Sample records for early flight mission

  1. The Solar and Heliospheric Observatory (SOHO) Mission: An Overview of Flight Dynamics Support of the Early Mission Phase

    NASA Technical Reports Server (NTRS)

    Short, R.; Behuncik, J.

    1996-01-01

    The SOHO spacecraft was successfully launched by an Atlas 2AS from the Eastern Range on December 2, 1995. After a short time in a nearly circular parking orbit, the spacecraft was placed by the Centaur upper stage on a transfer trajectory to the L1 libration point where it was inserted into a class 1 Halo orbit. The nominal mission lifetime is two years which will be spent collecting data from the Sun using a complement of twelve instruments. An overview of the early phases of Flight Dynamics Facility support of the mission is given. Maneuvers required for the mission are discussed, and an evaluation of these maneuvers is given with the attendent effects on the resultant orbit. Thruster performance is presented as well as real time monitoring of thruster activity during maneuvers. Attitude areas presented are the star identification process and role angle determination, momentum management, operating constraints on the star tracker, and guide star switching. A brief description of the two Heads Up displays is given.

  2. (abstract) Mission Operations and Control Assurance: Flight Operations Quality Improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Witkowski, Mona M.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA), a recent addition to flight operations teams at JPL. provides a system level function to instill quality in mission operations. MO&CA's primary goal at JPL is to help improve the operational reliability for projects during flight. MO&CA tasks include early detection and correction of process design and procedural deficiencies within projects. Early detection and correction are essential during development of operational procedures and training of operational teams. MO&CA's effort focuses directly on reducing the probability of radiating incorrect commands to a spacecraft. Over the last seven years at JPL, MO&CA has become a valuable asset to JPL flight projects. JPL flight projects have benefited significantly from MO&CA's efforts to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit directly from previous and ongoing experience. Since MO&CA, like Total Quality Management (TQM), focuses on continuous improvement of processes and elimination of rework, we recommend that this effort be continued on NASA flight projects.

  3. MSFC Flight Mission Directive Apollo-Saturn 205 Mission

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The purpose of this directive is to provide, under one cover, coordinated direction for the AS-205 Space Vehicle Flight. Within this document, mission objectives are specified, vehicle configuration is described and referenced, flight trajectories, data acquisition requirements, instrumentation requirements, and detailed documentation requirements necessary to meet launch vehicle mission objectives are defined and/or referenced.

  4. Flight Software for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  5. [From the flight of Iu. A. Gagarin to the contemporary piloted space flights and exploration missions].

    PubMed

    Grigor'ev, A I; Potapov, A N

    2011-01-01

    The first human flight to space made by Yu. A. Gagarin on April 12, 1961 was a crucial event in the history of cosmonautics that had a tremendous effect on further progress of the human civilization. Gagarin's flight had been prefaced by long and purposeful biomedical researches with the use of diverse bio-objects flown aboard rockets and artificial satellites. Data of these researches drove to the conclusion on the possibility in principle for humans to fly to space. After a series of early flights and improvements in the medical support system space missions to the Salyut and Mir station gradually extended to record durations. The foundations of this extension were laid by systemic researches in the fields of space biomedicine and allied sciences. The current ISS system of crew medical care has been successful in maintaining health and performance of cosmonauts as well as in providing the conditions for implementation of flight duties and operations with a broad variety of payloads. The ISS abounds in opportunities of realistic trial of concepts and technologies in preparation for crewed exploration missions. At the same, ground-based simulation of a mission to Mars is a venue for realization of scientific and technological experiments in space biomedicine.

  6. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    NASA Technical Reports Server (NTRS)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  7. Flight Operations . [Zero Knowledge to Mission Complete

    NASA Technical Reports Server (NTRS)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  8. Apollo experience report: The role of flight mission rules in mission preparation and conduct

    NASA Technical Reports Server (NTRS)

    Keyser, L. W.

    1974-01-01

    The development of flight mission rules from the mission development phase through the detailed mission-planning phase and through the testing and training phase is analyzed. The procedure for review of the rules and the coordination requirements for mission-rule development are presented. The application of the rules to real-time decision making is outlined, and consideration is given to the benefit of training ground controllers and flightcrews in the methods of determining the best response to a nonnominal in-flight situation for which no action has been preplanned. The Flight Mission Rules document is discussed in terms of the purpose and objective thereof and in terms of the definition, the development, and the use of mission rules.

  9. Mission commander James Wetherbee on the forward flight deck

    NASA Image and Video Library

    1995-02-03

    STS063-06-027 (3-11 Feb 1995) --- Seated at the commander's station on the Space Shuttle Discovery's flight deck, astronaut James D. Wetherbee, commander, was photographed by a crew mate during early phases of the STS-63 mission. A great deal of time was spent during the first few days of the mission to check a leaky thruster, which could have had a negative influence on rendezvous operations with Russia's Mir Space Station. As it turned out, all the related problems were solved and the two spacecraft succeded in achieving close proximity operations. Others onboard the Discovery were astronauts Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; and mission specialists C. Michael Foale, Janice E. Voss, and Russian cosmonaut Vladimir G. Titov.

  10. Definition of technology development missions for early space station satellite servicing, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  11. Early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Pace, R. E., Jr.; Craft, H. G., Jr.

    1977-01-01

    NASA has issued payload flight assignments for the first three Spacelab missions. The first two of these missions will have dual objectives, that of verifying Spacelab system performance and accomplishing meaningful space research. The first of these missions will be a joint NASA and ESA mission with a multidisciplinary payload. The second mission will verify a different Spacelab configuration while addressing the scientific disciplines of astrophysics. The third assigned mission will concentrate on utilizing the capabilities of Spacelab to perform meaningful experiments in space applications, primarily space processing. The paper describes these missions with their objectives, planned configuration and accommodation.

  12. Flight Dynamics Mission Support and Quality Assurance Process

    NASA Technical Reports Server (NTRS)

    Oh, InHwan

    1996-01-01

    This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.

  13. Mission management - Lessons learned from early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1980-01-01

    The concept and the responsibilities of a mission manager approach are reviewed, and some of the associated problems in implementing Spacelab mission are discussed. Consideration is given to program control, science management, integrated payload mission planning, and integration requirements. Payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities are outlined.

  14. Mission operations and command assurance: Flight operations quality improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.

    1994-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  15. The influence of space flight on erythrokinetics in man. Space Life Sciences Missions 1 and 2. Experiment E261

    NASA Technical Reports Server (NTRS)

    Alfrey, Clarence P.

    1995-01-01

    The purpose of this contract was to design and conduct experiments that would increase our understanding of the influence of space flight on erythrokinetics and the rapid change that occurs in the red blood cell mass during spaceflight. The experiment designated E261, was flown on Space Life Science missions SLS-1 and SLS-2 (STS 40 and STS 58). Unique features of this experiment included radionuclide tracer studies during flight and frequent in-flight blood samples specifically for the first three or four days of the mission. Plasma volume measurements were made early and late in the missions. Radioactive iron kinetics studies were initiated after one or three days in microgravity since the magnitude of the red blood cell mass decrease dictated that bone marrow production must be decreased very early in the flight. The schedule was designed to study the time course of the changes that occur during spaceflight and to possibly define a mechanism for the rapid reduction in red blood cell mass.

  16. Pegasus first mission - Flight results

    NASA Astrophysics Data System (ADS)

    Mosier, Marty; Harris, Gary; Richards, Bob; Rovner, Dan; Carroll, Brent

    On April 5, 1990, after release from a B-52 aircraft at 43,198 ft, the three-stage Pegasus solid-propellant rocket successfully completed its maiden flight by injecting its 423-lb payload into a 273 x 370-nmi 94-deg-inclination orbit. The first flight successfully achieved all mission objectives, validating Pegasus's unique air-launched concept, the vehicle's design, and its straightforward ground processing, integration and test methods.

  17. Expedition 13 flight controller on console during mission - Orbit 1, BFCR

    NASA Image and Video Library

    2006-08-31

    JSC2006-E-38926 (31 Aug. 2006) --- Flight director Rick LaBrode discusses Expedition 13 mission activities with another flight controller (out of frame) in the Station (Blue) Flight Control Room in Houston's Mission Control Center.

  18. Verification and Implementation of Operations Safety Controls for Flight Missions

    NASA Technical Reports Server (NTRS)

    Smalls, James R.; Jones, Cheryl L.; Carrier, Alicia S.

    2010-01-01

    There are several engineering disciplines, such as reliability, supportability, quality assurance, human factors, risk management, safety, etc. Safety is an extremely important engineering specialty within NASA, and the consequence involving a loss of crew is considered a catastrophic event. Safety is not difficult to achieve when properly integrated at the beginning of each space systems project/start of mission planning. The key is to ensure proper handling of safety verification throughout each flight/mission phase. Today, Safety and Mission Assurance (S&MA) operations engineers continue to conduct these flight product reviews across all open flight products. As such, these reviews help ensure that each mission is accomplished with safety requirements along with controls heavily embedded in applicable flight products. Most importantly, the S&MA operations engineers are required to look for important design and operations controls so that safety is strictly adhered to as well as reflected in the final flight product.

  19. Mission Planning Systems for Tactical Aircraft (Pre-Flight and In- Flight) (Systemes de Planification des Missions pour Avions Tactiques (Avant Vol et en Vol)

    DTIC Science & Technology

    1991-05-01

    aspects of planning air interdiction .apability other than reviewing the available maps, photographic missions (e.g., computing fuel and mission time litnes... photographs . FUR or radar pictures of the waypoinis and targets communications. thai allows the mission to be rehearsed. In-flight circumstances are...Planning Aircraft In Flight MPS Geographieal & Meteorological Terrain a Cultural Features Image Data (e.g., Photographic ) Weather Data a Update Data an

  20. STS-114 Mission Support - Flight Controllers on Launch Day

    NASA Image and Video Library

    2005-07-26

    Documentation of flight controllers in the White Flight Control Room (WFCR) on STS-114 Launch Day, July 26, 2005. View of Phil Engelauf and Flight Director Paul Hill standing at the Mission Operations Directorate (MOD) console.

  1. Analyzing human errors in flight mission operations

    NASA Technical Reports Server (NTRS)

    Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef

    1993-01-01

    A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.

  2. Expedition 13 flight controller on console during mission - Orbit 1, BFCR

    NASA Image and Video Library

    2006-08-31

    JSC2006-E-38928 (31 Aug. 2006) --- Flight director Rick LaBrode monitors data at his console in the Station (Blue) Flight Control Room in Houston's Mission Control Center during Expedition 13 mission activities.

  3. Flight Team Development in Support of LCROSS - A Class D Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; Bresina, John; Galal, Ken; Shirley, Mark; Munger, James; Sawyer, Scott

    2010-01-01

    The LCROSS (Lunar Crater Observation and Sensing Satellite) project presented a number of challenges to the preparation for mission operations. A class D mission under NASA s risk tolerance scale, LCROSS was governed by a $79 million cost cap and a 29 month schedule from "authority to proceed" to flight readiness. LCROSS was NASA Ames Research Center s flagship mission in its return to spacecraft flight operations after many years of pursuing other strategic goals. As such, ARC needed to restore and update its mission support infrastructure, and in parallel, the LCROSS project had to newly define operational practices and to select and train a flight team combining experienced operators and staff from other arenas of ARC research. This paper describes the LCROSS flight team development process, which deeply involved team members in spacecraft and ground system design, implementation and test; leveraged collaborations with strategic partners; and conducted extensive testing and rehearsals that scaled in realism and complexity in coordination with ground system and spacecraft development. As a testament to the approach, LCROSS successfully met its full mission objectives, despite many in-flight challenges, with its impact on the lunar south pole on October 9, 2009.

  4. Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fill, Thomas; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  5. Landsat Data Continuity Mission (LDCM) Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Good, Susan M.; Nicholson, Ann M.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) will be launched in January 2013 to continue the legacy of Landsat land imagery collection that has been on-going for the past 40 years. While the overall mission and science goals are designed to produce the SAME data over the years, the ground systems designed to support the mission objectives have evolved immensely. The LDCM Flight Dynamics System (FDS) currently being tested and deployed for operations is highly automated and well integrated with the other ground system elements. The FDS encompasses the full suite of flight dynamics functional areas, including orbit and attitude determination and prediction, orbit and attitude maneuver planning and execution, and planning product generation. The integration of the orbit, attitude, maneuver, and products functions allows a very smooth flow for daily operations support with minimal input needed from the operator. The system also provides a valuable real-time component that monitors the on-board orbit and attitude during every ground contact and will autonomously alert the Flight Operations Team (FOT) personnel when any violations are found. This paper provides an overview of the LDCM Flight Dynamics System and a detailed description of how it is used to support space operations. For the first time on a Goddard Space Flight Center (GSFC)-managed mission, the ground attitude and orbits systems are fully integrated into a cohesive package. The executive engine of the FDS permits three levels of automation: low, medium, and high. The high-level, which will be the standard mode for LDCM, represents nearly lights-out operations. The paper provides an in-depth look at these processes within the FDS in support of LDCM in all mission phases.

  6. Innovative Contamination Certification of Multi-Mission Flight Hardware

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Hughes, David W.; Montt, Kristina M.; Triolo, Jack J.

    1998-01-01

    Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.

  7. Innovative Contamination Certification of Multi-Mission Flight Hardware

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Hughes, David W.; Montt, Kristina M.; Triolo, Jack J.

    1999-01-01

    Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.

  8. Expedition 13 flight controller on console during mission - Orbit 1, BFCR

    NASA Image and Video Library

    2006-08-31

    JSC2006-E-38929 (31 Aug. 2006) --- Astronaut Andrew J. Feustel (background), spacecraft communicator (CAPCOM), and flight director Rick LaBrode monitor data at their consoles in the Station (Blue) Flight Control Room in Houston's Mission Control Center during Expedition 13 mission activities.

  9. Verification and Implementation of Operations Safety Controls for Flight Missions

    NASA Technical Reports Server (NTRS)

    Jones, Cheryl L.; Smalls, James R.; Carrier, Alicia S.

    2010-01-01

    Approximately eleven years ago, the International Space Station launched the first module from Russia, the Functional Cargo Block (FGB). Safety and Mission Assurance (S&MA) Operations (Ops) Engineers played an integral part in that endeavor by executing strict flight product verification as well as continued staffing of S&MA's console in the Mission Evaluation Room (MER) for that flight mission. How were these engineers able to conduct such a complicated task? They conducted it based on product verification that consisted of ensuring that safety requirements were adequately contained in all flight products that affected crew safety. S&MA Ops engineers apply both systems engineering and project management principles in order to gain a appropriate level of technical knowledge necessary to perform thorough reviews which cover the subsystem(s) affected. They also ensured that mission priorities were carried out with a great detail and success.

  10. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  11. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.

    2016-11-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  12. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  13. Post flight press conference for the STS-7 mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two of the three mission specialists for STS-7 field questions from the press during the post-flight press conference in JSC's main auditorium on July 1, 1983. Left to right are John M. Fabian and Dr. Norman E. Thagard (35419); Portrait view of Fabian during the STS-7 post-flight press conference (35420); Portrait view of mission specialist Dr. Sally K. Ride during the STS-7 post-flight press conference (35421); Portrait view of STS-7 pilot Frederick H. Hauck during the post-flight press conference (35422); Portrait view of STS-7 crew commander Robert L. Crippen during the post-flight press conference (35423); Three STS-7 crew members listen to questions from news reporters. They are, left to right, Crippen, Hauck, and Ride (35424); The first five person shuttle crew and first woman crew member greet the news media. Members are, left to right, Crippen, Hauck, Ride, Fabian and Thagard (35425).

  14. Radio astronomy Explorer-B in-flight mission control system development effort

    NASA Technical Reports Server (NTRS)

    Lutsky, D. A.; Bjorkman, W. S.; Uphoff, C.

    1973-01-01

    A description is given of the development for the Mission Analysis Evaluation and Space Trajectory Operations (MAESTRO) program to be used for the in-flight decision making process during the translunar and lunar orbit adjustment phases of the flight of the Radio Astronomy Explorer-B. THe program serves two functions: performance and evaluation of preflight mission analysis, and in-flight support for the midcourse and lunar insertion command decisions that must be made by the flight director. The topics discussed include: analysis of program and midcourse guidance capabilities; methods for on-line control; printed displays of the MAESTRO program; and in-flight operational logistics and testing.

  15. Developing a corss-project support system during mission operations: Deep Space 1 extended mission flight control

    NASA Technical Reports Server (NTRS)

    Scarffe, V. A.

    2002-01-01

    NASA is focusing on small, low-cost spacecraft for both planetary and earth science missions. Deep Space 1 (DS1) was the first mission to be launched by the NMP. The New Millennium Project (NMP) is designed to develop and test new technology that can be used on future science missions with lower cost and risk. The NMP is finding ways to reduce cost not only in development, but also in operations. DS 1 was approved for an extended mission, but the budget was not large, so the project began looking into part time team members shared with other projects. DS1 launched on October 24, 1998, in it's primary mission it successfully tested twelve new technologies. The extended mission started September 18, 1999 and ran through the encounter with Comet Borrelly on September 22,2001. The Flight Control Team (FCT) was one team that needed to use part time or multi mission people. Circumstances led to a situation where for the few months before the Borrelly encounter in September of 2001 DSl had no certified full time Flight Control Engineers also known as Aces. This paper examines how DS 1 utilized cross-project support including the communication between different projects, and the how the tools used by the Flight Control Engineer fit into cross-project support.

  16. Saturn 5 launch vehicle flight evaluation report-AS-511 Apollo 16 mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A postflight analysis of the Apollo 16 mission is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are deet determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are provide in tabular form.

  17. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    PubMed

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Flight Operations for the LCROSS Lunar Impactor Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; D'Ortenzio, Matt D.; Strong, James; Galal, Ken; Bresina, John L.; Foreman, Darin; Barber, Robert; Shirley, Mark; Munger, James; hide

    2010-01-01

    The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining the nature of hydrogen concentrated at the polar regions of the moon. Co-manifested for launch with LRO (Lunar Reconnaissance Orbiter), LCROSS guided its spent Centaur upper stage into the Cabeus crater as a kinetic impactor, and observed the impact flash and resulting debris plume for signs of water and other compounds from a Shepherding Spacecraft. Led by NASA Ames Research Center, LCROSS flight operations spanned 112 days, from June 18 through October 9, 2009. This paper summarizes the experiences from the LCROSS flight, highlights the challenges faced during the mission, and examines the reasons for its ultimate success.

  19. STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.

  20. Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.

    2006-01-01

    Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.

  1. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    NASA Astrophysics Data System (ADS)

    Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea

    2009-12-01

    This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  2. Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview

    NASA Technical Reports Server (NTRS)

    Shen, Yuhsyen; Shaffer, Scott J.; Jordan, Rolando L.

    2000-01-01

    This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.

  3. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    NASA Technical Reports Server (NTRS)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  4. Final Phase Flight Performance and Touchdown Time Assessment of TDV in RLV-TD HEX-01 Mission

    NASA Astrophysics Data System (ADS)

    Yadav, Sandeep; Jayakumar, M.; Nizin, Aziya; Kesavabrahmaji, K.; Shyam Mohan, N.

    2017-12-01

    RLV-TD HEX-01 mission was configured as a precursor flight to actual two stages to orbit vehicle. In this mission RLV-TD was designed as a two stage vehicle for demonstrating the hypersonic flight of a winged body vehicle at Mach No. 5. One of the main objectives of this mission was to generate data for better understanding of new technologies required to design the future vehicle. In this mission, the RLV-TD vehicle was heavily instrumented to get data related to performance of different subsystems. As per the mission design, RLV-TD will land in sea after flight duration of 700 s and travelling a distance of nearly 500 km in Bay of Bengal from the launch site for a nominal trajectory. The visibility studies for telemetry data of vehicle for the nominal and off nominal trajectories were carried out. Based on that, three ground stations were proposed for the telemetry data reception (including one in sea). Even with this scheme it was seen that during the final phase of the flight there will not be any ground station visible to the flight due to low elevation. To have the mission critical data during final phase of the flight, telemetry through INSAT scheme was introduced. During the end of the mission RLV-TD will be landing in the sea on a hypothetical runway. To know the exact time of touchdown for the flight in sea, there was no direct measurement available. Simultaneously there were all chances of losing ground station visibility just before touchdown, making it difficult to assess flight performance during that phase. In this work, telemetry and instrumentation scheme of RLV-TD HEX-01 mission is discussed with an objective to determine the flight performance during the final phase. Further, using various flight sensor data the touchdown time of TDV is assessed for this mission.

  5. STS-120 Flight Controllers on console during mission

    NASA Image and Video Library

    2007-10-31

    JSC2007-E-095788 (3 Nov. 2007) --- Flight directors Norm Knight (left) and Bryan Lunney, inside the shuttle flight control room of JSC's Mission Control Center, monitor the progress of the Nov. 3 spacewalk by two members of Discovery's crew, while the space shuttle is docked with the International Space Station in Earth orbit. Astronaut Scott Parazynski was busy at work on repairing a tear in a solar panel on the orbiting outpost.

  6. STS-3 FLIGHT DAY 1 ACTIVITIES - MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC

    NASA Image and Video Library

    1982-03-22

    MOCR during Flight Day 1 of the STS-3 Mission. View: Thomas L. Moser, of the Structures and Mechanics Division, briefing Flight Director Eugene Kranz, Flight Operations, and Dr. Kraft, JSC Director. JSC, HOUSTON, TX

  7. Personnel discussing Gemini 11 space flight in Mission Control

    NASA Image and Video Library

    1966-09-12

    S66-52157 (12 Sept. 1966) --- Discussing the Gemini-11 spaceflight in the Mission Control Center are: (left to right) Christopher C. Kraft Jr., (wearing glasses), Director of Flight Operations; Charles W. Mathews (holding phone), Manager, Gemini Program Office; Dr. Donald K. Slayton (center, checked coat), Director of Flight Crew Operations; astronaut William A. Anders, and astronaut John W. Young. Photo credit: NASA

  8. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  9. Apollo 16 mission report. Supplement 2: Service Propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Wood, S. C.

    1974-01-01

    The Apollo 16 Mission was the sixteenth in a series of flights using Apollo flight hardware and included the fifth lunar landing of the Apollo Program. The Apollo 16 Mission utilized CSM 113 which was equipped with SPS Engine S/N 66 (Injector S/N 137). The engine configuration and expected performance characteristics are presented. Since previous flight results of the SPS have consistently shown the existence of a negative mixture ratio shift, SPS Engine S/N 66 was reorificed to increase the mixture ratio for this mission. The propellant unbalance for the two major engine firings is compared with the predicted unbalance. Although the unbalance at the end of the TEI burn is significantly different than the predicted unbalance, the propellant mixture ratio was well within limits. The SPS performed six burns during the mission, with a total burn duration of 575.3 seconds. The ignition time, burn duration and velocity gain for each of the six SPS burns are reported.

  10. Manned Space Flight Experiments Symposium: Gemini Missions III and IV

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This is a compilation of papers on in-flight experiments presented at the first symposium of a series, Manned Space Flight Experiments Symposium, sponsored by the National Aeronautics and Space Administration. The results of experiments conducted during the Gemini Missions III and IV are covered. These symposiums are to be conducted for the scientific community at regular intervals on the results of experiments carried out in conjunction with manned space flights.

  11. Assessment of in-flight anomalies of long life outer plant mission

    NASA Technical Reports Server (NTRS)

    Hoffman, Alan R.; Green, Nelson W.; Garrett, Henry B.

    2004-01-01

    Thee unmanned planetary spacecraft to the outer planets have been controlled and operated successfully in space for an accumulated total of 66 years. The Voyager 1 and 2 spacecraft each have been in space for more than 26 years. The Galileo spacecraft was in space for 14 years, including eight years in orbit about Jupiter. During the flight operations for these missions, anomalies for the ground data system and the flight systems have been tracked using the anomaly reporting tool at the Jet Propulsion Laboratory. A total of 3300 incidents, surprises, and anomaly reports have been recorded in the database. This paper describes methods and results for classifying and identifying trends relative to ground system vs. flight system, software vs. hardware, and corrective actions. There are several lessons learned from these assessments that significantly benefit the design and planning for long life missions of the future. These include the necessity for having redundancy for successful operation of the spacecraft, awareness that anomaly reporting is dependent on mission activity not the age of the spacecraft, and the need for having a program to maintain and transfer operation knowledge and tools to replacement flight team members.

  12. Documentation of new mission control center White Flight Control Room (FLCR)

    NASA Image and Video Library

    1995-06-06

    Documentation of the new mission control center White Flight Control Room (FLCR). Excellent overall view of White FLCR with personnel manning console workstations (11221). Fisheye lens perspective from Flight Director station with Brian Austin (11222). Environmental (EECOM) workstation and personnel (11223).

  13. STS-111 Mission Highlights Resource Tape. Part 1 of 4; Flight Days 1 - 4

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 1 of 4, shows the activities of the STS-111 crew (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Phillipe Perrin, Mission Specialists) during flight days 1 through 4. Also shown are the incoming Expedition 5 (Valeri Korzun, Commander; Peggy Whitson, NASA ISS Science Officer; Sergei Treschev, Flight Engineer) and outgoing Expedition 4 (Yuri Onufriyenko, Commander; Carl Walz, Daniel Bursch, Flight Engineers) crews of the ISS (International Space Station). The activities from other flight days can be seen on 'STS-111 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002139469), 'STS-111 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139468), and 'STS-111 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002139474). The primary activity of flight day 1 is the launch of Space Shuttle Endeavour. The crew is seen before the launch at a meal and suit-up, and some pre-flight procedures are shown. Perrin holds a sign with a personalized message. The astronauts communicate with Mission Control extensively after launch, and an inside view of the shuttle cabin is shown. The replays of the launch include close-ups of the nozzles at liftoff, and the fall of the solid rocket boosters and the external fuel tank. Flight day 2 shows footage of mainland Asia at night, and daytime views of the eastern United States and Lake Michigan. Flight day three shows the Endeavour orbiter approaching and docking with the ISS. After the night docking, the crews exchange greetings, and a view of the Nile river and Egypt at night is shown. On flight day 4, the MPLM (Multi-Purpose Logistics Module) Leonardo was temporarily transferred from Endeavour's payload bay to the ISS.

  14. Flight Dynamics and GN&C for Spacecraft Servicing Missions

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Zimpfer, Doug; Barrington, Ray; Mulder, Tom

    2010-01-01

    Future human exploration missions and commercial opportunities will be enabled through In-space assembly and satellite servicing. Several recent efforts have developed technologies and capabilities to support these exciting future missions, including advances in flight dynamics and Guidance, Navigation and Control. The Space Shuttle has demonstrated significant capabilities for crewed servicing of the Hubble Space Telescope (HST) and assembly of the International Space Station (ISS). Following the Columbia disaster NASA made significant progress in developing a robotic mission to service the HST. The DARPA Orbital Express mission demonstrated automated rendezvous and capture, In-space propellant transfer, and commodity replacement. This paper will provide a summary of the recent technology developments and lessons learned, and provide a focus for potential future missions.

  15. IRIS Mission Operations Director's Colloquium

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  16. Flight Controllers in Mission Control Center during splashdown of Apollo 14

    NASA Image and Video Library

    1971-02-09

    S71-18400 (9 Feb. 1971) --- Flight controllers in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) view a colorful display which signals the successful splashdown and recovery of the crew of the Apollo 14 lunar landing mission. The MOCR's large screen at right shows a television shot aboard the USS New Orleans, Apollo 14 prime recovery ship.

  17. System design from mission definition to flight validation

    NASA Technical Reports Server (NTRS)

    Batill, S. M.

    1992-01-01

    Considerations related to the engineering systems design process and an approach taken to introduce undergraduate students to that process are presented. The paper includes details on a particular capstone design course. This course is a team oriented aircraft design project which requires the students to participate in many phases of the system design process, from mission definition to validation of their design through flight testing. To accomplish this in a single course requires special types of flight vehicles. Relatively small-scale, remotely piloted vehicles have provided the class of aircraft considered in this course.

  18. Saturn 5 launch vehicle flight evaluation report-AS-509 Apollo 14 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 14 flight is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight failures are identified, their causes are determined and corrective actions are recommended. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  19. Development of an In Flight Vision Self-Assessment Questionnaire for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky E.; Gibson, Charles R.; Pierpoline, Katherine M.

    2010-01-01

    OVERVIEW A NASA Flight Medicine optometrist teamed with a human factors specialist to develop an electronic questionnaire for crewmembers to record their visual acuity test scores and perceived vision assessment. It will be implemented on the International Space Station (ISS) and administered as part of a suite of tools for early detection of potential vision changes. The goal of this effort was to rapidly develop a set of questions to help in early detection of visual (e.g. blurred vision) and/or non-visual (e.g. headaches) symptoms by allowing the ISS crewmembers to think about their own current vision during their spaceflight missions. PROCESS An iterative process began with a Space Shuttle one-page paper questionnaire generated by the optometrist that was updated by applying human factors design principles. It was used as a baseline to establish an electronic questionnaire for ISS missions. Additional questions needed for the ISS missions were included and the information was organized to take advantage of the computer-based file format available. Human factors heuristics were applied to the prototype and then they were reviewed by the optometrist and procedures specialists with rapid-turn around updates that lead to the final questionnaire. CONCLUSIONS With about only a month lead time, a usable tool to collect crewmember assessments was developed through this cross-discipline collaboration. With only a little expenditure of energy, the potential payoff is great. ISS crewmembers will complete the questionnaire at 30 days into the mission, 100 days into the mission and 30 days prior to return to Earth. The systematic layout may also facilitate physicians later data extraction for quick interpretation of the data. The data collected along with other measures (e.g. retinal and ultrasound imaging) at regular intervals could potentially lead to early detection and treatment of related vision problems than using the other measures alone.

