Science.gov

Sample records for early genomic response

  1. A Genomic Signature of Influenza Infection Shows Potential for Presymptomatic Detection, Guiding Early Therapy, and Monitoring Clinical Responses

    PubMed Central

    McClain, Micah T.; Nicholson, Bradly P.; Park, Lawrence P.; Liu, Tzu-Yu; Hero, Alfred O.; Tsalik, Ephraim L.; Zaas, Aimee K.; Veldman, Timothy; Hudson, Lori L.; Lambkin-Williams, Robert; Gilbert, Anthony; Burke, Thomas; Nichols, Marshall; Ginsburg, Geoffrey S.; Woods, Christopher W.

    2016-01-01

    Early, presymptomatic intervention with oseltamivir (corresponding to the onset of a published host-based genomic signature of influenza infection) resulted in decreased overall influenza symptoms (aggregate symptom scores of 23.5 vs 46.3), more rapid resolution of clinical disease (20 hours earlier), reduced viral shedding (total median tissue culture infectious dose [TCID50] 7.4 vs 9.7), and significantly reduced expression of several inflammatory cytokines (interferon-γ, tumor necrosis factor-α, interleukin-6, and others). The host genomic response to influenza infection is robust and may provide the means for early detection, more timely therapeutic interventions, a meaningful reduction in clinical disease, and an effective molecular means to track response to therapy. PMID:26933666

  2. Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar L.

    PubMed

    Krasnov, Aleksei; Timmerhaus, Gerrit; Schiøtz, Berit Lyng; Torgersen, Jacob; Afanasyev, Sergey; Iliev, Dimitar; Jørgensen, Jorunn; Takle, Harald; Jørgensen, Sven Martin

    2011-10-01

    Viral diseases are one of the main problems and risk factors in aquaculture. At present diseases are diagnosed by detection of pathogens and clinical symptoms. Identification of genes involved in early responses to viruses is important for better knowledge of antiviral defence and development of diagnostic tools. The aim of this study was to search for gene markers common for viral infections in Atlantic salmon based on microarray analyses of a wide range of samples. Gene expression profiles from fish and cell cultures infected with different viruses and treated with the synthetic double-stranded RNA poly(I:C) were compared in order to identify virus responsive genes (VRG). The list of VRG defined in this study contained 117 genes with known or unidentified functions. Several genes, including the most highly ranked one (receptor transporting protein), had not been previously reported to be involved in antiviral defence. VRG were characterized by a rapid induction and low tissue specificity, and their expression levels were related to the viral load. Immunofluorescence analyses of proteins encoded by VRG in cardiac tissue of salmon with the viral disease cardiomyopathy syndrome (CMS) revealed a common expression pattern. In head kidney leukocytes VRG showed comparable or equal responses to CpG and poly(I:C), which mimic respectively bacterial DNA and viral RNA. Most VRG showed highly correlated expression with interferon-a (IFNa). Sequence comparison of salmon VRG with those from other species gave an understanding of the evolution of these genes, which showed a remarkably rapid sequence divergence in comparison with the entire proteome. VRG emerged both before and after separation of teleosts and tetrapods, and among genes found exclusively in fish species there were members of several multigene families: tripartite motif proteins, gig1- and gig2-like proteins. Several VRG, including genes with unknown functions and orthologs to mammalian RNA helicase RIG-I and

  3. The Genome-Wide Early Temporal Response of Saccharomyces cerevisiae to Oxidative Stress Induced by Cumene Hydroperoxide

    PubMed Central

    Laubenbacher, Reinhard; Mendes, Pedro; Shulaev, Vladimir

    2013-01-01

    Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function. PMID:24073228

  4. Enabling responsible public genomics.

    PubMed

    Conley, John M; Doerr, Adam K; Vorhaus, Daniel B

    2010-01-01

    As scientific understandings of genetics advance, researchers require increasingly rich datasets that combine genomic data from large numbers of individuals with medical and other personal information. Linking individuals' genetic data and personal information precludes anonymity and produces medically significant information--a result not contemplated by the established legal and ethical conventions governing human genomic research. To pursue the next generation of human genomic research and commerce in a responsible fashion, scientists, lawyers, and regulators must address substantial new issues, including researchers' duties with respect to clinically significant data, the challenges to privacy presented by genomic data, the boundary between genomic research and commerce, and the practice of medicine. This Article presents a new model for understanding and addressing these new challenges--a "public genomics" premised on the idea that ethically, legally, and socially responsible genomics research requires openness, not privacy, as its organizing principle. Responsible public genomics combines the data contributed by informed and fully consenting information altruists and the research potential of rich datasets in a genomic commons that is freely and globally available. This Article examines the risks and benefits of this public genomics model in the context of an ambitious genetic research project currently under way--the Personal Genome Project. This Article also (i) demonstrates that large-scale genomic projects are desirable, (ii) evaluates the risks and challenges presented by public genomics research, and (iii) determines that the current legal and regulatory regimes restrict beneficial and responsible scientific inquiry while failing to adequately protect participants. The Article concludes by proposing a modified normative and legal framework that embraces and enables a future of responsible public genomics.

  5. Differences in outcome between obese and nonobese patients following severe blunt trauma are not consistent with an early inflammatory genomic response

    PubMed Central

    Winfield, Robert D.; Delano, Matthew J.; Dixon, David J.; Schierding, William S.; Cendan, Juan C.; Lottenberg, Lawrence; Lopez, M. Cecilia; Baker, Henry V.; Cobb, J. Perren; Moldawer, Lyle L.; Maier, Ronald V.; Cuschieri, Joseph

    2014-01-01

    Objectives Obesity has been demonstrated to alter a number of acute and chronic medical conditions. The effect of obesity on severely injured patients, however, remains incompletely defined. We sought to unravel potential physiologic and genomic alterations induced by obesity in severely injured blunt trauma patients. Design A retrospective review of clinical and genomic information contained in the Inflammation and the Host Response to Injury multicenter trauma-related database examining the relationship between body mass index and the early genomic response from peripheral blood leukocytes to patient outcome following severe blunt trauma was performed. Setting Multicenter collaboration between university-based academic trauma centers. Patients Severely injured blunt trauma patients enrolled in the database. Interventions None. Measurements and Main Results Univariate analysis of 455 severely injured trauma patients using the National Institutes of Health/World Health Organization body mass index classification system revealed significant increases in morbidity, including longer intensive care unit stays and a greater number of ventilator days, cardiac arrests, episodes of acute renal failure, and patients developing multiple organ failure. Regression modeling identified body mass index class as being independently associated with adverse outcomes and increased morbidity but an inverse relationship with mortality in patients who suffered severe blunt traumatic injury. Initial leukocyte genomic expression patterns between 163 patients in the four different body mass index groupings did not differ; however, analysis of gene differences between body mass index classes occurring over time demonstrated significant changes in 513 probe sets with significant pathway differences being related to cellular metabolism. Conclusions Increasing body mass index is associated with increased morbidity following severe blunt trauma. The initial blood leukocyte inflammatory response

  6. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    PubMed

    Rainey, Stephanie M; Martinez, Julien; McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A; Jiggins, Francis M; Kohl, Alain

    2016-04-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  7. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways

    PubMed Central

    McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A.; Jiggins, Francis M.; Kohl, Alain

    2016-01-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3´ open reading frame than the 5´ non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia’s antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  8. Genome-Based Risk Prediction for Early Stage Breast Cancer

    PubMed Central

    Adaniel, Christina; Jhaveri, Komal; Heguy, Adriana

    2014-01-01

    Tests to better characterize tumor genomic architecture are quickly becoming a standard of care in oncology. For breast cancer, the use of gene expression assays for early stage disease is already common practice. These tests have found a place in risk stratifying the heterogeneous group of stage I–II breast cancers for recurrence, for predicting chemotherapy response, and for predicting breast cancer-related mortality. In the last 5 years, more assays have become available to the practicing oncologist. Given the rapidity with which this field has evolved, it is prudent to review the tests, their indications, and the studies from which they have been validated. We present a comprehensive review of the available gene expression assays for early stage breast cancer. We review data for several individual tests and comparative studies looking at risk prediction and cost-effectiveness. PMID:25187476

  9. Deletion of the Human Cytomegalovirus US17 Gene Increases the Ratio of Genomes per Infectious Unit and Alters Regulation of Immune and Endoplasmic Reticulum Stress Response Genes at Early and Late Times after Infection

    PubMed Central

    Gurczynski, Stephen J.; Das, Subhendu

    2014-01-01

    Human cytomegalovirus (HCMV) employs numerous strategies to combat, subvert, or co-opt host immunity. One evolutionary strategy for this involves capture of a host gene and then its successive duplication and divergence, forming a family of genes, many of which have immunomodulatory activities. The HCMV US12 family consists of 10 tandemly arranged sequence-related genes in the unique short (US) region of the HCMV genome (US12 to US21). Each gene encodes a protein possessing seven predicted transmembrane domains, patches of sequence similarity with cellular G-protein-coupled receptors, and the Bax inhibitor 1 family of antiapoptotic proteins. We show that one member, US17, plays an important role during virion maturation. Microarray analysis of cells infected with a recombinant HCMV isolate with a US17 deletion (the ΔUS17 mutant virus) revealed blunted host innate and interferon responses at early times after infection (12 h postinfection [hpi]), a pattern opposite that previously seen in the absence of the immunomodulatory tegument protein pp65 (pUL83). Although the ΔUS17 mutant virus produced numbers of infectious particles in fibroblasts equal to the numbers produced by the parental virus, it produced >3-fold more genome-containing noninfectious viral particles and delivered increased amounts of pp65 to newly infected cells. These results suggest that US17 has evolved to control virion composition, to elicit an appropriately balanced host immune response. At later time points (96 hpi), ΔUS17 mutant-infected cells displayed aberrant expression of several host endoplasmic reticulum stress response genes and chaperones, some of which are important for the final stages of virion assembly and egress. Our results suggest that US17 modulates host pathways to enable production of virions that elicit an appropriately balanced host immune response. PMID:24335296

  10. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    PubMed

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  11. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

    PubMed Central

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-01-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns. PMID:24823358

  12. Early detection and rapid response

    USGS Publications Warehouse

    Westbrooks, Randy G.; Eplee, Robert E.; Simberloff, Daniel; Rejmánek, Marcel

    2011-01-01

    Prevention is the first line of defense against introduced invasive species - it is always preferable to prevent the introduction of new invaders into a region or country. However, it is not always possible to detect all alien hitchhikers imported in cargo, or to predict with any degree of certainty which introduced species will become invasive over time. Fortunately, the majority of introduced plants and animals don't become invasive. But, according to scientists at Cornell University, costs and losses due to species that do become invasive are now estimated to be over $137 billion/year in the United States. Early detection and rapid response (EDRR) is the second line of defense against introduced invasive species - EDRR is the preferred management strategy for preventing the establishment and spread of invasive species. Over the past 50 years, there has been a gradual shift away from large and medium scale federal/state single-agency-led weed eradication programs in the United States, to smaller interagency-led projects involving impacted and potential stakeholders. The importance of volunteer weed spotters in detecting and reporting suspected new invasive species has also been recognized in recent years.

  13. A genomics approach to understanding host response during dengue infection.

    PubMed

    Hibberd, Martin L; Ling, Ling; Tolfvenstam, Thomas; Mitchell, Wayne; Wong, Chris; Kuznetsov, Vladimir A; George, Joshy; Ong, Swee-Hoe; Ruan, Yijun; Wei, Chia L; Gu, Feng; Fink, Joshua; Yip, Andy; Liu, Wei; Schreiber, Mark; Vasudevan, Subhash G

    2006-01-01

    Dengue infection results in a wide clinical spectrum, ranging from asymptomatic, through fever (DF), to the life threatening complications haemorrhagic fever (DHF) and shock syndrome (DSS). Although we now understand that factors such as repeat infections and the type or magnitude of the host response are important in determining severity, the mechanisms of these actions remain largely unknown. Understanding this host-pathogen interaction may enable outcome prediction and new therapy options. Developments in biology now allow a 'systems approach' to be applied to this problem, utilizing whole genomes of both human and virus, in vitro and in vivo to enable a more complete picture of their interplay to be built up. We have developed a chip-based approach to viral sequencing, to increase efficiency and enable large numbers ofgenomes to be completed, together with a web-based interpretation tool. We have also applied human whole genome expression arrays (24000 genes) to characterize the types of host response made to infection and plan to investigate the role of host variation using human whole genome genetic association studies in the future. These technologies have identified novel host pathways involved in viral replication in vitro, and also host immune responses, such as the interferon signalling pathway, that are influenced by viral sequence. This data will be further refined through interlinking with similar data obtained from a large study of dengue patients, initiated in Singapore, that is able to look at the early host response to infection.

  14. Plant chemical genomics: gravity sensing and response.

    PubMed

    Surpin, Marci

    2014-01-01

    The gene families that encode the vesicle trafficking machinery in plants are highly expanded compared to those from protists and animals. As such, classical genetic screens for mutants with lesions in these genes are fraught with issues of redundancy and lethality. A chemical genomics approach can, in theory, circumvent these issues because inhibitory or stimulatory molecules may be applied at any point in development at sublethal concentrations. This chapter describes the protocols for a chemical genomics screen designed to identify components of the plant cell vesicle trafficking machinery. A two-tiered screen was designed where the primary screen assayed for chemicals that modified the gravitropic response, a process that in plant cells is intimately tied to vesicle trafficking; the secondary screen employed fluorescent marker lines that were treated with gravitropic inhibitors or inducers to assay for changes in endomembrane system morphology. We thus identified four compounds by which we can further explore the relationship between gravitropic signal transduction and vesicle trafficking.

  15. Genomic responses in rat cerebral cortex after traumatic brain injury

    PubMed Central

    von Gertten, Christina; Morales, Amilcar Flores; Holmin, Staffan; Mathiesen, Tiit; Nordqvist, Ann-Christin Sandberg

    2005-01-01

    Background Traumatic brain injury (TBI) initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future treatment targets. Since

  16. Early Neolithic genomes from the eastern Fertile Crescent.

    PubMed

    Broushaki, Farnaz; Thomas, Mark G; Link, Vivian; López, Saioa; van Dorp, Lucy; Kirsanow, Karola; Hofmanová, Zuzana; Diekmann, Yoan; Cassidy, Lara M; Díez-del-Molino, David; Kousathanas, Athanasios; Sell, Christian; Robson, Harry K; Martiniano, Rui; Blöcher, Jens; Scheu, Amelie; Kreutzer, Susanne; Bollongino, Ruth; Bobo, Dean; Davoudi, Hossein; Munoz, Olivia; Currat, Mathias; Abdi, Kamyar; Biglari, Fereidoun; Craig, Oliver E; Bradley, Daniel G; Shennan, Stephen; Veeramah, Krishna R; Mashkour, Marjan; Wegmann, Daniel; Hellenthal, Garrett; Burger, Joachim

    2016-07-29

    We sequenced Early Neolithic genomes from the Zagros region of Iran (eastern Fertile Crescent), where some of the earliest evidence for farming is found, and identify a previously uncharacterized population that is neither ancestral to the first European farmers nor has contributed substantially to the ancestry of modern Europeans. These people are estimated to have separated from Early Neolithic farmers in Anatolia some 46,000 to 77,000 years ago and show affinities to modern-day Pakistani and Afghan populations, but particularly to Iranian Zoroastrians. We conclude that multiple, genetically differentiated hunter-gatherer populations adopted farming in southwestern Asia, that components of pre-Neolithic population structure were preserved as farming spread into neighboring regions, and that the Zagros region was the cradle of eastward expansion. PMID:27417496

  17. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage

    PubMed Central

    Tang, Haibao; Bowers, John E.; Wang, Xiyin; Paterson, Andrew H.

    2009-01-01

    Although the timing and extent of a whole-genome duplication occurring in the common lineage of most modern cereals are clear, the existence or extent of more ancient genome duplications in cereals and perhaps other monocots has been hinted at, but remain unclear. We present evidence of additional duplication blocks of deeper hierarchy than the pancereal rho (ρ) duplication, covering at least 20% of the cereal transcriptome. These more ancient duplicated regions, herein called σ, are evident in both intragenomic and intergenomic analyses of rice and sorghum. Resolution of such ancient duplication events improves the understanding of the early evolutionary history of monocots and the origins and expansions of gene families. Comparisons of syntenic blocks reveal clear structural similarities in putatively homologous regions of monocots (rice) and eudicots (grapevine). Although the exact timing of the σ-duplication(s) is unclear because of uncertainties of the molecular clock assumption, our data suggest that it occurred early in the monocot lineage after its divergence from the eudicot clade. PMID:19966307

  18. Personal genomics and individual identities: motivations and moral imperatives of early users

    PubMed Central

    McGowan, Michelle L.; Fishman, Jennifer R.; Lambrix, Marcie A.

    2010-01-01

    Since 2007, consumer genomics companies have marketed personal genome scanning services to assess users’ genetic predispositions to a variety of complex diseases and traits. This study investigates early users’ reasons for utilizing personal genome services, their evaluation of the technology, how they interpret the results, and how they incorporate the results into health-related decision-making. The analysis contextualizes early users’ relationships to the technology, the knowledge generated by it, and how it mediates their relationship to their own health and to biomedicine more broadly. The results reveal that early users approach personal genome scanning with both optimism for genomic research and scepticism about the technology’s current capabilities, which runs contrary to concerns that consumers may be ill equipped to interpret and understand genome scan results. These findings provide important qualitative insight into early users’ conceptualizations of personal genomic risk assessment and illuminate their involvement in configuring this technology in the making. PMID:21076647

  19. Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus.

    PubMed

    Tachdjian, Sabrina; Kelly, Robert M

    2006-06-01

    Approximately one-third of the open reading frames encoded in the Sulfolobus solfataricus genome were differentially expressed within 5 min following an 80 to 90 degrees C temperature shift at pH 4.0. This included many toxin-antitoxin loci and insertion elements, implicating a connection between genome plasticity and metabolic regulation in the early stages of stress response.

  20. The early impact of genomics and metagenomics on ruminal microbiology.

    PubMed

    Denman, Stuart E; McSweeney, Christopher S

    2015-01-01

    Knowledge gained from early and recent studies that define the functions of microbial populations within the rumen microbiome is essential to allow for directed rumen manipulation strategies. A large number of omic studies have focused on carbohydrate active enzymes either for improved fiber digestion within the animal or for use in industries such as biofuels. Studies of the rumen microbiome with respect to methane production and abatement strategies have led to initiatives for defining the microbiome of low- and high-methane-emitting animals while ensuring optimal feed conversion. With advances in omic technologies, the ability to link host genetics and the rumen microbiome by studying all the biological components (holobiont) through the use of hologenomics has begun. However, a program to culture and isolate microbial species for the purpose of standard microbial characterization to aid in assigning function to genomic data remains critical, especially for genes of unknown function. PMID:25387109

  1. The early impact of genomics and metagenomics on ruminal microbiology.

    PubMed

    Denman, Stuart E; McSweeney, Christopher S

    2015-01-01

    Knowledge gained from early and recent studies that define the functions of microbial populations within the rumen microbiome is essential to allow for directed rumen manipulation strategies. A large number of omic studies have focused on carbohydrate active enzymes either for improved fiber digestion within the animal or for use in industries such as biofuels. Studies of the rumen microbiome with respect to methane production and abatement strategies have led to initiatives for defining the microbiome of low- and high-methane-emitting animals while ensuring optimal feed conversion. With advances in omic technologies, the ability to link host genetics and the rumen microbiome by studying all the biological components (holobiont) through the use of hologenomics has begun. However, a program to culture and isolate microbial species for the purpose of standard microbial characterization to aid in assigning function to genomic data remains critical, especially for genes of unknown function.

  2. Genomics of Esophageal Cancer and Biomarkers for Early Detection.

    PubMed

    Pusung, Mark; Zeki, Sebastian; Fitzgerald, Rebecca

    2016-01-01

    In-depth molecular characterization of esophageal oncogenesis has improved over the recent years. Advancement in molecular biology and bioinformatics has led to better understanding of its genomic landscape. More specifically, analysis of its pathogenesis at the genetic level has uncovered the involvement of a number of tumor suppressor genes, cell cycle regulators, and receptor tyrosine kinases. Due to its poor prognosis, the development of clinically applicable biomarkers for diagnosis, progression, and treatment has been the focus of many research studies concentrating on upper gastrointestinal malignancies. As in other cancers, early detection and subsequent intervention of the preneoplastic condition significantly improves patient outcomes. Currently, clinically approved surveillance practices heavily depend on expensive, invasive, and sampling-error-prone endoscopic procedures. There is, therefore, a great demand to establish clearly reliable biomarkers that could identify those patients at higher risk of neoplastic progression and hence would greatly benefit from further monitoring and/or intervention. This chapter will present the most recent advances in the analysis of the esophageal cancer genome serving as basis for biomarker development. PMID:27573775

  3. Heterogeneous Nuclear Ribonucleoprotein (HnRNP) K Genome-wide Binding Survey Reveals Its Role in Regulating 3′-End RNA Processing and Transcription Termination at the Early Growth Response 1 (EGR1) Gene through XRN2 Exonuclease*

    PubMed Central

    Mikula, Michal; Bomsztyk, Karol; Goryca, Krzysztof; Chojnowski, Krzysztof; Ostrowski, Jerzy

    2013-01-01

    The heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid-binding protein that acts as a docking platform integrating signal transduction pathways to nucleic acid-related processes. Given that hnRNPK could be involved in other steps that compose gene expression the definition of its genome-wide occupancy is important to better understand its role in transcription and co-transcriptional processes. Here, we used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to analyze the genome-wide hnRNPK-DNA interaction in colon cancer cell line HCT116. 9.1/3.6 and 7.0/3.4 million tags were sequenced/mapped, then 1809 and 642 hnRNPK binding sites were detected in quiescent and 30-min serum-stimulated cells, respectively. The inspection of sequencing tracks revealed inducible hnRNPK recruitment along a number of immediate early gene loci, including EGR1 and ZFP36, with the highest densities present at the transcription termination sites. Strikingly, hnRNPK knockdown with siRNA resulted in increased pre-RNA levels transcribed downstream of the EGR1 polyadenylation (A) site suggesting altered 3′-end pre-RNA degradation. Further ChIP survey of hnRNPK knockdown uncovered decreased recruitment of the 5′-3′ exonuclease XRN2 along EGR1 and downstream of the poly(A) signal without altering RNA polymerase II density at these sites. Immunoprecipitation of hnRNPK and XRN2 from intact and RNase A-treated nuclear extracts followed by shotgun mass spectrometry revealed the presence of hnRNPK and XRN2 in the same complexes along with other spliceosome-related proteins. Our data suggest that hnRNPK may play a role in recruitment of XRN2 to gene loci thus regulating coupling 3′-end pre-mRNA processing to transcription termination. PMID:23857582

  4. Female genomic response to mate information

    PubMed Central

    Desjardins, Julie K.; Klausner, Jill Q.; Fernald, Russell D.

    2010-01-01

    Females should be choosier than males about prospective mates because of the high costs of inappropriate mating decisions. Both theoretical and empirical studies have identified factors likely to influence female mate choices. However, male–male social interactions also can affect mating decisions, because information about a potential mate can trigger changes in female reproductive physiology. We asked how social information about a preferred male influenced neural activity in females, using immediate early gene (IEG) expression as a proxy for brain activity. A gravid female cichlid fish (Astatotilapia burtoni) chose between two socially equivalent males and then saw fights between these two males in which her preferred male either won or lost. We measured IEG expression levels in several brain nuclei including those in the vertebrate social behavior network (SBN), a collection of brain nuclei known to be important in social behavior. When the female saw her preferred male win a fight, SBN nuclei associated with reproduction were activated, but when she saw her preferred male lose a fight, the lateral septum, a nucleus associated with anxiety, was activated instead. Thus social information alone, independent of actual social interactions, activates specific brain regions that differ significantly depending on what the female sees. In female brains, reproductive centers are activated when she chooses a winner, and anxiety-like response centers are activated when she chooses a loser. These experiments assessing the role of mate-choice information on the brain using a paradigm of successive presentations of mate information suggest ways to understand the consequences of social information on animals using IEG expression. PMID:21106763

  5. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.

    PubMed

    Slack, Kerryn E; Jones, Craig M; Ando, Tatsuro; Harrison, G L Abby; Fordyce, R Ewan; Arnason, Ulfur; Penny, David

    2006-06-01

    Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain

  6. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.

    PubMed

    Slack, Kerryn E; Jones, Craig M; Ando, Tatsuro; Harrison, G L Abby; Fordyce, R Ewan; Arnason, Ulfur; Penny, David

    2006-06-01

    Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain

  7. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  8. Multigenerational genomic responses to dietary phosphorus and temperature in Daphnia.

    PubMed

    Jalal, Marwa; Shala, Nita K; Wojewodzic, Marcin W; Andersen, Tom; Hessen, Dag O

    2014-08-01

    Temperature and nutrient availability are both hypothesized to affect organisms at the cellular and genomic levels. In this multigenerational study, Daphnia magna (D. magna) and Daphnia pulex (D. pulex) were maintained at high (20 °C) and low (10 °C) temperatures and nourished with phosphorus (P)-sufficient (50 μmol/L) and P-deficient (2 μmol/L) algae for up to 35 generations to assess the multigenerational impacts on genome size and nucleus size. Analysis by flow cytometry revealed significant increases in nucleus size for both species as well as genome size for D. magna in response to a low temperature. The degree of endoreplication, measured as cycle value, was species specific and responded to temperature and dietary composition. Under dietary P deficiency, D. magna, but not D. pulex, showed an apparent reduction in haploid genome size (C-value). These genomic responses are unlikely to reflect differences in nucleotide numbers, but rather structural changes affecting fluorochrome binding. While the ultimate and proximate causes of these responses are unknown, they suggest an intriguing potential for genomic responses that merits further research.

  9. Multigenerational genomic responses to dietary phosphorus and temperature in Daphnia.

    PubMed

    Jalal, Marwa; Shala, Nita K; Wojewodzic, Marcin W; Andersen, Tom; Hessen, Dag O

    2014-08-01

    Temperature and nutrient availability are both hypothesized to affect organisms at the cellular and genomic levels. In this multigenerational study, Daphnia magna (D. magna) and Daphnia pulex (D. pulex) were maintained at high (20 °C) and low (10 °C) temperatures and nourished with phosphorus (P)-sufficient (50 μmol/L) and P-deficient (2 μmol/L) algae for up to 35 generations to assess the multigenerational impacts on genome size and nucleus size. Analysis by flow cytometry revealed significant increases in nucleus size for both species as well as genome size for D. magna in response to a low temperature. The degree of endoreplication, measured as cycle value, was species specific and responded to temperature and dietary composition. Under dietary P deficiency, D. magna, but not D. pulex, showed an apparent reduction in haploid genome size (C-value). These genomic responses are unlikely to reflect differences in nucleotide numbers, but rather structural changes affecting fluorochrome binding. While the ultimate and proximate causes of these responses are unknown, they suggest an intriguing potential for genomic responses that merits further research. PMID:25389902

  10. Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation

    PubMed Central

    Thompson, Bethtrice; Varticovski, Lyuba; Baek, Songjoon; Hager, Gordon L.

