so that the initial conditions for BB cosmology would need to be fantastically fine-tuned in order to successfully predict the presently small value of the observed curvature. These issues for BB cosmology have led to the hypothesis of “inflation” which postulates an unknown scalar field, not presumably the Higgs field or the dark energy, which causes an exponential expansion of the Universe at very early times. This attractive hypothesis can account for the problems in BB cosmology of flatness and causal CMB connectivity. In addition, the quantum fluctuations of this postulated field provide a natural explanation of the CMB fluctuations which are the seeds of the structure of galaxies. Researchers are now searching for gravitational waves imprinted on the CMB. These would be a “smoking gun” for

  11. Unwinding inflation

    SciTech Connect

    D'Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie E-mail: rg1509@nyu.edu E-mail: mls604@nyu.edu

    2013-03-01

    Higher-form flux that extends in all 3+1 dimensions of spacetime is a source of positive vacuum energy that can drive meta-stable eternal inflation. If the flux also threads compact extra dimensions, the spontaneous nucleation of a bubble of brane charged under the flux can trigger a classical cascade that steadily unwinds many units of flux, gradually decreasing the vacuum energy while inflating the bubble, until the cascade ends in the self-annihilation of the brane into radiation. With an initial number of flux quanta Q{sub 0}∼>N, this can result in N efolds of inflationary expansion while producing a scale-invariant spectrum of adiabatic density perturbations with amplitude and tilt consistent with observation. The power spectrum has an oscillatory component that does not decay away during inflation, relatively large tensor power, and interesting non-Gaussianities. Unwinding inflation fits naturally into the string landscape, and our preliminary conclusion is that consistency with observation can be attained without fine-tuning the string parameters. The initial conditions necessary for the unwinding phase are produced automatically by bubble formation, so long as the critical radius of the bubble is smaller than at least one of the compact dimensions threaded by flux.

  12. Disformal inflation

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja

    2004-03-01

    We show how short inflation naturally arises in a non-minimal gravity theory with a scalar field without any potential terms. This field drives inflation solely by its derivatives, which couple to the matter only through the combination g¯μν=gμν-1/m4∂μφ∂νφ. The theory is free of instabilities around the usual Minkowski vacuum. Inflation lasts as long as φ˙2>m4, and terminates gracefully once the scalar field kinetic energy drops below m4. The total number of e-folds is given by the initial inflaton energy φ˙02 as N~=1/3ln(φ˙0/m2). The field φ can neither efficiently reheat the universe nor produce the primordial density fluctuations. However this could be remedied by invoking the curvaton mechanism. If inflation starts when φ˙20~M4P, and m~mEW~TeV, the number of e-folds is N~25. Because the scale of inflation is low, this is sufficient to solve the horizon problem if the reheating temperature is TRH>~MeV. In this instance, the leading order coupling of φ to matter via a dimension-8 operator 1/m4∂μφ∂νφTμν would lead to fermion-antifermion annihilation channels ff¯-->φφ accessible to the LHC, while yielding very weak corrections to the Newtonian potential and to supernova cooling rates, that are completely within experimental limits.

  13. Higgs Starobinsky inflation

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Kuntz, Iberê

    2016-05-01

    In this paper we point out that Starobinsky inflation could be induced by quantum effects due to a large non-minimal coupling of the Higgs boson to the Ricci scalar. The Higgs Starobinsky mechanism provides a solution to issues attached to large Higgs field values in the early universe which in a metastable universe would not be a viable option. We verify explicitly that these large quantum corrections do not destabilize Starobinsky's potential.

  14. Just enough inflation: power spectrum modifications at large scales

    SciTech Connect

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar; Pedro, Francisco G.; Westphal, Alexander E-mail: ssdownes@phys.ntu.edu.tw E-mail: francisco.pedro@desy.de

    2014-12-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50- 60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low ℓ, and so seem disfavoured by recent observational hints for a lack of CMB power at ℓ∼< 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  15. Testing Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  16. Eternal hilltop inflation

    NASA Astrophysics Data System (ADS)

    Barenboim, Gabriela; Park, Wan-Il; Kinney, William H.

    2016-05-01

    We consider eternal inflation in hilltop-type inflation models, favored by current data, in which the scalar field in inflation rolls off of a local maximum of the potential. Unlike chaotic or plateau-type inflation models, in hilltop inflation the region of field space which supports eternal inflation is finite, and the expansion rate HEI during eternal inflation is almost exactly the same as the expansion rate H* during slow roll inflation. Therefore, in any given Hubble volume, there is a finite and calculable expectation value for the lifetime of the ``eternal'' inflation phase, during which quantum flucutations dominate over classical field evolution. We show that despite this, inflation in hilltop models is nonetheless eternal in the sense that the volume of the spacetime at any finite time is exponentially dominated by regions which continue to inflate. This is true regardless of the energy scale of inflation, and eternal inflation is supported for inflation at arbitrarily low energy scale.

  17. Khronon inflation

    NASA Astrophysics Data System (ADS)

    Creminelli, Paolo; Noreña, Jorge; Peña, Manuel; Simonović, Marko

    2012-11-01

    We study the possibility that the approximate time shift symmetry during inflation is promoted to the full invariance under time reparametrization t → tilde t(t), or equivalently under field redefinition of the inflaton phi → tilde phi(phi). The symmetry allows only two operators at leading order in derivatives, so that all n-point functions of scalar perturbations are fixed in terms of the power spectrum normalization and the speed of sound. During inflation the decaying mode only decays as 1/a and this opens up the possibility to violate some of the consistency relations in the squeezed limit, although this violation is suppressed by the (small) breaking of the field reparametrization symmetry. In particular one can get terms in the 3-point function that are only suppressed by 1/kL in the squeezed limit kL→0 compared to the local shape.

  18. Khronon inflation

    SciTech Connect

    Creminelli, Paolo; Noreña, Jorge; Peña, Manuel; Simonović, Marko E-mail: jorge.norena@icc.ub.edu E-mail: marko.simonovic@sissa.it

    2012-11-01

    We study the possibility that the approximate time shift symmetry during inflation is promoted to the full invariance under time reparametrization t → t-tilde (t), or equivalently under field redefinition of the inflaton φ → φ-tilde (φ). The symmetry allows only two operators at leading order in derivatives, so that all n-point functions of scalar perturbations are fixed in terms of the power spectrum normalization and the speed of sound. During inflation the decaying mode only decays as 1/a and this opens up the possibility to violate some of the consistency relations in the squeezed limit, although this violation is suppressed by the (small) breaking of the field reparametrization symmetry. In particular one can get terms in the 3-point function that are only suppressed by 1/k{sub L} in the squeezed limit k{sub L}→0 compared to the local shape.

  19. Trapped inflation

    SciTech Connect

    Green, Daniel; Horn, Bart; Silverstein, Eva; Senatore, Leonardo

    2009-09-15

    We analyze a distinctive mechanism for inflation in which particle production slows down a scalar field on a steep potential and show how it descends from angular moduli in string compactifications. The analysis of density perturbations--taking into account the integrated effect of the produced particles and their quantum fluctuations--requires somewhat new techniques that we develop. We then determine the conditions for this effect to produce 60 e-foldings of inflation with the correct amplitude of density perturbations at the Gaussian level and show that these requirements can be straightforwardly satisfied. Finally, we estimate the amplitude of the non-Gaussianity in the power spectrum and find a significant equilateral contribution.

  20. Goldstone inflation

    NASA Astrophysics Data System (ADS)

    Croon, Djuna; Sanz, Verónica; Setford, Jack

    2015-10-01

    Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Successful Goldstone Inflation should also be robust against UV corrections, such as from quantum gravity: in the language of the effective field theory this implies that all scales are sub-Planckian. In this paper we present scenarios which realise both requirements by examining the structure of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field models, for which we notice that both bosonic and fermionic contributions are required and that spinorial fermion representations can generate the right potential shape. We then evaluate the constraints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum of new resonances. Finally, we show how hybrid inflation can be realised in the same context, where both the inflaton and the waterfall fields share a common origin as Goldstones.

  1. The Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  2. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  3. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  4. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  5. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  6. Inflatable Dark Matter

    DOE PAGES

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUTmore » or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.« less

  7. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  8. Spotted inflation

    SciTech Connect

    Matsuda, Tomohiro

    2010-11-01

    We describe new scenarios for generating curvature perturbations when inflaton (curvaton) has significant interactions. We consider a ''spot'', which arises from interactions associated with an enhanced symmetric point (ESP) on the trajectory. Our first example uses the spot to induce a gap in the field equation. We observe that the gap in the field equation may cause generation of curvature perturbation if it does not appear simultaneous in space. The mechanism is similar to the scenario of inhomogeneous phase transition. Then we observe that the spot interactions may initiate warm inflation in the cold Universe. Creation of cosmological perturbation is discussed in relation to the inflaton dynamics and the modulation associated with the spot interactions.

  9. The Inflatable Poster

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.

    2004-12-01

    Inflatable devices are frequently used in advertising in order to grab the attention of consumers: one sees, for example, 20 foot tall inflatable drink containers, inflatable cell phones, inflatable bubble gum packets, as well as blimps wafting majestically over major sports events. More usefully, inflatable representations of scientifically-interesting items are widely available, including astronauts, space shuttles, dinosaurs and globes and can help to build and inspire the interest of the general public, and in particular children, in such ideas. How can such concepts be adapted to improve poster presentations? Possibility one is to use relevant existing commercially-available inflatables to dress the poster: skeletons, astronauts, globes and so forth. More exciting is to develop custom inflatables that represent three-dimensional renderings of objects that the poster is describing. Examples of individual objects might be an inflatable slab, inflatable avalanche, inflatable plume, or it's larger cousin, the 10 foot high inflatable superplume or 20 foot high inflatable megaplume. More elaborately, inflatables might represent isosurfaces in three-dimensional spherical convection, although other fabrication methods may be more suitable. More simply, inflatable spheres could be imprinted with the planform of convection, geoid, or other spherical fields of geophysical interest. Finally, it should be possible to put an entire poster on an inflatable object, possibly small ones (balloons) to hand out. A major concern, however, is that the presenter may use such techniques to inflate their scientific findings, or to present overblown ideas.

  10. To kiss or not to kiss? Impact of final kissing-balloon inflation on early and long-term results of percutaneous coronary intervention for bifurcation lesions.

    PubMed

    Biondi-Zoccai, Giuseppe; Sheiban, Imad; De Servi, Stefano; Tamburino, Corrado; Sangiorgi, Giuseppe; Romagnoli, Enrico

    2014-11-01

    Final kissing-balloon inflation is often recommended for percutaneous coronary intervention (PCI) of bifurcation lesions. However, randomized trials focusing on kissing inflation have not confirmed its beneficial impact. We compared outcomes of kissing inflation for PCI of bifurcation lesions, explicitly stratifying results according to stenting strategy. Patients undergoing bifurcation PCI were retrospectively enrolled. Subjects receiving final kissing inflation were compared with those not undergoing kissing inflation, after stratification for a single-stent technique. The primary end point was the long-term rate of major adverse cardiac events (MACE, i.e., death, myocardial infarction, or target lesion revascularization (TLR)). A total of 4314 patients were included: 1176 (27.3 %) treated with a single stent and kissing inflation, 1637 (37.9 %) with a single stent but no kissing, 1072 (24.8 %) with two stents and kissing, and 429 (9.9 %) with two stents but no kissing. At unadjusted analyses kissing was associated with fewer short-term MACE and deaths in the two-stent group, and with fewer long-term MACE, cardiac deaths, and side-branch TLR in the two-stent group (all P < 0.05). Conversely, kissing appeared detrimental after single stenting. However, after multivariable analyses, kissing no longer significantly affected the risk of adverse events, with the exception of the risk of side-branch TLR, which was lower in those receiving two stents and final kissing inflation (hazard ratio = 0.52, 95 % confidence interval 0.30–0.90, P = 0.020). Kissing inflation can be avoided in bifurcation lesions uneventfully treated with single-stent PCI. However, final kissing-balloon inflation appears beneficial in reducing the risk of side-branch repeat revascularization after using a two-stent strategy.

  11. Dynamics of the early universe and the initial conditions for inflation in a model with radiation and a Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Monerat, G. A.; Oliveira-Neto, G.; Silva, E. V. Corrêa; Filho, L. G. Ferreira; Romildo, P., Jr.; Fabris, J. C.; Fracalossi, R.; Gonçalves, S. V. B.; Alvarenga, F. G.

    2007-07-01

    The early universe is modeled through the quantization of a Friedmann-Robertson-Walker (FRW) model with positive curvature. In this model, the universe is filled by two fluids: radiation and Chaplygin gas. The quantization of these models is made by following the Wheeler-DeWitt prescriptions. Using the Schutz formalism, the time notion is recovered and the Wheeler-DeWitt equation transforms into a time dependent Schrödinger equation, which rules the dynamics of the early universe, under the action of an effective potential Veff. Using a finite differences method and the Crank-Nicholson scheme, in a code implemented in the program OCTAVE, we solve the corresponding time dependent Schrödinger equation and obtain the time evolution of an initial wave packet. This wave packet satisfies appropriate boundary conditions. The calculation of the tunneling probabilities shows that the universe may emerge from the Planck era in an inflationary phase. It also shows that the tunneling probability is a function of the mean energy of the initial wave packet and of the two parameters of the Chaplygin gas. We also show a comparison between these results and those obtained by the WKB approximation.

  12. Conformal inflation coupled to matter

    SciTech Connect

    Brax, Philippe

    2014-05-01

    We formulate new conformal models of inflation and dark energy which generalise the Higgs-Dilaton scenario. We embed these models in unimodular gravity whose effect is to break scale invariance in the late time Universe. In the early Universe, inflation occurs close to a maximum of both the scalar potential and the scalar coupling to the Ricci scalar in the Jordan frame. At late times, the dilaton, which decouples from the dynamics during inflation, receives a potential term from unimodular gravity and leads to the acceleration of the Universe. We address two central issues in this scenario. First we show that the Damour-Polyalov mechanism, when non-relativistic matter is present prior to the start of inflation, sets the initial conditions for inflation at the maximum of the scalar potential. We then show that conformal invariance implies that matter particles are not coupled to the dilaton in the late Universe at the classical level. When fermions acquire masses at low energy, scale invariance is broken and quantum corrections induce a coupling between the dilaton and matter which is still small enough to evade the gravitational constraints in the solar system.

  13. Constraining inflation

    SciTech Connect

    Adshead, Peter; Easther, Richard E-mail: richard.easther@yale.edu

    2008-10-15

    We analyze the theoretical limits on slow roll reconstruction, an optimal algorithm for recovering the inflaton potential (assuming a single-field slow roll scenario) from observational data. Slow roll reconstruction is based upon the Hamilton-Jacobi formulation of the inflationary dynamics. We show that at low inflationary scales the Hamilton-Jacobi equations simplify considerably. We provide a new classification scheme for inflationary models, based solely on the number of parameters needed to specify the potential, and provide forecasts for the bounds on the slow roll parameters from future data sets. A minimal running of the spectral index, induced solely by the first two slow roll parameters ({epsilon} and {eta}), appears to be effectively undetectable by realistic cosmic microwave background (CMB) experiments. However, since the ability to detect any running increases with the lever arm in comoving wavenumber, we conjecture that high redshift 21 cm data may allow tests of second-order consistency conditions on inflation. Finally, we point out that the second-order corrections to the spectral index are correlated with the inflationary scale, and thus the amplitude of the CMB B mode.

  14. ''Old'' locked inflation

    SciTech Connect

    Liu, Yang; Piao, Yun-Song; Si, Zong-Guo E-mail: yspiao@gucas.ac.cn

    2009-05-15

    In this paper, we revisit the idea of locked inflation, which does not require a potential satisfying the normal slow-roll condition, but suffers from the problems associated with ''saddle inflation''. We propose a scenario based on locked inflation, however, with an alternative evolution mechanism of the ''waterfall field'' {phi}. Instead of rolling down along the potential, the {phi} field will tunnel to end the inflation stage like in old inflation, by which the saddle inflation could be avoided. Further, we study a cascade of old locked inflation, which can be motivated by the string landscape. Our model is based on the consideration of making locked inflation feasible so as to give a working model without slow roll; It also can be seen as an effort to embed the old inflation in string landscape.

  15. Effects of thermal fluctuations on thermal inflation

    SciTech Connect

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  16. Effects of thermal fluctuations on thermal inflation

    SciTech Connect

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun'ichi E-mail: miyamoto@resceu.s.u-tokyo.ac.jp

    2015-03-01

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  17. Inflation and alternatives with blue tensor spectra

    SciTech Connect

    Wang, Yi; Xue, Wei E-mail: wei.xue@sissa.it

    2014-10-01

    We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experiments do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.

  18. First-order inflation

    SciTech Connect

    Kolb, E.W. Chicago Univ., IL . Enrico Fermi Inst.)

    1990-09-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result in inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models. 58 refs., 3 figs.

  19. First-order inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.

  20. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this chapter— (1) No later than the month and year on its servicing sticker affixed under 46 CFR 160... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable...

  1. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this chapter— (1) No later than the month and year on its servicing sticker affixed under 46 CFR 160... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable...

  2. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this chapter— (1) No later than the month and year on its servicing sticker affixed under 46 CFR 160... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable...

  3. Inflation from Minkowski space

    NASA Astrophysics Data System (ADS)

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Uttayarat, Patipan

    2014-12-01

    We propose a class of scalar models that, once coupled to gravity, lead to cosmologies that smoothly and stably connect an inflationary quasi-de Sitter universe to a low, or even zero-curvature, maximally symmetric spacetime in the asymptotic past, strongly violating the null energy condition at intermediate times. The models are deformations of the conformal galileon lagrangian and are therefore based on symmetries, both exact and approximate, that ensure the quantum robustness of the whole picture. The resulting cosmological backgrounds can be viewed as regularized extensions of the galilean genesis scenario, or, equivalently, as `early-time-complete' realizations of inflation. The late-time inflationary dynamics possesses phenomenologically interesting properties: it can produce a large tensor-to-scalar ratio within the regime of validity of the effective field theory and can lead to sizeable equilateral nongaussianities.

  4. Inflation and shadow matter

    NASA Technical Reports Server (NTRS)

    Krauss, L. M.; Guth, A. H.; Spergel, D. N.; Field, G. B.; Press, W. H.

    1986-01-01

    The possible production of shadow matter during the period of cosmic inflation is considered. The superstring theory of Gross et al. (1985), which results in a gauge group E8 x E8, could, at low energies, result in the existence of two sectors: an observed sector associated with all familiar particles and interactions, and a hidden one whose particles couple only through gravitational interactions with ordinary matter. It is demonstrated here that if, in the early universe, an inflationary phase is associated with the breaking of one of the symmetries in the E8 x E8 theory, this strongly constrains the physics of both sectors if shadow matter is to be the missing mass in the universe.

  5. Warm hilltop inflation

    SciTech Connect

    Sanchez, Juan Carlos Bueno; Dimopoulos, Konstantinos; Bastero-Gil, Mar; Berera, Arjun

    2008-06-15

    We study the low-temperature limit of warm inflation in a hilltop model. This limit remains valid up to the end of inflation, allowing an analytic description of the entire inflationary stage. In the weak dissipative regime, if the kinetic density of the inflaton dominates after inflation, low-scale inflation is attained with Hubble scale as low as 1 GeV. In the strong dissipative regime, the model satisfies the observational requirements for the spectral index with a mild tuning of the model parameters, while also overcoming the {eta}-problem of inflation. However, there is some danger of gravitino overproduction unless the particle content of the theory is large.

  6. Primordial supersymmetric inflation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Nanopoulos, D. V.; Olive, K. A.; Tamvakis, K.

    1983-07-01

    We discuss the motivations for reconsidering cosmological inflation in supersymmetric theories as contrasted with conventional GUTs. Radiative corrections to the effective potential can be made arbitrarily small in supersymmetric GUTs, removing some of the obstacles to inflation. We analyze general renormalizable potentials at the tree level and show that the required fine-tuning of parameters becomes less acute if inflation takes place before the grand unified phase transition, a hypothesis we term primordial inflation. We show how the grand unified monopole problem can be solved in supersymmetric GUTs embodying primordial inflation.

  7. Soft inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  8. Inflating an inhomogeneous universe

    SciTech Connect

    Easther, Richard; Price, Layne C.; Rasero, Javier E-mail: lpri691@aucklanduni.ac.nz

    2014-08-01

    While cosmological inflation can erase primordial inhomogeneities, it is possible that inflation may not begin in a significantly inhomogeneous universe. This issue is particularly pressing in multifield scenarios, where even the homogeneous dynamics may depend sensitively on the initial configuration. This paper presents an initial survey of the onset of inflation in multifield models, via qualitative lattice-based simulations that do not include local gravitational backreaction. Using hybrid inflation as a test model, our results suggest that small subhorizon inhomogeneities do play a key role in determining whether inflation begins in multifield scenarios. Interestingly, some configurations which do not inflate in the homogeneous limit ''succeed'' after inhomogeneity is included, while other initial configurations which inflate in the homogeneous limit ''fail'' when inhomogeneity is added.

  9. Inflatable Vessel and Method

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)

    2003-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  10. Inflation, Reionization, and All That: The Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  11. Inflation, Reionization, and All That: The Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2011-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r less than l0^{-3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  12. Observational constraints on monomial warm inflation

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca

    2016-07-01

    Warm inflation is, as of today, one of the best motivated mechanisms for explaining an early inflationary period. In this paper, we derive and analyze the current bounds on warm inflation with a monomial potential U propto phip, using the constraints from the PLANCK mission. In particular, we discuss the parameter space of the tensor-to-scalar ratio r and the potential coupling λ of the monomial warm inflation in terms of the number of e-folds. We obtain that the theoretical tensor-to-scalar ratio r ~ 10‑8 is much smaller than the current observational constrain r lesssim 0.12, despite a relatively large value of the field excursion Δ phi ~ 0.1MPl. Warm inflation thus eludes the Lyth bound set on the tensor-to-scalar ratio by the field excursion.

  13. Inflatable nested toroid structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)

    2011-01-01

    An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.

  14. Pseudosmooth tribrid inflation

    SciTech Connect

    Antusch, Stefan; Nolde, David; Rehman, Mansoor Ur E-mail: david.nolde@unibas.ch

    2012-08-01

    We explore a new class of supersymmetric models of inflation where the inflaton is realised as a combination of a Higgs field and (gauge non-singlet) matter fields, using a ''tribrid'' structure of the superpotential. Inflation is associated with a phase transition around GUT scale energies. The inflationary trajectory already preselects the later vacuum after inflation, which has the advantage of automatically avoiding the production of dangerous topological defects at the end of inflation. While at first sight the models look similar to smooth inflation, they feature a waterfall and are therefore only pseudosmooth. The new class of models offers novel possibilities for realising inflation in close contact with particle physics, for instance with supersymmetric GUTs or with supersymmetric flavour models based on family symmetries.

  15. The Flavour of Inflation

    SciTech Connect

    Zavala, I.

    2008-11-23

    A new class of particle physics models of inflation based on the phase transition associated with the spontaneous breaking of family symmetry is proposed. The Higgs fields responsible for the breaking of family symmetry, the flavons, are natural inflaton candidates or waterfall fields in hybrid inflation. This opens up a rich vein of possible inflation models, all linked to the physics of flavour, with several interesting cosmological implications.

  16. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... servicing sticker affixed under 46 CFR 160.151-57(n), except that servicing may be delayed until the next... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a)...

  17. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) No later than the month and year on its servicing sticker affixed under 46 CFR 160.151-57(n), except... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  18. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... servicing sticker affixed under 46 CFR 160.151-57(n), except that servicing may be delayed until the next... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a)...

  19. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... servicing sticker affixed under 46 CFR 160.151-57(n), except that servicing may be delayed until the next... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a)...

  20. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) No later than the month and year on its servicing sticker affixed under 46 CFR 160.151-57(n), except... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  1. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) No later than the month and year on its servicing sticker affixed under 46 CFR 160.151-57(n), except... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  2. Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation

    NASA Astrophysics Data System (ADS)

    Obata, Ippei; Soda, Jiro; CLEO Collaboration

    2016-06-01

    We study inflation driven by a dilaton and an axion, both of which are coupled to a SU(2) gauge field. We find that the inflation driven by the dilaton occurs in the early stage of inflation during which the gauge field grows due to the gauge-kinetic function. When the energy density of magnetic fields catches up with that of electric fields, chromonatural inflation takes over in the late stage of inflation, which we call delayed chromonatural inflation. Thus, the delayed chromonatural inflation driven by the axion and the gauge field is induced by the dilaton. The interesting outcome of the model is the generation of chiral primordial gravitational waves on small scales. Since the gauge field is inert in the early stage of inflation, it is viable in contrast to the conventional chromonatural inflation. We find the parameter region where chiral gravitational waves are generated in a frequency range higher than nHz, which are potentially detectable in future gravitational wave interferometers and pulsar-timing arrays such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), evolved Laser Interferometer Space Antenna (eLISA), and Square Kilometer Array (SKA).

  3. Photon mass from inflation.

    PubMed

    Prokopec, Tomislav; Törnkvist, Ola; Woodard, Richard

    2002-09-01

    We consider vacuum polarization from massless scalar electrodynamics in de Sitter inflation. The theory exhibits a 3+1 dimensional analog of the Schwinger mechanism in which a photon mass is dynamically generated. The mechanism is generic for light scalar fields that couple minimally to gravity. The nonvanishing of the photon mass during inflation may result in magnetic fields on cosmological scales.

  4. Inflation and Rural Society.

    ERIC Educational Resources Information Center

    Pitt, David

    Inflation is both a cause and consequence of changes in power and status. Competitive status activities create spiral situations which have an economic correlate. Ultimately, inflation leads to the creation of economically deprived and depressed social groups. Deflation can be achieved to some extent by redistribution of wealth dictated from…

  5. Inflation of Conditional Predictions

    ERIC Educational Resources Information Center

    Koriat, Asher; Fiedler, Klaus; Bjork, Robert A.

    2006-01-01

    The authors report 7 experiments indicating that conditional predictions--the assessed probability that a certain outcome will occur given a certain condition--tend to be markedly inflated. The results suggest that this inflation derives in part from backward activation in which the target outcome highlights aspects of the condition that are…

  6. Trispectrum from ghost inflation

    SciTech Connect

    Izumi, Keisuke; Mukohyama, Shinji E-mail: shinji.mukohyama@ipmu.jp

    2010-06-01

    Ghost inflation predicts almost scale-invariant primordial cosmological perturbations with relatively large non-Gaussianity. The bispectrum is known to have a large contribution at the wavenumbers forming an equilateral triangle and the corresponding nonlinear parameter f{sub NL}{sup equil} is typically of order O(10{sup 2}). In this paper we calculate trispectrum from ghost inflation and show that the corresponding nonlinear parameter τ{sub NL} is typically of order O(10{sup 4}). We investigate the shape dependence of the trispectrum and see that it has some features different from DBI inflation. Therefore, our result may be useful as a template to distinguish ghost inflation from other models of inflation by future experiments.

  7. The Primordial Inflation Explorer (PIXIE)

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; Chuss, David T.; Dotson, Jessie; Dwek, Eli; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.; Wollack, Edward J.

    2014-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 µK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r less than 10(exp -3) at 5 standard deviations. In addition, PIXIE will measure the absolute frequency spectrum to constrain physical processes ranging from inflation to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture with an emphasis on the expected level of systematic error suppression.

  8. Probing Inflation via Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Cosmic Microwave Background (CMB) has been a rich source of information about the early Universe. Detailed measurements of its spectrum and spatial distribution have helped solidify the Standard Model of Cosmology. However, many questions still remain. Standard Cosmology does not explain why the early Universe is geometrically flat, expanding, homogenous across the horizon, and riddled with a small anisotropy that provides the seed for structure formation. Inflation has been proposed as a mechanism that naturally solves these problems. In addition to solving these problems, inflation is expected to produce a spectrum of gravitational waves that will create a particular polarization pattern on the CMB. Detection of this polarized signal is a key test of inflation and will give a direct measurement of the energy scale at which inflation takes place. This polarized signature of inflation is expected to be -9 orders of magnitude below the 2.7 K monopole level of the CMB. This measurement will require good control of systematic errors, an array of many detectors having the requisite sensitivity, and a reliable method for removing polarized foregrounds, and nearly complete sky coverage. Ultimately, this measurement is likely to require a space mission. To this effect, technology and mission concept development are currently underway.

  9. Inflation, inflation uncertainty and output growth in the USA

    NASA Astrophysics Data System (ADS)

    Bhar, Ramprasad; Mallik, Girijasankar

    2010-12-01

    Employing a multivariate EGARCH-M model, this study investigates the effects of inflation uncertainty and growth uncertainty on inflation and output growth in the United States. Our results show that inflation uncertainty has a positive and significant effect on the level of inflation and a negative and significant effect on the output growth. However, output uncertainty has no significant effect on output growth or inflation. The oil price also has a positive and significant effect on inflation. These findings are robust and have been corroborated by use of an impulse response function. These results have important implications for inflation-targeting monetary policy, and the aim of stabilization policy in general.

  10. The inflation sector of extended inflation

    SciTech Connect

    Kolb, E.W. Chicago Univ., IL )

    1990-11-01

    In extended inflation the inflationary era is brought to a close by the process of percolation of true vacuum bubbles produced in a first-order phase transition. In this paper I discuss several effects that might obtain if the Universe undergoes an inflationary first-order phase transition. 17 refs.

  11. The inflation sector of extended inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In extended inflation, the inflationary era is brought to a close by the process of percolation of true vacuum bubbles produced in a first-order phase transition. This paper discusses several effects that might obtain if the universe undergoes an inflationary first-order phase transition.

  12. Saving Natural Inflation

    SciTech Connect

    Croon, Djuna; Sanz, Verónica E-mail: v.sanz@sussex.ac.uk

    2015-02-01

    Slow-roll inflation requires the inflaton field to have an exceptionally flat potential, which combined with measurements of the scale of inflation demands some degree of fine-tuning. Alternatively, the flatness of the potential could be due to the inflaton's origin as a pseudo-Goldstone boson, as in Natural Inflation. Alas, consistency with Planck data places the original proposal of Natural Inflation in a tight spot, as it requires a trans-Planckian excursion of the inflaton. Although one can still tune the renormalizable potential to sub-Planckian values, higher order corrections from quantum gravity or sources of breaking of the Goldstone symmetry would ruin the predictivity of the model. In this paper we show how in more realistic models of Natural Inflation one could achieve inflation without a trans-Planckian excursion of the field. We show how a variant of Extra-natural inflation with bulk fermions can achieve the desired goal and discuss its four-dimensional duals. We also present a new type of four dimensional models inspired in Little Higgs and Composite Higgs models which can lead to sub-Planckian values of the inflaton field.

  13. Nonminimally coupled hybrid inflation

    SciTech Connect

    Koh, Seoktae; Minamitsuji, Masato

    2011-02-15

    We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains {phi}{sup 4} term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum-dominated region becomes either the type (I) or (II), resulting in a blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while around the local minimum it must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.

  14. Brane inflation and defect formation.

    PubMed

    Davis, Anne-Christine; Brax, Philippe; van de Bruck, Carsten

    2008-08-28

    Brane inflation and the production of topological defects at the end of the inflationary phase are discussed. After a description of the inflationary set-up, we discuss the properties of the cosmic strings produced at the end of inflation. Specific examples of brane inflation are described, such as D-D , D3/D7 and modular inflations. PMID:18534933

  15. Electroweak vacuum stabilized by moduli during/after inflation

    NASA Astrophysics Data System (ADS)

    Ema, Yohei; Mukaida, Kyohei; Nakayama, Kazunori

    2016-10-01

    It is known that the present electroweak vacuum is likely to be metastable and it may lead to a serious instability during/after inflation. We propose a simple solution to the problem of vacuum instability during/after inflation. If there is a moduli field which has Planck-suppressed interactions with the standard model fields, the Higgs quartic coupling in the early universe naturally takes a different value from the present one. A slight change of the quartic coupling in the early universe makes the Higgs potential absolutely stable and hence we are free from the vacuum instability during/after inflation.

  16. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST...

  17. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of...

  18. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of...

  19. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST...

  20. Inflation Driven by q-de Sitter

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Momeni, D.; Kamali, V.; Myrzakulov, R.