  20. STS-27 Atlantis, OV-104, crewmembers on shuttle mission simulator flight deck

    NASA Image and Video Library

    1988-02-03

    S88-27505 (3 Feb. 1988) --- Astronauts William M. Shepherd (standing) and Jerry L. Ross, both STS-27 mission specialists, get in some training time on the flight deck of the Shuttle Mission Simulator in the Jake Garn Mission Simulation and Training Facility at NASA's Johnson Space Center. Photo credit: NASA

  1. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their

  2. Automated Data Assimilation and Flight Planning for Multi-Platform Observation Missions

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj; Morris, Robert A.; Strawa, Anthony; Kurklu, Elif; Keely, Leslie

    2008-01-01

    This is a progress report on an effort in which our goal is to demonstrate the effectiveness of automated data mining and planning for the daily management of Earth Science missions. Currently, data mining and machine learning technologies are being used by scientists at research labs for validating Earth science models. However, few if any of these advanced techniques are currently being integrated into daily mission operations. Consequently, there are significant gaps in the knowledge that can be derived from the models and data that are used each day for guiding mission activities. The result can be sub-optimal observation plans, lack of useful data, and wasteful use of resources. Recent advances in data mining, machine learning, and planning make it feasible to migrate these technologies into the daily mission planning cycle. We describe the design of a closed loop system for data acquisition, processing, and flight planning that integrates the results of machine learning into the flight planning process.

  3. Marshall Space Flight Center's role in EASE/ACCESS mission management

    NASA Technical Reports Server (NTRS)

    Hawkins, Gerald W.

    1987-01-01

    The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.

  4. A psychophysiological assessment of operator workload during simulated flight missions

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf

    1987-01-01

    The applicability of the dual-task event-related (brain) potential (ERP) paradigm to the assessment of an operator's mental workload and residual capacity in a complex situation of a flight mission was demonstrated using ERP measurements and subjective workload ratings of student pilots flying a fixed-based single-engine simulator. Data were collected during two separate 45-min flights differing in difficulty; flight demands were examined by dividing each flight into four segments: takeoff, straight and level flight, holding patterns, and landings. The P300 ERP component in particular was found to discriminate among the levels of task difficulty in a systematic manner, decreasing in amplitude with an increase in task demands. The P300 amplitude is shown to be negatively correlated with deviations from command headings across the four flight segments.

  5. Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.

  6. STS-109 Mission Highlights Resource Tape. Part 4 of 4; Flight Days 8 - 12

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 4 of 4, shows footage of crew activities from flight days 8 through 12 of STS-109. The crew included: Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, Richard Linnehan, James Newman, Michael Massimino, Mission Speicalists. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476). The primary activity on flight day 8 was an EVA (extravehicular activity) by Grunsfeld and Linnehan to install a cryocooler and radiator for the NICMOS (Near Infrared Camera and Multi-Object Spectrometer) on the HST (Hubble Space Telescope). Before returning to Columbia's airlock, the astronauts, with a cloudy background, hold onto the orbiter and offer their thoughts on the significance of their mission, the HST, and spaceflight. Footage from flight day 9 includes the grappling, unbearthing, and deployment of the HST from Columbia, and the crew coordinating and videotaping Columbia's departure. Flight day 10 was a relatively inactive day, and flight day 11 includes a checkout of Columbia's aerodynamic surfaces. Columbia landed on flight day 12, which is covered by footage of the crew members speaking during reentry, and their night landing, primarily shown through the orbiter's head-up display. The video includes numerous views of the HST, as well as views of the the Galapagos Islands, Madagascar, and Southern Africa with parts of the Atlantic, Indian, and Pacific Oceans, and part of the coast of Chile. The pistol grip space tool is shown in use, and the crew answers two messages from the public, including a message to Massimino from the Fire Department of New York.

  7. A compiler and validator for flight operations on NASA space missions

    NASA Astrophysics Data System (ADS)

    Fonte, Sergio; Politi, Romolo; Capria, Maria Teresa; Giardino, Marco; De Sanctis, Maria Cristina

    2016-07-01

    In NASA missions the management and the programming of the flight systems is performed by a specific scripting language, the SASF (Spacecraft Activity Sequence File). In order to perform a check on the syntax and grammar it is necessary a compiler that stress the errors (eventually) found in the sequence file produced for an instrument on board the flight system. In our experience on Dawn mission, we developed VIRV (VIR Validator), a tool that performs checks on the syntax and grammar of SASF, runs a simulations of VIR acquisitions and eventually finds violation of the flight rules of the sequences produced. The project of a SASF compiler (SSC - Spacecraft Sequence Compiler) is ready to have a new implementation: the generalization for different NASA mission. In fact, VIRV is a compiler for a dialect of SASF; it includes VIR commands as part of SASF language. Our goal is to produce a general compiler for the SASF, in which every instrument has a library to be introduced into the compiler. The SSC can analyze a SASF, produce a log of events, perform a simulation of the instrument acquisition and check the flight rules for the instrument selected. The output of the program can be produced in GRASS GIS format and may help the operator to analyze the geometry of the acquisition.

  8. Mission Options for an Electric Propulsion Demonstration Flight Test

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1989-01-01

    Several mission options are discussed for an electric propulsion space test which provides operational and performance data for ion and arcjet propulsion systems and testing of APSA arrays and a super power system. The results of these top-level studies are considered preliminary. Ion propulsion system design and architecture for the purposes of performing orbit raising missions for payloads in the range of 2400 to 2700 kg are described. Focus was placed on a design which can be characterized by simplicity, reliability, and performance. Systems of this design are suitable for an electric propulsion precursor flight which would provide proof of principle data necessary for more ambitious and complex missions.

  9. View of USSR flight controllers in Mission Control during touchdown

    NASA Image and Video Library

    1975-07-21

    S75-28659 (21 July 1975) --- An overall view of the group of Soviet Union flight controllers who served at the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. They are applauding the successful touchdown of the Soyuz spacecraft in Central Asia. The television monitor had just shown the land landing of the Soyuz descent vehicle.

  10. Achieving Operability via the Mission System Paradigm

    NASA Technical Reports Server (NTRS)

    Hammer, Fred J.; Kahr, Joseph R.

    2006-01-01

    In the past, flight and ground systems have been developed largely-independently, with the flight system taking the lead, and dominating the development process. Operability issues have been addressed poorly in planning, requirements, design, I&T, and system-contracting activities. In many cases, as documented in lessons-learned, this has resulted in significant avoidable increases in cost and risk. With complex missions and systems, operability is being recognized as an important end-to-end design issue. Never-the-less, lessons-learned and operability concepts remain, in many cases, poorly understood and sporadically applied. A key to effective application of operability concepts is adopting a 'mission system' paradigm. In this paradigm, flight and ground systems are treated, from an engineering and management perspective, as inter-related elements of a larger mission system. The mission system consists of flight hardware, flight software, telecom services, ground data system, testbeds, flight teams, science teams, flight operations processes, procedures, and facilities. The system is designed in functional layers, which span flight and ground. It is designed in response to project-level requirements, mission design and an operations concept, and is developed incrementally, with early and frequent integration of flight and ground components.

  11. Management of Operational Support Requirements for Manned Flight Missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  12. The design and realisation of the IXV Mission Analysis and Flight Mechanics

    NASA Astrophysics Data System (ADS)

    Haya-Ramos, Rodrigo; Blanco, Gonzalo; Pontijas, Irene; Bonetti, Davide; Freixa, Jordi; Parigini, Cristina; Bassano, Edmondo; Carducci, Riccardo; Sudars, Martins; Denaro, Angelo; Angelini, Roberto; Mancuso, Salvatore

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is a suborbital re-entry demonstrator successfully launched in February 2015 focusing on the in-flight demonstration of a lifting body system with active aerodynamic control surfaces. This paper presents an overview of the Mission Analysis and Flight Mechanics of the IXV vehicle, which comprises computation of the End-to-End (launch to splashdown) design trajectories, characterisation of the Entry Corridor, assessment of the Mission Performances through Monte Carlo campaigns, contribution to the aerodynamic database, analysis of the Visibility and link budget from Ground Stations and GPS, support to safety analyses (off nominal footprints), specification of the Centre of Gravity box, selection of the Angle of Attack trim line to be flown and characterisation of the Flying Qualities performances. An initial analysis and comparison with the raw flight data obtained during the flight will be discussed and first lessons learned derived.

  13. Extended mission life support systems

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.

  14. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  15. Hormonal responses of pilots flying high-performance aircraft during seven repetitive flight missions.

    PubMed

    Tarui, H; Nakamura, A

    1991-12-01

    Hormonal responses during seven repetitive flight missions (7RFM) were evaluated on F-4EJ fighter pilots. The following biochemical constituents were measured: 1) cortisol in saliva; 2) 17-OHCS; 3) unbound cortisol; 4) catecholamines in urine; and 5) electrolytes in urine. Samples were collected at about 30 min before the mission, 20 min after each flight, and in a nonflight day for control. The levels of saliva and urine corticosteroids slightly increased during 7RFM when compared with controls. The concentrations of urine catecholamines during 7RFM were significantly higher than those of preflight and control. These data suggest that flight stresses were moderate for the pilots flying 7RFM.

  16. Assessment and Mission Planning Capability For Quantitative Aerothermodynamic Flight Measurements Using Remote Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Splinter, Scott; Daryabeigi, Kamran; Wood, William; Schwartz, Richard; Ross, Martin

    2008-01-01

    High resolution calibrated infrared imagery of vehicles during hypervelocity atmospheric entry or sustained hypersonic cruise has the potential to provide flight data on the distribution of surface temperature and the state of the airflow over the vehicle. In the early 1980 s NASA sought to obtain high spatial resolution infrared imagery of the Shuttle during entry. Despite mission execution with a technically rigorous pre-planning capability, the single airborne optical system for this attempt was considered developmental and the scientific return was marginal. In 2005 the Space Shuttle Program again sponsored an effort to obtain imagery of the Orbiter. Imaging requirements were targeted towards Shuttle ascent; companion requirements for entry did not exist. The engineering community was allowed to define observation goals and incrementally demonstrate key elements of a quantitative spatially resolved measurement capability over a series of flights. These imaging opportunities were extremely beneficial and clearly demonstrated capability to capture infrared imagery with mature and operational assets of the US Navy and the Missile Defense Agency. While successful, the usefulness of the imagery was, from an engineering perspective, limited. These limitations were mainly associated with uncertainties regarding operational aspects of data acquisition. These uncertainties, in turn, came about because of limited pre-flight mission planning capability, a poor understanding of several factors including the infrared signature of the Shuttle, optical hardware limitations, atmospheric effects and detector response characteristics. Operational details of sensor configuration such as detector integration time and tracking system algorithms were carried out ad hoc (best practices) which led to low probability of target acquisition and detector saturation. Leveraging from the qualified success during Return-to-Flight, the NASA Engineering and Safety Center sponsored an

  17. Shuttle Risk Progression by Flight

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri; Kahn, Joe; Thigpen, Eric; Zhu, Tony; Lo, Yohon

    2011-01-01

    Understanding the early mission risk and progression of risk as a vehicle gains insights through flight is important: . a) To the Shuttle Program to understand the impact of re-designs and operational changes on risk. . b) To new programs to understand reliability growth and first flight risk. . Estimation of Shuttle Risk Progression by flight: . a) Uses Shuttle Probabilistic Risk Assessment (SPRA) and current knowledge to calculate early vehicle risk. . b) Shows impact of major Shuttle upgrades. . c) Can be used to understand first flight risk for new programs.

  18. In Flight Calibration of the Magnetospheric Multisale Mission Fast Plasma Investigation: Initial Flight Result

    NASA Astrophysics Data System (ADS)

    Barrie, A.; Gliese, U.; Gershman, D. J.; Avanov, L. A.; Rager, A. C.; Pollock, C. J.; Dorelli, J.

    2015-12-01

    The Fast Plasma Investigation (FPI) on the Magnetospheric Multiscale mission (MMS) combines data from eight spectrometers, each with four deflection states, into a single map of the sky. Any systematic discontinuity, artifact, noise source, etc. present in this map may be incorrectly interpreted as legitimate data and incorrect conclusions reached. For this reason it is desirable to have all spectrometers return the same output for a given input, and for this output to be low in noise sources or other errors. While many missions use statistical analyses of data to calibrate instruments in flight, this process is difficult with FPI for two reasons: 1. Only a small fraction of high resolution data is downloaded to the ground due to bandwidth limitations and 2: The data that is downloaded is, by definition, scientifically interesting and therefore not ideal for calibration. FPI uses a suite of new tools to calibrate in flight. A new method for detection system ground calibration has been developed involving sweeping the detection threshold to fully define the pulse height distribution. This method has now been extended for use in flight as a means to calibrate MCP voltage and threshold (together forming the operating point) of the Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS). A method of comparing higher energy data (which has low fractional voltage error) to lower energy data (which has a higher fractional voltage error) will be used to calibrate the high voltage outputs. Finally, a comparison of pitch angle distributions will be used to find remaining discrepancies among sensors. Initial flight results from the four MMS observatories will be discussed here. Specifically, data from initial commissioning, inter-instrument cross calibration and interference testing, and initial Phase1A routine calibration results. Success and performance of the in flight calibration as well as deviation from the ground calibration will be discussed.

  19. Saturn 5 Launch Vehicle Flight Evaluation Report-AS-512 Apollo 17 Mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An evaluation of the launch vehicle and lunar roving vehicle performance for the Apollo 17 flight is presented. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective action. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  20. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  1. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  2. Apollo program flight summary report: Apollo missions AS-201 through Apollo 16, revision 11

    NASA Technical Reports Server (NTRS)

    Holcomb, J. K.

    1972-01-01

    A summary of the Apollo flights from AS-201 through Apollo 16 is presented. The following subjects are discussed for each flight: (1) mission primary objectives, (2) principle objectives of the launch vehicle and spacecraft, (3) secondary objectives of the launch vehicle and spacecraft, (4) unusual features of the mission, (5) general information on the spacecraft and launch vehicle, (6) space vehicle and pre-launch data, and (7) recovery data.

  3. Saturn 5 Launch Vehicle Flight Evaluation Report, AS-510, Apollo 15 Mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 15 flight is presented. The performance of the launch vehicle, spacecraft, and lunar roving vehicle are discussed. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are tabulated.

  4. Proving Ground Potential Mission and Flight Test Objectives and Near Term Architectures

    NASA Technical Reports Server (NTRS)

    Smith, R. Marshall; Craig, Douglas A.; Lopez, Pedro Jr.

    2016-01-01

    NASA is developing a Pioneering Space Strategy to expand human and robotic presence further into the solar system, not just to explore and visit, but to stay. NASA's strategy is designed to meet technical and non-technical challenges, leverage current and near-term activities, and lead to a future where humans can work, learn, operate, and thrive safely in space for an extended, and eventually indefinite, period of time. An important aspect of this strategy is the implementation of proving ground activities needed to ensure confidence in both Mars systems and deep space operations prior to embarking on the journey to the Mars. As part of the proving ground development, NASA is assessing potential mission concepts that could validate the required capabilities needed to expand human presence into the solar system. The first step identified in the proving ground is to establish human presence in the cis-lunar vicinity to enable development and testing of systems and operations required to land humans on Mars and to reach other deep space destinations. These capabilities may also be leveraged to support potential commercial and international objectives for Lunar Surface missions. This paper will discuss a series of potential proving ground mission and flight test objectives that support NASA's journey to Mars and can be leveraged for commercial and international goals. The paper will discuss how early missions will begin to satisfy these objectives, including extensibility and applicability to Mars. The initial capability provided by the launch vehicle will be described as well as planned upgrades required to support longer and more complex missions. Potential architectures and mission concepts will be examined as options to satisfy proving ground objectives. In addition, these architectures will be assessed on commercial and international participation opportunities and on how well they develop capabilities and operations applicable to Mars vicinity missions.

  5. Early Spacelab physics and astronomy missions

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1976-01-01

    Some of the scientific problems which will be investigated during the early Spacelab physics and astronomy missions are reviewed. The Solar Terrestrial Programs will include the Solar Physics Spacelab Payloads (SPSP) and the Atmospheres, Magnetospheres and Plasmas in Space (AMPS) missions. These missions will study the sun as a star and the influence of solar phenomena on the earth, including sun-solar wind interface, the nature of the solar flares, etc. The Astrophysics Spacelab Payloads (ASP) programs are divided into the Ultraviolet-Optical Astronomy and the High Energy Astrophysics areas. The themes of astrophysics Spacelab investigations will cover the nature of the universe, the fate of matter and the life cycles of stars. The paper discusses various scientific experiments and instruments to be used in the early Spacelab missions.

  6. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    NASA Astrophysics Data System (ADS)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  7. Design of a Mission Data Storage and Retrieval System for NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Lux, Jessica; Downing, Bob; Sheldon, Jack

    2007-01-01

    The Western Aeronautical Test Range (WATR) at the NASA Dryden Flight Research Center (DFRC) employs the WATR Integrated Next Generation System (WINGS) for the processing and display of aeronautical flight data. This report discusses the post-mission segment of the WINGS architecture. A team designed and implemented a system for the near- and long-term storage and distribution of mission data for flight projects at DFRC, providing the user with intelligent access to data. Discussed are the legacy system, an industry survey, system operational concept, high-level system features, and initial design efforts.

  8. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    PubMed

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues

  9. Agile: From Software to Mission Systems

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Shirley, Mark; Hobart, Sarah

    2017-01-01

    To maximize efficiency and flexibility in Mission Operations System (MOS) design, we are evolving principles from agile and lean methods for software, to the complete mission system. This allows for reduced operational risk at reduced cost, and achieves a more effective design through early integration of operations into mission system engineering and flight system design. The core principles are assessment of capability through demonstration, risk reduction through targeted experiments, early test and deployment, and maturation of processes and tools through use.

  10. Recent Status of SIM Lite Astrometric Observatory Mission: Flight Engineering Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan

    2010-01-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.

  11. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  12. Flying an Autonomous Formation Flight mission, two F/A-18s from the NASA Dryden Flight Research Cent

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Flying an Autonomous Formation Flight mission, two F/A-18's from the NASA Dryden Flight Research Center, Edwards, California, gain altitude near Rogers Dry Lake. The Systems Research Aircraft (tail number 845) and F/A-18 tail number 847 are flying the second phase of a project that is demonstrating a 15-percent fuel savings of the trailing aircraft during cruise flight. Project goal was a 10-percent savings. The drag-reduction study mimics the formation of migrating birds. Scientists have known for years that the trailing birds require less energy than flying solo.

  13. The first dedicated life sciences Spacelab mission

    NASA Technical Reports Server (NTRS)

    Perry, T. W.; Rummel, J. A.; Griffiths, L. D.; White, R. J.; Leonard, J. I.

    1984-01-01

    JIt is pointed out that the Shuttle-borne Spacelab provides the capability to fly large numbers of life sciences experiments, to retrieve and rescue experimental equipment, and to undertake multiple-flight studies. A NASA Life Sciences Flight Experiments Program has been organized with the aim to take full advantages of this capability. A description is provided of the scientific aspects of the most ambitious Spacelab mission currently being conducted in connection with this program, taking into account the First Dedicated Life Sciences Spacelab Mission. The payload of this mission will contain the equipment for 24 separate investigations. It is planned to perform the mission on two separate seven-day Spacelab flights, the first of which is currently scheduled for early 1986. Some of the mission objectives are related to the study of human and animal responses which occur promptly upon achieving weightlessness.

  14. Conceptual Design of a Flight Validation Mission for a Hypervelocity Asteroid Intercept Vehicle

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth s orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center s Mission Design Lab (MDL) in collaboration with Iowa State University s Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO s surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  15. B-52B-008/DTV (Drop Test Vehicle) configuration 1 (with and without fins) flight test results - captive flight and drop test missions

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The B-52B-008 drop test consisted of one takeoff roll to 60 KCAS, two captive flights to accomplish limited safety of flight flutter and structural demonstration testing, and seven drop test flights. Of the seven drop test missions, one flight was aborted due to the failure of the hook mechanism to release the drop test vehicle (DTV); but the other six flights successfully dropped the DTV.

  16. NASA flight controllers - Meeting cultural and leadership challenges on the critical path to mission success

    NASA Technical Reports Server (NTRS)

    Clement, James L., Jr.; Ritsher, Jennifer Boyd

    2006-01-01

    As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.

  17. STS-36 Mission Specialist Hilmers with AEROLINHOF camera on aft flight deck

    NASA Image and Video Library

    1990-03-03

    STS-36 Mission Specialist (MS) David C. Hilmers points the large-format AEROLINHOF camera out overhead window W7 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Hilmers records Earth imagery using the camera. Hilmers and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.

  18. Habitable exoplanet imaging mission (HabEx): initial flight system design

    NASA Astrophysics Data System (ADS)

    Alibay, Farah; Kuan, Gary M.; Warfield, Keith R.

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a mission to directly image planetary systems around Sun-like stars and to perform general astrophysics investigations being studied as part of a number of mission concepts for the upcoming 2020 Astrophysics Decadal Survey. HabEx would help assess the prevalence of habitable planets in our galaxy, searching in particular for potential biosignatures in the atmospheres of planets in habitable zones. More generally, HabEx would image our neighboring solar systems and characterize the variety of planets that inhabits them. Its direct imaging capability would also enable the mission to study the structure and evolution of debris disks around nearby stars, and their dynamical interaction with planets. Additionally, it will explore a number of more general astrophysics phenomena in our solar system, galaxy, and beyond, in the UV through NIR range. The exoplanet science goals lead to a mission concept with requirements for high contrast imaging and the continuous spectral coverage. The baseline for HabEx is a 4-meter diameter off-axis telescope designed to both search for habitable planets and perform general astrophysics observations, possibly combined with a starshade. In this paper, the initial flight system design for both the telescope and the starshade are presented, focusing on the key and driving requirements and subsystems, as well as the trajectory and station keeping and formation flying technique. Furthermore, some of the initial design trades undergone are described, as well as the key challenges and enablers. Finally, some of the future design and architecture trades to be performed within the flight systems as part of the continuing effort in the HabEx study are discussed.

  19. Human space flight and future major space astrophysics missions: servicing and assembly

    NASA Astrophysics Data System (ADS)

    Thronson, Harley; Peterson, Bradley M.; Greenhouse, Matthew; MacEwen, Howard; Mukherjee, Rudranarayan; Polidan, Ronald; Reed, Benjamin; Siegler, Nicholas; Smith, Hsiao

    2017-09-01

    Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly.

  20. Geostationary Operational Environmental Satellite (GOES)-8 mission flight experience

    NASA Technical Reports Server (NTRS)

    Noonan, C. H.; Mcintosh, R. J.; Rowe, J. N.; Defazio, R. L.; Galal, K. F.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.

  1. Cardiovascular function in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.

    1990-01-01

    Postflight orthostatic intolerance and cardiac hemodynamics associated with manned space flight have been investigated on seven STS missions. Orthostatic heart rates appear to be influenced by the mission duration. The rates increase during the first 7-10 days of flight and recover partially after that. Fluid loading is used as a countermeasure to the postflight orthostatic intolerance. The carotid baroreceptor function shows only slight responsiveness to orthostatic stimulation. Plots of the baroreceptor function are presented. It is concluded that an early adaptation to the space flight conditions involves a fluid shift and that the subsequent alterations in the neutral controlling mechanisms contribute to the orthoststic intolerance.

  2. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  3. HUT Data Inspected at Marshall Space Flight Center During the STS-35 Mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of viewing HUT data in the Mission Manager Actions Room during the mission.

  4. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  5. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2010-01-01

    This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  6. E057: Renal Stone Risk Assessment During Space Flight: Assessment and Countermeasure Validation

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Pietrzyk, Robert A.; Jones, Jeffrey A.; Sams, Clarence F.

    2001-01-01

    Exposure to the microgravity environment results in many metabolic and physiological changes to humans. Body fluid volumes, electrolyte levels, and bone and muscle undergo changes as the human body adapts to the weightless environment. Changes in the urinary biochemistry occur as early as flight day 3-4 in the short duration Shuttle crewmembers. Significant decreases were observed both in fluid intake and urinary output. Other significant changes were observed in the urinary pH, calcium, potassium and uric acid levels. During Shuttle missions, the risk of calcium oxalate stone formation increased early in the flight, continued at elevated levels throughout the flight and remained in the increased risk range on landing day. The calcium phosphate risk was significantly increased early in-flight and remained significantly elevated throughout the remainder of the mission. Results from the long duration Shuttle-Mir missions followed a similar trend. Most long duration crewmembers demonstrated increased urinary calcium levels despite lower dietary calcium intake. Fluid intake and urine volumes were significantly lower during the flight than during the preflight. The calcium oxalate risk was increased relative to the preflight levels during the early in-flight period and continued in the elevated risk range for the remainder of the space flight and through two weeks postflight. Calcium phosphate risk for these long duration crewmembers increased during flight and remained in the increased risk range throughout the flight and following landing. The complexity, expense and visibility of the human space program require that every effort be made to protect the health of the crewmembers and ensure the success of the mission. Results from our early investigations clearly indicate that exposure to the microgravity environment of space significantly increases the risk of renal stone formation. The early studies have indicated specific avenues for development of countermeasures

  7. Spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1988-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kW(e) ammonia arcjet system operating at an experimentally measured specific impulse of 1031 s and an efficiency of 42.3 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kW(e) SRPS is assumed. The spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission, and an orbit raising round trip corresponding to possible orbit transfer vehicle (OTV) missions.

  8. Alternative Approaches to Mission Control Automation at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rackley, Michael; Cooter, Miranda; Davis, George; Mackey, Jennifer

    2001-01-01

    To meet its objective of reducing operations costs without incurring a corresponding increase in risk, NASA is seeking new methods to automate mission operations. This paper examines the state of the art in automating ground operations for space missions. A summary of available technologies and methods for automating mission operations is provided. Responses from interviews with several space mission FOTs (Flight Operations Teams) to assess the degree and success of those technologies and methods implemented are presented. Mission operators that were interviewed approached automation using different tools and methods resulting in varying degrees of success - from nearly completely automated to nearly completely manual. Two key criteria for successful automation are the active participation of the FOT in the planning, designing, testing, and implementation of the system and the relative degree of complexity of the mission.

  9. Remote Infrared Imaging of the Space Shuttle During Hypersonic Flight: HYTHIRM Mission Operations and Coordination

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.

    2011-01-01

    The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.

  10. Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1974-01-01

    The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness.

  11. Heart rate and performance during combat missions in a flight simulator.

    PubMed

    Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K

    2007-04-01

    The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.

  12. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  13. Wind Lidar Edge Technique Shuttle Demonstration Mission: Anemos

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Bundas, David J.; Martino, Anthony J.; Carnahan, Timothy M.; Zukowski, Barbara J.

    1998-01-01

    A NASA mission is planned to demonstrate the technology for a wind lidar. This will implement the direct detection edge technique. The Anemos instrument will fly on the Space Transportation System (STS), or shuttle, aboard a Hitchhiker bridge. The instrument is being managed by the Goddard Space Flight Center as an in-house build, with science leadership from the GSFC Laboratory for Atmospheres, Mesoscale Atmospheric Processes Branch. During a roughly ten-day mission, the instrument will self calibrate and adjust for launch induced mis-alignments, and perform a campaign of measurements of tropospheric winds. The mission is planned for early 2001. The instrument is being developed under the auspices of NASA's New Millennium Program, in parallel with a comparable mission being managed by the Marshall Space Flight Center. That mission, called SPARCLE, will implement the coherent technique. NASA plans to fly the two missions together on the same shuttle flight, to allow synergy of wind measurements and a direct comparison of performance.

  14. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  15. Mission Control Center (MCC) system specification for the shuttle Orbital Flight Test (OFT) timeframe

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Mission Control Center Shuttle (MCC) Shuttle Orbital Flight Test (OFT) Data System (OFTDS) provides facilities for flight control and data systems personnel to monitor and control the Shuttle flights from launch (tower clear) to rollout (wheels stopped on runway). It also supports the preparation for flight (flight planning, flight controller and crew training, and integrated vehicle and network testing activities). The MCC Shuttle OFTDS is described in detail. Three major support systems of the OFTDS and the data types and sources of data entering or exiting the MCC were illustrated. These systems are the communication interface system, the data computation complex, and the display and control system.

  16. Cardiovascular Countermeasures for Exploration-Class Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2004-01-01

    Astronaut missions to Mars may be many years or even decades in thc future but current and planned efforts can be extrapolated to required treatments and prophylaxis for delerious efforts of prolonged space flight on the cardiovascular system. The literature of candidate countermeasures was considered in combination with unpublished plans for countermeasure implementation. The scope of cardiovascular countermeasures will be guided by assessments of the efficacy of mechanical, physiological and pharmacological approaches in protecting the cardiovascular capacities of interplanetary crewmembers. Plans for countermeasure development, evaluation and validation will exploit synergies among treatment modalities with the goal of maximizing protective effects while minimizing crew time and in-flight resource use. Protection of the cardiovascular capacity of interplanetary crewmembers will become more effective and efficient over the next few decades, but trade-offs between cost and effectiveness of efficiency are always possible if the increased level of risk can be accepted.

  17. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  18. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  19. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  20. Initial Considerations for Navigation and Flight Dynamics of a Crewed Near-Earth Object Mission

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Getchius, Joel; Tracy, William H.

    2011-01-01

    A crewed mission to a Near-Earth Object (NEO) was recently identified as a NASA Space Policy goal and priority. In support of this goal, a study was conducted to identify the initial considerations for performing the navigation and flight dynamics tasks of this mission class. Although missions to a NEO are not new, the unique factors involved in human spaceflight present challenges that warrant special examination. During the cruise phase of the mission, one of the most challenging factors is the noisy acceleration environment associated with a crewed vehicle. Additionally, the presence of a human crew necessitates a timely return trip, which may need to be expedited in an emergency situation where the mission is aborted. Tracking, navigation, and targeting results are shown for sample human-class trajectories to NEOs. Additionally, the benefit of in-situ navigation beacons on robotic precursor missions is presented. This mission class will require a longer duration flight than Apollo and, unlike previous human missions, there will likely be limited communication and tracking availability. This will necessitate the use of more onboard navigation and targeting capabilities. Finally, the rendezvous and proximity operations near an asteroid will be unlike anything previously attempted in a crewed spaceflight. The unknown gravitational environment and physical surface properties of the NEO may cause the rendezvous to behave differently than expected. Symbiosis of the human pilot and onboard navigation/targeting are presented which give additional robustness to unforeseen perturbations.