    2016-01-01

    Bone continuously undergoes remodeling by a tightly regulated process that involves osteoblast differentiation from Mesenchymal Stem Cells (MSC). However, commitment of MSC to osteoblastic lineage is a poorly understood process. Chromatin organization functions as a molecular gatekeeper of DNA functions. Detection of sites that are hypersensitive to Dnase I has been used for detailed examination of changes in response to hormones and differentiation cues. To investigate the early steps in commitment of MSC to osteoblasts, we used a model human temperature-sensitive cell line, hFOB. When shifted to non-permissive temperature, these cells undergo "spontaneous" differentiation that takes several weeks, a process that is greatly accelerated by osteogenic induction media. We performed Dnase I hypersensitivity assays combined with deep sequencing to identify genome-wide potential regulatory events in cells undergoing early steps of commitment to osteoblasts. Massive reorganization of chromatin occurred within hours of differentiation. Whereas ~30% of unique DHS sites were located in the promoters, the majority was outside of the promoters, designated as enhancers. Many of them were at novel genomic sites and need to be confirmed experimentally. We developed a novel method for identification of cellular networks based solely on DHS enhancers signature correlated to gene expression. The analysis of enhancers that were unique to differentiating cells led to identification of bone developmental program encompassing 147 genes that directly or indirectly participate in osteogenesis. Identification of these pathways provided an unprecedented view of genomic regulation during early steps of differentiation and changes related to WNT, AP-1 and other pathways may have therapeutic implications. PMID:26890492

  11. Viral and Cellular Genomes Activate Distinct DNA Damage Responses

    PubMed Central

    Shah, Govind A.; O’Shea, Clodagh C.

    2015-01-01

    Summary In response to cellular genome breaks, MRE11/RAD50/NBS1 (MRN) activates a global ATM DNA damage response (DDR) that prevents cellular replication. Here we show that MRN-ATM also has critical functions in defending the cell against DNA viruses. We reveal temporally distinct responses to adenovirus genomes: a critical MRN-ATM DDR that must be inactivated by E1B-55K/E4-ORF3 viral oncoproteins and a global MRN independent ATM DDR to viral nuclear domains that does not impact viral replication. We show that MRN binds to adenovirus genomes and activates a localized ATM response that specifically prevents viral DNA replication. In contrast to chromosomal breaks, ATM activation is not amplified by H2AX across megabases of chromatin to induce global signaling and replicative arrest. Thus, γH2AX foci discriminate ‘self’ and ‘non-self’ genomes and determine if a localized anti-viral or global ATM response is appropriate. This provides an elegant mechanism to neutralize viral genomes without jeopardizing cellular viability. PMID:26317467

  12. Genome sequencing highlights the dynamic early history of dogs.

    PubMed

    Freedman, Adam H; Gronau, Ilan; Schweizer, Rena M; Ortega-Del Vecchyo, Diego; Han, Eunjung; Silva, Pedro M; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Beale, Holly; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vilà, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R; Parker, Heidi G; Lee, Clarence; Tadigotla, Vasisht; Wilton, Alan; Siepel, Adam; Bustamante, Carlos D; Harkins, Timothy T; Nelson, Stanley F; Ostrander, Elaine A; Marques-Bonet, Tomas; Wayne, Robert K; Novembre, John

    2014-01-01

    To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is

  13. Genome Sequencing Highlights the Dynamic Early History of Dogs

    PubMed Central

    Freedman, Adam H.; Gronau, Ilan; Schweizer, Rena M.; Ortega-Del Vecchyo, Diego; Han, Eunjung; Silva, Pedro M.; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Beale, Holly; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vilà, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R.; Parker, Heidi G.; Lee, Clarence; Tadigotla, Vasisht; Siepel, Adam; Bustamante, Carlos D.; Harkins, Timothy T.; Nelson, Stanley F.; Ostrander, Elaine A.; Marques-Bonet, Tomas; Wayne, Robert K.; Novembre, John

    2014-01-01

    To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11–16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is

  14. Genome sequencing highlights the dynamic early history of dogs.

    PubMed

    Freedman, Adam H; Gronau, Ilan; Schweizer, Rena M; Ortega-Del Vecchyo, Diego; Han, Eunjung; Silva, Pedro M; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Beale, Holly; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vilà, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R; Parker, Heidi G; Lee, Clarence; Tadigotla, Vasisht; Wilton, Alan; Siepel, Adam; Bustamante, Carlos D; Harkins, Timothy T; Nelson, Stanley F; Ostrander, Elaine A; Marques-Bonet, Tomas; Wayne, Robert K; Novembre, John

    2014-01-01

    To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is

  15. An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Park, Hae-Chul; Lee, Jehee

    2016-03-01

    Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in

  16. An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Park, Hae-Chul; Lee, Jehee

    2016-03-01

    Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in

  17. The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome.

    PubMed

    Goldstone, J V; Hamdoun, A; Cole, B J; Howard-Ashby, M; Nebert, D W; Scally, M; Dean, M; Epel, D; Hahn, M E; Stegeman, J J

    2006-12-01

    Metazoan genomes contain large numbers of genes that participate in responses to environmental stressors. We surveyed the sea urchin Strongylocentrotus purpuratus genome for homologs of gene families thought to protect against chemical stressors; these genes collectively comprise the 'chemical defensome.' Chemical defense genes include cytochromes P450 and other oxidases, various conjugating enzymes, ATP-dependent efflux transporters, oxidative detoxification proteins, and transcription factors that regulate these genes. Together such genes account for more than 400 genes in the sea urchin genome. The transcription factors include homologs of the aryl hydrocarbon receptor, hypoxia-inducible factor, nuclear factor erythroid-derived 2, heat shock factor, and nuclear hormone receptors, which regulate stress-response genes in vertebrates. Some defense gene families, including the ABCC, the UGT, and the CYP families, have undergone expansion in the urchin relative to other deuterostome genomes, whereas the stress sensor gene families do not show such expansion. More than half of the defense genes are expressed during embryonic or larval life stages, indicating their importance during development. This genome-wide survey of chemical defense genes in the sea urchin reveals evolutionary conservation of this network combined with lineage-specific diversification that together suggest the importance of these chemical stress sensing and response mechanisms in early deuterostomes. These results should facilitate future studies on the evolution of chemical defense gene networks and the role of these networks in protecting embryos from chemical stress during development. PMID:17097629

  18. Early growth response-1 in the pathogenesis of cardiovascular disease.

    PubMed

    Khachigian, Levon M

    2016-07-01

    This article reviews the regulatory roles of the immediate-early gene product and prototypic zinc finger transcription factor, early growth response-1 in models of cardiovascular pathobiology, focusing on insights using microRNA, DNAzymes, small hairpin RNA, small interfering RNA, oligonucleotide decoy strategies and mice deficient in early growth response-1. PMID:27251707

  19. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    SciTech Connect

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  20. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia.

    PubMed

    Morrison, Hilary G; McArthur, Andrew G; Gillin, Frances D; Aley, Stephen B; Adam, Rodney D; Olsen, Gary J; Best, Aaron A; Cande, W Zacheus; Chen, Feng; Cipriano, Michael J; Davids, Barbara J; Dawson, Scott C; Elmendorf, Heidi G; Hehl, Adrian B; Holder, Michael E; Huse, Susan M; Kim, Ulandt U; Lasek-Nesselquist, Erica; Manning, Gerard; Nigam, Anuranjini; Nixon, Julie E J; Palm, Daniel; Passamaneck, Nora E; Prabhu, Anjali; Reich, Claudia I; Reiner, David S; Samuelson, John; Svard, Staffan G; Sogin, Mitchell L

    2007-09-28

    The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite. PMID:17901334

  1. The genome of Naegleria gruberi illuminates early eukaryotic versatility.

    PubMed

    Fritz-Laylin, Lillian K; Prochnik, Simon E; Ginger, Michael L; Dacks, Joel B; Carpenter, Meredith L; Field, Mark C; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V; Cande, W Zacheus; Fulton, Chandler; Rokhsar, Daniel S; Dawson, Scott C

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  2. Early genome duplications in conifers and other seed plants

    PubMed Central

    Li, Zheng; Baniaga, Anthony E.; Sessa, Emily B.; Scascitelli, Moira; Graham, Sean W.; Rieseberg, Loren H.; Barker, Michael S.

    2015-01-01

    Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity. PMID:26702445

  3. Dynamic Metabolic Adjustments and Genome Plasticity Are Implicated in the Heat Shock Response of the Extremely Thermoacidophilic Archaeon Sulfolobus solfataricus†

    PubMed Central

    Tachdjian, Sabrina; Kelly, Robert M.

    2006-01-01

    Approximately one-third of the open reading frames encoded in the Sulfolobus solfataricus genome were differentially expressed within 5 min following an 80 to 90°C temperature shift at pH 4.0. This included many toxin-antitoxin loci and insertion elements, implicating a connection between genome plasticity and metabolic regulation in the early stages of stress response. PMID:16740961

  4. Genomic analysis of the rainbow trout response to crowding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic analyses have the potential to impact selective breeding programs by identifying markers as proxies for traits which are expensive or difficult to measure. One such set of traits is the physiological responses of rainbow trout to the stresses of the aquaculture environment. Typical stresso...

  5. Genomic analysis of the stress response of rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic analyses have the potential to impact selective breeding programs by identifying markers as proxies for traits which are expensive or difficult to measure. One such set of traits is the physiological responses of rainbow trout to the stresses of the aquaculture environment. Typical stresso...

  6. Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae

    PubMed Central

    2014-01-01

    Background Sequence data from the chloroplast genome have played a central role in elucidating the evolutionary history of flowering plants, Angiospermae. In the past decade, the number of complete chloroplast genomes has burgeoned, leading to well-supported angiosperm phylogenies. However, some relationships, particulary among early-diverging lineages, remain unresolved. The diverse Southern Hemisphere plant family Proteaceae arose on the ancient supercontinent Gondwana early in angiosperm history and is a model group for adaptive radiation in response to changing climatic conditions. Genomic resources for the family are limited, and until now it is one of the few early-diverging 'basal eudicot' lineages not represented in chloroplast phylogenomic analyses. Results The chloroplast genome of the Australian nut crop tree Macadamia integrifolia was assembled de novo from Illumina paired-end sequence reads. Three contigs, corresponding to a collapsed inverted repeat, a large and a small single copy region were identified, and used for genome reconstruction. The complete genome is 159,714bp in length and was assembled at deep coverage (3.29 million reads; ~2000 x). Phylogenetic analyses based on 83-gene and inverted repeat region alignments, the largest sequence-rich datasets to include the basal eudicot family Proteaceae, provide strong support for a Proteales clade that includes Macadamia, Platanus and Nelumbo. Genome structure and content followed the ancestral angiosperm pattern and were highly conserved in the Proteales, whilst size differences were largely explained by the relative contraction of the single copy regions and expansion of the inverted repeats in Macadamia. Conclusions The Macadamia chloroplast genome presented here is the first in the Proteaceae, and confirms the placement of this family with the morphologically divergent Plantanaceae (plane tree family) and Nelumbonaceae (sacred lotus family) in the basal eudicot order Proteales. It provides a

  7. Simulation Training in Early Emergency Response (STEER).

    PubMed

    Generoso, Jose Roberto; Latoures, Renee Elizabeth; Acar, Yahya; Miller, Dean Scott; Ciano, Mark; Sandrei, Renan; Vieira, Marlon; Luong, Sean; Hirsch, Jan; Fidler, Richard Lee

    2016-06-01

    HOW TO OBTAIN CONTACT HOURS BY READING THIS ISSUE Instructions: 1.3 contact hours will be awarded by Villanova University College of Nursing upon successful completion of this activity. A contact hour is a unit of measurement that denotes 60 minutes of an organized learning activity. This is a learner-based activity. Villanova University College of Nursing does not require submission of your answers to the quiz. A contact hour certificate will be awarded after you register, pay the registration fee, and complete the evaluation form online at http://goo.gl/gMfXaf. In order to obtain contact hours you must: 1. Read the article, "Simulation Training in Early Emergency Response (STEER)," found on pages 255-263, carefully noting any tables and other illustrative materials that are included to enhance your knowledge and understanding of the content. Be sure to keep track of the amount of time (number of minutes) you spend reading the article and completing the quiz. 2. Read and answer each question on the quiz. After completing all of the questions, compare your answers to those provided within this issue. If you have incorrect answers, return to the article for further study. 3. Go to the Villanova website to register for contact hour credit. You will be asked to provide your name, contact information, and a VISA, MasterCard, or Discover card number for payment of the $20.00 fee. Once you complete the online evaluation, a certificate will be automatically generated. This activity is valid for continuing education credit until May 31, 2019. CONTACT HOURS This activity is co-provided by Villanova University College of Nursing and SLACK Incorporated. Villanova University College of Nursing is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. OBJECTIVES Define the purpose of the Simulation Training in Early Emergency Response (STEER) study. Review the outcome of the STEER study. DISCLOSURE

  8. Evolution of early eukaryotic cells: genomes, proteomes, and compartments.

    PubMed

    Bogorad, Lawrence

    2008-01-01

    Eukaryotes arose from an endosymbiotic association of an alpha-proteobacterium-like organism (the ancestor of mitochondria) with a host cell (lacking mitochondria or plastids). Plants arose by the addition of a cyanobacterium-like endosymbiont (the ancestor of plastids) to the two-member association. Each member of the association brought a unique internal environment and a unique genome. Analyses of recently acquired genomic sequences with newly developed algorithms have revealed (a) that the number of endosymbiont genes that remain in eukaryotic cells-principally in the nucleus-is surprisingly large, (b) that protein products of a large number of genes (or their descendents) that entered the association in the genome of the host are now directed to an organelle derived from an endosymbiont, and (c) that protein products of genes traceable to endosymbiont genomes are directed to the nucleo-cytoplasmic compartment. Consideration of these remarkable findings has led to the present suggestion that contemporary eukaryotic cells evolved through continual chance relocation and testing of genes as well as combinations of gene products and biochemical processes in each unique cell compartment derived from a member of the eukaryotic association. Most of these events occurred during about 300 million years, or so, before contemporary forms of eukaryotic cells appear in the fossil record; they continue today. PMID:17912611

  9. BYSTANDERS, ADAPTIVE RESPONSES AND GENOMIC INSTABILITY - POTENTIAL MODIFIERS OF LOW-DOSE CANCER RESPONSES.

    EPA Science Inventory

    Bystanders, Adaptive Responses and Genomic Instability -Potential Modifiers ofLow-Dose
    Cancer Responses
    .
    There has been a concerted effort in the field of radiation biology to better understand cellular
    responses that could have an impact on the estin1ation of cancer...

  10. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    PubMed

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases. PMID:26181593

  11. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes

    PubMed Central

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-01-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined ‘ohnologs’ after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases. PMID:26181593

  12. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    PubMed

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  13. Exploring the early origins of the synapse by comparative genomics

    PubMed Central

    Kosik, Kenneth S.

    2008-01-01

    One set of evolutionary features that has received less attention than the evolution of genes or species is the evolution of cellular machines, the self-contained structures in cells with dedicated functions. Here I suggest that domain expansion through shuffling, duplication, and changes in protein expression level are critical drivers in the evolution of cellular machines. Once established, evolutionary change in these cellular machines tends to occur by paralogy or expansion and modification of the existing core genes. A comparative genomics approach to one cellular machine—the post-synaptic complex—provided preliminary validation of these views. A comparative genomics approach to the entire cellulome may reveal the diversity of cellular machines and their inter-relationships. PMID:19049956

  14. Early insights into the genome sequence of Uromyces fabae

    PubMed Central

    Link, Tobias; Seibel, Christian; Voegele, Ralf T.

    2014-01-01

    Uromyces fabae is a major pathogen of broad bean, Vicia faba. U. fabae has served as a model among rust fungi to elucidate the development of infection structures, expression and secretion of cell wall degrading enzymes and gene expression. Using U. fabae, enormous progress was made regarding nutrient uptake and metabolism and in the search for secreted proteins and effectors. Here, we present results from a genome survey of U. fabae. Paired end Illumina sequencing provided 53 Gb of data. An assembly gave 59,735 scaffolds with a total length of 216 Mb. K-mer analysis estimated the genome size to be 329 Mb. Of a representative set of 23,153 predicted proteins we could annotate 10,209, and predict 599 secreted proteins. Clustering of the protein set indicates families of highly likely effectors. We also found new homologs of RTP1p, a prototype rust effector. The U. fabae genome will be an important resource for comparative analyses with U. appendiculatus and P. pachyrhizi and provide information regarding the phylogenetic relationship of the genus Uromyces with respect to other rust fungi already sequenced, namely Puccinia graminis f. sp. tritici, P. striiformis f. sp. tritici, Melampsora lini, and Melampsora larici-populina. PMID:25400651

  15. Functional genomic analysis of the Drosophila immune response.

    PubMed

    Valanne, Susanna

    2014-01-01

    Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species. PMID:23707784

  16. Genomic response of the nematode Caenorhabditis elgans to spaceflight

    NASA Astrophysics Data System (ADS)

    Selch, F.; Szewczyk, N.; Conley, C.

    On Earth it is common practice to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns Studies of model organisms in Earth orbit should similarly help understand and address the concerns associated with spaceflight The International Ceonorhabditis elegans Experiment FIRST ICE FIRST was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France Canada Japan and the United States Animals developed normally in flight and returned in good apparent health With the exception of a slight movement defect upon return to Earth no significant abnormalities were detected Work from Japan revealed that apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation in flight These results appear similar to what is observed for humans and suggest that C elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor To further our understanding of C elegans response to spaceflight we examined the gene transcription response using a near full genome microarray analysis Here we will report the transcriptional response of C elegans to the 10 days in space This transcriptional response is consistent with the observed normal development apoptosis and DNA repair Additionally several genes that may be involved in the movement defect have been identified Our presentation will compare the genome response of three independent samples in which stress

  17. Metabolic responses on the early shift.

    PubMed

    Padilha, Heloisa Guarita; Crispim, Cibele Aparecida; Zimberg, Ioná Zalcman; Folkard, Simon; Tufik, Sérgio; de Mello, Marco Túlio

    2010-07-01

    Shiftwork has been associated with a higher propensity for the development of metabolic disorders and obesity. The aim of the study was to investigate concentrations of glucose, cortisol, and insulin among fixed night workers (n = 9), fixed early morning workers (n = 6), and day workers (n = 7). Food intake was recorded for 7 days using a diary. Blood samples were collected every 4 h over the course of 24 h, yielding six samples. Total carbohydrate intake was lowest (p < .0005), whereas fat (p = .03) and protein (p < .0005) were highest on the early morning shifts. Early morning workers also had overall elevated cortisol levels relative to the other two groups. Cortisol levels appeared to be more influenced by time since waking prior to the shift than by time-of-day. Cortisol was highest for the early morning group than the day group 12 h after waking, and both the early morning and night groups had higher levels than the day group 16 h after waking (p < .05 in all cases). In contrast, the homesostatsis model assessment of insulin resistance (HOMA-IR) appeared to be more influenced by time-of-day than by time since waking prior to the shift. The early morning group had higher levels of HOMA-IR at 08:00 h than the other groups (p < .05). In conclusion, the early morning group had the highest overall concentrations of cortisol and tended to have higher levels of HOMA-IR, indicating that more attention should be given to these workers. Moreover, all three groups showed pronounced cortisol levels on awakening, suggesting that they may have adjusted to their awaking time. (Author: heloguarita@rgnutri.com.br ).

  18. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes.

    PubMed

    Suh, Alexander; Churakov, Gennady; Ramakodi, Meganathan P; Platt, Roy N; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Smit, Arian F; Vliet, Kent A; Hoffmann, Federico G; Brosius, Jürgen; Green, Richard E; Braun, Edward L; Ray, David A; Schmitz, Jürgen

    2015-01-01

    Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians. PMID:25503085

  19. Insights into genomics of salt stress response in rice.

    PubMed

    Kumar, Kundan; Kumar, Manu; Kim, Seong-Ryong; Ryu, Hojin; Cho, Yong-Gu

    2013-01-01

    Plants, as sessile organisms experience various abiotic stresses, which pose serious threat to crop production. Plants adapt to environmental stress by modulating their growth and development along with the various physiological and biochemical changes. This phenotypic plasticity is driven by the activation of specific genes encoding signal transduction, transcriptional regulation, ion transporters and metabolic pathways. Rice is an important staple food crop of nearly half of the world population and is well known to be a salt sensitive crop. The completion and enhanced annotations of rice genome sequence has provided the opportunity to study functional genomics of rice. Functional genomics aids in understanding the molecular and physiological basis to improve the salinity tolerance for sustainable rice production. Salt tolerant transgenic rice plants have been produced by incorporating various genes into rice. In this review we present the findings and investigations in the field of rice functional genomics that includes supporting genes and networks (ABA dependent and independent), osmoprotectants (proline, glycine betaine, trehalose, myo-inositol, and fructans), signaling molecules (Ca2+, abscisic acid, jasmonic acid, brassinosteroids) and transporters, regulating salt stress response in rice. PMID:24280112

  20. Genome-Wide Transcriptional Changes in Streptococcus gordonii in Response to Competence Signaling Peptide▿ †

    PubMed Central

    Vickerman, M. M.; Iobst, S.; Jesionowski, A. M.; Gill, S. R.

    2007-01-01

    Streptococcus gordonii is a primary colonizer of the multispecies biofilm on tooth surfaces forming dental plaque and a potential agent of endocarditis. The recent completion of the genome sequence of the naturally competent strain Challis allowed the design of a spotted oligonucleotide microarray to examine a genome-wide response of this organism to environmental stimuli such as signal peptides. Based on temporal responses to synthetic competence signaling peptide (CSP) as indicated by transformation frequencies, the S. gordonii transcriptome was analyzed at various time points after CSP exposure. Microarray analysis identified 35 candidate early genes and 127 candidate late genes that were up-regulated at 5 and 15 min, respectively; these genes were often grouped in clusters. Results supported published findings on S. gordonii competence, showing up-regulation of 12 of 16 genes that have been reported to affect transformation frequencies in this species. Comparison of CSP-induced S. gordonii transcriptomes to results published for Streptococcus pneumoniae strains identified both conserved and species-specific genes. Putative intergenic regulatory sites, such as the conserved combox sequence thought to be a binding site for competence sigma factor, were found preceding S. gordonii late responsive genes. In contrast, S. gordonii early CSP-responsive genes were not preceded by the direct repeats found in S. pneumoniae. These studies provide the first insights into a genome-wide transcriptional response of an oral commensal organism. They offer an extensive analysis of transcriptional changes that accompany competence in S. gordonii and form a basis for future intra- and interspecies comparative analyses of this ecologically important phenotype. PMID:17720781

  1. Motivations and Perceptions of Early Adopters of Personalized Genomics: Perspectives from Research Participants

    PubMed Central

    Gollust, S.E.; Gordon, E.S.; Zayac, C.; Griffin, G.; Christman, M.F.; Pyeritz, R.E.; Wawak, L.; Bernhardt, B.A.

    2011-01-01

    Background/Aims: To predict the potential public health impact of personal genomics, empirical research on public perceptions of these services is needed. In this study, ‘early adopters’ of personal genomics were surveyed to assess their motivations, perceptions and intentions. Methods: Participants were recruited from everyone who registered to attend an enrollment event for the Coriell Personalized Medicine Collaborative, a United States-based (Camden, N.J.) research study of the utility of personalized medicine, between March 31, 2009 and April 1, 2010 (n = 369). Participants completed an Internet-based survey about their motivations, awareness of personalized medicine, perceptions of study risks and benefits, and intentions to share results with health care providers. Results: Respondents were motivated to participate for their own curiosity and to find out their disease risk to improve their health. Fewer than 10% expressed deterministic perspectives about genetic risk, but 32% had misperceptions about the research study or personal genomic testing. Most respondents perceived the study to have health-related benefits. Nearly all (92%) intended to share their results with physicians, primarily to request specific medical recommendations. Conclusion: Early adopters of personal genomics are prospectively enthusiastic about using genomic profiling information to improve their health, in close consultation with their physicians. This suggests that early users (i.e. through direct-to-consumer companies or research) may follow up with the health care system. Further research should address whether intentions to seek care match actual behaviors. PMID:21654153

  2. Convergence of ion channel genome content in early animal evolution

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.

    2015-01-01

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  3. Genome-Wide Detection of Gene Extinction in Early Mammalian Evolution

    PubMed Central

    Kuraku, Shigehiro; Kuratani, Shigeru

    2011-01-01

    Detecting gene losses is a novel aspect of evolutionary genomics that has been made feasible by whole-genome sequencing. However, research to date has concentrated on elucidating evolutionary patterns of genomic components shared between species, rather than identifying disparities between genomes. In this study, we searched for gene losses in the lineage leading to eutherian mammals. First, as a pilot analysis, we selected five gene families (Wnt, Fgf, Tbx, TGFβ, and Frizzled) for molecular phylogenetic analyses, and identified mammalian lineage-specific losses of Wnt11b, Tbx6L/VegT/tbx16, Nodal-related, ADMP1, ADMP2, Sizzled, and Crescent. Second, automated genome-wide phylogenetic screening was implemented based on this pilot analysis. As a result, we detected 147 chicken genes without eutherian orthologs, which resulted from 141 gene loss events. Our inventory contained a group of regulatory genes governing early embryonic axis formation, such as Noggins, and multiple members of the opsin and prolactin-releasing hormone receptor (“PRLHR”) gene families. Our findings highlight the potential of genome-wide gene phylogeny (“phylome”) analysis in detecting possible rearrangement of gene networks and the importance of identifying losses of ancestral genomic components in analyzing the molecular basis underlying phenotypic evolution. PMID:22094861

  4. Genome-wide detection of gene extinction in early mammalian evolution.

    PubMed

    Kuraku, Shigehiro; Kuratani, Shigeru

    2011-01-01

    Detecting gene losses is a novel aspect of evolutionary genomics that has been made feasible by whole-genome sequencing. However, research to date has concentrated on elucidating evolutionary patterns of genomic components shared between species, rather than identifying disparities between genomes. In this study, we searched for gene losses in the lineage leading to eutherian mammals. First, as a pilot analysis, we selected five gene families (Wnt, Fgf, Tbx, TGFβ, and Frizzled) for molecular phylogenetic analyses, and identified mammalian lineage-specific losses of Wnt11b, Tbx6L/VegT/tbx16, Nodal-related, ADMP1, ADMP2, Sizzled, and Crescent. Second, automated genome-wide phylogenetic screening was implemented based on this pilot analysis. As a result, we detected 147 chicken genes without eutherian orthologs, which resulted from 141 gene loss events. Our inventory contained a group of regulatory genes governing early embryonic axis formation, such as Noggins, and multiple members of the opsin and prolactin-releasing hormone receptor ("PRLHR") gene families. Our findings highlight the potential of genome-wide gene phylogeny ("phylome") analysis in detecting possible rearrangement of gene networks and the importance of identifying losses of ancestral genomic components in analyzing the molecular basis underlying phenotypic evolution. PMID:22094861

  5. [Symbiogenesis as a Model for Reconstructing the Early Stages of Genome Evolution].