    2016-02-01

    We propose a generalised de Sitter scale factor for the cosmology of early and late time universe, including single scalar field is called as inflaton. This form of scale factor has a free parameter q is called as nonextensivity parameter. When q = 1, the scale factor is de Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study cosmology of such families. We show that both kinds of dark components, dark energy and dark matter simultaneously are described by this family of solutions. As a motivated idea, we investigate inflation in the framework of q-de Sitter. We consider three types of scenarios for inflation. In a single inflation scenario, we observe that, inflation ended without any specific ending inflation ϕ e n d , the spectral index and the associated running of the spectral index are n s - 1 ˜ -2 𝜖, α s ≡ 0. To end the inflation: we should have q={3}/{4}. We deduce that the inflation ends when the evolution of the scale factor is a( t) = e 3/4( t). With this scale factor there is no need to specify ϕ e n d . As an alternative to have inflation with ending point, We will study q-inflation model in the context of warm inflation. We propose two forms of damping term Γ. In the first case when Γ = Γ0, we show the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. n s = 1) may be approximately presented by (q={9}/{10}, ~N=70). Also there is a range of values of R and n s which is compatible with the BICEP2 data where q={9}/{10}. In case Γ = Γ1 V( ϕ), it is observed that small values of a number of e-folds are assured for small values of q parameter. Also in this case, the scale-invariant spectrum may be represented by (q,N) = ({9}/{10},70). For q={9}/{10} a range of values of R and n s is compatible with the BICEP2 data. Consequently, the proposal of q-de Sitter is consistent with observational data. We observe that the non-extensivity parameter q plays a significant role in inflationary scenario.

  1. Inflatable traversing probe seal

    NASA Technical Reports Server (NTRS)

    Trimarchi, Paul A.

    1991-01-01

    An inflatable seal acts as a pressure-tight zipper to provide traversing capability for instrumentation rakes and probes. A specially designed probe segment with a teardrop cross-section in the vicinity of the inflatable seal minimizes leakage at the interface. The probe is able to travel through a lengthwise slot in a pressure vessel or wind tunnel section, while still maintaining pressure integrity. The design uses two commercially available inflatable seals, opposing each other, to cover the probe slot in a wind tunnel wall. Proof-of-concept tests were conducted at vessel pressures up to 30 psig, with seals inflated to 50 psig, showing no measurable leakage along the seal's length or around the probe teardrop cross-section. This seal concept can replace the existing technology of sliding face plate/O-ring systems in applications where lengthwise space is limited.

  2. Tribrid Inflation in Supergravity

    SciTech Connect

    Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.

    2010-02-10

    We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the eta-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kaehler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third 'driving' field which contributes the large vacuum energy during inflation by its F-term. In contrast to the 'standard' hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (W{sub inf} = 0) during inflation. While the symmetries of the Kaehler potential ensure a flat inflaton potential at tree-level, quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.

  3. NASA Now: Inflatable Structures

    NASA Video Gallery

    NASA senior research engineer Judith Watson is one of a team of engineers at NASA’s Langley Research Center who are studying inflatable structures that might one day be used to establish an outpo...

  4. Asymptotically safe inflation

    SciTech Connect

    Weinberg, Steven

    2010-04-15

    Inflation is studied in the context of asymptotically safe theories of gravitation. Conditions are explored under which it is possible to have a long period of nearly exponential expansion that eventually comes to an end.

  5. Inflation with Thermal Dissipation

    NASA Astrophysics Data System (ADS)

    Lee, Wo-Lung

    We study thermally induced density perturbations during inflation. This scenario is characterized by two thermodynamic conditions: (i) the primordial perturbations originate in the epoch when the inflationary universe contains a thermalized heat bath; (ii) the perturbations of the inflationary scalar field are given by the fluctuation-dissipation relation. We show that (1) the power spectrum of the primordial density perturbations follows a tilted power law behavior; (2) the relation between the amplitude and the power index of the spectrum exhibits a ``thermodynamic'' feature-it depends mainly on the thermodynamic variable M, the inflation energy scale; (3) both the adiabatic mode and the isocurvature mode of density perturbations appear during the inflation epoch, and the resultant power spectrum on super-horizon scales is substantially suppressed. These results are found to be very consistent with observations of the temperature fluctuations in the cosmic microwave background if the energy scale of the inflation is about 1015-10 16 GeV.

  6. Natural chaotic inflation

    NASA Astrophysics Data System (ADS)

    Papantonopoulos, E.; Uematsu, T.; Yanagida, T.

    1987-01-01

    We present a chaotic inflationary model, in which nonlinear interactions of dilaton and axion fields in the context of the superconformal theory can dynamically give rise to initial conditions for the inflation of the universe and a flat potential that can produce enough inflation. Our model is free from dangerous thermal effects and large energy density fluctuations. On leave from Physics Department, College of General Education, Tohoku University, Sendai 980, Japan

  7. Plausible double inflation

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1991-01-01

    It is likely that extended inflation is followed by an epoch of slowroll inflation. Such a sequence of events may lead to a very interesting perturbation spectrum with significant power on the scale of the transition between the extended and slowroll phase, superimposed upon a power-law spectrum with deviations from the Harrison-Zeldovich slope. Normalization of the spectra above and below the transition scale is expected to differ.

  8. Supersymmetric DBI inflation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shin; Yamaguchi, Masahide; Yokoyama, Daisuke

    2012-11-01

    We discuss a supersymmetric version of DBI (Dirac-Born-Infeld) inflation, which is a typical inflation model in string cosmology. The supersymmetric DBI action together with a superpotential always leads to correction terms associated with the potential into the kinetic term, which drastically change the dynamics of DBI inflation. We find two significant features of supersymmetric DBI inflation. The first one is that ultra-relativistic motion is prohibited to cause inflation, which leads to order of unity sound velocity squared and hence small non-Gaussianities of primordial curvature perturbations. The second one is that the relation between the tensor-to-scalar ratio and the field variation is modified. Then, significant tensor-to-scalar ratio r≳0.01 is possible because the variation of the canonically normalized inflaton can be beyond the reduced Planck scale. These new features are in sharp contrast with those of the standard non-supersymmetric DBI inflation and hence have a lot of interest implications on upcoming observations of cosmic microwave background (CMB) anisotropies by the Planck satellite as well as direct detection experiments of gravitational waves like DECIGO and BBO.

  9. Warm Inflation Model Building

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun

    We review the main aspects of the warm inflation scenario, focusing on the inflationary dynamics and the predictions related to the primordial spectrum of perturbations, to be compared with the recent cosmological observations. We study in detail three different classes of inflationary models, chaotic, hybrid models and hilltop models, and discuss their embedding into supersymmetric models and the consequences for model building of the warm inflationary dynamics based on first principles calculations. Due to the extra friction term introduced in the inflaton background evolution generated by the dissipative dynamics, inflation can take place generically for smaller values of the field, and larger values of couplings and masses. When the dissipative dynamics dominates over the expansion, in the so-called strong dissipative regime, inflation proceeds with sub-Planckian inflaton values. Models can be naturally embedded into a supergravity framework, with SUGRA corrections suppressed by the Planck mass now under control, for a larger class of Kähler potentials. In particular, this provides a simpler solution to the "eta" problem in supersymmetric hybrid inflation, without restricting the Kähler potentials compatible with inflation. For chaotic models dissipation leads to a smaller prediction for the tensor-to-scalar ratio and a less tilted spectrum when compared to the cold inflation scenario. We find in particular that a small component of dissipation renders the quartic model now consistent with the current CMB data.

  10. Primordial inflation and super-cosmology

    NASA Astrophysics Data System (ADS)

    Olive, K. A.

    A complete, locally supersymmetric model for the early universe is reviewed. It begins with primordial inflation just after the Planck time. The (nontrivial) breaking of SU(5) is discussed in detail, with specific emphasis on baryon generation at T about 0(10 to the 7th)-GeV and monopole suppression (no longer accomplished by inflation). Gravitational effects are taken into account through N = 1 supergravity, and play an essential role. What one is left with is a problem-free scenario containing all the benefits of Guth's (1980) original inflation, as well as density perturbations of a desirable magnitude for the formation of galaxies, a large baryon-to-photon ratio, and a possibly observable flux of magnetic monopoles. By inserting only two scales, the Planck scale and the supersymmetry breaking scale, both the weak and GUT scales are produced.

  11. Cosmic Microwave Background Polarization and Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Measurements of the cosmic microwave background (CMB) offer a means to explore the universe at a very early epoch. Specifically, if the universe went through a brief period of exponential expansion called inflation as current data suggest, gravitational waves from this period would polarize the CMB in a specific pattern. At GSFC, we are currently working towards two experiments that work in concert to measure this polarization pattern in search of evidence for inflation. The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization at frequencies between 40 and 150 GHz from the Atacama Desert in Chile. The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment that will make similar measurements at frequencies between 200 and 600 GHz.

  12. Oscillating chiral tensor spectrum from axionic inflation

    NASA Astrophysics Data System (ADS)

    Obata, Ippei; Soda, Jiro

    2016-08-01

    We study axionic inflation with a modulated potential and examine if the primordial tensor power spectrum exhibits oscillatory feature, which is testable with future space-based gravitational-wave experiments such as DECIGO and BBO. In the case of single-field axion monodromy inflation, it turns out that it is difficult to detect an oscillation in the spectrum due to the suppression of the sub-Planckian decay constant of the axion. On the other hand, in the case of aligned chromo-natural inflation where the axion is coupled to a SU(2) gauge field, it turns out that a sizable oscillation in the tensor spectrum can occur due to the enhancement of chiral gravitational waves sourced by the gauge field. We expect that this feature will be a new probe for axion phenomenologies in the early Universe through chiral gravitational waves.

  13. The Primordial Inflation Explorer (PIXIE)

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2011-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. The differential design and multiple signal modulations spanning 11 orders of magnitude in time combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 uK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r <10(exp -3) at 5 standard deviations. In addition, the rich PIXIE data will constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  14. Initial conditions for vector inflation

    SciTech Connect

    Chiba, Takeshi

    2008-08-15

    Recently, a model of inflation using non-minimally coupled massive vector fields has been proposed. For a particular choice of non-minimal coupling parameter and for a flat Friedmann-Robertson-Walker model, the model is reduced to the model of chaotic inflation with massive scalar field. We study the effect of non-zero curvature of the universe on the onset of vector inflation. We find that in a curved universe the dynamics of vector inflation can be different from the dynamics of chaotic inflation, and the fraction of the initial conditions leading to inflationary solutions is reduced as compared with the chaotic inflation case.

  15. Quintessential Inflation at the Maxima of the Potential

    NASA Astrophysics Data System (ADS)

    German, Gabriel; de La Macorra, Axel

    There is great interest in understanding a possible late accelerated expansion of the universe. Data suggest that the universe was still decelerating around redshift 1 and started to accelerate more recently at redshift 0.5. In models where the expansion is driven by a cosmological constant the acceleration should become increasingly greater with time, thus inflation never ends. This could also be the case with most models of quintessence or quintessential inflation where the late accelerated expansion is produced by a monotonically decreasing scalar potential. Here we would like to explore the possibility that a recent inflation has already or is about to end. This possibility is not ruled out by existing data and could be testable with far more, higher accuracy, supernovae on the Hubble diagram. We construct a two-stage inflationary model which can accommodate early inflation as well as a second stage of inflation (quintessence) with a single scalar field . Using an analogy from a mechanical problem we propose an inflaton field solution to the equations of motion which can account for two inflationary epochs. Inflation occurs close to the maxima of the potential. As a consequence both inflations are necesarilly finite. A first inflation is produced when fluctuations displace the inflaton field from its higher maximum rolling down the potential as in new inflation. Instead of rolling towards a global minimum the inflaton approaches a lower maximum where a second inflation takes place. The model is not realistic, however, because matter has not been taken into account at the end of the first inflation where particle production should occur as in non-oscillatory models. This is a delicate problem which will be treated elsewhere.

  16. Anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Ricciardone, Angelo; Peloso, Marco E-mail: sabino.matarrese@pd.infn.it E-mail: angelo.ricciardone@pd.infn.it

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(φ)F{sup 2} model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton φ and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(φ)F{sup 2} model.

  17. Aerocapture Inflatable Decelerator (AID)

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.

  18. Disformally coupled inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Koivisto, Tomi; Longden, Chris

    2016-03-01

    A disformal coupling between two scalar fields is considered in the context of cosmological inflation. The coupling introduces novel derivative interactions mixing the kinetic terms of the fields but without introducing superluminal or unstable propagation of the two scalar fluctuation modes. Though the typical effect of the disformal coupling is to inhibit one of the fields from inflating the universe, the energy density of the other field can drive viable near Sitter -inflation in the presence of nontrivial disformal dynamics, in particular when one assumes exponential instead of power-law form for the couplings. The linear perturbation equations are written for the two-field system, its canonical degrees of freedom are quantised, their spectra are derived and the inflationary predictions are reported for numerically solved exponential models. A generic prediction is low tensor-to-scalar ratio.

  19. Chain inflation revisited

    SciTech Connect

    Chialva, Diego; Danielsson, Ulf H E-mail: ulf.danielsson@fysast.uu.se

    2008-10-15

    This paper represents an in-depth treatment of the chain inflation scenario. We fully determine the evolution of the universe in the model, the conditions necessary in order to have a successful inflationary period, and the matching with the observational results regarding the cosmological perturbations. We study in great detail, and in general, the dynamics of the background, as well as the mechanism of generation of the perturbations. We also find an explicit formula for the spectrum of adiabatic perturbations. Our results prove that chain inflation is a viable model for solving the horizon, entropy and flatness problems of standard cosmology and for generating the right amount of adiabatic cosmological perturbations. The results are radically different from those found in previous works on the subject. Finally, we argue that there is a natural way to embed chain inflation into flux compactified string theory. We discuss the details of the implementation and how to fit observations.

  20. Inflation from geometrical tachyons

    SciTech Connect

    Thomas, Steven; Ward, John

    2005-10-15

    We propose an alternative formulation of tachyon inflation using the geometrical tachyon arising from the time dependent motion of a BPS D3-brane in the background geometry due to k parallel NS5-branes arranged around a ring of radius R. Because of the fact that the mass of this geometrical tachyon field is {radical}(2/k) times smaller than the corresponding open-string tachyon mass, we find that the slow-roll conditions for inflation and the number of e-foldings can be satisfied in a manner that is consistent with an effective 4-dimensional model and with a perturbative string coupling. We also show that the metric perturbations produced at the end of inflation can be sufficiently small and do not lead to the inconsistencies that plague the open-string tachyon models. Finally we argue for the existence of a minimum of the geometrical tachyon potential which could give rise to a traditional reheating mechanism.

  1. Ultraviolet-protected inflation.

    PubMed

    Germani, Cristiano; Kehagias, Alex

    2011-04-22

    In natural inflation, the inflaton is a pseudo-Nambu-Goldstone boson which acquires a mass by explicit breaking of a global shift symmetry at scale f. In this case, for small field values, the potential is flat and stable under radiative corrections. Nevertheless, slow roll conditions enforce f ≫ M(p), making the validity of the whole scenario questionable. In this Letter, we show that a coupling of the inflaton kinetic term to the Einstein tensor allows f ≪ M(p) by enhancing the gravitational friction acting on the inflaton during inflation. This new unique interaction (a) keeps the theory perturbative in the whole inflationary trajectory, (b) preserves the tree-level shift invariance of the pseudo-Nambu-Goldstone boson, and (c) avoids the introduction of any new degrees of freedom with respect to standard natural inflation. PMID:21599353

  2. Flipped GUT inflation

    SciTech Connect

    Ellis, John; Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih

    2015-03-23

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  3. Mars inflatable greenhouse analog.

    PubMed

    Sadler, Philip D; Giacomelli, Gene A

    2002-01-01

    Light intensities on the Martian surface can possibly support a bioregenerative life support system (BLSS) utilizing natural sunlight for hydroponic crop production, if a suitable controlled environment can be provided. Inflatable clear membrane structures offer low mass, are more easily transported than a rigid structure, and are good candidates for providing a suitable controlled environment for crop production. Cable culture is one hydroponic growing system that can take advantage of the beneficial attributes of the inflatable structure. An analog of a Mars inflatable greenhouse can provide researchers data on issues such as crew time requirements for operation, productivity for BLSS, human factors, and much more at a reasonable cost. This is a description of one such design.

  4. Sneutrino Hybrid Inflation

    SciTech Connect

    Antusch, Stefan

    2006-11-28

    We review the scenario of sneutrino hybrid inflation, where one of the singlet sneutrinos, the superpartners of the right-handed neutrinos, plays the role of the inflaton. In a minimal model of sneutrino hybrid inflation, the spectral index is given by ns {approx_equal} 1 + 2{gamma}. With {gamma} = 0.025 {+-} 0.01 constrained by WMAP, a running spectral index vertical bar dns/dlnk vertical bar << vertical bar{gamma}vertical bnd a tensor-to-scalar ratio r << {gamma}2 are predicted. Small neutrino masses arise from the seesaw mechanism, with heavy masses for the singlet (s)neutrinos generated by the vacuum expectation value of the waterfall field after inflation. The baryon asymmetry of the universe can be explained by non-thermal leptogenesis via sneutrino inflaton decay, with low reheat temperature TRH {approx_equal} 106 GeV.

  5. Mars inflatable greenhouse analog.

    PubMed

    Sadler, Philip D; Giacomelli, Gene A

    2002-01-01

    Light intensities on the Martian surface can possibly support a bioregenerative life support system (BLSS) utilizing natural sunlight for hydroponic crop production, if a suitable controlled environment can be provided. Inflatable clear membrane structures offer low mass, are more easily transported than a rigid structure, and are good candidates for providing a suitable controlled environment for crop production. Cable culture is one hydroponic growing system that can take advantage of the beneficial attributes of the inflatable structure. An analog of a Mars inflatable greenhouse can provide researchers data on issues such as crew time requirements for operation, productivity for BLSS, human factors, and much more at a reasonable cost. This is a description of one such design. PMID:11987303

  6. A Note on Inflation Targeting.

    ERIC Educational Resources Information Center

    Lai, Ching-chong; Chang, Juin-jen

    2001-01-01

    Presents a pedagogical graphical exposition to illustrate the stabilizing effect of price target zones. Finds that authorities' commitment to defend a price target zone affects the public's inflation expectations and, in turn, reduces actual inflation. (RLH)

  7. Grade Inflation: Metaphor and Reality

    ERIC Educational Resources Information Center

    Kamber, Richard; Biggs, Mary

    2003-01-01

    Grade inflation has become a general term for teachers and administrators in recent times and is an ambiguous denomination which needs to be identified. The allegory and reality of grade inflation is discussed.

  8. Cosmological Inflation: A Personal Perspective

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2007-01-01

    Approximately twenty five years ago a novel proposal was made to explain two of the outstanding cosmological conundrums, namely those of the Horizon Problem and the Flatness Problem of the Universe. These are the fact that widely separated parts of the sky that have never been in causal contact during the evolution of the Universe have apparently the same CMB temperature and the fact that the mean density of the Universe is very close to the critical one, i.e. very close to the density that separates the closed and open models. These coincidences implied that the corresponding initial condition of the Universe must have been set to exquisite accuracy. This novel proposal posted that at these very early times, the energy density of the Universe was dominated by a fluid which had the equation state attributed to the vacuum (i.e. dominated by tension rather than pressure) and that this led to an exponential expansion of the Universe which was "inflated" by many orders of magnitude of its original size. It was then shown that this "inflation" could provide a resolution of the above outstanding problems. The talk will cover the speaker's personal perspective and contributions to this idea and the subsequent developments over the following 25 years since its inception.

  9. Inflatable rescue device

    NASA Technical Reports Server (NTRS)

    Swan, Scott A. (Inventor)

    1995-01-01

    This invention discloses, in one aspect, a personal rescue device for use in outer space which has an inflatable flexible tube with a shaper apparatus herein. Gas under pressure flows through the shaper apparatus and into the flexible tube. The flexible tube is mounted to the shaper so that as it inflates it expands and deploys lengthwise away from the shaper. In one embodiment a housing contains the shaper and the flexible tube and the housing is designed to facilitate movement of the expanding tube from the housing so the expanding tube does not bunch up in the housing.

  10. Asymptotically safe Higgs inflation

    SciTech Connect

    Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: hjhe@tsinghua.edu.cn

    2014-10-01

    We construct a new inflation model in which the standard model Higgs boson couples minimally to gravity and acts as the inflaton. Our construction of Higgs inflation incorporates the standard model with Einstein gravity which exhibits asymptotic safety in the ultraviolet region. The slow roll condition is satisfied at large field value due to the asymptotically safe behavior of Higgs self-coupling at high energies. We find that this minimal construction is highly predictive, and is consistent with both cosmological observations and collider experiments.

  11. Topological defects in extended inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.

    1990-01-01

    The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.

  12. Natural inflation with pseudo Nambu-Goldstone bosons

    NASA Technical Reports Server (NTRS)

    Freese, Katherine; Frieman, Joshua A.; Olinto, Angela V.

    1990-01-01

    It is shown that a pseudo-Nambu-Goldstone boson of given potential can naturally give rise to an epoch of inflation in the early universe. Mass scales which arise in particle physics models with a gauge group that becomes strongly interacting at a certain scales are shown to be conditions for successful inflation. The density fluctuation spectrum is nonscale-invariant, with extra power on large length scales.

  13. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  14. Hilltop Supernatural Inflation

    NASA Astrophysics Data System (ADS)

    Lin, C.

    In this talk, I will explain how to reduce the spectral index to be n_s = 0.96 for supernatural inflation. I will also show the constraint to the reheating temperature from Big Bang Nucleosynthesis of both thermal and non-thermal gravitino production.

  15. Modular invariant inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  16. New smooth hybrid inflation

    SciTech Connect

    Lazarides, George; Vamvasakis, Achilleas

    2007-10-15

    We consider the extension of the supersymmetric Pati-Salam model which solves the b-quark mass problem of supersymmetric grand unified models with exact Yukawa unification and universal boundary conditions and leads to the so-called new shifted hybrid inflationary scenario. We show that this model can also lead to a new version of smooth hybrid inflation based only on renormalizable interactions provided that a particular parameter of its superpotential is somewhat small. The potential possesses valleys of minima with classical inclination, which can be used as inflationary paths. The model is consistent with the fitting of the three-year Wilkinson microwave anisotropy probe data by the standard power-law cosmological model with cold dark matter and a cosmological constant. In particular, the spectral index turns out to be adequately small so that it is compatible with the data. Moreover, the Pati-Salam gauge group is broken to the standard model gauge group during inflation and, thus, no monopoles are formed at the end of inflation. Supergravity corrections based on a nonminimal Kaehler potential with a convenient choice of a sign keep the spectral index comfortably within the allowed range without generating maxima and minima of the potential on the inflationary path. So, unnatural restrictions on the initial conditions for inflation can be avoided.

  17. Controlling Grade Inflation

    ERIC Educational Resources Information Center

    Stanoyevitch, Alexander

    2008-01-01

    In this article concerning grade inflation, the author restricts his attention to the college and university level, although many of the tools and ideas developed here should be useful for high schools as well. The author considers the relationships between grades instructors assign and scores they receive on end-of-the semester student…

  18. Cosmological Inflation: A Personal Perspective

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    We present a review of the sequence of events/circumstances that led to the introduction of interplay between the physics associated with phase transitions in the early universe and their effects on its dynamics of expansion with the goal of resolving the horizon problem that it has since become known as Cosmological Inflation. We then provide a brief review of the fundamentals and the solutions of a theory of gravity based on local scale invariance, known as Weyl gravity that have been elaborated by the presenter and his collaborator P. D. Mannheim. We point out that this theory provides from first principles for a characteristic universal acceleration, whose value appears to be in agreement with observations across a vast range of length scales in the universe.

  19. Constraining holographic inflation with WMAP

    SciTech Connect

    Easther, Richard; Flauger, Raphael; McFadden, Paul; Skenderis, Kostas E-mail: Raphael.Flauger@yale.edu E-mail: K.Skenderis@uva.nl

    2011-09-01

    In a class of recently proposed models, the early universe is strongly coupled and described holographically by a three-dimensional, weakly coupled, super-renormalizable quantum field theory. This scenario leads to a power spectrum of scalar perturbations that differs from the usual empirical ΛCDM form and the predictions of generic models of single field, slow roll inflation. This spectrum is characterized by two parameters: an amplitude, and a parameter g related to the coupling constant of the dual theory. We estimate these parameters, using WMAP and other astrophysical data. We compute Bayesian evidence for both the holographic model and standard ΛCDM and find that their difference is not significant, although ΛCDM provides a somewhat better fit to the data. However, it appears that Planck will permit a definitive test of this holographic scenario.

  20. Bispectrum from open inflation

    SciTech Connect

    Sugimura, Kazuyuki; Komatsu, Eiichiro E-mail: komatsu@mpa-garching.mpg.de

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ''open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ''vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ''Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as (ζ{sub k{sub 1}}ζ{sub k{sub 2}}ζ{sub k{sub 3}})∝1/k{sub 1}{sup 2}k{sub 3}{sup 4} in the so-called squeezed configurations, k{sub 3} << k{sub 1} ≈ k{sub 2}, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k{sub 1} = k{sub 2}+k{sub 3}, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order

  1. Heavy gravitino in hybrid inflation

    SciTech Connect

    Kawasaki, Masahiro; Kitajima, Naoya; Nakayama, Kazunori; Yanagida, Tsutomu T. E-mail: nk610@icrr.u-tokyo.ac.jp E-mail: tsutomu.tyanagida@ipmu.jp

    2013-06-01

    It is known that supersymmetric hybrid inflation model may require severe tunings on the initial condition for large gravitino mass of order 100 - 1000 TeV due to the constant term in the superpotential. We propose a modified hybrid inflation model, where the constant term is suppressed during inflation and generated after inflation by replacing a constant term with dynamical field. In this modified model, successful inflation consistent with large gravitino mass takes place without severe tunings on the initial condition. Constraint from cosmic strings is also relaxed.

  2. The Primordial Inflation Explorer (PIXIE)

    NASA Astrophysics Data System (ADS)

    Kogut, Alan; Chluba, Jens; Fixsen, Dale J.; Meyer, Stephan; Spergel, David

    2016-07-01

    The Primordial Inflation Explorer is an Explorer-class mission to open new windows on the early universe through measurements of the polarization and absolute frequency spectrum of the cosmic microwave background. PIXIE will measure the gravitational-wave signature of primordial inflation through its distinctive imprint in linear polarization, and characterize the thermal history of the universe through precision measurements of distortions in the blackbody spectrum. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning over 7 octaves in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce systematic errors to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6° and sensitivity 70 nK per 1° square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10-3 at 5 standard deviations. The PIXIE mission complements anticipated ground-based polarization measurements such as CMB- S4, providing a cosmic-variance-limited determination of the large-scale E-mode signal to measure the optical depth, constrain models of reionization, and provide a firm detection of the neutrino mass (the last unknown parameter in the Standard Model of particle physics). In addition, PIXIE will measure the absolute frequency spectrum to characterize deviations from a blackbody with sensitivity 3 orders of magnitude beyond the seminal COBE/FIRAS limits. The sky cannot be black at this level; the expected results will constrain physical processes ranging from

  3. Primordial Inflation Polarization Explorer: Status and Plans

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2009-01-01

    The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.

  4. Probing inflation with the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Braganca, Vinicius Miranda

    The existence of a quasi-deSitter expansion in the early universe, known as inflation, generates the seeds of large-scale structures and is one of the foundations of the standard cosmological model. The main observational predictions from inflation include the existence of a nearly scale-invariant primordial power spectrum that is imprinted on the cosmic microwave background (CMB), which has been corroborated with remarkable precision in recent years. In single-field slow-roll inflation, a field called the inflaton dominates the energy density of the universe and slowly rolls in an almost perfectly flat potential. In addition, the motion of the inflaton field is friction dominated, with its velocity being completely specified by its position in the field space. This basic scenario is known as the slow-roll approximation and its validity is controlled by the magnitude of the so-called slow-roll parameters. Generalizations of single-field slow-roll inflation provide a wealth of observational signatures in the CMB temperature power spectrum, CMB polarization spectrum, primordial non-Guassianity and in lensing reconstruction. This thesis provides a series of consistency checks between these observables that can distinguish slow-roll violations from alternative explanations.

  5. Kaehler-driven tribrid inflation

    SciTech Connect

    Antusch, Stefan; Nolde, David E-mail: david.nolde@unibas.ch

    2012-11-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kaehler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in 'pseudosmooth' tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kaehler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and {sup p}seudosmooth{sup )} regimes.

  6. Inflation Fossils in Cosmic Structure

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc

    The agreement of the predictions of inflation with increasingly precise cosmic microwave background (CMB) and large-scale-structure (LSS) data is remarkable. The notion that such a simple early-Universe scenario, based on still-mysterious ultra-high-energy physics, can explain such a wealth of precise data is simply amazing. An active ongoing program of research is afoot to seek the CMB polarization signatures of inflationary gravitational waves and measure the primordial bispectrum in order to learn about inflation. Still, there is far more that can be done to probe inflationary physics, and no stone should be left unturned in this quest. Here we propose a multi-component program of theoretical research that includes model building, new CMB/LSS tests, a potentially powerful new survey strategy, and the investigation of a new observational avenue for large-scale structure. We propose to broaden the circle of ideas to empirically probe inflation. To begin, the hemispherical power asymmetry seen in WMAP and Planck is truly striking. While it may simply be an unusual statistical fluke, a more tantalizing possibility is that it is a remnant of the pre-inflationary Universe. We propose to develop and study several physical models for this asymmetry and work out other testable predictions of these models. Only by pursuing other signatures of whatever new physics may be responsible for this asymmetry will we be able to infer if it is truly a window to new physics. We also plan to develop departures from statistical isotropy (SI) as a test of inflationary models. We have recently shown that single-field slow-roll inflation generically predicts a quadrupolar departure from SI in primordial perturbations, albeit a very small one. The power quadrupole is expected, however, to be significantly larger in more general inflationary models. We propose to calculate these power quadrupoles so that new constraints to the power quadrupole from CMB and LSS data can be applied to test

  7. Evading the Lyth bound in hybrid natural inflation

    NASA Astrophysics Data System (ADS)

    Hebecker, A.; Kraus, S. C.; Westphal, A.

    2013-12-01

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axionlike shift symmetry keeps the inflaton potential flat (up to nonperturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ɛ can be sizable during an early period (relevant for the cosmic microwave background spectrum). Subsequently, ɛ quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While nonobservation of tensors by Planck is certainly not a problem, a discovery in the medium- to long-term future is realistic.

  8. Geometrical Destabilization of Inflation

    NASA Astrophysics Data System (ADS)

    Renaux-Petel, Sébastien; Turzyński, Krzysztof

    2016-09-01

    We show the existence of a general mechanism by which heavy scalar fields can be destabilized during inflation, relying on the fact that the curvature of the field space manifold can dominate the stabilizing force from the potential and destabilize inflationary trajectories. We describe a simple and rather universal setup in which higher-order operators suppressed by a large energy scale trigger this instability. This phenomenon can prematurely end inflation, thereby leading to important observational consequences and sometimes excluding models that would otherwise perfectly fit the data. More generally, it modifies the interpretation of cosmological constraints in terms of fundamental physics. We also explain how the geometrical destabilization can lead to powerful selection criteria on the field space curvature of inflationary models.

  9. Hybrid Natural Inflation

    NASA Astrophysics Data System (ADS)

    Ross, Graham G.; Germán, Gabriel; Vázquez, J. Alberto

    2016-05-01

    We construct two simple effective field theory versions of Hybrid Natural Inflation (HNI) that illustrate the range of its phenomenological implications. The resulting inflationary sector potential, V = Δ4(1 + acos( ϕ/f)), arises naturally, with the inflaton field a pseudo-Nambu-Goldstone boson. The end of inflation is triggered by a waterfall field and the conditions for this to happen are determined. Also of interest is the fact that the slow-roll parameter ɛ (and hence the tensor r) is a non-monotonic function of the field with a maximum where observables take universal values that determines the maximum possible tensor to scalar ratio r. In one of the models the inflationary scale can be as low as the electroweak scale. We explore in detail the associated HNI phenomenology, taking account of the constraints from Black Hole production, and perform a detailed fit to the Planck 2015 temperature and polarisation data.