  1. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  2. Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Srinivasan, Margaret; Peterson, Craig; Callahan, Phil

    2013-09-01

    The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop

  3. Artificial Gravity as a Multi-System Countermeasure for Exploration Class Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Dawson, David L. (Technical Monitor)

    2000-01-01

    NASA's vision for space exploration includes missions of unprecedented distance and duration. However, during 30 years of human space flight experience, including numerous long-duration missions, research has not produced any single countermeasure or combination of countermeasures that is completely effective. Current countermeasures do not fully protect crews in low-Earth orbit, and certainly will not be appropriate for crews journeying to Mars and back over a three-year period. The urgency for exploration-class countermeasures is compounded by continued technical and scientific successes that make exploration class missions increasingly attractive. The critical and possibly fatal problems of bone loss, cardiovascular deconditioning, muscle weakening, neurovestibular disturbance, space anemia, and immune compromise may be alleviated by the appropriate application of artificial gravity (AG). However, despite a manifest need for new countermeasure approaches, concepts for applying AG as a countermeasure have not developed apace. To explore the utility of AG as a multi-system countermeasure during long-duration, exploration-class space flight, eighty-three members of the international space life science and space flight community met earlier this year. They concluded unanimously that the potential of AG as a multi-system countermeasure is indeed worth pursuing, and that the requisite AG research needs to be supported more systematically by NASA. This presentation will review the issues discussed and recommendations made.

  4. STS-36 Mission Specialist Mullane uses 70mm HASSELBLAD camera on flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-36 Mission Specialist Richard M. Mullane points 70mm HASSELBLAD camera out overhead window W8 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Mullane is recording Earth imagery with the camera. Mullane and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission. Note: Mullane is wearing a orange 'Tigers' t-shirt.

  5. Crew Members - First Manned Apollo Flight - Unmanned Mission Launch - Cape

    NASA Image and Video Library

    1968-01-22

    S68-18700 (22 Jan. 1968) --- Two prime crew members of the first manned Apollo space flight were present at Cape Kennedy for the launch of the Apollo V (LM-1/Saturn 204) unmanned space mission. On left is astronaut Walter M. Schirra Jr.; and on right is astronaut R. Walter Cunningham. In background is the Apollo V stack at Launch Complex 37 ready for launch.

  6. Wide angle view of the Flight control room of Mission control center

    NASA Image and Video Library

    1984-10-06

    Wide angle view of the flight control room (FCR) of the Mission Control Center (MCC). Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.

  7. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  8. Analysis of Data in Accordance with Space Flight Mission Environmental Requirements

    NASA Technical Reports Server (NTRS)

    Shei, Monica

    2011-01-01

    The Environmental Assurance Program sets forth standards to ensure that all flight hardware is compatible with the environments that will be encountered during a spacecraft mission. It outlines the design, test and analysis, and risk control standards for the mission and certifies that it will survive in any external or self-induced environments that the spacecraft may experience. The Environmental Requirements Document (ERD) is the most important document in the Environmental Assurance Program, providing the design and test requirements for the project's flight system, subsystems, assemblies, and instruments. This summer's project was to assist Environmental Requirements Engineers (ERE's) in completing the Environmental Assurance Program Summary Report for both the Juno Project and Mars Science Laboratory (MSL) Project. The Summary Report is a document summarizing the environmental tests and analyses of each spacecraft at both the assembly and system level. It compiles a source of all relevant information such as waivers and Problem/Failure Reports (PFRs) into a single report for easy reference of how well the spacecraft met the requirements of the project.

  9. Baseline spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1989-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kWe ammonia arcjet system operating at an experimentally-measured specific impulse of 1030 s and an efficiency of 42 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kWe SRPS is assumed. The total spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission and an orbit raising round trip corresponding to possible orbit transfer vehicle missions. Launches from Kennedy Space Center using the Titan IV expendable launch vehicle are assumed.

  10. Dispersion analysis for baseline reference mission 1. [flight simulation and trajectory analysis for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Kuhn, A. E.

    1975-01-01

    A dispersion analysis considering 3 sigma uncertainties (or perturbations) in platform, vehicle, and environmental parameters was performed for the baseline reference mission (BRM) 1 of the space shuttle orbiter. The dispersion analysis is based on the nominal trajectory for the BRM 1. State vector and performance dispersions (or variations) which result from the indicated 3 sigma uncertainties were studied. The dispersions were determined at major mission events and fixed times from lift-off (time slices) and the results will be used to evaluate the capability of the vehicle to perform the mission within a 3 sigma level of confidence and to determine flight performance reserves. A computer program is given that was used for dynamic flight simulations of the space shuttle orbiter.

  11. A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control

    NASA Technical Reports Server (NTRS)

    ONeill, John; Shalin, Valerie L.

    2000-01-01

    The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.

  12. STS-35 Mission Manager Actions Room at the Marshall Space Flight Center Spacelab Payload Operations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activities at the Mission Manager Actions Room during the mission.

  13. The Mission Accessibility of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Abell, P. A.; Adamo, D. R.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Taylor, P.; hide

    2015-01-01

    The population of near-Earth asteroids (NEAs) that may be accessible for human space flight missions is defined by the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). The NHATS is an automated system designed to monitor the accessibility of, and particular mission opportunities offered by, the NEA population. This is analogous to systems that automatically monitor the impact risk posed to Earth by the NEA population. The NHATS system identifies NEAs that are potentially accessible for future round-trip human space flight missions and provides rapid notification to asteroid observers so that crucial follow-up observations can be obtained following discovery of accessible NEAs. The NHATS was developed in 2010 and was automated by early 2012. NHATS data are provided via an interactive web-site, and daily NHATS notification emails are transmitted to a mailing list; both resources are available to the public.

  14. Simulation-To-Flight (STF-1): A Mission to Enable CubeSat Software-Based Validation and Verification

    NASA Technical Reports Server (NTRS)

    Morris, Justin; Zemerick, Scott; Grubb, Matt; Lucas, John; Jaridi, Majid; Gross, Jason N.; Ohi, Nicholas; Christian, John A.; Vassiliadis, Dimitris; Kadiyala, Anand; hide

    2016-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  15. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  16. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.

  17. The main changes in plant exposured during space flight missions and prospectives of biological studies on ISS

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli

    The fundamental result of biological investigations with plants in space flight is an experimen-tal evidence of vegetative growth from seeds to harvest, with passing of all those stages of development when the plant can be used for food. The changes of plant observed after space flight mission gives a knowledge, which has to be used for precise selection of the plants for future space missions. The experimental investigation of the plants under space flight condi-tions showed that the germinations ability, rate of growth and biometric parameters decrease in comparison with Earth plants. The first two of these factors can be caused by the influence of specific cultivation in space, but the third factor is caused by the influence of space flight conditions, in particular, microgravity. The investigations of germination, plants deaths at var-ious stages of growth, survival probability, and recessive mutations indicated an impairment of genetic apparatus of meristem cells, which results the lethal effect at various stages of develop-ment. The density of paramagnetic centers in seeds was measured in order to determine the free radical concentration under space flight conditions. The concentration of paramagnetic centers is higher for plants with high density of these centers initially. Perhaps, the observed genetic effects in plants under space flight conditions are connected with free radicals. The changes are observed in cells of the plants. The changes included twist, contraction and deformation of the cell walls, curvature and loose arrangement of lamellae in chloroplasts, break of outer membrane of mitochondria and disappearance of mitochondria cristae. A large number of stach grains is observed in chloroplasts. The seeds of various plants were successfully used in space flights: welsh onion, wheat, peas, maize, barley, tomatoes, etc. Mostly stabe plants to space flight factors are found as peas, wheat and tomatoes. Ten generation of wheat and tomatoues exposed in

  18. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.

    PubMed

    Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A

    2010-02-01

    A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.

  19. Test and Recommendation of Flight-forward Resistive Temperature Detector for Resource Prospector Mission

    NASA Technical Reports Server (NTRS)

    Hinricher, Jesse

    2014-01-01

    The Resource Prospector Mission (RPM) is an in-situ resource utilization (ISRU) technology demonstration mission planned to launch in 2018. The mission will use the Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) Payload to prospect for lunar volatiles such as water, oxygen, and carbon dioxide. These compounds will validate ISRU capability. The payload, particularly the Lunar Advanced Volatile Analysis (LAVA) subsystem, requires numerous temperature measurements to accurately control on-board heaters that keep the volatiles in the vapor phase to allow quantification and prevent the clogging of delivery lines. Previous spaceflight missions have proven that Resistive Temperature Detector (RTD) failure impedes mission success. The research resulted in a recommendation for a flight-forward RTD. The recommendation was based on accuracy, consistency, and ease of installation of RTDs procured from IST, QTI, and Honeywell.

  20. Test and Recommendation of Flight-Forward Resistive Temperature Detector for Resource Prospector Mission

    NASA Technical Reports Server (NTRS)

    Hinricher, Jesse John

    2012-01-01

    The Resource Prospector Mission (RPM) is an in-situ resource utilization (ISRU) technology demonstration mission planned to launch in 2018. The mission will use the Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) Payload to prospect for lunar volatiles such as water, oxygen, and carbon dioxide. These compounds will validate ISRU capability. The payload, particularly the Lunar Advanced Volatile Analysis (LAVA) subsystem, requires numerous temperature measurements to accurately control on-board heaters that keep the volatiles in the vapor phase to allow quantification and prevent the clogging of delivery lines. Previous spaceflight missions have proven that Resistive Temperature Detector (RTD) failure impedes mission success. The research resulted in a recommendation for a flight-forward RTD. The recommendation was based on accuracy, consistency, and ease of installation of RTDs procured from IST, QTI, and Honeywell.

  1. Entry, Descent, and Landing Mission Design for the Crew Exploration Vehicle Thermal Protection System Qualification Flight Test

    NASA Technical Reports Server (NTRS)

    Ivanov, Mark; Strauss, William; Maddock, Robert

    2007-01-01

    The TORCH team was challenged to generate the lowest cost mission design solution that meets the CEV aerothermal test objectives on a sub-scale flight article. The test objectives resulted from producing representative lunar return missions and observing the aerothermal envelopes of select surface locations on the CEV. From these aerothermal envelopes, two test boxes were established: one for high shear and one for high radiation. The unique and challenging trajectory design objective for the flight test was to fly through these aerothermal boxes in shear, pressure, heat flux, and radiation while also not over testing. These test boxes, and the max aerothermal limits, became the driving requirements for defining the mission design.

  2. Guidelines for Successful Use and Communication of Instrument Heritage in Early Mission Development with a Focus on Spectrometers

    NASA Technical Reports Server (NTRS)

    Baker, Elizabeth E.

    2012-01-01

    Heritage is important for both cost and risk related issues and as such, it is heavily discussed in NASA proposal evaluations. If used and communicated efficiently, heritage can lower both the perception of risk and the associated costs. Definitions of heritage vary between engineering, cost, and scientific communities, but when applied appropriately, heritage provides a benefit to the proposed mission. By making an instrument at least once before, the cost of producing it again can be reduced. The time and effort needed to develop the instrument concept and test the product represent an expense that can be lowered through the use of a previously built and developed instrument. This same thought can be applied when using a flight spare or build-to-print model of the heritage instrument. The lowered perception of risk is a result of the confidence gained in the instrument through successful use in the target environment. This is extremely important in early mission development to the evaluation board. This analysis will use JPL-managed proposals from 2003 to 2011, including Discovery, New Frontiers, and Mars Scout missions. Through the examination of these proposals and their associated debriefs, a set of guidelines have been created for successful use and communication of instrument heritage in early mission development

  3. STS-93 Mission Specialist Tognini and daughter prepare to board aircraft for return flight to Housto

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and his daughter Tatinana prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  4. STS-93 Mission Specialist Coleman and husband prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Catherine G. Coleman (Ph.D.) and her husband, Josh Simpson, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  5. Socio/psychological issues for a Mars mission

    NASA Technical Reports Server (NTRS)

    Bluth, B. J.

    1986-01-01

    Some of the socio/psychological problems expected to accompany such a long duration mission as the trip to Mars are addressed. The emphasis is on those issues which are expected to have a bearing on crew performance. Results from research into aircraft accidents, particularly those related to pilot performance, are discussed briefly, as a limited analog to space flight. Significant comparisons are also made to some aspects of long duration Antarctic stays, submarine missions, and oceanographic vessel voyages. Appropriate lessons learned from U.S. and Russian space flight experiences are provided. Design of space missions and systems to enhance crew performance is discussed at length, considering factors external and internal to the crew. The importance of incorporating such design factors early in the design process is stressed.

  6. Flight Results of the Chandra X-ray Observatory Inertial Upper Stage Space Mission

    NASA Technical Reports Server (NTRS)

    Tillotson, R.; Walter, R.

    2000-01-01

    Under contract to NASA, a specially configured version of the Boeing developed Inertial Upper Stage (IUS) booster was provided by Boeing to deliver NASA's 1.5 billion dollar Chandra X-Ray Observatory satellite into a highly elliptical transfer orbit from a Shuttle provided circular park orbit. Subsequently, the final orbit of the Chandra satellite was to be achieved using the Chandra Integral Propulsion System (IPS) through a series of IPS burns. On 23 July 1999 the Shuttle Columbia (STS-93) was launched with the IUS/Chandra stack in the Shuttle payload bay. Unfortunately, the Shuttle Orbiter was unexpectantly inserted into an off-nominal park orbit due to a Shuttle propulsion anomaly occurring during ascent. Following the IUS/Chandra on-orbit deployment from the Shuttle, at seven hours from liftoff, the flight proven IUS GN&C system successfully injected Chandra into the targeted transfer orbit, in spite of the off-nominal park orbit. This paper describes the IUS GN&C system, discusses the specific IUS GN&C mission data load development, analyses and testing for the Chandra mission, and concludes with a summary of flight results for the IUS part of the Chandra mission.

  7. Flight Mechanics of the Entry, Descent and Landing of the ExoMars Mission

    NASA Technical Reports Server (NTRS)

    HayaRamos, Rodrigo; Boneti, Davide

    2007-01-01

    ExoMars is ESA's current mission to planet Mars. A high mobility rover and a fixed station will be deployed on the surface of Mars. This paper regards the flight mechanics of the Entry, Descent and Landing (EDL) phases used for the mission analysis and design of the Baseline and back-up scenarios of the mission. The EDL concept is based on a ballistic entry, followed by a descent under parachutes and inflatable devices (airbags) for landing. The mission analysis and design is driven by the flexibility in terms of landing site, arrival dates and the very stringent requirement in terms of landing accuracy. The challenging requirements currently imposed to the mission need innovative analysis and design techniques to support system design trade-offs to cope with the variability in entry conditions. The concept of the Global Entry Corridor has been conceived, designed, implemented and successfully validated as a key tool to provide a global picture of the mission capabilities in terms of landing site reachability.

  8. Early Flight Fission Test Facilities (EFF-TF) and Concepts That Support Near-Term Space Fission Missions

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.

  9. Goddard Space Flight Center solar array missions, requirements and directions

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward; Day, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

  10. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  11. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  12. Space Shuttle Discovery landed at NASA's Dryden Flight Research Center at 5:11 a.m., following the very successful 14-day STS-114 return to flight mission

    NASA Image and Video Library

    2005-08-09

    Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in Calif. at 5:11 a.m. this morning, following the very successful 14-day STS-114 return to flight mission.

  13. 21st century early mission concepts for Mars delivery and earth return

    NASA Technical Reports Server (NTRS)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  14. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  15. 2014 Summer Series - Robert Carvalho - Pursuing the Mysteries of the Sun: The IRIS Mission

    NASA Image and Video Library

    2014-06-19

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRIS's mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  16. GOCE: Mission Overview and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Rummel, R. F.; Muzi, D.; Drinkwater, M. R.; Floberghagen, R.; Fehringer, M.

    2009-12-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission is the first Earth Explorer Core mission of the Living Planet Programme of the European Space Agency (ESA). The primary objective of the GOCE mission is to provide global and regional models of the Earth gravity field and the geoid, its reference equi-potential surface, with unprecedented spatial resolution and accuracy. GOCE was launched successfully on 17 March 2009 from the Plesetsk Cosmodrome in northern Russia onboard a Rockot launch vehicle. System commissioning and payload calibration have been completed and the satellite is decaying to its initial measurement operating altitude of 255 km, which is expected to be reached in mid-September 2009. After one week of final payload calibration, GOCE will enter its first 6 month duration phase of uninterrupted science measurements at that altitude. This presentation will recall GOCE's main goals and its major development milestones. In addition, a description of the data products generated and some highlights of the satellite performance will be outlined. Artist's impression of GOCE Satellite in flight (courtesy AOES-Medialab).

  17. Western Aeronautical Test Range (WATR) Mission Control Gold Room During X-29 Flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The mission control Gold room is seen here during a research flight of the X-29 at the Dryden Flight Research Center, Edwards, California. All aspects of a research mission are monitored from one of two of these control rooms at Dryden. Dryden and its control rooms are part of the Western Aeronautical Test Range (WATR). The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests; corridors are provided for low, medium, and high-altitude supersonic flight; and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave

  18. In Flight Calibration of the Magnetospheric Multiscale Mission Fast Plasma Investigation

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Rager, Amy C.; Schiff, Conrad; Pollock, Craig J.

    2015-01-01

    The Fast Plasma Investigation (FPI) on the Magnetospheric Multiscale mission (MMS) combines data from eight spectrometers, each with four deflection states, into a single map of the sky. Any systematic discontinuity, artifact, noise source, etc. present in this map may be incorrectly interpreted as legitimate data and incorrect conclusions reached. For this reason it is desirable to have all spectrometers return the same output for a given input, and for this output to be low in noise sources or other errors. While many missions use statistical analyses of data to calibrate instruments in flight, this process is insufficient with FPI for two reasons: 1. Only a small fraction of high resolution data is downloaded to the ground due to bandwidth limitations and 2: The data that is downloaded is, by definition, scientifically interesting and therefore not ideal for calibration. FPI uses a suite of new tools to calibrate in flight. A new method for detection system ground calibration has been developed involving sweeping the detection threshold to fully define the pulse height distribution. This method has now been extended for use in flight as a means to calibrate MCP voltage and threshold (together forming the operating point) of the Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS). A method of comparing higher energy data (which has low fractional voltage error) to lower energy data (which has a higher fractional voltage error) will be used to calibrate the high voltage outputs. Finally, a comparison of pitch angle distributions will be used to find remaining discrepancies among sensors.

  19. Two ESA astronauts named to early Hubble Space Telescope servicing mission

    NASA Astrophysics Data System (ADS)

    1999-03-01

    Nicollier and three NASA astronauts, who had already been training for a Hubble servicing mission planned for June 2000, have been reassigned to this earlier mission (STS-103). Jean-Francois Clervoy and two other NASA astronauts will complete the STS-103 crew. The repairs and maintenance of the telescope will require many hours spent working outside the Shuttle and will make extensive use of the Shuttle's robotic arm Nicollier, of Swiss nationality and making his fourth flight, will be part of the team that will perform the "spacewalks". An astronomer by education, he took part in the first Hubble servicing mission (STS-61) in 1993, controlling the Shuttle's robotic arm while astronauts on the other end of the arm performed the delicate repairs to the telescope. He also served on STS-46 in 1992 using the robotic arm to deploy ESA's Eureca retrievable spacecraft from the Shuttle, and on STS-75 with the Italian Tethered Satellite System in 1996. Nicollier is currently the chief of the robotics branch in NASA's astronaut office and ESA's lead astronaut in Houston. Jean-Francois Clervoy, of French nationality and making his third flight, will have the lead role in the operation of the robotic arm for this mission. He previously served on STS-66 in 1994 using the robotic arm to deploy and later retrieve the German CRISTA-SPAS atmospheric research satellite, and on STS-84 in 1997, a Shuttle mission to the Russian Mir space station. The other STS-103 crewmembers are: Commander Curtis Brown, pilot Scott Kelly, and mission specialists Steven Smith, Michael Foale and John Grunsfeld. During the flight, the astronauts will replace Hubble's failing pointing system, which allows the telescope to aim at stars, planets and other targets, and install other equipment that will be ready for launch at that time. A second mission to complete the previously-scheduled Hubble refurbishment work is foreseen at a later date. The crew for that mission has not yet been assigned. The Hubble

  20. STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.

  1. Estimates of thermochemical relaxation lengths behind normal shock waves relevant to manned lunar and Mars return missions, the aeroassist flight experiment, and Mars entry

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1991-01-01

    Thermochemical relaxation distances behind the strong normal shock waves associated with vehicles that enter the Earth atmosphere upon returning from a manned lunar or Mars mission are estimated. The relaxation distances for a Mars entry are estimated as well, in order to highlight the extent of the relaxation phenomena early in currently envisioned space exploration studies. The thermochemical relaxation length for the Aeroassist Flight Experiment is also considered. These estimates provide an indication as to whether finite relaxation needs to be considered in subsequent detailed analyses. For the Mars entry, relaxation phenomena that are fully coupled to the flow field equations are used. The relaxation-distance estimates can be scaled to flight conditions other than those discussed.

  2. From Research to Flight: Surviving the TRL Valley of Death for Robotic and Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    There must be a plan or opportunities for flight validation: a) To reduce the bottleneck of new technologies at the TRL Valley of Death; b) To allow frequent infusion of new technologies into flight missions. Risk must be tolerated for new technology flight experiments. Risk must also be accepted on early-adopting missions to enable new capabilities. Fundamental research is critical to taking the next giant leap in the scientific exploration of space. Technology push is often required to meet current mission requirements. Technology management requires more than issuing NRAs and overseeing contracts.

  3. Mission Control Center (MCC) System Specification for the Shuttle Orbital Flight Test (OFT) Timeframe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.

  4. Flight data results of estimate fusion for spacecraft rendezvous navigation from shuttle mission STS-69

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Bishop, Robert H.

    1996-01-01

    A recently developed rendezvous navigation fusion filter that optimally exploits existing distributed filters for rendezvous and GPS navigation to achieve the relative and inertial state accuracies of both in a global solution is utilized here to process actual flight data. Space Shuttle Mission STS-69 was the first mission to date which gathered data from both the rendezvous and Global Positioning System filters allowing, for the first time, a test of the fusion algorithm with real flight data. Furthermore, a precise best estimate of trajectory is available for portions of STS-69, making possible a check on the performance of the fusion filter. In order to successfully carry out this experiment with flight data, two extensions to the existing scheme were necessary: a fusion edit test based on differences between the filter state vectors, and an underweighting scheme to accommodate the suboptimal perfect target assumption made by the Shuttle rendezvous filter. With these innovations, the flight data was successfully fused from playbacks of downlinked and/or recorded measurement data through ground analysis versions of the Shuttle rendezvous filter and a GPS filter developed for another experiment. The fusion results agree with the best estimate of trajectory at approximately the levels of uncertainty expected from the fusion filter's covariance matrix.

  5. Post flight analysis of NASA standard star trackers recovered from the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Newman, P.

    1985-01-01

    The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.

  6. A happy "thumbs up" from the crew of the Space Shuttle Endeavour and NASA Dryden Flight Research Center officials heralded the successful completion of mission STS-100

    NASA Image and Video Library

    2001-05-01

    A happy "thumbs up" from the crew of the Space Shuttle Endeavour and NASA Dryden Flight Research Center officials heralded the successful completion of mission STS-100. Standing by the shuttle's rocket nozzles from left to right: Scott E. Prazynski, mission specialist (U.S.); Yuri V. Lonchakov, mission specialist (Russia); Kent V. Rominger, commander (U.S.); Wally Sawyer, NASA Dryden Flight Research Center deputy director; Kevin Petersen, NASA Dryden Flight Research Center director; Umberto Guidoni, mission specialist (European Space Agency); John L. Phillips, mission specialist (U.S.); Jeffrey S. Ashby, pilot (U.S.); and Chris A. Hadfield, mission specialist (Canadian Space Agency). The mission landed at Edwards Air Force Base, California, on May 1, 2001.

  7. KENNEDY SPACE CENTER, FLA. - This view shows the tiles below the windshield on the orbiter Atlantis. A gap test is being performed on the tiles as part of return-to-flight activities. Atlantis is scheduled for mission STS-114, a return-to-flight test mission to the International Space Station.

    NASA Image and Video Library

    2003-11-20

    KENNEDY SPACE CENTER, FLA. - This view shows the tiles below the windshield on the orbiter Atlantis. A gap test is being performed on the tiles as part of return-to-flight activities. Atlantis is scheduled for mission STS-114, a return-to-flight test mission to the International Space Station.

  8. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.

  9. STS-116 Flight Controllers on console during mission - WFCR - Orbit 2

    NASA Image and Video Library

    2006-12-20

    JSC2006-E-54711 (21 Dec. 2006) --- Overall view of the Shuttle Flight Control Room in the Johnson Space Center's Mission Control Center during the final deployment of some small satellites from Space Shuttle Discovery's cargo bay. On a screen in the front of the control room, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers and viewed via live television on the ground.

  10. Overview of Key Saturn Probe Mission Trades

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill

    2007-01-01

    Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.

  11. View from the back of the Flight control room of Mission control center

    NASA Image and Video Library

    1984-10-06

    View from the back of the Mission Control Center (MCC). Visible are the Flight Directors console (left front), the CAPCOM console (right front) and the Payloads console. Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.

  12. Multiple spacecraft configuration designs for coordinated flight missions

    NASA Astrophysics Data System (ADS)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  13. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  14. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.

    2005-01-01

    Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning

  15. Unique Results and Lessons Learned From the TSS Missions

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2016-01-01

    The Tethered Satellite System (TSS) Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development in the U.S. Altogether, the investment made by NASA and the Italian Space Agency (ASI) over the thirteen-year period of the TSS Program totaled approximately $400M-exclusive of the two Space Shuttle flights provided by NASA. Since those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated in earth orbit and shown to perform better than the preflight dynamic or electrodynamic theoretical predictions. While it is true that the TSS-1 and TSS-1R missions experienced technical difficulties, the causes of these early developmental problems are now known to have been engineering design flaws, material selection, and procedural issues that (1) are unrelated to the basic viability of space tether technology, and (2) can be readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology.

  16. Shared mission operations concept

    NASA Technical Reports Server (NTRS)

    Spradlin, Gary L.; Rudd, Richard P.; Linick, Susan H.

    1994-01-01

    Historically, new JPL flight projects have developed a Mission Operations System (MOS) as unique as their spacecraft, and have utilized a mission-dedicated staff to monitor and control the spacecraft through the MOS. NASA budgetary pressures to reduce mission operations costs have led to the development and reliance on multimission ground system capabilities. The use of these multimission capabilities has not eliminated an ongoing requirement for a nucleus of personnel familiar with a given spacecraft and its mission to perform mission-dedicated operations. The high cost of skilled personnel required to support projects with diverse mission objectives has the potential for significant reduction through shared mission operations among mission-compatible projects. Shared mission operations are feasible if: (1) the missions do not conflict with one another in terms of peak activity periods, (2) a unique MOS is not required, and (3) there is sufficient similarity in the mission profiles so that greatly different skills would not be required to support each mission. This paper will further develop this shared mission operations concept. We will illustrate how a Discovery-class mission would enter a 'partner' relationship with the Voyager Project, and can minimize MOS development and operations costs by early and careful consideration of mission operations requirements.

  17. STS-107 Flight Day 15 Highlights

    NASA Astrophysics Data System (ADS)

    2003-01-01

    This video shows the activities of the STS-107 crew on flight day 15 of the Columbia orbiter's final mission. The crew includes Commander Rick Husband, Pilot William McCool, Mission Specialists Michael Anderson, David Brown, Laurel Clark, and Kalpana Chawla, and Payload Specialist Ilan Ramon. The primary activities of flight day 15 are crew interviews, and operating the Water Mist Fire Suppression (MIST) experiment. Early in the video, astronauts McCool and Ramon respond together to a question. Much of the video is taken up by an interview of astronauts Brown, Anderson, and McCool. Two parts of the video show the MIST experiment in operation, operated the first time by astronaut Brown. Another part of the video is narrated by Mission Specialist Clark, who identifies views of Mount Vesuvius, and an atoll in the south Pacific. In this part, Payload Specialist Ramon is seen on an exercise machine, Commander Husband shows body fluid samples from the crew taken during the mission, and Clark demonstrates how the crew eats meals. The video ends with footage from earlier in the mission which shows a deployed radiator in the shuttle's payload bay that reflects an image of the Earth.

  18. STS-118 Ascent/Entry Flight Control Team in White Flight Control Room (WFCR) with Flight Director Steve Stitch

    NASA Image and Video Library

    2007-07-20

    JSC2007-E-41011 (20 July 2007) --- STS-118 Ascent/Entry flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich (center right) and astronaut Tony Antonelli, spacecraft communicator (CAPCOM), hold the STS-118 mission logo.

  19. Maximum Oxygen Uptake During and After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, Stuart M. C.; McCleary. Frank A.; Platts, Steven H.

    2010-01-01

    Decreased maximum oxygen consumption (VO2max) during and after space flight may impair a crewmember s ability to perform mission-critical work that is high intensity and/or long duration in nature (Human Research Program Integrated Research Plan Risk 2.1.2: Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity). When VO2max was measured in Space Shuttle experiments, investigators reported that it did not change during short-duration space flight but decreased immediately after flight. Similar conclusions, based on the heart rate (HR) response of Skylab crewmembers, were made previously concerning long-duration space flight. Specifically, no change in the in-flight exercise HR response in 8 of 9 Skylab crewmembers indicated that VO2max was maintained during flight, but the elevated exercise HR after flight indicated that VO2max was decreased after landing. More recently, a different pattern of in-flight exercise HR response, and assumed changes in VO2max, emerged from routine testing of International Space Station (ISS) crewmembers. Most ISS crewmembers experience an elevated in-flight exercise HR response early in their mission, with a gradual return toward preflight levels as the mission progresses. Similar to previous reports, exercise HR is elevated after ISS missions and returns to preflight levels by 30 days after landing. VO2max has not been measured either during or after long-duration space flight. The purposes of the ISS VO2max experiment are (1) to measure VO2max during and after long-duration spaceflight, and (2) to determine if submaximal exercise test results can be used to accurately estimate VO 2max.

  20. A Data-Based Console Logger for Mission Operations Team Coordination

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Jenks, Kenneth; Overland, David; Oliver, Patrick; Zhang, Jiajie; Gong, Yang; Zhang, Tao

    2005-01-01

    Concepts and prototypes1,2 are discussed for a data-based console logger (D-Logger) to meet new challenges for coordination among flight controllers arising from new exploration mission concepts. The challenges include communication delays, increased crew autonomy, multiple concurrent missions, reduced-size flight support teams that include multidisciplinary flight controllers during quiescent periods, and migrating some flight support activities to flight controller offices. A spiral development approach has been adopted, making simple, but useful functions available early and adding more extensive support later. Evaluations have guided the development of the D-Logger from the beginning and continue to provide valuable user influence about upcoming requirements. D-Logger is part of a suite of tools designed to support future operations personnel and crew. While these tools can be used independently, when used together, they provide yet another level of support by interacting with one another. Recommendations are offered for the development of similar projects.