    PubMed

    Provorov, N A; Tikhonovich, I A; Vorobyov, N I

    2016-02-01

    Symbiogenic evolution, which involves transformations of bacteria into the cellular organelles, is represented as a model for reconstructing the early stages of genome evolution, including the origin of DNA genomes from RNA genomes and the emergence of template processes on the basis of self-replicating molecular complexes in the ancestral metabolic systems. The antiquity of RNA genomes is supported by an increased evolutionary stability of ribosomal protein synthesis (translation) with respect to the DNA-dependent template processes (replication, transcription, recombination, and reparation). This stability is demonstrated by analysis of the deeply reduced genomes of symbiotic bacteria and cellular organelles as well as the "minimal" genomes which are common to phylogenetically diverse organisms. Higher evolutionary conservation of template biosynthetic processes with respect to step processes determining the metabolism and development in cells does not support the hypothesis about emergence ofgenomes within the ancestral cellular metabolic systems which are thought to be of abiogenic origin, instead suggesting dualistic origin of life on Earth. We suppose that the genome-free organelles of some eukaryotes (mitosomes, many hydrogenosomes, and some plastids) represent the products of reversion of symbiotic bacteria into ancestral forms which implemented their basic cellular functions using the informational macromolecules of exogenic origin. In the framework of this hypothesis the eukaryotic cells functioning based on the massive transfer of gene products (RNAs, proteins) from cytosol to organelles may represent the analogs of ancestral biocenoses that possessed integral hereditary systems (metagenomes). PMID:27215028

  6. Early cellular signaling responses to axonal injury

    PubMed Central

    Lukas, Thomas J; Wang, Ai Ling; Yuan, Ming; Neufeld, Arthur H

    2009-01-01

    Background We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. Results We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3) and apoptosis (Bax). Conclusion We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration. PMID:19284657

  7. Early Campus Response to Disruptive Behavior

    ERIC Educational Resources Information Center

    Stump, Linda J.; Zdziarski, Eugene L.

    2008-01-01

    As major events define generations and tragedies define and refine protocol response to significant incidents, a sense of comfort and confidence is attained as the authors train individually and organizationally to respond to extreme events, and yet those who have experienced them know that no plan goes as it should. There are, however, steps or…

  8. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation

    PubMed Central

    Houlihan, Shauna L; Feng, Yuanyi

    2014-01-01

    Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders. DOI: http://dx.doi.org/10.7554/eLife.03297.001 PMID:25245017

  9. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease.

    PubMed

    Valor, Luis M; Guiretti, Deisy; Lopez-Atalaya, Jose P; Barco, Angel

    2013-06-19

    Transcriptional dysregulation is an important early feature of polyglutamine diseases. One of its proposed causes is defective neuronal histone acetylation, but important aspects of this hypothesis, such as the precise genomic topography of acetylation deficits and the relationship between transcriptional and acetylation alterations at the whole-genome level, remain unknown. The new techniques for the mapping of histone post-translational modifications at genomic scale enable such global analyses and are challenging some assumptions about the role of specific histone modifications in gene expression. We examined here the genome-wide correlation of histone acetylation and gene expression defects in a mouse model of early onset Huntington's disease. Our analyses identified hundreds of loci that were hypoacetylated for H3K9,14 and H4K12 in the chromatin of these mice. Surprisingly, few genes with altered transcript levels in mutant mice showed significant changes in these acetylation marks and vice versa. Our screen, however, identified a subset of genes in which H3K9,14 deacetylation and transcriptional dysregulation concur. Genes in this group were consistently affected in different brain areas, mouse models, and tissue from patients, which suggests a role in the etiology of this pathology. Overall, the combination of histone acetylation and gene expression screenings demonstrates that histone deacetylation and transcriptional dysregulation are two early, largely independent, manifestations of polyglutamine disease and suggests that additional epigenetic marks or mechanisms are required for explaining the full range of transcriptional alterations associated with this disorder.

  10. Professionally Responsible Disclosure of Genomic Sequencing Results in Pediatric Practice

    PubMed Central

    Brothers, Kyle B.; Chung, Wendy K.; Joffe, Steven; Koenig, Barbara A.; Wilfond, Benjamin; Yu, Joon-Ho

    2015-01-01

    Genomic sequencing is being rapidly introduced into pediatric clinical practice. The results of sequencing are distinctive for their complexity and subsequent challenges of interpretation for generalist and specialist pediatricians, parents, and patients. Pediatricians therefore need to prepare for the professionally responsible disclosure of sequencing results to parents and patients and guidance of parents and patients in the interpretation and use of these results, including managing uncertain data. This article provides an ethical framework to guide and evaluate the professionally responsible disclosure of the results of genomic sequencing in pediatric practice. The ethical framework comprises 3 core concepts of pediatric ethics: the best interests of the child standard, parental surrogate decision-making, and pediatric assent. When recommending sequencing, pediatricians should explain the nature of the proposed test, its scope and complexity, the categories of results, and the concept of a secondary or incidental finding. Pediatricians should obtain the informed permission of parents and the assent of mature adolescents about the scope of sequencing to be performed and the return of results. PMID:26371191

  11. Genomic responses in mouse models poorly mimic human inflammatory diseases

    PubMed Central

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  12. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: Early establishment of the vertebrate genome organization

    SciTech Connect

    Lee, W.J.; Kocher, T.D.

    1995-02-01

    The complete nucleotide sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome has been determined. The lamprey genome is 16,201 bp in length and contains genes for 13 proteins, two rRNAs, 22 tRNAs and two major noncoding regions. The order and transcriptional polarities of protein-coding genes are basically identical to those of other chordate mtDNAs, demonstrating that the common mitochondrial gene organization of vertebrates was established at early stage of vertebrate evolution. The two major noncoding regions are separated by two tRNA genes. The first region probably functions as the control region because it contains distinctive conserved sequence blocks (CSB-II and III) common to other vertebrate control regions. The central conserved domain observed in other vertebrate control regions is not found in the lamprey, suggesting that it is a recently evolved functional domain in vertebrates. Noncoding segments are not found in the expected position of the origin of replication for the second strand, suggesting either that one of the tRNA genes has a dual function or that the second noncoding region may function as the second-strand origin. The base composition at the wobble positions of fourfold degenerate codon families is highly biased toward thymine (32.7%). Values of GC- and AT-skew are typical of vertebrate mitochondrial genomes. 38 refs., 11 figs., 5 tabs.

  13. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis.

    PubMed

    Del Toro-De León, Gerardo; García-Aguilar, Marcelina; Gillmor, C Stewart

    2014-10-30

    Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.

  14. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    PubMed

    Sahu, Surasri N; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

  15. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    PubMed

    Sahu, Surasri N; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. PMID:23894281

  16. Genomic Analysis of Stress Response against Arsenic in Caenorhabditis elegans

    PubMed Central

    Sahu, Surasri N.; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H.; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. PMID:23894281

  17. Exploring early public responses to geoengineering.

    PubMed

    Pidgeon, Nick; Corner, Adam; Parkhill, Karen; Spence, Alexa; Butler, Catherine; Poortinga, Wouter

    2012-09-13

    Proposals for geoengineering the Earth's climate are prime examples of emerging or 'upstream' technologies, because many aspects of their effectiveness, cost and risks are yet to be researched, and in many cases are highly uncertain. This paper contributes to the emerging debate about the social acceptability of geoengineering technologies by presenting preliminary evidence on public responses to geoengineering from two of the very first UK studies of public perceptions and responses. The discussion draws upon two datasets: qualitative data (from an interview study conducted in 42 households in 2009), and quantitative data (from a subsequent nationwide survey (n=1822) of British public opinion). Unsurprisingly, baseline awareness of geoengineering was extremely low in both cases. The data from the survey indicate that, when briefly explained to people, carbon dioxide removal approaches were preferred to solar radiation management, while significant positive correlations were also found between concern about climate change and support for different geoengineering approaches. We discuss some of the wider considerations that are likely to shape public perceptions of geoengineering as it enters the media and public sphere, and conclude that, aside from technical considerations, public perceptions are likely to prove a key element influencing the debate over questions of the acceptability of geoengineering proposals.

  18. Exploring early public responses to geoengineering.

    PubMed

    Pidgeon, Nick; Corner, Adam; Parkhill, Karen; Spence, Alexa; Butler, Catherine; Poortinga, Wouter

    2012-09-13

    Proposals for geoengineering the Earth's climate are prime examples of emerging or 'upstream' technologies, because many aspects of their effectiveness, cost and risks are yet to be researched, and in many cases are highly uncertain. This paper contributes to the emerging debate about the social acceptability of geoengineering technologies by presenting preliminary evidence on public responses to geoengineering from two of the very first UK studies of public perceptions and responses. The discussion draws upon two datasets: qualitative data (from an interview study conducted in 42 households in 2009), and quantitative data (from a subsequent nationwide survey (n=1822) of British public opinion). Unsurprisingly, baseline awareness of geoengineering was extremely low in both cases. The data from the survey indicate that, when briefly explained to people, carbon dioxide removal approaches were preferred to solar radiation management, while significant positive correlations were also found between concern about climate change and support for different geoengineering approaches. We discuss some of the wider considerations that are likely to shape public perceptions of geoengineering as it enters the media and public sphere, and conclude that, aside from technical considerations, public perceptions are likely to prove a key element influencing the debate over questions of the acceptability of geoengineering proposals. PMID:22869796

  19. 350 my of mitochondrial genome stasis in mosses, an early land plant lineage.

    PubMed

    Liu, Yang; Medina, Rafael; Goffinet, Bernard

    2014-10-01

    Among land plants, angiosperms have the structurally most labile mitochondrial (mt) genomes. In contrast, the so-called early land plants (e.g., mosses) seem to have completely static mt chromosomes. We assembled the complete mt genomes from 12 mosses spanning the moss tree of life, to assess 1) the phylogenetic depth of the conserved mt gene content and order and 2) the correlation between scattered sequence repeats and gene order lability in land plants. The mt genome of most mosses is approximately 100 kb in size, and thereby the smallest among land plants. Based on divergence time estimates, moss mt genome structure has remained virtually frozen for 350 My, with only two independent gene losses and a single gene relocation detected across the macroevolutionary tree. This is the longest period of mt genome stasis demonstrated to date in a plant lineage. The complete lack of intergenic repeat sequences, considered to be essential for intragenomic recombinations, likely accounts for the evolutionary stability of moss mt genomes.

  20. Characterizing Participants in the ClinSeq Genome Sequencing Cohort as Early Adopters of a New Health Technology.

    PubMed

    Lewis, Katie L; Han, Paul K J; Hooker, Gillian W; Klein, William M P; Biesecker, Leslie G; Biesecker, Barbara B

    2015-01-01

    Genome sequencing is a novel clinical tool that has the potential to identify genetic origins of disease. However, the complexities of this new technology are significant and little is known about its integration into clinical care, and its potential adoption by patients. Expectations of its promise for personalized medicine are high and it is important to properly match expectations to the realities of the test. The NIH ClinSeq cohort study pilots the integration of genome sequencing into clinical research and care to assess the technical, medical and socio-behavioral aspects of implementing this technology. Over 950 adults ages 45-65 have been enrolled and clinically phenotyped. As an initial study, we describe the personality traits of ClinSeq participants, and explore how these traits compare to those that characterize early adopters of other new technologies. Our analysis was conducted on responses from 630 members of the cohort who completed a baseline survey on health cognitions, affect, health-related behaviors and personality traits, prior to receipt of any genome sequencing results. The majority of participants were white (90.5%), had at least a college degree (86.5%), and had at least one biological child (74.6%). Members of this ClinSeq sample were found to be high in dispositional optimism and resilience. Their high SES paralleled that of other early adopters of new technology. These attributes may contribute to participants' expectations for favorable outcomes and willingness to take higher risks when compared to the general population. These characteristics may distinguish those who are most likely to pursue genome sequencing and be indicative of their psychological resources to manage returned results.

  1. Characterizing Participants in the ClinSeq Genome Sequencing Cohort as Early Adopters of a New Health Technology

    PubMed Central

    Lewis, Katie L.; Han, Paul K. J.; Hooker, Gillian W.; Klein, William M. P.; Biesecker, Leslie G.; Biesecker, Barbara B.

    2015-01-01

    Genome sequencing is a novel clinical tool that has the potential to identify genetic origins of disease. However, the complexities of this new technology are significant and little is known about its integration into clinical care, and its potential adoption by patients. Expectations of its promise for personalized medicine are high and it is important to properly match expectations to the realities of the test. The NIH ClinSeq cohort study pilots the integration of genome sequencing into clinical research and care to assess the technical, medical and socio-behavioral aspects of implementing this technology. Over 950 adults ages 45-65 have been enrolled and clinically phenotyped. As an initial study, we describe the personality traits of ClinSeq participants, and explore how these traits compare to those that characterize early adopters of other new technologies. Our analysis was conducted on responses from 630 members of the cohort who completed a baseline survey on health cognitions, affect, health-related behaviors and personality traits, prior to receipt of any genome sequencing results. The majority of participants were white (90.5%), had at least a college degree (86.5%), and had at least one biological child (74.6%). Members of this ClinSeq sample were found to be high in dispositional optimism and resilience. Their high SES paralleled that of other early adopters of new technology. These attributes may contribute to participants’ expectations for favorable outcomes and willingness to take higher risks when compared to the general population. These characteristics may distinguish those who are most likely to pursue genome sequencing and be indicative of their psychological resources to manage returned results. PMID:26186621

  2. Genomic response of the nematode Caenorhabditis elegans to spaceflight

    NASA Astrophysics Data System (ADS)

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J.; Conley, Catharine A.

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The “International Caenorhabditis elegans Experiment FIRST” (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-β regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments.

  3. Genomic response of the nematode Caenorhabditis elegans to spaceflight.

    PubMed

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J; Conley, Catharine A

    2008-01-01

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The "International Caenorhabditis elegans Experiment FIRST" (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-beta regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments.

  4. Characterization of early host responses in adults with dengue disease

    PubMed Central

    2011-01-01

    Background While dengue-elicited early and transient host responses preceding defervescence could shape the disease outcome and reveal mechanisms of the disease pathogenesis, assessment of these responses are difficult as patients rarely seek healthcare during the first days of benign fever and thus data are lacking. Methods In this study, focusing on early recruitment, we performed whole-blood transcriptional profiling on denguevirus PCR positive patients sampled within 72 h of self-reported fever presentation (average 43 h, SD 18.6 h) and compared the signatures with autologous samples drawn at defervescence and convalescence and to control patients with fever of other etiology. Results In the early dengue fever phase, a strong activation of the innate immune response related genes were seen that was absent at defervescence (4-7 days after fever debut), while at this second sampling genes related to biosynthesis and metabolism dominated. Transcripts relating to the adaptive immune response were over-expressed in the second sampling point with sustained activation at the third sampling. On an individual gene level, significant enrichment of transcripts early in dengue disease were chemokines CCL2 (MCP-1), CCL8 (MCP-2), CXCL10 (IP-10) and CCL3 (MIP-1α), antimicrobial peptide β-defensin 1 (DEFB1), desmosome/intermediate junction component plakoglobin (JUP) and a microRNA which may negatively regulate pro-inflammatory cytokines in dengue infected peripheral blood cells, mIR-147 (NMES1). Conclusions These data show that the early response in patients mimics those previously described in vitro, where early assessment of transcriptional responses has been easily obtained. Several of the early transcripts identified may be affected by or mediate the pathogenesis and deserve further assessment at this timepoint in correlation to severe disease. PMID:21810247

  5. Genome-Wide Detection of SNP and SV Variations to Reveal Early Ripening-Related Genes in Grape

    PubMed Central

    Tao, Jianmin; Jiang, Weihua; Zhang, Shijie; Wang, Qiunan; Qu, Shenchun

    2016-01-01

    Early ripening in grape (Vitis vinifera L.) is a crucial agronomic trait. The fruits of the grape line ‘Summer Black’ (SBBM), which contains a bud mutation, can be harvested approximately one week earlier than the ‘Summer Black’ (SBC)control. To investigate the molecular mechanism of the bud mutation related to early ripening, we detected genome-wide genetic variations based on re-sequencing. In total, 3,692,777 single nucleotide polymorphisms (SNPs) and 81,223 structure variations (SVs) in the SBC genome and 3,823,464 SNPs and 85,801 SVs in the SBBM genome were detected compared with the reference grape sequence. Of these, 635 SBC-specific genes and 665 SBBM-specific genes were screened. Ripening and colour-associated unigenes with non-synonymous mutations (NS), SVs or frame-shift mutations (F) were analysed. The results showed that 90 unigenes in SBC, 76 unigenes in SBBM and 13 genes that mapped to large fragment indels were filtered. The expression patterns of eight genes were confirmed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).The re-sequencing data showed that 635 SBC-specific genes and 665 SBBM-specific genes associated with early ripening were screened. Among these, NCED6 expression appears to be related to NCED1 and is involved in ABA biosynthesis in grape, which might play a role in the onset of anthocyanin accumulation. The SEP and ERF genes probably play roles in ethylene response. PMID:26840449

  6. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi

    PubMed Central

    2010-01-01

    Background Intercellular signaling pathways are a fundamental component of the integrating cellular behavior required for the evolution of multicellularity. The genomes of three of the four early branching animal phyla (Cnidaria, Placozoa and Porifera) have been surveyed for key components, but not the fourth (Ctenophora). Genomic data from ctenophores could be particularly relevant, as ctenophores have been proposed to be one of the earliest branching metazoan phyla. Results A preliminary assembly of the lobate ctenophore Mnemiopsis leidyi genome generated using next-generation sequencing technologies were searched for components of a developmentally important signaling pathway, the Wnt/β-catenin pathway. Molecular phylogenetic analysis shows four distinct Wnt ligands (MlWnt6, MlWnt9, MlWntA and MlWntX), and most, but not all components of the receptor and intracellular signaling pathway were detected. In situ hybridization of the four Wnt ligands showed that they are expressed in discrete regions associated with the aboral pole, tentacle apparati and apical organ. Conclusions Ctenophores show a minimal (but not obviously simple) complement of Wnt signaling components. Furthermore, it is difficult to compare the Mnemiopsis Wnt expression patterns with those of other metazoans. mRNA expression of Wnt pathway components appears later in development than expected, and zygotic gene expression does not appear to play a role in early axis specification. Notably absent in the Mnemiopsis genome are most major secreted antagonists, which suggests that complex regulation of this secreted signaling pathway probably evolved later in animal evolution. PMID:20920349

  7. Genome-wide meta-analysis of longitudinal alcohol consumption across youth and early adulthood

    PubMed Central

    Adkins, Daniel E.; Clark, Shaunna L.; Copeland, William E.; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A.; Silberg, Judy; Brown, Tyson H.; Fergusson, David M.; Horwood, L. John; Eaves, Lindon; van den Oord, Edwin J.C.G.; Sullivan, Patrick F.; Costello, E. J.

    2016-01-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse and dependence increasing across adolescence and peaking in early adulthood. Here we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three, longitudinal community samples (N=2,126, obs=12,166). Consumption repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and 6 others met our “suggestive” criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms including neurotransmission, xenobiotic pharmacodynamics and nuclear hormone receptors. These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies. PMID:26081443

  8. Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus.

    PubMed

    Munks, Michael W; Gold, Marielle C; Zajac, Allison L; Doom, Carmen M; Morello, Christopher S; Spector, Deborah H; Hill, Ann B

    2006-03-15

    Human CMV establishes a lifelong latent infection in the majority of people worldwide. Although most infections are asymptomatic, immunocompetent hosts devote an extraordinary amount of immune resources to virus control. To increase our understanding of CMV immunobiology in an animal model, we used a genomic approach to comprehensively map the C57BL/6 CD8 T cell response to murine CMV (MCMV). Responses to 27 viral proteins were detectable directly ex vivo, the most diverse CD8 T cell response yet described within an individual animal. Twenty-four peptide epitopes were mapped from 18 Ags, which together account for most of the MCMV-specific response. Most Ags were from genes expressed at early times, after viral genes that interfere with Ag presentation are expressed, consistent with the hypothesis that the CD8 T cell response to MCMV is largely driven by cross-presented Ag. Titration of peptide epitopes in a direct ex vivo intracellular cytokine staining assay revealed a wide range of functional avidities, with no obvious correlation between functional avidity and the strength of the response. The immunodominance hierarchy varied only slightly between mice and between experiments. However, H-2(b)-expressing mice with different genetic backgrounds responded preferentially to different epitopes, indicating that non-MHC-encoded factors contribute to immunodominance in the CD8 T cell response to MCMV.

  9. T-cell activation and early gene response in dogs.

    PubMed

    Mortlock, Sally-Anne; Wei, Jerry; Williamson, Peter

    2015-01-01

    T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR), and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA) (5μg/ml), including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2), early growth response 1 (EGR1), growth arrest and DNA damage-inducible gene (GADD45B), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS), early growth response 2 (EGR2), hemogen (HEMGN), polo-like kinase 2 (PLK2) and polo-like kinase 3 (PLK3). Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in cell cycle

  10. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.

    PubMed

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2015-12-01

    Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection.

  11. Genome Wide assessment of Early Osseointegration in Implant-Adherent Cells

    NASA Astrophysics Data System (ADS)

    Thalji, Ghadeer N.

    Objectives: To determine the molecular processes involved in osseointegration. Materials and methods: A structured literature review concerning in vitro and in vivo molecular assessment of osseointegration was performed. A rat and a human model were then used to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface superimposed featured implants. In the rat model, 32 titanium implants with surface topographies exhibiting a micro roughened (AT-II) and nanosurface superimposed featured implants (AT-I) were placed in the tibiae of 8 rats and subsequently harvested at 2 and 4 days after placement. Whereas in the human model, four titanium mini-implants with either a moderately roughened surface (TiOblast) or super-imposed nanoscale topography (Osseospeed) were placed in edentulous sites of eleven systemically healthy subjects and subsequently removed after 3 and 7 days. Total RNA was isolated from cells adherent to retrieved implants. A whole genome microarray using the Affymetrix 1.1 ST Array platform was used to describe the gene expression profiles that were differentially regulated by the implant surfaces. Results: The literature review provided evidence that particular topographic cues can be specifically integrated among the many extracellular signals received by the cell in its signal transduction network. In the rat model, functionally relevant categories related to ossification, skeletal system development, osteoblast differentiation, bone development and biomineral tissue development were upregulated and more prominent at AT-I compared to AT-II. In the human model, there were no significant differences when comparing the two-implant surfaces at each time point. However, the microarray identified several genes that were differentially regulated at day 7 vs. day 3 for both implant surfaces. Functionally relevant categories related to the extracellular matrix, collagen fibril organization and

  12. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  13. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam. PMID:22974124

  14. Early Twentieth Century Responses to the Drug Problem.

    ERIC Educational Resources Information Center

    Pfennig, Dennis Joseph

    1991-01-01

    Describes early twentieth-century responses to the drug problem in the United States. Discusses pressure from the media and reformers to control the availability of drugs such as opium and cocaine that were widely available in over-the-counter medications. Focuses on New York State, which took the lead in enacting drug control legislation. (DK)

  15. The Reasons behind Early Adolescents' Responses to Peer Victimization

    ERIC Educational Resources Information Center

    Bellmore, Amy; Chen, Wei-Ting; Rischall, Emily

    2013-01-01

    Victims of school-based peer harassment face a range of risks including psycho-social, physical, and academic harm. The aim of the present study was to examine the behavioral coping responses used by early adolescents when they face peer victimization. To meet this aim, 216 sixth grade students (55% girls) from two urban middle schools and 254…

  16. Global Early Care and Education: Challenges, Responses, and Lessons

    ERIC Educational Resources Information Center

    Neuman, Michelle J.

    2005-01-01

    This article presents some pressing challenges facing early care and education policy and practice around the world and then highlights diverse country responses to these challenges with the goal of informing American decision-making. It focuses on three key cross-national challenges that are particularly relevant to current debates in the United…

  17. Conceptualizing Developmentally Responsive Teaching in Early Field Experiences

    ERIC Educational Resources Information Center

    Howell, Penny B.

    2012-01-01

    The purpose of this descriptive qualitative study was to examine case study as a pedagogical tool used to scaffold the conceptualization of developmentally responsive pedagogy for middle level preservice teachers in early field experiences. Child study projects (CSP) completed by middle level preservice candidates were analyzed to determine if…

  18. A Framework for Providing Culturally Responsive Early Intervention Services

    ERIC Educational Resources Information Center

    Bradshaw, Wendy

    2013-01-01

    The purpose of this article is to provide a framework that offers a way for early intervention (EI) service providers to better meet the needs of the culturally diverse children and families they serve. This framework was created to organize existing research and literature on cultural responsiveness in a way that fit the unique context of EI. The…

  19. A Comparison of Responsive Interventions on Kindergarteners' Early Reading Achievement

    ERIC Educational Resources Information Center

    Little, Mary E.; Rawlinson, D'Ann; Simmons, Deborah C.; Kim, Minjung; Kwok, Oi-man; Hagan-Burke, Shanna; Simmons, Leslie E.; Fogarty, Melissa; Oslund, Eric; Coyne, Michael D.

    2012-01-01

    This study compared the effects of Tier 2 reading interventions that operated in response-to-intervention contexts. Kindergarten children (N = 90) who were identified as at risk for reading difficulties were stratified by school and randomly assigned to receive (a) Early Reading Intervention (ERI; Pearson/Scott Foresman, 2004) modified in response…

  20. Outsmarting cancer: the power of hybrid genomic/proteomic biomarkers to predict drug response.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2014-01-01

    A recent study by Niepel and colleagues describes a novel approach to predicting response to targeted anti-cancer therapies. The authors used biochemical profiling of signaling activity in basal and ligand-stimulated states for a panel of receptor and intracellular kinases to develop predictive models of drug sensitivity. In some cases, the response to ligand stimulation predicted drug response better than did target abundance or genomic alterations in the targeted pathway. Furthermore, combining biochemical profiles with genomic information was better at predicting drug response. This work suggests that incorporating biochemical signaling profiles with genomic alterations should provide powerful predictors of response to molecularly targeted therapies.