  10. Inflatable Aeroponic System

    NASA Technical Reports Server (NTRS)

    Pelt, Jennifer Van

    2005-01-01

    Aeroponics Internationals (AI) innovation is a self-contained, self-supporting, flexible low mass aeroponic crop production unit with integral environmental systems for the control and delivery of a nutrient mist to the roots. This FLEX Aeroponic System model was developed for commercialization as a result of the NASA SBIR Phase I contract for the research and development of a low-mass, Inflatable Aeroponic System (IAS) for producing pesticide-free lettuces, grains, peppers, tomatoes and other vegetables. The innovation addresses the needs of water and nutrient delivery systems technologies for food production in space. The inflatable nature of the innovation makes it lightweight, allowing it to be deflated so it takes up less volume during transportation and storage. It improves upon AI's current aeroponic system design that uses more rigid structures and takes advantage of vertical inclines to increase bio-mass production by over 600%.

  11. Tilted ghost inflation

    SciTech Connect

    Senatore, Leonardo

    2005-02-15

    In a ghost inflationary scenario, we study the observational consequences of a tilt in the potential of the ghost condensate. We show how the presence of a tilt tends to make contact between the natural predictions of ghost inflation and the ones of slow roll inflation. In the case of positive tilt, we are able to build an inflationary model in which the Hubble constant H is growing with time. We compute the amplitude and the tilt of the two-point function, as well as the three-point function, for both cases of positive and negative tilt. We find that a good fraction of the parameter space of the model is within experimental reach.

  12. Preheating after technicolor inflation

    NASA Astrophysics Data System (ADS)

    Channuie, Phongpichit; Koad, Peeravit

    2016-08-01

    We investigate the particle production due to parametric resonances in a model of inflation where the lightest composite state stemming from the minimal walking technicolor theory plays the role of the inflaton. For this model of inflation, the effective theory couples nonminimally to gravity. Regarding the preheating, we study in detail a model of a composite inflaton field ϕ coupled to another scalar field χ with the interaction term g2ϕ2χ2. Particularly, in Minkowski space, the stage of parametric resonances can be described by the Mathieu equation. Interestingly, we discover that broad resonances can be typically achieved and are potentially efficient in our model causing the particle number density in this process to exponentially increase.

  13. Notes on natural inflation

    NASA Astrophysics Data System (ADS)

    Yonekura, Kazuya

    2014-10-01

    In the so-called natural inflation, an axion-like inflaton is assumed to have a cosine-type periodic potential. This is not the case in a very simple model in which the axion-like inflaton is coupled to an SU(N) (or other) pure Yang-Mills, at least in the large N limit as pointed out by Witten. It has a multi-valued potential, which is effectively quadratic, i.e., there is only a mass term in the large N limit. Thanks to this property, chaotic inflation can be realized more naturally with the decay constant of the axion-like inflaton less than the Planck scale. We demonstrate these points explicitly by using softly broken Script N=1 Super-Yang-Mills which allows us to treat finite N. This analysis also suggests that moderately large gauge groups such as E8 are good enough with a Planck scale decay constant.

  14. Universality classes of inflation

    SciTech Connect

    Roest, Diederik

    2014-01-01

    We investigate all single-field, slow-roll inflationary models whose slow-roll parameters scale as 1/N in the limit of a large number of e-folds N. We proof that all such models belong to two universality classes, characterised by a single parameter. One class contains small field models like hilltop inflation, while the other class consists of large field models like chaotic inflation. We give the leading expressions for the spectral index and tensor-to-scalar ratio r, which are universal for each class, plus subleading corrections for a number of models. This predicts r either to be unobservably small, r < 0.01, or close to the present observational limit, r ≈ 0.07.

  15. Notes on natural inflation

    SciTech Connect

    Yonekura, Kazuya

    2014-10-01

    In the so-called natural inflation, an axion-like inflaton is assumed to have a cosine-type periodic potential. This is not the case in a very simple model in which the axion-like inflaton is coupled to an SU(N) (or other) pure Yang–Mills, at least in the large N limit as pointed out by Witten. It has a multi-valued potential, which is effectively quadratic, i.e., there is only a mass term in the large N limit. Thanks to this property, chaotic inflation can be realized more naturally with the decay constant of the axion-like inflaton less than the Planck scale. We demonstrate these points explicitly by using softly broken N=1 Super-Yang-Mills which allows us to treat finite N. This analysis also suggests that moderately large gauge groups such as E{sub 8} are good enough with a Planck scale decay constant.

  16. Hierarchical axion inflation.

    PubMed

    Ben-Dayan, Ido; Pedro, Francisco Gil; Westphal, Alexander

    2014-12-31

    We propose a new field theory mechanism for generating an effective trans-Planckian decay constant from sub-Planckian ones. Using the minimal two axions and a hierarchy between two axion decay constants is sufficient for realizing inflation through nonperturbative effects only and with minimal tuning. The inflationary motion is kept entirely within a sub-Planckian domain. We outline possible strategies of embedding the model in a string theory setup. PMID:25615300

  17. Inflation in the universe

    SciTech Connect

    Turner, M.S.

    1987-05-01

    The hot big bang cosmology, or the standard cosmology as it is appropriately known, is a highly successful model, providing a reliable and tested accounting of the Universe from 0.01 sec after the bang until today, some 15 Gyr later. However, very special initial data seem to be required in order to account for the observed smoothness and flatness of our Hubble volume and for the existence of the small primeval density inhomogeneities required for the formation of structure in the Universe. Inflation offers a means of accounting for these special initial data, which is based upon physics at sub-planck energy scales (<< m/sub pl/ approx. = 10/sup 19/ GeV) and is motivated by contemporary ideas in particle theory. Here I review the status of the 'Inflationary Paradigm'. At present essentially all inflationary models involve a very weakly-coupled (quantified by the presence of a dimensionless parameter of order 10/sup -12/ or so) scalar field which is displaced from the minimum of its potential. Regions of the Universe where the scalar field is initially displaced from its minimum undergo inflation as the scalar field relaxes, resulting in a Universe today which resembles ours in regions much larger than our present Hubble volume (approx. = 10/sup 28/ cm), but which on very large scales (>> 10/sup 28/ cm) may be highly irregular. The most conspicuous blemish on the paradigm is the lack of a compelling particle physics model to implement it. I also review some other unresolved issues, and discuss in detail the all important confrontation between inflation and observational data. Finally, I discuss the possibility that inflation leads to large-scale, primeval magnetic fields of sufficient strength to be of astrophysical interest. 123 refs., 4 figs.

  18. 'Graceful' old inflation

    SciTech Connect

    Di Marco, Fabrizio; Notari, Alessio

    2006-03-15

    We show that inflation in a false vacuum becomes viable in the presence of a spectator scalar field nonminimally coupled to gravity. The field is unstable in this background; it grows exponentially and slows down the pure de Sitter phase itself, allowing then fast tunneling to a true vacuum. We compute the constraint from graceful exit through bubble nucleation and the spectrum of cosmological perturbations.

  19. Multi-stream inflation

    SciTech Connect

    Li, Miao; Wang, Yi E-mail: wangyi@itp.ac.cn

    2009-07-01

    We propose a ''multi-stream'' inflation model, which is a double field model with spontaneous breaking and restoration of an approximate symmetry. We calculate the density perturbation and non-Gaussianity in this model. We find that this model can have large, scale dependent, and probably oscillating non-Gaussianity. We also note that our model can produce features in the CMB power spectrum and hemispherical power asymmetry.

  20. String driven inflation

    SciTech Connect

    Turok, N.

    1987-11-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation. 17 refs., 1 fig.

  1. String-driven inflation

    NASA Technical Reports Server (NTRS)

    Turok, Neil

    1988-01-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.

  2. PIPER: Primordial Inflation Polarization Explorer

    NASA Astrophysics Data System (ADS)

    Lazear, Justin; Ade, P.; Benford, D. J.; Bennett, C. L.; Chuss, D. T.; Dotson, J. L.; Eimer, J.; Fixsen, D. J.; Halpern, M.; Hinderks, J.; Hinshaw, G. F.; Irwin, K.; Jhabvala, C.; Johnson, B.; Kogut, A. J.; Mirel, P.; Moseley, S. H.; Staguhn, J.; Switzer, E.; Tucker, C. E.; Weston, A.; Wollack, E.

    2014-01-01

    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne cosmic microwave background (CMB) polarization experiment searching for large-angular scale B-mode polarization to constrain Inflation in the early universe. The Inflationary Big Bang theory predicts that the epoch of inflation will result in a background of gravitational waves. These gravitational waves imprinted their unique B-mode signature on the CMB polarization, two features of which are a peak at ell ~ 80 and a "bump" below ell ~ 10 in the B-mode angular power spectrum. The ell ~ 80 "recombination" peak is the first peak caused by gravitational waves imprinting tensor (B-mode) perturbations onto the CMB spectrum during recombination. Gravitational waves at larger scales have not yet entered the horizon and may not contribute, and at smaller scales have decayed away by other interactions, giving rise to a peak at horizon scale. The ell ~ 10 "reionization" bump is caused by a similar mechanism as the recombination peak, where gravitational waves imprint B-mode perturbations into the spectrum, now at larger horizon scales. PIPER will target the reionization bump while keeping enough angular resolution to measure the recombination peak, with sensitivity down to tensor-to-scalar ratio r = 0.007. A series of flights alternating between north and south will produce nearly full-sky temperature and polarization maps and measure the low-ell spectra. 5120 transition edge sensor (TES) bolometers each with 20 arcmin beamwidth, distributed into 4 rectangular close-packed arrays maintained at 150 mK will provide small-scale resolution and sensitivity. PIPER consists of two co-aligned telescopes, each with a front-end variable-delay polarization modulator rapidly modulating either the Q or U Stokes parameters to provide polarization sensitivity and mitigate systematic errors. To achieve background-limited sensitivity, the entire instrument is enclosed in an open bucket dewar maintained at 1.5 K. PIPER

  3. Preheating after modular inflation

    NASA Astrophysics Data System (ADS)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  4. Higgs inflation and naturalness

    NASA Astrophysics Data System (ADS)

    Lerner, Rose N.; McDonald, John

    2010-04-01

    Inflation based on scalar fields which are non-minimally coupled to gravity has been proposed as a way to unify inflation with weak-scale physics, with the inflaton being identified with the Higgs boson or other weak-scale scalar particle. These models require a large non-minimal coupling ξ ~ 104 to have agreement with the observed density perturbations. However, it has been suggested that such models are unnatural, due to an apparent breakdown of the calculation of Higgs-Higgs scattering via graviton exchange in the Jordan frame. Here we argue that Higgs inflation models are in fact natural and that the breakdown does not imply new physics due to strong-coupling effects or unitarity breakdown, but simply a failure of perturbation theory in the Jordan frame as a calculational method. This can be understood by noting that the model is completely consistent when analysed in the Einstein frame and that scattering rates in the two frames are equal by the Equivalence Theorem for non-linear field redefinitions.

  5. GUT-scale inflation with sizeable tensor modes

    SciTech Connect

    Brümmer, Felix; Domcke, Valerie

    2014-08-01

    A sizeable tensor-to-scalar ratio, such as recently claimed by BICEP2, would imply a scale of inflation at the typical scale of supersymmetric grand unification. This could be an accident, or strong support for supersymmetric theories. Models of F-term hybrid inflation naturally connect the GUT scale with the inflationary scale, but they also predict the tensor-to-scalar ratio to be unmeasurably small. In this work we analyze a general UV embedding of F-term hybrid inflation into a supergravity theory with a general Kähler potential. The CMB observables are generated during the early phase of inflation, at large inflaton values, where the potential is dominated by Planck-suppressed operators. Tuning the leading higher-order terms can give an inflaton potential with sizeable tensor fluctuations and a field excursion which is still sub-Planckian but close to the Planck scale, as expected from the Lyth bound.

  6. Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard

    2000-01-01

    The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.

  7. Cosmological inflation in F (R ,G ) gravity

    NASA Astrophysics Data System (ADS)

    De Laurentis, Mariafelicia; Paolella, Mariacristina; Capozziello, Salvatore

    2015-04-01

    Cosmological inflation is discussed in the framework of F (R ,G ) gravity where F is a generic function of the curvature scalar R and the Gauss-Bonnet topological invariant G . The main feature that emerges in this analysis is the fact that this kind of theory can exhaust all the curvature budget related to curvature invariants without considering derivatives of R , Rμ ν, Rσμ ν λ, etc., in the action. Cosmological dynamics results driven by two effective masses (lengths) are related to the R scalaron and the G scalaron working respectively at early and very early epochs of cosmic evolution. In this sense, a double inflationary scenario naturally emerges.

  8. 46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable...

  9. 46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable...

  10. Ghost inflation and de Sitter entropy

    NASA Astrophysics Data System (ADS)

    Jazayeri, Sadra; Mukohyama, Shinji; Saitou, Rio; Watanabe, Yota

    2016-08-01

    In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et al. is satisfied if ghost inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.

  11. Constraints on gauge field production during inflation

    SciTech Connect

    Nurmi, Sami; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk

    2014-07-01

    In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored.

  12. Superconformal D-term inflation

    SciTech Connect

    Buchmüller, W.; Domcke, V.; Schmitz, K. E-mail: valerie.domcke@desy.de

    2013-04-01

    We study models of hybrid inflation in the framework of supergravity with superconformal matter. F-term hybrid inflation is not viable since the inflaton acquires a large tachyonic mass. On the contrary, D-term hybrid inflation can successfully account for the amplitude of the primordial power spectrum. It is a two-field inflation model which, depending on parameters, yields values of the scalar spectral index down to n{sub s} ≅ 0.96. Generically, there is a tension between a small spectral index and the cosmic string bound albeit, within 2σ uncertainty, the current observational bounds can be simultaneously fulfilled.

  13. Inflation at the electroweak scale

    NASA Technical Reports Server (NTRS)

    Knox, Lloyd; Turner, Michael S.

    1993-01-01

    We present a model for slow-rollover inflation where the vacuum energy that drives inflation is of the order of G(F) exp -2; unlike most models, the conversion of vacuum energy to radiation ('reheating') is moderately efficient. The scalar field responsible for inflation is a standard-model singlet, develops a vacuum expectation value of 4 x 10 exp 6 GeV, has a mass of about 1 GeV, and can play a role in electroweak phenomena. We also discuss models where the energy scale of inflation is somewhat larger, but still well below the unification scale.

  14. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, James M.; Luna, Daniel A.; Gwinn, Kenneth W.

    1997-01-01

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening.

  15. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, James M.; Luna, Daniel A.; Gwinn, Kenneth W.

    1998-01-01

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening.

  16. Magnetogenesis from axion inflation

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Giblin, John T., Jr.; Scully, Timothy R.; Sfakianakis, Evangelos I.

    2016-10-01

    In this work we compute the production of magnetic fields in models of axion inflation coupled to the hypercharge sector of the Standard Model through a Chern-Simons interaction term. We make the simplest choice of a quadratic inflationary potential and use lattice simulations to calculate the magnetic field strength, helicity and correlation length at the end of inflation. For small values of the axion-gauge field coupling strength the results agree with no-backreaction calculations and estimates found in the literature. For larger couplings the helicity of the magnetic field differs from the no-backreaction estimate and depends strongly on the comoving wavenumber. We estimate the post-inflationary evolution of the magnetic field based on known results for the evolution of helical and non-helical magnetic fields. The magnetic fields produced by axion inflation with large couplings to U(1)Y can reach Beff gtrsim 10‑16 G, exhibiting a field strength Bphys ≈ 10‑13 G and a correlation length λphys ≈10 pc. This result is insensitive to the exact value of the coupling, as long as the coupling is large enough to allow for instantaneous preheating. Depending on the assumptions for the physical processes that determine blazar properties, these fields can be found consistent with blazar observations based on the value of Beff. Finally, the intensity of the magnetic field for large coupling can be enough to satisfy the requirements for a recently proposed baryogenesis mechanism, which utilizes the chiral anomaly of the Standard Model.

  17. Predictions From Eternal Inflation

    NASA Astrophysics Data System (ADS)

    Leichenauer, Stefan

    We investigate the physics of eternal inflation, particularly the use of multiverse ideas to explain the observed values of the cosmological constant and the coincidences of cosmological timescales. We begin by reviewing eternal inflation, the multiverse, and the resulting measure problem. Then follows a detailed study of proposals to solve the measure problem, both analytical and numerical, including an analysis of their predictions for cosmological observables. A key outcome of this investigation is that the traditional anthropic calculations, which take into account the necessity of galaxies and heavy elements to produce observers, are redundant in our framework. The cosmological coincidence problem, the seemingly coincidental equality of the timescales of observation and of vacuum domination, is solved for the first time without appeal to detailed anthropic assumptions: very general geometric considerations do the job automatically. We also estimate a 10% likelihood that evidence for eternal inflation will be found in upcoming measurements of the energy density of the universe. Encouraged by this success, we go on to construct a modified version of the light-cone time measure which has conceptual advantages but also reproduces the phenomenology of its predecessor. We complete our study of the measure problem by noting that for a wide class of proposed solutions, including the one developed here, there is an implicit assumption being made about a catastrophic end to the universe. Finally, as a by-product of this research program we find geometries which violate some of the accepted common knowledge on holographic entropy bounds. We point this out and conjecture a general result.

  18. Wiggly whipped inflation

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A. E-mail: arman@apctp.org E-mail: alstar@landau.ac.ru

    2014-08-01

    Motivated by BICEP2 results on the CMB polarization B-mode which imply primordial gravitational waves are produced when the Universe has the expansion rate of about H ≈ 10{sup 14} GeV, and by deviations from a smooth power-law behavior for multipoles ℓ <50 in the CMB temperature anisotropy power spectrum found in the WMAP and Planck experiments, we have expanded our class of large field inflationary models that fit both the BICEP2 and Planck CMB observations consistently. These best-fitted large field models are found to have a transition from a faster roll to the slow roll V(φ)=m{sup 2} φ{sup 2}/2 inflation at a field value around 14.6 M{sub Pl} and thus a potential energy of V(φ) ∼ (10{sup 16} GeV){sup 4}. In general this transition with sharp features in the inflaton potential produces not only suppression of scalars relative to tensor modes at small k but also introduces wiggles in the primordial perturbation spectrum. These wiggles are shown to be useful to explain some localized features in the CMB angular power spectrum and can also have other observational consequences. Thus, primordial GW can be used now to make a tomography of inflation determining its fine structure. The resulting Wiggly Whipped Inflation scenario is described in details and the anticipated perturbation power spectra, CMB power spectra, non-Gaussianity and other observational consequences are calculated and compared to existing and forthcoming observations.

  19. Low-Mass Inflation Systems for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Webster, Mark S.; Engelbrecht, Carl S.

    1995-01-01

    The use of inflatable space structures has often been proposed for aerospace and planetary applications. Communication, power generation, and very-long-baseline interferometry are just three potential applications of inflatable technology. The success of inflatable structures depends on the development of an applications of inflatable technology. This paper describes two design studies performed to develop a low mass inflation system. The first study takes advantage of existing onboard propulsion gases to reduce the overall system mass. The second study assumes that there is no onboard propulsion system. Both studies employ advanced components developed for the Pluto fast flyby spacecraft to further reduce mass. The study examined four different types of systems: hydrazine, nitrogen and water, nitrogen, and xenon. This study shows that all of these systems can be built for a small space structure with masses lower than 0.5 kilograms.

  20. Quantum gravity slows inflation

    SciTech Connect

    Tsamis, N.C. |; Woodard, R.P.

    1996-02-01

    We consider the quantum gravitational back-reaction on an initially inflating, homogeneous and isotropic universe whose topology is T{sup 3} {times} {Re}. Although there is no secular effect at one loop, an explicit calculation shows that two-loop processes act to slow the rate of expansion by an amount which becomes non-pertubatively large at late times. By exploiting Feynman`s tree theorem we show that all higher loops act in the same sense. 18 refs., 1 fig.

  1. Reconciling inflation with openness

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Baccigalupi, Carlo; Occhionero, Franco

    1996-10-01

    It is already understood that the increasing observational evidence for an open universe can be reconciled with inflation if our horizon is contained inside one single huge bubble nucleated during the inflationary phase transition. In this frame of ideas, we show here that the probability of living in a bubble with the right Ω0 (~=0.2) can be comparable to unity, rather than infinitesimally small. For this purpose we modify both quantitatively and qualitatively an intuitive toy model of ours. Therefore, inferring from the observations that Ω0<1 not only does not conflict with the inflationary paradigm, but rather supports therein the occurrence of a primordial phase transition.

  2. Inflation in a web

    SciTech Connect

    Li Sheng; Piao Yunsong; Liu Yang

    2009-12-15

    In a given path with multiple branches, in principle, it can be expected that there are some fork points, where one branch is bifurcated into different branches, or various branches converge into one or several branches. In this paper, it is shown that if there is a web formed by such branches in a given field space, in which each branch can be responsible for a period of slow roll inflation, a multiverse separated by a domain wall network will come into being, some of which might correspond to our observable universe. We discuss this scenario and show possible observations of a given observer at late time.

  3. Therapeutic Play at Inflatable Playgrounds

    ERIC Educational Resources Information Center

    Yavorcik, Carin

    2009-01-01

    The environment at indoor inflatable playgrounds, featuring giant bounce houses and slides, can become an ideal place for children with autism to receive helpful sensations. This is the reasoning behind Sensory Nights hosted by the Autism Society of America and Pump It Up, a national franchise of giant, indoor inflatable playgrounds. The private…

  4. Inflatable stretcher to transport patients

    NASA Technical Reports Server (NTRS)

    Clark, C. C.; Gordon, F. T., Jr.; Schmidt, C. B.

    1970-01-01

    Inflatable plastic bag inside strong, inflexible outer bag facilitates emergency transport of seriously burned or disabled patients. When the bag is inflated the patient is completely immobilized and cushioned from external shock. Air for breathing, temperature controls and communications may be provided by appropriate plug-in connections.

  5. A Methane Balloon Inflation Chamber

    ERIC Educational Resources Information Center

    Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe

    2005-01-01

    The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.

  6. Topological inflation with graceful exit

    NASA Astrophysics Data System (ADS)

    Marunović, Anja; Prokopec, Tomislav

    2016-04-01

    We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that the monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as ns simeq 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.

  7. Asymptotically safe Starobinsky inflation

    NASA Astrophysics Data System (ADS)

    Copeland, Edmund J.; Rahmede, Christoph; Saltas, Ippocratis D.

    2015-05-01

    We revisit Starobinsky inflation in a quantum gravitational context, by means of the exact renormalization group (RG). We calculate the nonperturbative beta functions for Newton's "constant" G and the dimensionless R2 coupling, and show that there exists an attractive UV fixed point where the latter one vanishes but not the former one, and we provide the corresponding beta functions. The smallness of the R2 coupling, required for agreement with inflationary observables, is naturally ensured by its vanishing at the UV fixed point, ensuring the smallness of the primordial fluctuations, as well as providing a theoretical motivation for the initial conditions needed for successful inflation in this context. We discuss the corresponding RG dynamics, showing both how inflationary and classical observations define the renormalization conditions for the couplings, and also how the UV regime is connected with lower energies along the RG flow. Finally, we discuss the consistency of our results when higher-order curvature corrections are included, and show that they are robust to the inclusion of R3 corrections.

  8. Poly-instanton inflation

    SciTech Connect

    Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo E-mail: f.pedro1@physics.ox.ac.uk

    2011-12-01

    We propose a new inflationary scenario in type IIB Calabi-Yau compactifications, where the inflaton is a Kähler modulus parameterising the volume of an internal four-cycle. The inflaton potential is generated via poly-instanton corrections to the superpotential which give rise to a naturally flat direction due to their double exponential suppression. Given that the volume mode is kept stable during inflation, all the inflaton-dependent higher dimensional operators are suppressed. Moreover, string loop effects can be shown to be negligible throughout all the inflationary dynamics for natural values of the underlying parameters. The model is characterised by a reheating temperature of the order T{sub rh} ≅ 10{sup 6} GeV which requires N{sub e} ≅ 54 e-foldings of inflation. All the inflationary observables are compatible with current observations since the spectral index is n{sub s} ≅ 0.96, while the tensor-to-scalar ratio is r ≅ 10{sup −5}. The volume of the Calabi-Yau is of order 10{sup 3} in string units, corresponding to an inflationary scale around 10{sup 15} GeV.

  9. Inflation in supersymmetric SU(5)

    SciTech Connect

    Khalil, S.; Rehman, M. U.; Shafi, Q.; Zaakouk, E. A.

    2011-03-15

    We analyze the adjoint field inflation in supersymmetric (SUSY) SU(5) model. In minimal SUSY SU(5) hybrid inflation monopoles are produced at the end of inflation. We therefore explore the nonminimal model of inflation based on SUSY SU(5), like shifted hybrid inflation, which provides a natural solution for the monopole problem. We find that the supergravity corrections with nonminimal Kaehler potential are crucial to realize the central value of the scalar spectral index n{sub s{approx_equal}}0.96 consistent with the 7 yr WMAP data. The tensor to scalar ratio r is quite small, taking on values r < or approx. 10{sup -5}. Because of R symmetry massless SU(3) octet and SU(2) triplet supermultiplets are present and could spoil gauge coupling unification. To keep gauge coupling unification intact, light vectorlike particles are added which are expected to be observed at LHC.

  10. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1997-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  11. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1996-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being Joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  12. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1996-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  13. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.

    1996-01-09

    An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.

  14. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.

    1997-03-04

    An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.

  15. Constraining inflation with future galaxy redshift surveys

    SciTech Connect

    Huang, Zhiqi; Vernizzi, Filippo; Verde, Licia E-mail: liciaverde@icc.ub.edu

    2012-04-01

    With future galaxy surveys, a huge number of Fourier modes of the distribution of the large scale structures in the Universe will become available. These modes are complementary to those of the CMB and can be used to set constraints on models of the early universe, such as inflation. Using a MCMC analysis, we compare the power of the CMB with that of the combination of CMB and galaxy survey data, to constrain the power spectrum of primordial fluctuations generated during inflation. We base our analysis on the Planck satellite and a spectroscopic redshift survey with configuration parameters close to those of the Euclid mission as examples. We first consider models of slow-roll inflation, and show that the inclusion of large scale structure data improves the constraints by nearly halving the error bars on the scalar spectral index and its running. If we attempt to reconstruct the inflationary single-field potential, a similar conclusion can be reached on the parameters characterizing the potential. We then study models with features in the power spectrum. In particular, we consider ringing features produced by a break in the potential and oscillations such as in axion monodromy. Adding large scale structures improves the constraints on features by more than a factor of two. In axion monodromy we show that there are oscillations with small amplitude and frequency in momentum space that are undetected by CMB alone but can be measured by including galaxy surveys in the analysis.

  16. Does money matter in inflation forecasting?

    NASA Astrophysics Data System (ADS)

    Binner, J. M.; Tino, P.; Tepper, J.; Anderson, R.; Jones, B.; Kendall, G.

    2010-11-01

    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regression-techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naïve random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists’ long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies.

  17. Hybrid Inflatable Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Valle, Gerard D.; Edeen, Gregg; DeLaFuente, Horacio M.; Schneider, William C.; Spexarth, Gary R.; Johnson, Christopher J.; Pandya, Shalini

    2004-01-01

    Figure 1 shows a prototype of a large pressure vessel under development for eventual use as a habitable module for long spaceflight (e.g., for transporting humans to Mars). The vessel is a hybrid that comprises an inflatable shell attached to a rigid central structural core. The inflatable shell is, itself, a hybrid that comprises (1) a pressure bladder restrained against expansion by (2) a web of straps made from high-strength polymeric fabrics. On Earth, pressure vessels like this could be used, for example, as portable habitats that could be set up quickly in remote locations, portable hyperbaric chambers for treatment of decompression sickness, or flotation devices for offshore platforms. In addition, some aspects of the design of the fabric straps could be adapted to such other items as lifting straps, parachute straps, and automotive safety belts. Figure 2 depicts selected aspects of the design of a vessel of this type with a toroidal configuration. The bladder serves as an impermeable layer to keep air within the pressure vessel and, for this purpose, is sealed to the central structural core. The web includes longitudinal and circumferential straps. To help maintain the proper shape upon inflation after storage, longitudinal and circumferential straps are indexed together at several of their intersections. Because the web is not required to provide a pressure seal and the bladder is not required to sustain structural loads, the bladder and the web can be optimized for their respective functions. Thus, the bladder can be sealed directly to the rigid core without having to include the web in the seal substructure, and the web can be designed for strength. The ends of the longitudinal straps are attached to the ends of the rigid structural core by means of clevises. Each clevis pin is surrounded by a roller, around which a longitudinal strap is wrapped to form a lap seam with itself. The roller is of a large diameter chosen to reduce bending of the fibers in

  18. Inflation and non-equilibrium dynamics

    SciTech Connect

    Pi, S. )

    1989-06-01

    Herman Feshbach is a premier nuclear physicist. Although I do no research in his physics subfield, I have found it useful to apply methods developed in that area to early universe investigations that rely on a field-theoretic description for the time evolution of pure and/or mixed initial states. On the occasion of his seventieth birthday, I offer for his enjoyment this essay in which I describe how time-dependent Hartree--Fock methods and their generalizations to mixed states are used in attempts to establish various cosmological scenarios, in particular, inflation. {copyright} 1989 Academic Press, Inc.

  19. Constraining monodromy inflation

    SciTech Connect

    Peiris, Hiranya V.; Easther, Richard; Flauger, Raphael E-mail: r.easther@auckland.ac.nz

    2013-09-01

    We use cosmic microwave background (CMB) data from the 9-year WMAP release to derive constraints on monodromy inflation, which is characterized by a linear inflaton potential with a periodic modulation. We identify two possible periodic modulations that significantly improve the fit, lowering χ{sup 2} by approximately 10 and 20. However, standard Bayesian model selection criteria assign roughly equal odds to the modulated potential and the unmodulated case. A modulated inflationary potential can generate substantial primordial non-Gaussianity with a specific and characteristic form. For the best-fit parameters to the WMAP angular power spectrum, the corresponding non-Gaussianity might be detectable in upcoming CMB data, allowing nontrivial consistency checks on the predictions of a modulated inflationary potential.

  20. Rescuing quadratic inflation

    SciTech Connect

    Ellis, John; Fairbairn, Malcolm; Sueiro, Maria E-mail: malcolm.fairbairn@kcl.ac.uk

    2014-02-01

    Inflationary models based on a single scalar field φ with a quadratic potential V = ½m{sup 2}φ{sup 2} are disfavoured by the recent Planck constraints on the scalar index, n{sub s}, and the tensor-to-scalar ratio for cosmological density perturbations, r{sub T}. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on n{sub s} and r{sub T}. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.

  1. Grade inflation: a problem in nursing?

    PubMed

    King-Jones, Malena; Mitchell, Abigail

    2012-01-01

    This article examines grade inflation in higher education and in nursing education. The factors related to grade inflation and consequences of grade inflation are explored. Actions that address grade inflation and recommendations for future research in nursing education are provided. PMID:22856061

  2. 12 CFR 1209.80 - Inflation adjustments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Inflation adjustments. 1209.80 Section 1209.80... PROCEDURE Civil Money Penalty Inflation Adjustments § 1209.80 Inflation adjustments. The maximum amount of... thereafter adjusted in accordance with the Inflation Adjustment Act, on a recurring four-year cycle, is...

  3. 12 CFR 1209.80 - Inflation adjustments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Inflation adjustments. 1209.80 Section 1209.80... PROCEDURE Civil Money Penalty Inflation Adjustments § 1209.80 Inflation adjustments. The maximum amount of... thereafter adjusted in accordance with the Inflation Adjustment Act, on a recurring four-year cycle, is...

  4. 12 CFR 1209.80 - Inflation adjustments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Inflation adjustments. 1209.80 Section 1209.80... PROCEDURE Civil Money Penalty Inflation Adjustments § 1209.80 Inflation adjustments. The maximum amount of... thereafter adjusted in accordance with the Inflation Adjustment Act, on a recurring four-year cycle, is...

  5. 12 CFR 19.240 - Inflation adjustments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Inflation adjustments. 19.240 Section 19.240... PROCEDURE Civil Money Penalty Inflation Adjustments § 19.240 Inflation adjustments. (a) The maximum amount... Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note) as follows: ER10NO08.001 (b)...

  6. 12 CFR 19.240 - Inflation adjustments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Inflation adjustments. 19.240 Section 19.240... PROCEDURE Civil Money Penalty Inflation Adjustments § 19.240 Inflation adjustments. (a) The maximum amount... Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note) as follows: ER10NO08.001 (b)...