  1. Critical early mission design considerations for lunar data systems architecture

    NASA Technical Reports Server (NTRS)

    Hei, Donald J., Jr.; Stephens, Elaine

    1992-01-01

    This paper outlines recent early mission design activites for a lunar data systems architecture. Each major functional element is shown to be strikingly similar when viewed in a common reference system. While this similarity probably deviates with lower levels of decomposition, the sub-functions can always be arranged into similar and dissimilar categories. Similar functions can be implemented as objects - implemented once and reused several times like today's advanced integrated circuits. This approach to mission data systems, applied to other NASA programs, may result in substantial agency implementation and maintenance savings. In today's zero-sum-game budgetary environment, this approach could help to enable a lunar exploration program in the next decade. Several early mission studies leading to such an object-oriented data systems design are recommended.

  2. Radiation environment and shielding for early manned Mars missions

    NASA Technical Reports Server (NTRS)

    Hall, Stephen B.; Mccann, Michael E.

    1986-01-01

    The problem of shielding a crew during early manned Mars missions is discussed. Requirements for shielding are presented in the context of current astronaut exposure limits, natural ionizing radiation sources, and shielding inherent in a particular Mars vehicle configuration. An estimated range for shielding weight is presented based on the worst solar flare dose, mission duration, and inherent vehicle shielding.

  3. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  4. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  5. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    NASA Technical Reports Server (NTRS)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  6. Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark

    2015-01-01

    NASA plans to send humans to Mars in about 20 years. The NASA Human Research Program supports research to mitigate the major risks to human health and performance on extended missions. However, there will undoubtedly be unforeseen events on any mission of this nature - thus mitigation of known risks alone is not sufficient to ensure optimal crew health and performance. Research should be directed not only to mitigating known risks, but also to providing crews with the tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory and network theory to assess crew and individual resilience. The entire crew or the individual crewmember can be viewed as a complex system that is composed of subsystems (individual crewmembers or physiological subsystems), and the interactions between subsystems are of crucial importance for overall health and performance. An understanding of the structure of the interactions can provide important information even in the absence of complete information on the component subsystems. This is critical in human spaceflight, since insufficient flight opportunities exist to elucidate the details of each subsystem. Enabled by recent advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and also during preflight training to establish baseline values and ranges. Coupled with appropriate mathematical modeling, this can provide real-time assessment of health and function, and detect early indications of imminent breakdown. Since the interconnected web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). There are many parameters and interactions to choose from. Normal variability is an established characteristic of a healthy

  7. Spacelab Life Sciences 1 - Dedicated life sciences mission

    NASA Technical Reports Server (NTRS)

    Womack, W. D.

    1990-01-01

    The Spacelab Life Sciences 1 (SLS-1) mission is discussed, and an overview of the SLS-1 Spacelab configuration is shown. Twenty interdisciplinary experiments, planned for this mission, are intended to explore the early stages of human and animal physiological adaptation to space flight conditions. Biomedical and gravitational biology experiments include cardiovascular and cardiopulmonary deconditioning, altered vestibular functions, altered metabolic functions (including altered fluid-electrolyte regulation), muscle atrophy, bone demineralization, decreased red blood cell mass, and altered immunologic responses.

  8. STS-77 Flight Day 10

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this tenth day of the STS-77 mission, the flight crew, Cmdr. John H. Casper, Pilot Curtis L. Brown, Jr., and Mission Specialists Andrew S.W. Thomas, Ph.D., Daniel W. Bursch, Mario Runco, Jr., and Marc Garneau, Ph.D., perform a routine check of the shuttle's flight control surfaces and reaction control system jets, wrap up work with a number of scientific investigations, and begin securing the cabin for the trip back to Earth. Most experiments aboard the shuttle have been completed and stowed away, although a few will operate throughout the night and be deactivated once the crew wakes. Crew members Andy Thomas, a native of Australia, and Marc Garneau, a Canadian, each receive special greetings today as STS-77 nears its end. South Australia Premier Dean Brown called Thomas with congratulations early this morning as the shuttle passed above Brown's office in Adelaide, Australia, Thomas' hometown. Later, Canadian Prime Minister Jean Chretien called Garneau to congratulate him on the mission and the joint Canadian Space Agency and NASA experiments that were conducted.

  9. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  10. Apollo 15 mission report, supplement 4: Descent propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Avvenire, A. T.; Wood, S. C.

    1972-01-01

    The results of a postflight analysis of the LM-10 Descent Propulsion System (DPS) during the Apollo 15 Mission are reported. The analysis determined the steady state performance of the DPS during the descent phase of the manned lunar landing. Flight measurement discrepancies are discussed. Simulated throttle performance results are cited along with overall performance results. Evaluations of the propellant quantity gaging system, propellant loading, pressurization system, and engine are reported. Graphic illustrations of the evaluations are included.

  11. Quality Attributes for Mission Flight Software: A Reference for Architects

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan; Fesq, Lorraine; Dvorak, Dan

    2016-01-01

    In the international standards for architecture descriptions in systems and software engineering (ISO/IEC/IEEE 42010), "concern" is a primary concept that often manifests itself in relation to the quality attributes or "ilities" that a system is expected to exhibit - qualities such as reliability, security and modifiability. One of the main uses of an architecture description is to serve as a basis for analyzing how well the architecture achieves its quality attributes, and that requires architects to be as precise as possible about what they mean in claiming, for example, that an architecture supports "modifiability." This paper describes a table, generated by NASA's Software Architecture Review Board, which lists fourteen key quality attributes, identifies different important aspects of each quality attribute and considers each aspect in terms of requirements, rationale, evidence, and tactics to achieve the aspect. This quality attribute table is intended to serve as a guide to software architects, software developers, and software architecture reviewers in the domain of mission-critical real-time embedded systems, such as space mission flight software.

  12. Bone Metabolism on ISS Missions

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  13. Space Science Payloads Optical Properties Monitor (OPM) Mission Flight Anomalies Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Schmitz, Craig P.

    2001-01-01

    The OPM was the first space payload that measured in-situ the optical properties of materials and had data telemetered to ground. The OPM was EVA mounted to the Mir Docking Module for an eight-month stay where flight samples were exposed to the Mir induced and natural environments. The OPM was comprised of three optical instruments; a total hemispherical spectral reflectometer, a vacuum ultraviolet spectrometer, and a total integrated scatterometer. There were also three environmental monitors; an atomic oxygen monitor, solar and infrared radiometers, and two temperature-controlled quartz crystal microbalances (to monitor contamination). Measurements were performed weekly and data telemetered to ground through the Mir data system. This paper will describe the OPM thermal control design and how the thermal math models were used to analyze anomalies which occurred during the space flight mission.

  14. Design and implementation of the flight dynamics system for COMS satellite mission operations

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon

    2011-04-01

    The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.

  15. Flight test results from a supercritical mission adaptive wing with smooth variable camber

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.; Friend, Edward L.; Lokos, William A.

    1992-01-01

    The mission adaptive wing (MAW) consisted of leading- and trailing-edge variable-camber surfaces that could be deflected in flight to provide a near-ideal wing camber shape for any flight condition. These surfaces featured smooth, flexible upper surfaces and fully enclosed lower surfaces, distinguishing them from conventional flaps that have discontinuous surfaces and exposed or semiexposed mechanisms. Camber shape was controlled by either a manual or automatic flight control system. The wing and aircraft were extensively instrumented to evaluate the local flow characteristics and the total aircraft performance. This paper discusses the interrelationships between the wing pressure, buffet, boundary-layer and flight deflection measurement system analyses and describes the flight maneuvers used to obtain the data. The results are for a wing sweep of 26 deg, a Mach number of 0.85, leading and trailing-edge cambers (delta(sub LE/TE)) of 0/2 and 5/10, and angles of attack from 3.0 deg to 14.0 deg. For the well-behaved flow of the delta(sub LE/TE) = 0/2 camber, a typical cruise camber shape, the local and global data are in good agreement with respect to the flow properties of the wing. For the delta(sub LE/TE) = 5/10 camber, a maneuvering camber shape, the local and global data have similar trends and conclusions, but not the clear-cut agreement observed for cruise camber.

  16. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  17. STS-113 Mission Highlights Resource Tape Flight Days 1-3. Tape: 1 of 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video, part 1 of 4, shows the activities of the crew of Space Shuttle Endeavour during flight days 1-3 of STS-113. The crew consists of Commander Jim Wetherbee, Pilot Paul Lockhart, Mission Specialists Michael Lopez-Alegria and John Herrington. With them were the Expedition 6 crewmembers of the International Space Station (ISS), Ken Bowersox, Nikolai Budarin, and Don Pettit. Pre-launch procedures are shown, and the rain-delayed night launch is shown from several camera angles. On flight day 2 there was a check out of the Canadarm on Endeavour, and some intravehicular activity. Flight day 3 highlights the docking of Endeavour and the ISS, and preparation for an extravehicular activity (EVA) the following day. Earth views include the English Channel at night with a close-up of London, the coast of Ecuador, and some views of Endeavour with the Earth in the background.

  18. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  19. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  20. B-52B/DTV (Drop Test Vehicle) flight test results: Drop test missions

    NASA Technical Reports Server (NTRS)

    Doty, L. J.

    1985-01-01

    The NASA test airplane, B-52B-008, was a carrier for drop tests of the shuttle booster recovery parachute system. The purpose of the test support by Boeing was to monitor the vertical loads on the pylon hooks. The hooks hold the Drop Test Vehicle to the B-52 pylon during drop test missions. The loads were monitored to assure the successful completion of the flight and the safety of the crew.

  1. Data catalog series for space science and applications flight missions. Volume 6: Master index volume

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard; Ross, Patricia A.; King, Joseph H.

    1989-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA, and other U.S. government agencies. This volume contains the Master Index. The following spacecraft are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  2. The endocrine system in space flight

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    1988-01-01

    A trial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, has been measured in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF has increased by 59 percent, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell proudction, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1 alpha, 25-dihydroxyvitamin D-3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  3. Extended Bright Bodies - Flight and Ground Software Challenges on the Cassini Mission at Saturn

    NASA Technical Reports Server (NTRS)

    Sung, Tina S.; Burk, Thomas A.

    2016-01-01

    Extended bright bodies in the Saturn environment such as Saturn's rings, the planet itself, and Saturn's satellites near the Cassini spacecraft may interfere with the star tracker's ability to find stars. These interferences can create faulty spacecraft attitude knowledge, which would decrease the pointing accuracy or even trip a fault protection response on board the spacecraft. The effects of the extended bright body interference were observed in December of 2000 when Cassini flew by Jupiter. Based on this flight experience and expected star tracker behavior at Saturn, the Cassini AACS operations team defined flight rules to suspend the star tracker during predicted interference windows. The flight rules are also implemented in the existing ground software called Kinematic Predictor Tool to create star identification suspend commands to be uplinked to the spacecraft for future predicted interferences. This paper discusses the details of how extended bright bodies impact Cassini's acquisition of attitude knowledge, how the observed data helped the ground engineers in developing flight rules, and how automated methods are used in the flight and ground software to ensure the spacecraft is continuously operated within these flight rules. This paper also discusses how these established procedures will continue to be used to overcome new bright body challenges that Cassini will encounter during its dips inside the rings of Saturn for its final orbits of a remarkable 20-year mission at Saturn.

  4. Addressing the University's Tripartite Mission through an Early Childhood Movement Program.

    ERIC Educational Resources Information Center

    Marston, Rip

    2002-01-01

    Describes the University of Northern Iowa's early childhood motor laboratory, which brings together college students, preschoolers, and parents while contributing to each strand of the university's three-strand mission of teaching, scholarly endeavors, and service. The article describes program sessions, highlights the tripartite mission, and…

  5. Life Cycle of a Mission

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    2004-01-01

    A viewgraph presentation describing the the six phases of a space mission is shown. The contents include: 1) What Does Planning Involve?; 2) Designing the Flight System; 3) Building the Flight System; 4) Testing the Flight System; 5) Flying the Mission; and 6) Analyzing the Data.

  6. STS-125 Flight Control Team in WFCR - Orbit 1 - Flight Director Tony Ceccacci

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120813 (20 May 2009) --- The members of the STS-125 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-125 mission logo.

  7. STS-131 Flight Control Team in WFCR - Orbit 2 - Flight Director Mike Sarafin

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-051978 (14 April 2010) --- The members of the STS-131 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin holds the STS-131 mission logo.

  8. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Image and Video Library

    1983-04-05

    Astronauts Roy D. Bridges (left) and RIchard O. Covey serve as spacecraft communicators (CAPCOM) for STS-6. They are seated at the CAPCOM console in the mission operations control room (MOCR) of JSC's mission control center (30119); Flight Director Jay H. Greene communicates with a nearby flight controller in the MOCR just after launch of the Challenger (30120).

  9. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions

    NASA Technical Reports Server (NTRS)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  10. System and Method for Aiding Pilot Preview, Rehearsal, Review, and Real-Time Visual Acquisition of Flight Mission Progress

    NASA Technical Reports Server (NTRS)

    Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)

    2012-01-01

    Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.

  11. Planned flight test of a mercury ion auxiliary propulsion system. 1: Objectives, systems descriptions, and mission operations

    NASA Technical Reports Server (NTRS)

    Power, J. C.

    1978-01-01

    A planned flight test of an 8 cm diameter, electron-bombardment mercury ion thruster system is described. The primary objective of the test is to flight qualify the 5 mN (1 mlb.) thruster system for auxiliary propulsion applications. A seven year north-south stationkeeping mission was selected as the basis for the flight test operating profile. The flight test, which will employ two thruster systems, will also generate thruster system space performance data, measure thruster-spacecraft interactions, and demonstrate thruster operation in a number of operating modes. The flight test is designated as SAMSO-601 and will be flown aboard the shuttle-launched Air Force space test program P80-1 satellite in 1981. The spacecraft will be 3- axis stabilized in its final 740 km circular orbit, which will have an inclination of approximately greater than 73 degrees. The spacecraft design lifetime is three years.

  12. CREW PORTRAIT - SPACE SHUTTLE MISSION 41B

    NASA Image and Video Library

    1983-01-01

    S83-40555 (15 October 1983) --- These five astronauts are in training for the STS-41B mission, scheduled early next year. On the front row are Vance D. Brand, commander; and Robert L. Gibson, pilot. Mission specialists (back row, left to right) are Robert L. Stewart, Dr. Ronald E. McNair and Bruce McCandless II. Stewart and McCandless are wearing Extravehicular Mobility Units (EMU) space suits. The STS program's second extravehicular activity (EVA) is to be performed on this flight, largely as a rehearsal for a scheduled repair visit to the Solar Maximum Satellite (SMS), on a later mission. The Manned Maneuvering Unit (MMU) will make its space debut on STS-41B.

  13. Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.

    1991-01-01

    An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.

  14. Early Formulation Model-centric Engineering on Nasa's Europa Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    By leveraging the existing Model-Based Systems Engineering (MBSE) infrastructure at JPL and adding a modest investment, the Europa Mission Concept Study made striking advances in mission concept capture and analysis. This effort has reaffirmed the importance of architecting and successfully harnessed the synergistic relationship of system modeling to mission architecting. It clearly demonstrated that MBSE can provide greater agility than traditional systems engineering methods. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  15. B-52 Flight Mission Symbology - Close up

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A close-up view of some of the mission markings that tell the story of the NASA B-52 mothership's colorful history. These particular markings denote some of the experiments the bomber conducted to develop parachute recovery systems for the solid rocket boosters used by the Space Shuttle. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported

  16. NICER Mission

    NASA Image and Video Library

    2017-12-08

    This video previews the Neutron star Interior Composition Explorer (NICER). NICER is an Astrophysics Mission of Opportunity within NASA’s Explorer program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. NICER is an upcoming International Space Station payload scheduled to launch in June 2017. Learn more about the mission at nasa.gov/nicer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Flights of Discovery: 50 Years at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Wallace, Lance E.

    1996-01-01

    As part of the NASA History Series, this report (NASA SP-4309) describes fifty years of aeronautical research at the NASA Dryden Flight Research Center. Starting with early efforts to exceed the speed of sound with the X-1 aircraft, and continuing through to the X-31 research aircraft, the report covers the flight activities of all of the major research aircraft and lifting bodies studied by NASA. Chapter One, 'A Place for Discovery', describes the facility itself and the surrounding Mojave Desert. Chapter Two, 'The Right Stuff', is about the people involved in the flight research programs. Chapter Three, 'Higher, Faster' summarizes the early years of transonic flight testing and the development of several lifting bodies. Chapter Four, 'Improving Efficiency, Maneuverability & Systems', outlines the development of aeronautical developments such as the supercritical wing, the mission adaptive wing, and various techniques for improving maneuverability fo winged aircraft. Chapter 5, 'Supporting National Efforts', shows how the research activities carried out at Dryden fit into NASA's programs across the country in supporting the space program, in safety and in problem solving related to aircraft design and aviation safety in general. Chapter Six, ' Future Directions' looks to future research building on the fifty year history of aeronautical research at the Dryden Flight Research Center. A glossary of acronyms and an appendix covering concepts and innovations are included. The report also contains many photographs providing a graphical perspective to the historical record.

  18. Flight Computer Design for the Space Technology 5 (ST-5) Mission

    NASA Technical Reports Server (NTRS)

    Speer, David; Jackson, George; Raphael, Dave; Day, John H. (Technical Monitor)

    2001-01-01

    As part of NASA's New Millennium Program, the Space Technology 5 mission will validate a variety of technologies for nano-satellite and constellation mission applications. Included are: a miniaturized and low power X-band transponder, a constellation communication and navigation transceiver, a cold gas micro-thruster, two different variable emittance (thermal) controllers, flex cables for solar array power collection, autonomous groundbased constellation management tools, and a new CMOS ultra low-power, radiation-tolerant, +0.5 volt logic technology. The ST-5 focus is on small and low-power. A single-processor, multi-function flight computer will implement direct digital and analog interfaces to all of the other spacecraft subsystems and components. There will not be a distributed data system that uses a standardized serial bus such as MIL-STD-1553 or MIL-STD-1773. The flight software running on the single processor will be responsible for all real-time processing associated with: guidance, navigation and control, command and data handling (C&DH) including uplink/downlink, power switching and battery charge management, science data analysis and storage, intra-constellation communications, and housekeeping data collection and logging. As a nanosatellite trail-blazer for future constellations of up to 100 separate space vehicles, ST-5 will demonstrate a compact (single board), low power (5.5 watts) solution to the data acquisition, control, communications, processing and storage requirements that have traditionally required an entire network of separate circuit boards and/or avionics boxes. In addition to the New Millennium technologies, other major spacecraft subsystems include the power system electronics, a lithium-ion battery, triple-junction solar cell arrays, a science-grade magnetometer, a miniature spinning sun sensor, and a propulsion system.

  19. Flight feather development: its early specialization during embryogenesis.

    PubMed

    Kondo, Mao; Sekine, Tomoe; Miyakoshi, Taku; Kitajima, Keiichi; Egawa, Shiro; Seki, Ryohei; Abe, Gembu; Tamura, Koji

    2018-01-01

    Flight feathers, a type of feather that is unique to extant/extinct birds and some non-avian dinosaurs, are the most evolutionally advanced type of feather. In general, feather types are formed in the second or later generation of feathers at the first and following molting, and the first molting begins at around two weeks post hatching in chicken. However, it has been stated in some previous reports that the first molting from the natal down feathers to the flight feathers is much earlier than that for other feather types, suggesting that flight feather formation starts as an embryonic event. The aim of this study was to determine the inception of flight feather morphogenesis and to identify embryological processes specific to flight feathers in contrast to those of down feathers. We found that the second generation of feather that shows a flight feather-type arrangement has already started developing by chick embryonic day 18, deep in the skin of the flight feather-forming region. This was confirmed by shh gene expression that shows barb pattern, and the expression pattern revealed that the second generation of feather development in the flight feather-forming region seems to start by embryonic day 14. The first stage at which we detected a specific morphology of the feather bud in the flight feather-forming region was embryonic day 11, when internal invagination of the feather bud starts, while the external morphology of the feather bud is radial down-type. The morphogenesis for the flight feather, the most advanced type of feather, has been drastically modified from the beginning of feather morphogenesis, suggesting that early modification of the embryonic morphogenetic process may have played a crucial role in the morphological evolution of this key innovation. Co-optation of molecular cues for axial morphogenesis in limb skeletal development may be able to modify morphogenesis of the feather bud, giving rise to flight feather-specific morphogenesis of traits.

  20. Investigations Using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Sutter, B.; Archer, P. D., Jr.; Achilles, C. N.

    2012-01-01

    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Moessbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter Missions and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fephyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 C

  1. View of Mission Control Center celebrating conclusion of Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the U.S.S. Hornet in the Pacific recovery area (40301); NASA and MSC Officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Offic of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ (40302).

  2. Maximum Oxygen Uptake During Long-Duration Space Flight: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, A. D., Jr.; Evetts, S. N.; Feiveson, A.H.; Lee, S. M. C.; McCleary, F. A.; Platts, S. H.; Ploutz-Snyder, L.

    2010-01-01

    INTRODUCTION: Maximum oxygen uptake (VO2max) is maintained during space flight lasting <15 d, but has not been measured during long-duration missions. This abstract describes pre-flight and in-flight preliminary findings from the International Space Station (ISS) VO2max experiment. METHODS: Seven astronauts (4 M, 3 F: 47 +/- 5 yr, 174 +/- 7 cm, 74.1 +/- 14.7 kg [mean +/- SD]) performed cycle exercise tests to volitional maximum approx.45 d before flight and tests were scheduled every 30 d during flight beginning on flight day (FD) 14. Tests consisted of three 5-min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W/min increases. VO2 and heart rate (HR) were measured using the ISS Portable Pulmonary Function System (PPFS) (Damec, Odense, DK). Unfortunately the PPFS did not arrive at the ISS in time to support early test sessions for 3 crewmembers. Descriptive statistics are presented for pre-flight vs. late-flight (FD 147 +/- 33 d) comparisons for all subjects (n=7); and pre-flight, early (FD 18 +/- 3) and late-flight (FD 156 +/- 5) data are presented for subjects (n=4) who completed all of these test sessions. RESULTS: When all subjects are considered, average VO2max decreased from pre- to late in-flight (2.98 +/- 0.85 vs. 2.57 +/- 0.50 L/min) while maximum HR late-flight seemed unchanged (178 +/- 9 vs. 175 +/- 8 beats/min). Similarly, for subjects who completed pre-, early, and late flight measurements (n=4), mean VO2max declined from 3.19 +/- 0.75 L/min preflight to 2.43 +/- 0.43 and 2.62 +/- 0.38 L/min early and late-flight, respectively. Maximum HR was 183 +/- 8, 174 +/- 8, and 179 +/- 6 beats/min pre-, early- and late-flight. DISCUSSION: Average VO2max declined during flight and did not appreciably recover as flight duration increased; however much inter-subject variation occurred in these changes.

  3. One-Year Mission on ISS Is a Step Towards Interplanetary Missions.

    PubMed

    Fomina, Elena V; Lysova, Nataliya Yu; Kukoba, Tatyana B; Grishin, Alexey P; Kornienko, Mikhail B

    2017-12-01

    in the 1990s Russian cosmonauts performed six long-duration missions on Mir that went from 312 to 438 d. In 2015 a mission on the International Space Station that continued for 340 d, 8 h, and 47 min was successfully accomplished. It was a joint U.S./Russian mission completed by Scott Kelly and Mikhail Kornienko (KM). The intensity of in-flight physical exercises and postflight motor changes were measured in KM and in the six cosmonauts who made shorter flights (173.3 ± 13.8 d) on ISS while using similar countermeasures against the adverse effects of microgravity. It was found that both parameters varied similarly in spite of the difference in the duration of ISS missions. KM maintained adequate physical performance throughout the entire flight; moreover, the level of postflight changes he displayed was comparable to that recorded in the group of cosmonauts who completed 6-mo missions on ISS. In summary, the 1-yr mission has clearly demonstrated the high efficacy of the countermeasures used by KM.Fomina EV, Lysova NYu, Kukoba TB, Grishin AP, Kornienko MB. One-year mission on ISS is a step towards interplanetary missions. Aerosp Med Hum Perform. 2017; 88(12):1094-1099.

  4. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  5. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis surpasses the full moon for beauty as it roars into the early evening sky trailing a tail of smoke. The upper portion catches the sun'''s rays as it climbs above the horizon and a flock of birds soars above the moon. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

  6. SHINE Virtual Machine Model for In-flight Updates of Critical Mission Software

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    This software is a new target for the Spacecraft Health Inference Engine (SHINE) knowledge base that compiles a knowledge base to a language called Tiny C - an interpreted version of C that can be embedded on flight processors. This new target allows portions of a running SHINE knowledge base to be updated on a "live" system without needing to halt and restart the containing SHINE application. This enhancement will directly provide this capability without the risk of software validation problems and can also enable complete integration of BEAM and SHINE into a single application. This innovation enables SHINE deployment in domains where autonomy is used during flight-critical applications that require updates. This capability eliminates the need for halting the application and performing potentially serious total system uploads before resuming the application with the loss of system integrity. This software enables additional applications at JPL (microsensors, embedded mission hardware) and increases the marketability of these applications outside of JPL.

  7. Shuttle launched flight tests - Supporting technology for planetary entry missions

    NASA Technical Reports Server (NTRS)

    Vetter, H. C.; Mcneilly, W. R.; Siemers, P. M., III; Nachtsheim, P. R.

    1975-01-01

    The feasibility of conducting Space Shuttle-launched earth entry flight tests to enhance the technology base for second generation planetary entry missions is examined. Outer planet entry environments are reviewed, translated into earth entry requirements and used to establish entry test system design and cost characteristics. Entry speeds up to those needed to simulate radiative heating levels of more than 30 kW/sq cm are shown to be possible. A standardized recoverable test bed concept is described that is capable of accommodating a wide range of entry technology experiments. The economic advantage of shared Shuttle launches are shown to be achievable through a test system configured to the volume constraints of a single Spacelab pallet using existing propulsion components.

  8. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.

  9. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan is briefed by Dr. Christopher C. Kraft, Jr., JSC Director, who points toward the orbiter spotter on the projection plotter at the front of the MOCR (39499); President Reagan joking with STS-2 astronauts during space to ground conversation (39500); Mission Specialist/Astronaut Sally K. Ride communicates with the STS-2 crew from the spacecraft communicator console (39501); Charles R. Lewis, bronze team Flight Director, monitors activity from the STS-2 crew. He is seated at the flight director console in MOCR (39502); Eugene F. Kranz, Deputy Director of Flight Operations at JSC answers a question during a press conference on Nov. 13, 1981. He is flanked by Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC; and Dr. Christopher C. Kraft, Jr., Director of JSC (39503).

  10. Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO

    NASA Technical Reports Server (NTRS)

    Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael

    2014-01-01

    For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.

  11. The BIMDA shuttle flight mission: a low cost microgravity payload.

    PubMed

    Holemans, J; Cassanto, J M; Moller, T W; Cassanto, V A; Rose, A; Luttges, M; Morrison, D; Todd, P; Stewart, R; Korszun, R Z; Deardorff, G

    1991-01-01

    This paper presents the design, operation and experiment protocol of the Bioserve sponsored flights of the ITA Materials Dispersion Apparatus Payload (BIMDA) flown on the Space Shuttle on STS-37. The BIMDA payload represents a joint effort between ITA (Instrumentation Technology Associates, Inc.) and Bioserve Space Technologies, a NASA Center for the Commercial Development of Space, to investigate the methods and commercial potential of biomedical and fluid science applications in the microgravity environment of space. The BIMDA payload, flown in a Refrigerator/Incubator Module (R/IM) in the Orbiter middeck, consists of three different devices designed to mix fluids in space; four Materials Dispersion Apparatus (MDA) Minilabs developed by ITA, six Cell Syringes, and six Bioprocessing Modules both developed by NASA JSC and Bioserve. The BIMDA design and operation reflect user needs for late access prior to launch (<24 h) and early access after landing (<2 h). The environment for the payload is temperature controlled by the R/IM. The astronaut crew operates the payload and documents its operation. The temperature of the payload is recorded automatically during flight. The flight of the BIMDA payload is the first of two development flights of the MDA on the Space Shuttle. Future commercial flights of ITA's Materials Dispersion Apparatus on the Shuttle will be sponsored by NASA's Office of Commercial Programs and will take place over the next three years. Experiments for the BIMDA payload include research into the following areas: protein crystal growth, thin film membrane casting, collagen formation, fibrin clot formation, seed germination, enzymatic catalysis, zeolite crystallization, studies of mixing effects of lymphocyte functions, and solute diffusion and transport.

  12. Apollo experience report: Guidance and control systems. Mission control programmer for unmanned missions AS-202, Apollo 4, and Apollo 6

    NASA Technical Reports Server (NTRS)

    Holloway, G. F.

    1975-01-01

    An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.

  13. Early Program Development

    NASA Image and Video Library

    1969-01-01

    As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed an orbiting propellant storage facility to augment Space Shuttle missions. In this artist's concept from 1969 an early version of the Space Shuttle is shown refueling at the facility.

  14. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. With its drag chute trailing behind, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  15. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. Orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  16. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. A great blue heron flies along with orbiter Discovery as it lands on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  17. Development and Flight-testing of Astronomical Instrumentation for Future NASA Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin

    We propose a four year suborbital research program to continue the University of Colorado's efforts in the development and flight testing of instrument designs and critical path technologies for ultraviolet spectroscopy in support of future NASA Explorer, Probe-, and Flagship-class missions. This proposal builds on our existing program of high-resolution spectroscopy for the 100 - 160 nm bandpass with the development of a new high-efficiency imaging spectrograph operating in the same band. The ultimate goal of the University of Colorado ultraviolet rocket program is to develop the technical capabilities to enable a future, highly multiplexed ultraviolet spectrograph (with both high-resolution and imaging spectroscopy modes), e.g., an analog to the successful HST-STIS instrument, with an order-of-magnitude higher efficiency. We do this in the framework of a university led program where undergraduate, graduate, and postdoctoral training is paramount and cutting edge science investigations support our baseline technology development program. In the proposed effort, we will optimize our high-resolution (R > 100,000) echelle spectrograph payload (CHESS) with the first science flight of a new, large-format CCD array provided by our collaborators at JPL and Arizona State University. We will launch CHESS to study our local interstellar environment with spectral resolving power and bandpass that cannot be achieved with any suite of current or planned space missions. In parallel with the proposed science flights of CHESS, we will design, calibrate, and launch a new high-throughput imaging spectrograph (SISTINE); the first sub-arcsecond imaging, medium spectral resolution (R = 10,000), spectrograph ever flown with spectral coverage over the entire 100 - 160 nm bandpass. SISTINE incorporates several novel optical technologies that were highlighted as major hardware drivers for NASA's next large ultraviolet/optical/near-IR observatory by the 2014 Cosmic Origins Technology

  18. Flight path control strategies and preliminary deltaV requirements for the 2007 Mars Phoenix (PHX) mission

    NASA Technical Reports Server (NTRS)

    Raofi, Behzad

    2005-01-01

    This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.