  1. The Mitochondrial Genomes of the Early Land Plants Treubia lacunosa and Anomodon rugelii: Dynamic and Conservative Evolution

    PubMed Central

    Liu, Yang; Xue, Jia-Yu; Wang, Bin; Li, Libo; Qiu, Yin-Long

    2011-01-01

    Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss, Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes. These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the origins of land plants and their major clades. However, evolution of this organellar genome has remained rather conservative since the origin and initial radiation of early land plants, except within vascular plants. PMID

  2. The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution.

    PubMed

    Liu, Yang; Xue, Jia-Yu; Wang, Bin; Li, Libo; Qiu, Yin-Long

    2011-01-01

    Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss, Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes. These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the origins of land plants and their major clades. However, evolution of this organellar genome has remained rather conservative since the origin and initial radiation of early land plants, except within vascular plants.

  3. Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation.

    PubMed

    Peschke, Florian; Kretsch, Thomas

    2011-03-01

    Light is among the most important exogenous factors that regulate plant development. To sense light quality, intensity, direction, and duration, plants have evolved multiple photoreceptors that enable the detection of photons from the ultraviolet B (UV-B) to the far-red spectrum. To study the effect of different light qualities on early gene expression, dark-grown Arabidopsis (Arabidopsis thaliana) seedlings were either irradiated with continuous far-red, red, or blue light or received pulses of red, UV-A, or UV-A/B light. The expression profiles of seedlings harvested at 45 min and 4 h were determined on a full genome level and compared with the profiles of dark controls. Data were used to identify light-regulated genes and to group these genes according to their light responses. While most of the genes were regulated by more than one light quality, a considerable number of UV-B-specific gene expression responses were obtained. An extraordinarily high similarity in gene expression patterns was obtained for samples that perceived continuous irradiation with either far-red or blue light for 4 h. Mutant analyses hint that this coincidence is caused by a convergence of the signaling cascades that regulate gene expression downstream of cryptochrome blue light photoreceptors and phytochrome A. Whereas many early light-regulated genes exhibited uniform responses to all applied light treatments, highly divergent expression patterns developed at 4 h. These data clearly indicate that light signaling during early deetiolation undergoes a switch from a rapid, but unspecific, response mode to regulatory systems that measure the spectral composition and duration of incident light.

  4. Early growth and postprandial appetite regulatory hormone responses.

    PubMed

    Perälä, Mia-Maria; Kajantie, Eero; Valsta, Liisa M; Holst, Jens J; Leiviskä, Jaana; Eriksson, Johan G

    2013-11-14

    Strong epidemiological evidence suggests that slow prenatal or postnatal growth is associated with an increased risk of CVD and other metabolic diseases. However, little is known whether early growth affects postprandial metabolism and, especially, the appetite regulatory hormone system. Therefore, we investigated the impact of early growth on postprandial appetite regulatory hormone responses to two high-protein and two high-fat content meals. Healthy, 65-75-year-old volunteers from the Helsinki Birth Cohort Study were recruited; twelve with a slow increase in BMI during the first year of life (SGI group) and twelve controls. Subjects ate a test meal (whey meal, casein meal, SFA meal and PUFA meal) once in a random order. Plasma glucose, insulin, TAG, NEFA, ghrelin, peptide tyrosine-tyrosine (PYY), glucose-dependent insulinotropic peptide, glucagon-like peptide-1 and a satiety profile were measured in the fasting state and for 4 h after each test meal. Compared with the controls, the SGI group had about 1·5-fold higher insulin responses after the whey meal (P= 0·037), casein meal (P= 0·023) and PUFA meal (P= 0·002). TAG responses were 34-69 % higher for the SGI group, but only the PUFA-meal responses differed significantly between the groups. The PYY response of the SGI group was 44 % higher after the whey meal (P= 0·046) and 115 % higher after the casein meal (P= 0·025) compared with the controls. No other statistically significant differences were seen between the groups. In conclusion, early growth may have a role in programming appetite regulatory hormone secretion in later life. Slow early growth is also associated with higher postprandial insulin and TAG responses but not with incretin levels.

  5. Cell-mediated immune responses to COPV early proteins.

    PubMed

    Jain, Suchitra; Moore, Richard A; Anderson, Davina M; Gough, Gerald W; Stanley, Margaret A

    Cell-mediated immunity plays a key role in the regression of papillomavirus-induced warts and intra-epithelial lesions but the target antigens that induce this response are not clear. Canine oral papillomavirus (COPV) infection of the oral cavity in dogs is a well-characterized model of mucosal papillomavirus infection that permits analysis of the immune events during the infectious cycle. In this study we show that during the COPV infectious cycle, systemic T cell responses to peptides of several early proteins particularly the E2 protein, as assayed by delayed type hypersensitivity, lymphoproliferation and IFN-gamma ELISPOT, can be detected. The maximal response occurs in a narrow time window that coincides with maximal viral DNA replication and wart regression: thereafter, systemic T cell responses to early proteins decline quite rapidly. Vaccination using particle-mediated immunotherapeutic delivery (PMID) of codon-modified COPV E2 and E1 genes induces strong antigen-specific cell-mediated immune responses in the vaccinated animals. These data show that therapeutic immunization by PMID with codon-modified E2 is completely effective, that to E1 is partially protective, that this correlates with the intensity of antigen-specific cell-mediated immune responses and, further, they emphasize the importance of these responses and the route of immunization in the generation of protective immunity. PMID:16949120

  6. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra.

    PubMed

    Emerling, Christopher A; Springer, Mark S

    2015-02-01

    Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann's two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution. PMID:25540280

  7. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra.

    PubMed

    Emerling, Christopher A; Springer, Mark S

    2015-02-01

    Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann's two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution.

  8. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra

    PubMed Central

    Emerling, Christopher A.; Springer, Mark S.

    2015-01-01

    Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann's two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution. PMID:25540280

  9. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.

    PubMed

    Orlando, Ludovic; Ginolhac, Aurélien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Røed, Knut H; Eisenmann, Véra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Søren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjær, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske

    2013-07-01

    The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.

  10. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants.

    PubMed

    Arya, Preeti; Acharya, Vishal

    2016-01-01

    NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain) P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC) and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR). In the present study, we have employed a genome-wide survey (using stringent computational analysis) of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte) which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria.

  11. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants

    PubMed Central

    Arya, Preeti; Acharya, Vishal

    2016-01-01

    NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain) P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC) and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR). In the present study, we have employed a genome-wide survey (using stringent computational analysis) of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte) which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria. PMID:26930396

  12. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat.

    PubMed

    Le Gouis, J; Bordes, J; Ravel, C; Heumez, E; Faure, S; Praud, S; Galic, N; Remoué, C; Balfourier, F; Allard, V; Rousset, M

    2012-02-01

    The modification of flowering date is considered an important way to escape the current or future climatic constraints that affect wheat crops. A better understanding of its genetic bases would enable a more efficient and rapid modification through breeding. The objective of this study was to identify chromosomal regions associated with earliness in wheat. A 227-wheat core collection chosen to be highly contrasted for earliness was characterized for heading date. Experiments were conducted in controlled conditions and in the field for 3 years to break down earliness in the component traits: photoperiod sensitivity, vernalization requirement and narrow-sense earliness. Whole-genome association mapping was carried out using 760 molecular markers and taking into account the five ancestral group structure. We identified 62 markers individually associated to earliness components corresponding to 33 chromosomal regions. In addition, we identified 15 other significant markers and seven more regions by testing marker pair interactions. Co-localizations were observed with the Ppd-1, Vrn-1 and Rht-1 candidate genes. Using an independent set of lines to validate the model built for heading date, we were able to explain 34% of the variation using the structure and the significant markers. Results were compared with already published data using bi-parental populations giving an insight into the genetic architecture of flowering time in wheat.

  13. Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L.

    PubMed

    Yu, Kunjiang; Wang, Xiaodong; Chen, Feng; Chen, Song; Peng, Qi; Li, Hongge; Zhang, Wei; Hu, Maolong; Chu, Pu; Zhang, Jiefu; Guan, Rongzhan

    2016-01-01

    Floral transition and petal onset, as two main aspects of flower development, are crucial to rapeseed evolutionary success and yield formation. Currently, very little is known regarding the genetic architecture that regulates flowering time and petal morphogenesis in Brassica napus. In the present study, a genome-wide transcriptomic analysis was performed with an absolutely apetalous and early flowering line, APL01, and a normally petalled line, PL01, using high-throughput RNA sequencing. In total, 13,205 differential expressed genes were detected, of which 6111 genes were significantly down-regulated, while 7094 genes were significantly up-regulated in the young inflorescences of APL01 compared with PL01. The expression levels of a vast number of genes involved in protein biosynthesis were altered in response to the early flowering and apetalous character. Based on the putative rapeseed flowering genes, an early flowering network, mainly comprised of vernalization and photoperiod pathways, was built. Additionally, 36 putative upstream genes possibly governing the apetalous character of line APL01 were identified, and six genes potentially regulating petal origination were obtained by combining with three petal-related quantitative trait loci. These findings will facilitate understanding of the molecular mechanisms underlying floral transition and petal initiation in B. napus. PMID:27460760

  14. Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L

    PubMed Central

    Yu, Kunjiang; Wang, Xiaodong; Chen, Feng; Chen, Song; Peng, Qi; Li, Hongge; Zhang, Wei; Hu, Maolong; Chu, Pu; Zhang, Jiefu; Guan, Rongzhan

    2016-01-01

    Floral transition and petal onset, as two main aspects of flower development, are crucial to rapeseed evolutionary success and yield formation. Currently, very little is known regarding the genetic architecture that regulates flowering time and petal morphogenesis in Brassica napus. In the present study, a genome-wide transcriptomic analysis was performed with an absolutely apetalous and early flowering line, APL01, and a normally petalled line, PL01, using high-throughput RNA sequencing. In total, 13,205 differential expressed genes were detected, of which 6111 genes were significantly down-regulated, while 7094 genes were significantly up-regulated in the young inflorescences of APL01 compared with PL01. The expression levels of a vast number of genes involved in protein biosynthesis were altered in response to the early flowering and apetalous character. Based on the putative rapeseed flowering genes, an early flowering network, mainly comprised of vernalization and photoperiod pathways, was built. Additionally, 36 putative upstream genes possibly governing the apetalous character of line APL01 were identified, and six genes potentially regulating petal origination were obtained by combining with three petal-related quantitative trait loci. These findings will facilitate understanding of the molecular mechanisms underlying floral transition and petal initiation in B. napus. PMID:27460760

  15. Implementation of responsiveness to intervention in early education settings.

    PubMed

    Justice, Laura M; McGinty, Anita; Guo, Ying; Moore, Douglas

    2009-05-01

    This article provides an overview of how response to intervention (RTI) may be used effectively within early childhood settings. Discussion is organized to address such issues regarding RTI implementation as (1) how to design and implement a high-quality Tier 1 learning environment that systematically improves children's language and literacy outcomes, (2) how to design and implement a high-quality Tier 2 supplemental learning intervention that systematically improves the language and literacy outcomes of children who are unresponsive to Tier 1, and (3) how to design and implement a comprehensive and cohesive assessment system that appropriately identifies children who show inadequate response to the Tier 1 and Tier 2 learning opportunities. A model for implementing RTI using the supplemental curriculum by Justice and McGinty, READ IT AGAIN-PREK! (2008), is presented. This tool was developed to meet the needs of early childhood programs as they seek to implement RIA in a cost-effective and scalable manner.

  16. Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution?

    PubMed

    Kuraku, Shigehiro

    2011-06-01

    Hox genes, responsible for regional specification along the anteroposterior axis in embryogenesis, are found as clusters in most eumetazoan genomes sequenced to date. Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters, derived from the so-called two-round whole genome duplications (2R-WGDs), are observed. Overall, the number of Hox gene clusters has been regarded as a reliable marker of ploidy levels in animal genomes. In fact, this scheme also fits the situations in teleost fishes that experienced an additional WGD. In this review, I focus on cyclostomes and cartilaginous fishes as lineages that would fill the gap between invertebrates and osteichthyans. A recent study highlighted a possible loss of the HoxC cluster in the galeomorph shark lineage, while other aspects of cartilaginous fish Hox clusters usually mark their conserved nature. In contrast, existing resources suggest that the cyclostomes exhibit a different mode of Hox cluster organization. For this group of species, whose genomes could have differently responded to the 2R-WGDs from jawed vertebrates, therefore the number of Hox clusters may not serve as a good indicator of their ploidy level. PMID:21802046

  17. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques.

    PubMed

    Günther, Torsten; Valdiosera, Cristina; Malmström, Helena; Ureña, Irene; Rodriguez-Varela, Ricardo; Sverrisdóttir, Óddny Osk; Daskalaki, Evangelia A; Skoglund, Pontus; Naidoo, Thijessen; Svensson, Emma M; Bermúdez de Castro, José María; Carbonell, Eudald; Dunn, Michael; Storå, Jan; Iriarte, Eneko; Arsuaga, Juan Luis; Carretero, José-Miguel; Götherström, Anders; Jakobsson, Mattias

    2015-09-22

    The consequences of the Neolithic transition in Europe--one of the most important cultural changes in human prehistory--is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter-gatherers. The proportion of hunter-gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people. PMID:26351665

  18. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques

    PubMed Central

    Günther, Torsten; Valdiosera, Cristina; Malmström, Helena; Ureña, Irene; Rodriguez-Varela, Ricardo; Sverrisdóttir, Óddny Osk; Daskalaki, Evangelia A.; Skoglund, Pontus; Naidoo, Thijessen; Svensson, Emma M.; Bermúdez de Castro, José María; Carbonell, Eudald; Dunn, Michael; Storå, Jan; Iriarte, Eneko; Arsuaga, Juan Luis; Carretero, José-Miguel; Götherström, Anders; Jakobsson, Mattias

    2015-01-01

    The consequences of the Neolithic transition in Europe—one of the most important cultural changes in human prehistory—is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter–gatherers. The proportion of hunter–gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people. PMID:26351665

  19. Identification of two novel functional p53 responsive elements in the Herpes Simplex Virus-1 genome

    PubMed Central

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R.; Boehmer, Paul E.

    2014-01-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. PMID:25010269

  20. Comparisons of early transcriptome responses to low-oxygen environments in three dicotyledonous plant species

    PubMed Central

    Christianson, Jed A; Llewellyn, Danny J; Dennis, Elizabeth S

    2010-01-01

    Waterlogging is a serious impediment to crop productivity worldwide which acts to reduce oxygen levels in the rhizosphere due to the low diffusion rate of molecular oxygen in water. Plants respond to low oxygen through rapid and specific changes at both the transcriptional and translational levels. Transcriptional changes to low-oxygen (hypoxia) stress have been studied in a number of plant species using whole genome microarrays. Using transcriptome data from root tissue from early time points (4–5 h) from cotton (Gossypium hirsutum), Arabidopsis and gray poplar (Populus x canescens), we have identified a core set of orthologous genes that responded to hypoxia in similar ways between species, and others that showed species specific responses. Responses to hypoxia were most similar between Arabidopsis and cotton, while the waterlogging tolerant poplar species exhibited some significant differences. PMID:20724824

  1. Genome-Wide Computational Analysis of Dioxin Response Element Location and Distribution in the Human, Mouse and Rat Genomes

    PubMed Central

    Dere, Edward; Forgacs, Agnes L; Zacharewski, Timothy R; Burgoon, Lyle D

    2014-01-01

    The aryl hydrocarbon receptor (AhR) mediates responses elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin by binding to dioxin response elements (DRE) containing the core consensus sequence 5′-GCGTG-3′. The human, mouse and rat genomes were computationally searched for all DRE cores. Each core was then extended by 7bp upstream and downstream, and matrix similarity (MS) scores for the resulting 19bp DRE sequences were calculated using a revised position weight matrix constructed from bona fide functional DREs. In total, 72,318 human, 70,720 mouse and 88,651 rat high-scoring (MS ≥ 0.8437) putative DREs were identified. Gene encoding intragenic DNA regions had ~1.6-times more putative DREs than the non-coding intergenic DNA regions. Furthermore, the promoter region spanning ±1.5kb of a TSS had the highest density of putative DREs within the genome. Chromosomal analysis found that the putative DRE densities of chromosomes X and Y were significantly lower than the mean chromosomal density. Interestingly, the 10kb upstream promoter region on chromosome X of the genomes were significantly less dense than the chromosomal mean, while the same region in chromosome Y was the most dense. In addition to providing a detailed genomic map of all DRE cores in the human, mouse and rat genomes, these data will further aid the elucidation of AhR-mediated signal transduction. PMID:21370876

  2. Identification of candidate genes for an early-maturing soybean mutant by genome resequencing analysis.

    PubMed

    Lee, Kyung Jun; Kim, Dong Sub; Kim, Jin-Baek; Jo, Sung-Hwan; Kang, Si-Yong; Choi, Hong-Il; Ha, Bo-Keun

    2016-08-01

    Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In this study, we performed whole genome resequencing by Illumina HiSeq to identify changes in flowering genes using an early-flowering phenotype of soybean mutant line Josaengserori (JS) derived from Korean landrace, Seoritae (SR), and we obtained mapped reads of 131,769,690 and 167,669,640 bp in JS and SR, respectively. From the whole genome sequencing results between JS and SR, we identified 332,821 polymorphic SNPs and 65,178 indels, respectively. Among these, 30 flowering genes were in SNPs and 25 were in indels. Among 30 flowering genes detected in SNPs, Glyma02g33040, Glyma06g22650, Glyma10g36600, Glyma13g01290, Glyma14g10530, Glyma16g01980, Glyma17g11040, Glyma18g53690, and Glyma20g29300 were non-synonymous substitutions between JS and SR. Changes in Glyma10g36600 (GI), Glya02g33040 (AGL18), Glyma17g11040 (TOC1), and Glyma14g10530 (ELF3) in JS affected the expression of GmFT2a and resulted in early flowering. These results provide insight into the regulatory pathways of flowering in soybean mutants and help to improve our knowledge of soybean mutation breeding.

  3. Identification of candidate genes for an early-maturing soybean mutant by genome resequencing analysis.

    PubMed

    Lee, Kyung Jun; Kim, Dong Sub; Kim, Jin-Baek; Jo, Sung-Hwan; Kang, Si-Yong; Choi, Hong-Il; Ha, Bo-Keun

    2016-08-01

    Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In this study, we performed whole genome resequencing by Illumina HiSeq to identify changes in flowering genes using an early-flowering phenotype of soybean mutant line Josaengserori (JS) derived from Korean landrace, Seoritae (SR), and we obtained mapped reads of 131,769,690 and 167,669,640 bp in JS and SR, respectively. From the whole genome sequencing results between JS and SR, we identified 332,821 polymorphic SNPs and 65,178 indels, respectively. Among these, 30 flowering genes were in SNPs and 25 were in indels. Among 30 flowering genes detected in SNPs, Glyma02g33040, Glyma06g22650, Glyma10g36600, Glyma13g01290, Glyma14g10530, Glyma16g01980, Glyma17g11040, Glyma18g53690, and Glyma20g29300 were non-synonymous substitutions between JS and SR. Changes in Glyma10g36600 (GI), Glya02g33040 (AGL18), Glyma17g11040 (TOC1), and Glyma14g10530 (ELF3) in JS affected the expression of GmFT2a and resulted in early flowering. These results provide insight into the regulatory pathways of flowering in soybean mutants and help to improve our knowledge of soybean mutation breeding. PMID:27033554

  4. Utilization of the human louse genome to study insecticide resistance and innate immune response

    PubMed Central

    Clark, J. Marshall; Yoon, Kyong Sup; Kim, Ju Hyeon; Lee, Si Hyeock; Pittendrigh, Barry R.

    2015-01-01

    Since sequencing the human body louse genome, substantial advances have occurred in the utilization of the information gathered from louse genomes and transcriptomes. Comparatively, the body louse genome contains far fewer genes involved in environmental response, such as xenobiotic detoxification and innate immune response. Additionally, the body louse maintains a primary bacterial endosymbiont, Candidatus Riesia pediculicola, and a number of bacterial pathogens that it vectors, which have genomes that are also reduced in size. Thus, human louse genomes offer unique information and tools for use in advancing our understanding of coevolution among vectors, endosymbionts and pathogens. In this review, we summarize the current literature on the extent of pediculicide resistance, the availability of new pediculicides and information establishing this organism as an efficient model to study how xenobiotic metabolism, which is involved in insecticide resistance, is induced and how insects modify their innate immune response upon bacterial challenge resulting in enhanced vector competence. PMID:25987230

  5. Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification

    PubMed Central

    Li, Hui; Stoddard, Mark B.; Wang, Shuyi; Giorgi, Elena E.; Blair, Lily M.; Learn, Gerald H.; Hahn, Beatrice H.; Alter, Harvey J.; Busch, Michael P.; Fierer, Daniel S.; Ribeiro, Ruy M.; Perelson, Alan S.; Bhattacharya, Tanmoy

    2015-01-01

    ABSTRACT Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. IMPORTANCE Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the

  6. Inhibited early immunologic response is associated with hypertrophic scarring.

    PubMed

    Butzelaar, Liselotte; Schooneman, Dennis P M; Soykan, Ezgi A; Talhout, Wendy; Ulrich, Magda M W; van den Broek, Lenie J; Gibbs, Susan; Beelen, Robert H J; Mink van der Molen, Aebele B; Niessen, Frank B

    2016-10-01

    This study aimed to examine changes in the inflammatory response in early hypertrophic compared to normal wound healing. The immune system is thought to be involved in hypertrophic scar formation. However, the exact mechanism and time of onset of the derailment remain unknown. In a prospective observational study, skin biopsies were taken directly postwounding and 3 hours later from patients who had elective cardiothoracic surgery. The skin biopsies were analysed for mRNA, proteins and cells involved in the early inflammatory phase of wound healing. The endpoint was scar outcome (hypertrophic (HTS) or normal (NTS)) at one year after surgery. There were significant differences between the NTS and HTS groups regarding the fold changes of mRNA expression of P-selectin during surgery. Postoperative skin concentrations of inflammatory proteins IL-6, IL-8 and CCL2 were significantly lower in the HTS compared to the NTS group. Also, a trend of higher pre-operative M2 macrophage numbers was observed in the HTS group. Neutrophil numbers increased equally during surgery in both groups. The increase of P-selectin mRNA in hypertrophic wound healing could affect leucocyte migration. The decreased concentrations of inflammatory proteins in hypertrophic wound healing indicate a reduced inflammatory response, which has consequences for the treatment of hypertrophic scarring during the early inflammatory phase. In a conclusion, alterations of wound healing associated with hypertrophic scarring are visible as early as 3 hours postwounding and include a reduced rather than increased inflammatory protein response. PMID:27249786

  7. Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties.

    PubMed

    Wang, Yongcui; Fang, Jianwen; Chen, Shilong

    2016-01-01

    Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that have been treated with different drugs. Here we focus on predicting drug response based on integration of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer cells and drugs. When integrating both genomic resources and compound information, the prediction coverage was significantly increased. The validity of PDRCC was also supported by its effective in uncovering the unknown cell-drug associations with database and literature evidences. It set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell 'A549_LUNG' and compound 'Topotecan'. In conclusion, PDRCC offers the possibility for faster, safer, and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails. PMID:27645580

  8. Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties

    PubMed Central

    Wang, Yongcui; Fang, Jianwen; Chen, Shilong

    2016-01-01

    Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that have been treated with different drugs. Here we focus on predicting drug response based on integration of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer cells and drugs. When integrating both genomic resources and compound information, the prediction coverage was significantly increased. The validity of PDRCC was also supported by its effective in uncovering the unknown cell-drug associations with database and literature evidences. It set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell ‘A549_LUNG’ and compound ‘Topotecan’. In conclusion, PDRCC offers the possibility for faster, safer, and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails. PMID:27645580

  9. Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Fang, Jianwen; Chen, Shilong

    2016-09-01

    Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that have been treated with different drugs. Here we focus on predicting drug response based on integration of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer cells and drugs. When integrating both genomic resources and compound information, the prediction coverage was significantly increased. The validity of PDRCC was also supported by its effective in uncovering the unknown cell-drug associations with database and literature evidences. It set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell ‘A549_LUNG’ and compound ‘Topotecan’. In conclusion, PDRCC offers the possibility for faster, safer, and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails.

  10. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    PubMed

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. PMID:26307440

  11. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    PubMed

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum.

  12. The complete sequence of the mitochondrial genome of Butomus umbellatus--a member of an early branching lineage of monocotyledons.

    PubMed

    Cuenca, Argelia; Petersen, Gitte; Seberg, Ole

    2013-01-01

    In order to study the evolution of mitochondrial genomes in the early branching lineages of the monocotyledons, i.e., the Acorales and Alismatales, we are sequencing complete genomes from a suite of key taxa. As a starting point the present paper describes the mitochondrial genome of Butomus umbellatus (Butomaceae) based on next-generation sequencing data. The genome was assembled into a circular molecule, 450,826 bp in length. Coding sequences cover only 8.2% of the genome and include 28 protein coding genes, four rRNA genes, and 12 tRNA genes. Some of the tRNA genes and a 16S rRNA gene are transferred from the plastid genome. However, the total amount of recognized plastid sequences in the mitochondrial genome is only 1.5% and the amount of DNA transferred from the nucleus is also low. RNA editing is abundant and a total of 557 edited sites are predicted in the protein coding genes. Compared to the 40 angiosperm mitochondrial genomes sequenced to date, the GC content of the Butomus genome is uniquely high (49.1%). The overall similarity between the mitochondrial genomes of Butomus and Spirodela (Araceae), the closest relative yet sequenced, is low (less than 20%), and the two genomes differ in size by a factor 2. Gene order is also largely unconserved. However, based on its phylogenetic position within the core alismatids Butomus will serve as a good reference point for subsequent studies in the early branching lineages of the monocotyledons.