  7. 12 CFR 19.240 - Inflation adjustments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Inflation adjustments. 19.240 Section 19.240... PROCEDURE Civil Money Penalty Inflation Adjustments § 19.240 Inflation adjustments. (a) The maximum amount... Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note) as follows: ER10NO08.001 (b)...

  8. Anisotropic inflation with general potentials

    NASA Astrophysics Data System (ADS)

    Shi, JiaMing; Huang, XiaoTian; Qiu, TaoTao

    2016-04-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  9. Paresev 1-C Inflatable Wing

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Aboard a truck and ready for a test flight is the Paresev 1-C on the ramp at the NASA Flight Research Center, Edwards, California. The half-scale version of the inflatable Gemini parawing was pre-flighted by being carried across the Rosamond dry lakebed on the back of a truck before a tow behind an International Harvester Carry- All. The inflatable center spar ran fore and aft and measured 191 inches, two other inflatable spars formed the leading edges. The three compartments were filled with nitrogen under pressure to make them rigid. The Paresev 1-C was very unstable in flight with this configuration.

  10. Observing the inflation potential. [in models of cosmological inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.; Lidsey, James E.

    1993-01-01

    We show how observations of the density perturbation (scalar) spectrum and the gravitational wave (tensor) spectrum allow a reconstruction of the potential responsible for cosmological inflation. A complete functional reconstruction or a perturbative approximation about a single scale are possible; the suitability of each approach depends on the data available. Consistency equations between the scalar and tensor spectra are derived, which provide a powerful signal of inflation.

  11. Supernatural inflation: inflation from supersymmetry with no (very) small parameters

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; SoljačiĆ, Marin; Guth, Alan H.

    1996-02-01

    Most models of inflation have small parameters, either to guarantee sufficient inflation or the correct magnitude of the density perturbations. In this paper we show that, in supersymmetric theories with weak-scale supersymmetry breaking, one can construct viable inflationary models in which the requisite parameters appear naturally in the form of the ratio of mass scales that are already present in the theory. Successful inflationary models can be constructed from the flat-direction fields of a renormalizable supersymmetric potential, and such models can be realized even in the context of a simple GUT extension of the MSSM. We evade naive ``naturalness'' arguments by allowing for more than one field to be relevant to inflation, as in ``hybrid inflation'' models, and we argue that this is the most natural possibility if inflation fields are to be associated with flat direction fields of a supersymmetric theory. Such models predict a very low Hubble constant during inflation, of order 103-104 GeV, a scalar density perturbation index n which is very close to or greater than unity, and negligible tensor perturbations. In addition, these models lead to a large spike in the density perturbation spectrum at short wavelengths.

  12. Moduli inflation in five-dimensional supergravity models

    SciTech Connect

    Abe, Hiroyuki; Otsuka, Hajime E-mail: hajime.13.gologo@akane.waseda.jp

    2014-11-01

    We propose a simple but effective mechanism to realize an inflationary early universe consistent with the observed WMAP, Planck and/or BICEP2 data, which would be incorporated in various supersymmetric models of elementary particles constructed in the (effective) five-dimensional spacetime. In our scenario, the inflaton field is identified with one of the moduli appearing when the fifth direction is compactified, and a successful cosmological inflation without the so-called η problem can be achieved by a very simple moduli stabilization potential. We also discuss the related particle cosmology during and (just) after the inflation, such as the (no) cosmological moduli problem.

  13. Coherent phase argument for inflation

    SciTech Connect

    Scott Dodelson

    2004-03-17

    Cosmologists have developed a phenomenally successful picture of structure in the universe based on the idea that the universe expanded exponentially in its earliest moments. There are three pieces of evidence for this exponential expansion--inflation--from observations of anisotropies in the cosmic microwave background. First, the shape of the primordial spectrum is very similar to that predicted by generic inflation models. Second, the angular scale at which the first acoustic peak appears is consistent with the flat universe predicted by inflation. Here the author describes the third piece of evidence, perhaps the most convincing of all: the phase coherence needed to account for the clear peak/trough structure observed by the WMAP satellite and its predecessors. The author also discusses alternatives to inflation that have been proposed recently and explain how they produce coherent phases.

  14. Accidental inflation in the landscape

    SciTech Connect

    Blanco-Pillado, Jose J.; Metallinos, Konstantinos; Gomez-Reino, Marta E-mail: marta.gomez-reino.perez@cern.ch

    2013-02-01

    We study some aspects of fine tuning in inflationary scenarios within string theory flux compactifications and, in particular, in models of accidental inflation. We investigate the possibility that the apparent fine-tuning of the low energy parameters of the theory needed to have inflation can be generically obtained by scanning the values of the fluxes over the landscape. Furthermore, we find that the existence of a landscape of eternal inflation in this model provides us with a natural theory of initial conditions for the inflationary period in our vacuum. We demonstrate how these two effects work in a small corner of the landscape associated with the complex structure of the Calabi-Yau manifold P{sup 4}{sub [1,1,1,6,9]} by numerically investigating the flux vacua of a reduced moduli space. This allows us to obtain the distribution of observable parameters for inflation in this mini-landscape directly from the fluxes.

  15. Linear inflation from quartic potential

    NASA Astrophysics Data System (ADS)

    Kannike, Kristjan; Racioppi, Antonio; Raidal, Martti

    2016-01-01

    We show that if the inflaton has a non-minimal coupling to gravity and the Planck scale is dynamically generated, the results of Coleman-Weinberg inflation are confined in between two attractor solutions: quadratic inflation, which is ruled out by the recent measurements, and linear inflation which, instead, is in the experimental allowed region. The minimal scenario has only one free parameter — the inflaton's non-minimal coupling to gravity — that determines all physical parameters such as the tensor-to-scalar ratio and the reheating temperature of the Universe. Should the more precise future measurements of inflationary parameters point towards linear inflation, further interest in scale-invariant scenarios would be motivated.

  16. Complex hybrid inflation and baryogenesis.

    PubMed

    Delepine, David; Martínez, Carlos; Ureña-López, L Arturo

    2007-04-20

    We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated with the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vacuum expectation value of the waterfall field, which is well constrained by diverse cosmological observations.

  17. The trispectrum in ghost inflation

    SciTech Connect

    Huang, Qing-Guo

    2010-07-01

    We calculate the trispectrum in ghost inflation where both the contact diagram and scale-exchange diagram are taken into account. The shape of trispectrum is discussed carefully and we find that the local form is absent in ghost inflation. In general, for the non-local shape trispectrum there are not analogous parameters to τ{sub NL}{sup loc.} and g{sub NL}{sup loc.} which can completely characterize the size of local form trispectrum.

  18. Toy model for open inflation

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    1999-01-01

    The open inflation scenario based on the theory of bubble formation in the models of a single scalar field suffers from a fatal defect. In all the versions of this scenario known so far, the Coleman-De Luccia instantons describing the creation of an open universe do not exist. We propose a simple one-field model where the CDL instanton does exist and the open inflation scenario can be realized.

  19. New Millenium Inflatable Structures Technology

    NASA Technical Reports Server (NTRS)

    Mollerick, Ralph

    1997-01-01

    Specific applications where inflatable technology can enable or enhance future space missions are tabulated. The applicability of the inflatable technology to large aperture infra-red astronomy missions is discussed. Space flight validation and risk reduction are emphasized along with the importance of analytical tools in deriving structurally sound concepts and performing optimizations using compatible codes. Deployment dynamics control, fabrication techniques, and system testing are addressed.

  20. Complex Hybrid Inflation and Baryogenesis

    SciTech Connect

    Delepine, David; Martinez, Carlos; Urena-Lopez, L. Arturo

    2007-04-20

    We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated with the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vacuum expectation value of the waterfall field, which is well constrained by diverse cosmological observations.

  1. Higgs dynamics during inflation

    SciTech Connect

    Enqvist, Kari; Meriniemi, Tuukka; Nurmi, Sami E-mail: tuukka.meriniemi@helsinki.fi

    2014-07-01

    We investigate inflationary Higgs dynamics and constraints on the Standard Model parameters assuming the Higgs potential, computed to next-to-next leading order precision, is not significantly affected by new physics. For a high inflationary scale H ∼ 10{sup 14} GeV suggested by BICEP2, we show that the Higgs is a light field subject to fluctuations which affect its dynamics in a stochastic way. Starting from its inflationary value the Higgs must be able to relax to the Standard Model vacuum well before the electroweak scale. We find that this is consistent with the high inflationary scale only if the top mass m{sub t} is significantly below the best fit value. The region within 2σ errors of the measured m{sub t}, the Higgs mass m{sub h} and the strong coupling α{sub s} and consistent with inflation covers approximately the interval m{sub t}∼<171.8 GeV+0.538(m{sub h}−125.5 GeV) with 125.4 GeV∼

  2. Two tunnels to inflation

    SciTech Connect

    Aguirre, Anthony; Johnson, Matthew C.

    2006-06-15

    We investigate the formation via tunneling of inflating (false-vacuum) bubbles in a true-vacuum background, and the reverse process. Using effective potentials from the junction condition formalism, all true- and false-vacuum bubble solutions with positive interior and exterior cosmological constant, and arbitrary mass are catalogued. We find that tunneling through the same effective potential appears to describe two distinct processes: one in which the initial and final states are separated by a wormhole (the Farhi-Guth-Guven mechanism), and one in which they are either in the same hubble volume or separated by a cosmological horizon. In the zero-mass limit, the first process corresponds to the creation of an inhomogenous universe from nothing, while the second mechanism is equivalent to the nucleation of true- or false-vacuum Coleman-De Luccia bubbles. We compute the probabilities of both mechanisms in the WKB approximation using semiclassical Hamiltonian methods, and find that--assuming both process are allowed--neither mechanism dominates in all regimes.

  3. How thermal inflation can save minimal hybrid inflation in supergravity

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Konstantinos; Owen, Charlotte

    2016-10-01

    Minimal hybrid inflation in supergravity has been ruled out by the 2015 Planck observations because the spectral index of the produced curvature perturbation falls outside observational bounds. To resurrect the model, a number of modifications have been put forward but many of them spoil the accidental cancellation that resolves the η-problem and require complicated Kähler constructions to counterbalance the lost cancellation. In contrast, in this paper the model is rendered viable by supplementing the scenario with a brief period of thermal inflation, which follows the reheating of primordial inflation. The scalar field responsible for thermal inflation requires a large non-zero vacuum expectation value (VEV) and a flat potential. We investigate the VEV of such a flaton field and its subsequent effect on the inflationary observables. We find that, for large VEV, minimal hybrid inflation in supergravity produces a spectral index within the 1-σ Planck bound and a tensor-to-scalar ratio which may be observable in the near future. The mechanism is applicable to other inflationary models.

  4. Nonminimally coupled inflation with initial conditions from a preinflation anamorphic contracting era

    NASA Astrophysics Data System (ADS)

    McDonald, John

    2016-08-01

    Inflation due to a nonminimally coupled scalar field, as first proposed by Salopek, Bardeen and Bond (SBB), is in good agreement with the observed value of the spectral index and constraints on the tensor-to-scalar ratio. Here we explore the possibility that SBB inflation represents the late stage of a Universe which emerges from an early contracting era. We present a model in which the Universe smoothly transitions from an anamorphic contracting era to late-time SBB inflation without encountering a singular bounce. This corresponds to a continuous expansion in the Einstein frame throughout. We show that the anamorphic contracting era is able to provide the smooth superhorizon initial conditions necessary for subsequent SBB inflation to occur. The model predicts corrections to the nonminimal coupling, kinetic term and potential of SBB inflation which can observably increase the spectral index relative to its SBB prediction.

  5. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.

    1998-12-08

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.

  6. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.

    1997-11-18

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.

  7. Alchemical inflation: inflaton turns into Higgs

    SciTech Connect

    Nakayama, Kazunori; Takahashi, Fuminobu E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2012-11-01

    We propose a new inflation model in which a gauge singlet inflaton turns into the Higgs condensate after inflation. The inflationary path is characterized by a moduli space of supersymmetric vacua spanned by the inflaton and Higgs field. The inflation energy scale is related to the soft supersymmetry breaking, and the Hubble parameter during inflation is smaller than the gravitino mass. The initial condition for the successful inflation is naturally realized by the pre-inflation in which the Higgs plays a role of the waterfall field.

  8. Aspects of inflation in string theory

    NASA Astrophysics Data System (ADS)

    Baumann, Daniel

    2008-10-01

    In this thesis we make small steps towards the ambitious goal of a microphysical understanding of the inflationary era in the early universe. We identify three key questions that require a proper understanding of the ultraviolet limit of the theory: (i) the delicate flatness of the inflaton potential, (ii) the possibility of observable gravitational waves and (iii) a large non-Gaussianity of the primordial density fluctuations. We study these fundamental aspects of inflation in the context of string theory. V (φ): In the first half of the thesis, we give the first fully explicit derivation of the potential for warped D-brane inflation. The analysis exposes the eta-problem, relates effective parameters in the inflaton Lagrangian to microscopic string theory input, and illustrates important correlations between the parameters of the potential. We show that compactification constraints significantly limit the possibility of obtaining inflationary solutions in these scenarios. r: All inflationary models that predict an observable gravitational wave signal require that the inflaton field evolves over a super-Planckian range. In the second half of the thesis, we derive a microscopic bound on the maximal inflaton field variation for D-brane models. The bound arises from the compact nature of the extra dimensions and puts a strong upper limit on the gravitational wave signal. fNL: Finally, we explain that our limit on the field range also significantly constrains the parameter space of Dirac-Born-Infeld inflation. In this case the bound strongly restricts the possibility of a large non-Gaussianity in the primordial fluctuations.

  9. Concentric Nested Toroidal Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J.; Raboin, Jasen L.; Spexarth, Gary R.

    2010-01-01

    Assemblies comprising multiple limited- height toroidal inflatable structures nested in a concentric arrangement have been invented to obtain more design flexibility than can be obtained in single taller, wider toroidal inflatable structures (see figure). Originally intended for use as containers for habitats for humans in outer space or on remote planets, these and related prior inflatable structures could also be useful on Earth as lightweight, compactly stowable, portable special-purpose buildings that could be transported to remote locations and there inflated to full size and shape. In the case of a single inflatable toroidal structure, one important source of lack of design flexibility is the fact that an increase in outer diameter (which is sometimes desired) is necessarily accompanied by an increase in height (which is sometimes undesired). Increases in diameter and height can also cause difficulty in utilization of the resulting larger volume, in that it can become necessary to partition the volume by means of walls and floors, and features (e.g., stairs or ladders) must be added to enable vertical movement between floors. Moreover, ascending and descending between floors in a gravitational environment could pose unacceptable difficulty for the inhabitants under some circumstances. Another source of lack of design flexibility in a single toroidal inflatable structure is that for a given inflation pressure, an increase in the outer diameter of the structure necessarily entails an increase in the maximum stress in the structure. Because it is necessary to keep the maximum stress within the load-bearing capability of the structural materials, consistent with other aspects of the design, this may translate to a limit on the outer diameter. In an assembly comprising concentric nested toroidal structures, an increase in outer diameter does not necessarily entail an increase in height or a maximum stress in excess of the load-bearing capability of the structural

  10. Topological phases of eternal inflation

    SciTech Connect

    Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard

    2010-06-15

    ''Eternal inflation'' is a term that describes a number of different phenomena that have been classified by Winitzki. According to Winitzki's classification, these phases can be characterized by the topology of the percolating structures in the inflating, 'white', region. In this paper we discuss these phases, the transitions between them, and the way they are seen by a 'Census Taker', a hypothetical observer inside the noninflating, 'black', region. We discuss three phases that we call 'black island', 'tubular', and 'white island'. The black island phase is familiar, composed of rare Coleman De Luccia bubble nucleation events. The Census Taker sees an essentially spherical boundary, described by the conformal field theory of the Friedmann-Robertson-Walker/conformal field theory (FRW/CFT) correspondence. In the tubular phase the Census Taker sees a complicated infinite genus structure composed of arbitrarily long tubes. The white island phase is even more mysterious from the black side. Surprisingly, when viewed from the noninflating region this phase resembles a closed, positively curved universe that eventually collapses to a singularity. Nevertheless, pockets of eternal inflation continue forever. In addition, there is an 'aborted' phase in which no eternal inflation takes place. Rigorous results of Chayes, Chayes, Grannan, and Swindle establish the existence of all of these phases, separated by first order transitions, in Mandelbrot percolation, a simple model of eternal inflation.

  11. Spatial curvature falsifies eternal inflation

    SciTech Connect

    Kleban, Matthew; Schillo, Marjorie E-mail: mls604@nyu.edu

    2012-06-01

    Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10{sup −5}). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature Ω{sub k}. On this basis we argue that a measurement of |Ω{sub k}| > 10{sup −4} would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of Ω{sub k} < −10{sup −4} (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of Ω{sub k} measurements and constitute a sharp test of these predictions.

  12. Standard-smooth hybrid inflation

    SciTech Connect

    Lazarides, George; Vamvasakis, Achilleas

    2007-12-15

    We consider the extended supersymmetric Pati-Salam model which, for {mu}>0 and universal boundary conditions, succeeds to yield experimentally acceptable b-quark masses by moderately violating Yukawa unification. It is known that this model can lead to new shifted or new smooth hybrid inflation. We show that a successful two-stage inflationary scenario can be realized within this model based only on renormalizable superpotential interactions. The cosmological scales exit the horizon during the first stage of inflation, which is of the standard hybrid type and takes place along the trivial flat direction with the inflaton driven by radiative corrections. Spectral indices compatible with the recent data can be achieved in global supersymmetry or minimal supergravity by restricting the number of e-foldings of our present horizon during the first inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by a second stage of inflation, which occurs mainly along the built-in new smooth hybrid inflationary path appearing right after the destabilization of the trivial flat direction at its critical point. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation to become utterly negligible in the present universe for almost all (for all) the allowed values of the parameters in the case of global supersymmetry (minimal supergravity)

  13. Inflatable Antennas Support Emergency Communication

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  14. Load limiting parachute inflation control

    SciTech Connect

    Redmond, J.; Hinnerichs, T.; Parker, G.

    1994-01-01

    Excessive deceleration forces experienced during high speed deployment of parachute systems can cause damage to the payload and the canopy fabric. Conventional reefing lines offer limited relief by temporarily restricting canopy inflation and limiting the peak deceleration load. However, the open-loop control provided by existing reefing devices restrict their use to a specific set of deployment conditions. In this paper, the sensing, processing, and actuation that are characteristic of adaptive structures form the basis of three concepts for active control of parachute inflation. These active control concepts are incorporated into a computer simulation of parachute inflation. Initial investigations indicate that these concepts promise enhanced performance as compared to conventional techniques for a nominal release. Furthermore, the ability of each controller to adapt to off-nominal release conditions is examined.

  15. Supernatural A-Term Inflation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Min; Cheung, Kingman

    Following Ref. 10, we explore the parameter space of the case when the supersymmetry (SUSY) breaking scale is lower, for example, in gauge mediated SUSY breaking model. During inflation, the form of the potential is V0 plus MSSM (or A-term) inflation. We show that the model works for a wide range of the potential V0 with the soft SUSY breaking mass m O(1) TeV. The implication to MSSM (or A-term) inflation is that the flat directions which is lifted by the non-renormalizable terms described by the superpotential W=λ p φ p-1/Mp-3 P with p = 4 and p = 5 are also suitable to be an inflaton field for λp = O(1) provided there is an additional false vacuum term V0 with appropriate magnitude. The flat directions correspond to p = 6 also works for 0 < ˜ V0/M_ P4 < ˜ 10-40.

  16. Universality class in conformal inflation

    SciTech Connect

    Kallosh, Renata; Linde, Andrei E-mail: alinde@stanford.edu

    2013-07-01

    We develop a new class of chaotic inflation models with spontaneously broken conformal invariance. Observational consequences of a broad class of such models are stable with respect to strong deformations of the scalar potential. This universality is a critical phenomenon near the point of enhanced symmetry, SO(1,1), in case of conformal inflation. It appears because of the exponential stretching of the moduli space and the resulting exponential flattening of scalar potentials upon switching from the Jordan frame to the Einstein frame in this class of models. This result resembles stretching and flattening of inhomogeneities during inflationary expansion. It has a simple interpretation in terms of velocity versus rapidity near the Kähler cone in the moduli space, similar to the light cone of special theory of relativity. This effect makes inflation possible even in the models with very steep potentials. We describe conformal and superconformal versions of this cosmological attractor mechanism.

  17. Dark energy in hybrid inflation

    SciTech Connect

    Gong, Jinn-Ouk; Kim, Seongcheol

    2007-03-15

    The situation that a scalar field provides the source of the accelerated expansion of the Universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid inflation. We trigger the onset of the motion of the quintessence field via the waterfall field, and find that the fate of the Universe depends on the true vacuum energy determined by choosing the parameters. We also briefly discuss the variation of the equation of state and the possible implementation of our scenario in supersymmetric theories.

  18. Anisotropic inflation from charged scalar fields

    SciTech Connect

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem E-mail: firouz@ipm.ir E-mail: m.zarei@cc.iut.ac.ir

    2011-02-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities.

  19. Inflatable Tubular Structures Rigidized with Foams

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  20. GUT scalar potentials for Higgs inflation

    SciTech Connect

    Einhorn, Martin B.; Jones, D.R. Timothy E-mail: drtj@liv.ac.uk

    2012-11-01

    Motivated by the idea that there is new physics beyond the Standard Model (SM), we have investigated a number of models for Grand Unified Theories (GUTS) in four dimensions for the possibility that their Higgs fields might be responsible for inflation in the early universe. In addition to models having an intrinsic Planck mass parameter, we have entertained classically scale invariant models in which the Planck scale itself as well as the GUT scale is induced by spontaneous breaking of the gauge symmetry. We found that in non-supersymmetric SU(5) with the usual Higgs in the adjoint representation but with large non-minimal coupling to the curvature, there appear to be several possible flat directions that might lead to inflation. Interestingly, the one of lowest energy is the breaking into SU(3)SU(2)U(1) that is suggested by gauge coupling unification. Further, we show that this flat direction is stable against small fluctuations in other directions. We attempted to extend this to similar supersymmetric GUTS, both global and supergravity, but did not succeed in finding a phenomenologically acceptable model of this type, with a 'minimal' Kaehler potential augmented only by terms characterised by dimensionless coupling constants. As is often the case, such models suffered either from a negative vacuum energy or from tachyonic modes. We also considered a variant of an 'inverted hierarchy' model in which the GUT scale is set by dimensional transmutation, but were unable to find a phenomenologically acceptable model.

  1. Cosmological inflation and the quantum measurement problem

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Vennin, Vincent; Peter, Patrick

    2012-11-01

    According to cosmological inflation, the inhomogeneities in our Universe are of quantum-mechanical origin. This scenario is phenomenologically very appealing as it solves the puzzles of the standard hot big bang model and naturally explains why the spectrum of cosmological perturbations is almost scale invariant. It is also an ideal playground to discuss deep questions among which is the quantum measurement problem in a cosmological context. Although the large squeezing of the quantum state of the perturbations and the phenomenon of decoherence explain many aspects of the quantum-to-classical transition, it remains to understand how a specific outcome can be produced in the early Universe, in the absence of any observer. The continuous spontaneous localization (CSL) approach to quantum mechanics attempts to solve the quantum measurement question in a general context. In this framework, the wave function collapse is caused by adding new nonlinear and stochastic terms to the Schrödinger equation. In this paper, we apply this theory to inflation, which amounts to solving the CSL parametric oscillator case. We choose the wave function collapse to occur on an eigenstate of the Mukhanov-Sasaki variable and discuss the corresponding modified Schrödinger equation. Then, we compute the power spectrum of the perturbations and show that it acquires a universal shape with two branches, one which remains scale invariant and one with nS=4, a spectral index in obvious contradiction with the cosmic microwave background anisotropy observations. The requirement that the non-scale-invariant part be outside the observational window puts stringent constraints on the parameter controlling the deviations from ordinary quantum mechanics. Due to the absence of a CSL amplification mechanism in field theory, this also has the consequence that the collapse mechanism of the inflationary fluctuations is not efficient. Then, we determine the collapse time. On small scales the collapse is

  2. Local observation in eternal inflation.

    PubMed

    Hartle, James; Hawking, S W; Hertog, Thomas

    2011-04-01

    We consider landscape models that admit several regions where the conditions for eternal inflation hold. It is shown that one can use the no-boundary wave function to calculate small departures from homogeneity within our past light cone despite the possibility of much larger fluctuations on super horizon scales. The dominant contribution comes from the history exiting eternal inflation at the lowest value of the potential. In a class of landscape models this predicts a tensor to scalar ratio of about 10%. In this way the no-boundary wave function defines a measure for the prediction of local cosmological observations.

  3. Anisotropic inflation from vector impurity

    SciTech Connect

    Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp

    2008-08-15

    We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.

  4. Dynamics of gauge field inflation

    SciTech Connect

    Alexander, Stephon; Jyoti, Dhrubo; Kosowsky, Arthur; Marcianò, Antonino

    2015-05-05

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  5. Air Tight: Building Inflatables/Inflatable Construction: Planning and Details

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2016-01-01

    A design-build seminar consisting of students from Physics, Mechanical and Civil Engineering, Robotic, Material Science, Art, and Architecture who will work together on a deployable "closed-loop" inflatable greenhouse for Mars in theory, and an Earth analogue physical mockup on campus.

  6. Grade Inflation in Higher Education. ERIC Digest.

    ERIC Educational Resources Information Center

    Young, Carol

    Grade inflation has commanded increasing attention in the academic world in recent years, with administrators, faculty, and academic analysts unable to agree on whether grade inflation actually exists or is a myth to be debunked. This Digest reviews research in support of and against the existence of grade inflation. A statistical analysis report…

  7. Does Education Corrupt? Theories of Grade Inflation

    ERIC Educational Resources Information Center

    Oleinik, Anton

    2009-01-01

    Several theories of grade inflation are discussed in this review article. It is argued that grade inflation results from the substitution of criteria specific to the search for truth by criteria of quality control generated outside of academia. Particular mechanisms of the grade inflation that occurs when a university is transformed into a…

  8. 12 CFR 1780.80 - Inflation adjustments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Inflation adjustments. 1780.80 Section 1780.80... DEVELOPMENT RULES OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE Civil Money Penalty Inflation Adjustments § 1780.80 Inflation adjustments. The maximum amount of each civil money penalty within...

  9. 12 CFR 1780.80 - Inflation adjustments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Inflation adjustments. 1780.80 Section 1780.80... DEVELOPMENT RULES OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE Civil Money Penalty Inflation Adjustments § 1780.80 Inflation adjustments. The maximum amount of each civil money penalty within...

  10. Is Grade Inflation Related to Faculty Status?

    ERIC Educational Resources Information Center

    Kezim, Boualem; Pariseau, Susan E.; Quinn, Frances

    2005-01-01

    The authors performed a statistical analysis to investigate whether grade inflation existed in the business school at a small private college in the northeast region of the United States. The results showed that grade inflation existed and exhibited a linear trend over a 20-year period. The authors found that grade inflation was related to faculty…

  11. Inflation as de Sitter instability

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Franzin, Edgardo; Mignemi, Salvatore

    2016-09-01

    We consider cosmological inflation generated by a scalar field slowly rolling off from a de Sitter maximum of its potential. The models belong to the class of hilltop models and represent the most general model of this kind in which the scalar potential can be written as the sum of two exponentials. The minimally coupled Einstein-scalar gravity theory obtained in this way is the cosmological version of a two-scale generalization of known holographic models, allowing for solitonic solutions interpolating between an AdS spacetime in the infrared and scaling solutions in the ultraviolet. We then investigate cosmological inflation in the slow-roll approximation. Our model reproduces correctly, for a wide range of its parameters, the most recent experimental data for the power spectrum of primordial perturbations. Moreover, it predicts inflation at energy scales of four to five orders of magnitude below the Planck scale. At the onset of inflation, the mass of the tachyonic excitation, i.e. of the inflaton, turns out to be seven to eight orders of magnitude smaller than the Planck mass.

  12. Non-metric chaotic inflation

    SciTech Connect

    Enqvist, Kari; Koivisto, Tomi; Rigopoulos, Gerasimos E-mail: T.S.Koivisto@astro.uio.no

    2012-05-01

    We consider inflation within the context of what is arguably the simplest non-metric extension of Einstein gravity. There non-metricity is described by a single graviscalar field with a non-minimal kinetic coupling to the inflaton field Ψ, parameterized by a single parameter γ. There is a simple equivalent description in terms of a massless field and an inflaton with a modified potential. We discuss the implications of non-metricity for chaotic inflation and find that it significantly alters the inflaton dynamics for field values Ψ∼>M{sub P}/γ, dramatically changing the qualitative behaviour in this regime. In the equivalent single-field description this is described as a cuspy potential that forms of barrier beyond which the inflation becomes a ghost field. This imposes an upper bound on the possible number of e-folds. For the simplest chaotic inflation models, the spectral index and the tensor-to-scalar ratio receive small corrections dependent on the non-metricity parameter. We also argue that significant post-inflationary non-metricity may be generated.

  13. Investigating Inflation in Type IIA

    SciTech Connect

    Hertzberg, Mark P.; Kachru, Shamit; Taylor, Washington; Tegmark, Max; /MIT, LNS

    2007-12-14

    We prove that inflation is forbidden in the most well understood class of semi-realistic type IIA string compactifications: Calabi-Yau compactifications with only standard NS-NS 3-form flux, R-R fluxes, D6-branes and O6-planes at large volume and small string coupling. With these ingredients, the first slow-roll parameter satisfies {epsilon} {ge} 27/13 whenever V > 0, ruling out both inflation (including brane/anti-brane inflation) and de Sitter vacua in this limit. Our proof is based on the dependence of the 4-dimensional potential on the volume and dilaton moduli in the presence of fluxes and branes. We also describe broader classes of IIA models which may include cosmologies with inflation and/or de Sitter vacua. The inclusion of extra ingredients, such as NS 5-branes and geometric or non-geometric NS-NS fluxes, evades the assumptions used in deriving the no-go theorem. We focus on NS 5-branes and outline how such ingredients may prove fruitful for cosmology, but we do not provide an explicit model. We contrast the results of our IIA analysis with the rather different situation in IIB.

  14. Aligned natural inflation with modulations

    NASA Astrophysics Data System (ADS)

    Choi, Kiwoon; Kim, Hyungjin

    2016-08-01

    The weak gravity conjecture applied for the aligned natural inflation indicates that generically there can be a modulation of the inflaton potential, with a period determined by sub-Planckian axion scale. We study the oscillations in the primordial power spectrum induced by such modulation, and discuss the resulting observational constraints on the model.

  15. Topological phases of eternal inflation

    NASA Astrophysics Data System (ADS)

    Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard

    2010-06-01

    “Eternal inflation” is a term that describes a number of different phenomena that have been classified by Winitzki. According to Winitzki’s classification, these phases can be characterized by the topology of the percolating structures in the inflating, “white,” region. In this paper we discuss these phases, the transitions between them, and the way they are seen by a “Census Taker,” a hypothetical observer inside the noninflating, “black,” region. We discuss three phases that we call “black island,” “tubular,” and “white island.” The black island phase is familiar, composed of rare Coleman De Luccia bubble nucleation events. The Census Taker sees an essentially spherical boundary, described by the conformal field theory of the Friedmann-Robertson-Walker/conformal field theory (FRW/CFT) correspondence. In the tubular phase the Census Taker sees a complicated infinite genus structure composed of arbitrarily long tubes. The white island phase is even more mysterious from the black side. Surprisingly, when viewed from the noninflating region this phase resembles a closed, positively curved universe that eventually collapses to a singularity. Nevertheless, pockets of eternal inflation continue forever. In addition, there is an “aborted” phase in which no eternal inflation takes place. Rigorous results of Chayes, Chayes, Grannan, and Swindle establish the existence of all of these phases, separated by first order transitions, in Mandelbrot percolation, a simple model of eternal inflation.

  16. Anisotropic power-law inflation

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2010-12-01

    We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.

  17. Curvaton and the inhomogeneous end of inflation

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2012-12-01

    We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, f{sub NL}, recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late.

  18. Curvaton and the inhomogeneous end of inflation

    NASA Astrophysics Data System (ADS)

    Assadullahi, Hooshyar; Firouzjahi, Hassan; Namjoo, Mohammad Hossein; Wands, David

    2012-12-01

    We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, fNL, recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late.

  19. Mathematical issues in eternal inflation

    NASA Astrophysics Data System (ADS)

    Singh Kohli, Ikjyot; Haslam, Michael C.