  19. In-flight Assessment of Lower Body Negative Pressure as a Countermeasure for Post-flight Orthostatic Intolerance

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Stenger, M. B.; Phillips, T. R.; Arzeno, N. M.; Lee, S. M. C.

    2009-01-01

    Introduction. We investigated the efficacy of combining fluid loading with sustained lower body negative pressure (LBNP) to reverse orthostatic intolerance associated with weightlessness during and immediately after Space Shuttle missions. Methods. Shuttle astronauts (n=13) underwent 4 hours of LBNP at -30 mm(Hg) and ingested water and salt ( soak treatment) during flight in two complementary studies. In the first study (n=8), pre-flight heart rate (HR) and blood pressure (BP) responses to an LBNP ramp (5-min stages of -10 mm(Hg) steps to -50 mm(Hg) were compared to responses in-flight one and two days after LBNP soak treatment. In the second study (n=5), the soak was performed 24 hr before landing, and post-flight stand test results of soak subjects were compared with those of an untreated cohort (n=7). In both studies, the soak was scheduled late in the mission and was preceded by LBNP ramp tests at approximately 3-day intervals to document the in-flight loss of orthostatic tolerance. Results. Increased HR and decreased BP responses to LBNP were evident early in-flight. In-flight, one day after LBNP soak, HR and BP responses to LBNP were not different from pre-flight, but the effect was absent the second day after treatment. Post-flight there were no between-group differences in HR and BP responses to standing, but all 5 treatment subjects completed the 5-minute stand test whereas 2 of 7 untreated cohort subjects did not. Discussion. Exaggerated HR and BP responses to LBNP were evident within the first few days of space flight, extending results from Skylab. The combined LBNP and fluid ingestion countermeasure restored in-flight LBNP HR and BP responses to pre-flight levels and provided protection of post-landing orthostatic function. Unfortunately, any benefits of the combined countermeasure were offset by the complexity of its implementation, making it inappropriate for routine application during Shuttle flights.

  20. Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Shulman, Seth; Sedlak, Joseph; Ottenstein, Neil; Lounsbury, Brian

    2016-01-01

    Extensive flight data is being collected throughout the MMS mission that includes quantities that are of interest for attitude dynamics studies such as spin rate, spin axis orientation nutation rate, etc. One example of such data is the long-term evolution of the spin rates of the four spacecraft. Spikes in these rates are observed that are separated by the MMS orbital period (just under 24 hr) and occur around perigee due to gravity-gradient torque. Periodic discontinuities in spin rate are caused by the controller resetting the spin rate approximately to the nominal 3.1 RPM value at the time of each maneuver. In between, a slow decay in spin rate can be seen to occur. The paper will discuss various disturbance torque mechanisms that could potentially be responsible for this behavior: these include magnetic hysteresis, eddy currents, solar radiation pressure, and a possible interaction between gravity-gradient and wire boom flexibility effects. One additional disturbance mechanism is produced by the Active Spacecraft Potential Control (ASPOC) devices: these emit positive indium ions to keep the MMS spacecraft electrically neutral, so as not to corrupt the electric field observations that are made by some of the on-board instruments. The spin rate decays that could be produced by these various mechanisms will be quantified in the paper, and their signatures described. Comparing these with the observations from flight data then allow the most likely candidate to be determined.

  1. Scientific involvement in Skylab by the Space Sciences Laboratory of the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Winkler, C. E. (Editor)

    1973-01-01

    The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.

  2. SLS-1: The first dedicated life sciences shuttle flight

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.

    1992-01-01

    Spacelab Life Sciences 1 was the first space laboratory dedicated to life science research. It was launched into orbit in early June 1991 aboard the space shuttle Columbia. The data from this flight have greatly expanded our knowledge of the effects of microgravity on human physiology as data were collected in-flight, not just pre and post. Principal goals of the mission were the measurement of rapid and semichronic (8 days) changes in the cardiovascular and cardiopulmonary systems during the flight and then to measure the rate of readaptation following return to Earth. Results from the four teams involved in that research will be presented in this panel. In addition to the cardiovascular-cardiopulmonary research, extensive metabolic studies encompassed fluid, electrolyte and energy balance, renal function, hematology and musculoskeletal changes. Finally, the crew participated in several neurovestibular studies. Overall, the mission was an outstanding success and has provided much new information on the lability of human responses to the space environment.

  3. MISSION CONTROL CENTER (MCC) - CELEBRATION - CONCLUSION - APOLLO 11 MISSION - MSC

    NASA Image and Video Library

    1969-07-25

    S69-40023 (24 July 1969) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, Manned Spacecraft Center (MSC), showing the flight controllers celebrating the successful conclusion of the Apollo 11 lunar landing mission.

  4. STS-113 Mission Highlights Resource Tape Flight Days 7-11. Tape: 3 of 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video, part 3 of 4, shows the activities of the crew of Space Shuttle Envdeavour and the Expedition 5 and 6 crews of the International Space Station (ISS) during flight days 7 through 11 of STS-113. Endeavour's crew consists of Commander Jim Wetherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington. Footage of flight day 7 includes a change of command ceremony on board the ISS, and Endeavour dumping supply water through a nozzle. On flight day 8 the Space Station Mobile Transporter jams while traveling on the P1 truss of the ISS, and Herrington attempts to free it as part of a lengthy extravehicular activity (EVA) with Lopez-Alegria. Flight day 9 is the last full day the three crews spend together. Expedition 5 NASA ISS Science Officer Peggy Whitsun troubleshoots the Microgravity Glovebox on board the ISS with her successor Don Pettit. The undocking of Endeavour and the ISS is the main activity of flight day 10. Endeavour also deploys a pair of experimental tethered microsatellites for the Department of Defense. The footage from flight day 11 shows the Expedition 5 crew exercising, laying in recumbant seats to help them adjust to the gravity on Earth, and sleeping. The video includes numerous views of the earth, some with the ISS and Endeavour in the foreground. There are close-ups of Italy, Spain and Portugal, Tierra del Fuego, and Baja California, and a night view of Chicago and the Great Lakes.

  5. STS-125 Flight Control Team in WFCR - Ascent/Entry with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-21

    JSC2009-E-121353 (21 May 2009) --- The members of the STS-125 Ascent and Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Norm Knight (left) and astronaut Gregory H. Johnson, spacecraft communicator (CAPCOM), hold the STS-125 mission logo.

  6. Psychological considerations in future space missions

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Wilhelm, J. A.; Runge, T. E.

    1980-01-01

    Issues affecting human psychological adjustments to long space missions are discussed. Noting that the Shuttle flight crewmembers will not have extensive flight qualification requirements, the effects of a more heterogeneous crew mixture than in early space flights is considered to create possibilities of social conflicts. Routine space flight will decrease the novelty of a formerly unique experience, and the necessity of providing personal space or other mechanisms for coping with crowded, permanently occupied space habitats is stressed. Women are noted to display more permeable personal space requirements. The desirability of planning leisure activities is reviewed, and psychological test results for female and male characteristics are cited to show that individuals with high scores in both traditionally male and female attributes are most capable of effective goal-oriented behavior and interpersonal relationships. Finally, it is shown that competitiveness is negatively correlated with the success of collaborative work and the social climate of an environment.

  7. Knowledge Capture and Management for Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    The incorporation of knowledge capture and knowledge management strategies early in the development phase of an exploration program is necessary for safe and successful missions of human and robotic exploration vehicles over the life of a program. Following the transition from the development to the flight phase, loss of underlying theory and rationale governing design and requirements occur through a number of mechanisms. This degrades the quality of engineering work resulting in increased life cycle costs and risk to mission success and safety of flight. Due to budget constraints, concerned personnel in legacy programs often have to improvise methods for knowledge capture and management using existing, but often sub-optimal, information technology and archival resources. Application of advanced information technology to perform knowledge capture and management would be most effective if program wide requirements are defined at the beginning of a program.

  8. Ares I-X Flight Data Evaluation: Executive Overview

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Waits, David A.; Lewis, Donny L.; Richards, James S.; Coates, R. H., Jr.; Cruit, Wendy D.; Bolte, Elizabeth J.; Bangham, Michal E.; Askins, Bruce R.; Trausch, Ann N.

    2011-01-01

    NASA's Constellation Program (CxP) successfully launched the Ares I-X flight test vehicle on October 28, 2009. The Ares I-X flight was a developmental flight test to demonstrate that this very large, long, and slender vehicle could be controlled successfully. The flight offered a unique opportunity for early engineering data to influence the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office (APO) established a set of 33 flight evaluation tasks to correlate flight results with prospective design assumptions and models. The flight evaluation tasks used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. Included within these tasks were direct comparisons of flight data with preflight predictions and post-flight assessments utilizing models and processes being applied to design and develop Ares I. The benefits of early development flight testing were made evident by results from these flight evaluation tasks. This overview provides summary information from assessment of the Ares I-X flight test data and represents a small subset of the detailed technical results. The Ares Projects Office published a 1,600-plus-page detailed technical report that documents the full set of results. This detailed report is subject to the International Traffic in Arms Regulations (ITAR) and is available in the Ares Projects Office archives files.

  9. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  10. STS-77 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-77 Space Shuttle Program Mission Report summarizes the Payload activities as well as the: Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during the seventy-seventh flight of the Space Shuttle Program, the fifty-second flight since the return-to-flight, and the eleventh flight of the Orbiter Endeavour (OV-105). STS-77 was also the last flight of OV-105 prior to the vehicle being placed in the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-78; three SSME's that were designated as serial numbers 2037, 2040, and 2038 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-080. The RSRM's, designated RSRM-47, were installed in each SRB and the individual RSRM's were designated as 360TO47A for the left SRB, and 360TO47B for the right SRB. The STS-77 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VII, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of this flight were to successfully perform the operations necessary to fulfill the requirements of Spacehab-4, the SPARTAN 207/inflatable Antenna Experiment (IAE), and the Technology Experiments Advancing Missions in Space (TEAMS) payload. Secondary objectives of this flight were to perform the experiments of the Aquatic Research Facility (ARF), Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), Biological Research in Canisters (BRIC), Get-Away-Special (GAS), and GAS Bridge Assembly (GBA). The STS-77 mission was planned as a 9-day flight plus 1 day, plus 2 contingency days, which were available for

  11. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  12. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This artist's concept from 1970 shows a Nuclear Shuttle docked to an Orbital Propellant Depot and an early Space Shuttle. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle, in either manned or unmanned mode, would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additonal missions.

  13. Integrating Safety and Mission Assurance into Systems Engineering Modeling Practices

    NASA Technical Reports Server (NTRS)

    Beckman, Sean; Darpel, Scott

    2015-01-01

    During the early development of products, flight, or experimental hardware, emphasis is often given to the identification of technical requirements, utilizing such tools as use case and activity diagrams. Designers and project teams focus on understanding physical and performance demands and challenges. It is typically only later, during the evaluation of preliminary designs that a first pass, if performed, is made to determine the process, safety, and mission quality assurance requirements. Evaluation early in the life cycle, though, can yield requirements that force a fundamental change in design. This paper discusses an alternate paradigm for using the concepts of use case or activity diagrams to identify safety hazard and mission quality assurance risks and concerns using the same systems engineering modeling tools being used to identify technical requirements. It contains two examples of how this process might be used in the development of a space flight experiment, and the design of a Human Powered Pizza Delivery Vehicle, along with the potential benefits to decrease development time, and provide stronger budget estimates.

  14. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  15. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. Orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15, creating a cloud of smoke as its wheels touch the concrete. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  16. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. With its drag chute just beginning to open, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  17. JWST Flight Mirrors

    NASA Image and Video Library

    2011-05-25

    Project scientist Mark Clampin is reflected in the flight mirrors of the Webb Space Telescope at Marshall Space Flight Center. Portions of the Webb telescope are being built at NASA Goddard. Credit: Ball Aerospace/NASA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  18. View of Mission Control Center celebrating conclusion of Apollo 11 mission

    NASA Image and Video Library

    1969-07-25

    S69-40022 (24 July 1969) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, Manned Spacecraft Center (MSC), showing the flight controllers celebrating the successful conclusion of the Apollo 11 lunar landing mission.

  19. Resource Prospector Mission Animation (June 2018)

    NASA Image and Video Library

    2018-05-30

    Expanding human presence beyond low-Earth orbit will require the maximum possible use of local materials, so-called in-situ resources (ISRU). The Moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as providing significant exploration and science value. This video animation shows one mission concept under study by NASA called Resource Prospector (RP), an ISRU prospecting and technology demonstration mission. RP would scan the surface and sub-surface terrain, and demonstrate extraction of hydrogen and oxygen from lunar regolith to validate one possible ISRU approach. As NASA plans a series of progressive robotic missions to the lunar surface, the agency is considering a variety of approaches to evolve progressively larger landers leading to an eventual human lander capability. Part of this expanded lunar campaign includes early flight of select instruments from Resource Prospector to the Moon.

  20. A Perspective on Development Flight Instrumentation and Flight Test Analysis Plans for Ares I-X

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Richards, James S.; Brunty, Joseph A.; Smith, R. Marshall; Trombetta, Dominic R.

    2009-01-01

    NASA. s Constellation Program will take a significant step toward completion of the Ares I crew launch vehicle with the flight test of Ares I-X and completion of the Ares I-X post-flight evaluation. The Ares I-X flight test vehicle is an ascent development flight test that will acquire flight data early enough to impact the design and development of the Ares I. As the primary customer for flight data from the Ares I-X mission, Ares I has been the major driver in the definition of the Development Flight Instrumentation (DFI). This paper focuses on the DFI development process and the plans for post-flight evaluation of the resulting data to impact the Ares I design. Efforts for determining the DFI for Ares I-X began in the fall of 2005, and significant effort to refine and implement the Ares I-X DFI has been expended since that time. This paper will present a perspective in the development and implementation of the DFI. Emphasis will be placed on the process by which the list was established and changes were made to that list due to imposed constraints. The paper will also discuss the plans for the analysis of the DFI data following the flight and a summary of flight evaluation tasks to be performed in support of tools and models validation for design and development.

  1. Apollo Soyuz Mission: 5-Day Report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz Test Project mission objectives and technical investigations are summarized. Topics discussed include: spacecraft and crew systems performance; joint flight activities; scientific and applications experiments; in-flight demonstrations; biomedical considerations; and mission support performance.

  2. Apollo Soyuz mission planning and operations

    NASA Technical Reports Server (NTRS)

    Frank, M. P., III

    1976-01-01

    The paper describes the Apollo Soyuz project from the points of view of working group organization, mission plan definition, joint operations concept, and mission preparation. The concept for joint operations considered contingency situations as well as nominal operations. Preparations for the joint flight included cooperative tracking tests and combined training of the flight crews and mission control personnel.

  3. STS-131/19A Flight Control Team in FCR-1 - Orbit 1- Flight Director Ron Spencer

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-052008 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ron Spencer (right) holds the STS-131 mission logo.

  4. STS-105 Flight Control Team Photo

    NASA Image and Video Library

    2001-07-31

    JSC2001-02115 (31 July 2001) --- The flight controllers for the Ascent/Entry shift for the upcoming STS-105 mission pose with the assigned astronaut crew for a team portrait in the Shuttle Flight Control Room (WFCR) of Houston's Mission Control Center (MCC). Flight director John Shannon (left center) and STS-105 commander Scott J. Horowitz hold the mission logo. Also pictured on the front row are spacecraft communicator Kenneth D. Cockrell and STS-105 crew members Daniel T. Barry, Frederick W. (Rick) Sturckow and Patrick G. Forrester. The team had been participating in an integrated simulation for the scheduled August mission.

  5. Mission analyses for manned flight experiments

    NASA Technical Reports Server (NTRS)

    Orth, J. E.

    1973-01-01

    The investigations to develop a high altitude aircraft program plan are reported along with an analysis of manned comet and asteroid missions, the development of shuttle sortie mission objectives, and an analysis of major management issues facing the shuttle sortie.

  6. What's New for the Orbiting Carbon Observatory-2? A Summary of Changes between the Original and Re-flight Missions

    NASA Astrophysics Data System (ADS)

    Boland, S. W.; Kahn, P. B.

    2012-12-01

    The original Orbiting Carbon Observatory mission was lost in 2009 when the spacecraft failed to achieve orbit due to a launch vehicle failure. In 2010, NASA authorized a re-flight mission, known as the Orbiting Carbon Observatory-2 (OCO-2) mission, with direction to re-use the original hardware, designs, drawings, documents, and procedures wherever possible in order to minimize cost, schedule, and performance risk. During implementation, it was realized that some changes were required due to parts obsolescence, incorporation of lessons learned from the original OCO mission, and to provide optimal science return. In response to the OCO and Glory launch vehicle failures, a change in launch vehicle was also recently announced. A summary of changes, including those to hardware, orbit, and launch vehicle is provided, along with rationale, implementation approach, and impact (if any) on mission science.

  7. Press conference with the crew of the 41-G mission

    NASA Image and Video Library

    1984-09-12

    S84-41580 (3 Sept 1984) --- Assembled together publicly for the first time, the seven crewmembers for NASA's 41-G Space Shuttle mission field questions from the press corps at the Johnson Space Center. Pictured (foreground right to left) are Robert L. Crippen, crew commander ;Jon A. McBride, pilot; Kathryn D. Sullivan, Sally K. Ride and David C. Leestma--all mission specialists; Marc Garneau, representing the Canadian National Research Council, and Paul D. Scully-Power, U.S. Navy oceanographer, both payload specialists. Their flight is scheduled for early October.

  8. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  9. B-52 Flight Mission Symbology on Side of Craft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A view of some of the mission markings, painted on the side of NASA's B-52 mothership, that tell the story of its colorful history. Just as combat aircraft would paint a bomb on the side of an aircraft for each bombing mission completed, NASA crew members painted a silhouette on the side of the B-52's fuselage to commemorate each drop of an X-15, lifting body, remotely piloted research vehicle, X-38 crew return vehicle, or other experimental vehicle or parachute system. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for

  10. STS-109 Flight Control Team Photo in WFCR - Orbit 2 with Flight Director Tony Ceccaci.

    NASA Image and Video Library

    2002-03-05

    JSC2002-00574 (5 March 2002) --- The members of the STS-109 Orbit 2 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC). Flight director Tony Ceccacci holds the STS-109 mission logo.

  11. Medical survey of European astronauts during Mir missions

    NASA Astrophysics Data System (ADS)

    Clément, G.; Hamilton, D.; Davenport, L.; Comet, B.

    2010-10-01

    This paper reviews the medical operations performed on six European astronauts during seven space missions on board the space station Mir. These missions took place between November 1988 and August 1999, and their duration ranged from 14 days to 189 days. Steps of pre-flight medical selection and flight certification are presented. Countermeasures program used during the flight, as well as rehabilitation program following short and long-duration missions are described. Also reviewed are medical problems encountered during the flight, post-flight physiological changes such as orthostatic intolerance, exercise capacity, blood composition, muscle atrophy, bone density, and radiation exposure.

  12. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

  13. Flight Dynamics Analysis Branch

    NASA Technical Reports Server (NTRS)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  14. Manned remote work station development article. Volume 1, book 1: Flight article requirements. Appendix A: Mission requirements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The requirements for several configurations of flight articles are presented. These requirements provide the basis to design manned remote work station development test articles and establish tests and simulation objectives for the resolution of development issues. Mission system and subsystem requirements for four MRWS configurations included: open cherry picker; closed cherry picker; crane turret; and free flyer.

  15. UAV Inspection of Electrical Transmission Infrastructure with Path Conformance Autonomy and Lidar-Based Geofences NASA Report on UTM Reference Mission Flights at Southern Company Flights November 2016

    NASA Technical Reports Server (NTRS)

    Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul

    2017-01-01

    Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The

  16. Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.

    PubMed

    Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier

    2017-08-01

    Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.

  17. STS-38 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1991-01-01

    The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.

  18. STS-36 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Mechelay, Joseph E.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-33/LWT-26), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2030, and 2029), and two Solid Rocket Boosters (SRB's) (designated as BI-036). The STS-36 mission was a classified Department of Defense mission, and as such, the classified portions of the mission are not discussed. The unclassified sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each of the Orbiter problems is cited in the subsystem discussion.

  19. Expedition54_Education_in-Flight-New_Mexico_Museum_Space_History_052_1600_620942_hires

    NASA Image and Video Library

    2018-02-21

    Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed life and work aboard the orbital outpost with New Mexico students during an in-flight education event Feb. 21 at the New Mexico Museum of Space History in Alamogordo, New Mexico. Tingle is in the midst of a five-and-a-half-month mission on the station. He is scheduled to return to Earth in early June.

  20. STS-131/19A Flight Control Team in FCR-1 - Orbit 3- Flight Director Ed Van Cise

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-052556 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ed Van Cise holds the STS-131 mission logo.

  1. Habitability and Behavioral Issues of Space Flight.

    ERIC Educational Resources Information Center

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  2. STS-121: Discovery Pre-Flight Crew News Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The STS-121 crew is shown during this pre-flight news briefing. Steve Lindsey, Commander, begins with saying that they are only a few weeks from flight and the vehicle is in good shape. Mark Kelly, Pilot, is introduced by Lindsey and he discusses Kelly's main objective which is to direct the three spacewalks scheduled. Kelly introduces Mike Fossum, Mission Specialist. Kelly says that Fossum will be involved in three spacewalks. Fossum introduces Lisa Nowak, Mission Specialist, who is involved in robotics. Also Stephanie Wilson, Mission Specialist, will be involved in robotics. Piers Sellers, Mission Specialist, is introduced by Wilson, who is the lead spacewalker for this mission. Sellers then introduce Thomas Reiter, Mission Specialist, who is involved in spacewalks. The educational background of each crew member is given. Questions from the news media on the subjects of long term flights on the International Space Station, Ice frost ramp replacement, Orbiter Boom Sensor System (OBSS) stability, foam loss during STS-114 flight, duration of the mission, and mental preparation for test flights are addressed.

  3. Definition ofthe Design Trajectory and Entry Flight Corridor for the NASA Orion Exploration Mission 1 Entry Trajectory Using an Integrated Approach and Optimization

    NASA Technical Reports Server (NTRS)

    McNamara, Luke W.; Braun, Robert D.

    2014-01-01

    One of the key design objectives of NASA's Orion Exploration Mission 1 (EM- 1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is defining the flyable entry corridor for EM-1 taking into account multiple subsystem constraints such as complex aerothermal heating constraints, aerothermal heating objectives, landing accuracy constraints, structural load limits, Human-System-Integration-Requirements, Service Module debris disposal limits and other flight test objectives. During the EM-1 Design Analysis Cycle 1 design challenges came up that made defining the flyable entry corridor for the EM-1 mission critical to mission success. This document details the optimization techniques that were explored to use with the 6-DOF ANTARES simulation to assist in defining the design entry interface state and entry corridor with respect to key flight test constraints and objectives.

  4. Gemini Program Mission Report: Gemini IV

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The second manned mission of the Gemini Program, Gemini IV, was launched from Complex 19 at Cape Kennedy, Florida, at 10:16 a.m. e.s.t. on June 3, 1965. The mission was successfully concluded on June 7, 1965, with the recovery of the spacecraft by the prime recovery ship, the aircraft carrier U.S.S. Wasp, at 27 deg 44' N. latitude, 74 deg 11' W. longitude at 2:28 p.m. e.s.t. This manned long-duration flight was accomplished 10 weeks after the three-orbit manned flight which qualified the Gemini spacecraft and systems for orbital flight. The spacecraft was manned by Astronaut James A. McDivitt, command pilot, and Astronaut Edward H. White II, pilot. The flight crew completed the 4-day mission in excellent physical condition, and demonstrated full control of the spacecraft and competent management of all aspects of the mission.

  5. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. With its drag chute trailing behind, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. The 525-foot-tall Vehicle Assembly Building can be seen in the background. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  6. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors

    PubMed Central

    Besada, Juan A.; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; Bernardos, Ana M.; Casar, José R.

    2018-01-01

    This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control. PMID:29641506

  7. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors.

    PubMed

    Besada, Juan A; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; López-Araquistain, Jaime; Bernardos, Ana M; Casar, José R

    2018-04-11

    This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control.

  8. Wet countdown demonstration and flight readiness firing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The prelaunch tests for the Space Transportation System 1 flight are briefly described. Testing is divided into two major sections: the wet countdown demonstration test/flight readiness firing, which includes a 20 second test firing of the orbiter's three main engines, and a mission verification test, which is centered on flight and landing operations. The functions of the countdown sequence are listed and end of mission and mission abort exercises are described.

  9. Multi-Tasking: First Shuttle Mission Since Columbia Combines Test Flight, Catch-Up ISS Supply and Maintenance

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    NASA's space shuttle fleet is nearing its return to flight with a complex mission on board Discovery that will combine tests of new hardware and procedures adopted in the wake of Columbia's loss with urgent repairs and resupply for the International Space Station. A seven-member astronaut crew has trained throughout most of the two-year hiatus in shuttle operations for the 13-day mission, shooting for a three-week launch window that opens May 15. The window, and much else about the STS-114 mission, is constrained by NASA's need to ensure it has fixed the ascent/debris problem that doomed Columbia and its crew as they attempted to reenter the atmosphere on Feb. 1, 2003. The window was selected so Discovery's ascent can be photographed in daylight with 107 different ground- and aircraft-based cameras to monitor the redesigned external tank for debris shedding. Fixed cameras and the shuttle crew will also photograph the tank in space after it has been jettisoned.

  10. Solar Probe Plus: Mission design challenges and trades

    NASA Astrophysics Data System (ADS)

    Guo, Yanping

    2010-11-01

    NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravity assist from Jupiter it was extremely difficult to get to the Sun, so designing a trajectory to reach the Sun that is technically feasible under the new mission guidelines became a key enabler to this highly challenging mission. Mission design requirements and challenges unique to this mission are reviewed and discussed, including various mission scenarios and six different trajectory designs utilizing various planetary gravity assists that were considered. The V 5GA trajectory design using five Venus gravity assists achieves a perihelion of 11.8 solar radii ( RS) in 3.3 years without any deep space maneuver (DSM). The V 7GA trajectory design reaches a perihelion of 9.5 RS using seven Venus gravity assists in 6.39 years without any DSM. With nine Venus gravity assists, the V 9GA trajectory design shows a solar orbit at inclination as high as 37.9° from the ecliptic plane can be achieved with the time of flight of 5.8 years. Using combined Earth and Venus gravity assists, as close as 9 RS from the Sun can be achieved in less than 10 years of flight time at moderate launch C3. Ultimately the V 7GA trajectory was chosen as the new baseline mission trajectory. Its design allowing for science investigation right after launch and continuing for nearly 7 years is unprecedented for interplanetary missions. The redesigned Solar Probe Plus mission is not only feasible under the new guidelines but also significantly outperforms the original mission concept

  11. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  12. Spacelab 3 mission

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.

    1990-01-01

    Spacelab-3 (SL-3) was the first microgravity mission of extended duration involving crew interaction with animal experiments. This interaction involved sharing the Spacelab environmental system, changing animal food, and changing animal waste trays by the crew. Extensive microbial testing was conducted on the animal specimens and crew and on their ground and flight facilities during all phases of the mission to determine the potential for cross contamination. Macroparticulate sampling was attempted but was unsuccessful due to the unforseen particulate contamination occurring during the flight. Particulate debris of varying size (250 micron to several inches) and composition was recovered post flight from the Spacelab floor, end cones, overhead areas, avionics fan filter, cabin fan filters, tunnel adaptor, and from the crew module. These data are discussed along with solutions, which were implemented, for particulate and microbial containment for future flight facilities.

  13. Apollo 13 - Mission Control Console

    NASA Image and Video Library

    1970-04-15

    S70-35096 (16 April 1970) --- As the problem-plagued Apollo 13 crewmen entered their final 24 hours in space, several persons important to the mission remained attentive at consoles in the Mission Operations Control Room of the Mission Control Center at Manned Spacecraft Center. Among those monitoring communications and serving in supervisory capacities were these four officials from National Aeronautics and Space Administration Headquarters, Washington, D.C.: (from left) Thomas H. McMullen, Office of Manned Space Flight, who served as Shift 1 mission director; Dale Myers, associate administrator, Manned Space Flight; Chester M. Lee of the Apollo Program Directorate, OMSF, Apollo 13 mission director; and Dr. Rocco A. Petrone, Apollo program director, OMSF.

  14. Expedition_55_Education_In-Flight_Queens_University_Kingston2018_096_1602_637022

    NASA Image and Video Library

    2018-04-18

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH CANADIAN STUDENTS-----Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA discussed the early weeks of his mission on the orbital laboratory during an in-flight question and answer session April 6 with students at Queen’s University in Kingston, Ontario. Feustel received a doctorate in geological sciences from the institution in 1995 and has maintained close ties with the university and its faculty throughout the years.

  15. Shuttle remote manipulator system mission preparation and operations

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E., Jr.

    1989-01-01

    The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.

  16. STS-78 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment

  17. Ambient Light Intensity, Actigraphy, Sleep and Respiration, Circadian Temperature and Melatonin Rhythms and Daytime Performance of Crew Members During Space Flight on STS-90 and STS-95 Missions

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.; Dijk, D.-J.; Neri, D. F.; Hughes, R. J.; Ronda, J. M.; Wyatt, J. K.; West, J. B.; Prisk, G. K.; Elliott, A. R.; Young, L. R.