  13. Genome-wide identification of novel genes involved in early Th1 and Th2 cell differentiation.

    PubMed

    Lund, Riikka J; Löytömäki, Maritta; Naumanen, Tiina; Dixon, Craig; Chen, Zhi; Ahlfors, Helena; Tuomela, Soile; Tahvanainen, Johanna; Scheinin, Joonas; Henttinen, Tiina; Rasool, Omid; Lahesmaa, Riitta

    2007-03-15

    Th cell subtypes, Th1 and Th2, are involved in the pathogenesis or progression of many immune-mediated diseases, such as type 1 diabetes and asthma, respectively. Defining the molecular networks and factors that direct Th1 and Th2 cell differentiation will help to understand the pathogenic mechanisms causing these diseases. Some of the key factors regulating this differentiation have been identified, however, they alone do not explain the process in detail. To identify novel factors directing the early differentiation, we have studied the transcriptomes of human Th1 and Th2 cells after 2, 6, and 48 h of polarization at the genome scale. Based on our current and previous studies, 288 genes or expressed sequence tags, representing approximately 1-1.5% of the human genome, are regulated in the process during the first 2 days. These transcriptional profiles revealed genes coding for components of certain pathways, such as RAS oncogene family and G protein-coupled receptor signaling, to be differentially regulated during the early Th1 and Th2 cell differentiation. Importantly, numerous novel genes with unknown functions were identified. By using short-hairpin RNA knockdown, we show that a subset of these genes is regulated by IL-4 through STAT6 signaling. Furthermore, we demonstrate that one of the IL-4 regulated genes, NDFIP2, promotes IFN-gamma production by the polarized human Th1 lymphocytes. Among the novel genes identified, there may be many factors that play a crucial role in the regulation of the differentiation process together with the previously known factors and are potential targets for developing therapeutics to modulate Th1 and Th2 responses. PMID:17339462

  14. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations

    PubMed Central

    Lin, Yao-Cheng; Boone, Morgane; Meuris, Leander; Lemmens, Irma; Van Roy, Nadine; Soete, Arne; Reumers, Joke; Moisse, Matthieu; Plaisance, Stéphane; Drmanac, Radoje; Chen, Jason; Speleman, Frank; Lambrechts, Diether; Van de Peer, Yves; Tavernier, Jan; Callewaert, Nico

    2014-01-01

    The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect. PMID:25182477

  15. Early immune responses accompanying human asymptomatic Ebola infections

    PubMed Central

    Leroy, E M; Baize, S; Debre, P; Lansoud-Soukate, J; Mavoungou, E

    2001-01-01

    In a recent study we identified certain asymptomatic individuals infected by Ebola virus (EBOV) who mounted specific IgG and early and strong inflammatory responses. Here, we further characterized the primary immune response to EBOV during the course of asymptomatic infection in humans. Inflammatory responses occurred in temporal association with anti-inflammatory phase composed by soluble antagonist IL-1RA, circulating TNF receptors, IL-10 and cortisol. At the end of the inflammatory process, mRNA expression of T-cell cytokines (IL-2 and IL-4) and activation markers (CD28, CD40L and CTLA4) was up-regulated, strongly suggesting T-cell activation. This T-cell activation was followed by EBOV-specific IgG responses (mainly IgG3 ang IgG1), and by marked and sustained up-regulation of IFNγ, FasL and perforin mRNA expression, suggesting activation of cytotoxic cells. The terminal down-regulation of these latter markers coincided with the release of the apoptotic marker 41/7 NMP in blood and with the disappearance of viral RNA from PBMC, suggesting that infected cells are eliminated by cytotoxic mechanisms. Finally, RT-PCR analysis of TCR-Vβ repertoire usage showed that TCR-Vβ12 mRNA was never expressed during the infection. Taken together, these findings improve our understanding about immune response during human asymptomatic Ebola infection, and throw new light on protection against Ebola virus. PMID:11472407

  16. Genomic analysis of the host response to nervous necrosis virus in Atlantic cod (Gadus morhua) brain.

    PubMed

    Krasnov, Aleksei; Kileng, Øyvind; Skugor, Stanko; Jørgensen, Sven Martin; Afanasyev, Sergey; Timmerhaus, Gerrit; Sommer, Ann-Inger; Jensen, Ingvill

    2013-07-01

    Genome sequencing combined with transcriptome profiling promotes exploration of defence against pathogens and discovery of immune genes. Based on sequences from the recently released genome of Atlantic cod, a genome-wide oligonucleotide microarray (ACIQ-1) was designed and used for analyses of gene expression in the brain during infection with nervous necrosis virus (NNV). A challenge experiment with NNV was performed with Atlantic cod juveniles and brain samples from virus infected and uninfected fish were used for microarray analysis. Expression of virus induced genes increased at 5 days post challenge and persisted at stable level to the last sampling at 25 days post challenge. A large fraction of the up-regulated genes (546 features) were known or expected to have immune functions and most of these have not previously been characterized in Atlantic cod. Transcriptomic changes induced by the virus involved strong activation of genes associated with interferon and tumour necrosis factor related responses and acute inflammation. Up-regulation of genes involved in adaptive immunity suggested a rapid recruitment of B and T lymphocytes to the NNV infected brain. QPCR analyses of 15 candidate genes of innate immunity showed rapid induction by poly(I:C) in Atlantic cod larvae cells suggesting an antiviral role. Earliest and greatest expression changes after poly I:C stimulation was observed for interferon regulatory factors IRF4 and IRF7. Comparative studies between teleost species provided new knowledge about the evolution of innate antiviral immunity in fish. A number of genes is present or responds to viruses only in fish. Innate immunity of Atlantic cod is characterized by selective expansion of several medium-sized multigene families with ribose binding domains. An interesting finding was the high representation of three large gene families among the early antiviral genes, including tripartite motif proteins (TRIM) and proteins with PRY-SPRY and NACHT domains. The

  17. Transcriptome Analysis of Silkworm, Bombyx mori, during Early Response to Beauveria bassiana Challenges

    PubMed Central

    Hou, Chengxiang; Qin, Guangxing; Liu, Ting; Geng, Tao; Gao, Kun; Pan, Zhonghua; Qian, Heying; Guo, Xijie

    2014-01-01

    Host–pathogen interactions are complex processes and it is a central challenge to reveal these interactions. Fungal infection of silkworm, Bombyx mori, may induce a variety of responsive reaction. However, little is known about the molecular mechanism of silkworm immune response against the fungal infection. To obtain an overview of the interaction between silkworm and an entomopathogenic fungus Beauveria bassiana, Digital Gene Expression profiling, a tag based high-throughput transcriptome sequencing method, was employed to screen and identify differentially expressed genes (DEGs, FDR≤0.001, ∣log2ratio∣≥1) of silkworm larvae during early response against B. bassiana infection. Total 1430 DEGs including 960 up-regulated and 470 down-regulated ones were identified, of which 627 DEGs can be classified into GO categories by Gene Ontology (GO) analysis. KEGG pathways analysis of these DEGs suggested that many biological processes, such as defense and response, signal transduction, phagocytosis, regulation of gene expression, RNA splicing, biosynthesis and metabolism, protein transport etc. were involved in the interaction between the silkworm and B. bassiana. A number of differentially expressed fungal genes were also identified by mapping the sequencing tags to B. bassiana genome. These results provided new insights to the molecular mechanism of silkworm immune response to B. bassiana infection. PMID:24618587

  18. A genome triplication associated with early diversification of the core eudicots

    PubMed Central

    2012-01-01

    Background Although it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear. Results To determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago. Conclusions The rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis. PMID:22280555

  19. Whole genome response in guinea pigs infected with the high virulence strain Mycobacterium tuberculosis TT372

    PubMed Central

    Aiyaz, Mohamed; Bipin, Chand; Pantulwar, Vinay; Mugasimangalam, Raja; Shanley, Crystal A.; Ordway, Diane J; Orme, Ian M.

    2014-01-01

    SUMMARY In this study we conducted a microarray-based whole genomic analysis of gene expression in the lungs after exposure of guinea pigs to a low dose aerosol of the Atypical Beijing Western Cape TT372 strain of Mycobacterium tuberculosis, after harvesting lung tissues three weeks after infection at a time that effector immunity is starting to peak. The infection resulted in a very large up-regulation of multiple genes at this time, particularly in the context of a “chemokine storm” in the lungs. Overall gene expression was considerably reduced in animals that had been vaccinated with BCG two months earlier, but in both cases strong signatures featuring gamma interferon [IFNγ] and tumor necrosis factor [TNFα] were observed indicating the potent TH1 response in these animals. Even though their effects are not seen until later in the infection, even at this early time point gene expression patterns associated with the potential emergence of regulatory T cells were observed. Genes involving lung repair, response to oxidative stress, and cell trafficking were strongly expressed, but interesting these gene patterns differed substantially between the infected and vaccinated/infected groups of animals. Given the importance of this species as a relevant and cost-effective small animal model of tuberculosis, this approach has the potential to provide new information regarding the effects of vaccination on control of the disease process. PMID:25621360

  20. Whole genome response in guinea pigs infected with the high virulence strain Mycobacterium tuberculosis TT372.

    PubMed

    Aiyaz, Mohamed; Bipin, Chand; Pantulwar, Vinay; Mugasimangalam, Raja; Shanley, Crystal A; Ordway, Diane J; Orme, Ian M

    2014-12-01

    In this study we conducted a microarray-based whole genomic analysis of gene expression in the lungs after exposure of guinea pigs to a low dose aerosol of the Atypical Beijing Western Cape TT372 strain of Mycobacterium tuberculosis, after harvesting lung tissues three weeks after infection at a time that effector immunity is starting to peak. The infection resulted in a very large up-regulation of multiple genes at this time, particularly in the context of a "chemokine storm" in the lungs. Overall gene expression was considerably reduced in animals that had been vaccinated with BCG two months earlier, but in both cases strong signatures featuring gamma interferon [IFNγ] and tumor necrosis factor [TNFα] were observed indicating the potent TH1 response in these animals. Even though their effects are not seen until later in the infection, even at this early time point gene expression patterns associated with the potential emergence of regulatory T cells were observed. Genes involving lung repair, response to oxidative stress, and cell trafficking were strongly expressed, but interesting these gene patterns differed substantially between the infected and vaccinated/infected groups of animals. Given the importance of this species as a relevant and cost-effective small animal model of tuberculosis, this approach has the potential to provide new information regarding the effects of vaccination on control of the disease process.

  1. Tipping points and early warning signals in the genomic composition of populations induced by environmental changes.

    PubMed

    Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    We live in an ever changing biosphere that faces continuous and often stressing environmental challenges. From this perspective, much effort is currently devoted to understanding how natural populations succeed or fail in adapting to evolving conditions. In a different context, many complex dynamical systems experience critical transitions where their dynamical behaviour or internal structure changes suddenly. Here we connect both approaches and show that in rough and correlated fitness landscapes, population dynamics shows flickering under small stochastic environmental changes, alerting of the existence of tipping points. Our analytical and numerical results demonstrate that transitions at the genomic level preceded by early-warning signals are a generic phenomenon in constant and slowly driven landscapes affected by even slight stochasticity. As these genomic shifts are approached, the time to reach mutation-selection equilibrium dramatically increases, leading to the appearance of hysteresis in the composition of the population. Eventually, environmental changes significantly faster than the typical adaptation time may result in population extinction. Our work points out several indicators that are at reach with current technologies to anticipate these sudden and largely unavoidable transitions.

  2. Responsiveness of the core set, response criteria, and utilities in early rheumatoid arthritis

    PubMed Central

    Verhoeven, A; Boers, M; van der Linden, S

    2000-01-01

    OBJECTIVE—Validation of responsiveness and discriminative power of the World Health Organisation/International League of Associations for Rheumatology (WHO/ILAR) core set, the American College of Rheumatology (ACR), and European League for Rheumatology (EULAR) criteria for improvement/response, and other single and combined measures (indices) in a trial in patients with early rheumatoid arthritis (RA).
METHODS—Ranking of measures by response (standardised response means and effect sizes) and between-group discrimination (unpaired t test and χ2 values) at two time points in the COBRA study. This study included 155 patients with early RA randomly allocated to two treatment groups with distinct levels of expected response: combined treatment, high response; sulfasalazine treatment, moderate response.
RESULTS—At week 16, standardised response means of core set measures ranged between 0.8 and 3.5 for combined treatment and between 0.4 and 1.2 for sulfasalazine treatment (95% confidence interval ±0.25). Performance of patient oriented measures (for example, pain, global assessment) was best when the questions were focused on the disease. The most responsive single measure was the patient's assessment of change in disease activity, at 3.5. Patient utility, a generic health status measure, was moderately (rating scale) to poorly (standard gamble) responsive. Response means of most indices (combined measures) exceeded 2.0, the simple count of core set measures improved by 20% was most responsive at 4.1. Discrimination performance yielded similar but not identical results: best discrimination between treatment groups was achieved by the EULAR response and ACR improvement criteria (at 20% and other percentage levels), the pooled index, and the disease activity score (DAS), but also by the Health Assessment Questionnaire (HAQ) and grip strength.
CONCLUSIONS—Responsiveness and discrimination between levels of response are not identical concepts, and

  3. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies).

    PubMed

    Pellicer, J; Kelly, L J; Magdalena, C; Leitch, I J

    2013-08-01

    Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented. PMID:24168627

  4. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies).

    PubMed

    Pellicer, J; Kelly, L J; Magdalena, C; Leitch, I J

    2013-08-01

    Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented.

  5. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    NASA Astrophysics Data System (ADS)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  6. Detection of early plant stress responses in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Behmann, Jan; Steinrücken, Jörg; Plümer, Lutz

    2014-07-01

    Early stress detection in crop plants is highly relevant, but hard to achieve. We hypothesize that close range hyperspectral imaging is able to uncover stress related processes non-destructively in the early stages which are invisible to the human eye. We propose an approach which combines unsupervised and supervised methods in order to identify several stages of progressive stress development from series of hyperspectral images. Stress of an entire plant is detected by stress response levels at pixel scale. The focus is on drought stress in barley (Hordeum vulgare). Unsupervised learning is used to separate hyperspectral signatures into clusters related to different stages of stress response and progressive senescence. Whereas all such signatures may be found in both, well watered and drought stressed plants, their respective distributions differ. Ordinal classification with Support Vector Machines (SVM) is used to quantify and visualize the distribution of progressive stages of senescence and to separate well watered from drought stressed plants. For each senescence stage a distinctive set of most relevant Vegetation Indices (VIs) is identified. The method has been applied on two experiments involving potted barley plants under well watered and drought stress conditions in a greenhouse. Drought stress is detected up to ten days earlier than using NDVI. Furthermore, it is shown that some VIs have overall relevance, while others are specific to particular senescence stages. The transferability of the method to the field is illustrated by an experiment on maize (Zea mays).

  7. Implementation of responsiveness to intervention in early education settings.

    PubMed

    Justice, Laura M; McGinty, Anita; Guo, Ying; Moore, Douglas

    2009-05-01

    This article provides an overview of how response to intervention (RTI) may be used effectively within early childhood settings. Discussion is organized to address such issues regarding RTI implementation as (1) how to design and implement a high-quality Tier 1 learning environment that systematically improves children's language and literacy outcomes, (2) how to design and implement a high-quality Tier 2 supplemental learning intervention that systematically improves the language and literacy outcomes of children who are unresponsive to Tier 1, and (3) how to design and implement a comprehensive and cohesive assessment system that appropriately identifies children who show inadequate response to the Tier 1 and Tier 2 learning opportunities. A model for implementing RTI using the supplemental curriculum by Justice and McGinty, READ IT AGAIN-PREK! (2008), is presented. This tool was developed to meet the needs of early childhood programs as they seek to implement RIA in a cost-effective and scalable manner. PMID:19399693

  8. Double-stranded RNA-activated protein kinase regulates early innate immune responses during respiratory syncytial virus infection.

    PubMed

    Minor, Radiah A Corn; Limmon, Gino V; Miller-DeGraff, Laura; Dixon, Darlene; Andrews, Danica M K; Kaufman, Randal J; Imani, Farhad

    2010-04-01

    Respiratory syncytial virus (RSV) is the most common cause of childhood viral bronchiolitis and lung injury. Inflammatory responses significantly contribute to lung pathologies during RSV infections and bronchiolitis but the exact mechanisms have not been completely defined. The double-stranded RNA-activated protein kinase (PKR) functions to inhibit viral replication and participates in several signaling pathways associated with innate inflammatory immune responses. Using a functionally defective PKR (PKR(-/-)) mouse model, we investigated the role of this kinase in early events of RSV-induced inflammation. Our data showed that bronchoalveolar lavage (BAL) fluid from infected PKR(-/-) mice had significantly lower levels of several innate inflammatory cytokines and chemokines. Histological examinations revealed that there was less lung injury in infected PKR(-/-) mice as compared to the wild type. A genome-wide analysis showed that several early antiviral and immune regulatory genes were affected by PKR activation. These data suggest that PKR is a signaling molecule for immune responses during RSV infections.

  9. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response

    PubMed Central

    Negi, Pooja; Rai, Archana N.; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577

  10. Local Adaptation at the Transcriptome Level in Brown Trout: Evidence from Early Life History Temperature Genomic Reaction Norms

    PubMed Central

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric; Mensberg, Karen-Lise D.; Frydenberg, Jane; Larsen, Peter Foged; Bekkevold, Dorte; Bernatchez, Louis

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The

  11. Novel Comparative Pattern Count Analysis Reveals a Chronic Ethanol-Induced Dynamic Shift in Immediate Early NF-κB Genome-wide Promoter Binding During Liver Regeneration

    PubMed Central

    Kuttippurathu, Lakshmi; Patra, Biswanath; Hoek, Jan B; Vadigepalli, Rajanikanth

    2016-01-01

    Liver regeneration after partial hepatectomy is a clinically important process that is impaired by adaptation to chronic alcohol intake. We focused on the initial time points following partial hepatectomy (PHx) to analyze genome-wide binding activity of NF-κB, a key immediate early regulator. We investigated the effect of chronic alcohol intake on immediate early NF-κB genome-wide localization, in the adapted state as well as in response to partial hepatectomy, using chromatin immunoprecipitation followed by promoter microarray analysis. We found many ethanol-specific NF-κB binding target promoters in the ethanol-adapted state, corresponding to regulation of biosynthetic processes, oxidation-reduction and apoptosis. Partial hepatectomy induced a diet-independent shift in NF-κB binding loci relative to the transcription start sites. We employed a novel pattern count analysis to exhaustively enumerate and compare the number of promoters corresponding to the temporal binding patterns in ethanol and pair-fed control groups. The highest pattern count corresponded to promoters with NF-κB binding exclusively in the ethanol group at 1h post PHx. This set was associated with regulation of cell death, response to oxidative stress, histone modification, mitochondrial function, and metabolic processes. Integration with the global gene expression profiles to identify putative transcriptional consequences of NF-κB binding patterns revealed that several of ethanol-specific 1h binding targets showed ethanol-specific differential expression through 6h post PHx. Motif analysis yielded co-incident binding loci for STAT3, AP-1, CREB, C/EBP-β, PPAR-γ and C/EBP-α, likely participating in co-regulatory modules with NF-κB in shaping the immediate early response to PHx. We conclude that adaptation to chronic ethanol intake disrupts the NF-κB promoter binding landscape with consequences for the immediate early gene regulatory response to the acute challenge of PHx. PMID:26847025

  12. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    PubMed

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  13. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    PubMed

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms.

  14. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    PubMed Central

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 Project: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  15. Genomic, transcriptomic and phenomic variation reveals the complex adaptation to stress response of modern maize breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early maize adaptation to different agricultural environments was an important process associated with the creation of a stable food supply that allowed the evolution of human civilization in the Americas. To explore the mechanisms of maize adaptation, genomic, transcriptomic and phenomic data were ...

  16. Enhancing early child care quality and learning for toddlers at risk: the responsive early childhood program.

    PubMed

    Landry, Susan H; Zucker, Tricia A; Taylor, Heather B; Swank, Paul R; Williams, Jeffrey M; Assel, Michael; Crawford, April; Huang, Weihua; Clancy-Menchetti, Jeanine; Lonigan, Christopher J; Phillips, Beth M; Eisenberg, Nancy; Spinrad, Tracy L; de Villiers, Jill; de Villiers, Peter; Barnes, Marcia; Starkey, Prentice; Klein, Alice

    2014-02-01

    Despite reports of positive effects of high-quality child care, few experimental studies have examined the process of improving low-quality center-based care for toddler-age children. In this article, we report intervention effects on child care teachers' behaviors and children's social, emotional, behavioral, early literacy, language, and math outcomes as well as the teacher-child relationship. The intervention targeted the use of a set of responsive teacher practices, derived from attachment and sociocultural theories, and a comprehensive curriculum. Sixty-five childcare classrooms serving low-income 2- and 3-year-old children were randomized into 3 conditions: business-as-usual control, Responsive Early Childhood Curriculum (RECC), and RECC plus explicit social-emotional classroom activities (RECC+). Classroom observations showed greater gains for RECC and RECC+ teachers' responsive practices including helping children manage their behavior, establishing a predictable schedule, and use of cognitively stimulating activities (e.g., shared book reading) compared with controls; however, teacher behaviors did not differ for focal areas such as sensitivity and positive discipline supports. Child assessments demonstrated that children in the interventions outperformed controls in areas of social and emotional development, although children's performance in control and intervention groups was similar for cognitive skills (language, literacy, and math). Results support the positive impact of responsive teachers and environments providing appropriate support for toddlers' social and emotional development. Possible explanations for the absence of systematic differences in children's cognitive skills are considered, including implications for practice and future research targeting low-income toddlers. PMID:23772822

  17. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer

    PubMed Central

    Tie, J.; Kinde, I.; Wang, Y.; Wong, H. L.; Roebert, J.; Christie, M.; Tacey, M.; Wong, R.; Singh, M.; Karapetis, C. S.; Desai, J.; Tran, B.; Strausberg, R. L.; Diaz, L. A.; Papadopoulos, N.; Kinzler, K. W.; Vogelstein, B.; Gibbs, P.

    2015-01-01

    Background Early indicators of treatment response in metastatic colorectal cancer (mCRC) could conceivably be used to optimize treatment. We explored early changes in circulating tumor DNA (ctDNA) levels as a marker of therapeutic efficacy. Patients and methods This prospective study involved 53 mCRC patients receiving standard first-line chemotherapy. Both ctDNA and CEA were assessed in plasma collected before treatment, 3 days after treatment and before cycle 2. Computed tomography (CT) scans were carried out at baseline and 8–10 weeks and were centrally assessed using RECIST v1.1 criteria. Tumors were sequenced using a panel of 15 genes frequently mutated in mCRC to identify candidate mutations for ctDNA analysis. For each patient, one tumor mutation was selected to assess the presence and the level of ctDNA in plasma samples using a digital genomic assay termed Safe-SeqS. Results Candidate mutations for ctDNA analysis were identified in 52 (98.1%) of the tumors. These patient-specific candidate tissue mutations were detectable in the cell-free DNA from the plasma of 48 of these 52 patients (concordance 92.3%). Significant reductions in ctDNA (median 5.7-fold; P < 0.001) levels were observed before cycle 2, which correlated with CT responses at 8–10 weeks (odds ratio = 5.25 with a 10-fold ctDNA reduction; P = 0.016). Major reductions (≥10-fold) versus lesser reductions in ctDNA precycle 2 were associated with a trend for increased progression-free survival (median 14.7 versus 8.1 months; HR = 1.87; P = 0.266). Conclusions ctDNA is detectable in a high proportion of treatment naïve mCRC patients. Early changes in ctDNA during first-line chemotherapy predict the later radiologic response. PMID:25851626

  18. Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower Development

    PubMed Central

    Wellmer, Frank; Alves-Ferreira, Márcio; Dubois, Annick; Riechmann, José Luis; Meyerowitz, Elliot M

    2006-01-01

    Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner. PMID:16789830

  19. Entire genome sequence analysis of genotype IX Newcastle disease viruses reveals their early-genotype phylogenetic position and recent-genotype genome size

    PubMed Central

    2011-01-01

    Background Six nucleotide (nt) insertion in the 5'-noncoding region (NCR) of the nucleoprotein (NP) gene of Newcaslte disease virus (NDV) is considered to be a genetic marker for recent genotypes of NDV, which emerged after 1960. However, F48-like NDVs from China, identified a 6-nt insert in the NP gene, have been previously classified into genotype III or genotype IX. Results In order to clarify their phylogenetic position and explore the origin of NDVs with the 6-nt insert and its significance in NDV evolution, we determined the entire genome sequences of five F48-like viruses isolated in China between 1946 and 2002 by RT-PCR amplification of overlapping fragments of full-length genome and rapid amplification of cDNA ends. All the five NDV isolates shared the same genome size of 15,192-nt with the recent genotype V-VIII viruses whereas they had the highest homology with early genotype III and IV isolates. Conclusions The unique characteristic of the genome size and phylogenetic position of F48-like viruses warrants placing them in a separate geno-group, genotype IX. Results in this study also suggest that genotype IX viruses most likely originate from a genotype III virus by insertion of a 6-nt motif in the 5'-NCR of the NP gene which had occurred as early as in 1940 s, and might be the common origin of genotype V-VIII viruses. PMID:21396134

  20. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    SciTech Connect

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  1. Broad CTL Response in Early HIV Infection Drives Multiple Concurrent CTL Escapes.

    PubMed

    Leviyang, Sivan; Ganusov, Vitaly V

    2015-10-01

    Recent studies have highlighted the ability of HIV to escape from cytotoxic T lymphocyte (CTL) responses that concurrently target multiple viral epitopes. Yet, the viral dynamics involved in such escape are incompletely understood. Previous analyses have made several strong assumptions regarding HIV escape from CTL responses such as independent or non-concurrent escape from individual CTL responses. Using experimental data from evolution of HIV half genomes in four patients we observe concurrent viral escape from multiple CTL responses during early infection (first 100 days of infection), providing confirmation of a recent result found in a study of one HIV-infected patient. We show that current methods of estimating CTL escape rates, based on the assumption of independent escapes, are biased and perform poorly when CTL escape proceeds concurrently at multiple epitopes. We propose a new method for analyzing longitudinal sequence data to estimate the rate of CTL escape across multiple epitopes; this method involves few parameters and performs well in simulation studies. By applying our novel method to experimental data, we find that concurrent multiple escapes occur at rates between 0.03 and 0.4 day(-1), a relatively broad range that reflects uncertainty due to sparse sampling and wide ranges of parameter values. However, we show that concurrent escape at rates 0.1-0.2 day(-1) across multiple epitopes is consistent with our patient datasets.