    2015-04-01

    In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.

  20. The big bang and inflation united by an analytic solution

    SciTech Connect

    Bars, Itzhak; Chen, Shih-Hung

    2011-02-15

    Exact analytic solutions for a class of scalar-tensor gravity theories with a hyperbolic scalar potential are presented. Using an exact solution we have successfully constructed a model of inflation that produces the spectral index, the running of the spectral index, and the amplitude of scalar perturbations within the constraints given by the WMAP 7 years data. The model simultaneously describes the big bang and inflation connected by a specific time delay between them so that these two events are regarded as dependent on each other. In solving the Friedmann equations, we have utilized an essential Weyl symmetry of our theory in 3+1 dimensions which is a predicted remaining symmetry of 2T-physics field theory in 4+2 dimensions. This led to a new method of obtaining analytic solutions in the 1T field theory which could in principle be used to solve more complicated theories with more scalar fields. Some additional distinguishing properties of the solution includes the fact that there are early periods of time when the slow-roll approximation is not valid. Furthermore, the inflaton does not decrease monotonically with time; rather, it oscillates around the potential minimum while settling down, unlike the slow-roll approximation. While the model we used for illustration purposes is realistic in most respects, it lacks a mechanism for stopping inflation. The technique of obtaining analytic solutions opens a new window for studying inflation, and other applications, more precisely than using approximations.

  1. The gravitino problem in supersymmetric warm inflation

    SciTech Connect

    Sánchez, Juan C. Bueno; Bastero-Gil, Mar; Berera, Arjun; Dimopoulos, Konstantinos; Kohri, Kazunori E-mail: mbg@ugr.es E-mail: konst.dimopoulos@lancaster.ac.uk

    2011-03-01

    The warm inflation paradigm considers the continuous production of radiation during inflation due to dissipative effects. In its strong dissipation limit, warm inflation gives way to a radiation dominated Universe. High scale inflation then yields a high reheating temperature, which then poses a severe gravitino overproduction problem for the supersymmetric realisations of warm inflation. In this paper we show that, in a certain class of supersymmetric models, the dissipative dynamics of the inflaton is such that the field can avoid its complete decay after inflation. In some cases, the residual energy density stored in the inflaton field oscillations may come to dominate over the radiation bath at a later epoch. If the inflaton field finally decays much later than the onset of this matter dominated phase, the entropy produced from its decay may be sufficient to counteract the excess of gravitinos produced during the last stages of warm inflation.

  2. First-order inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this paper, some models for first-order inflation are discussed, and unique signatures that result if inflation is realized in a first-order transition are emphasized. Some of the history of inflation is reviewed to demonstrate how first-order inflation differs from other models.

  3. Advanced Structural and Inflatable Hybrid Spacecraft Module

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)

    2001-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  4. Fluid physics of parachute inflation

    SciTech Connect

    Peterson, C.W. )

    1993-08-01

    This article describes the physics of the motion of the parachute and the surrounding air as the parachute emerges from the payload, inflates, and decelerates the payload. Precise calculation of parachute deployment, inflation and payload deceleration requires solution of the nonlinear, time-dependent equations of motion for turbulent, separated airflow around and through the parachute coupled to the equations of motion of the parachute. Because of the difficulty of this problem, parachute designers have for many years relied on empirical methods rather than on analysis. A description is given of the attempts to model the important events numerically so that parachutes can someday be designed on computers instead of by trial-and-error flight tests. 3 refs., 7 figs.

  5. UV-extending ghost inflation

    SciTech Connect

    Ivanov, Mikhail M.; Sibiryakov, Sergey E-mail: sergey.sibiryakov@cern.ch

    2014-05-01

    We present a setup that provides a partial UV-completion of the ghost inflation model up to a scale which can be almost as high as the Planck mass. This is achieved by coupling the inflaton to the Lorentz-violating sector described by the Einstein-aether theory or its khronometric version. Compared to previous works on ghost inflation our setup allows to go beyond the study of small perturbations and include the background dynamics in a unified framework. In the specific regime when the expansion of the Universe is dominated by the kinetic energy of the inflaton we find that the model predicts rather high tensor-to-scalar ratio r ∼ 0.02÷0.2 and non-Gaussianity of equilateral type with f{sub NL} in the range from -50 to -5.

  6. Resonant magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Byrnes, Christian T.; Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R.

    2012-03-01

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of Script O(10-15 Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  7. Planck constraints on monodromy inflation

    SciTech Connect

    Easther, Richard; Flauger, Raphael E-mail: flauger@ias.edu

    2014-02-01

    We use data from the nominal Planck mission to constrain modulations in the primordial power spectrum associated with monodromy inflation. The largest improvement in fit relative to the unmodulated model has Δχ{sup 2} ≈ 10 and we find no evidence for a primordial signal, in contrast to a previous analysis of the WMAP9 dataset, for which Δχ{sup 2} ≈ 20. The Planck and WMAP9 results are broadly consistent on angular scales where they are expected to agree as far as best-fit values are concerned. However, even on these scales the significance of the signal is reduced in Planck relative to WMAP, and is consistent with a fit to the ''noise'' associated with cosmic variance. Our results motivate both a detailed comparison between the two experiments and a more careful study of the theoretical predictions of monodromy inflation.

  8. Minimal supergravity models of inflation

    NASA Astrophysics Data System (ADS)

    Ferrara, Sergio; Kallosh, Renata; Linde, Andrei; Porrati, Massimo

    2013-10-01

    We present a superconformal master action for a class of supergravity models with one arbitrary function defining the Jordan frame. It leads to a gauge-invariant action for a real vector multiplet, which upon gauge fixing describes a massive vector multiplet, or to a dual formulation with a linear multiplet and a massive tensor field. In both cases the models have one real scalar, the inflaton, naturally suited for single-field inflation. Vectors and tensors required by supersymmetry to complement a single real scalar do not acquire vacuum expectation values during inflation, so there is no need to stabilize the extra scalars that are always present in the theories with chiral matter multiplets. The new class of models can describe any inflaton potential that vanishes at its minimum and grows monotonically away from the minimum. In this class of supergravity models, one can fit any desirable choice of inflationary parameters ns and r.

  9. Permutation on hybrid natural inflation

    NASA Astrophysics Data System (ADS)

    Carone, Christopher D.; Erlich, Joshua; Ramos, Raymundo; Sher, Marc

    2014-09-01

    We analyze a model of hybrid natural inflation based on the smallest non-Abelian discrete group S3. Leading invariant terms in the scalar potential have an accidental global symmetry that is spontaneously broken, providing a pseudo-Goldstone boson that is identified as the inflaton. The S3 symmetry restricts both the form of the inflaton potential and the couplings of the inflaton field to the waterfall fields responsible for the end of inflation. We identify viable points in the model parameter space. Although the power in tensor modes is small in most of the parameter space of the model, we identify parameter choices that yield potentially observable values of r without super-Planckian initial values of the inflaton field.

  10. Hybrid inflation along waterfall trajectories

    SciTech Connect

    Clesse, Sebastien

    2011-03-15

    We identify a new inflationary regime for which more than 60 e-folds are generated classically during the waterfall phase occurring after the usual hybrid inflation. By performing a Bayesian Monte-Carlo-Markov-Chain analysis, this scenario is shown to take place in a large part of the parameter space of the model. When this occurs, the observable perturbation modes leave the Hubble radius during waterfall inflation. The power spectrum of adiabatic perturbations is red, possibly in agreement with CMB constraints. Particular attention has been given to study only the regions for which quantum backreactions do not affect the classical dynamics. Implications concerning the preheating and the absence of topological defects in our Universe are discussed.

  11. Reheating for closed string inflation

    SciTech Connect

    Cicoli, Michele; Mazumdar, Anupam E-mail: a.mazumdar@lancaster.ac.uk

    2010-09-01

    We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N = 1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation.

  12. Inflation in the scaling limit

    SciTech Connect

    Matarrese, S.; Ortolan, A.; Lucchin, F.

    1989-07-15

    We investigate the stochastic dynamics of the/ital inflaton/ for a wide class of potentials leading either tochaotic or to power-law inflation.At late times the system enters a /ital scaling/ /ital regime/where macroscopic order sets in: the field distribution sharply peaksaround the classical slow-rollover configuration and curvature perturbationsoriginate with a non-Gaussian scale-invariant statistics.

  13. Chaotic inflation and supersymmetry breaking

    SciTech Connect

    Kallosh, Renata; Linde, Andrei; Rube, Tomas; Olive, Keith A.

    2011-10-15

    We investigate the recently proposed class of chaotic inflation models in supergravity with an arbitrary inflaton potential V({phi}). These models are extended to include matter fields in the visible sector and we employ a mechanism of supersymmetry breaking based on a particular phenomenological version of the KKLT mechanism (the KL model). We describe specific features of reheating in this class of models and show how one can solve the cosmological moduli and gravitino problems in this context.

  14. In-step inflatable antenna experiment

    NASA Astrophysics Data System (ADS)

    Freeland, R. E.; Bilyeu, G.

    Large deployable space antennas are needed to accommodate a number of applications that include mobile communications, earth observation radiometry, active microwave sensing, space-orbiting very long baseline interferometry, and Department of Defense (DoD) space-based radar. The criteria for evaluating candidate structural concepts for essentially all the applications is the same; high deployment reliability, low cost, low weight, low launch volume, and high aperture precision. A new class of space structures, called inflatable deployable structures, have tremendous potential for completely satisfying the first four criteria and good potential for accommodating the longer wavelength applications. An inflatable deployable antenna under development by L'Garde Inc. of Tustin, California, represents such a concept. Its level of technology is mature enough to support a meaningful orbital technology experiment. The NASA Office of Aeronautics and Space Technology initiated the In-Space Technology Experiments Program (IN-STEP) specifically to sponsor the verification and/or validation of unique and innovative space technologies in the space environment. The potential of the L'Garde concept has been recognized and resulted in its selection for an IN-STEP experiment. The objective of the experiment is to (a) validate the deployment of a 14-meter, inflatable parabolic reflector structure, (b) measure the reflector surface accuracy, and (c) investigate structural damping characteristics under operational conditions. The experiment approach will be to use the NASA Spartan Spacecraft to carry the experiment on orbit. Reflector deployment will be monitored by two high-resolution video cameras. Reflector surface quality will be measured with a digital imaging radiometer. Structural damping will be based on measuring the decay of reflector structure amplitude. The experiment is being managed by the Jet Propulsion Laboratory. The experiment definition phase (Phase B) will be

  15. Unity of cosmological inflation attractors.

    PubMed

    Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-04-10

    Recently, several broad classes of inflationary models have been discovered whose cosmological predictions, in excellent agreement with Planck, are stable with respect to significant modifications of the inflaton potential. Some classes of models are based on a nonminimal coupling to gravity. These models, which we call ξ attractors, describe universal cosmological attractors (including Higgs inflation) and induced inflation models. Another class describes conformal attractors (including Starobinsky inflation and T models) and their generalization to α attractors. The aim of this Letter is to elucidate the common denominator of these attractors: their robust predictions stem from a joint pole of order 2 in the kinetic term of the inflaton field in the Einstein frame formulation prior to switching to the canonical variables. Model-dependent differences only arise at subleading level in the kinetic term. As a final step towards the unification of the different attractors, we introduce a special class of ξ attractors which is fully equivalent to α attractors with the identification α=1+(1/6ξ). While r is generically predicted to be of the order 1/N^{2}, there is no theoretical lower bound on r in this class of models.

  16. Inflating in a Better Racetrack

    NASA Astrophysics Data System (ADS)

    Blanco-Pillado, Jose juan; Burgess, Cliff P.; Cline, James M.; Escoda, Cristina; Gómez-Reino, Marta; Kallosh, Renata; Linde, Andrei; Quevedo, Fernando

    2006-09-01

    We present a new version of our racetrack inflation scenario which, unlike our original proposal, is based on an explicit compactification of type IIB string theory: the Calabi-Yau manifold Bbb P4[1,1,1,6,9]. The axion-dilaton and all complex structure moduli are stabilized by fluxes. The remaining 2 Kähler moduli are stabilized by a nonperturbative superpotential, which has been explicitly computed. For this model we identify situations for which a linear combination of the axionic parts of the two Kähler moduli acts as an inflaton. As in our previous scenario, inflation begins at a saddle point of the scalar potential and proceeds as an eternal topological inflation. For a certain range of inflationary parameters, we obtain the COBE-normalized spectrum of metric perturbations and an inflationary scale of M = 3 × 1014 GeV. We discuss possible changes of parameters of our model and argue that anthropic considerations favor those parameters that lead to a nearly flat spectrum of inflationary perturbations, which in our case is characterized by the spectral index ns = 0.95.

  17. Inflation on an Open Racetrack

    SciTech Connect

    Chen, Heng-Yu; Hung, Ling-Yan; Shiu, Gary; /Wisconsin U., Madison /SLAC /Stanford U., Phys. Dept.

    2011-11-14

    We present a variant of warped D-brane inflation by incorporating multiple sets of holomorphically - embedded D7-branes involved in moduli stabilization with extent into a warped throat. The resultant D3-brane motion depends on the D7-brane configuration and the relative position of the D3-brane in these backgrounds. The non-perturbative moduli stabilization superpotential takes the racetrack form, but the additional D3-brane open string moduli dependence provides more flexibilities in model building. For concreteness, we consider D3-brane motion in the warped deformed conifold with the presence of multiple D7-branes, and derive the scalar potential valid for the entire throat. By explicit tuning of the microphysical parameters, we obtain inflationary trajectories near an inflection point for various D7-brane configurations. Moreover, the open racetrack potential admits approximate Minkowski vacua before uplifting. We demonstrate with a concrete D-brane inflation model where the Hubble scale during inflation can exceed the gravitino mass. Finally, the multiple sets of D7-branes present in this open racetrack setup also provides a mechanism to stabilize the D3-brane to metastable vacua in the intermediate region of the warped throat.

  18. BICEP2 constrains composite inflation

    NASA Astrophysics Data System (ADS)

    Channuie, Phongpichit

    2014-07-01

    In light of BICEP2, we re-examine single field inflationary models in which the inflation is a composite state stemming from various four-dimensional strongly coupled theories. We study in the Einstein frame a set of cosmological parameters, the primordial spectral index ns and tensor-to-scalar ratio r, predicted by such models. We confront the predicted results with the joint Planck data, and with the recent BICEP2 data. We constrain the number of e-foldings for composite models of inflation in order to obtain a successful inflation. We find that the minimal composite inflationary model is fully consistent with the Planck data. However it is in tension with the recent BICEP2 data. The observables predicted by the glueball inflationary model can be consistent with both Planck and BICEP2 contours if a suitable number of e-foldings are chosen. Surprisingly, the super Yang-Mills inflationary prediction is significantly consistent with the Planck and BICEP2 observations.

  19. Generalised tensor fluctuations and inflation

    SciTech Connect

    Cannone, Dario; Tasinato, Gianmassimo; Wands, David E-mail: g.tasinato@swansea.ac.uk

    2015-01-01

    Using an effective field theory approach to inflation, we examine novel properties of the spectrum of inflationary tensor fluctuations, that arise when breaking some of the symmetries or requirements usually imposed on the dynamics of perturbations. During single-clock inflation, time-reparameterization invariance is broken by a time-dependent cosmological background. In order to explore more general scenarios, we consider the possibility that spatial diffeomorphism invariance is also broken by effective mass terms or by derivative operators for the metric fluctuations in the Lagrangian. We investigate the cosmological consequences of the breaking of spatial diffeomorphisms, focussing on operators that affect the power spectrum of fluctuations. We identify the operators for tensor fluctuations that can provide a blue spectrum without violating the null energy condition, and operators for scalar fluctuations that lead to non-conservation of the comoving curvature perturbation on superhorizon scales even in single-clock inflation. In the last part of our work, we also examine the consequences of operators containing more than two spatial derivatives, discussing how they affect the sound speed of tensor fluctuations, and showing that they can mimic some of the interesting effects of symmetry breaking operators, even in scenarios that preserve spatial diffeomorphism invariance.

  20. Unity of cosmological inflation attractors.

    PubMed

    Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-04-10

    Recently, several broad classes of inflationary models have been discovered whose cosmological predictions, in excellent agreement with Planck, are stable with respect to significant modifications of the inflaton potential. Some classes of models are based on a nonminimal coupling to gravity. These models, which we call ξ attractors, describe universal cosmological attractors (including Higgs inflation) and induced inflation models. Another class describes conformal attractors (including Starobinsky inflation and T models) and their generalization to α attractors. The aim of this Letter is to elucidate the common denominator of these attractors: their robust predictions stem from a joint pole of order 2 in the kinetic term of the inflaton field in the Einstein frame formulation prior to switching to the canonical variables. Model-dependent differences only arise at subleading level in the kinetic term. As a final step towards the unification of the different attractors, we introduce a special class of ξ attractors which is fully equivalent to α attractors with the identification α=1+(1/6ξ). While r is generically predicted to be of the order 1/N^{2}, there is no theoretical lower bound on r in this class of models. PMID:25910108

  1. Scale invariance and a gravitational model with non-eternal inflation

    SciTech Connect

    Herdeiro, Carlos; Hirano, Shinji E-mail: hirano@eken.phys.nagoya-u.ac.jp

    2012-05-01

    We propose a 3+1 dimensional model of gravity which results in inflation at early times, followed by radiation- and matter-dominated epochs and a subsequent acceleration at late times. Both the inflation and late time acceleration are nearly de Sitter with a large hierarchy between the effective cosmological constants. There is no scalar field agent of inflation, and the transition from the inflation to the radiation-dominated period is smooth. This model is designed so that it yields, at the cost of giving up on Lorentz invariance in the gravitational sector, the Dirac-Born-Infeld type conformal scalar theory when the universe is conformally flat. It, however, resembles Einstein's gravity with the Gibbons-Hawking-York boundary term in weakly curved space-times.

  2. Built-in inflation in f(G) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Fatima, H. Ismat

    2016-10-01

    In this paper, we study the role of Gauss-Bonnet term for the early and late time accelerating phases of the universe with the help of two viable f(G) models in the background of flat FRW universe model. These models show inflationary behavior as well as the present accelerating expansion of the universe. The contribution of Gauss-Bonnet term in pressure and energy density is used to calculate equation of state (EoS) parameter for the modified fluid which behaves like cosmological constant with \\Hdot = 0. We discuss early inflation and late accelerating expansion of the universe through scale factor evaluated from equation of continuity numerically.

  3. Inflation, quintessence, and the origin of mass

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2015-08-01

    In a unified picture both inflation and present dynamical dark energy arise from the same scalar field. The history of the Universe describes a crossover from a scale invariant "past fixed point" where all particles are massless, to a "future fixed point" for which spontaneous breaking of the exact scale symmetry generates the particle masses. The cosmological solution can be extrapolated to the infinite past in physical time - the universe has no beginning. This is seen most easily in a frame where particle masses and the Planck mass are field-dependent and increase with time. In this "freeze frame" the Universe shrinks and heats up during radiation and matter domination. In the equivalent, but singular Einstein frame cosmic history finds the familiar big bang description. The vicinity of the past fixed point corresponds to inflation. It ends at a first stage of the crossover. A simple model with no more free parameters than ΛCDM predicts for the primordial fluctuations a relation between the tensor amplitude r and the spectral index n, r = 8.19 (1 - n) - 0.137. The crossover is completed by a second stage where the beyond-standard-model sector undergoes the transition to the future fixed point. The resulting increase of neutrino masses stops a cosmological scaling solution, relating the present dark energy density to the present neutrino mass. At present our simple model seems compatible with all observational tests. We discuss how the fixed points can be rooted within quantum gravity in a crossover between ultraviolet and infrared fixed points. Then quantum properties of gravity could be tested both by very early and late cosmology.

  4. Microwave background anisotropies in quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  5. Inflation of Unreefed and Reefed Extraction Parachutes

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Varela, Jose G.

    2015-01-01

    Data from the Orion and several other test programs have been used to reconstruct inflation parameters for 28 ft Do extraction parachutes as well as the parent aircraft pitch response during extraction. The inflation force generated by extraction parachutes is recorded directly during tow tests but is usually inferred from the payload accelerometer during Low Velocity Airdrop Delivery (LVAD) flight test extractions. Inflation parameters are dependent on the type of parent aircraft, number of canopies, and standard vs. high altitude extraction conditions. For standard altitudes, single canopy inflations are modeled as infinite mass, but the non-symmetric inflations in a cluster are modeled as finite mass. High altitude extractions have necessitated reefing the extraction parachutes, which are best modeled as infinite mass for those conditions. Distributions of aircraft pitch profiles and inflation parameters have been generated for use in Monte Carlo simulations of payload extractions.

  6. Homogeneous cosmological models and new inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Widrow, Lawrence M.

    1986-01-01

    The promise of the inflationary-universe scenario is to free the present state of the universe from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker cosmological models. It is shown that all but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems, the universe today would still be very isotropic.

  7. New Sources of Gravitational Waves During Inflation

    SciTech Connect

    Senatore, Leonardo; Silverstein, Eva; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study

    2012-02-15

    We point out that detectable inflationary tensor modes can be generated by particle or string sources produced during inflation, consistently with the requirements for inflation and constraints from scalar fluctuations. We show via examples that this effect can dominate over the contribution from quantum fluctuations of the metric, occurring even when the inflationary potential energy is too low to produce a comparable signal. Thus a detection of tensor modes from inflation does not automatically constitute a determination of the inflationary Hubble scale.

  8. New sources of gravitational waves during inflation

    SciTech Connect

    Senatore, Leonardo; Silverstein, Eva; Zaldarriaga, Matias E-mail: evas@stanford.edu

    2014-08-01

    We point out that detectable inflationary tensor modes can be generated by particle or string sources produced during inflation, consistently with the requirements for inflation and constraints from scalar fluctuations. We show via examples that this effect can dominate over the contribution from quantum fluctuations of the metric, occurring even when the inflationary potential energy is too low to produce a comparable signal. Thus a detection of tensor modes from inflation does not automatically constitute a determination of the inflationary Hubble scale.

  9. Studying inflation with future space-based gravitational wave detectors

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Takahashi, Tomo E-mail: moroi@phys.s.u-tokyo.ac.jp

    2014-12-01

    Motivated by recent progress in our understanding of the B-mode polarization of cosmic microwave background (CMB), which provides important information about the inflationary gravitational waves (IGWs), we study the possibility to acquire information about the early universe using future space-based gravitational wave (GW) detectors. We perform a detailed statistical analysis to estimate how well we can determine the reheating temperature after inflation as well as the amplitude, the tensor spectral index, and the running of the inflationary gravitational waves. We discuss how the accuracies depend on noise parameters of the detector and the minimum frequency available in the analysis. Implication of such a study on the test of inflation models is also discussed.

  10. Testing the Standard Model with the Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2011-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10A{-3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  11. Calculating nonadiabatic pressure perturbations during multifield inflation

    NASA Astrophysics Data System (ADS)

    Huston, Ian; Christopherson, Adam J.

    2012-03-01

    Isocurvature perturbations naturally occur in models of inflation consisting of more than one scalar field. In this paper, we calculate the spectrum of isocurvature perturbations generated at the end of inflation for three different inflationary models consisting of two canonical scalar fields. The amount of nonadiabatic pressure present at the end of inflation can have observational consequences through the generation of vorticity and subsequently the sourcing of B-mode polarization. We compare two different definitions of isocurvature perturbations and show how these quantities evolve in different ways during inflation. Our results are calculated using the open source Pyflation numerical package which is available to download.

  12. Cosmological magnetic fields from inflation and backreaction

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2009-12-01

    We study the backreaction problem in a mechanism of magnetogenesis from inflation. In usual analysis, it has been assumed that the backreaction due to electromagnetic fields spoils inflation once it becomes important. However, there exists no justification for this assumption. Hence, we analyze magnetogenesis from inflation by taking into account the backreaction. On the contrary to the naive expectation, we show that inflation still continues even after the backreaction begins to work. Nevertheless, it turns out that creation of primordial magnetic fields is significantly suppressed due to the backreaction.

  13. HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)

    NASA Video Gallery

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...

  14. The Cosmic Microwave Background & Inflation, Then & Now

    NASA Astrophysics Data System (ADS)

    Bond, J. Richard; Contaldi, Carlo; Pogosyan, Dmitry; Mason, Brian; Myers, Steve; Pearson, Tim; Pen, Ue-Li; Prunet, Simon; Readhead, Tony; Sievers, Jonathan

    2002-12-01

    The most recent results from the Boomerang, Maxima, DASI, CBI and VSA CMB experiments significantly increase the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance). This is especially so when combined with data on high redshift supernovae (SN1) and large scale structure (LSS), encoding information from local cluster abundances, galaxy clustering, and gravitational lensing. There are ``7 pillars of Inflation'' that can be shown with the CMB probe, and at least 5, and possibly 6, of these have already been demonstrated in the CMB data: (1) the effects of a large scale gravitational potential, demonstrated with COBE/DMR in 1992-96 (2) acoustic peaks/dips in the angular power spectrum of the radiation, which tell about the geometry of the Universe, with the large first peak convincingly shown with Boomerang and Maxima data in 2000, a multiple peak/dip pattern shown in data from Boomerang and DASI (2nd, 3rd peaks, first and 2nd dips in 2001) and from CBI (2nd, 3rd, 4th, 5th peaks, 3rd, 4th dips at 1-sigma in 2002) (3) damping due to shear viscosity and the width of the region over which hydrogen recombination occurred when the universe was 400000 years old (CBI 2002) (4) the primary anisotropies should have a Gaussian distribution (be maximally random) in almost all inflationary models, the best data on this coming from Boomerang; (5) secondary anisotropies associated with nonlinear phenomena subsequent to 400000 years, which must be there and may have been detected by CBI and another experiment, BIMA. Showing the 5 ``pillars'' involves detailed confrontation of the experimental data with theory; e.g., (5) compares the CBI data with predictions from two of the largest cosmological hydrodynamics simulations ever done. DASI, Boomerang and CBI in 2002, AMiBA in 2003, and many other experiments have the sensitivity to demonstrate the next pillar, (6) polarization, which must be there at the ~ 7

  15. A lightweight inflatable solar array

    SciTech Connect

    Malone, P.K.; Williams, G.T.

    1995-12-31

    L`Garde and Phillips Laboratory have developed a light weight deployable solar array wing in the 200-1000 watt range, on the Inflatable Torus Solar Array Technology Demonstration (ITSAT Demo) Project. The power density of a flight unit could be as high as 93 W/kg for a 200 Watt-class wing, including structure and deployment mechanisms. In Phase 1, a proof of concept torus and array was constructed and deployed in the laboratory. During Phase 2, a revised torus and array were constructed and tested at L`Garde and the Naval Research Lab. The qualification tests included random vibration, deployment in a thermal vacuum chamber, natural frequency determination, and thermal cycling. The flight design uses 2 mil thick crystalline Si cells on an AO protected flexible Kapton film substrate folded accordion style for stowage. The support structure is a rectangular frame comprised of two inflated then rigidized cylinders, the array stowage box and its cover. The cylinders, flattened, folded and stored for launch, are deployed by inflating with N{sub 2} and rigidized by straining the cylinder laminate material controllably beyond the elastic limit. The engineering protoflight array was designed for optimum power density but, due to availability, some of the components came from excess production runs. Because of this, the actual power density of the test article was 59 W/kg, or 36% less than the baseline flight array. However, using components as designed, the projected 93 w/kg can be achieved. Due to simple deployment mechanism, the cost of an ITSAT-type solar array is about one-half that of competing systems.

  16. G-bounce inflation: towards nonsingular inflation cosmology with galileon field

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao; Wang, Yu-Tong

    2015-04-01

    We study a nonsingular bounce inflation model, which can drive the early universe from a contracting phase, bounce into an ordinary inflationary phase, followed by the reheating process. Besides the bounce that avoided the Big-Bang singularity which appears in the standard cosmological scenario, we make use of the Horndesky theory and design the kinetic and potential forms of the lagrangian, so that neither of the two big problems in bouncing cosmology, namely the ghost and the anisotropy problems, will appear. The cosmological perturbations can be generated either in the contracting phase or in the inflationary phase, where in the latter the power spectrum will be scale-invariant and fit the observational data, while in the former the perturbations will have nontrivial features that will be tested by the large scale structure experiments. We also fit our model to the CMB TT power spectrum.

  17. High dissipative nonminimal warm inflation

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Shoukrani, Masoomeh

    2016-09-01

    We study a model of warm inflation in which both inflaton field and its derivatives are coupled nonminimally to curvature. We survey the spectrum of the primordial perturbations in high dissipative regime. By expanding the action up to the third order, the amplitude of the non-Gaussianity is studied both in the equilateral and orthogonal configurations. Finally, by adopting four sort of potentials, we compare our model with the Planck 2015 released observational data and obtain some constraints on the model's parameters space in the high dissipation regime.

  18. Odd tensor modes from inflation

    NASA Astrophysics Data System (ADS)

    Sorbo, Lorenzo

    2016-07-01

    The existence of a primordial spectrum of gravitational waves is a generic prediction of inflation. Here, I will discuss under what conditions the coupling of a pseudoscalar inflaton to a U(1) gauge field can induce, in a two-step process, gravitational waves with unusual properties such as: (i) a net chirality, (ii) a blue spectrum, (iii) large non-Gaussianities even if the scalar perturbations are approximately Gaussian and (iv) being detectable in the (relatively) near future by ground-based gravitational interferometers.

  19. Holographic probabilities in eternal inflation.

    PubMed

    Bousso, Raphael

    2006-11-10

    In the global description of eternal inflation, probabilities for vacua are notoriously ambiguous. The local point of view is preferred by holography and naturally picks out a simple probability measure. It is insensitive to large expansion factors or lifetimes and so resolves a recently noted paradox. Any cosmological measure must be complemented with the probability for observers to emerge in a given vacuum. In lieu of anthropic criteria, I propose to estimate this by the entropy that can be produced in a local patch. This allows for prior-free predictions.

  20. Analysis of Inflatable Rock Bolts

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2016-01-01

    An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt-rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young's modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while

  1. Foam rigidized inflatable structural assemblies

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L. (Inventor); Schnell, Andrew R. (Inventor)

    2010-01-01

    An inflatable and rigidizable structure for use as a habitat or a load bearing structure is disclosed. The structure consists of an outer wall and an inner wall defining a containment member and a bladder. The bladder is pressurized to erect the structure from an initially collapsed state. The containment member is subsequently injected with rigidizable fluid through an arrangement of injection ports. Exhaust gases from the curing rigidizable fluid are vented through an arrangement of exhaust ports. The rate of erection can be controlled by frictional engagement with a container or by using a tether. A method for fabricating a tubular structure is disclosed.

  2. On Higgs inflation and naturalness

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Lee, H. M.; Trott, Michael

    2010-07-01

    We reexamine recent claims that Einstein-frame scattering in the Higgs inflation model is unitary above the cut-off energy Λ ≃ M p /ξ. We show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory. In a covariant gauge they arise from non-minimal Higgs self-couplings, which cannot be removed by field redefinitions because the target space is not flat. In unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms, the unitarity problems arise through non-minimal Higgs-gauge couplings.

  3. Dynamical analysis of anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Karčiauskas, Mindaugas

    2016-06-01

    The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.

  4. Stochastic inflation and nonlinear gravity

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Bond, J. R.