    1999-01-01

    Sleep disruption and associated waking sleepiness and fatigue are common during space flight. A survey of 58 crew members from nine space shuttle missions revealed that most suffered from sleep disruption, and reportedly slept an average of only 6.1 hours per day of flight as compared to an average of 7.9 hours per day on the ground. Nineteen percent of crewmembers on single shift missions and 50 percent of the crewmembers in dual shift operations reported sleeping pill usage (benzodiazepines) during their missions. Benzodiazepines are effective as hypnotics, however, not without adverse side effects including carryover sedation and performance impairment, anterograde amnesia, and alterations in sleep EEG. Our preliminary ground-based data suggest that pre-sleep administration of 0.3 mg of the pineal hormone melatonin may have the acute hypnotic properties needed for treating the sleep disruption of space flight without producing the adverse side effects associated with benzodiazepines. We hypothesize that pre-sleep administration of melatonin will result in decreased sleep latency, reduced nocturnal sleep disruption, improved sleep efficiency, and enhanced next-day alertness and cognitive performance both in ground-based simulations and during the space shuttle missions. Specifically, we have carried out experiments in which: (1) ambient light intensity aboard the space shuttle is assessed during flight; (2) the impact of space flight on sleep (assessed polysomnographically and actigraphically), respiration during sleep, circadian temperature and melatonin rhythms, waking neurobehavioral alertness and performance is assessed in crew members of the Neurolab and STS-95 missions; (3) the effectiveness of melatonin as a hypnotic is assessed independently of its effects on the phase of the endogenous circadian pacemaker in ground-based studies, using a powerful experimental model of the dyssomnia of space flight; (4) the effectiveness of melatonin as a hypnotic is

  18. STS-132 ascent flight control team photo with Flight Director Richard Jones and the STS-132 crew

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090665 (8 June 2010) --- The members of the STS-132 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (right) and NASA astronaut Ken Ham, STS-132 commander, hold the STS-132 mission logo. Additional crew members pictured are NASA astronauts Tony Antonelli, pilot; along with Garrett Reisman, Piers Sellers, Michael Good and Steve Bowen, all mission specialists. Photo credit: NASA or National Aeronautics and Space Administration

  19. ISS-12A.1 Orbit 1 Flight Control Team in FCR-1 with Flight Director Derek Hassmann

    NASA Image and Video Library

    2006-12-15

    JSC2006-E-54411 (15 Dec. 2006) --- The members of the STS-116/12A.1 ISS Orbit 1 flight control team pose for a group portrait in the station flight control room of Houston's Mission Control Center (MCC). Flight director Derek Hassman (center right) holds the STS-116 mission logo. Astronaut Terry W. Virts Jr., spacecraft communicator (CAPCOM), is at center. PHALCON flight controller Scott Stover (center left) holds the P5 truss power reconfiguration logo.

  20. Skylab Saturn 1B flight manual

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A Saturn 1B Flight Manual provides launch vehicle systems descriptions and predicted performance data for the Skylab missions. Vehicle SL-2 (SA-206) is the baseline for this manual; but, as a result of the great similarity, the material is representative of SL-3 and SL-4 launch vehicles, also. The Flight Manual is not a control document but is intended primarily as an aid to astronauts who are training for Skylab missions. In order to provide a comprehensive reference for that purpose, the manual also contains descriptions of the ground support interfaces, prelaunch operations, and emergency procedures. Mission variables and constraints are summarized, and mission control monitoring and data flow during launch preparation and flight are discussed.

  1. STS payloads mission control study continuation phase A-1. Volume 2-C, task 3: Identification of joint activities and estimation of resources in preparation for joint flight operations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.

  2. Flora: A Proposed Hyperspectral Mission

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert

    2006-01-01

    In early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM

  3. STS-71 Shuttle/Mir mission report

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    1995-01-01

    The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.

  4. STS-92 Mission Specialists Wakata and Lopez-Alegria pose at SLF after arrival

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialists Koichi Wakata and Michael Lopez- Alegria pause on the tarmac after their arrival aboard the T-38 jet aircraft in the background. They and the rest of the crew are at KSC to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT includes emergency egress training from the orbiter and pad, plus a simulated countdown. The fifth mission to the International Space Station, STS-92 will carry the Integrated Truss Structure Z1, the first of the planned 10 trusses on the Space Station, and the third Pressurized Mating Adapter. The Z1 will allow the first U.S. solar arrays on a future flight to be temporarily installed on Unity for early power. PMA-3 will provide a Shuttle docking port for the solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. STS-92 is scheduled to launch Oct. 5 from launch Pad 39A. It will be the 100th flight in the Shuttle program.

  5. Psychological Support Operations and the ISS One-Year Mission

    NASA Technical Reports Server (NTRS)

    Beven, G.; Vander Ark, S. T.; Holland, A. W.

    2016-01-01

    Since NASA began human presence on the International Space Station (ISS) in November 1998, crews have spent two to seven months onboard. In March 2015 NASA and Russia embarked on a new era of ISS utilization, with two of their crewmembers conducting a one-year mission onboard ISS. The mission has been useful for both research and mission operations to better understand the human, technological, mission management and staffing challenges that may be faced on missions beyond Low Earth Orbit. The work completed during the first 42 ISS missions provided the basis for the pre-flight, in-flight and post-flight work completed by NASA's Space Medicine Operations Division, while our Russian colleagues provided valuable insights from their long-duration mission experiences with missions lasting 10-14 months, which predated the ISS era. Space Medicine's Behavioral Health and Performance Group (BHP) provided pre-flight training, evaluation, and preparation as well as in-flight psychological support for the NASA crewmember. While the BHP team collaboratively planned for this mission with the help of all ISS international partners within the Human Behavior and Performance Working Group to leverage their collective expertise, the US and Russian BHP personnel were responsible for their respective crewmembers. The presentation will summarize the lessons and experience gained within the areas identified by this Working Group as being of primary importance for a one-year mission.

  6. Goodard Space Flight Center/Wallops Flight Facility airborne geoscience support capability

    NASA Technical Reports Server (NTRS)

    Navarro, Roger L.

    1991-01-01

    Goddard Space Flight Center's Wallops Facility (GSFC/WFF), operates six aircraft which are used as airborne geoscience platforms. The aircraft complement consists of two UH-1B helicopters, one twin engine Skyvan, one twin jet T-39, and two four engine turboprop aircraft (P-3 and Electra) offering the research community a wide range of payload, altitude, speed, and range capabilities. WFF's support to a principal investigator include mission planning of all supporting elements, installation of equipment on the aircraft, fabrication of brackets, and adapters as required to adapt payloads to the aircraft, and planning of mission profiles to meet science objectives. The flight regime includes local, regional, and global missions. The WFF aircraft serve scientists at GSFC, other NASA centers, other government agencies, and universities. The WFF mode of operation features the walk on method of conducting research projects. The principal investigator requests aircraft support by letter to WFF and after approval is granted, works with the assigned mission manager to plan all phases of project support. The instrumentation is installed in WFF electronics racks, mounted on the aircraft, the missions are flown, and the equipment is removed when the scientific objectives are met. The principal investigator reimburses WFF for each flight hours, any overtime and travel expenses generated by the project, and for other mission-related expenses such as aircraft support services required at deployment bases.

  7. Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session WA1 includes short reports concerning: (1) Medical and Physiological Studies During 438-Day Space Flights: (2) Human Performance During a 14 Month Space Mission: (3) Homeostasis in Long-Term Microgravity Conditions; (4) Strategy of Preservation of Health of Cosmonauts in Prolonged and Superprolonged Space Flights; (5) Rehabilitation of Cosmonauts Health Following Long-Term Space Missions; and (6) Perfect Cosmonauts: Some Features of Bio-Portrait.

  8. Code-Name: Spider, Flight of Apollo 9.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Apollo 9, an earth orbiting mission during which the Lunar Module was first tested in space flight in preparation for the eventual moon landing missions, is the subject of this pamphlet. Many color photographs and diagrams of the Lunar Module and flight activities are included with a brief description of the mission. (PR)

  9. Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas; Flores-Amaya, Felipe

    1999-01-01

    This document summarizes the major activities and accomplishments carried out by the Goddard Space Flight Center (GSFC)'s Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The document is intended to serve as both an introduction to the type of support carried out by the FDAB (Flight Dynamics Analysis Branch), as well as a concise reference summarizing key analysis results and mission experience derived from the various mission support roles assumed over the past year. The major accomplishments in the FDAB in FY99 were: 1) Provided flight dynamics support to the Lunar Prospector and TRIANA missions among a variety of spacecraft missions; 2) Sponsored the Flight Mechanics Symposium; 3) Supported the Consultative Committee for Space Data Systems (CCSDS) workshops; 4) Performed numerous analyses and studies for future missions; 5) Started the Flight Dynamics Analysis Branch Lab for in-house mission analysis and support; and 6) Complied with all requirements in support of GSFC IS09000 certification.

  10. The endocrine system in space flight

    NASA Astrophysics Data System (ADS)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  11. Flight test of a low-altitude helicopter guidance system with obstacle avoidance capability

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.; Clark, Raymond F.; Branigan, Robert G.

    1995-01-01

    Military aircraft regularly conduct missions that include low-atltitude, near-terrain flight in order to increase covertness and payload effectiveness. Civilian applications include airborne fire fighting, police surveillance, search and rescue, and helicopter emergency medical service. Several fixed-wing aircraft now employ terrain elevation maps and forward-pointed radars to achieve automated terrain following or terrain avoidance flight. Similar systems specialized to helicopters and their flight regime have not received as much attention. A helicopter guidance system relying on digitized terrain elevation maps has been developed that employs airborne navigation, mission requirements, aircraft performance limits, and radar altimeter returns to generate a valley-seeking, low-altitude trajectory between waypoints. The guidance trajectory is symbolically presented to the pilot on a helmet mounted display. This system has been flight tested to 150 ft (45.7 m) above ground level altitude at 80 kts, and is primarily limited by the ability of the pilot to perform manual detection and avoidance of unmapped hazards. In this study, a wide field of view laser radar sensor has been incorporated into this guidance system to assist the pilot in obstacle detection and avoidance, while expanding the system's operational flight envelope. The results from early flight tests of this system are presented. Low-altitude missions to 100 ft (30.5 m) altitude at 80n kts in the presence of unmapped natural and man-made obstacles were demonstrated while the pilot maintained situational awareness and tracking of the guidance trajectory. Further reductions in altitude are expected with continued flight testing.

  12. Design Reference Missions (DRM): Integrated ODM 'Air-Taxi' Mission Features

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt; Starr, Ginn; Saltzman, John A.

    2017-01-01

    Design Reference Missions (DRM): Integrated ODM Air-Taxi Mission Features, Hybrid Electric Integrated System Testbed (HEIST) flight control. Structural Health, Energy Storage, Electric Components, Loss of Control, Degraded Systems, System Health, Real-Time IO Operator Geo-Fencing, Regional Noise Abatement and Trusted Autonomy Inter-operability.

  13. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  14. General Mission Analysis Tool (GMAT) Architectural Specification. Draft

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Conway, Darrel, J.

    2007-01-01

    Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dynamics software needed to fly upcoming missions that use formations of spacecraft to collect data. These requirements ranged from low level modeling features to large scale interoperability requirements. In 2003 we began work on a system designed to meet these requirement; this system is GMAT. The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively. GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux, and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of components that streamlines the development and extension of the user interface Flight dynamics modeling is performed in GMAT by building components that represent the players in the analysis problem that is being modeled. These components interact through the sequential execution of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation, and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission analyst. All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements are constructed in the GMAT GUI. The GMAT system was developed from the ground up to run in a platform agnostic environment. The source code compiles on numerous different platforms, and is

  15. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081946 (18 May 2010) --- ISS flight director Emily Nelson monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  16. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081914 (18 May 2010) --- ISS flight director Holly Ridings reviews data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  17. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  18. Evolution and Reengineering of NASA's Flight Dynamics Facility (FDF)

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas; Hoge, Susan

    2008-01-01

    The NASA Goddard Space Flight Center's Flight Dynamics Facility (FDF) is a multimission support facility that performs ground navigation and spacecraft trajectory design services for a wide range of scientific satellites. The FDF also supports the NASA Space Network by providing orbit determination and tracking data evaluation services for the Tracking Data Relay Satellite System (TDRSS). The FDF traces its history to early NASA missions in the 1960's, including navigation support to the Apollo lunar missions. Over its 40 year history, the FDF has undergone many changes in its architecture, services offered, missions supported, management approach, and business operation. As a fully reimbursable facility (users now pay 100% of all costs for FDF operations and sustaining engineering activities), the FDF has faced significant challenges in recent years in providing mission critical products and services at minimal cost while defining and implementing upgrades necessary to meet future mission demands. This paper traces the history of the FDF and discusses significant events in the past that impacted the FDF infrastructure and/or business model, and the events today that are shaping the plans for the FDF in the next decade. Today's drivers for change include new mission requirements, the availability of new technology for spacecraft navigation, and continued pressures for cost reduction from FDF users. Recently, the FDF completed an architecture study based on these drivers that defines significant changes planned for the facility. This paper discusses the results of this study and a proposed implementation plan. As a case study in how flight dynamics operations have evolved and will continue to evolve, this paper focuses on two periods of time (1992 and the present) in order to contrast the dramatic changes that have taken place in the FDF. This paper offers observations and plans for the evolution of the FDF over the next ten years. Finally, this paper defines the

  19. Assessing information transfer in full mission flight simulations

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1990-01-01

    Considerable attention must be given to the important topic of aircrew situation awareness in any discussion of aviation safety and flight deck design. Reliable means of assessing this important aspect of crew behavior without simultaneously interfering with the behavior are difficult to develop. Unobtrusive measurement of crew situation awareness is particularly important in the conduct of full mission simulations where considerable effort and cost is expended to achieve a high degree of operational fidelity. An unobtrusive method of assessing situational awareness is described here which employs a topical analysis of intra-crew communications. The communications were taken from videotapes of crew behavior prior to, during, and following an encounter with a microburst/windshear event. The simulation scenario re-created an actual encounter with an event during an approach into Denver Stapleton Airport. The analyses were conducted on twelve experienced airline crews with the objective of determining the effect on situation awareness of uplinking ground-based information of the crew during the approach. The topical analysis of crew communication was conducted on all references to weather or weather-related topics. The general weather topic was further divided into weather subtopical references such as surface winds, windshear, precipitation, etc., thereby allowing for an assessment of the relative frequency of subtopic reference during the scenario. Reliable differences were found between the relative frequency of subtopic references when comparing the communications of crews receiving a cockpit display of ground-based information to the communications of a control group. The findings support the utility of this method of assessing situation awareness and information value in full mission simulations. A limiting factor in the use of this measure is that crews vary in the amount of intra-crew communications that may take place due to individual differences and other

  20. STS-97 flight control team in WFCR - JSC - MCC

    NASA Image and Video Library

    2000-11-24

    JSC2000-07303 (24 November 2000) --- The 30-odd flight controllers supporting the STS-97 entry shift pose for a pre-flight group portrait in the shuttle flight control room in Houston's Mission Control Center (JSC). Entry flight director LeRoy Cain (front center) holds a mission logo.

  1. Definition of technology development missions for early space stations: Large space structures

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  2. Food and Nutrition for the Moon Base: What we have Learned in 45 Years of Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen; Kloeris, Vickie; Perchonok, Michele; Zwart, Sara; Smith, Scott M.

    2006-01-01

    The United States has a new human space flight mission to return to the Moon, this time to establish an outpost to continue research there and develop our ability to send humans to Mars and bring them back in good health. The Apollo missions were the first human expeditions to the Moon. Only 2 crew members landed on the lunar surface on each Apollo mission, and they spent a maximum of 72 hours there. Future trips will have at least 4 crew members, and the initial trips will include several days of surface activity. Eventually, these short (sortie) missions will extend to longer lunar surface times, on the order of weeks. Thus, the challenges of meeting the food and nutritional needs of crew members at a lunar outpost will be significantly different from those during the early Apollo missions. The U.S. has had humans in space beginning in 1961 with increasing lengths of time in space flight. Throughout these flights, the areas of particular concern for nutrition are body mass, bone health, and radiation protection. The development and refinement of the food systems over the last 30 years are discussed, as well as the plans for both the sortie and lunar. The articles briefly review what we know today about food and nutrition for space travelers and relate this knowledge to our planned human flights back to the Moon.

  3. The Gravity Recovery and Interior Laboratory mission

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.; Hoffman, T. L.; Havens, G. G.

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and Extended Mission in December 2012. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission used twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such as an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  4. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  5. Immune changes during short-duration missions

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1993-01-01

    Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.

  6. Immune changes during short-duration missions.

    PubMed

    Taylor, G R

    1993-09-01

    Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.

  7. STS-132 Flight Control Team in WFCR

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087358 (25 May 2010) --- The members of the STS-132 Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration

  8. Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission

    NASA Astrophysics Data System (ADS)

    Lee, G.; Sen, B.; Ross, F.; Sokol, D.

    2016-12-01

    Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.

  9. STS-120 Orbit 2 Flight Control Team Photo

    NASA Image and Video Library

    2007-10-31

    JSC2007-E-095908 (31 Oct. 2007) --- The members of the STS-120 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Mike Moses holds the STS-120 mission logo.

  10. Abort Flight Test Project Overview

    NASA Technical Reports Server (NTRS)

    Sitz, Joel

    2007-01-01

    A general overview of the Orion abort flight test is presented. The contents include: 1) Abort Flight Test Project Overview; 2) DFRC Exploration Mission Directorate; 3) Abort Flight Test; 4) Flight Test Configurations; 5) Flight Test Vehicle Engineering Office; 6) DFRC FTA Scope; 7) Flight Test Operations; 8) DFRC Ops Support; 9) Launch Facilities; and 10) Scope of Launch Abort Flight Test

  11. Mission Operations with an Autonomous Agent

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.

    1998-01-01

    The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.

  12. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    NASA Astrophysics Data System (ADS)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (<; 100kg) each hosting a GNSS receiver, operating in a 500 km orbit, inclined at 35° to provide 70% coverage of the historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  13. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 1 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 1 through 3. The activities from other flight days can be seen on 'STS 109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), 'STS 109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139471), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The main activity recorded during flight day 1 is the liftoff of Columbia. Attention is given to suit-up, boarding, and pre-flight procedures. The pre-launch crew meal has no sound. The crew members often wave to the camera before liftoff. The jettisoning of the solid rocket boosters is shown, and the External Tank is seen as it falls to Earth, moving over African dunes in the background. There are liftoff replays, including one from inside the cockpit. The opening of the payload bay doors is seen from the rear of the shuttle's cockpit. The footage from flight day 2 shows the Flight Support System for bearthing the HST (Hubble Space Telescope). Crew preparations for the bearthing are shown. Flight day 3 shows the tracking of and approach to the HST by Columbia, including orbital maneuvers, the capture of the HST, and its lowering onto the Flight Support System. Many views of the HST are shown, including one which reveals an ocean and cloud background as the HST retracts a solar array.

  14. An analysis of thrust of a realistic solar sail with focus on a flight validation mission in a geocentric orbit

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.

    Several scientifically important space flight missions have been identified that, at this time, can only be practically achieved using a solar sail propulsion system. These missions take advantage of the potentially continuous force on the sail, provided by solar radiation, to produce significant changes in the spacecraft's velocity, in both magnitude and/or direction, without the need for carrying the enormous amount of fuel that conventional propulsion systems would require to provide the same performance. However, to provide thrust levels that would support these missions requires solar sail areas in the (tens of) thousands of square meter sizes. To realize this, many technical areas must be developed further and demonstrated in space before solar sails will be accepted as a viable space mission propulsion system. One of these areas concerns understanding the propulsion performance of a realistic solar sail well enough for mission planning. Without this understanding, solar sail orbits could not be predicted well enough to meet defined mission requirements, such as rendezvous or station-keeping, and solar sail orbit optimization, such as minimizing flight time, could be close to impossible. In most mission studies, either an "ideal" sail's performance is used for mission planning, or some top-level assumptions of certain nonideal sail characteristics are incorporated to give a slightly better estimate of the sail performance. This paper identifies the major sources of solar sail thrust performance uncertainty, and analyzes the most significant ones to provide a more comprehensive understanding of thrust generation by a "realistic" solar sail. With this understanding, mission planners will be able to more confidently and accurately estimate the capabilities of such a system. The first solar sail mission will likely be a system validation mission, using a relatively small sail in a geocentric (Earth-centered) orbit. The author has been involved in conceptual

  15. Advanced biosensors for monitoring astronauts' health during long-duration space missions.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Guardigli, Massimo; Zangheri, Martina; Caliceti, Cristiana; Calabria, Donato; Simoni, Patrizia

    2018-07-15

    Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119382 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities. Flight director Chris Edelen is at right.

  17. STS-98 Flight Control Team Photo in the WFCR

    NASA Image and Video Library

    2001-01-08

    JSC2001-00001 (January 2001) --- The STS-98 astronaut crew poses with about five dozen flight controllers making up its ascent/entry team in the shuttle flight control room of the Johnson Space Center's Mission Control Center (MCC). Standing with the STS-98 insignia is flight director LeRoy Cain. He is flanked by astronauts Marsha S. Ivins, mission specialist, and Kenneth D. Cockrell, mission commander. Behind Cockrell is astronaut Robert L. Curbeam, Jr., mission specialist; and behind Ivins and Cain is astronaut Mark L. Polansky, pilot. Astronaut Thomas D. Jones, mission specialist (blue shirt) stands near the flight director sign. Astronaut Scott D. Altman, CAPCOM or Spacecraft Communicator, is immediately behind Cain. Launch is currently scheduled for February 6, 2001.

  18. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081916 (18 May 2010) --- ISS flight directors Holly Ridings (seated) and Emily Nelson monitor data at their console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  19. An Integrated Vision-Based System for Spacecraft Attitude and Topology Determination for Formation Flight Missions

    NASA Technical Reports Server (NTRS)

    Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray

    2004-01-01

    With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.

  20. STS-131 Flight Control Team in WFCR - Planning - Flight Director: Ginger Kerrick

    NASA Image and Video Library

    2010-04-12

    JSC2010-E-050902 (12 April 2010) --- The members of the STS-131 Planning flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (center) is visible on the second row.

  1. Seeing Which Way the Wind Blows: New Doppler Radar Takes Flight on This Summer's HS3 Mission

    NASA Image and Video Library

    2017-12-08

    Most aircraft carrying Doppler radar look like they’ve grown a tail, developed a dorsal fin, or sprouted a giant pancake on their backs. But when the unmanned Global Hawk carries a radar system this summer, its cargo will be hard to see. The autonomous and compact High-altitude Imaging Wind and Rain Profiler, or HIWRAP, a dual-frequency conical-scanning Doppler radar, will hang under the aircraft’s belly as it flies above hurricanes to measure wind and rain and to test a new method for retrieving wind data. HIWRAP is one of the instruments that will fly in this summer's mission to explore Atlantic Ocean hurricanes. NASA's Hurricane and Severe Storm Sentinel, or HS3, airborne mission will investigate tropical cyclones using a number of instruments and two Global Hawks. The HS3 mission will operate between Aug. 20 and Sept. 23. Read more: 1.usa.gov/18TYPt7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Perseus in Flight

    NASA Image and Video Library

    1991-11-15

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program.

  3. Space Shuttle Missions Summary

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Legler, Robert D.

    2011-01-01

    This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

  4. Numerical investigation of the early flight phase in ski-jumping.

    PubMed

    Gardan, N; Schneider, A; Polidori, G; Trenchard, H; Seigneur, J M; Beaumont, F; Fourchet, F; Taiar, R

    2017-07-05

    The purpose of this study is to develop a numerical methodology based on real data from wind tunnel experiments to investigate the effect of the ski jumper's posture and speed on aerodynamic forces in a wide range of angles of attack. To improve our knowledge of the aerodynamic behavior of the ski jumper and his equipment during the early flight phase of the ski jump, we applied CFD methodology to evaluate the influence of angle of attack (α=14°, 21.5°, 29°, 36.5° and 44°) and speed (u=23, 26 and 29m/s) on aerodynamic forces in the situation of stable attitude of the ski jumper's body and skis. The standard k-ω turbulence model was used to investigate both the influence of the ski jumper's posture and speed on aerodynamic performance during the early flight phase. Numerical results show that the ski jumper's speed has very little impact on the lift and drag coefficients. Conversely, the lift and drag forces acting on the ski jumper's body during the early flight phase of the jump are strongly influenced by the variations of the angle of attack. The present results suggest that the greater the ski jumper's angle of inclination, with respect to the relative flow, the greater the pressure difference between the lower and upper parts of the skier. Further studies will focus on the dependency of the parameters with both the angle of attack α and the body-ski angle β as control variables. It will be possible to test and optimize different ski jumping styles in different ski jumping hills and investigate different environmental conditions such as temperature, altitude or crosswinds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mission Study for Generation-X: A Large Area and High Angular Observatory to Study the Early Universe

    NASA Technical Reports Server (NTRS)

    Brissenden, Roger

    2005-01-01

    In this report we provide a summary of the technical progress achieved during the last year Generation-X Vision Mission Study. In addition, we provide a brief programmatic status. The Generation-X (Gen-X) Vision Mission Study investigates the science requirements, mission concepts and technology drivers for an X-ray telescope designed to study the new frontier of astrophysics: the birth and evolution of the first stars, galaxies and black holes in the early Universe. X-ray astronomy offers an opportunity to detect these via the activity of the black holes, and the supernova explosions and gamma-ray burst afterglows of the massive stars. However, such objects are beyond the grasp of current missions which are operating or even under development. Our team has conceived a Gen-X Vision Mission based on an X-ray observatory with 100 m2 collecting area at 1 keV (1000 times larger than Chandra) and 0.1 arcsecond angular resolution (several times better than Chandra and 50 times better than the Constellation-X resolution goal). Such a high energy observatory will be capable of detecting the earliest black holes and galaxies in the Universe, and will also study extremes of density, gravity, magnetic fields, and kinetic energy which cannot be created in laboratories. In our study we develop the mission concept and define candidate technologies and performance requirements for Gen-X. The baseline Gen-X mission involves four 8 m diameter X-ray telescopes operating at Sun-Earth L2. We trade against an alternate concept of a single 26 m diameter telescope with focal plane instruments on a separate spacecraft. A telescope of this size will require either robotic or human-assisted in-flight assembly. The required effective area implies that extremely lightweight grazing incidence X-ray optics must be developed. To achieve the required areal density of at least 100 times lower than for Chandra, we study 0.2 mm thick mirrors which have active on-orbit figure control. We also study

  6. Dryden Flight Research Center Overview

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    2007-01-01

    This viewgraph document presents a overview of the Dryden Flight Research Center's facilities. Dryden's mission is to advancing technology and science through flight. The mission elements are: perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validate space exploration concepts, conduct airborne remote sensing and science observations, and support operations of the Space Shuttle and the ISS for NASA and the Nation. It reviews some of the recent research projects that Dryden has been involved in, such as autonomous aerial refueling, the"Quiet Spike" demonstration on supersonic F-15, intelligent flight controls, high angle of attack research on blended wing body configuration, and Orion launch abort tests.

  7. Dryden Flight Research Center: The World's Premiere Installation for Atmospheric Flight Research

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin Asela

    2007-01-01

    This viewgraph presentation reviews NASA Dryden's capabilities, the work that Dryden has done for NASA, and its current research. Dryden's Mission is stated to advance technology and science through flight. The mission elements are: (1) Perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, (2) Validate space exploration concepts, (3) Conduct airborne remote sensing and science observations, (4) Support operations of the Space Shuttle and the ISS for NASA and the Nation.

  8. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119390 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.

  9. Low-Cost SIRTF Flight Operations

    NASA Astrophysics Data System (ADS)

    Deutsch, M.-J.; Ebersole, M.; Nichols, J.

    1997-12-01

    The Space Infrared Telescope Facility (SIRTF) , the fourth of the Great Observatories, will be placed in a unique solar orbit trailing the Earth, in 2001. SIRTF will acquire both imaging and spectral data using large infrared detector arrays from 3.5mm to 160mm. The primary science objectives are (1) search for and study of brown dwarfs and super planets, (2) discovery and study of protoplanetary debris disks, (3) study of ultraluminous galaxies and active galactic nuclei, and (4) study of the early Universe. Driven by the limited cryogenic lifetime of 2.5 years, with a goal of 5 years, and the severely cost-capped development, a Mission Planning and Operations system is being designed that will result in high on-board efficiency (>90%) and low-cost operation, yet will accommodate rapid response science requirements . SIRTF is designing an architecture for an operations system that will be shared between science and flight operations. Crucial to this effort is the philosophy of an integrated science and engineering plan, co-location, cross-training of teams and common planning tools. The common tool set will enable the automatic generation of an integrated and conflict free planned schedule accommodating 20 000 observations and engineering activities a year. The shared tool set will help generate standard observations , (sometimes non-standard) engineering activities and manage the ground and flight resources and constraints appropriately. The ground software will allow the development from the ground of robust event driven sequences. Flexibility will be provided to incorporate newly discovered science opportunities or health issues late in the process and via quick links. This shared science and flight operations process if used from observation selection through sequence and command generation, will provide a low-cost operations system. Though SIRTF is a 'Great Observatory', its annual mission operations costs will more closely resemble those of an Explorer class

  10. Gene Kranz Visits Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center's (MSFC's) 2006 Annual Safety Day program. The best selling author of 'Failure Is Not An Option' and past Apollo flight director was featured during a morning session called 'Coffee and Kranz'. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  11. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 4 of 4, shows footage of crew activities from flight days 8 through 12 of STS-109. The crew included: Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, Richard Linnehan, James Newman, Michael Massimino, Mission Speicalists. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476). The primary activity on flight day 8 was an EVA (extravehicular activity) by Grunsfeld and Linnehan to install a cryocooler and radiator for the NICMOS (Near Infrared Camera and Multi-Object Spectrometer) on the HST (Hubble Space Telescope). Before returning to Columbia's airlock, the astronauts, with a cloudy background, hold onto the orbiter and offer their thoughts on the significance of their mission, the HST, and spaceflight. Footage from flight day 9 includes the grappling, unbearthing, and deployment of the HST from Columbia, and the crew coordinating and videotaping Columbia's departure. Flight day 10 was a relatively inactive day, and flight day 11 includes a checkout of Columbia's aerodynamic surfaces. Columbia landed on flight day 12, which is covered by footage of the crew members speaking during reentry, and their night landing, primarily shown through the orbiter's head-up display. The video includes numerous views of the HST, as well as views of the the Galapagos Islands, Madagascar, and Southern Africa with parts of the Atlantic, Indian, and Pacific Oceans, and part of the coast of Chile. The pistol grip space tool is shown in use, and the crew answers two messages from the public, including a message to Massimino from the Fire Department of New York.