  2. Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response

    PubMed Central

    Brucklacher, Robert M; Patel, Kruti M; VanGuilder, Heather D; Bixler, Georgina V; Barber, Alistair J; Antonetti, David A; Lin, Cheng-Mao; LaNoue, Kathryn F; Gardner, Thomas W; Bronson, Sarah K; Freeman, Willard M

    2008-01-01

    Background Despite advances in the understanding of diabetic retinopathy, the nature and time course of molecular changes in the retina with diabetes are incompletely described. This study characterized the functional and molecular phenotype of the retina with increasing durations of diabetes. Results Using the streptozotocin-induced rat model of diabetes, levels of retinal permeability, caspase activity, and gene expression were examined after 1 and 3 months of diabetes. Gene expression changes were identified by whole genome microarray and confirmed by qPCR in the same set of animals as used in the microarray analyses and subsequently validated in independent sets of animals. Increased levels of vascular permeability and caspase-3 activity were observed at 3 months of diabetes, but not 1 month. Significantly more and larger magnitude gene expression changes were observed after 3 months than after 1 month of diabetes. Quantitative PCR validation of selected genes related to inflammation, microvasculature and neuronal function confirmed gene expression changes in multiple independent sets of animals. Conclusion These changes in permeability, apoptosis, and gene expression provide further evidence of progressive retinal malfunction with increasing duration of diabetes. The specific gene expression changes confirmed in multiple sets of animals indicate that pro-inflammatory, anti-vascular barrier, and neurodegenerative changes occur in tandem with functional increases in apoptosis and vascular permeability. These responses are shared with the clinically documented inflammatory response in diabetic retinopathy suggesting that this model may be used to test anti-inflammatory therapeutics. PMID:18554398

  3. Forecasting Cell Death Dose-Response from Early Signal Transduction Responses In Vitro

    PubMed Central

    Vrana, Julie A.; Currie, Holly N.; Han, Alice A.; Boyd, Jonathan

    2014-01-01

    The rapid pharmacodynamic response of cells to toxic xenobiotics is primarily coordinated by signal transduction networks, which follow a simple framework: the phosphorylation/dephosphorylation cycle mediated by kinases and phosphatases. However, the time course from initial pharmacodynamic response(s) to cell death following exposure can have a vast range. Viewing this time lag between early signaling events and the ultimate cellular response as an opportunity, we hypothesize that monitoring the phosphorylation of proteins related to cell death and survival pathways at key, early time points may be used to forecast a cell's eventual fate, provided that we can measure and accurately interpret the protein responses. In this paper, we focused on a three-phased approach to forecast cell death after exposure: (1) determine time points relevant to important signaling events (protein phosphorylation) by using estimations of adenosine triphosphate production to reflect the relationship between mitochondrial-driven energy metabolism and kinase response, (2) experimentally determine phosphorylation values for proteins related to cell death and/or survival pathways at these significant time points, and (3) use cluster analysis to predict the dose-response relationship between cellular exposure to a xenobiotic and plasma membrane degradation at 24 h post-exposure. To test this approach, we exposed HepG2 cells to two disparate treatments: a GSK-3β inhibitor and a MEK inhibitor. After using our three-phased approach, we were able to accurately forecast the 24 h HepG2 plasma membrane degradation dose-response from protein phosphorylation values as early as 20 min post-MEK inhibitor exposure and 40 min post-GSK-3β exposure. PMID:24824809

  4. Forecasting cell death dose-response from early signal transduction responses in vitro.

    PubMed

    Vrana, Julie A; Currie, Holly N; Han, Alice A; Boyd, Jonathan

    2014-08-01

    The rapid pharmacodynamic response of cells to toxic xenobiotics is primarily coordinated by signal transduction networks, which follow a simple framework: the phosphorylation/dephosphorylation cycle mediated by kinases and phosphatases. However, the time course from initial pharmacodynamic response(s) to cell death following exposure can have a vast range. Viewing this time lag between early signaling events and the ultimate cellular response as an opportunity, we hypothesize that monitoring the phosphorylation of proteins related to cell death and survival pathways at key, early time points may be used to forecast a cell's eventual fate, provided that we can measure and accurately interpret the protein responses. In this paper, we focused on a three-phased approach to forecast cell death after exposure: (1) determine time points relevant to important signaling events (protein phosphorylation) by using estimations of adenosine triphosphate production to reflect the relationship between mitochondrial-driven energy metabolism and kinase response, (2) experimentally determine phosphorylation values for proteins related to cell death and/or survival pathways at these significant time points, and (3) use cluster analysis to predict the dose-response relationship between cellular exposure to a xenobiotic and plasma membrane degradation at 24 h post-exposure. To test this approach, we exposed HepG2 cells to two disparate treatments: a GSK-3β inhibitor and a MEK inhibitor. After using our three-phased approach, we were able to accurately forecast the 24 h HepG2 plasma membrane degradation dose-response from protein phosphorylation values as early as 20 min post-MEK inhibitor exposure and 40 min post-GSK-3β exposure.

  5. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    SciTech Connect

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  6. Genetic response of Paspalum plicatulum to genome duplication.

    PubMed

    Weihmüller, Emilse; Beltrán, Celina; Sartor, María; Espinoza, Francisco; Spampinato, Claudia; Pessino, Silvina

    2014-06-01

    Paspalum plicatulum is a perennial rhizomatous grass with natural diploid and polyploid cytotypes. In this study, we investigated the occurrence of sequence polymorphisms arising immediately after genome autoduplication in this species. Two mixoploid plants (4C and 7D) were previously obtained through colchicine treatment of seeds generated by open pollination of a diploid plant (H14-2x). Diploid and tetraploid sectors from both mixoploids were dissected to generate two ploidy series (4C-2x/4C-4x and 7D-2x/7D-4x). Molecular fingerprints were generated from the maternal plant H14-2x, both ploidy series (4C-2x/4C-4x and 7D-2x/7D-4x), and a tetraploid plant (C1) produced by selfing 7D-4x. Our results indicate that immediately after polyploidization P. plicatulum suffers genetic rearrangements affecting ~28-38 % of the genome. Band gain and loss were equally prevalent at a statistically significant level. At least 5.62 % of the genome experimented recurrent genetic variation in a non-random basis with a confidence of 94.88 %. A significant proportion of novel bands (36 out of 195; 18.4 %) was detected in the C1 tetraploid plant. Half of these bands were not amplified in either H14-2x or 7D-4x, while the remainders were present in H14-2x but absent in 7D-4x. Our results indicate the occurrence of a considerable number of genetic changes in P. plicatulum immediately after polyploidization, some of which were recurrently detected in different independent events. Moreover, we confirmed that after polyploidization, lost ancestral alleles were spontaneously recovered in further generations, a phenomenon previously reported by other research groups. PMID:24858395

  7. The progress of early growth response factor 1 and leukemia

    PubMed Central

    Tian, Jing; Li, Ziwei; Han, Yang; Jiang, Tao; Song, Xiaoming; Jiang, Guosheng

    2016-01-01

    Summary Early growth response gene-1 (EGR1) widely exists in the cell nucleus of such as, zebrafish, mice, chimpanzees and humans, an it also can be observed in the cytoplasm of some tumors. EGR1 was named just after its brief and rapid expression of different stimuli. Accumulating studies have extensively demonstrated that the widespread dysregulation of EGR1 is involved in hematological malignancies such as human acute myeloid leukemia (AML), chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B cell lymphoma. With the deep research on EGR1, its expression, function and regulatory mechanism has been gradually elucidated, and provides more possibilities for treatment strategies of patients with leukemia. Herein, we summarize the roles of EGR1 in its biological function and relationship with leukemia. PMID:27195189

  8. Early disaster response in Haiti: the Israeli field hospital experience.

    PubMed

    Kreiss, Yitshak; Merin, Ofer; Peleg, Kobi; Levy, Gad; Vinker, Shlomo; Sagi, Ram; Abargel, Avi; Bartal, Carmi; Lin, Guy; Bar, Ariel; Bar-On, Elhanan; Schwaber, Mitchell J; Ash, Nachman

    2010-07-01

    The earthquake that struck Haiti in January 2010 caused an estimated 230,000 deaths and injured approximately 250,000 people. The Israel Defense Forces Medical Corps Field Hospital was fully operational on site only 89 hours after the earthquake struck and was capable of providing sophisticated medical care. During the 10 days the hospital was operational, its staff treated 1111 patients, hospitalized 737 patients, and performed 244 operations on 203 patients. The field hospital also served as a referral center for medical teams from other countries that were deployed in the surrounding areas. The key factor that enabled rapid response during the early phase of the disaster from a distance of 6000 miles was a well-prepared and trained medical unit maintained on continuous alert. The prompt deployment of advanced-capability field hospitals is essential in disaster relief, especially in countries with minimal medical infrastructure. The changing medical requirements of people in an earthquake zone dictate that field hospitals be designed to operate with maximum flexibility and versatility regarding triage, staff positioning, treatment priorities, and hospitalization policies. Early coordination with local administrative bodies is indispensable.

  9. Oviductal response to gametes and early embryos in mammals.

    PubMed

    Maillo, Veronica; Sánchez-Calabuig, Maria Jesus; Lopera-Vasquez, Ricaurte; Hamdi, Meriem; Gutierrez-Adan, Alfonso; Lonergan, Patrick; Rizos, Dimitrios

    2016-10-01

    The oviduct is a complex and organized thin tubular structure connecting the ovary with the uterus. It is the site of final sperm capacitation, oocyte fertilization and, in most species, the first 3-4days of early embryo development. The oviductal epithelium is made up of ciliary and secretory cells responsible for the secretion of proteins and other factors which contribute to the formation of the oviductal fluid. Despite significant research, most of the pathways and oviductal factors implicated in the crosstalk between gametes/early embryo and the oviduct remain unknown. Therefore, studying the oviductal environment is crucial to improve our understanding of the regulatory mechanisms controlling fertilization and embryo development. In vitro systems are a valuable tool to study in vivo pathways and mechanisms, particularly those in the oviducts which in livestock species are challenging to access. In studies of gamete and embryo interaction with the reproductive tract, oviductal epithelial cells, oviductal fluid and microvesicles co-cultured with gametes/embryos represent the most appropriate in vitro models to mimic the physiological conditions in vivo. PMID:27512123

  10. State of the Art: Response Assessment in Lung Cancer in the Era of Genomic Medicine

    PubMed Central

    Hatabu, Hiroto; Johnson, Bruce E.; McLoud, Theresa C.

    2014-01-01

    Tumor response assessment has been a foundation for advances in cancer therapy. Recent discoveries of effective targeted therapy for specific genomic abnormalities in lung cancer and their clinical application have brought revolutionary advances in lung cancer therapy and transformed the oncologist’s approach to patients with lung cancer. Because imaging is a major method of response assessment in lung cancer both in clinical trials and practice, radiologists must understand the genomic alterations in lung cancer and the rapidly evolving therapeutic approaches to effectively communicate with oncology colleagues and maintain the key role in lung cancer care. This article describes the origin and importance of tumor response assessment, presents the recent genomic discoveries in lung cancer and therapies directed against these genomic changes, and describes how these discoveries affect the radiology community. The authors then summarize the conventional Response Evaluation Criteria in Solid Tumors and World Health Organization guidelines, which continue to be the major determinants of trial endpoints, and describe their limitations particularly in an era of genomic-based therapy. More advanced imaging techniques for lung cancer response assessment are presented, including computed tomography tumor volume and perfusion, dynamic contrast material–enhanced and diffusion-weighted magnetic resonance imaging, and positron emission tomography with fluorine 18 fluorodeoxyglucose and novel tracers. State-of-art knowledge of lung cancer biology, treatment, and imaging will help the radiology community to remain effective contributors to the personalized care of lung cancer patients. © RSNA, 2014 PMID:24661292

  11. Structure and transcription of an immediate-early region in the human herpesvirus 6 genome.

    PubMed Central

    Schiewe, U; Neipel, F; Schreiner, D; Fleckenstein, B

    1994-01-01

    The unique segment of the human herpesvirus 6 (HHV-6) genome is essentially collinear to the unique long DNA segment of another betaherpesvirus, the human cytomegalovirus (HCMV). However, the HHV-6 genomic section that is analogous in position to the major immediate-early (IE) locus of HCMV does not exhibit recognizable sequence homologies. The respective HHV-6 region of 5.5 kbp is flanked on one side by 25 to 28 incomplete tandem repeats of 105 to 110 bp that contain, with one exception, a single KpnI restriction site (KpnI repeats). About 250 reiterations of the sequence motif CACATA are located on the other end. We identified two open reading frames of 375 and 2,595 nucleotides, respectively, on one strand. Strand-specific Northern blot analyses with RNA harvested from HHV-6 (strain U1102)-infected HSB-2 cells or cord blood lymphocytes revealed two transcripts of about 3.5 and 4.7 kb in the corresponding orientation. Sequence analyses of the respective cDNA clones and primer extension experiments were used to map the mRNAs. The two transcripts are coterminal and multiply spliced and code for the same putative 104.6-kDa protein, but they are initiated from different promoters. Characterization of smaller cDNA clones and Northern blotting with other strand-specific probes showed that singly spliced mRNAs of 1.0 and 1.5 kb are transcribed from the opposite strand; they could code for a 17.2-kDa polypeptide. Blocking experiments with cycloheximide led to the conclusion that only the 3.5-kb mRNA is synthesized in the absence of protein biosynthesis upon infection with cell-free virus. This identifies a single IE gene of HHV-6 at the genomic position corresponding to the major IE region of HCMV, although the coding content and transcriptional regulation are quite different for these two herpesvirus IE regions. Images PMID:8151768

  12. Early and late response of Nematostella vectensis transcriptome to heavy metals.

    PubMed

    Elran, Ron; Raam, Maayan; Kraus, Roey; Brekhman, Vera; Sher, Noa; Plaschkes, Inbar; Chalifa-Caspi, Vered; Lotan, Tamar

    2014-10-01

    Environmental contamination from heavy metals poses a global concern for the marine environment, as heavy metals are passed up the food chain and persist in the environment long after the pollution source is contained. Cnidarians play an important role in shaping marine ecosystems, but environmental pollution profoundly affects their vitality. Among the cnidarians, the sea anemone Nematostella vectensis is an advantageous model for addressing questions in molecular ecology and toxicology as it tolerates extreme environments and its genome has been published. Here, we employed a transcriptome-wide RNA-Seq approach to analyse N. vectensis molecular defence mechanisms against four heavy metals: Hg, Cu, Cd and Zn. Altogether, more than 4800 transcripts showed significant changes in gene expression. Hg had the greatest impact on up-regulating transcripts, followed by Cu, Zn and Cd. We identified, for the first time in Cnidaria, co-up-regulation of immediate-early transcription factors such as Egr1, AP1 and NF-κB. Time-course analysis of these genes revealed their early expression as rapidly as one hour after exposure to heavy metals, suggesting that they may complement or substitute for the roles of the metal-mediating Mtf1 transcription factor. We further characterized the regulation of a large array of stress-response gene families, including Hsp, ABC, CYP members and phytochelatin synthase, that may regulate synthesis of the metal-binding phytochelatins instead of the metallothioneins that are absent from Cnidaria genome. This study provides mechanistic insight into heavy metal toxicity in N. vectensis and sheds light on ancestral stress adaptations.

  13. Early and late response of Nematostella vectensis transcriptome to heavy metals.

    PubMed

    Elran, Ron; Raam, Maayan; Kraus, Roey; Brekhman, Vera; Sher, Noa; Plaschkes, Inbar; Chalifa-Caspi, Vered; Lotan, Tamar

    2014-10-01

    Environmental contamination from heavy metals poses a global concern for the marine environment, as heavy metals are passed up the food chain and persist in the environment long after the pollution source is contained. Cnidarians play an important role in shaping marine ecosystems, but environmental pollution profoundly affects their vitality. Among the cnidarians, the sea anemone Nematostella vectensis is an advantageous model for addressing questions in molecular ecology and toxicology as it tolerates extreme environments and its genome has been published. Here, we employed a transcriptome-wide RNA-Seq approach to analyse N. vectensis molecular defence mechanisms against four heavy metals: Hg, Cu, Cd and Zn. Altogether, more than 4800 transcripts showed significant changes in gene expression. Hg had the greatest impact on up-regulating transcripts, followed by Cu, Zn and Cd. We identified, for the first time in Cnidaria, co-up-regulation of immediate-early transcription factors such as Egr1, AP1 and NF-κB. Time-course analysis of these genes revealed their early expression as rapidly as one hour after exposure to heavy metals, suggesting that they may complement or substitute for the roles of the metal-mediating Mtf1 transcription factor. We further characterized the regulation of a large array of stress-response gene families, including Hsp, ABC, CYP members and phytochelatin synthase, that may regulate synthesis of the metal-binding phytochelatins instead of the metallothioneins that are absent from Cnidaria genome. This study provides mechanistic insight into heavy metal toxicity in N. vectensis and sheds light on ancestral stress adaptations. PMID:25145541

  14. Construction and Characterization of Recombinant HSV-1 Expressing Early Growth Response-1.

    PubMed

    Bedadala, Gautam; Chen, Feng; Figliozzi, Robert; Balish, Matthew; Hsia, Victor

    2014-01-01

    Early Growth response-1 (Egr-1) is a transcription factor that possesses a variety of biological functions. It has been shown to regulate HSV-1 gene expression and replication in different cellular environments through the recruitment of distinct cofactor complexes. Previous studies demonstrated that Egr-1 can be induced by HSV-1 infection in corneal cells but the level was lower compared to other cell types. The primary goal of this report is to generate a recombinant HSV-1 constitutively expressing Egr-1 and to investigate the regulation of viral replication in different cell types or in animals with Egr-1 overexpression. The approach utilized was to introduce Egr-1 into the BAC system containing complete HSV-1 (F) genome. To assist in the insertion of Egr-1, a gene cassette was constructed that contains the Egr-1 gene flanked byloxP sites. In this clone Egr-1 is expressed under control of CMV immediate-early promoter followed by another gene cassette expressing the enhanced green fluorescent protein (EGFP) under the control of the elongation factor 1α (EF-1 α) promoter. The constructed recombinant viruses were completed containing the Egr-1 gene within the viral genome and the expression was characterized by qRT-PCR and Western blot analyses. Our results showed that Egr-1 transcript and protein can be generated and accumulated upon infection of recombinant virus in Vero and rabbit corneal cells SIRC. This unique virus therefore is useful for studying the effects of Egr-1 during HSV-1 replication and gene regulation in epithelial cells and neurons. PMID:25346859

  15. Deciphering Human Immunodeficiency Virus Type 1 Transmission and Early Envelope Diversification by Single-Genome Amplification and Sequencing▿

    PubMed Central

    Salazar-Gonzalez, Jesus F.; Bailes, Elizabeth; Pham, Kimmy T.; Salazar, Maria G.; Guffey, M. Brad; Keele, Brandon F.; Derdeyn, Cynthia A.; Farmer, Paul; Hunter, Eric; Allen, Susan; Manigart, Olivier; Mulenga, Joseph; Anderson, Jeffrey A.; Swanstrom, Ronald; Haynes, Barton F.; Athreya, Gayathri S.; Korber, Bette T. M.; Sharp, Paul M.; Shaw, George M.; Hahn, Beatrice H.

    2008-01-01

    Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 × 10−5. Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 × 10−5 substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified

  16. Auxin response factor gene family in Brassica rapa: genomic organization, divergence, expression, and evolution.

    PubMed

    Mun, Jeong-Hwan; Yu, Hee-Ju; Shin, Ja Young; Oh, Mijin; Hwang, Hyun-Ju; Chung, Hee

    2012-10-01

    Completion of the sequencing of the Brassica rapa genome enabled us to undertake a genome-wide identification and functional study of the gene families related to the morphological diversity and agronomic traits of Brassica crops. In this study, we identified the auxin response factor (ARF) gene family, which is one of the key regulators of auxin-mediated plant growth and development in the B. rapa genome. A total of 31 ARF genes were identified in the genome. Phylogenetic and evolutionary analyses suggest that ARF genes fell into four major classes and were amplified in the B. rapa genome as a result of a recent whole genome triplication after speciation from Arabidopsis thaliana. Despite its recent hexaploid ancestry, B. rapa includes a relatively small number of ARF genes compared with the 23 members in A. thaliana, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative genomic and mRNA sequencing analyses demonstrated that 27 of the 31 BrARF genes were transcriptionally active, and their expression was affected by either auxin treatment or floral development stage, although 4 genes were inactive, suggesting that the generation and pseudogenization of ARF members are likely to be an ongoing process. This study will provide a fundamental basis for the modification and evolution of the gene family after a polyploidy event, as well as a functional study of ARF genes in a polyploidy crop species.

  17. The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome.

    PubMed

    Grenier, Lisanne; Robaire, Bernard; Hales, Barbara F

    2012-06-01

    Male germ cell DNA damage, after exposure to radiation, exogenous chemicals, or chemotherapeutic agents, is a major cause of male infertility. DNA-damaged spermatozoa can fertilize oocytes; this is of concern because there is limited information on the capacity of early embryos to repair a damaged male genome or on the fate of these embryos if repair is inadequate. We hypothesized that the early activation of DNA damage response in the early embryo is a critical determinant of its fate. The objective of this study was to assess the DNA damage response and mitochondrial function as a measure of the energy supply for DNA repair and general health in cleavage-stage embryos sired by males chronically exposed to an anticancer alkylating agent, cyclophosphamide. Male rats were treated with saline or cyclophosphamide (6 mg/kg/day) for 4 weeks and mated to naturally cycling females. Pronuclear two- and eight-cell embryos were collected for immunofluorescence analysis of mitochondrial function and biomarkers of the DNA damage response: γH2AX foci, 53BP1 reactivity, and poly(ADP-ribose) polymer formation. Mitochondrial activities did not differ between embryos sired by control- and cyclophosphamide-exposed males. At the two-cell stage, there was no treatment-related increase in DNA double-strand breaks; by the eight-cell stage, a significant increase was noted, as indicated by increased medium and large γH2AX foci. This was accompanied by a dampened DNA repair response, detected as a decrease in the nuclear intensity of poly(ADP-ribose) polymers. The micronuclei formed in cyclophosphamide-sired embryos contained large γH2AX foci and enhanced poly(ADP-ribose) polymer and 53BP1 reactivity compared with their nuclear counterparts. Thus, paternal cyclophosphamide exposure activated a DNA damage response in cleavage-stage embryos. Furthermore, this damage response may be useful in assessing embryo quality and developmental competence. PMID:22454429

  18. Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development

    PubMed Central

    Galan, Amparo; Diaz-Gimeno, Patricia; Poo, Maria Eugenia; Valbuena, Diana; Sanchez, Eva; Ruiz, Veronica; Dopazo, Joaquin; Montaner, David; Conesa, Ana; Simon, Carlos

    2013-01-01

    The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions. PMID:23614026

  19. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures.

    PubMed

    Votintseva, Antonina A; Pankhurst, Louise J; Anson, Luke W; Morgan, Marcus R; Gascoyne-Binzi, Deborah; Walker, Timothy M; Quan, T Phuong; Wyllie, David H; Del Ojo Elias, Carlos; Wilcox, Mark; Walker, A Sarah; Peto, Tim E A; Crook, Derrick W

    2015-04-01

    We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/μl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) as Mycobacterium tuberculosis were successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools.

  20. Facilitating a culture of responsible and effective sharing of cancer genome data.

    PubMed

    Siu, Lillian L; Lawler, Mark; Haussler, David; Knoppers, Bartha Maria; Lewin, Jeremy; Vis, Daniel J; Liao, Rachel G; Andre, Fabrice; Banks, Ian; Barrett, J Carl; Caldas, Carlos; Camargo, Anamaria Aranha; Fitzgerald, Rebecca C; Mao, Mao; Mattison, John E; Pao, William; Sellers, William R; Sullivan, Patrick; Teh, Bin Tean; Ward, Robyn L; ZenKlusen, Jean Claude; Sawyers, Charles L; Voest, Emile E

    2016-05-01

    Rapid and affordable tumor molecular profiling has led to an explosion of clinical and genomic data poised to enhance the diagnosis, prognostication and treatment of cancer. A critical point has now been reached at which the analysis and storage of annotated clinical and genomic information in unconnected silos will stall the advancement of precision cancer care. Information systems must be harmonized to overcome the multiple technical and logistical barriers to data sharing. Against this backdrop, the Global Alliance for Genomic Health (GA4GH) was established in 2013 to create a common framework that enables responsible, voluntary and secure sharing of clinical and genomic data. This Perspective from the GA4GH Clinical Working Group Cancer Task Team highlights the data-aggregation challenges faced by the field, suggests potential collaborative solutions and describes how GA4GH can catalyze a harmonized data-sharing culture.

  1. Facilitating a Culture of Responsible and Effective Sharing of Cancer Genome Data

    PubMed Central

    Siu, Lillian L.; Lawler, Mark; Haussler, David; Knoppers, Bartha Maria; Lewin, Jeremy; Vis, Daniel J.; Liao, Rachel G.; Andre, Fabrice; Banks, Ian; Barrett, J. Carl; Caldas, Carlos; Camargo, Anamaria Aranha; Fitzgerald, Rebecca C.; Mao, Mao; Mattison, John E.; Pao, William; Sellers, William R.; Sullivan, Patrick; Teh, Bin Tean; Ward, Robyn; ZenKlusen, Jean Claude; Sawyers, Charles L; Voest, Emile E.