    1991-02-01

    We show how nonlinear effects of the metric and scalar fields may be included in stochastic inflation. Our formalism can be applied to non-Gaussian fluctuation models for galaxy formation. Fluctuations with wavelengths larger than the horizon length are governed by a network of Langevin equations for the physical fields. Stochastic noise terms arise from quantum fluctuations that are assumed to become classical at horizon crossing and that then contribute to the background. Using Hamilton-Jacobi methods, we solve the Arnowitt-Deser-Misner constraint equations which allows us to separate the growing modes from the decaying ones in the drift phase following each stochastic impulse. We argue that the most reasonable choice of time hypersurfaces for the Langevin system during inflation is T=ln(Ha), where H and a are the local values of the Hubble parameter and the scale factor, since T is the natural time for evolving the short-wavelength scalar field fluctuations in an inhomogeneous background. We derive a Fokker-Planck equation which describes how the probability distribution of scalar field values at a given spatial point evolves in T. Analytic Green's-function solutions obtained for a single scalar field self-interacting through an exponential potential are used to demonstrate (1) if the initial condition of the Hubble parameter is chosen to be consistent with microwave-background limits, H(φ0)/mρ<~10-4, then the fluctuations obey Gaussian statistics to a high precision, independent of the time hypersurface choice and operator-ordering ambiguities in the Fokker-Planck equation, and (2) for scales much larger than our present observable patch of the Universe, the distribution is non-Gaussian, with a tail extending to large energy densities; although there are no observable manifestations, it does show eternal inflation. Lattice simulations of our Langevin network for the exponential potential demonstrate how spatial correlations are incorporated. An initially

  5. Distinguishing between extra natural inflation and natural inflation after BICEP2

    SciTech Connect

    Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min E-mail: lim@lab.twcu.ac.jp

    2014-08-01

    In this paper, we carefully calculated the tensor-to-scalar ratio, the running spectral index, and the running of running spectrum for (extra) natural inflation in order to compare with recent BICEP2 data, PLANCK satellite data and future 21 cm data. We discovered that the prediction for running spectral index and the running of running spectrum in natural inflation is different from that in the case of extra natural inflation. Near future observation for the running spectral index can only provide marginal accuracy which may not allow us distinguishing between extra natural inflation from natural inflation clearly unless the experimental accuracy can be further improved.

  6. The primordial magnetic field generated at large field inflation, natural inflation, and R2-inflation by f2FF model

    NASA Astrophysics Data System (ADS)

    AlMuhammad, Anwar Saleh

    Large scale magnetic fields seem to be present in almost all astrophysical systems and scales from planets to superclusters of galaxies and in very low density intergalactic media. The upper limit of primordial magnetic fields (PMF) has been set by recent observations by the Planck observatory (2015) to be of the order of a few nG. The simple model {f. 2}FF used to generate the PMF during the inflation era. It is based on the breaking of conformal symmetry of electromagnetism during inflation. It is attractive because it is stable under perturbations and leads to a scale invariant PMF. However, it may suffer from two problems: Backreaction and strong coupling. In the first case, the electromagnetic energy may exceed the energy of inflation, {rho _{{Inf}}}. In the second case, the effective electric charges become excessively large if we want to retrieve the standard electromagnetism at the end of inflation. In this research, we investigate the generation of PMF under three different models of inflation in order to avoid the backreaction problem. We compute magnetic and electric spectra generated by the {f. 2}FF model in the context of large field inflation (LFI), natural inflation (NI) and {R. 2}-inflation, for all possible values of model parameters for de Sitter and power law expansion of inflation. The results of the research show that the scale invariant PMF can be generated in these models and the problem of backreaction may be avoided in some observational ranges. {R. 2}-inflation, which is preferred by the recent results of Planck 2015, we calculate the upper of the scale invariant PMF generated by {f. 2}FF and in turns we find that the upper limit of present magnetic field, {B_0} < 8.058 × {10. { - 9}}{G}. It is in the same order of magnitude of PMF, reported by Planck, 2015.

  7. Has inflation really solved the problems of flatness and absence of relics?

    NASA Astrophysics Data System (ADS)

    Lieu, Richard

    2013-10-01

    Among the three cosmological enigma solved by the theory of inflation, viz. (a) large-scale flatness, (b) absence of monopoles and strings and (c) structure formation, the first two are addressed from the viewpoint of the observed scales having originated from very small ones, on which the density fluctuations of the curvaton and relics are inevitably of the order of unity or larger. By analysing strictly classically (and in two different gauges to ensure consistency) the density evolution of the smoothest possible pre-inflationary component - thermal radiation - it is found that the O(1) statistical fluctuations on the thermal wavelength scale present formidable obstacles to the linear theory of amplitude growth by the end of inflation. Since this wavelength scale exited the horizon at an early stage of inflation, it severely limits the number of e-folds of perturbative inflation. With more e-folds than ≈60 there will be even larger fluctuations in the radiation density that ensures inflation keeps making `false starts'. The only `way out' is to invoke a super-homogeneous pre-inflationary fluid, at least on small scales, adding to the fine-tuning and preventing one from claiming that inflation simply `redshifts away' all the relic inhomogeneities; i.e. the theory actually provided no explanation of (a) or (b), merely a tautology.

  8. Searching for inflation in simple string theory models: An astrophysical perspective

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Tegmark, Max; Kachru, Shamit; Shelton, Jessie; Özcan, Onur

    2007-11-01

    Attempts to connect string theory with astrophysical observation are hampered by a jargon barrier, where an intimidating profusion of orientifolds, Kähler potentials, etc. dissuades cosmologists from attempting to work out the astrophysical observables of specific string theory solutions from the recent literature. We attempt to help bridge this gap by giving a pedagogical exposition with detailed examples, aimed at astrophysicists and high energy theorists alike, of how to compute predictions for familiar cosmological parameters when starting with a 10-dimensional string theory action. This is done by investigating inflation in string theory, since inflation is the dominant paradigm for how early universe physics determines cosmological parameters. We analyze three explicit string models from the recent literature, each containing an infinite number of vacuum solutions. Our numerical investigation of some natural candidate inflatons, the so-called “moduli fields,” fails to find inflation. We also find in the simplest models that, after suitable field redefinitions, vast numbers of these vacua differ only in an overall constant multiplying the effective inflaton potential, a difference which affects neither the potential’s shape nor its ability to support slow-roll inflation. This illustrates that even having an infinite number of vacua does not guarantee having inflating ones. This may be an artifact of the simplicity of the models that we study. Instead, more complicated string theory models appear to be required, suggesting that identifying the inflating subset of the string landscape will be challenging.

  9. The Betrayal of the Gatekeepers: Grade Inflation.

    ERIC Educational Resources Information Center

    Goldman, Louis

    The problem of grade inflation and explanations for this phenomena are considered. Grade inflation is described as the positive change in grade point average of large numbers of students generally, over an extended period of time. The following array of causes or explanations are discussed: awarding high grades so that a student could go to…

  10. Inflation Metaphor in the TIME Magazine Corpus

    ERIC Educational Resources Information Center

    Hu, Chunyu; Liu, Huijie

    2016-01-01

    A historical perspective on economy metaphor can shed new lights on economic thoughts. Based on the TIME Magazine Corpus (TMC), this paper investigates inflation metaphor over 83 years and compares findings against the economic data over the relatively corresponding period. The results show how inflation, an abstract concept and a normal economic…

  11. Inflation Metaphor in Contemporary American English

    ERIC Educational Resources Information Center

    Hu, Chunyu; Chen, Zhi

    2015-01-01

    Inflation is often regarded as a dangerous phenomenon which poses a potential threat to economies in the world. It is thus an entity that demands the constant attention of economists, policymakers and the general public. In order to make this abstract entry more concrete and vivid, a number of metaphorical expressions are used to depict inflation.…

  12. 76 FR 60405 - Inflatable Personal Flotation Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... Flotation Devices'' in the Federal Register (76 FR 17561). The Coast Guard received three submissions in... SECURITY Coast Guard 46 CFR Part 160 RIN 1625-AB60 Inflatable Personal Flotation Devices AGENCY: Coast... performance standards for inflatable recreational personal flotation devices (PFDs) with current...

  13. Does Competition among Schools Encourage Grade Inflation?

    ERIC Educational Resources Information Center

    Walsh, Patrick

    2010-01-01

    This paper considers whether high schools in competitive environments use grade inflation to attract and retain families, perhaps in addition to more constructive responses. Two measures of grade inflation are used: the cutoffs used by each school to assign a letter grade to a percent score; and high school GPA after controlling for test scores, a…

  14. Does Competition among Schools Encourage Grade Inflation?

    ERIC Educational Resources Information Center

    Walsh, Patrick

    2010-01-01

    This paper considers whether high schools in competitive environments use grade inflation to attract and retain families, perhaps in addition to more constructive responses. Two measures of grade inflation are used: the cutoffs used by each school to assign a letter grade to a percent score and high school grade point average after controlling for…

  15. Demystify Learning Expectations to Address Grade Inflation

    ERIC Educational Resources Information Center

    Hodges, Linda C.

    2014-01-01

    This article describes the subject of "grade inflation," a reference to educators giving higher grades to student work than their expectations for student achievement warrant. Of the many reasons why this practice happens, Hodges specifically discusses inflating grades as "a natural consequence" when the faculty really…

  16. Grade Inflation: An Issue for Higher Education?

    ERIC Educational Resources Information Center

    Caruth, Donald L.; Caruth, Gail D.

    2013-01-01

    Grade inflation impacts university credibility, student courses of study, choices of institution, and other areas. There has been an upward shift in grades without a corresponding upward shift in knowledge gained. Some of the most frequently mentioned causes of grade inflation are: (1) student evaluations of professors; (2) student teacher…

  17. Dual-Compartment Inflatable Suitlock

    NASA Technical Reports Server (NTRS)

    Howe, Scott; Kennedy, Kriss J.; Guirgis, Peggy L.

    2012-01-01

    A paper discusses a dual-compartment inflatable suitlock (DCIS) for Extra - vehicular Activity (EVA) that will allow for dust control, suit maintenance, and efficient EVA egress/ingress. The expandable (inflatable technologies) aspect of the design will allow the unit to stow in a compact package for transport. The DCIS consists of three hard, in line bulkheads, separating two cylindrical membrane-walled compartments. The inner bulkhead can be fitted with a variety of hatch types, docking flanges, and mating hardware, such as the common berthing mechanism (CBM), for the purpose of mating with vehicles, habitats, and other pressurized modules. The inner bulkhead and center bulkhead function as the end walls of the inner compartment, which, during operations, would stay pressurized, either matching the pressure of the habitat or acting as a lower-pressure transitional volume. The suited crewmember can quickly don a suit, and egress the suitlock without waiting for the compartment to depressurize. The outer compartment can be pressurized infrequently, when a long dwell time is expected prior to the next EVA, or during off-nominal suit maintenance tasks, allowing shirtsleeve inspections and maintenance of the space suits. The outer bulkhead has a pressure-assisted hatch door that stays open and stowed routinely, but can be closed for suit maintenance and pressurization as needed.

  18. Superimposed oscillations in brane inflation

    SciTech Connect

    Ávila, Santiago; Martin, Jérôme; Steer, Danièle A. E-mail: jmartin@iap.fr

    2014-08-01

    In canonical scalar field inflation, the Starobinsky model (with a linear potential but discontinuous slope) is remarkable in that though slow-roll is violated, both the power-spectrum and bi-spectrum can be calculated exactly analytically. The two-point function is characterised by different power on large and small scales, and a burst of small amplitude superimposed oscillations in between. We extend this analysis to Dirac Born Infeld (DBI) inflation, for which generalised slow-roll is violated at the discontinuity and a rapid variation in the speed of sound c{sub S} occurs. In an attempt to characterise the effect of non-linear kinetic terms on the oscillatory features of the primordial power-spectrum, we show that the resulting power spectrum has a shape and features which differ significantly from those of the standard Starobinsky model. In particular, when c{sub S} is small, the power-spectrum now takes very similar scale invariant values on large and small scales, while on intermediate scales it is characterised by much larger amplitude and higher frequency superimposed oscillations. We also show that calculating non-Gaussianities in this model is a complicated but interesting task since all terms in the cubic action now contribute. Investigating whether the superimposed oscillations could fit to the Planck Cosmic Microwave Background (CMB) data (for instance by explaining the large scale Planck anomalies) with, at the same time, small non-Gaussianities remains an intriguing and open possibility.

  19. The politics of medical inflation.

    PubMed

    Marmor, T R; Wittman, D A; Heagy, T C

    1976-01-01

    This paper discusses the politics of anti-inflationary policy in the medical care sector. We first clarify the issue by distinguishing between four different conceptions commonly used when discussing medical inflation. We then present some of the standard solutions to these problems suggested by economists. In the main part of the paper, we analyze the response of the government. We show that the underlying causes for failure in the economic market are likely to exist in the political market as well. In particular, the public good aspect of anti-inflationary policy fails to provide a strong incentive for the consumers of medical care. In contrast, the providers have very powerful incentives in the political market because the benefits of governmental action in this sector greatly affect them. Providers exert great pressure to prevent government policies aimed at reducing medical care expenditures. We present evidence and theory to explicate which sets of circumstances are most conducive to governmental action. We show that the most effective anti-inflationary programs in medical financing are least likely to be implemented and that a dispersed, pluralistic financing structure reduces the government's incentive to curb inflation. PMID:828636

  20. Inflation from asymptotically safe theories

    NASA Astrophysics Data System (ADS)

    Nielsen, Niklas Grønlund; Sannino, Francesco; Svendsen, Ole

    2015-05-01

    We investigate models in which inflation is driven by an ultraviolet safe and interacting scalar sector stemming from a new class of nonsupersymmetric gauge field theories. These new theories, different from generic scalar models, are well defined to arbitrary short distances because of the existence of a controllable ultraviolet interacting fixed point. The scalar couplings at the ultraviolet fixed point and their overall running are predicted by the geometric structure of the underlying theory. We analyze the minimal and nonminimal coupling to gravity of these theories and the consequences for inflation. In the minimal coupling case the theory requires large nonperturbative quantum corrections to the quantum potential for the theory to agree with the data, while in the nonminimal coupling case the perturbative regime in the couplings of the theory is preferred. Requiring the theory to reproduce the observed amplitude of density perturbations constrains the geometric data of the theory such as the number of colors and flavors for generic values of the nonminimal coupling.

  1. Sneutrino hybrid inflation and nonthermal leptogenesis

    SciTech Connect

    Antusch, Stefan; Baumann, Jochen P.; Domcke, Valerie F.; Kostka, Philipp M. E-mail: jbaumann@mppmu.mpg.de E-mail: kostka@mppmu.mpg.de

    2010-10-01

    In sneutrino hybrid inflation the superpartner of one of the right-handed neutrinos involved in the seesaw mechanism plays the role of the inflaton field. It obtains its large mass after the ''waterfall'' phase transition which ends hybrid inflation. After this phase transition the oscillations of the sneutrino inflaton field may dominate the universe and efficiently produce the baryon asymmetry of the universe via nonthermal leptogenesis. We investigate the conditions under which inflation, with primordial perturbations in accordance with the latest WMAP results, as well as successful nonthermal leptogenesis can be realized simultaneously within the sneutrino hybrid inflation scenario. We point out which requirements successful inflation and leptogenesis impose on the seesaw parameters, i.e. on the Yukawa couplings and the mass of the right-handed (s)neutrino, and derive the predictions for the CMB observables in terms of the right-handed (s)neutrino mass and the other relevant model parameters.

  2. Aerocapture Inflatable Decelerator for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.

  3. Initial '80s Development of Inflated Antennas

    NASA Technical Reports Server (NTRS)

    Friese, G. J.; Bilyeu, G. D.; Thomas, M.

    1983-01-01

    State of the art technology was considered in the definition and documentation of a membrane surface suitable for use in a space reflector system for long durations in orbit. Requirements for a metal foil-plastic laminate structural element were determined and a laboratory model of a rigidized element to test for strength characteristics was constructed. Characteristics of antennas ranging from 10 meters to 1000 meters were determined. The basic antenna configuration studied consists of (1) a thin film reflector, (2) a thin film cone, (3) a self-rigidizing structural torus at the interface of the cone and reflector; and (4) an inflation system. The reflector is metallized and, when inflated, has a parabolic shape. The cone not only completes the enclosure of the inflatant, but also holds the antenna feed at its apex. The torus keeps the inflated cone-reflector from collapsing inward. Laser test equipment determined the accuracy of the inflated paraboloids.

  4. Multi-stream inflation in a landscape

    SciTech Connect

    Duplessis, Francis; Wang, Yi; Brandenberger, Robert E-mail: wangyi@hep.physics.mcgill.ca

    2012-04-01

    There are hidden observables for inflation, such as features localized in position space, which do not manifest themselves when only one inflation trajectory is considered. To address this issue, we investigate inflation dynamics in a landscape mimicked by a random potential. We calculate the probability for bifurcation of the inflation trajectory in multi-stream inflation. Depending on the shape of the random bumps and the distance between bumps in the potential, there is a phase transition: on one side of the critical curve in parameter space isocurvature fluctuation are exponentially amplified and bifurcation becomes very probable. On the other side bifurcation is dominated by a random walk where bifurcations are less likely to happen.

  5. First-order inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1992-01-01

    I discuss the most recent model of inflation. In first-order inflation the inflationary epoch is associated with a first-order phase transition, with the most likely candidate being GUT symmetry breaking. The transition from the false-vacuum inflationary phase to the true-vacuum radiation-dominated phase proceeds through the nucleation and percolation of true-vacuum bubbles. The first successful and simplest model of first-order inflation, extended inflation, is discussed in some detail: evolution of the cosmic-scale factor, reheating, density perturbations, and the production of gravitational waves both from quantum fluctuations and bubble collisions. Particular attention is paid to the most critical issue in any model of first-order inflation: the requirements on the nucleation rate to ensure a graceful transition from the inflationary phase to the radiation-dominated phase.

  6. Gravitational waves from first order phase transitions during inflation

    SciTech Connect

    Chialva, Diego

    2011-01-15

    We study the production, spectrum, and detectability of gravitational waves in models of the early Universe where first order phase transitions occur during inflation. We consider all relevant sources. The self-consistency of the scenario strongly affects the features of the waves. The spectrum appears to be mainly sourced by collisions of bubble of the new phases, while plasma dynamics (turbulence) and the primordial gauge fields connected to the physics of the transitions are generally subdominant. The amplitude and frequency dependence of the spectrum for modes that exit the horizon during inflation are different from those of the waves produced by quantum vacuum oscillations of the metric or by first order phase transitions not occurring during inflation. A not too large number of slow (but still successful) phase transitions can leave detectable marks in the common microwave background radiation, but the signal weakens rapidly for faster transitions. When the number of phase transitions is instead large, the primordial gravitational waves can be observed both in the common microwave background radiation or with LISA (but in this case only marginally, for the slowest transitions) and especially with DECIGO. We also discuss the nucleosynthesis bound and the constraints it places on the parameters of the models.

  7. Can inflation be connected to low energy particle physics?

    SciTech Connect

    Hertzberg, Mark P.

    2012-08-01

    It is an interesting question whether low energy degrees of freedom may be responsible for early universe inflation. To examine this, here we present a simple version of Higgs-inflation with minimal coupling to gravity and a quadratic inflationary potential. This quantitatively differs from the popular non-minimally coupled models, although it is qualitatively similar. In all such models, new heavy fields must enter in order for the theory to be well behaved in the UV. We show that in all cases the Higgs self coupling λ must be quite small in order to integrate out the heavy fields and use the resulting low energy effective field theory of the Higgs to describe inflation. For moderately sized λ, the UV completion is required and will, in general, determine the inflationary regime. We discuss the important issue of the arbitrariness of the Lagrangians used in all these setups by presenting a new class of such models, including a supergravity version. This suggests that the inflationary potential is disconnected from low energy physics.

  8. Inflation in AdS/CFT

    SciTech Connect

    Freivogel, Ben; Hubeny, Veronika E.; Maloney, Alexander; Myers, Rob; Rangamani, Mukund; Shenker, Stephen; /Stanford U., Phys. Dept.

    2005-10-07

    We study the realization of inflation within the AdS/CFT correspondence. We assume the existence of a string landscape containing at least one stable AdS vacuum and a (nearby) metastable de Sitter state. Standard arguments imply that the bulk physics in the vicinity of the AdS minimum is described by a boundary CFT. We argue that large enough bubbles of the dS phase, including those able to inflate, are described by mixed states in the CFT. Inflating degrees of freedom are traced over and do not appear explicitly in the boundary description. They nevertheless leave a distinct imprint on the mixed state. Analytic continuation allows us, in principle, to recover a large amount of nonperturbatively defined information about the inflating regime. Our work also shows that no scattering process can create an inflating region, even by quantum tunneling, since a pure state can never evolve into a mixed state under unitary evolution.We study the realization of inflation within the AdS/CFT correspondence. We assume the existence of a string landscape containing at least one stable AdS vacuum and a (nearby) metastable de Sitter state. Standard arguments imply that the bulk physics in the vicinity of the AdS minimum is described by a boundary CFT. We argue that large enough bubbles of the dS phase, including those able to inflate, are described by mixed states in the CFT. Inflating degrees of freedom are traced over and do not appear explicitly in the boundary description. They nevertheless leave a distinct imprint on the mixed state. Analytic continuation allows us, in principle, to recover a large amount of nonperturbatively defined information about the inflating regime. Our work also shows that no scattering process can create an inflating region, even by quantum tunneling, since a pure state can never evolve into a mixed state under unitary evolution.

  9. Emergent cosmology, inflation and dark energy

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Herrera, Ramón; Labrana, Pedro; Nissimov, Emil; Pacheva, Svetlana

    2015-02-01

    A new class of gravity-matter models defined in terms of two independent non-Riemannian volume forms (alternative generally covariant integration measure densities) on the space-time manifold are studied in some detail. These models involve an additional (square of the scalar curvature) term as well as scalar matter field potentials of appropriate form so that the pertinent action is invariant under global Weyl-scale symmetry. Scale invariance is spontaneously broken upon integration of the equations of motion for the auxiliary volume-form degrees of freedom. After performing transition to the physical Einstein frame we obtain: (1) an effective potential for the scalar field with two flat regions which allows for a unified description of both early universe inflation as well as of present dark energy epoch; (2) for a definite parameter range the model possesses a non-singular "emergent universe" solution which describes an initial phase of evolution that precedes the inflationary phase; (3) for a reasonable choice of the parameters the present model conforms to the Planck Collaboration data.

  10. The Primordial Inflation Explorer (PIXIE) Mission

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.; Chuss, David T.; Dotson, Jessie L.; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan M.; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.; Wollack, Edward J.

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from frequencies 30 GHz to 6 THz (I cm to 50 I-tm wavelength). PIXIE uses a polarizing Michelson interferometer with 2.7 K optics to measure the difference spectrum between two orthogonal linear polarizations from two co-aligned beams. Either input can view either the sky or a temperature-controlled absolute reference blackbody calibrator. The multimoded optics and high etendu provide sensitivity comparable to kilo-pixel focal plane arrays, but with greatly expanded frequency coverage while using only 4 detectors total. PIXIE builds on the highly successful COBEIFIRAS design by adding large-area polarization-sensitive detectors whose fully symmetric optics are maintained in thermal equilibrium with the CMB. The highly symmetric nulled design provides redundant rejection of major sources of systematic uncertainty. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much less than 10(exp -3). PIXIE will also return a rich data set constraining physical processes ranging from Big Bang cosmology, reionization, and large-scale structure to the local interstellar medium. Keywords: cosmic microwave background, polarization, FTS, bolometer

  11. Dilution of axion dark radiation by thermal inflation

    NASA Astrophysics Data System (ADS)

    Hattori, Hironori; Kobayashi, Tatsuo; Omoto, Naoya; Seto, Osamu

    2015-07-01

    Axions in the Peccei-Quinn (PQ) mechanism provide a promising solution to the strong C P problem in the standard model of particle physics. Coherently generated PQ scalar fields could dominate the energy density in the early Universe and decay into relativistic axions, which would conflict with the current dark radiation constraints. We study the possibility that a thermal inflation driven by a U (1 ) gauged Higgs field dilutes such axions. A well-motivated extra gauged U (1 ) would be the local B -L symmetry. We also discuss the implication for the case of U (1 )B-L and an available baryogenesis mechanism in such cosmology.

  12. Negative running can prevent eternal inflation

    SciTech Connect

    Kinney, William H.; Freese, Katherine E-mail: ktfreese@umich.edu

    2015-01-01

    Current data from the Planck satellite and the BICEP2 telescope favor, at around the 2 σ level, negative running of the spectral index of curvature perturbations from inflation. We show that for negative running α < 0, the curvature perturbation amplitude has a maximum on scales larger than our current horizon size. A condition for the absence of eternal inflation is that the curvature perturbation amplitude always remain below unity on superhorizon scales. For current bounds on n{sub S} from Planck, this corresponds to an upper bound of the running α < −9 × 10{sup −5}, so that even tiny running of the scalar spectral index is sufficient to prevent eternal inflation from occurring, as long as the running remains negative on scales outside the horizon. In single-field inflation models, negative running is associated with a finite duration of inflation: we show that eternal inflation may not occur even in cases where inflation lasts as long as 10{sup 4} e-folds.

  13. No-scale ripple inflation revisited

    SciTech Connect

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V. E-mail: lizhijin@physics.tamu.edu

    2014-04-01

    We revisit the no-scale ripple inflation model, where no-scale supergravity is modified by an additional term for the inflaton field in the Kähler potential. This term not only breaks one SU(N,1) symmetry explicitly, but also plays an important role for inflation. We generalize the superpotential in the no-scale ripple inflation model slightly. There exists a discrete Z{sub 2} symmetry/parity in the scalar potential in general, which can be preserved or violated by the non-canonical nomalized inflaton kinetic term. Thus, there are three inflation paths: one parity invariant path, and the left and right paths for parity violating scenario. We show that the inflations along the parity invariant path and right path are consistent with the Planck results. However, the gavitino mass for the parity invariant path is so large that the inflation results will be invalid if we consider the inflaton supersymmetry breaking soft mass term. Thus, only the inflation along the right path gives the correct and consistent results. Notably, the tensor-to-scalar ratio in such case can be large, with a value around 0.05, which may be probed by the future Planck experiment.

  14. The development of inflatable array antennas

    NASA Technical Reports Server (NTRS)

    Huang, J.

    2001-01-01

    Inflatable array antennas are being developed to significantly reduce the mass, the launch vehicle's stowage volume, and the cost of future spacecraft systems. Three inflatable array antennas, recently developed for spacecraft applications, are a 3.3 m x 1.0 m L-band synthetic-aperture radar (SAR) array, a 1.0 m-diameter X-band telecom reflectarray, and a 3 m-diameter Ka-band telecom reflectarray. All three antennas are similar in construction, and each consists of an inflatable tubular frame that supports and tensions a multi-layer thin-membrane RF radiating surface with printed microstrip patches. The L-band SAR array achieved a bandwidth of 80 MHz, an aperture efficiency of 74%, and a total mass of 15 kg. The X-band reflectarray achieved an aperture efficiency of 37%, good radiation patterns, and a total mass of 1.2 kg (excluding the inflation system). The 3 m Ka-band reflectarray achieved a surface flatness of 0.1 mm RMS, good radiation patterns, and a total mass of 12.8 kg (excluding the inflation system). These antennas demonstrated that inflatable arrays are feasible across the microwave and millimeter-wave spectrums. Further developments of these antennas are deemed necessary, in particular, in the area of qualifying the inflatable structures for space-environment usage.

  15. Primordial anisotropies in gauged hybrid inflation

    SciTech Connect

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan E-mail: emami@ipm.ir

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  16. Nonthermal gravitino production in tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Dutta, Koushik

    2015-10-01

    We investigate nonthermal gravitino production after tribrid inflation in supergravity, which is a variant of supersymmetric hybrid inflation where three fields are involved in the inflationary model and where the inflaton field resides in the matter sector of the theory. In contrast to conventional supersymmetric hybrid inflation, where nonthermal gravitino production imposes severe constraints on the inflationary model, we find that the "nonthermal gravitino problem" is generically absent in models of tribrid inflation, mainly due to two effects: (i) With the inflaton in tribrid inflation (after inflation) being lighter than the waterfall field, the latter has a second decay channel with a much larger rate than for the decay into gravitinos. This reduces the branching ratio for the decay of the waterfall field into gravitinos. (ii) The inflaton generically decays later than the waterfall field, and it does not produce gravitinos when it decays. This leads to a dilution of the gravitino population from the decays of the waterfall field. The combination of both effects generically leads to a strongly reduced gravitino production in tribrid inflation.

  17. The expected anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Ricciardone, Angelo; Peloso, Marco; Unal, Caner E-mail: peloso@physics.umn.edu E-mail: unal@physics.umn.edu

    2014-11-01

    Solid inflation is an effective field theory of inflation in which isotropy and homogeneity are accomplished via a specific combination of anisotropic sources (three scalar fields that individually break isotropy). This results in specific observational signatures that are not found in standard models of inflation: a non-trivial angular dependence for the squeezed bispectrum, and a possibly long period of anisotropic inflation (to drive inflation, the ''solid'' must be very insensitive to any deformation, and thus background anisotropies are very slowly erased). In this paper we compute the expected level of statistical anisotropy in the power spectrum of the curvature perturbations of this model. To do so, we account for the classical background values of the three scalar fields that are generated on large (superhorizon) scales during inflation via a random walk sum, as the perturbation modes leave the horizon. Such an anisotropy is unavoidably generated, even starting from perfectly isotropic classical initial conditions. The expected level of anisotropy is related to the duration of inflation and to the amplitude of the squeezed bispectrum. If this amplitude is close to its current observational limit (so that one of the most interesting predictions of the model can be observed in the near future), we find that a level of statistical anisotropy F{sup 2} gives frozen and scale invariant vector perturbations on superhorizon scales.

  18. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish.

    PubMed

    Stinckens, Evelyn; Vergauwen, Lucia; Schroeder, Anthony L; Maho, Walid; Blackwell, Brett R; Witters, Hilda; Blust, Ronny; Ankley, Gerald T; Covaci, Adrian; Villeneuve, Daniel L; Knapen, Dries

    2016-04-01

    Disruption of the thyroid hormone (TH) system, an important mode of action, can lead to ecologically relevant adverse outcomes, especially during embryonic development. The present study characterizes the effects of disruption of TH synthesis on swim bladder inflation during zebrafish early-life stages using 2-mercaptobenzothiazole (MBT), a thyroid peroxidase (TPO) inhibitor. Zebrafish were exposed to different MBT concentrations until 120/168h post fertilization (hpf) and 32days post fertilization (dpf), in two sets of experiments, to investigate the effects of TPO inhibition on posterior and anterior swim bladder inflation respectively, as well as whole body thyroid hormone concentrations (triiodothyronine (T3) and its prohormone, thyroxine (T4)). At 120hpf, MBT did not directly impair posterior chamber inflation or size, while anterior chamber inflation and size was impaired at 32dpf. As previously shown in amphibians and mammals, we confirmed that MBT inhibits TPO in fish. Whole-body T4 decreased after MBT exposure at both time points, while T3 levels were unaltered. There was a significant relationship between T4 levels and the anterior chamber surface at 32dpf. The absence of effects on posterior chamber inflation can possibly be explained by maternal transfer of T4 into the eggs. These maternally derived THs are depleted at 32dpf and cannot offset TPO inhibition, resulting in impaired anterior chamber inflation. Therefore, we hypothesize that TPO inhibition only inhibits swim bladder inflation during late development, after depletion of maternally derived T4. In a previous study, we showed that iodothyronine deiodinase (ID) knockdown impaired posterior chamber inflation during early development. Our findings, in parallel with similar effects observed in fathead minnow (see part I, this issue) suggest that thyroid disruption impacts swim bladder inflation, and imply an important distinction among specific subtypes of TH disrupting chemicals. However, the

  19. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish.

    PubMed

    Stinckens, Evelyn; Vergauwen, Lucia; Schroeder, Anthony L; Maho, Walid; Blackwell, Brett R; Witters, Hilda; Blust, Ronny; Ankley, Gerald T; Covaci, Adrian; Villeneuve, Daniel L; Knapen, Dries

    2016-04-01

    Disruption of the thyroid hormone (TH) system, an important mode of action, can lead to ecologically relevant adverse outcomes, especially during embryonic development. The present study characterizes the effects of disruption of TH synthesis on swim bladder inflation during zebrafish early-life stages using 2-mercaptobenzothiazole (MBT), a thyroid peroxidase (TPO) inhibitor. Zebrafish were exposed to different MBT concentrations until 120/168h post fertilization (hpf) and 32days post fertilization (dpf), in two sets of experiments, to investigate the effects of TPO inhibition on posterior and anterior swim bladder inflation respectively, as well as whole body thyroid hormone concentrations (triiodothyronine (T3) and its prohormone, thyroxine (T4)). At 120hpf, MBT did not directly impair posterior chamber inflation or size, while anterior chamber inflation and size was impaired at 32dpf. As previously shown in amphibians and mammals, we confirmed that MBT inhibits TPO in fish. Whole-body T4 decreased after MBT exposure at both time points, while T3 levels were unaltered. There was a significant relationship between T4 levels and the anterior chamber surface at 32dpf. The absence of effects on posterior chamber inflation can possibly be explained by maternal transfer of T4 into the eggs. These maternally derived THs are depleted at 32dpf and cannot offset TPO inhibition, resulting in impaired anterior chamber inflation. Therefore, we hypothesize that TPO inhibition only inhibits swim bladder inflation during late development, after depletion of maternally derived T4. In a previous study, we showed that iodothyronine deiodinase (ID) knockdown impaired posterior chamber inflation during early development. Our findings, in parallel with similar effects observed in fathead minnow (see part I, this issue) suggest that thyroid disruption impacts swim bladder inflation, and imply an important distinction among specific subtypes of TH disrupting chemicals. However, the

  20. Cosmological Inflation: A Personal Perspective

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2008-01-01

    We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.