  12. Radioastron flight operations

    NASA Technical Reports Server (NTRS)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  13. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    NASA Astrophysics Data System (ADS)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  14. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081909 (18 May 2010) --- Flight director Mike Sarafin (left) and NASA astronaut Chris Cassidy, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day five activities.

  15. Innovative Test Operations to Support Orion and Future Human Rated Missions

    NASA Technical Reports Server (NTRS)

    Koenig, William J.; Garcia, Rafael; Harris, Richard F.; See, Michael J.; Van Lear, Benjamin S.; Dobson, Jill M.; Norris, Scott Douglas

    2017-01-01

    This paper describes how the Orion program is implementing new and innovative test approaches and strategies in an evolving development environment. The early flight test spacecraft are evolving in design maturity and complexity requiring significant changes in the ground test operations for each mission. The testing approach for EM-2 is planned to validate innovative Orion production acceptance testing methods to support human exploration missions in the future. Manufacturing and testing at Kennedy Space Center in the Neil Armstrong Operations and Checkout facility will provide a seamless transition directly to the launch site avoiding transportation and checkout of the spacecraft from other locations.

  16. Shuttle flight data and in-flight anomaly list. STS-1 through STS-50, and STS-52 through STS-56. Revision T

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report contains mission data for space shuttle flights and consists of three sections. The first section is a listing of shuttle flight data for flights STS-1 through STS-55 gathered during the mission evaluation process. The second section is a listing of all orbiter in-flight anomalies arranged in order by affected Work Unit Codes of the failed items from shuttle flights STS-1 through STS-50 and STS-52 through STS-56. The third section consists of data derived from the as-flown orbiter attitude timelines and crew activity plans for each mission. The data are presented in chart form and show the progression of the mission from launch to entry interface with the varying orbiter attitudes (roll, pitch, and yaw) and the time duration in each attitude. The chart also shows the orbiter's velocity vector, i.e., which of the orbiter's body axes is pointing forward along the orbital path. The Beta angle, the angle between the sun vector and the orbital plane, is also shown for each 12-hour period of the mission.

  17. STS-113 Flight Control Team Photo in WFCR - Orbit 2 with Flight Director John Curry.

    NASA Image and Video Library

    2002-11-27

    JSC2002-02106 (27 November 2002) --- The members of the STS-113 Orbit 2 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houston’s Mission Control Center (MCC). Flight Director John Curry stands to the left of the STS-113 mission logo and astronaut Lisa M. Nowak, spacecraft communicator (CAPCOM), stands to the left of Curry.

  18. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  19. STS-94 Mission Specialist Gernhardt in LC-39A White Room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-94 Mission Specialist Michael L. Gernhardt prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He first flew in this capacity on STS-69. He has been a professional deep sea diver and engineer and holds a doctorate in bioengineering. Gernhardt will be in charge of the Blue shift and as flight engineer will operate and maintain the orbiter while Halsell and Still are asleep as members of the Red shift. He will also back them up on the flight deck during the ascent and re- entry phases of the mission. Gernhardt and six fellow crew members will lift off during a launch window that opens at 1:50 a.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center.

  20. STS-119 Flight Control Team in WFCR - Orbit 3 - Flight Director Bryan Lunney

    NASA Image and Video Library

    2009-03-24

    JSC2009-E-061542 (24 March 2009) --- The members of the STS-119 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA?s Johnson Space Center. Flight director Bryan Lunney (center) near the front.

  1. Ares I-X Flight Test - On the Fast Track to the Future

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.

  2. STS-26 simulation activities in JSC Mission Control Center (MCC)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Overall view of JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) during Flight Day 1 of STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).

  3. Personnel - Gemini-Titan (GT)-10 - Mission Control Center (MCC) - MSC

    NASA Image and Video Library

    1966-07-18

    S66-43377 (18 July 1966) --- Standing at the flight director's console, viewing the Gemini-10 flight display in the Mission Control Center, are (left to right) William C. Schneider, Mission Director; Glynn Lunney, Prime Flight Director; Christopher C. Kraft Jr., MSC Director of Flight Operations; and Charles W. Mathews, Manager, Gemini Program Office. Photo credit: NASA

  4. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119397 (12 May 2009) --- Flight directors Rick LaBrode (left) and Chris Edelen monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.

  5. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  6. Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission

    NASA Technical Reports Server (NTRS)

    Anselm, William

    2003-01-01

    Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.

  7. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  8. Ares I-X Flight Test--The Future Begins Here

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than one year, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for a 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately 130,000 feet (39,600 meters (m)) and through maximum dynamic pressure ('Max Q') of approximately 800 pounds per square foot (38.3 kilopascals (kPa)). Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by a two-part integrated vehicle CDR in March and July 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008. Ares I-X is the first step in

  9. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    NASA Technical Reports Server (NTRS)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  10. STS-131 Flight Control Team in WFCR - Orbit 1 - Flight Director: Richard Jones

    NASA Image and Video Library

    2010-04-12

    JSC2010-E-050680 (12 April 2010) --- The members of the STS-131 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (second left) is on the front row.

  11. The Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth- Moon system, which will require weeks, months, or even years of transit time.

  12. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2006-01-01

    NASA's Ikhana unmanned aerial vehicle (UAV) is a General Atomics MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate through partnerships, other government agencies and universities. Ikhana, a Native American word meaning 'intelligence', can carry over 2000 lbs of atmospheric and remote sensing instruments in the payload bay and external pods. The aircraft is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. Redundant flight control, avionics, power, and network systems increase the system reliability and allow easier access to public airspace. The aircraft is remotely piloted from a mobile ground control station (GCS) using both C-band line-of-sight and Ku-band over-the-horizon satellite datalinks. NASA's GCS has been modified to support on-site science monitoring, or the downlink data can be networked to remote sites. All ground support systems are designed to be deployable to support global Eart science investigations. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The ARTS can host research algorithms that will autonomously command and control on-board sensors, perform sensor health monitoring, conduct data analysis, and request changes to the flight plan to maximize data collection. The ARTS also has the ability to host algorithms that will autonomously control the aircraft trajectory based on sensor needs, (e.g. precision trajectory for repeat pass interferometry) or to optimize mission objectives (e.g. search for specific atmospheric conditions). Standard on-board networks will collect science data for recording and for inclusion in the aircraft's high bandwidth downlink. The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled

  13. An Expert System for Aviation Squadron Flight Scheduling

    DTIC Science & Technology

    1991-09-01

    SCHEDULING A. OVERVIEW A flight schedule is an organization’s plan to accomplish specific missions with its available resources. It details the mission...schedule for every 24 hour period, and will occasionally write a weekly flight schedule for long range planning purposes. The flight schedule is approved...requirements, and 11 aircraft, trainer, and aircrew availability to formulate the flight schedule. It basically is a plan to optimize the squadron’s resources

  14. The Evolution of Spacelab Ultraviolet Astronomy Missions from OSS-3 through -7 to Astro-1

    NASA Astrophysics Data System (ADS)

    Gull, Theodore

    2018-01-01

    In the 1960s and 1970s, NASA was building towards a robust program in space astronomy. An evolutionary step from ground-based astronomy to space astronomy was human operation of space telescopes as astronomy in general evolved from astronomers directly at the telescope to application of computers and long distance communications to control to operate remote telescopes. Today ground-based telescopes and space observatories from cubesats to the Hubble Space Telescope and soon the James Webb Space Telescope are routinely operated remotely.In response to the Spacelab Announcement of Opportunity in the early 1980s, three ultraviolet experiments – the Hopkins Ultraviolet Telescope, the Ultraviolet Imaging Telescope and the Wisconsin Ultraviolet PhotoPolarimetry Experiment -- all instruments derived from multiple sounding rocket flights--were selected to fly as an integrated payload attached to a space shuttle. The justification for professional astronomers, both as Mission Specialists from the astronaut cadre and Payload Specialists from the instrument teams, was built to ensure key technical skills both of the science and the instruments. Bundled together as OSS-3 through -7 flights focused on Comet Halley, the experiments went through many changes and delays as a pathfinder for an anticipated series of attached astronomy payloads.By 1986, the five-flight mission had evolved into two missions, Astro-1 dedicated primarily to observe Halley’s Comet in early March 1986 and Astro-2 to fly about one year later. Due to the Challenger disaster 35 days before scheduled launch of Astro-1, the mission went through an initial cancellation and then re-scheduling once the instrument complement of Astro-1 was expanded to include Broad Band X-ray Telescope with emphasis on studying SN1987A. Ultimately Astro-1 flew in December 1990 partnered with an X-ray experiment focused on SN1987A.The nine-day mission was mostly successful despite multiple technical issues overcome by the NASA

  15. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan and Dr. Christopher C. Kraft, Jr., look toward the orbiter spotter on the projection plotter at the front of the MOCR. Also present are Astronaut Daniel C. Brandenstein, seated left, and NASA Administrator James M. Beggs standing left of center. In the foreground, Dr. Hans Mark, Deputy NASA Administrator, briefs Michael Deaver, Special Assistant to President Reagan (39504); President Reagan speaks to the STS-2 crew during the second day of their mission. On hand in MOCR were NASA Administrator James M. Beggs and Deputy Administrator Hans Mark (standing behind the president but mostly out of frame) and Dr. Kraft on the right. Eugene F. Kranz, Deputy Director of Flight Operations can be seen in the background seated at the Flight Operations Directorate (FOD) console. Also present is Astronaut Daniel C. Brandenstein, seated left, who turned the communications over to Mr. Reagan (39505).

  16. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Bacskay, Allen

    2010-01-01

    Use of heritage and new technology is necessary/enabling to implementing small, low cost missions, yet overruns decrease the ability to sustain future mission flight rates The majority of the cost growth drivers seen in the D&NF study were embedded early during formulation phase and later realized during the development and I&T phases Cost drivers can be avoided or significantly decreased by project management and SE emphasis on early identification of risks and realistic analyses SE processes that emphasize an assessment of technology within the mission system to identify technical issues in the design or operational use of the technology. Realistic assessment of new and heritage spacecraft technology assumptions , identification of risks and mitigation strategies. Realistic estimates of effort required to inherit existing or qualify new technology, identification of risks to estimates and develop mitigation strategies. Allocation of project reserves for risk-based mitigation strategies of each individual area of heritage or new technology. Careful tailoring of inheritance processes to ensure due diligence.

  17. STS-93 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-93 flight crew, Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley, Catherine G. Coleman, and Michel Tognini are seen performing pre-launch activities such as crew suit-up, and ride out to the launch pad for an early morning launch. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the White Room for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit the primary objective is to deploy the Advanced X-ray Astrophysics Facility. Throughout the presentation, the astronauts take turns narrating particular aspects of the mission with which they are involved. Coleman and Tognini command Chandra to spring-eject from its cradle in the payload bay. The crew then work on the various experiments being carried out in flight. They successfully set up the first observatory using the Southwest Ultraviolet Imaging System (SWUIS). The SWUIS is used to image planets and other solar system bodies in order to explore their atmospheres and surfaces in the ultraviolet (UV) region of the spectrum. Tognini conducts a ham radio conversation with Jean-Pierre Haignere on the Mir Space Station. Towards the end of the mission Ashby, Hawley and Tognini set up an exercise treadmill and the Treadmill Vibration Information System (TVIS). The live footage ends with the reentry of Columbia into the Earth's Atmosphere. The night landing includes touchdown, deployment of the drag chute and crew departure from the vehicle.

  18. Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

    2011-01-01

    Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

  19. Document handover of ISS Flight Control room to new Flight Control Room in old MCC

    NASA Image and Video Library

    2006-10-06

    JSC2006-E-43860 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.

  20. STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)

    NASA Image and Video Library

    1995-06-07

    S95-12716 (May 1995) --- Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight aboard the Space Shuttle Endeavour. The two are on the flight deck of the Johnson Space Center's (JSC) fixed base Shuttle Mission Simulator (SMS). Duffy, mission commander, and Scott, mission specialist, will be joined for the winter flight by three other NASA astronauts and an international mission specialist representing NASDA.

  1. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  2. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2007-01-01

    The NASA Ikhana unmanned aerial vehicle (UAV) is a General Atomics Aeronautical Systems Inc. (San Diego, California) MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate and, through partnerships, other government agencies and universities. It can carry over 2000 lb of experiment payloads in the avionics bay and external pods and is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. The aircraft is remotely piloted from a mobile ground control station (GCS) that is designed to be deployable by air, land, or sea. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled for Summer 2007.

  3. STS-125 Flight Control Team in WFCR - Orbit 3 - Flight Director Paul Dye

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120846 (20 May 2009) --- The members of the STS-125 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Paul Dye (center left) is visible on the front row.

  4. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialists Wendy Lawrence (left) and Stephen Robinson (right) look at the insert for Discovery’s nose cap that is being fitted with thermal protection system insulation blankets. The mission crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialists Wendy Lawrence (left) and Stephen Robinson (right) look at the insert for Discovery’s nose cap that is being fitted with thermal protection system insulation blankets. The mission crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  5. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

  6. Centurion in Flight over Lakebed

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing during an early morning test flight over the Rogers Dry Lake adjacent to at NASA's Dryden Flight Research Center, Edwards, California. The flight was one of an initial series of low-altitude, battery-powered test flights conducted in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the

  7. Solar Sail Roadmap Mission GN and C Challenges

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.

    2005-01-01

    The NASA In-Space Propulsion program is funding development work for solar sails to enhance future scientific opportunities. Key to this effort are scientific solar sail roadmap missions identified by peer review. The two near-term missions of interest are L1 Diamond and Solar Polar Imager. Additionally, the New Millennium Program is sponsoring the Space Technology 9 (ST9) demonstration mission. Solar sails are one of five technologies competing for the ST9 flight demonstration. Two candidate solar sail missions have been identified for a potential ST9 flight. All the roadmap missions and candidate flight demonstration missions face various GN&C challenges. A variety of efforts are underway to address these challenges. These include control actuator design and testing, low thrust optimization studies, attitude control system design and modeling, control-structure interaction studies, trajectory control design, and solar radiation pressure model development. Here we survey the various efforts underway and identify a few of specific recent interest and focus.

  8. SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission

    NASA Astrophysics Data System (ADS)

    Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve

    2006-06-01

    This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.

  9. Investigation of Post-Flight Solid Rocket Booster Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Nelson, Linda A.

    2006-01-01

    After every Shuttle mission, the Solid Rocket Boosters (SRBs) are recovered and observed for missing material. Most of the SRB is covered with a cork-based thermal protection material (MCC-l). After the most recent shuttle mission, STS-114, the forward section of the booster appeared to have been impacted during flight. The darkened fracture surfaces indicated that this might have occurred early in flight. The scope of the analysis included microscopic observations to assess the degree of heat effects and locate evidence of the impact source as well as chemical analysis of the fracture surfaces and recovered foreign material using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. The amount of heat effects and presence of soot products on the fracture surface indicated that the material was impacted prior to SRB re-entry into the atmosphere. Fragments of graphite fibers found on these fracture surfaces were traced to slag inside the Solid Rocket Motor (SRM) that forms during flight as the propellant is spent and is ejected throughout the descent of the SRB after separation. The direction of the impact mark matches with the likely trajectory of SRBs tumbling prior to re-entry.

  10. Early Metamorphic Insertion Technology for Insect Flight Behavior Monitoring

    PubMed Central

    Bozkurt, Alper

    2014-01-01

    Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing “only” while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups. PMID:25079130

  11. Human Factors in Training - Space Flight Resource Management Training

    NASA Technical Reports Server (NTRS)

    Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.

    2009-01-01

    Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge

  12. The EUSO-SPB Mission

    NASA Astrophysics Data System (ADS)

    Wiencke, Lawrence; Adams, Jim; Olinto, Angela; JEM-EUSO Collaboration

    2016-03-01

    The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. EUSO-SPB follows a successful overnight flight in August 2014 of the JEM-EUSO prototype mission named EUSO-Balloon. EUSO-Balloon recorded artificial tracks and pulses that were generated by a laser and optical flashers that were flown in a helicopter under the balloon. Preparations are underway for EUSO-SPB with the potential for a flight of 50 days duration. The planned launch site is Wanaka, New Zealand. We describe the mission, the updated instrument, and expected detection rates of extensive air showers events produced by cosmic primaries.

  13. STS-71, Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Frike, Robert W., Jr.

    1995-01-01

    The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

  14. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  15. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  16. Mission control activity during STS-61 EVA-2

    NASA Image and Video Library

    1993-12-05

    STS61-S-094 (5 Dec 1993) --- Kyle Herring, second left, illustrates a point during mission commentary for the second Extravehicular Activity (EVA-2) of the STS-61 Hubble Space Telescope (HST) servicing mission. Astronaut Jerry L. Ross (center), a space walker on two previous NASA shuttle missions, amplified Herring's explanations. At the flight surgeon's console is Dr. Klaus Lohn (third right) of the Institute for Flight Medicine in Koln, Germany.

  17. Enhanced Flight Termination System (EFTS): Flight Demonstration and Results

    NASA Technical Reports Server (NTRS)

    Tow, David; Arce, Dennis

    2008-01-01

    The Enhanced Flight Termination System (EFTS) program was initiated and propelled due to the inadvertent terminations of Global Hawk and the Strategic Target System and the NASA Inspector General's assessment letter and recommendations regarding the exploration of low-cost, lightweight space COMSEC for FTS. Additionally, the standard analog and high alphabet systems most commonly used in FTS are secure, but not encrypted. A study group was initiated to select and document a robust, affordable, reliable technology that provides encrypted FTS capability. A flight demonstration was conducted to gain experience using EFTS in an operational environment, provide confidence in the use of the EFTS components, integrate EFTS into an existing range infrastructure to demonstrate the scalability of system components, to provide a command controller that generated the EFTS waveform using an existing range infrastructure, and to provide a report documenting the results of the demonstration. The primary goal of the demonstration was to obtain operational experience with EFTS. Areas of operational experience include: mission planning, pre-flight configuration and testing, mission monitoring and recording, vehicle termination, developing mission procedures. and post mission data reduction and other post mission activities. An Advanced Medium-Range Air-to-Air Missile (AMRAAM) was selected to support the EFTS demonstration due to interest in future use of EFTS by the AMRAAM program, familiarity of EFTS by range personnel, and the availability of existing operational environment to support EFTS testing with available program funding. For demonstration purposes, the AMRAAM was successfully terminated using an EFTS receiver and successfully demonstrating EFTS. The EFTS monitoring software with spectrum analyzer and digital graphical display of aircraft, missile, and target were also demonstrated.

  18. Bone and Calcium Metabolism During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2004-01-01

    Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to

  19. Ballistic mode Mercury orbiter missions.

    NASA Technical Reports Server (NTRS)

    Hollenbeck, G. R.

    1973-01-01

    The MVM'73 Mercury flyby mission will initiate exploration of this unique planet. No firm plans for follow-on investigations have materialized due to the difficult performance requirements of the next logical step, an orbiter mission. Previous investigations of ballistic mode flight opportunities have indicated requirements for a Saturn V class launch vehicle. Consequently, most recent effort has been oriented to use of solar electric propulsion. More comprehensive study of the ballistic flight mode utilizing Venus gravity-assist has resulted in identification of timely high-performance mission opportunities compatible with programmed launch vehicles and conventional spacecraft propulsion technologies. A likely candidate for an initial orbiter mission is a 1980 opportunity which offers net orbiter spacecraft mass of about 435 kg with the Titan IIIE/Centaur launch vehicle and single stage solid propulsion for orbit insertion.

  20. Guidelines for mission integration, a summary report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Guidelines are presented for instrument/experiment developers concerning hardware design, flight verification, and operations and mission implementation requirements. Interface requirements between the STS and instruments/experiments are defined. Interface constraints and design guidelines are presented along with integrated payload requirements for Spacelab Missions 1, 2, and 3. Interim data are suggested for use during hardware development until more detailed information is developed when a complete mission and an integrated payload system are defined. Safety requirements, flight verification requirements, and operations procedures are defined.

  1. Early flight test experience with Cockpit Displayed Traffic Information (CDTI)

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.; Moen, G. C.; Person, L. H., Jr.; Keyser, G. L., Jr.; Yenni, K. R.; Garren, J. F., Jr.

    1980-01-01

    Coded symbology, based on the results of early human factors studies, was displayed on the electronic horizontal situation indicator and flight tested on an advanced research aircraft in order to subject the coded traffic symbology to a realistic flight environment and to assess its value by means of a direct comparison with simple, uncoded traffic symbology. The tests consisted of 28 curved, decelerating approaches, flown by research-pilot flight crews. The traffic scenarios involved both conflict-free and blunder situations. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefing sessions. The results of these debriefing sessions group conveniently under either of two categories: display factors or task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few aircraft. In terms of task performance, the cockpit displayed traffic information was found to provide excellent overall situation awareness.

  2. US experiments flown on the Soviet biosatellite Cosmos 2044. Volume 1: Mission description, experiments K-7-01 - K-7-15

    NASA Technical Reports Server (NTRS)

    Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)

    1994-01-01

    Cosmos 2044 was launched on September 15, 1989, containing radiation dosimetry experiments and a biological payload including two young male rhesus monkeys, ten adult male Wistar rats, insects, amphibians, protozoa, cell cultures, worms, plants and fish. The biosatellite was launched from the Plesetsk Cosmodrome in the Soviet Union for a mission duration of 14 days, as planned. The major research objectives were: (1) Study adaptive response mechanisms of mammals during flight; (2) Study physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases; (3) Study the tissue regeneration processes of mammals; (4) Study the development of single-celled organisms, cell cultures and embryos in microgravity; (5) Study radiation characteristics during the mission and investigate doses, fluxes and spectra of cosmic radiation for various types of shielding. American and Soviet specialists jointly conducted 29 experiments on this mission including extensive preflight and post flight studies with rhesus monkeys, and tissue processing and cell culturing post flight. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included development of flight and ground-based hardware, the preparation of rat tissue sample procedures, the verification testing of hardware and experiment procedures, and the post flight analysis of biospecimens and data for the joint experiments. The U.S. investigations included four primate experiments, 24 rat experiments, and one radiation dosimetry experiment. Three scientists investigated tissue repair during flight for a subgroup of rats injured preflight by surgical intervention. A description of the Cosmos 2044 mission is presented in this report including preflight, on-orbit and post flight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and U.S.S.R. is also described, along with

  3. Planned Environmental Microbiology Aspects of Future Lunar and Mars Missions

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Castro, Victoria A.; Pierson, Duane L.

    2006-01-01

    With the establishment of the Constellation Program, NASA has initiated efforts designed similar to the Apollo Program to return to the moon and subsequently travel to Mars. Early lunar sorties will take 4 crewmembers to the moon for 4 to 7 days. Later missions will increase in duration up to 6 months as a lunar habitat is constructed. These missions and vehicle designs are the forerunners of further missions destined for human exploration of Mars. Throughout the planning and design process, lessons learned from the International Space Station (ISS) and past programs will be implemented toward future exploration goals. The standards and requirements for these missions will vary depending on life support systems, mission duration, crew activities, and payloads. From a microbiological perspective, preventative measures will remain the primary techniques to mitigate microbial risk. Thus, most of the effort will focus on stringent preflight monitoring requirements and engineering controls designed into the vehicle, such as HEPA air filters. Due to volume constraints in the CEV, in-flight monitoring will be limited for short-duration missions to the measurement of biocide concentration for water potability. Once long-duration habitation begins on the lunar surface, a more extensive environmental monitoring plan will be initiated. However, limited in-flight volume constraints and the inability to return samples to Earth will increase the need for crew capabilities in determining the nature of contamination problems and method of remediation. In addition, limited shelf life of current monitoring hardware consumables and limited capabilities to dispose of biohazardous trash will drive flight hardware toward non-culture based methodologies, such as hardware that rapidly distinguishes biotic versus abiotic surface contamination. As missions progress to Mars, environmental systems will depend heavily on regeneration of air and water and biological waste remediation and

  4. Flight Opportunities: Space Technology Mission Directorate

    NASA Technical Reports Server (NTRS)

    Van Dijk, Alexander

    2016-01-01

    Flight Opportunities enables maturation of new space technologies by funding access to commercially available space-relevant test environments. The program also supports capability development in the commercial suborbital and orbital small satellite launcher markets.

  5. Medical encounters and exchange in early Canadian missions.

    PubMed

    Parsons, Chris

    2008-01-01

    The exchange of medical and pharmaceutical knowledge was an important facet of the encounter between native and newcomer in early Canada. Throughout New France Récollet and Jesuit missionaries were given privileged access both to indigenous peoples and indigenous plants. Curiously, however, when it came to describing medical treatments, it was people, rather than medicinal plants, that were targets of what might be called "the descriptive enterprise." Attempting to divide suspect shamanic remedies from those deemed natural, missionary observers carefully documented the context of medical treatments rather than simply the specific remedy applied for treatment. Using records left by early Canadian missionaries this paper will look at the peculiar character of medical exchange in the missions of seventeenth and eighteenth-century New France to look at the interpersonal encounters that formed a constitutive element of colonial botany and framed the way in which indigenous knowledge was represented to metropolitan audiences.

  6. Ares I-X Flight Test - The Future Begins Here

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission. Like the Apollo program, the Ares launch vehicles will rely upon extensive ground, flight, and orbital testing before sending the Orion crew exploration vehicle into space with humans on board. The first flight of Ares I, designated Ares I-X, will be a suborbital development flight test. Ares I-X gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future operational flights; and demonstrate the first stage recovery system. NASA also will begin modifying the launch infrastructure and fine-tuning ground and mission operations, as the agency makes the transition from the Space Shuttle to the Ares/Orion system.

  7. Document handover of ISS Flight Control room to new Flight Control Room in old MCC

    NASA Image and Video Library

    2006-10-06

    JSC2006-E-43863 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. This view is toward the rear of the "new" room. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.

  8. Mars Pathfinder mission operations concepts

    NASA Technical Reports Server (NTRS)

    Sturms, Francis M., Jr.; Dias, William C.; Nakata, Albert Y.; Tai, Wallace S.

    1994-01-01

    The Mars Pathfinder Project plans a December 1996 launch of a single spacecraft. After jettisoning a cruise stage, an entry body containing a lander and microrover will directly enter the Mars atmosphere and parachute to a hard landing near the sub-solar latitude of 15 degrees North in July 1997. Primary surface operations last for 30 days. Cost estimates for Pathfinder ground systems development and operations are not only lower in absolute dollars, but also are a lower percentage of total project costs than in past planetary missions. Operations teams will be smaller and fewer than typical flight projects. Operations scenarios have been developed early in the project and are being used to guide operations implementation and flight system design. Recovery of key engineering data from entry, descent, and landing is a top mission priority. These data will be recorded for playback after landing. Real-time tracking of a modified carrier signal through this phase can provide important insight into the spacecraft performance during entry, descent, and landing in the event recorded data is never recovered. Surface scenarios are dominated by microrover activity and lander imaging during 7 hours of the Mars day from 0700 to 1400 local solar time. Efficient uplink and downlink processes have been designed to command the lander and microrover each Mars day.

  9. Support activities to maintain SUMS flight readiness, volume 2. Attachment A: Flight 61-C report

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation system (STS). The experiment mission operation begins about 1 hour to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume is the flight data report for flight 61-C.

  10. The NASA Mission Operations and Control Architecture Program

    NASA Technical Reports Server (NTRS)

    Ondrus, Paul J.; Carper, Richard D.; Jeffries, Alan J.

    1994-01-01

    The conflict between increases in space mission complexity and rapidly declining space mission budgets has created strong pressures to radically reduce the costs of designing and operating spacecraft. A key approach to achieving such reductions is through reducing the development and operations costs of the supporting mission operations systems. One of the efforts which the Communications and Data Systems Division at NASA Headquarters is using to meet this challenge is the Mission Operations Control Architecture (MOCA) project. Technical direction of this effort has been delegated to the Mission Operations Division (MOD) of the Goddard Space Flight Center (GSFC). MOCA is to develop a mission control and data acquisition architecture, and supporting standards, to guide the development of future spacecraft and mission control facilities at GSFC. The architecture will reduce the need for around-the-clock operations staffing, obtain a high level of reuse of flight and ground software elements from mission to mission, and increase overall system flexibility by enabling the migration of appropriate functions from the ground to the spacecraft. The end results are to be an established way of designing the spacecraft-ground system interface for GSFC's in-house developed spacecraft, and a specification of the end to end spacecraft control process, including data structures, interfaces, and protocols, suitable for inclusion in solicitation documents for future flight spacecraft. A flight software kernel may be developed and maintained in a condition that it can be offered as Government Furnished Equipment in solicitations. This paper describes the MOCA project, its current status, and the results to date.

  11. NASA Flight Operations of Ikhana and Global Hawk

    NASA Technical Reports Server (NTRS)

    Posada, Herman D.

    2009-01-01

    This viewgraph presentation reviews the flight operations of Ikhana and Global Hawk Fire missions. The Ikhana fire missions modifications, ground systems, flight operations, range safety zones, primary and secondary emergency landing sites, and the Ikhana western states fire missions of 2007 are described, along with The Global Hawk specs, a description of the Global Hawk Pacific Science Campaign (GloPac '09) and GloPac payloads.

  12. +Gz Exposure and Spinal Injury-Induced Flight Duty Limitations.

    PubMed

    Honkanen, Tuomas; Sovelius, Roope; Mäntysaari, Matti; Kyröläinen, Heikki; Avela, Janne; Leino, Tuomo K

    2018-06-01

    The present study aimed to find out if possible differences in early military flight career +Gz exposure level could predict permanent flight duty limitations (FDL) due to spinal disorders during a pilot's career. The study population consisted of 23 pilots flying with Gz limitation (max limitation ranging from +2 Gz to +5 Gz) due to spinal disorders and 50 experienced (+1000 flight hours) symptomless controls flying actively in operative missions in the Finnish Air Force. Data obtained for all subjects included the level of cumulative Gz exposure measured sortie by sortie with fatigue index (FI) recordings and flight hours during the first 5 yr of the pilot's career. The mean (± SD) accumulation of FI in the first 5 yr of flying high-performance aircraft was 8.0 ± 1.8 among the pilots in the FDL group and 7.7 ± 1.7 in the non-FDL group. There was no association between flight duty limitations and early career cumulative +Gz exposure level measured with FI or flight hours. According to the present findings, it seems that the amount of cumulative +Gz exposure during the first 5 yr of a military pilot's career is not an individual risk factor for spinal disorders leading to flight duty limitation. Future studies conducted with FI recordings should be addressed to reveal the relationship between the actual level of +Gz exposure and spinal disorders, with a longer follow-up period and larger sample sizes.Honkanen T, Sovelius R, Mäntysaari M, Kyröläinen H, Avela J, Leino TK. +Gz exposure and spinal injury-induced flight duty limitations. Aerosp Med Hum Perform. 2018; 89(6):552-556.