    2016-01-01

    Rapid and affordable tumor molecular profiling has led to an explosion of clinical and genomic data poised to enhance diagnosis, prognostication and treatment of cancer. A critical point has now been reached where analysis and storage of annotated clinical and genomic information in unconnected silos will stall the advancement of precision cancer care. Information systems must be harmonized to overcome the multiple technical and logistical barriers for data sharing. Against this backdrop, the Global Alliance for Genomic Health (GA4GH) was established in 2013 to create a common framework that enables responsible, voluntary, and secure sharing of clinical and genomic data. This Perspective from the GA4GH Clinical Working Group Cancer Task Team highlights the data aggregation challenges faced by the field, suggests potential collaborative solutions, and describes how GA4GH can catalyze a harmonized data sharing culture. PMID:27149219

  2. Filia is an ESC-specific regulator of DNA damage response and safeguards genomic stability

    PubMed Central

    Zhao, Bo; Zhang, Wei-dao; Duan, Ying-liang; Lu, Yong-qing; Cun, Yi-xian; Li, Chao-hui; Guo, Kun; Nie, Wen-hui; Li, Lei; Zhang, Rugang; Zheng, Ping

    2015-01-01

    Summary Pluripotent stem cells (PSCs) hold great promise in cell-based therapy, but the genomic instability seen in culture hampers full application. Greater understanding of the factors that regulate genomic stability in PSCs could help address this issue. Here we describe the identification of Filia as a specific regulator of genomic stability in mouse embryonic stem cells (ESCs). Filia expression is induced by genotoxic stress. Filia promotes centrosome integrity and regulates DNA damage response (DDR) through multiple pathways, including DDR signaling, cell cycle checkpoints and damage repair, ESC differentiation and apoptosis. Filia depletion causes ESC genomic instability, induces resistance to apoptosis and promotes malignant transformation. As part of its role in the DDR, Filia interacts with PARP1 and stimulates its enzymatic activity. Filia also constitutively resides on centrosomes and translocates to DNA damage sites and mitochondria, consistent with its multifaceted roles in regulating centrosome integrity, damage repair and apoptosis. PMID:25936915

  3. Lungs at high-altitude: genomic insights into hypoxic responses.

    PubMed

    Mishra, Aastha; Mohammad, Ghulam; Norboo, Tsering; Newman, John H; Pasha, M A Qadar

    2015-07-01

    Hypobaric hypoxia at high altitude (HA) results in reduced blood arterial oxygen saturation, perfusion of organs with hypoxemic blood, and direct hypoxia of lung tissues. The pulmonary complications in the cells of the pulmonary arterioles due to hypobaric hypoxia are the basis of the pathophysiological mechanisms of high-altitude pulmonary edema (HAPE). Some populations that have dwelled at HA for thousands of years have evolutionarily adapted to this environmental stress; unadapted populations may react with excessive physiological responses that impair health. Individual variations in response to hypoxia and the mechanisms of HA adaptation provide insight into physiological responses. Adaptive and maladaptive responses include alterations in pathways such as oxygen sensing, hypoxia signaling, K(+)- and Ca(2+)-gated channels, redox balance, and the renin-angiotensin-aldosterone system. Physiological imbalances are linked with genetic susceptibilities, and nonhomeostatic responses in gene regulation that occur by small RNAs, histone modification, and DNA methylation predispose susceptible humans to these HA illnesses. Elucidation of the interaction of these factors will lead to a more comprehensive understanding of HA adaptations and maladaptations and will lead to new therapeutics for HA disorders related to hypoxic lungs.

  4. Cross-Family Translational Genomics of Abiotic Stress-Responsive Genes between Arabidopsis and Medicago truncatula

    PubMed Central

    Kim, Jin-Hyun; Yoo, Dongwoon; Seo, Young-Su; Jeong, Soon-Chun; Lee, Jai-Heon; Chung, Youngsoo; Jung, Ki-Hong; Cook, Douglas R.; Choi, Hong-kyu

    2014-01-01

    Cross-species translation of genomic information may play a pivotal role in applying biological knowledge gained from relatively simple model system to other less studied, but related, genomes. The information of abiotic stress (ABS)-responsive genes in Arabidopsis was identified and translated into the legume model system, Medicago truncatula. Various data resources, such as TAIR/AtGI DB, expression profiles and literatures, were used to build a genome-wide list of ABS genes. tBlastX/BlastP similarity search tools and manual inspection of alignments were used to identify orthologous genes between the two genomes. A total of 1,377 genes were finally collected and classified into 18 functional criteria of gene ontology (GO). The data analysis according to the expression cues showed that there was substantial level of interaction among three major types (i.e., drought, salinity and cold stress) of abiotic stresses. In an attempt to translate the ABS genes between these two species, genomic locations for each gene were mapped using an in-house-developed comparative analysis platform. The comparative analysis revealed that fragmental colinearity, represented by only 37 synteny blocks, existed between Arabidopsis and M. truncatula. Based on the combination of E-value and alignment remarks, estimated translation rate was 60.2% for this cross-family translation. As a prelude of the functional comparative genomic approaches, in-silico gene network/interactome analyses were conducted to predict key components in the ABS responses, and one of the sub-networks was integrated with corresponding comparative map. The results demonstrated that core members of the sub-network were well aligned with previously reported ABS regulatory networks. Taken together, the results indicate that network-based integrative approaches of comparative and functional genomics are important to interpret and translate genomic information for complex traits such as abiotic stresses. PMID:24675968

  5. Genomics of immune response to typhoid and cholera vaccines

    PubMed Central

    Majumder, Partha P.

    2015-01-01

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways. PMID:25964454

  6. Genomics of immune response to typhoid and cholera vaccines.

    PubMed

    Majumder, Partha P

    2015-06-19

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways.

  7. Early Transcriptional Response of Soybean Contrasting Accessions to Root Dehydration

    PubMed Central

    Ferreira Neto, José Ribamar Costa; Pandolfi, Valesca; Guimaraes, Francismar Corrêa Marcelino; Benko-Iseppon, Ana Maria; Romero, Cynara; Silva, Roberta Lane de Oliveira; Rodrigues, Fabiana Aparecida; Abdelnoor, Ricardo Vilela; Nepomuceno, Alexandre Lima; Kido, Ederson Akio

    2013-01-01

    Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance. The survey uncovered 120,770 unique transcripts expressed by the contrasting accessions. Of these, 57,610 aligned with known cDNA sequences, allowing the annotation of 32,373 unitags. A total of 1,127 unitags were up-regulated only in the tolerant accession, whereas 1,557 were up-regulated in both as compared to their controls. An expression profile concerning the most representative Gene Ontology (GO) categories for the tolerant accession revealed the expression “protein binding” as the most represented for “Molecular Function”, whereas CDPK and CBL were the most up-regulated protein families in this category. Furthermore, particular genes expressed different isoforms according to the accession, showing the potential to operate in the distinction of physiological behaviors. Besides, heat maps comprising GO categories related to abiotic stress response and the unitags regulation observed in the expression contrasts covering tolerant and sensitive accessions, revealed the unitags potential for plant breeding. Candidate genes related to “hormone response” (LOX, ERF1b, XET), “water response” (PUB, BMY), “salt stress response” (WRKY, MYB) and “oxidative stress response” (PER) figured among the most promising molecular targets. Additionally, nine transcripts (HMGR, XET, WRKY20, RAP2-4, EREBP, NAC3, PER, GPX5 and BMY) validated by RT-qPCR (four different time points) confirmed their differential expression and pointed that already after 25 minutes a transcriptional reorganization started in response to the new condition, with

  8. Identification of positional candidates for bovine placental genes responsible for early embryonic death during cloning-attempted pregnancy.

    PubMed

    Yamada, Takahisa; Muramatsu, Youji; Taniguchi, Yukio; Sasaki, Yoshiyuki

    Our previous study detected 291 and 77 genes showing early embryonic death-associated elevation and reduction of expression, respectively, in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. In this study, we mapped the 10 genes showing the elevation and the 10 genes doing the reduction most significantly, using somatic cell hybrid and bovine draft genome sequence. We then compared the mapped positions for these genes with the genomic locations of bovine quantitative trait loci for still-birth and/or abortion. Among the mapped genes, peptidylglycine alpha-amidating monooxygenase (PAM), spectrin, beta, nonerythrocytic 1 (SPTBNI), and an unknown novel gene containing AU277832 expressed sequence tag were intriguing, in that the mapped positions were consistent with the genomic locations of bovine still-birth and/or abortion quantitative trait loci, and thus identified as positional candidates for bovine placental genes responsible for the early embryonic death during the pregnancy attempted by somatic nuclear transfer-derived cloning.

  9. Language experience enhances early cortical pitch-dependent responses

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  10. Gaining insight into soybean defense responses using functional genomics approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean pathogens significantly impact yield, resulting in over 4 billion dollars in lost revenue annually in the United States alone as a result of disease. Despite the deployment of improved soybean cultivars, pathogens continue to evolve to evade plant defense responses. Thus, there is an urgent ...

  11. Early treatment response predicted subsequent clinical response in patients with schizophrenia taking paliperidone extended-release.

    PubMed

    Yeh, En-Chi; Huang, Ming-Chyi; Tsai, Chang-Jer; Chen, Chun-Tse; Chen, Kuan-Yu; Chiu, Chih-Chiang

    2015-11-30

    This 6-week open-labeled study investigated whether early treatment response in patients receiving paliperidone extended-release (paliperidone ER) can facilitate prediction of responses at Week 6. Patients with schizophrenia or schizoaffective disorder were administered 9mg/day of paliperidone ER during the first 2 weeks, after which the dose was adjusted clinically. They were assessed on Days 0, 4, 7, 14, 28, and 42 by the Positive and Negative Syndrome Scale (PANSS). The serum concentrations of 9-hydroxyrisperidone were examined on Days 14 and 42. Among the 41 patients enrolled, 26 were classified as responders (≧50% improvement on total PANSS scores at Week 6). In the receiver-operator curves (ROC) analyses, the changes in total PANSS scores at Week 2 appeared to show more accurate predictability compared to Day 4 and Day 7. At Week 6, no significant correlation was observed between blood 9-hydroxyrisperidone concentration and the total score or changes of PANSS scores. The results suggest that early treatment response to paliperidone ER, particularly at Week 2, can serve as a suitable outcome predictor at Week 6. Using 9mg/day paliperidone ER as an initial dose for schizophrenia treatment exhibited relatively favorable tolerability and feasibility.

  12. BYSTANDER EFFECTS GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIAION AND CHEMICAL EXPOSURES

    EPA Science Inventory

    BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    R. Julian Preston
    Environmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711, USA

    There ...

  13. Genomic analysis of the stress response of rainbow trout to crowding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic analyses have the potential to impact selective breeding programs by identifying markers as proxies for traits which are expensive or difficult to measure. One such trait is the physiological response of rainbow trout to the stresses of the aquaculture environment. Typical stressors can be...

  14. Genome-linked toxic responses to dietary iron overload.

    PubMed

    Whittaker, P; Dunkel, V C; Bucci, T J; Kusewitt, D F; Thurman, J D; Warbritton, A; Wolff, G L

    1997-01-01

    Genome-related differences to Fe overload between and within rodent species were evaluated in the present study. Male B6C3F1 mice, yellow and black C5YSF1 mice, and Fischer 344 (F344) rats were fed AIN-76A diets containing 35 (control), 1,500, 3,500, 5,000, or 10,000 micrograms carbonyl Fe/g for 12 wk. No effects on body weight gain were observed in the B6C3F1 and black C5YSF1 mice, whereas at all doses of Fe above the control, weight gain was reduced in yellow C5YSF1 mice and F344 rats. At the 10,000 micrograms Fe/g dose, 9 of 12 rats died, but there was no mortality among the mice. In all animals, there was a dose-related increase in liver nonheme Fe, and the Fe was stored in hepatocytes predominantly in the periportal region. There was significant hypertrophy of the hepatocytes in both B6C3F1 mice and F344 rats fed the 10,000 micrograms Fe/g diet. PCNA assays showed significant stimulatory effects of the high dose of Fe on hepatocyte proliferation in the F344 rats and the C5YSF1 mice but not in the B6C3F1 mice. In the rat, there was pancreatic atrophy with loss of both endocrine and exocrine tissue. Morphometric evaluation of pancreas showed fewer beta cells in B6C3F1 and yellow C5YSF1 mice but not in the black C5YSF1 mice. There were fewer islets in the yellow C5YSF1 mice, and total and mean islet areas were smaller than in the control mice. Rats in the 10,000 micrograms Fe/g dose group had markedly exacerbated dose-dependent nephropathy and changes in glomerular and tubular epithelium associated with Fe accumulation. The rats also showed degeneration of the germinal epithelium of the testis, formation of multinucleated giant cells, and lack of mature sperm. PMID:9437799

  15. DsHsp90 is involved in the early response of Dunaliella salina to environmental stress.

    PubMed

    Wang, Si-Jia; Wu, Ming-Jie; Chen, Xiang-Jun; Jiang, Yan; Yan, Yong-Bin

    2012-01-01

    Heat shock protein 90 (Hsp90) is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis of the eukaryotic cells. By interacting with various client proteins, Hsp90 is involved in diverse physiological processes such as signal transduction, cell mobility, heat shock response and osmotic stress response. In this research, we cloned the dshsp90 gene encoding a polypeptide composed of 696 amino acids from the halotolerant unicellular green algae Dunaliella salina. Sequence alignment indicated that DsHsp90 belonged to the cytosolic Hsp90A family. Further biophysical and biochemical studies of the recombinant protein revealed that DsHsp90 possessed ATPase activity and existed as a dimer with similar percentages of secondary structures to those well-studied Hsp90As. Analysis of the nucleotide sequence of the cloned genomic DNA fragment indicated that dshsp90 contained 21 exons interrupted by 20 introns, which is much more complicated than the other plant hsp90 genes. The promoter region of dshsp90 contained putative cis-acting stress responsive elements and binding sites of transcriptional factors that respond to heat shock and salt stress. Further experimental research confirmed that dshsp90 was upregulated quickly by heat and salt shock in the D. salina cells. These findings suggested that dshsp90 might serve as a component of the early response system of the D. salina cells against environmental stresses.

  16. The Adaptive Response, Genetic Haplo-Insufficiency and Genomic Instability

    SciTech Connect

    Geard, Charles R.

    2014-12-12

    The linear no-threshold (LNT) hypothesis is the driving force in the establishment of radiation protection standards. However, the scientific basis for linearity has been brought into question, particularly due to the concerns about induced radiation resistance as it pertains to oxidative stress. Specifically, we investigated the observation that tumor hypoxia is associated with malignant progression, increased metastases, chemo- and radioresistance and poor prognosis. Experiments were conducted with non-malignant 3T3/NIH cells and normal human lung fibroblasts (NHLF) that were subjected to γ-irradiation under the levels of oxygen resembling those in growing tumors, and related our data to the concentrations of dissolved oxygen (DO), which is a better indicator of the amounts of residual oxygen inside the cells cultured in the hypoxic or anoxic atmosphere. We found that at DO levels about 0.5 mg/L cells subjected to both short-term (17 hours) and prolonged (48-72 hours) hypoxia continued to proliferate, and that apoptotic events were decreased at the early hours of hypoxic treatment. We showed that the short-term hypoxia up-regulated p53-binding protein 1 (53BP1) and resulted in facilitated 53BP1 nuclear foci formation and disappearance, thus indicating the higher efficiency of DNA double strand breaks repair processes. The latter was confirmed by the lower micronuclei incidence in irradiated hypoxic cells.

  17. Molecular biology of the stress response in the early embryo and its stem cells.

    PubMed

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a

  18. Early skin toxicity predicts better outcomes, and early tumor shrinkage predicts better response after cetuximab treatment in advanced colorectal cancer.

    PubMed

    Kogawa, T; Doi, A; Shimokawa, M; Fouad, T M; Osuga, T; Tamura, F; Mizushima, T; Kimura, T; Abe, S; Ihara, H; Kukitsu, T; Sumiyoshi, T; Yoshizaki, N; Hirayama, M; Sasaki, T; Kawarada, Y; Kitashiro, S; Okushiba, S; Kondo, H; Tsuji, Y

    2015-03-01

    Cetuximab-containing treatments for metastatic colorectal cancer have been shown to have higher overall response rates and longer progression-free and overall survival than other systemic therapies. Cetuximab-related manifestations, including severe skin toxicity and early tumor shrinkage, have been shown to be predictors of response to cetuximab. We hypothesized that early skin toxicity is a predictor of response and better outcomes in patients with advanced colorectal carcinoma. We retrospectively evaluated 62 patients with colorectal adenocarcinoma who had unresectable tumors and were treated with cetuximab in our institution. Skin toxicity grade was evaluated on each treatment day. Tumor size was evaluated using computed tomography prior to treatment and 4-8 weeks after the start of treatment with cetuximab.Patients with early tumor shrinkage after starting treatment with cetuximab had a significantly higher overall response rate (P = 0.0001). Patients with early skin toxicity showed significantly longer overall survival (P = 0.0305), and patients with higher skin toxicity grades had longer progression-free survival (P = 0.0168).We have shown that early tumor shrinkage, early onset of skin toxicity, and high skin toxicity grade are predictors of treatment efficacy and/or outcome in patients with advanced colorectal carcinoma treated with cetuximab.

  19. Parental responsiveness moderates the association between early-life stress and reduced telomere length.

    PubMed

    Asok, A; Bernard, K; Roth, T L; Rosen, J B; Dozier, M

    2013-08-01

    Early-life stress, such as maltreatment, institutionalization, and exposure to violence, is associated with accelerated telomere shortening. Telomere shortening may thus represent a biomarker of early adversity. Previous studies have suggested that responsive parenting may protect children from the negative biological and behavioral consequences of early adversity. This study examined the role of parental responsiveness in buffering children from telomere shortening following experiences of early-life stress. We found that high-risk children had significantly shorter telomeres than low-risk children, controlling for household income, birth weight, gender, and minority status. Further, parental responsiveness moderated the association between risk and telomere length, with more responsive parenting associated with longer telomeres only among high-risk children. These findings suggest that responsive parenting may have protective benefits on telomere shortening for young children exposed to early-life stress. Therefore, this study has important implications for early parenting interventions. PMID:23527512

  20. Early response of wheat seminal roots growing under copper excess.

    PubMed

    Pena, Liliana B; Méndez, Andrea A E; Matayoshi, Carolina L; Zawoznik, Myriam S; Gallego, Susana M

    2015-02-01

    Growth reduction caused by copper excess during plant photoautotrophic metabolism has been widely investigated, but information regarding early responses of root apical meristem (RAM) to toxic concentrations of this metal at the initial heterotrophic stage is certainly scarce. We analysed some determinants of seminal root growth in developing wheat seedlings germinated in the presence of 1, 5 and 10 μM CuCl2, focussing on oxidative damage to cell membrane and to proteins, and investigated the expression patterns of some genes relevant to cell cycle progression and cell expansion. The proliferation zone of the RAM was shorter under 5 and 10 μM CuCl2. Cyclin D and CDKA levels remained unchanged in the root apexes of wheat seedlings grown under these Cu(2+) concentrations, but more carbonylated levels of both proteins and less ubiquitinated-cyclin D was detected under 10 μM CuCl2. Increased levels of ROS were revealed by fluorescent probes at this Cu(2+) dose, and severe cell membrane damage took place at 5 and 10 μM CuCl2. Several genes related to retinoblastome phosphorylation and therefore involved in the transition from G1 to S cell cycle stage were found to be downregulated at 10 μM CuCl2, while most expansin genes here analysed were upregulated, even at a non-toxic concentration of 1 μM. These results together with previous findings suggest that a "common" signal which involves oxidative posttranslational modifications of specific cell cycle proteins may be necessary to induce root growth arrest under Cd(2+) and Cu(2+) stress.

  1. Bystander effects, genomic instability, adaptive response, and cancer risk assessment for radiation and chemical exposures

    SciTech Connect

    Preston, R. Julian . E-mail: preston.julian@epa.gov

    2005-09-01

    There is an increased interest in utilizing mechanistic data in support of the cancer risk assessment process for ionizing radiation and environmental chemical exposures. In this regard, the use of biologically based dose-response models is particularly advocated. The aim is to provide an enhanced basis for describing the nature of the dose-response curve for induced tumors at low levels of exposure. Cellular responses that might influence the nature of the dose-response curve at low exposures are understandably receiving attention. These responses (bystander effects, genomic instability, and adaptive responses) have been studied most extensively for radiation exposures. The former two could result in an enhancement of the tumor response at low doses and the latter could lead to a reduced response compared to that predicted by a linear extrapolation from high dose responses. Bystander responses, whereby cells other than those directly traversed by radiation tracks are damaged, can alter the concept of target cell population per unit dose. Similarly, induced genomic instability can alter the concept of total response to an exposure. There appears to be a role for oxidative damage and cellular signaling in the etiology of these cellular responses. The adaptive response appears to be inducible at very low doses of radiation or of some chemicals and reduces the cellular response to a larger challenge dose. It is currently unclear how these cellular toxic responses might be involved in tumor formation, if indeed they are. In addition, it is not known how widespread they are as regards inducing agents. Thus, their impact on low dose cancer risk remains to be established.

  2. Alteration of somatosensory response in adulthood by early life stress.

    PubMed

    Takatsuru, Yusuke; Koibuchi, Noriyuki

    2015-01-01

    Early life stress is well-known as a critical risk factor for mental and cognitive disorders in adulthood. Such disorders are accompanied by altered neuro- (synapto-) genesis and gene expression. Because psychosomatic disorders induced by early life stress (e.g., physical and/or sexual abuse, and neglect) have become a socio-economic problem, it is very important to clarify the mechanisms underlying these changes. However, despite of intensive clinical and animal studies, such mechanisms have not yet been clarified. Although the disturbance of glucocorticoid and glutamate homeostasis by stress has been well-documented, it has not yet been clarified whether such disturbance by early life stress persists for life. Furthermore, since previous studies have focused on the detection of changes in specific brain regions, such as the hippocampus and prefrontal cortex, it has not been clarified whether early life stress induced changes in the sensory/motor system. Thus, in this review, we introduce recent studies on functional/structural changes in the somatosensory cortex induced by early life stress. We believe that this review provides new insights into the functional alteration of the somatosensory system induced by early life stress. Such information may have clinical relevance in terms of providing effective therapeutic interventions to early life stressed individuals. PMID:26041988

  3. Response to comments on 'A post-genomic surprise'.

    PubMed

    Duster, Troy

    2015-03-01

    In response to the seven authors who offered comments on my paper, I have tried to synthesize and distill common themes. Foremost among them is the charge to look forward, not only to consider probable developments and implications for how this 'molecular reinscription of race' will unfold in forensics and clinical medicine, but as well to suggest how the discipline of Sociology can and should respond. But as several of the commentators noted, this is not just a matter for a single discipline, but should be fertile ground for coordinated empirical investigation by such fields as the Social Studies of Science, Anthropology of Medicine, and Critical Race Theory. For sociologically informed reasons, social scientists should be wary of the unanticipated consequences of collaboration with human molecular geneticists who come to the table deploying databases with pre-fabricated categories of race, thereby poised to provide genetic explanations of social outcomes based upon race and ethnicity. A cautionary note is provided explaining how and why some joint projects are advised, some are ill-advised.

  4. Tomato Genome-Wide Transcriptional Responses to Fusarium Wilt and Tomato Mosaic Virus

    PubMed Central

    Andolfo, Giuseppe; Ferriello, Francesca; Tardella, Luca; Ferrarini, Alberto; Sigillo, Loredana; Frusciante, Luigi; Ercolano, Maria Raffaella

    2014-01-01

    Since gene expression approaches constitute a starting point for investigating plant–pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses. PMID:24804963

  5. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    PubMed Central

    2010-01-01

    Background The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10°C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. Results Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10°C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters. Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. Conclusion Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. PMID:20100339

  6. A genomic screen for activators of the antioxidant response element

    PubMed Central

    Liu, Yanxia; Kern, Jonathan T.; Walker, John R.; Johnson, Jeffrey A.; Schultz, Peter G.; Luesch, Hendrik

    2007-01-01

    The antioxidant response element (ARE) is a cis-acting regulatory enhancer element found in the 5′ flanking region of many phase II detoxification enzymes. Up-regulation of ARE-dependent target genes is known to have neuroprotective effects; yet, the mechanism of activation is largely unknown. By screening an arrayed collection of ≈15,000 full-length expression cDNAs in the human neuroblastoma cell line IMR-32 with an ARE-luciferase reporter, we have identified several cDNAs not previously associated with ARE activation. A subset of cDNAs, encoding sequestosome 1 (SQSTM1) and dipeptidylpeptidase 3 (DPP3), activated the ARE in primary mouse-derived cortical neurons. Overexpression of SQSTM1 and DPP3 in IMR-32 cells stimulated NF-E2-related factor 2 (NRF2) nuclear translocation and led to increased levels of NAD(P)H:quinone oxidoreductase 1, a protein which is transcriptionally regulated by the ARE. When transfected into IMR-32 neuroblastoma cells that were depleted of transcription factor NRF2 by RNA interference, SQSTM1 and DPP3 were unable to activate the ARE or induce NAD(P)H:quinone oxidoreductase 1 expression, indicating that the ARE activation upon ectopic expression of these cDNAs is mediated by NRF2. Studies with pharmacological inhibitors indicated that 1-phosphatidylinositol 3-kinase and protein kinase C signaling are essential for activity. Overexpression of these cDNAs conferred partial resistance to hydrogen peroxide or rotenone-induced toxicity, consistent with the induction of antioxidant and phase II detoxification enzymes, which can protect from oxidative stress. This work and other such studies may provide mechanisms for activating the ARE in the absence of general oxidative stress and a yet-unexploited therapeutic approach to degenerative diseases and aging. PMID:17360324

  7. A Genetic Response Score for Hydrochlorothiazide Use: Insights From Genomics and Metabolomics Integration.

    PubMed

    Shahin, Mohamed H; Gong, Yan; McDonough, Caitrin W; Rotroff, Daniel M; Beitelshees, Amber L; Garrett, Timothy J; Gums, John G; Motsinger-Reif, Alison; Chapman, Arlene B; Turner, Stephen T; Boerwinkle, Eric; Frye, Reginald F; Fiehn, Oliver; Cooper-DeHoff, Rhonda M; Kaddurah-Daouk, Rima; Johnson, Julie A

    2016-09-01

    Hydrochlorothiazide is among the most commonly prescribed antihypertensives; yet, <50% of hydrochlorothiazide-treated patients achieve blood pressure (BP) control. Herein, we integrated metabolomic and genomic profiles of hydrochlorothiazide-treated patients to identify novel genetic markers associated with hydrochlorothiazide BP response. The primary analysis included 228 white hypertensives treated with hydrochlorothiazide from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Genome-wide analysis was conducted using Illumina Omni 1 mol/L-Quad Chip, and untargeted metabolomics was performed on baseline fasting plasma samples using a gas chromatography-time-of-flight mass spectrometry platform. We found 13 metabolites significantly associated with hydrochlorothiazide systolic BP (SBP) and diastolic BP (DBP) responses (false discovery rate, <0.05). In addition, integrating genomic and metabolomic data revealed 3 polymorphisms (rs2727563 PRKAG2, rs12604940 DCC, and rs13262930 EPHX2) along with arachidonic acid, converging in the netrin signaling pathway (P=1×10(-5)), as potential markers, significantly influencing hydrochlorothiazide BP response. We successfully replicated the 3 genetic signals in 212 white hypertensives treated with hydrochlorothiazide and created a response score by summing their BP-lowering alleles. We found patients carrying 1 response allele had a significantly lower response than carriers of 6 alleles (∆SBP/∆DBP: -1.5/1.2 versus -16.3/-10.4 mm Hg, respectively, SBP score, P=1×10(-8) and DBP score, P=3×10(-9)). This score explained 11.3% and 11.9% of the variability in hydrochlorothiazide SBP and DBP responses, respectively, and was further validated in another independent study of 196 whites treated with hydrochlorothiazide (DBP score, P=0.03; SBP score, P=0.07). This study suggests that PRKAG2, DCC, and EPHX2 might be important determinants of hydrochlorothiazide BP response. PMID:27381900

  8. Spatiotemporal Dynamics of Early DNA Damage Response Proteins on Complex DNA Lesions

    PubMed Central

    Tobias, Frank; Löb, Daniel; Lengert, Nicor; Durante, Marco; Drossel, Barbara; Taucher-Scholz, Gisela; Jakob, Burkhard

    2013-01-01

    The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the

  9. Complex linguistic rules modulate early auditory brain responses.

    PubMed

    Sun, Yue; Giavazzi, Maria; Adda-Decker, Martine; Barbosa, Leonardo S; Kouider, Sid; Bachoud-Lévi, Anne-Catherine; Jacquemot, Charlotte; Peperkamp, Sharon

    2015-10-01

    During speech perception, listeners compensate for phonological rules of their language. For instance, English place assimilation causes green boat to be typically pronounced as greem boat; English listeners, however, perceptually compensate for this rule and retrieve the intended sound (n). Previous research using EEG has focused on rules with clear phonetic underpinnings, showing that perceptual compensation occurs at an early stage of speech perception. We tested whether this early mechanism also accounts for the compensation for more complex rules. We examined compensation for French voicing assimilation, a rule with abstract phonological restrictions on the contexts in which it applies. Our results reveal that perceptual compensation for this rule by French listeners modulates an early ERP component. This is evidence that early stages of speech sound categorization are sensitive to complex phonological rules of the native language.