  1. Conformal frame dependence of inflation

    SciTech Connect

    Domènech, Guillem; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2015-04-01

    Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled to a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case.

  2. Gravitational baryogenesis after anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  3. Leptogenesis in Complex Hybrid Inflation

    SciTech Connect

    Martinez-Prieto, Carlos

    2008-12-04

    We study the transference of an initial leptonic charge contained in a complex scalar field (waterfall field) at the end of the inflation to the leptons of the standard model and then convert this leptonic charge in baryonic charge by sphaleron process. The proposal is that this is done trough the decay of the complex scalar field particles into the the right-handed neutrino which in turn decays into the left-handed lepton doublet and the Higgs field of the standard model. It must be analyzed in what environment the transference is done. We propose that the inflaton (the dominant energy density of the universe) decay into ultrarelativistic fermions before the waterfall field particles decay in the right handed-neutrino, leaving a thermalized bath where the transference of the leptonic asymmetry can be achieved.

  4. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  5. A Study of Grade Inflation in Ten Majors at Clemson University.

    ERIC Educational Resources Information Center

    Hamby, John V.; And Others

    Grades of 1982 Clemson graduates in various academic majors were studied. In addition to determining whether grade inflation occurs differentially across majors, the position of education majors was compared to that of other majors. The following 10 majors were assessed: early childhood education, elementary education, secondary education/science…

  6. Attractor behaviour in ELKO cosmology

    NASA Astrophysics Data System (ADS)

    Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Prasantha Varma, K. V.

    2013-04-01

    We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant.

  7. 12 CFR 263.65 - Civil penalty inflation adjustments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Civil penalty inflation adjustments. 263.65... Money Penalties § 263.65 Civil penalty inflation adjustments. (a) Inflation adjustments. In accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note), the Board...

  8. 12 CFR 263.65 - Civil penalty inflation adjustments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Civil penalty inflation adjustments. 263.65... Collection of Civil Money Penalties § 263.65 Civil penalty inflation adjustments. (a) Inflation adjustments. In accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461...

  9. 12 CFR 263.65 - Civil penalty inflation adjustments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Civil penalty inflation adjustments. 263.65... Money Penalties § 263.65 Civil penalty inflation adjustments. (a) Inflation adjustments. In accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note), the Board...

  10. 12 CFR 263.65 - Civil penalty inflation adjustments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Civil penalty inflation adjustments. 263.65... Collection of Civil Money Penalties § 263.65 Civil penalty inflation adjustments. (a) Inflation Adjustments. In accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990, 28 U.S.C. 2461...

  11. 12 CFR 263.65 - Civil penalty inflation adjustments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Civil penalty inflation adjustments. 263.65... Collection of Civil Money Penalties § 263.65 Civil penalty inflation adjustments. (a) Inflation Adjustments. In accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990, 28 U.S.C. 2461...

  12. Inflating with large effective fields

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F.; Williams, M. E-mail: mcicoli@ictp.it E-mail: mwilliams@perimeterinsititute.ca

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  13. Accidental Kähler moduli inflation

    SciTech Connect

    Maharana, Anshuman; Rummel, Markus; Sumitomo, Yoske

    2015-09-14

    We study a model of accidental inflation in type IIB string theory where inflation occurs near the inflection point of a small Kähler modulus. A racetrack structure helps to alleviate the known concern that string-loop corrections may spoil Kähler Moduli Inflation unless having a significant suppression via the string coupling or a special brane setup. Also, the hierarchy of gauge group ranks required for the separation between moduli stabilization and inflationary dynamics is relaxed. The relaxation becomes more significant when we use the recently proposed D-term generated racetrack model.

  14. A general framework of automorphic inflation

    NASA Astrophysics Data System (ADS)

    Schimmrigk, Rolf

    2016-05-01

    Automorphic inflation is an application of the framework of automorphic scalar field theory, based on the theory of automorphic forms and representations. In this paper the general framework of automorphic and modular inflation is described in some detail, with emphasis on the resulting stratification of the space of scalar field theories in terms of the group theoretic data associated to the shift symmetry, as well as the automorphic data that specifies the potential. The class of theories based on Eisenstein series provides a natural generalization of the model of j-inflation considered previously.

  15. Localization on the landscape and eternal inflation

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura; Perry, Malcolm J.

    2014-11-01

    We investigate the validity of the assertion that eternal inflation populates the landscape of string theory. We verify that bubble solutions do not satisfy the Klein-Gordon equation for the landscape potential. Solutions to the landscape potential within the formalism of quantum cosmology are Anderson localized wavefunctions. These are inconsistent with inflating bubble solutions. The physical reasons behind the failure of a relation between eternal inflation and the landscape are rooted in quantum phenomena such as interference between wavefunction concentrated around the various vacua in the landscape.

  16. Kähler potentials for Planck inflation

    SciTech Connect

    Roest, Diederik; Scalisi, Marco; Zavala, Ivonne E-mail: m.scalisi@rug.nl

    2013-11-01

    We assess which Kähler potentials in supergravity lead to viable single-field inflationary models that are consistent with Planck. We highlight the role of symmetries, such as shift, Heisenberg and supersymmetry, in these constructions. Also the connections to string theory are pointed out. Finally, we discuss a supergravity model for arbitrary inflationary potentials that is suitable for open string inflation and generalise it to the case of closed string inflation. Our model includes the recently discussed supergravity reformulation of the Starobinsky model of inflation as well as an interesting alternative with comparable predictions.

  17. Spacetime Curvature and Higgs Stability after Inflation.

    PubMed

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A

    2015-12-11

    We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

  18. Spacetime Curvature and Higgs Stability after Inflation.

    PubMed

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A

    2015-12-11

    We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe. PMID:26705621

  19. Racetrack inflation with matter fields and cosmic strings

    SciTech Connect

    Brax, Ph; De Bruck, C van; Davis, A C; Davis, S C; Jeannerot, R; Postma, M E-mail: c.vandebruck@shef.ac.uk E-mail: S.C.Davis@damtp.cam.ac.uk E-mail: postma@mail.desy.de

    2008-07-15

    We consider the coupling of racetrack inflation to matter fields as realized in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that strings can form before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation.

  20. Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term

    SciTech Connect

    De-Santiago, Josue; Cervantes-Cota, Jorge L.

    2011-03-15

    We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.

  1. Primordial power spectra from anisotropic inflation

    SciTech Connect

    Dulaney, Timothy R.; Gresham, Moira I.

    2010-05-15

    We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form, inflation becomes anisotropic and anisotropy can persist throughout inflation, avoiding Wald's no-hair theorem. After discussing scenarios in which anisotropy can persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra using the ''in-in'' formalism of perturbation theory. We find that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.

  2. Vapor pressure measured with inflatable plastic bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  3. Shift symmetry and inflation in supergravity

    SciTech Connect

    Brax, Philippe; Martin, Jerome

    2005-07-15

    We consider models of inflation in supergravity with a shift symmetry. We focus on models with one modulus and one inflaton field. The presence of this symmetry guarantees the existence of a flat direction for the inflaton field. Mildly breaking the shift symmetry using a superpotential which depends not only on the modulus, but also on the inflaton field allows one to lift the inflaton flat direction. Along the inflaton direction, the {eta} problem is alleviated. Combining the KKLT mechanism for modulus stabilization and a shift symmetry breaking superpotential of the chaotic inflation type, we find models reminiscent of 'mutated hybrid inflation' where the inflationary trajectory is curved in the modulus-inflaton plane. We analyze the phenomenology of these models and stress their differences with both chaotic and hybrid inflation.

  4. Biodegradable inflatable balloons for tissue separation.

    PubMed

    Basu, Arijit; Haim-Zada, Moran; Domb, Abraham J

    2016-10-01

    Confining radiation to a specific region (during radiation therapy) minimizes damage to surrounding tissues. Biodegradable inflatable balloons (bio-balloons) were developed. The device protects the normal tissues by increasing the gap between radiation source and critical structures. The radiation fades away while passing through the inflated balloon preventing the surrounding tissues from harmful radiation. These bio-balloons have also found clinical use to treat massive rotator cuff tear. This review summarizes the chemistry, engineering, and clinical development of these biomedical devices. These balloons are made of biodegradable polymers folded into the edge of a trocar and inserted between the tissues to be separated, and inflated by normal saline in the site of the application. The inserted balloon protects the tissues from radiation or mechanical stress. They remain inflated on site for two months and are finally eliminated within 12 months. PMID:27521613

  5. Fermion production during and after axion inflation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I.

    2015-11-11

    We study derivatively coupled fermions in axion-driven inflation, specifically m{sub ϕ}{sup 2}ϕ{sup 2} and monodromy inflation, and calculate particle production during the inflationary epoch and the post-inflationary axion oscillations. During inflation, the rolling axion acts as an effective chemical potential for helicity which biases the gravitational production of one fermion helicity over the other. This mechanism allows for efficient gravitational production of heavy fermion states that would otherwise be highly suppressed. Following inflation, the axion oscillates and fermions with both helicities are produced as the effective frequency of the fermion field changes non-adiabatically. For certain values of the fermion mass and axion-fermion coupling strength, the two helicity states are produced asymmetrically, resulting in unequal number-densities of left- and right-helicity fermions.

  6. Inflation driven by the Galileon field.

    PubMed

    Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi

    2010-12-01

    We propose a new class of inflation model, G inflation, which has a Galileon-like nonlinear derivative interaction of the form G(ϕ,(∇ϕ)(2))□ϕ in the Lagrangian with the resultant equations of motion being of second order. It is shown that (almost) scale-invariant curvature fluctuations can be generated even in the exactly de Sitter background and that the tensor-to-scalar ratio can take a significantly larger value than in the standard inflation models, violating the standard consistency relation. Furthermore, violation of the null energy condition can occur without any instabilities. As a result, the spectral index of tensor modes can be blue, which makes it easier to observe quantum gravitational waves from inflation by the planned gravitational-wave experiments such as LISA and DECIGO as well as by the upcoming CMB experiments such as Planck and CMBpol. PMID:21231448

  7. Inflation Rates, Car Devaluation, and Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Pogliani, Lionello; Berberan-Santos, Màrio N.

    1996-10-01

    The inflation rate problem of a modern economy shows quite interesting similarities with chemical kinetics and especially with first-order chemical reactions. In fact, capital devaluation during periods of rather low inflation rates or inflation measured over short periods shows a dynamics formally similar to that followed by first-order chemical reactions and they can thus be treated by the aid of the same mathematical formalism. Deviations from this similarity occurs for higher inflation rates. The dynamics of price devaluation for two different types of car, a compact car and a luxury car, has been followed for seven years long and it has been established that car devaluation is a process that is formally similar to a zeroth-order chemical kinetic process disregarding the type of car, if car devaluation is much faster than money devaluation. In fact, expensive cars devaluate with a faster rate than inexpensive cars.

  8. Technology Landscape for the Inflation Probe

    NASA Astrophysics Data System (ADS)

    Niemack, Michael

    2016-03-01

    Substantial progress is being made with ground-based and balloon-borne cosmic microwave background (CMB) observations in advancing technology readiness levels of the suite of technologies required for the Inflation Probe. We describe the CMB technology landscape and review the status of detectors, detector array readout systems, reflective and refractive optics, and cryogenic cooling systems that are candidate technologies for the Inflation Probe.

  9. On stability of electroweak vacuum during inflation

    NASA Astrophysics Data System (ADS)

    Shkerin, A.; Sibiryakov, S.

    2015-06-01

    We study Coleman-De Luccia tunneling of the Standard Model Higgs field during inflation in the case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially suppressed. The main contribution to the suppression is the same as in flat space-time. We analytically estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs potential that can be present at inflation.

  10. Spiral inflation with Coleman-Weinberg potential

    NASA Astrophysics Data System (ADS)

    Barenboim, Gabriela; Park, Wan-Il

    2015-03-01

    We apply the idea of spiral inflation to the Coleman-Weinberg potential and show that inflation matching our observations well is allowed for a symmetry-breaking scale ranging from an intermediate scale to a grand unified theory (GUT) scale even if the quartic coupling λ is of O (0.1 ). The tensor-to-scalar ratio can be of O (0.01 ) in the case of GUT-scale symmetry breaking.

  11. Thermal history of the universe after inflation

    NASA Astrophysics Data System (ADS)

    Watson, Scott

    2016-06-01

    When did the universe thermalize? In this talk I review the status of this issue and its importance in establishing the expected properties of dark matter, the growth of large-scale structure, and the viability of inflation models when confronted with CMB observations. I also present a novel approach to tackling the theoretical challenges surrounding inflationary (p)reheating, which seeks to extend past work on the Effective Field Theory of Inflation to the time of reheating.

  12. Dynamical Baryogenesis in Complex Hybrid Inflation

    SciTech Connect

    Delepine, David; Martinez, Carlos; Urena-Lopez, L. Arturo

    2008-07-02

    We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U (1) global symmetry associated to the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vev of the waterfall field, which is well constrained by diverse cosmological observations.

  13. Relic gravitational waves and extended inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1990-01-01

    In extended inflation, a new version of inflation where the transition from an inflationary to a radiation-dominated universe is accomplished by bubble nucleation, bubble collisions supply a potent - and potentially detectable - source of gravitational waves. The energy density in relic gravitons from bubble collisions is expected to be about 0.00005 of closure density. Their characteristic wavelength depends on the reheating temperature. If black holes are produced by bubble collisions, they will evaporate, producing shorter-wavelength gravitons.

  14. Last stand of single small field inflation

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Lehman, Landon; Martin, Adam; Downes, Sean

    2014-07-01

    By incorporating both the tensor-to-scalar ratio and the measured value of the spectral index, we set a bound on solo small field inflation of Δϕ/mPl≥1.00√r/0.1 . Unlike previous bounds which require monotonic ɛV, |ηV|<1, and 60 e-folds of inflation, the bound remains valid for nonmonotonic ɛV, |ηV|≳1, and for inflation which occurs only over the eight e-folds which have been observed on the cosmic microwave background. The negative value of the spectral index over the observed eight e-folds is what makes the bound strong; we illustrate this by surveying single field models and finding that for r ≳0.1 and eight e-folds of inflation, there is no simple potential which reproduces observed cosmic microwave background perturbations and remains sub-Planckian. Models that are sub-Planckian after eight e-folds must be patched together with a second epoch of inflation that fills out the remaining ˜50 e-folds. This second, post-cosmic microwave background epoch is characterized by extremely small ɛV and therefore an increasing scalar power spectrum. Using the fact that large power can overabundantly produce primordial black holes, we bound the maximum energy level of the second phase of inflation.

  15. Inflation in the standard cosmological model

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  16. Hill crossing during preheating after hilltop inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David; Orani, Stefano

    2015-06-01

    In ``hilltop inflation'', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the ``hilltop'') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the ``hill'', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses ``over the top of the hill'' towards the ``wrong vacuum''. We investigate the formation and behaviour of these overshooting regions using lattice simulations: rather than durable domain walls, these regions form oscillon-like structures (i.e. localized bubbles that oscillate between the two vacua) which should be included in a careful study of preheating in hilltop inflation.

  17. Inflation and Growth: Positive or Negative Relationship?

    NASA Astrophysics Data System (ADS)

    Berument, Hakan; Inamlik, Ali; Olgun, Hasan

    This study has been motivated by two developments. Firstly, by the vast literature on the relationship between inflation and growth which is abundantly endowed with diverse theoretical explanations and contradictory evidence and by the unique experience of the Turkish economy with inflation and growth. A preliminary examination of the Turkish data pointed to a negative relation between inflation and growth. Moreover, there is a unanimous agreement among the students of the Turkish economy that many factors have contributed to inflation in this country. In view of these facts this paper employs a VAR model which will enable us to identify the sources of the shocks and control for external factors. In addition VAR models have a high predictive power and enable the researcher to observe the impulse response functions. The study employs Generalised Impulse Response analysis. In the empirical experiments oil prices, money supply, government spending and taxes have been taken as the most likely determinants of inflation. The study shows that there is a negative relationship between inflation and output growth in Turkey and that the underlying explanatory factor is the real exchange rate. This result is robust.

  18. Accidental inflation from Kähler uplifting

    SciTech Connect

    Ben-Dayan, Ido; Westphal, Alexander; Wieck, Clemens; Jing, Shenglin E-mail: shenglin.jing@utoronto.ca E-mail: clemens.wieck@desy.de

    2014-03-01

    We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Käahler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ''left-rolling'' ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ''inflation by deflation'' (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running α ∼ 0.012 and enhanced tensor-to-scalar ratio r ∼ 10{sup −5}. The latter results differ significantly from many string inflation models.

  19. Inflation in maximal gauged supergravities

    SciTech Connect

    Kodama, Hideo; Nozawa, Masato

    2015-05-18

    We discuss the dynamics of multiple scalar fields and the possibility of realistic inflation in the maximal gauged supergravity. In this paper, we address this problem in the framework of recently discovered 1-parameter deformation of SO(4,4) and SO(5,3) dyonic gaugings, for which the base point of the scalar manifold corresponds to an unstable de Sitter critical point. In the gauge-field frame where the embedding tensor takes the value in the sum of the 36 and 36’ representations of SL(8), we present a scheme that allows us to derive an analytic expression for the scalar potential. With the help of this formalism, we derive the full potential and gauge coupling functions in analytic forms for the SO(3)×SO(3)-invariant subsectors of SO(4,4) and SO(5,3) gaugings, and argue that there exist no new critical points in addition to those discovered so far. For the SO(4,4) gauging, we also study the behavior of 6-dimensional scalar fields in this sector near the Dall’Agata-Inverso de Sitter critical point at which the negative eigenvalue of the scalar mass square with the largest modulus goes to zero as the deformation parameter s approaches a critical value s{sub c}. We find that when the deformation parameter s is taken sufficiently close to the critical value, inflation lasts more than 60 e-folds even if the initial point of the inflaton allows an O(0.1) deviation in Planck units from the Dall’Agata-Inverso critical point. It turns out that the spectral index n{sub s} of the curvature perturbation at the time of the 60 e-folding number is always about 0.96 and within the 1σ range n{sub s}=0.9639±0.0047 obtained by Planck, irrespective of the value of the η parameter at the critical saddle point. The tensor-scalar ratio predicted by this model is around 10{sup −3} and is close to the value in the Starobinsky model.

  20. Authorship Inflation in Medical Publications.

    PubMed

    Tilak, Gaurie; Prasad, Vinay; Jena, Anupam B

    2015-01-01

    The number of authors per manuscript in peer-reviewed medical journals has increased substantially in the last several decades. Several reasons have been offered to explain this authorship growth, including increased researcher collaboration, honorary authorship driven by increased pressures for funding and promotion, the belief that including senior authors will facilitate publication, and the growing complexity of medical research. It is unknown, however, whether authorship has grown over time due to growing complexity of published academic articles, in which case growth could be warranted, or whether it has grown due to pressures of funding and academic promotion, which have created "authorship inflation." To answer this question, we analyzed data on authorship count, study type, and size of study population for the first 50 original articles published in each decade during 1960-2010 in 3 major medical journals. Within each type of study we considered (eg, randomized trials, observational studies, etc), average authorship rose more than 3-fold during this period. Similar growth persisted after adjustment for changes in study population sizes over time. Our findings suggest that increasing research complexity is an inadequate explanation for authorship growth. Instead, growth in authorship appears inflationary.

  1. Holographic framework for eternal inflation

    SciTech Connect

    Freivogel, Ben; Sekino, Yasuhiro; Susskind, Leonard; Yeh, Chen-Pin

    2006-10-15

    In this paper we provide some circumstantial evidence for a holographic duality between bubble nucleation in an eternally inflating universe and a Euclidean conformal field theory (CFT). The holographic correspondence (which is different than Strominger's de Sitter (dS)/CFT duality) relates the decay of (3+1)-dimensional de Sitter space to a two-dimensional CFT. It is not associated with pure de Sitter space, but rather with Coleman-De Luccia bubble nucleation. Alternatively, it can be thought of as a holographic description of the open, infinite, Friedmann-Robertson-Walker (FRW) cosmology that results from such a bubble. The conjectured holographic representation is of a new type that combines holography with the Wheeler-DeWitt formalism to produce a Wheeler-DeWitt theory that lives on the spatial boundary of a k=-1 FRW cosmology. We also argue for a more ambitious interpretation of the Wheeler-DeWitt CFT as a holographic dual of the entire Landscape.

  2. Preheating after small-field inflation

    SciTech Connect

    Brax, Philippe; Mariadassou, Sophie

    2011-05-15

    Whereas preheating after chaotic and hybrid inflation models has been abundantly studied in the literature, preheating in small field inflation models, where the curvature of the inflaton potential is negative during inflation, remains less explored. In these models, a tachyonic instability at the end of inflation leads to a succession of exponentially large increases and decreases of the inflaton fluctuations as the inflaton condensate oscillates around the minimum of its potential. The net effect is a competition between low-momentum modes which grow and decrease significantly, and modes with higher momenta which grow less but also decrease less. We develop an analytical description of this process, which is analogous to the quantum mechanical problem of tunneling through a volcano-shaped potential. Depending on the parameters, preheating may be so efficient that it completes in less than one oscillation of the inflaton condensate. Preheating after small field inflation may also be followed by a long matter-dominated stage before the Universe thermalizes, depending on the energy scale of inflation and the details of the inflaton interactions. Finally, another feature of these models is that the spectrum of the inflaton fluctuations at the end of preheating may be peaked around the Hubble scale. In fact, because preheating starts when the second slow-roll parameter |{eta}| becomes of order unity while the first slow-roll parameter {epsilon} is still much smaller than 1, the Universe is still inflating during preheating and the modes amplified by the initial tachyonic instability leave the Hubble radius. This may lead to an abundant production of primordial black holes and gravitational waves with frequencies today which are naturally small enough to fall into the range accessible by high-sensitivity interferometric experiments.

  3. Comments on SUSY Inflation Models on the Brane

    NASA Astrophysics Data System (ADS)

    Lee, Lu-Yun; Cheung, Kingman; Lin, Chia-Min

    In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns = 0.96.

  4. Stochastic eternal inflation in a Bianchi type I universe

    NASA Astrophysics Data System (ADS)

    Kohli, Ikjyot Singh; Haslam, Michael C.

    2016-01-01

    The phenomenon of stochastic eternal inflation is studied for a chaotic inflation potential in a Bianchi type I spacetime background. After deriving the appropriate stochastic Klein-Gordon equation, we give details on the conditions for eternal inflation. It is shown that for eternal inflation to occur, the amount of anisotropy must be small. In fact, it is shown that eternal inflation will only take place if the shear anisotropy variables take on values within a small region of the interior of the Kasner circle. We then calculate the probability of eternal inflation occurring based on techniques from stochastic calculus.

  5. Dual-Compartment Inflatable Suitlock

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Guirgis, Peggy L.; Boyle, Robert M.

    2013-01-01

    There is a need for an improvement over current NASA Extravehicular Activity (EVA) technology. The technology must allow the capacity for quicker, more efficient egress/ingress, allow for shirtsleeve suit maintenance, be compact in transport, and be applicable to environments ranging from planetary surface (partial-g) to orbital or deep space zero-g environments. The technology must also be resistant to dust and other foreign contaminants that may be present on or around a planetary surface. The technology should be portable, and be capable of docking with a variety of habitats, ports, stations, vehicles, and other pressurized modules. The Dual-Compartment Inflatable Suitlock (DCIS) consists of three hard inline bulkheads, separating two cylindrical membrane-walled compartments. The Inner Bulkhead can be fitted with a variety of hatch types, docking flanges, and mating hardware, such as the Common Berthing Mechanism (CBM), for the purpose of mating with vehicles, habitats, and other pressurized modules. The Inner Bulkhead and Center Bulkhead function as the end walls of the Inner Compartment, which during operations, would stay pressurized, either matching the pressure of the habitat or acting as a lower-pressure transitional volume. The Inner Compartment contains donning/doffing fixtures and inner suit-port hatches. The Center Bulkhead has two integrated suit-ports along with a maintenance hatch. The Center Bulkhead and Outer Bulkhead function as the end walls of the Outer Compartment, which stays at vacuum during normal operations. This allows the crewmember to quickly don a suit, and egress the suitlock without waiting for the Outer Compartment to depressurize. The Outer Compartment can be pressurized infrequently for both nominal and off-nominal suit maintenance tasks, allowing shirtsleeve inspections and maintenance/repair of the environmental suits. The Outer Bulkhead has a pressure-assisted hatch door that stays open and stowed during EVA operations, but can

  6. D7-brane chaotic inflation

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Kraus, Sebastian C.; Witkowski, Lukas T.

    2014-10-01

    We analyze string-theoretic large-field inflation in the regime of spontaneously-broken supergravity with conventional moduli stabilization by fluxes and non-perturbative effects. The main ingredient is a shift-symmetric Kähler potential, supplemented by flux-induced shift symmetry breaking in the superpotential. The central technical observation is that all these features are present for D7-brane position moduli in Type IIB orientifolds, potentially allowing for a realization of the axion monodromy proposal in a string theory compactification. Furthermore, our model is explicit enough to address issues of control and moduli stabilization quantitatively. On the one hand, in the large complex structure regime the D7-brane position moduli inherit a shift symmetry from their mirror-dual Type IIA Wilson lines. On the other hand, the Type IIB flux superpotential generically breaks this shift symmetry and allows, by appealing to the large flux discretuum, to tune the relevant coefficients to be small. The shift-symmetric direction in D7-brane moduli space can then play the role of the inflaton: While the D7-brane circles a certain trajectory on the Calabi-Yau many times, the corresponding F-term energy density grows only very slowly, thanks to the above-mentioned tuning of the flux. To be successful our model requires that the dilaton, all complex structure moduli and all D7-brane moduli except the inflaton are fixed at leading order by fluxes. Then the large-field inflationary trajectory can be realized in a regime where Kähler, complex structure and other brane moduli are stabilized in a conventional manner, as we demonstrate using the example of the Large Volume Scenario.

  7. Dissipative Effects in the Effective Field Theory of Inflation

    SciTech Connect

    Lopez Nacir, Diana; Porto, Rafael A.; Senatore, Leonardo; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study

    2012-09-14

    We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.

  8. New type of hill-top inflation

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.; Kamenshchik, A. Yu.; Nesterov, D. V.

    2016-01-01

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on the background of a slowly varying inflaton, which guarantees smallness of slow roll parameters epsilon and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R2-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.

  9. Origin of density fluctuations in extended inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Salopek, David S.; Turner, Michael S.

    1990-01-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies.

  10. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  11. Chern-Simons inflation and baryogenesis

    SciTech Connect

    Alexander, Stephon; Marcianò, Antonino; Spergel, David E-mail: antonino.marciano@dartmouth.edu

    2013-04-01

    We present a model of inflation based on the interaction between a homogeneous and isotropic configuration of a U(1) gauge field and fermionic charge density J{sub 0}. The regulated fermionic charge density is generated from a Bunch-Davies vacuum state using the methods of Koksma and Prokopec [11], and is found to redshift as 1/a(η). The time-like component of gauge field is sourced by the fermionic charge leading to a growth in the gauge field A(η){sub 0} ∼ a(η). As a result inflation is dominated by the energy density contained in the gauge field and fermionic charge interaction, A{sub 0} J{sup 0}, which remains constant during inflation. We also provide a mechanism to generate a net lepton asymmetry. The coupling of a pseudo scalar to the Chern-Simons term converts the gauge field fluctuations into lepton number and all three Sahkarov conditions are satisfied during inflation. Finally, the rapid oscillation of the pseudo scalar field near its minimum thermalizes the gauge field and ends inflation. We provide the necessary initial condition on the gauge field and fermionic charge to simultaneously generate enough e-folds and baryon asymmetry index.

  12. Rapid roll inflation with conformal coupling

    SciTech Connect

    Kofman, Lev; Mukohyama, Shinji

    2008-02-15

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1-100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S{sup 3} of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  13. Interest and Inflation Risk: Investor Behavior

    PubMed Central

    González, María de la O; Jareño, Francisco; Skinner, Frank S.

    2016-01-01

    We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation. PMID:27047418

  14. Near Wake of an Inflating Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Desabrais, Kenneth; Johari, Hamid

    2001-11-01

    The near wake of a parachute canopy inflating in a constant freestream was experimentally investigated in a water tunnel at a Re = 30,000. The temporal evolution of the velocity field immediately downstream of the canopy was measured along with the canopy diameter and force. The inflation of the canopy occurs in three stages. In the initial stage, the flow is fully attached to the surface of the canopy. During this stage, the canopy diameter increases substantially but the drag only rises gradually. The next stage of inflation initiates when the boundary layer separates from the canopy surface near the apex of the canopy. The drag rapidly increases at this point and achieves its maximum value. Subsequently, the drag sharply declines even while the canopy diameter continues to increase. During this stage of inflation, the boundary layer separation point moves from the apex region towards the canopy skirt. The final stage of inflation occurs once the separated shear layer, originating at the canopy skirt, rolls-up into a large vortex ring. The drag achieves a local minimum during the final stage, while the diameter achieves its maximum value.

  15. Observational constraints on Tachyon and DBI inflation

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Liddle, Andrew R.

    2014-03-01

    We present a systematic method for evaluation of perturbation observables in non-canonical single-field inflation models within the slow-roll approximation, which allied with field redefinitions enables predictions to be established for a wide range of models. We use this to investigate various non-canonical inflation models, including Tachyon inflation and DBI inflation. The Lambert Script W function will be used extensively in our method for the evaluation of observables. In the Tachyon case, in the slow-roll approximation the model can be approximated by a canonical field with a redefined potential, which yields predictions in better agreement with observations than the canonical equivalents. For DBI inflation models we consider contributions from both the scalar potential and the warp geometry. In the case of a quartic potential, we find a formula for the observables under both non-relativistic (sound speed cs2 ~ 1) and relativistic behaviour (cs2 ll 1) of the scalar DBI inflaton. For a quadratic potential we find two branches in the non-relativistic cs2 ~ 1 case, determined by the competition of model parameters, while for the relativistic case cs2 → 0, we find consistency with results already in the literature. We present a comparison to the latest Planck satellite observations. Most of the non-canonical models we investigate, including the Tachyon, are better fits to data than canonical models with the same potential, but we find that DBI models in the slow-roll regime have difficulty in matching the data.

  16. Inflation, economic policy, and the inner city

    SciTech Connect

    Curtis, L.A.

    1981-07-01

    This article describes the greater impact of inflation among the poor and minorities in American inner cities than among other population groups. Surveys show, however, that minorities are even more concerned over unemployment and racial discrimination than over inflation. There are indications that, especially today, crime and potential group disorder are affected by or influence inflation, unemployment, and discrimination in the inner city. With these interrelated factors in mind, present federal economic policy is reviewed, critiqued, and interpreted as basically consistent with Keynesian economic theory. Modifications of and alternatives to present policy are offered that fit both inner-city needs and the concerns of the rest of American society. These policies include targeted private sector neighborhood development and self-help, private sector productivity increases through workplace democracy, private-public sector codetermination of investment, private-public sector job guarantees, and public anti-inflation policy carefully targeted at the basic necessities of energy, food, housing, and health care - which have a disproportionate effect on inflation in the inner city, as well as the overall economy. Coalitions are suggested that could politically implement such policies.

  17. New type of hill-top inflation

    SciTech Connect

    Barvinsky, A.O.; Nesterov, D.V.; Kamenshchik, A.Yu. E-mail: Alexander.Kamenshchik@bo.infn.it

    2016-01-01

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on the background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ε and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.

  18. Interest and Inflation Risk: Investor Behavior.

    PubMed

    González, María de la O; Jareño, Francisco; Skinner, Frank S

    2016-01-01

    We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation. PMID:27047418

  19. Interest and Inflation Risk: Investor Behavior.

    PubMed

    González, María de la O; Jareño, Francisco; Skinner, Frank S

    2016-01-01

    We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation.