  13. Study of ballistic mode comet Encke mission opportunities

    NASA Technical Reports Server (NTRS)

    Hollenbeck, G. R.; Vanpelt, J. M.

    1974-01-01

    An analysis was conducted of the space mission to intercept the comet Encke. The two basic types of flight geometry considered for the mission are described. The primary interactions between time-of-flight and performance characteristics are displayed. The representative spacecraft characteristics for the Titan 3/Centaur launch vehicle are tabulated. The navigation analyses for the two missions are developed to show: (1) assessment of the navigation feasibility of the missions, (2) determination of the total velocity budget for the trim maneuvers, and (3) evaluation of dispersions at comet encounter.

  14. STS-125 Flight Control Team in WFCR - Orbit 2 - Flight Director Richard LaBrode

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120845 (20 May 2009) --- The members of the STS-125 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Rick LaBrode (right) is visible on the front row.

  15. User and Task Analysis of the Flight Surgeon Console at the Mission Control Center of the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy A.; Shek, Molly

    2003-01-01

    Astronauts in a space station are to some extent like patients in an intensive care unit (ICU). Medical support of a mission crew will require acquisition, transmission, distribution, integration, and archiving of significant amounts of data. These data are acquired by disparate systems and will require timely, reliable, and secure distribution to different communities for the execution of various tasks of space missions. The goal of the Comprehensive Medical Information System (CMIS) Project at Johnson Space Center Flight Medical Clinic is to integrate data from all Medical Operations sources, including the reference information sources and the electronic medical records of astronauts. A first step toward the full CMIS implementation is to integrate and organize the reference information sources and the electronic medical record with the Flight Surgeons console. In order to investigate this integration, we need to understand the usability problems of the Flight Surgeon's console in particular and medical information systems in general. One way to achieve this understanding is through the use of user and task analyses whose general purpose is to ensure that only the necessary and sufficient task features that match users capacities will be included in system implementations. The goal of this summer project was to conduct user and task analyses employing cognitive engineering techniques to analyze the task of the Flight Surgeons and Biomedical Engineers (BMEs) while they worked on Console. The techniques employed were user interviews, observations and a questionnaire to collect data for which a hierarchical task analysis and an information resource assessment were performed. They are described in more detail below. Finally, based on our analyses, we make recommendations for improvements to the support structure.

  16. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  17. STS-26 simulation activities in JSC Mission Control Center (MCC)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.

  18. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081929 (18 May 2010) --- Kyle Herring, Public Affairs Office (PAO) commentator, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day five activities.

  19. STS-118 Ascent/Entry Flight Control Team in WFCR

    NASA Image and Video Library

    2007-09-17

    JSC2007-E-46429 (17 Sept. 2007) --- The members of the STS-118 Ascent/Entry flight control team and crewmembers pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich holds the STS-118 mission logo. Astronauts Scott Kelly, commander, is at left foreground and astronaut Chris Ferguson, spacecraft communicator (CAPCOM), is at right foreground. Additional crewmembers pictured are Charlie Hobaugh, pilot; Barbara R. Morgan, Tracy Caldwell and Rick Mastracchio, all mission specialists.

  20. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  1. Java for flight software

    NASA Technical Reports Server (NTRS)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  2. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  3. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086375 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.

  4. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086399 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.

  5. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119632 (13 May 2009) --- Flight director Tony Ceccacci and astronaut Dan Burbank (background), STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities.

  6. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 3 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 6 and 7. The activities from other flight days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). Flight day 6 features a very complicated EVA (extravehicular activity) to service the HST (Hubble Space Telescope). Astronauts Grunsfeld and Linnehan replace the HST's power control unit, disconnecting and reconnecting 36 tiny connectors. The procedure includes the HST's first ever power down. The cleanup of spilled water from the coollant system in Grunsfeld's suit is shown. The pistol grip tool, and two other space tools are also shown. On flight day 7, Newman and Massimino conduct an EVA. They replace the HST's FOC (Faint Object Camera) with the ACS (Advanced Camera for Surveys). The video ends with crew members playing in the shuttle's cabin with a model of the HST.

  7. STS-106 Orbit 2 Flight Team

    NASA Image and Video Library

    2000-09-14

    JSC2000-06244 (September 2000)--- Flight director Jeff Hanley, front center, and the fifty-odd flight controllers making up the ISS Orbit 2 Team pose for their group portrait in the ISS Flight Control Room of Houston's Mission Control Center.

  8. STS-26 simulation activities in JSC Mission Control Center (MCC)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight directors (FDs) Lee Briscoe (left) and Charles W. Shaw, seated at FD console, view front visual display monitors during STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).

  9. Ames Research Center Life Sciences Payload Project for Spacelab Mission 3

    NASA Technical Reports Server (NTRS)

    Callahan, P. X.; Tremor, J.; Lund, G.; Wagner, W. L.

    1983-01-01

    The Research Animal Holding Facility, developed to support rodent and squirrel monkey animal husbandry in the Spacelab environment, is to be tested during the Spacelab Mission 3 flight. The configuration and function of the payload hardware elements, the assembly and test program, the operational rationale, and the scientific approach of this mission are examined. Topics covered include animal life support systems, the squirrel monkey restraint, the camera-mirror system, the dynamic environment measurement system, the biotelemetry system, and the ground support equipment. Consideration is also given to animal pretests, loading the animals during their 12 hour light cycle, and animal early recovery after landing. This mission will be the first time that relatively large samples of monkeys and rats will be flown in space and also cared for and observed by man.

  10. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121510 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  11. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121511 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  12. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121512 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  13. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121509 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  14. Deep-Space Ka-Band Flight Experience

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  15. Candidate Mission from Planet Earth control and data delivery system architecture

    NASA Technical Reports Server (NTRS)

    Shapiro, Phillip; Weinstein, Frank C.; Hei, Donald J., Jr.; Todd, Jacqueline

    1992-01-01

    Using a structured, experienced-based approach, Goddard Space Flight Center (GSFC) has assessed the generic functional requirements for a lunar mission control and data delivery (CDD) system. This analysis was based on lunar mission requirements outlined in GSFC-developed user traffic models. The CDD system will facilitate data transportation among user elements, element operations, and user teams by providing functions such as data management, fault isolation, fault correction, and link acquisition. The CDD system for the lunar missions must not only satisfy lunar requirements but also facilitate and provide early development of data system technologies for Mars. Reuse and evolution of existing data systems can help to maximize system reliability and minimize cost. This paper presents a set of existing and currently planned NASA data systems that provide the basic functionality. Reuse of such systems can have an impact on mission design and significantly reduce CDD and other system development costs.

  16. STS-105 Flight Control Team Photo

    NASA Image and Video Library

    2001-08-16

    JSC2001-02228 (16 August 2001) --- The members of the STS-105/ISS 7A.1 Planning team pose for a group portrait in the shuttle flight control room (WFCR) in Houston’s Mission Control Center (MCC). Astronaut Robert L. Curbeam, Jr., spacecraft communicator (CAPCOM), stands behind the STS-105 mission logo. Flight director Bryan Austin is visible in the front row on the far right.

  17. 2001 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  18. Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera

    NASA Image and Video Library

    2015-05-14

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.

  19. STS-74 flight day 4

    NASA Astrophysics Data System (ADS)

    1995-11-01

    On this fourth day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hatfield, perform a successful docking between the space shuttle and the Mir space station using the Russian-made docking module that had been previously installed on the third day of the mission. The astronauts and the Mir 20 cosmonauts, Cmdr. Yuri Gidzenko, Flight Engineer Gergei Avdeyev, and Cosmonaut-Researcher (ESA) Thomas Reiter, are shown greeting each other from inside the docking module and an in-orbit interview between the crews and NASA is conducted in both English and Russian.

  20. STS-74 Flight Day 4

    NASA Technical Reports Server (NTRS)

    1995-01-01

    On this fourth day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hadfield, perform a successful docking between the space shuttle and the Mir space station using the Russian-made docking module that had been previously installed on the third day of the mission. The astronauts and the Mir 20 cosmonauts, Cmdr. Yuri Gidzenko, Flight Engineer Gergei Avdeyev, and Cosmonaut-Researcher (ESA) Thomas Reiter, are shown greeting each other from inside the docking module and an in-orbit interview between the crews and NASA is conducted in both English and Russian.

  1. STS-79 Flight Day 7

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this seventh day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz, share a brief video tour of the Mir Space Station with flight controllers, taking a break from the transfer activities that has occupied the astronauts' time during three days of docked operations. Readdy and Apt floated through several of Mir's modules and back into Atlantis' double Spacehab module during the tour pointing out the numerous transfer items stowed on both spacecraft. Readdy, Wilcutt, Lucid and Blaha are seen discussing their mission in an interview with CNN's John Holliman.

  2. STS-78 Flight Day 12

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this twelfth day of the STS-78 mission, the flight crew, Cmdr. Terence T. Henricks, Pilot Kevin R. Kregel, Payload Cmdr. Susan J. Helms, Mission Specialists Richard M. Linnehan, Charles E. Brady, Jr., and Payload Specialists Jean-Jacques Favier, Ph.D. and Robert B. Thirsk, M.D., are awakened by the Canadian national anthem, 'Oh Canada.' This morning, Thirsk is shown delivering a holiday message to Prime Minister Jean Chretien and other dignitaries gathered at Parliament Hill in Ottawa. The crew is then shown celebrating Canada Day aboard the Space Shuttle. Also this morning, Mission Specialist Susan Helms discusses the progress of Columbia's flight with WBBM Radio in Chicago.

  3. NASA Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

    2011-01-01

    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

  4. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  5. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120480 (14 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  6. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120486 (14 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  7. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120489 (14 May 2009) --- Astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  8. Heritage Systems Engineering Lessons from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications

  9. STS-134 Orbit 2 flight controllers on consoles

    NASA Image and Video Library

    2011-05-17

    JSC2011-E-045468 (17 May 2011) --- Public Affairs Office (PAO) mission commentator Brandi Dean monitors data at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA

  10. STS-134 Orbit 2 flight controllers on consoles

    NASA Image and Video Library

    2011-05-17

    JSC2011-E-045467 (17 May 2011) --- Public Affairs Office (PAO) mission commentator Brandi Dean is pictured at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA

  11. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; hide

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  12. Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-72 TRAINING VIEW --- Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). Duffy will be joined by four other NASA astronauts and an international mission specialist aboard the Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.

  13. The Mission Transcript Collection: U.S. Human Spaceflight Missions from Mercury Redstone 3 to Apollo 17

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aboard every U.S. piloted spacecraft, from Mercury through Apollo, NASA installed tape recorders that captured nearly every word spoken by the astronauts during their history-making flights into space. For the first time ever, NASA has digitally scanned all of the transcripts made from both the onboard tapes and those tape recordings made on the ground from the air-to-ground transmissions and placed them on this two CD-ROM set. Gathered in this special collection are 80 transcripts totaling nearly 45,000 pages of text that cover every US human spaceflight from the first human Mercury mission through the last lunar landing flight of Apollo 17. Users of this CD will note that the quantity and type of transcripts made for each mission vary. For example, the Mercury flights each had one transcript whereas the Gemini missions produced several. Starting with the Gemini flights, NASA produced a Public Affairs Office (PAO) commentary version, as well as at least one "technical" air-to-ground transcript version, per mission. Most of the Apollo missions produced four transcripts per flight. These included the onboard voice data recorder transcripts made from the Data Storage Equipment (DSE) on the Command Module (CM), and the Data Storage Electronics Assembly (DSEA) onboard the Lunar Module (LM), in addition to the PAO commentary and air-to-ground technical transcripts. The CD set includes an index listing each transcript file by name. Some of the transcripts include a detailed explanation of their contents and how they were made. Also included in this collection is a listing of all the original air-to-ground audiotapes housed in NASA's archives from which many of these transcripts were made. We hope you find this collection of transcripts interesting and useful.

  14. STS-35 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1991-01-01

    The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.

  15. STS-57 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies.

  16. STS-92 Mission Specialist Lopez-Alegria suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Michael E. Lopez-Alegria (right) is visited by astronaut Kent Rominger (left), who was recently named Commander of the STS-100 mission. Lopez-Alegria is getting suited up for launch on mission STS-92, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the second for Lopez-Alegria. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  17. Autonomous, In-Flight Crew Health Risk Management for Exploration-Class Missions: Leveraging the Integrated Medical Model for the Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.

    2011-01-01

    The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.

  18. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  19. Salvaging of the Final SSMIS Flight Unit for a Future Flight-of-Opportunity

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Boucher, D. J., Jr.; Park, E. S.; Swadley, S. D.; Poe, G.

    2017-12-01

    The final Special Sensor Microwave Imager/Sounder (SSMIS) that was originally manifested aboard the DMSP F-20 platform became available when that mission was deactivated. The U.S. Naval Research Laboratory and The Aerospace Corporation have secured the de-manifested SSMIS for potential flight on a future mission-of-opportunity. A number of mission options are under consideration, including installation aboard the International Space Station. The intent is for any such deployment to provide a measure of continuity between SSMIS units currently operating aboard DMSP F-16, F-17, and F-18 and whatever equivalent sensor may be selected for the next-generation DoD Weather Satellite Follow-on program. We will describe the current status of SSMIS preparations for flight.

  20. STS-132/ULF4 Flight Controllers on Console - Orbit 2

    NASA Image and Video Library

    2010-05-17

    JSC2010-E-084271 (17 May 2010) --- Flight director Chris Edelen (right) and NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  1. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-085365 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson holds the Expedition 23 mission logo.

  2. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-19

    JSC2010-E-086277 (19 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Holly Ridings holds the STS-132 mission logo.

  3. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086504 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Scott Stover holds the Expedition 23 mission logo.

  4. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  5. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086341 (20 May 2010) --- ISS flight director Holly Ridings monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day seven activities.

  6. Quarantine provisions for unmanned extra-terrestrial missions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This document sets forth requirements applicable to unmanned planetary flight programs which are necessary to enable the Associate Administrator for Space Science to fulfill those responsibilities pertaining to planetary quarantine as stated in NPD 8020.7 and NPD 8020.10A. This document is specifically directed to the control of terrestrial microbial contamination associated with unmanned space vehicles intended to encounter, orbit, flyby, or otherwise be in the vicinity of extra-terrestrial solar system bodies. The requirements of this document apply to all unmanned planetary flight programs. This includes solar system exploratory missions to the major planets as well as missions to planet satellites, or to other solar system objects that may be of scientific interest. This document is not applicable to terrestrial (including lunar) missions and manned missions. NASA officials having cognizance of applicable flight programs will invoke these requirements in such directives or contractual instruments as may be necessary to assure their implementation.

  7. STS-112 Flight Day 10 Highlights

    NASA Astrophysics Data System (ADS)

    2002-10-01

    On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.

  8. STS-112 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.

  9. Inflight - Apollo XI (Mission Control Center [MCC]) - MSC

    NASA Image and Video Library

    1969-07-24

    S69-40302 (24 July 1969) --- A group of NASA and Manned Spacecraft Center (MSC) officials join in with the flight controllers in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, in celebrating the successful conclusion of the Apollo 11 lunar landing mission. From left foreground are Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director of Flight Operations; Julian Scheer (in back), Assistant Administrator, Office of Public Affairs, NASA Headquarters; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA Headquarters.

  10. STS-79 Flight Day 5

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this fifth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz, in the first full day of joint Shuttle/Mir operations begin in with the transfer of a biotechnology investigation and logistical supplies from Atlantis to Mir. The Biotechnology System, an investigation that will study the long-term development of cartilage cells in microgravity, was transported to Mir early this morning. During his planned four-month stay on Mir, John Blaha will take weekly samples of the culture which may provide researchers with information on engineering cartilage cells for possible use in transplantation. They also took time out of their schedules to talk with Good Morning America's Elizabeth Vargas in a brief interview. Prior to beginning the day's transfer activities, all nine astronauts and cosmonauts participated in a joint planning session to outline the day's schedule.

  11. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  12. Mariner Mars 1971 project. Volume 3: Mission operations system implementation and standard mission flight operations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Mariner Mars 1971 mission which was another step in the continuing program of planetary exploration in search of evidence of exobiological activity, information on the origin and evolution of the solar system, and basic science data related to the study of planetary physics, geology, planetology, and cosmology is reported. The mission plan was designed for two spacecraft, each performing a separate but complementary mission. However, a single mission plan was actually used for Mariner 9 because of failure of the launch vehicle for the first spacecraft. The implementation is described, of the Mission Operations System, including organization, training, and data processing development and operations, and Mariner 9 spacecraft cruise and orbital operations through completion of the standard mission from launch to solar occultation in April 1972 are discussed.

  13. Range Safety for an Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.; Simpson, James C.

    2010-01-01

    The Range Safety Algorithm software encapsulates the various constructs and algorithms required to accomplish Time Space Position Information (TSPI) data management from multiple tracking sources, autonomous mission mode detection and management, and flight-termination mission rule evaluation. The software evaluates various user-configurable rule sets that govern the qualification of TSPI data sources, provides a prelaunch autonomous hold-launch function, performs the flight-monitoring-and-termination functions, and performs end-of-mission safing

  14. STS-51G Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The STS-51G flight crew, Commander Daniel C. Brandenstein, Pilot John O. Creighton, Mission Specialists Shannon W. Lucid, John M. Fabian, and Steven R Nagel, and Payload Specialists Patrick, Baudry, and Sultan Salman Al-Saud are seen performing pre-launch activities such as eating of the traditional breakfast, ride out to the launch pad, and crew suit-up for an early morning launch. Also, included are various panoramic views of Discovery on the pad. The main objective of this mission is to deploy three communication satellites. The satellites being deployed are MORE LOS-A, for Mexico; ARABSAT-A, for the Arab Satellite Communications Organization; and TELSTAR-3D, for AT&T. The crew also retrieve the SPARTAN-1 satellite. Scenes include the crew in the mess deck via video link with Mission Control Center in celebration of the 100th American in space. Al-Saud also spoke with his father in Saudi Arabia via video link. Views of certain experiments are also seen. Al-Saud is seen conducting the postural experiment, and Baudry is seen conducting the equilibrium experiments. Panoramic views of the Hawaiian Island Archipelago, and Wadi Habawnah, Saudi Arabia are also visible from the shuttle. Live footage ends with the re-entry of the vehicle into the Earth's Atmosphere, an early morning touchdown at Edwards Air Force Base and crew departure from the craft.

  15. Shuttle orbiter flash evaporator operational flight test performance

    NASA Technical Reports Server (NTRS)

    Nason, J. R.; Behrend, A. F., Jr.

    1982-01-01

    The Flash evaporator System (FES is part of the Shuttle Orbiter Active Thermal Control Subsystem. The FES provides total heat rejection for the vehicle Freon Coolant Loops during ascent and entry and supplementary heat rejection during orbital mission phases. This paper reviews the performance of the FES during the first two Shuttle orbital missions (STS-1 and STS-2). A comparison of actual mission performance against design requirements is presented. Mission profiles (including Freon inlet temperature and feedwater pressure transients), control temperature, and heat load variations are evaluated. Anomalies that occurred during STS-2 are discussed along with the procedures conducted, both in-flight and post-flight, to isolate the causes. Finally, the causes of the anomalies and resulting corrective action taken for STS-3 and subsequent flights are presented.

  16. STS-92 Mission Specialist Chiao suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Leroy Chiao signals thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the third for Chiao. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  17. Expedition54_Education_In-Flight_College_St_Benedict_and_St_Johns_university_051_1835_620599

    NASA Image and Video Library

    2018-02-21

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA discussed life and research on the orbiting laboratory with students from the College of St. Benedict and Saint John’s University in Collegeville, Minnesota, during an in-flight educational event Feb. 20. Vande Hei, who received a degree from Saint John’s University in 1989, is returning to Earth Feb. 27 (U.S. time) after a five-and-a-half-month mission on the station while Tingle will remain aloft until early June.

  18. An operations concept methodology to achieve low-cost mission operations

    NASA Technical Reports Server (NTRS)

    Ledbetter, Kenneth W.; Wall, Stephen D.

    1993-01-01

    Historically, the Mission Operations System (MOS) for a space mission has been designed last because it is needed last. This has usually meant that the ground system must adjust to the flight vehicle design, sometimes at a significant cost. As newer missions have increasingly longer flight operations lifetimes, the MOS becomes proportionally more difficult and more resource-consuming. We can no longer afford to design the MOS last. The MOS concept may well drive the spacecraft, instrument, and mission designs, as well as the ground system. A method to help avoid these difficulties, responding to the changing nature of mission operations is presented. Proper development and use of an Operations Concept document results in a combined flight and ground system design yielding enhanced operability and producing increased flexibility for less cost.

  19. Experience Gained From Launch and Early Orbit Support of the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Fink, D. R.; Chapman, K. B.; Davis, W. S.; Hashmall, J. A.; Shulman, S. E.; Underwood, S. C.; Zsoldos, J. M.; Harman, R. R.

    1996-01-01

    this paper reports the results to date of early mission support provided by the personnel of the Goddard Space Flight Center Flight Dynamics Division (FDD) for the Rossi X-Ray Timing Explorer (RXTE) spacecraft. For this mission, the FDD supports onboard attitude determination and ephemeris propagation by supplying ground-based orbit and attitude solutions and calibration results. The first phase of that support was to provide launch window analyses. As the launch window was determined, acquisition attitudes were calculated and calibration slews were planned. postlaunch, these slews provided the basis for ground determined calibration. Ground determined calibration results are used to improve the accuracy of onboard solutions. The FDD is applying new calibration tools designed to facilitate use of the simultaneous, high-accuracy star observations from the two RXTE star trackers for ground attitude determination and calibration. An evaluation of the performance of these tools is presented. The FDD provides updates to the onboard star catalog based on preflight analysis and analysis of flight data. The in-flight results of the mission support in each area are summarized and compared with pre-mission expectations.

  20. STS-96 FD Highlights and Crew Activities Report: Flight Day 05

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this fifth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing logistics transfer activities within the Discovery/International Space Station orbiting complex. The crew transfers supplies, equipment, and water. Payette and Tokarev perform maintenance activities on the storage batteries in the Zarya module. Barry and Tokarev install acoustic insulation around some of the fans inside Zarya. Jernigan and Husband install shelving in 2 soft stowage racks. Husband and Barry troubleshoot and perform maintenance activities on the Early Communications System. At the end of the workday, Rominger, Jernigan, and Barry discussed the progress of the mission with NBC's "Today," CBS "This Morning," and CNN.

  1. STS-96 FD Highlights and Crew Activities Report: Flight Day 04

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this fourth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing final preparations for their space walk. Views of the crew helping Barry and Jernigan suit up for their mission is also presented. Ochoa uses the robot arm to maneuver Jernigan up to the space station module. During the space walk Barry and Jernigan move two cranes, and three bags containing handrails and tools to the outside of the Unity module. They also install a thermal cover on a Unity trunnion pin, inspect peeling paint on Zarya and one of the two Early Communications System antennas on Unity.

  2. Asteroid Redirect Mission Update

    NASA Image and Video Library

    2017-12-08

    Dr. Holdren (left), Administrator Bolden (center) and Dr. Michele Gates (right) discuss the ARM mission during a live NASA TV briefing. Behind them is a mockup of robotic capture module for the Asteroid Redirect Mission. More info: Asteroid Redirect Mission Update – On Sept. 14, 2016, NASA provided an update on the Asteroid Redirect Mission (ARM) and how it contributes to the agency’s journey to Mars and protection of Earth. The presentation took place in the Robotic Operations Center at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Assistant to the President for Science and Technology Dr. John P. Holdren, NASA Administrator Charles Bolden and NASA’s ARM Program Director, Dr. Michele Gates discussed the latest update regarding the mission. They explained the mission’s scientific and technological benefits and how ARM will demonstrate technology for defending Earth from potentially hazardous asteroids. The briefing aired live on NASA TV and the agency’s website. For more information about ARM go to www.nasa.gov/arm. Credit: NASA/Goddard/Debbie Mccallum NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Asteroid Redirect Mission Update

    NASA Image and Video Library

    2017-12-08

    Dr. Holdren (left), Administrator Bolden (center) and Dr. Michele Gates (right) discuss the ARM mission during a live NASA TV briefing. Behind them is a mockup of robotic capture module for the Asteroid Redirect Mission. More info: Asteroid Redirect Mission Update – On Sept. 14, 2016, NASA provided an update on the Asteroid Redirect Mission (ARM) and how it contributes to the agency’s journey to Mars and protection of Earth. The presentation took place in the Robotic Operations Center at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Assistant to the President for Science and Technology Dr. John P. Holdren, NASA Administrator Charles Bolden and NASA’s ARM Program Director, Dr. Michele Gates discussed the latest update regarding the mission. They explained the mission’s scientific and technological benefits and how ARM will demonstrate technology for defending Earth from potentially hazardous asteroids. The briefing aired live on NASA TV and the agency’s website. For more information about ARM go to www.nasa.gov/arm. Credit: NASA/Goddard/Peter Sooy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. ISS15A Flight Control Team in FCR-1 Orbit 1 - Flight Director Kwatsi Alibaruho

    NASA Image and Video Library

    2009-03-20

    JSC2009-E-060959 (20 March 2009) --- The members of the STS-119/15A ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA’s Johnson Space Center. Flight director Kwatsi Alibaruho (right) is visible on the front row.

  5. ISS ULF2 Flight Control Team in FCR-1 - Orbit 3 - Flight Director David Korth

    NASA Image and Video Library

    2009-03-20

    JSC2009-E-061164 (20 March 2009) --- The members of the STS-119/15A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA’s Johnson Space Center. Flight director David Korth (right) is visible on the front row.

  6. STS-80 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1997-01-01

    The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).

  7. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Astrophysics Data System (ADS)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  8. Cassini's Test Methodology for Flight Software Verification and Operations

    NASA Technical Reports Server (NTRS)

    Wang, Eric; Brown, Jay

    2007-01-01

    The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).

  9. Cleaning Genesis Mission Payload for Flight with Ultra-Pure Water and Assembly in ISO Class 4 Environment

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.

    2012-01-01

    Genesis mission to capture and return to Earth solar wind samples had very stringent contamination control requirements in order to distinguish the solar atoms from terrestrial ones. Genesis mission goals were to measure solar composition for most of the periodic table, so great care was taken to avoid particulate contamination. Since the number 1 and 2 science goals were to determine the oxygen and nitrogen isotopic composition, organic contamination was minimized by tightly controlling offgassing. The total amount of solar material captured in two years is about 400 micrograms spread across one sq m. The contamination limit requirement for each of C, N, and O was <1015 atoms/sq cm. For carbon, this is equivalent to 10 ng/cm2. Extreme vigilance was used in pre-paring Genesis collectors and cleaning hardware for flight. Surface contamination on polished silicon wafers, measured in Genesis laboratory is approximately 10 ng/sq cm.

  10. STS 63: Post flight presentation

    NASA Astrophysics Data System (ADS)

    1995-02-01

    At a post flight conference, Captain Jim Wetherbee, of STS Flight 63, introduces each of the other members of the STS 63 crew (Eileen Collins, Pilot; Dr. Bernard Harris, Payload Commander; Dr. Michael Foale, Mission Specialist from England; Dr. Janice Voss, Mission Specialist; and Colonel Vladimir Titor, Mission Specialist from Russia), gave a short autobiography of each member and a brief description of their assignment during this mission. A film was shown that included the preflight suit-up, a view of the launch site, the actual night launch, a tour of the Space Shuttle and several of the experiment areas, several views of earth and the MIR Space Station and cosmonauts, the MlR-Space Shuttle rendezvous, the deployment of the Spartan Ultraviolet Telescope, Foale and Harris's EVA and space walk, the retrieval of Spartan, and the night entry home, including the landing. Several spaceborne experiments were introduced: the radiation monitoring experiment, environment monitoring experiment, solid surface combustion experiment, and protein crystal growth and plant growth experiments. This conference ended with still, color pictures, taken by the astronauts during the entire STS 63 flight, being shown.

  11. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119378 (12 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day two activities.

  12. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119391 (12 May 2009) --- Astronaut Alan Poindexter, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day two activities.

  13. STS-81 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of the STS-81 mission, Commander Michael A. Baker, Pilot Brent W. Jett Jr, and Mission Specialists John M. Grunsfeld, Marsha S. Ivins, Peter J.K. Wisoff, and Jerry M. Linenger present a video mission over-view of their space flight. Images include prelaunch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the "white room" for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. During the presentation the astronauts take turns discussing aspects of the mission including: the SPACEHAB a double module that provides additional middeck locker space for secondary experiments. During the five days of docked operations with Mir, the crews is seen transferring water and supplies from one spacecraft to the other.

  14. Manned Orbital Transfer Vehicle (MOTV). Volume 2: Mission handbook

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The use of the manned orbit transfer vehicle (MOTV) for support of future space missions is defined. Some 20 generic missions are defined each representative of the types of missions expected to be flown in the future. These include the service and update of communications satellites, emergency repair of surveillance satellites, and passenger transport of a six man crew rotation/resupply service to a deep space command post. The propulsive and functional capabilities required of the MOTV to support a particular mission are described and data to enable the user to determine the number of STS flights needed to support the mission, mission peculiar equipment requirements, parametrics on mission phasing and requirements, ground and flight support requirements, recovery considerations, and IVA/EVA trade analysis are presented.

  15. Mission Control Center (MCC) View - Apollo 13 Splashdown - MSC

    NASA Image and Video Library

    1970-04-17

    S70-35145 (17 April 1970) --- Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the USS Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo program director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing astronaut James A. Lovell Jr., Apollo 13 commander, during the onboard ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 flight directors, view the activity from their consoles.

  16. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), Director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo Program Director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing Astronaut James A. Lovell Jr., Apollo 13 commander, during the on-board ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 Flight Directors, view the activity from their consoles.

  17. STS-60 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

  18. STS-111 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  19. STS-111 Flight Day 8 Highlights

    NASA Astrophysics Data System (ADS)

    2002-06-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  20. STS-31 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.