  20. Quantum cosmological consistency condition for inflation

    SciTech Connect

    Calcagni, Gianluca; Kiefer, Claus; Steinwachs, Christian F. E-mail: kiefer@thp.uni-koeln.de

    2014-10-01

    We investigate the quantum cosmological tunneling scenario for inflationary models. Within a path-integral approach, we derive the corresponding tunneling probability distribution. A sharp peak in this distribution can be interpreted as the initial condition for inflation and therefore as a quantum cosmological prediction for its energy scale. This energy scale is also a genuine prediction of any inflationary model by itself, as the primordial gravitons generated during inflation leave their imprint in the B-polarization of the cosmic microwave background. In this way, one can derive a consistency condition for inflationary models that guarantees compatibility with a tunneling origin and can lead to a testable quantum cosmological prediction. The general method is demonstrated explicitly for the model of natural inflation.

  1. First observational tests of eternal inflation.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2011-08-12

    The eternal inflation scenario predicts that our observable Universe resides inside a single bubble embedded in a vast inflating multiverse. We present the first observational tests of eternal inflation, performing a search for cosmological signatures of collisions with other bubble universes in cosmic microwave background data from the WMAP satellite. We conclude that the WMAP 7-year data do not warrant augmenting the cold dark matter model with a cosmological constant with bubble collisions, constraining the average number of detectable bubble collisions on the full sky N(s) < 1.6 at 68% C.L. Data from the Planck satellite can be used to more definitively test the bubble-collision hypothesis.

  2. The problem with false vacuum Higgs inflation

    SciTech Connect

    Fairbairn, Malcolm; Grothaus, Philipp; Hogan, Robert E-mail: philipp.grothaus@kcl.ac.uk

    2014-06-01

    We investigate the possibility of using the only known fundamental scalar, the Higgs, as an inflaton with minimal coupling to gravity. The peculiar appearance of a plateau or a false vacuum in the renormalised effective scalar potential suggests that the Higgs might drive inflation. For the case of a false vacuum we use an additional singlet scalar field, motivated by the strong CP problem, and its coupling to the Higgs to lift the barrier allowing for a graceful exit from inflation by mimicking hybrid inflation. We find that this scenario is incompatible with current measurements of the Higgs mass and the QCD coupling constant and conclude that the Higgs can only be the inflaton in more complicated scenarios.

  3. Testing for double inflation with WMAP

    SciTech Connect

    Parkinson, David; Tsujikawa, Shinji; Bassett, Bruce A.; Amendola, Luca

    2005-03-15

    With the WMAP data we can now begin to test realistic models of inflation involving multiple scalar fields. These naturally lead to correlated adiabatic and isocurvature (entropy) perturbations with a running spectral index. We present the first full (9 parameter) likelihood analysis of double inflation with WMAP data and find that despite the extra freedom, supersymmetric hybrid potentials are strongly constrained with less than 7% correlated isocurvature component allowed when standard priors are imposed on the cosomological parameters. As a result we also find that Akaike and Bayesian model selection criteria rather strongly prefer single-field inflation, just as equivalent analysis prefers a cosmological constant over dynamical dark energy in the late universe. It appears that simplicity is the best guide to our universe.

  4. Microscopic origin of volume modulus inflation

    SciTech Connect

    Cicoli, Michele; Muia, Francesco; Pedro, Francisco Gil

    2015-12-21

    High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.

  5. Initial conditions and sampling for multifield inflation

    SciTech Connect

    Easther, Richard; Price, Layne C. E-mail: lpri691@aucklanduni.ac.nz

    2013-07-01

    We investigate the initial conditions problem for multifield inflation. In these scenarios the pre-inflationary dynamics can be chaotic, increasing the sensitivity of the onset of inflation to the initial data even in the homogeneous limit. To analyze physically equivalent scenarios we compare initial conditions at fixed energy. This ensures that each trajectory is counted once and only once, since the energy density decreases monotonically. We present a full analysis of hybrid inflation that reveals a greater degree of long range order in the set of ''successful'' initial conditions than was previously apparent. In addition, we explore the effective smoothing scale for the fractal set of successful initial conditions induced by the finite duration of the pre-inflationary phase. The role of the prior information used to specify the initial data is discussed in terms of Bayesian sampling.

  6. Load-limiting parachute inflation control

    NASA Astrophysics Data System (ADS)

    Redmond, James M.; Hinnerichs, Terry D.; Parker, Gordon G.

    1994-05-01

    Excessive deceleration forces experienced during high speed deployment of parachute systems can cause damage to the payload and the canopy fabric. Conventional reefing lines offer limited relief by temporarily restricting canopy inflation and limiting the peak deceleration load. However, the open-loop control provided by existing reefing devices restrict their use to a specific set of deployment conditions. In this paper, the sensing, processing, and actuation that are characteristic of adaptive structures form the basis of three concepts for active control of parachute inflation. These active control concepts are incorporated into a computer simulation of parachute inflation. Initial investigations indicate that these concepts promise enhanced performance as compared to conventional techniques for a nominal release. Furthermore, the ability of each controller to adapt to off-nominal release conditions is examined.

  7. Beginning inflation in an inhomogeneous universe

    NASA Astrophysics Data System (ADS)

    East, William E.; Kleban, Matthew; Linde, Andrei; Senatore, Leonardo

    2016-09-01

    Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to the initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. This establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.

  8. First Observational Tests of Eternal Inflation

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Johnson, Matthew C.; Mortlock, Daniel J.; Peiris, Hiranya V.

    2011-08-01

    The eternal inflation scenario predicts that our observable Universe resides inside a single bubble embedded in a vast inflating multiverse. We present the first observational tests of eternal inflation, performing a search for cosmological signatures of collisions with other bubble universes in cosmic microwave background data from the WMAP satellite. We conclude that the WMAP 7-year data do not warrant augmenting the cold dark matter model with a cosmological constant with bubble collisions, constraining the average number of detectable bubble collisions on the full sky N¯s<1.6 at 68% C.L. Data from the Planck satellite can be used to more definitively test the bubble-collision hypothesis.

  9. Extended inflation from higher dimensional theories

    SciTech Connect

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Yun.

    1990-04-01

    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation.

  10. Extended inflation from higher-dimensional theories

    NASA Astrophysics Data System (ADS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1991-02-01

    We consider the possibility that higher-dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. We analyze two separate models. One is a very simple toy model consisting of higher-dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of nontrivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a nontrivial potential for the radius of the internal space. We find that extended inflation does not occur in these models. We also find that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation.

  11. Extended inflation from higher dimensional theories

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1990-01-01

    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation.

  12. Predictions in multifield models of inflation

    SciTech Connect

    Frazer, Jonathan

    2014-01-01

    This paper presents a method for obtaining an analytic expression for the density function of observables in multifield models of inflation with sum-separable potentials. The most striking result is that the density function in general possesses a sharp peak and the location of this peak is only mildly sensitive to the distribution of initial conditions. A simple argument is given for why this result holds for a more general class of models than just those with sum-separable potentials and why for such models, it is possible to obtain robust predictions for observable quantities. As an example, the joint density function of the spectral index and running in double quadratic inflation is computed. For scales leaving the horizon 55 e-folds before the end of inflation, the density function peaks at n{sub s} = 0.967 and α = 0.0006 for the spectral index and running respectively.

  13. Foam inflated rigidized structures for space applications

    NASA Astrophysics Data System (ADS)

    Lester, D. M.; Warner, M. J.; Blair, M.

    1993-11-01

    Large lightweight stowable structures that can be deployed in space without astronaut extra vehicular activity are vital to expanding space exploration and utilization. To meet this challenge Foam Inflated Rigidized (FIR) structures have been developed by Thiokol Corporation on the Air Forces's Gossamer Baggie Torus program. In this paper the development, proof of concept demonstration of an eight foot diameter octagonal torus, and design application of this technology for structural elements to stabilize the solar collector of a solar thermal rocket are discussed. A FIR structure uses foam to inflate and pre-stress a resin impregnated fabric skin. The predeployed foam used was a solvent swelled polymer that foams immediately when exposed to vacuum due to rapid solvent loss. This property allows a very simple deployment mechanism to be used in erecting these structures. Once inflated, the skin resin is cured using the available ultraviolet radiation. By using high strength and stiffness fiber materials a stiff, strong lightweight structure was produced.

  14. Inflation and uplifting with nilpotent superfields

    SciTech Connect

    Kallosh, Renata; Linde, Andrei E-mail: alinde@stanford.edu

    2015-01-01

    Recently it was found that a broad class of existing inflationary models based on supergravity can be significantly simplified if some of the standard, unconstrained chiral superfields are replaced by nilpotent superfields, associated with Volkov-Akulov supersymmetry. The same method allows to simplify the existing models of uplifting of AdS vacua in string theory. In this paper we will show that one can go well beyond simplifying the models that already exist. We will propose a broad class of new models of chaotic inflation based on supergravity with nilpotent superfields, which simultaneously incorporate both inflation and uplifting. They provide a simple unified description of inflation and the present acceleration of the universe in the supergravity context.

  15. Natural inflation with hidden scale invariance

    NASA Astrophysics Data System (ADS)

    Barrie, Neil D.; Kobakhidze, Archil; Liang, Shelley

    2016-05-01

    We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns - 1 ≈ - 0.025 (N⋆/60)-1 and r ≈ 0.0667 (N⋆/60)-1, where N⋆ ≈ 30- 65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.

  16. Inflation after COBE: Lectures on inflationary cosmology

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1992-01-01

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the initial data'' for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  17. Inflation after COBE: Lectures on inflationary cosmology

    SciTech Connect

    Turner, M.S. |

    1992-12-31

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  18. First observational tests of eternal inflation.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2011-08-12

    The eternal inflation scenario predicts that our observable Universe resides inside a single bubble embedded in a vast inflating multiverse. We present the first observational tests of eternal inflation, performing a search for cosmological signatures of collisions with other bubble universes in cosmic microwave background data from the WMAP satellite. We conclude that the WMAP 7-year data do not warrant augmenting the cold dark matter model with a cosmological constant with bubble collisions, constraining the average number of detectable bubble collisions on the full sky N(s) < 1.6 at 68% C.L. Data from the Planck satellite can be used to more definitively test the bubble-collision hypothesis. PMID:21902380

  19. Special points of inflation in flux compactifications

    NASA Astrophysics Data System (ADS)

    García-Etxebarria, Iñaki; Grimm, Thomas W.; Valenzuela, Irene

    2015-10-01

    We study the realization of axion inflation models in the complex structure moduli spaces of Calabi-Yau threefolds and fourfolds. The axions arise close to special points of these moduli spaces that admit discrete monodromy symmetries of infinite order. Examples include the large complex structure point and conifold point, but can be of more general nature. In Type IIB and F-theory compactifications the geometric axions receive a scalar potential from a flux-induced superpotential. We find toy variants of various inflationary potentials including the ones for natural inflation of one or multiple axions, or axion monodromy inflation with polynomial potential. Interesting examples are also given by mirror geometries of torus fibrations with Mordell-Weil group of rank N - 1 or an N-section, which admit an axion if N > 3.

  20. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment designed to search for the polarized imprint of gravitational waves from cosmic inflation. The discovery of such a signal would provide direct evidence for inflation, and its characterization would provide a means to explore energy scales orders of magnitude larger than any conceivable particle accelerator. PIPER will consist of two cryogenic telescopes-one for each of the Q and U Stokes parameters. Each will use a variable-delay polarization modulator (VPM) as its first element. This architecture is designed to minimize both T->B and E->B systematics. The detectors will be four 32x40 arrays of BUG detectors, utilizing transition-edge sensors and time-domain multiplexing. Each flight will observe approximately 25% of the sky at a single frequency. Additional flights will increase the frequency coverage.

  1. 46 CFR 197.344 - Inflatable floatation devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.344 Inflatable floatation devices. An inflatable floatation device for SCUBA diving must— (a) Be capable of maintaining the diver at...

  2. 46 CFR 197.344 - Inflatable floatation devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.344 Inflatable floatation devices. An inflatable floatation device for SCUBA diving must— (a) Be capable of maintaining the diver at...

  3. 46 CFR 197.344 - Inflatable floatation devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.344 Inflatable floatation devices. An inflatable floatation device for SCUBA diving must— (a) Be capable of maintaining the diver at...

  4. 46 CFR 197.344 - Inflatable floatation devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.344 Inflatable floatation devices. An inflatable floatation device for SCUBA diving must— (a) Be capable of maintaining the diver at...

  5. 46 CFR 197.344 - Inflatable floatation devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.344 Inflatable floatation devices. An inflatable floatation device for SCUBA diving must— (a) Be capable of maintaining the diver at...

  6. Inflation in Brazil: The Principles of Monetary Correction

    ERIC Educational Resources Information Center

    Campos, Roberto de Oliveira

    1975-01-01

    The evils of inflation and Brazil's attempts to minimize inflation by a generalized indexation for all forms of saving, wage adjustments, tax reform, a mini-devaluation, and saving incentives are examined. (DE)

  7. Issues on generating primordial anisotropies at the end of inflation

    SciTech Connect

    Emami, Razieh; Firouzjahi, Hassan E-mail: firouz@mail.ipm.ir

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.

  8. Inflation and the scale dependent spectral index: prospects and strategies

    SciTech Connect

    Adshead, Peter; Easther, Richard; Pritchard, Jonathan; Loeb, Abraham E-mail: richard.easther@yale.edu E-mail: aloeb@cfa.harvard.edu

    2011-02-01

    We consider the running of the spectral index as a probe of both inflation itself, and of the overall evolution of the very early universe. Surveying a collection of simple single field inflationary models, we confirm that the magnitude of the running is relatively consistent, unlike the tensor amplitude, which varies by orders of magnitude. Given this target, we confirm that the running is potentially detectable by future large scale structure or 21 cm observations, but that only the most futuristic measurements can distinguish between these models on the basis of their running. For any specified inflationary scenario, the combination of the running index and unknown post-inflationary expansion history induces a theoretical uncertainty in the predicted value of the spectral index. This effect can easily dominate the statistical uncertainty with which Planck and its successors are expected to measure the spectral index. More positively, upcoming cosmological experiments thus provide an intriguing probe of physics between TeV and GUT scales by constraining the reheating history associated with any specified inflationary model, opening a window into the ''primordial dark age'' that follows the end of inflation.

  9. Addressing Immunization Registry Population Inflation in Adolescent Immunization Rates

    PubMed Central

    2015-01-01

    Objective While U.S. adolescent immunization rates are available annually at national and state levels, finding pockets of need may require county or sub-county information. Immunization information systems (IISs) are one tool for assessing local immunization rates. However, the presence of IIS records dating back to early childhood and challenges in capturing mobility out of IIS areas typically leads to denominator inflation. We examined the feasibility of weighting adolescent immunization records by length of time since last report to produce more accurate county adolescent counts and immunization rates. Methods We compared weighted and unweighted adolescent denominators from the Oregon ALERT IIS, along with county-level Census Bureau estimates, with school enrollment counts from Oregon's annual review of seventh-grade school immunization compliance for public and private schools. Adolescent immunization rates calculated using weighted data, for the state as a whole, were also checked against comparable National Immunization Survey (NIS) rates. Results Weighting individual records by the length of time since last activity substantially improved the fit of IIS data to county populations for adolescents. A nonlinear logarithmic (ogive) weight produced the best fit to the school count data of all examined estimates. Overall, the ogive weighted results matched NIS adolescent rates for Oregon. Conclusion The problem of mobility-inflated counts of teenagers can be addressed by weighting individual records based on time since last immunization. Well-populated IISs can rely on their own data to produce adolescent immunization rates and find pockets of need. PMID:25729105

  10. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    PubMed

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  11. Path integral for multi-field inflation

    NASA Astrophysics Data System (ADS)

    Gong, Jinn-Ouk; Seo, Min-Seok; Shiu, Gary

    2016-07-01

    We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixing conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.

  12. Will Quantum Cosmology Resurrect Chaotic Inflation Model?

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo; Kim, Won

    2016-07-01

    The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.

  13. Inflatable partition for fighting mine fires

    DOEpatents

    Conti, Ronald S.; Lazzara, Charles P.

    1995-01-01

    The seal is a lightweight, inflatable, bag which may be inflated by a portable air generator and is used to seal a burning mine passage. A collapsible tube-like aperture extends through the seal and allows passage of high expansion foam through the seal in a feed tube. The foam fills the passageway and extinguishes the fire. In other embodiments, the feed tubes incorporate means to prevent collapse of the aperture. In these embodiments a shroud connects the feed tube to a foam generator. This seal allows creation of a high expansion foam fire fighting barrier even in upward sloping passages.

  14. Universality classes for models of inflation

    SciTech Connect

    Binétruy, P.; Kiritsis, E.; Mabillard, J.; Pieroni, M.; Rosset, C. E-mail: mpieroni@apc.univ-paris7.fr

    2015-04-01

    We show that the cosmological evolution of a scalar field in a potential can be obtained from a renormalisation group equation. The slow roll regime of inflation models is understood in this context as the slow evolution close to a fixed point, described by the methods of renormalisation group. This explains in part the universality observed in the predictions of a certain number of inflation models. We illustrate this behavior on a certain number of examples and discuss it in the context of the AdS/CFT correspondence.

  15. Reducing the spectral index in supernatural inflation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Min; Cheung, Kingman

    2009-04-01

    Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is ns≳1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to ns=0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.

  16. Pre - big bang inflation requires fine tuning

    SciTech Connect

    Turner, Michael S.; Weinberg, Erick J.

    1997-10-01

    The pre-big-bang cosmology inspired by superstring theories has been suggested as an alternative to slow-roll inflation. We analyze, in both the Jordan and Einstein frames, the effect of spatial curvature on this scenario and show that too much curvature --- of either sign --- reduces the duration of the inflationary era to such an extent that the flatness and horizon problems are not solved. Hence, a fine-tuning of initial conditions is required to obtain enough inflation to solve the cosmological problems.

  17. Diagnostic inflation: causes and a suggested cure.

    PubMed

    Batstra, Laura; Frances, Allen

    2012-06-01

    There have been a striking diagnostic inflation and a corresponding increase in the use of psychotropic drugs during the past 30 years. DSM-5, scheduled to appear in May 2013, proposes another grand expansion of mental illness. In this article, we will review the causes of diagnostic exuberance and associated medical treatment. We will then suggest a method of stepped care combined with stepped diagnosis, which may reduce overdiagnosis without risking undertreatment of those who really need help. The goal is to control diagnostic inflation, to reduce the harms and costs of unnecessary treatment, and to save psychiatry from overdiagnosis and ridicule.

  18. A polynomial f(R) inflation model

    SciTech Connect

    Huang, Qing-Guo

    2014-02-19

    Motivated by the ultraviolet complete theory of quantum gravity, for example the string theory, we investigate a polynomial f(R) inflation model in detail. We calculate the spectral index and tensor-to-scalar ratio in the f(R) inflation model with the form of f(R)=R+((R{sup 2})/(6M{sup 2}))+((λ{sub n})/(2n))((R{sup n})/((3M{sup 2}){sup n−1})). Compared to Planck 2013, we find that R{sup n} term should be exponentially suppressed, i.e. |λ{sub n}|≲10{sup −2n+2.6}.

  19. A polynomial f(R) inflation model

    SciTech Connect

    Huang, Qing-Guo

    2014-02-01

    Motivated by the ultraviolet complete theory of quantum gravity, for example the string theory, we investigate a polynomial f(R) inflation model in detail. We calculate the spectral index and tensor-to-scalar ratio in the f(R) inflation model with the form of f(R) = R + (R{sup 2})/6M{sup 2} + (λn)/2n (R{sup n})/(3M{sup 2}){sup n-1}. Compared to Planck 2013, we find that R{sup n} term should be exponentially suppressed, i.e. |λ{sub n}|∼<10{sup −2n+2.6}.

  20. D-term inflation without cosmic strings.

    PubMed

    Urrestilla, J; Achúcarro, A; Davis, A C

    2004-06-25

    We present a superstring-inspired version of D-term inflation that does not lead to cosmic string formation and appears to satisfy the current cosmic microwave background constraints. It differs from minimal D-term inflation by a second pair of charged superfields that makes the strings nontopological (semilocal). The strings are also Bogomol'nyi-Prasad-Sommerfield strings, so the scenario is expected to survive supergravity corrections. The second pair of charged superfields arises naturally in several brane and conifold scenarios, but its effect on cosmic string formation had not been noticed so far. PMID:15244993

  1. Reducing the spectral index in supernatural inflation

    SciTech Connect

    Lin, C.-M.; Cheung, Kingman

    2009-04-15

    Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is n{sub s} > or approx. 1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to n{sub s}=0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.

  2. Anisotropic inflation in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Lahiri, Sayantani

    2016-09-01

    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  3. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a ba1loon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (CMB). PIPER will measure the CMB polarization at 4 frequencies (l per flight) using a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 by 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the Stokes parameter to which the telescope is sensitive.

  4. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne polarimeter that will measure the polarization of the cosmic microwave background to search for evidence for inflation. PIPER will observe more than half of the sky in four frequency bands from 200 to 600 GHz with a beam size of 21 arcminutes at the lowest frequency. PIPER simultaneously measures all four Stokes parameters using four co-aligned 32 by 40 element planar bolometer arrays. We give an instrument overview and report on the current status of the instrument.

  5. Singular inflation from Born-Infeld-f(R) gravity

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Makarenko, Andrey N.

    2016-07-01

    Accelerating dynamics from Born-Infeld-f(R) gravity are studied in a simplified conformal approach without matter. Explicit unification of inflation with late-time acceleration is realized within this singular inflation approach, which is similar to Odintsov-Oikonomou singular f(R) inflation. Our model turns out to be consistent with the latest release of Planck data.

  6. 46 CFR 185.518 - Inflatable survival craft placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inflatable survival craft placards. 185.518 Section 185... 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or...

  7. 46 CFR 122.518 - Inflatable survival craft placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable survival craft placards. 122.518 Section 122... Preparations for Emergencies § 122.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or other cards containing instructions for...

  8. 78 FR 5760 - Civil Monetary Penalty Inflation Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... Department of the Army, Corps of Engineers 33 CFR Part 326 RIN 0710-AA66 Civil Monetary Penalty Inflation... Engineers (Corps) is proposing to amend its regulations to adjust its Class I civil penalties under the... civil penalties to account for inflation is required by the Federal Civil Penalties Inflation...

  9. Penalty Inflation Adjustments for Civil Money Penalties. Interim Final Rule.

    PubMed

    2016-06-27

    In accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990, as amended by the Debt Collection Improvement Act of 1996, and further amended by the Bipartisan Budget Act of 2015, section 701: Federal Civil Penalties Inflation Adjustment Act Improvements Act of 2015, this interim final rule incorporates the penalty inflation adjustments for the civil money penalties contained in the Social Security Act

  10. 21 CFR 868.5750 - Inflatable tracheal tube cuff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Inflatable tracheal tube cuff. 868.5750 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5750 Inflatable tracheal tube cuff. (a) Identification. An inflatable tracheal tube cuff is a device used to provide an airtight...

  11. 21 CFR 868.5750 - Inflatable tracheal tube cuff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inflatable tracheal tube cuff. 868.5750 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5750 Inflatable tracheal tube cuff. (a) Identification. An inflatable tracheal tube cuff is a device used to provide an airtight...

  12. 21 CFR 868.5750 - Inflatable tracheal tube cuff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Inflatable tracheal tube cuff. 868.5750 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5750 Inflatable tracheal tube cuff. (a) Identification. An inflatable tracheal tube cuff is a device used to provide an airtight...

  13. 21 CFR 868.5750 - Inflatable tracheal tube cuff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Inflatable tracheal tube cuff. 868.5750 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5750 Inflatable tracheal tube cuff. (a) Identification. An inflatable tracheal tube cuff is a device used to provide an airtight...

  14. 21 CFR 868.5750 - Inflatable tracheal tube cuff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Inflatable tracheal tube cuff. 868.5750 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5750 Inflatable tracheal tube cuff. (a) Identification. An inflatable tracheal tube cuff is a device used to provide an airtight...

  15. 21 CFR 878.3530 - Silicone inflatable breast prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Silicone inflatable breast prosthesis. 878.3530... inflatable breast prosthesis. (a) Identification. A silicone inflatable breast prosthesis is a silicone... intended to be implanted to augment or reconstruct the female breast. (b) Classification. Class III....

  16. 32 CFR 269.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Civil monetary penalty inflation adjustment. 269... DEFENSE (CONTINUED) MISCELLANEOUS CIVIL MONETARY PENALTY INFLATION ADJUSTMENT § 269.3 Civil monetary penalty inflation adjustment. The Department shall, not later than 180 days after the enactment of...

  17. 8 CFR 280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Civil monetary penalties inflation... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 280.53 Civil monetary penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act...

  18. 32 CFR 269.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Civil monetary penalty inflation adjustment. 269... DEFENSE (CONTINUED) MISCELLANEOUS CIVIL MONETARY PENALTY INFLATION ADJUSTMENT § 269.3 Civil monetary penalty inflation adjustment. The Department shall, not later than 180 days after the enactment of...

  19. 8 CFR 1280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Civil monetary penalties inflation... penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act of 1990, Pub. L. 101-410, 104 Stat. 890, as amended by the...

  20. 49 CFR 1022.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Civil monetary penalty inflation adjustment. 1022... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION GENERAL RULES AND REGULATIONS CIVIL MONETARY PENALTY INFLATION ADJUSTMENT § 1022.3 Civil monetary penalty inflation adjustment. The Board shall, immediately, and at...

  1. 46 CFR 506.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 9 2013-10-01 2013-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the...

  2. 46 CFR 506.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the...

  3. 32 CFR 269.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Civil monetary penalty inflation adjustment. 269... DEFENSE (CONTINUED) MISCELLANEOUS CIVIL MONETARY PENALTY INFLATION ADJUSTMENT § 269.3 Civil monetary penalty inflation adjustment. The Department shall, not later than 180 days after the enactment of...

  4. 49 CFR 1022.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Civil monetary penalty inflation adjustment. 1022... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION GENERAL RULES AND REGULATIONS CIVIL MONETARY PENALTY INFLATION ADJUSTMENT § 1022.3 Civil monetary penalty inflation adjustment. The Board shall, immediately, and at...

  5. 8 CFR 280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Civil monetary penalties inflation... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 280.53 Civil monetary penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act...

  6. 46 CFR 506.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the...

  7. 8 CFR 280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Civil monetary penalties inflation... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 280.53 Civil monetary penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act...

  8. 77 FR 64431 - Civil Monetary Penalty Inflation Adjustment Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Surface Transportation Board 49 CFR Part 1022 Civil Monetary Penalty Inflation Adjustment Rule AGENCY... issuing a final rule to adjust the Board's civil monetary penalties for inflation on a periodic basis pursuant to the Federal Civil Penalties Inflation Act of 1990, as amended by the Debt...

  9. 32 CFR 269.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Civil monetary penalty inflation adjustment. 269... DEFENSE (CONTINUED) MISCELLANEOUS CIVIL MONETARY PENALTY INFLATION ADJUSTMENT § 269.3 Civil monetary penalty inflation adjustment. The Department shall, not later than 180 days after the enactment of...

  10. 8 CFR 280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Civil monetary penalties inflation... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 280.53 Civil monetary penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act...

  11. 76 FR 47177 - Publication of Housing Price Inflation Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... of the Secretary Publication of Housing Price Inflation Adjustment AGENCY: Office of the Under.... The law requires the Department of Defense to adjust this amount annually to reflect inflation and to publish the new amount in the Federal Register. We have applied the inflation index required by...

  12. 46 CFR 506.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 9 2012-10-01 2012-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the...

  13. 46 CFR 506.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 9 2014-10-01 2014-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the...

  14. 8 CFR 1280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Civil monetary penalties inflation... penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act of 1990, Pub. L. 101-410, 104 Stat. 890, as amended by the...

  15. 32 CFR 269.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Civil monetary penalty inflation adjustment. 269... DEFENSE (CONTINUED) MISCELLANEOUS CIVIL MONETARY PENALTY INFLATION ADJUSTMENT § 269.3 Civil monetary penalty inflation adjustment. The Department shall, not later than 180 days after the enactment of...

  16. Noncommutative geometry inspired entropic inflation

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Akhshabi, Siamak

    2011-06-01

    Recently Verlinde proposed that gravity can be described as an emergent phenomena arising from changes in the information associated with the positions of material bodies. By using noncommutative geometry as a way to describe the microscopic microstructure of quantum spacetime, we derive modified Friedmann equation in this setup and study the entropic force modifications to the inflationary dynamics of early universe.

  17. Inflation, Dark Energy and the AFTA: Survey Evaluation Tools

    NASA Astrophysics Data System (ADS)

    Bennett, Charles

    We propose to address these questions about the Astrophysics Focused Telescope Assets (AFTA) implementation of the Wide-Field Infra-Red Survey Telescope (WFIRST): (1) What constraints does WFIRST/AFTA place on inflationary and dark energy cosmological parameters for a given set of nominal instrument design and observing parameters? (2) How do these constraints change with variations in mission parameters (sky area, observing duration, sensitivity, purity, astrophysical assumptions, etc.)? and (3) How should requirements or capabilities be included in the design to ensure the dark energy and inflation parameter estimates can be met? To answer these questions we propose to develop a set of simulation tools to better understand the dependencies of the cosmological results on the mission design. We emphasize that it is not our intent to argue for particular changes to the mission, but rather to provide the WFIRST/AFTA Study Office with insights, specific numbers, and functional dependencies so that the Study Office can make informed decisions. Early time accelerated expansion (inflation) and late time accelerated expansion (from dark energy) have physical similarities and differences. They are both, in their simplest form, exponential expansions with the equation of state parameter w = -1, yet they appear unrelated in the sense that they occur on vastly different energy scales. Neither is well understood, hence the strong desire for improved measurements. In a practical sense, the interpretation of future measurements are interdependent. Flatness (Omega_k=0) is often assumed to deduce limits on w, or alternatively w = -1 is assumed to deduce limits on flatness. Baryon acoustic oscillations (BAO) are effectively differential and hence approximately independent of the detailed shape of the power spectrum, P(k), but if the AFTA galaxy redshift survey is used to deduce P(k), then there is a strong interaction between the interpretation of P(k) and inflation, including its

  18. The Relationship between Inflation and Inflation Uncertainty. Empirical Evidence for the Newest EU Countries

    PubMed Central

    Viorica, Daniela; Jemna, Danut; Pintilescu, Carmen; Asandului, Mircea

    2014-01-01

    The objective of this paper is to verify the hypotheses presented in the literature on the causal relationship between inflation and its uncertainty, for the newest EU countries. To ensure the robustness of the results, in the study four models for inflation uncertainty are estimated in parallel: ARCH (1), GARCH (1,1), EGARCH (1,1,1) and PARCH (1,1,1). The Granger method is used to test the causality between two variables. The working hypothesis is that groups of countries with a similar political and economic background in 1990 and are likely to be characterized by the same causal relationship between inflation and inflation uncertainty. Empirical results partially confirm this hypothesis. Jel Classification C22, E31, E37. PMID:24633073

  19. Inflation: The Social and Political Consequences

    ERIC Educational Resources Information Center

    Watt, Donald C.

    1975-01-01

    The social and political consequences of inflation throughout European and American history are analyzed. Under examination are Europe in the 16th century, France and America in the 18th century, the United States during and after the Civil War, Germany in the 1920's, and contemporary society. (DE)

  20. Inflation in Realistic D-Brane Models

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Cline, J. M.; Stoica, H.; Quevedo, F.

    2004-09-01

    We find successful models of D-brane/anti-brane inflation within a string context. We work within the GKP-Bbb KLT class of type IIB string vacua for which many moduli are stabilized through fluxes, as recently modified to include `realistic' orbifold sectors containing standard-model type particles. We allow all moduli to roll when searching for inflationary solutions and find that inflation is not generic inasmuch as special choices must be made for the parameters describing the vacuum. But given these choices inflation can occur for a reasonably wide range of initial conditions for the brane and antibrane. We find that D-terms associated with the orbifold blowing-up modes play an important role in the inflationary dynamics. Since the models contain a standard-model-like sector after inflation, they open up the possibility of addressing reheating issues. We calculate predictions for the CMB temperature fluctuations and find that these can be consistent with observations, but are generically not deep within the scale-invariant regime and so can allow appreciable values for dns/dln k as well as predicting a potentially observable gravity-wave signal. It is also possible to generate some admixture of isocurvature fluctuations.