  10. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  11. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.

    PubMed

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A; Barnes, Michael R; Li, Xiaohui; Warren, Helen R; Chasman, Daniel I; Zhou, Kaixin; Arsenault, Benoit J; Donnelly, Louise A; Wiggins, Kerri L; Avery, Christy L; Griffin, Paula; Feng, QiPing; Taylor, Kent D; Li, Guo; Evans, Daniel S; Smith, Albert V; de Keyser, Catherine E; Johnson, Andrew D; de Craen, Anton J M; Stott, David J; Buckley, Brendan M; Ford, Ian; Westendorp, Rudi G J; Slagboom, P Eline; Sattar, Naveed; Munroe, Patricia B; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C; O'Brien, Eoin; Shaw-Hawkins, Sue; Chen, Y-D Ida; Nickerson, Deborah A; Smith, Joshua D; Dubé, Marie Pierre; Boekholdt, S Matthijs; Hovingh, G Kees; Kastelein, John J P; McKeigue, Paul M; Betteridge, John; Neil, Andrew; Durrington, Paul N; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C; Rice, Kenneth; Smith, Nicholas L; Lumley, Thomas; Whitsel, Eric A; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S; O'Donnell, Christopher J; Vasan, Ramachandran S; Wei, Wei-Qi; Wilke, Russell A; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M; Stafford, Jeanette M; Ding, Jingzhong; Herrington, David M; Kritchevsky, Stephen B; Eiriksdottir, Gudny; Launer, Leonore J; Harris, Tamara B; Chu, Audrey Y; Giulianini, Franco; MacFadyen, Jean G; Barratt, Bryan J; Nyberg, Fredrik; Stricker, Bruno H; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H; Ridker, Paul M; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C; Ballantyne, Christie M; Rotter, Jerome I; Adrienne Cupples, L; Psaty, Bruce M; Palmer, Colin N A; Tardif, Jean-Claude; Colhoun, Helen M; Hitman, Graham; Krauss, Ronald M; Wouter Jukema, J; Caulfield, Mark J

    2014-10-28

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.

  12. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates

    PubMed Central

    Strouts, Fiona R.; Popper, Stephen J.; Partidos, Charalambos D.; Stinchcomb, Dan T.; Osorio, Jorge E.; Relman, David A.

    2016-01-01

    Background The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. Methodology/Principal Findings In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. Conclusions/Significance These results suggest that early transcriptional responses may be

  13. Accuracy and responses of genomic selection on key traits in apple breeding

    PubMed Central

    Muranty, Hélène; Troggio, Michela; Sadok, Inès Ben; Rifaï, Mehdi Al; Auwerkerken, Annemarie; Banchi, Elisa; Velasco, Riccardo; Stevanato, Piergiorgio; van de Weg, W Eric; Di Guardo, Mario; Kumar, Satish; Laurens, François; Bink, Marco C A M

    2015-01-01

    The application of genomic selection in fruit tree crops is expected to enhance breeding efficiency by increasing prediction accuracy, increasing selection intensity and decreasing generation interval. The objectives of this study were to assess the accuracy of prediction and selection response in commercial apple breeding programmes for key traits. The training population comprised 977 individuals derived from 20 pedigreed full-sib families. Historic phenotypic data were available on 10 traits related to productivity and fruit external appearance and genotypic data for 7829 SNPs obtained with an Illumina 20K SNP array. From these data, a genome-wide prediction model was built and subsequently used to calculate genomic breeding values of five application full-sib families. The application families had genotypes at 364 SNPs from a dedicated 512 SNP array, and these genotypic data were extended to the high-density level by imputation. These five families were phenotyped for 1 year and their phenotypes were compared to the predicted breeding values. Accuracy of genomic prediction across the 10 traits reached a maximum value of 0.5 and had a median value of 0.19. The accuracies were strongly affected by the phenotypic distribution and heritability of traits. In the largest family, significant selection response was observed for traits with high heritability and symmetric phenotypic distribution. Traits that showed non-significant response often had reduced and skewed phenotypic variation or low heritability. Among the five application families the accuracies were uncorrelated to the degree of relatedness to the training population. The results underline the potential of genomic prediction to accelerate breeding progress in outbred fruit tree crops that still need to overcome long generation intervals and extensive phenotyping costs. PMID:26744627

  14. Stress-response balance drives the evolution of a network module and its host genome

    PubMed Central

    González, Caleb; Ray, Joe Christian J; Manhart, Michael; Adams, Rhys M; Nevozhay, Dmitry; Morozov, Alexandre V; Balázsi, Gábor

    2015-01-01

    Stress response genes and their regulators form networks that underlie drug resistance. These networks often have an inherent tradeoff: their expression is costly in the absence of stress, but beneficial in stress. They can quickly emerge in the genomes of infectious microbes and cancer cells, protecting them from treatment. Yet, the evolution of stress resistance networks is not well understood. Here, we use a two-component synthetic gene circuit integrated into the budding yeast genome to model experimentally the adaptation of a stress response module and its host genome in three different scenarios. In agreement with computational predictions, we find that: (i) intra-module mutations target and eliminate the module if it confers only cost without any benefit to the cell; (ii) intra- and extra-module mutations jointly activate the module if it is potentially beneficial and confers no cost; and (iii) a few specific mutations repeatedly fine-tune the module's noisy response if it has excessive costs and/or insufficient benefits. Overall, these findings reveal how the timing and mechanisms of stress response network evolution depend on the environment. PMID:26324468

  15. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    PubMed Central

    Shin, David S.; Pratt, Ashley J.; Tainer, John A.

    2014-01-01

    As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine. PMID:24701133

  16. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer

    PubMed Central

    Du, Meijun; Dittmar, Rachel L.; Lee, Adam; Nandy, Debashis; Yuan, Tiezheng; Guo, Yongchen; Wang, Yuan; Tschannen, Michael R.; Worthey, Elizabeth; Jacob, Howard; See, William; Kilari, Deepak; Wang, Xuexia; Hovey, Raymond L.; Huang, Chiang-Ching; Wang, Liang

    2015-01-01

    Liquid biopsies, examinations of tumor components in body fluids, have shown promise for predicting clinical outcomes. To evaluate tumor-associated genomic and genetic variations in plasma cell-free DNA (cfDNA) and their associations with treatment response and overall survival, we applied whole genome and targeted sequencing to examine the plasma cfDNAs derived from 20 patients with advanced prostate cancer. Sequencing-based genomic abnormality analysis revealed locus-specific gains or losses that were common in prostate cancer, such as 8q gains, AR amplifications, PTEN losses and TMPRSS2-ERG fusions. To estimate tumor burden in cfDNA, we developed a Plasma Genomic Abnormality (PGA) score by summing the most significant copy number variations. Cox regression analysis showed that PGA scores were significantly associated with overall survival (p < 0.04). After androgen deprivation therapy or chemotherapy, targeted sequencing showed significant mutational profile changes in genes involved in androgen biosynthesis, AR activation, DNA repair, and chemotherapy resistance. These changes may reflect the dynamic evolution of heterozygous tumor populations in response to these treatments. These results strongly support the feasibility of using non-invasive liquid biopsies as potential tools to study biological mechanisms underlying therapy-specific resistance and to predict disease progression in advanced prostate cancer. PMID:25915538

  17. Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome.

    PubMed

    Stanley Kim, H; Yu, Yan; Snesrud, Erik C; Moy, Linda P; Linford, Lara D; Haas, Brian J; Nierman, William C; Quackenbush, John

    2005-01-01

    Previous studies have indicated that Arabidopsis thaliana experienced a genome-wide duplication event shortly before its divergence from Brassica followed by extensive chromosomal rearrangements and deletions. While a large number of the duplicated genes have significantly diverged or lost their sister genes, we found 4222 pairs that are still highly conserved, and as a result had similar functional assignments during the annotation of the genome sequence. Using whole-genome DNA microarrays, we identified 906 duplicated gene pairs in which at least one member exhibited a significant response to oxidative stress. Among these, only 117 pairs were up- or down-regulated in both pairs and many of these exhibited dissimilar patterns of expression. Examination of the expression patterns of PAL1 and PAL2, ACD1 and ACD2, genes coding for two Hsp20s, various P450s, and electron transfer flavoproteins suggests Arabidopsis evolved a number of distinct oxidative stress response mechanisms using similar gene sets following the duplication of its genome.

  18. Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis

    PubMed Central

    2013-01-01

    Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539

  19. SLC15A2 genomic variation is associated with the extraordinary response of sorafenib treatment: whole-genome analysis in patients with hepatocellular carcinoma

    PubMed Central

    Shin, Aesun; Kim, Jin Sook; Hong, Seung-Hyun; Hwang, Jung-Ah; Lee, Jung Ahn; Nam, Seungyoon; Lee, Sung Hoon; Bhak, Jong; Park, Joong-Won

    2015-01-01

    Reliable biomarkers are required to predict the response to sorafenib. We investigated genomic variations associated with responsiveness to sorafenib for patients with unresectable hepatocellular carcinoma (HCC). Blood samples from 2 extreme, 2 strong and 3 poor responders to sorafenib were subjected to whole-genome analysis. Then, we validated candidate genomic variations with another 174 HCC patients, and performed in vitro functional analysis and in silico analyses. Genomic data of >96 gigabases/sample was generated at average of ~34X sequencing depth. In total, 1813 genomic variations were matched to sorafenib responses in clinical data; 708 were located within regions for sorafenib-target genes or drug absorption, distribution, metabolism, and excretion (ADME)-related genes. From them, 36 variants were within the coding regions and 6 identified as non-synonymous single-nucleotide variants from 4 ADME-related genes (ABCB1, FMO3, MUSK, and SLC15A2). Validation genotyping confirmed sequencing results and revealed patients genotype for rs2257212 in SLC15A2 showed longer progression-free survival (HR = 2.18). In vitro study displayed different response to sorafenib depending on the genotype of SLC15A2. Structural prediction analysis revealed changes of the phosphorylation levels in protein, potentially affecting sorafenib-associated enzymatic activity. Our finding using extreme responder seems to generate robust biomarker to predict the response of sorafenib treatment for HCC. PMID:25965825

  20. A Vitamin D Receptor/SMAD Genomic Circuit Gates Hepatic Fibrotic Response

    PubMed Central

    Ding, Ning; Yu, Ruth T.; Subramaniam, Nanthakumar; Sherman, Mara H.; Wilson, Caroline; Rao, Renuka; Leblanc, Mathias; Coulter, Sally; He, Mingxiao; Scott, Christopher; Lau, Sue L.; Atkins, Annette R.; Barish, Grant D.; Gunton, Jenny E.; Liddle, Christopher; Downes, Michael; Evans, Ronald M.

    2013-01-01

    SUMMARY Liver fibrosis is a reversible wound-healing response involving TGFβ1 activation of hepatic stellate cells (HSCs). Here we show that vitamin D receptor (VDR) ligands inhibit HSC activation and abrogate liver fibrosis, while Vdr knockout mice spontaneously developed hepatic fibrosis. Mechanistically, we describe a pronounced redistribution of genome wide VDR binding sites (VDR cistrome) in HSCs elicited by a TGFβ1 pro-fibrotic insult. This TGFβ1-induced VDR cistrome overlaps extensively with SMAD3 binding sites, with co-occupancy at numerous cis-regulatory elements identified on a large set of pro-fibrotic genes. Addition of VDR ligand reduces SMAD3 occupancy at co-regulated genes, revealing an intersecting VDR/SMAD genomic circuit that regulates hepatic fibrogenesis. These results define a role for VDR as a endocrine checkpoint to modulate the wound healing response in liver, and suggest VDR ligands as a potential therapy for liver fibrosis. PMID:23622244

  1. Genomic and Histopathological Tissue Biomarkers That Predict Radiotherapy Response in Localised Prostate Cancer

    PubMed Central

    Wilkins, Anna; Dearnaley, David; Somaiah, Navita

    2015-01-01

    Localised prostate cancer, in particular, intermediate risk disease, has varied survival outcomes that cannot be predicted accurately using current clinical risk factors. External beam radiotherapy (EBRT) is one of the standard curative treatment options for localised disease and its efficacy is related to wide ranging aspects of tumour biology. Histopathological techniques including immunohistochemistry and a variety of genomic assays have been used to identify biomarkers of tumour proliferation, cell cycle checkpoints, hypoxia, DNA repair, apoptosis, and androgen synthesis, which predict response to radiotherapy. Global measures of genomic instability also show exciting capacity to predict survival outcomes following EBRT. There is also an urgent clinical need for biomarkers to predict the radiotherapy fraction sensitivity of different prostate tumours and preclinical studies point to possible candidates. Finally, the increased resolution of next generation sequencing (NGS) is likely to enable yet more precise molecular predictions of radiotherapy response and fraction sensitivity. PMID:26504789

  2. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities.

    PubMed

    Nagy, László G; Riley, Robert; Tritt, Andrew; Adam, Catherine; Daum, Chris; Floudas, Dimitrios; Sun, Hui; Yadav, Jagjit S; Pangilinan, Jasmyn; Larsson, Karl-Henrik; Matsuura, Kenji; Barry, Kerrie; Labutti, Kurt; Kuo, Rita; Ohm, Robin A; Bhattacharya, Sukanta S; Shirouzu, Takashi; Yoshinaga, Yuko; Martin, Francis M; Grigoriev, Igor V; Hibbett, David S

    2016-04-01

    Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot. PMID:26659563

  3. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities.

    PubMed

    Nagy, László G; Riley, Robert; Tritt, Andrew; Adam, Catherine; Daum, Chris; Floudas, Dimitrios; Sun, Hui; Yadav, Jagjit S; Pangilinan, Jasmyn; Larsson, Karl-Henrik; Matsuura, Kenji; Barry, Kerrie; Labutti, Kurt; Kuo, Rita; Ohm, Robin A; Bhattacharya, Sukanta S; Shirouzu, Takashi; Yoshinaga, Yuko; Martin, Francis M; Grigoriev, Igor V; Hibbett, David S

    2016-04-01

    Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.

  4. Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse

    PubMed Central

    Yu, Chao; Ji, Shu-Yan; Dang, Yu-Jiao; Sha, Qian-Qian; Yuan, Yi-Feng; Zhou, Jian-Jie; Yan, Li-Ying; Qiao, Jie; Tang, Fuchou; Fan, Heng-Yu

    2016-01-01

    In early mammalian embryos, the genome is transcriptionally quiescent until the zygotic genome activation (ZGA) which occurs 2-3 days after fertilization. Despite a long-standing effort, maternal transcription factors regulating this crucial developmental event remain largely elusive. Here, using maternal and paternal mouse models of Yap1 deletion, we show that maternally accumulated yes-associated protein (YAP) in oocyte is essential for ZGA. Maternal Yap1-knockout embryos exhibit a prolonged two-cell stage and develop into the four-cell stage at a much slower pace than the wild-type controls. Transcriptome analyses identify YAP target genes in early blastomeres; two of which, Rpl13 and Rrm2, are required to mediate maternal YAP's effect in conferring developmental competence on preimplantation embryos. Furthermore, the physiological YAP activator, lysophosphatidic acid, can substantially improve early development of wild-type, but not maternal Yap1-knockout embryos in both oviduct and culture. These observations provide insights into the mechanisms of ZGA, and suggest potentials of YAP activators in improving the developmental competence of cultured embryos in assisted human reproduction and animal biotechnology. PMID:26902285

  5. Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse.

    PubMed

    Yu, Chao; Ji, Shu-Yan; Dang, Yu-Jiao; Sha, Qian-Qian; Yuan, Yi-Feng; Zhou, Jian-Jie; Yan, Li-Ying; Qiao, Jie; Tang, Fuchou; Fan, Heng-Yu

    2016-03-01

    In early mammalian embryos, the genome is transcriptionally quiescent until the zygotic genome activation (ZGA) which occurs 2-3 days after fertilization. Despite a long-standing effort, maternal transcription factors regulating this crucial developmental event remain largely elusive. Here, using maternal and paternal mouse models of Yap1 deletion, we show that maternally accumulated yes-associated protein (YAP) in oocyte is essential for ZGA. Maternal Yap1-knockout embryos exhibit a prolonged two-cell stage and develop into the four-cell stage at a much slower pace than the wild-type controls. Transcriptome analyses identify YAP target genes in early blastomeres; two of which, Rpl13 and Rrm2, are required to mediate maternal YAP's effect in conferring developmental competence on preimplantation embryos. Furthermore, the physiological YAP activator, lysophosphatidic acid, can substantially improve early development of wild-type, but not maternal Yap1-knockout embryos in both oviduct and culture. These observations provide insights into the mechanisms of ZGA, and suggest potentials of YAP activators in improving the developmental competence of cultured embryos in assisted human reproduction and animal biotechnology.

  6. Early Transcriptomic Response to LDL and oxLDL in Human Vascular Smooth Muscle Cells

    PubMed Central

    Damián-Zamacona, Salvador; Toledo-Ibelles, Paola; Ibarra-Abundis, Mabel Z.; Uribe-Figueroa, Laura; Hernández-Lemus, Enrique; Macedo-Alcibia, Karla Paola; Delgado–Coello, Blanca; Mas-Oliva, Jaime; Reyes-Grajeda, Juan Pablo

    2016-01-01

    Background Although nowadays it is well known that the human transcriptome can importantly vary according to external or environmental condition, the reflection of this concept when studying oxidative stress and its direct relationship with gene expression profiling during the process of atherogenesis has not been thoroughly achieved. Objective The ability to analyze genome-wide gene expression through transcriptomics has shown that the genome responds dynamically to diverse stimuli. Here, we describe the transcriptome of human vascular smooth muscle cells (hVSMC) stimulated by native and oxidized low-density lipoprotein (nLDL and oxLDL respectively), with the aim of assessing the early molecular changes that induce a response in this cell type resulting in a transcriptomic transformation. This expression has been demonstrated in atherosclerotic plaques in vivo and in vitro, particularly in the light of the oxidative modification hypothesis of atherosclerosis. Approach and Results Total RNA was isolated with TRIzol reagent (Life Technologies) and quality estimated using an Agilent 2100 bioanalyzer. The transcriptome of hVSMC under different experimental conditions (1,5 and 24 hours for nLDL and oxLDL) was obtained using the GeneChip Human Gene 1.0 ST (Affymetrix) designed to measure gene expression of 28,869 well-annotated genes. A fixed fold-change cut-off corresponding to ± 2 was used to identify genes exhibiting the most significant variation and statistical significance (P< 0.05), and 8 genes validated by qPCR using Taqman probes. Conclusions 10 molecular processes were significantly affected in hVSMC: Apoptosis and cell cycle, extracellular matrix remodeling, DNA repair, cholesterol efflux, cGMP biosynthesis, endocytic mechanisms, calcium homeostasis, redox balance, membrane trafficking and finally, the immune response to inflammation. The evidence we present supporting the hypothesis for the involvement of oxidative modification of several processes and

  7. Early feeding and early life housing conditions influence the response towards a noninfectious lung challenge in broilers.

    PubMed

    Simon, K; de Vries Reilingh, G; Bolhuis, J E; Kemp, B; Lammers, A

    2015-09-01

    Early life conditions such as feed and water availability immediately post hatch (PH) and housing conditions may influence immune development and therefore immune reactivity later in life. The current study addressed the consequences of a combination of these 2 early life conditions for immune reactivity, i.e., the specific antibody response towards a non-infectious lung challenge. Broiler chicks received feed and water either immediately p.h. or with a 72 h delay and were either reared in a floor or a cage system. At 4 weeks of age, chicks received either an intra-tracheally administered Escherichia coli lipopolysaccharide (LPS)/Human Serum Albumin (HUSA) challenge or a placebo, and antibody titers were measured up to day 14 after administration of the challenge. Chicks housed on the floor and which had a delayed access to feed p.h. showed the highest antibody titers against HuSA. These chicks also showed the strongest sickness response and poorest performance in response to the challenge, indicating that chicks with delayed access to feed might be more sensitive to an environment with higher antigenic pressure. In conclusion, results from the present study show that early life feeding strategy and housing conditions influence a chick's response to an immune challenge later in life. These 2 early life factors should therefore be taken into account when striving for a balance between disease resistance and performance in poultry.

  8. Elevated Amygdala Response to Faces following Early Deprivation

    ERIC Educational Resources Information Center

    Tottenham, N.; Hare, T. A.; Millner, A.; Gilhooly, T.; Zevin, J. D.; Casey, B. J.

    2011-01-01

    A functional neuroimaging study examined the long-term neural correlates of early adverse rearing conditions in humans as they relate to socio-emotional development. Previously institutionalized (PI) children and a same-aged comparison group were scanned using functional magnetic resonance imaging (fMRI) while performing an Emotional Face Go/Nogo…

  9. Genome-wide association study of leukotriene modifier response in asthma.

    PubMed

    Dahlin, A; Litonjua, A; Irvin, C G; Peters, S P; Lima, J J; Kubo, M; Tamari, M; Tantisira, K G

    2016-04-01

    Heterogeneous therapeutic responses to leukotriene modifiers (LTMs) are likely due to variation in patient genetics. Although prior candidate gene studies implicated multiple pharmacogenetic loci, to date, no genome-wide association study (GWAS) of LTM response was reported. In this study, DNA and phenotypic information from two placebo-controlled trials (total N=526) of zileuton response were interrogated. Using a gene-environment (G × E) GWAS model, we evaluated 12-week change in forced expiratory volume in 1 second (ΔFEV1) following LTM treatment. The top 50 single-nucleotide polymorphism associations were replicated in an independent zileuton treatment cohort, and two additional cohorts of montelukast response. In a combined analysis (discovery+replication), rs12436663 in MRPP3 achieved genome-wide significance (P=6.28 × 10(-08)); homozygous rs12436663 carriers showed a significant reduction in mean ΔFEV1 following zileuton treatment. In addition, rs517020 in GLT1D1 was associated with worsening responses to both montelukast and zileuton (combined P=1.25 × 10(-07)). These findings implicate previously unreported loci in determining therapeutic responsiveness to LTMs. PMID:26031901

  10. Panel 2.2: surveillance, early warning alert, and response: communicable and vector-borne diseases.

    PubMed

    Roure, Collette; Khalakdina, Asheena; Ungchusak, Kumnuan; Yulizar, Media; Ravindran, P; Watson, John; Pinto, Augusto

    2005-01-01

    This is a summary of the presentations and discussion of Surveillance, Early Warning Alert and Response at the Conference, Health Aspects of the Tsunami Disaster in Asia, convened by the World Health Organization (WHO) in Phuket, Thailand, 04-06 May 2005. The topics discussed included issues related to the surveillance, early warning alert, and response to communicable and vector-borne diseases as pertaining to the responses to the damage created by the Tsunami. It is presented in the following major sections: (1) key questions; (2) needs assessment; (3) coordination; (4) gap filling; and (5) capacity building. The key questions section is presented in six sub-sections: (1) communicable diseases; (2) early warning; (3) laboratory capacity and referral networking; (4) coordination of disease surveillance, early warning, and response; (5) health infrastructure rebuilding; and (6) using existing national surveillance plans to enhance disease surveillance and early warning systems. PMID:16496622

  11. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    PubMed Central

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  12. Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency

    PubMed Central

    Frankowiack, Marcel; Kierczak, Marcin; Bergvall, Kerstin; Axelsson, Erik; Tintle, Linda; Marti, Eliane; Roosje, Petra; Leeb, Tosso; Hedhammar, Åke; Hammarström, Lennart; Lindblad-Toh, Kerstin

    2015-01-01

    Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development. PMID:26225558

  13. The complete mitochondrial genome of Pauropus longiramus (Myriapoda: Pauropoda): implications on early diversification of the myriapods revealed from comparative analysis.

    PubMed

    Dong, Yan; Sun, Hongying; Guo, Hua; Pan, Da; Qian, Changyuan; Hao, Sijing; Zhou, Kaiya

    2012-08-15

    Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans. PMID:22659693

  14. The complete mitochondrial genome of Pauropus longiramus (Myriapoda: Pauropoda): implications on early diversification of the myriapods revealed from comparative analysis.

    PubMed

    Dong, Yan; Sun, Hongying; Guo, Hua; Pan, Da; Qian, Changyuan; Hao, Sijing; Zhou, Kaiya

    2012-08-15

    Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans.

  15. Elucidation of hepatitis C virus transmission and early diversification by single genome sequencing.

    PubMed

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Blair, Lily M; Giorgi, Elena E; Parrish, Erica H; Learn, Gerald H; Hraber, Peter; Goepfert, Paul A; Saag, Michael S; Denny, Thomas N; Haynes, Barton F; Hahn, Beatrice H; Ribeiro, Ruy M; Perelson, Alan S; Korber, Bette T; Bhattacharya, Tanmoy; Shaw, George M

    2012-01-01

    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.

  16. Early inflammatory response to the saponin adjuvant Matrix-M in the pig.

    PubMed

    Fossum, Caroline; Hjertner, Bernt; Ahlberg, Viktor; Charerntantanakul, Wasin; McIntosh, Kathy; Fuxler, Lisbeth; Balagunaseelan, Navisraj; Wallgren, Per; Lövgren Bengtsson, Karin

    2014-03-15

    The early inflammatory response to Matrix-M was evaluated in pigs. Adverse reactions measured as body temperature, appetite, activity level and reaction at the site of injection were not observed after s.c. injection with three doses of the adjuvant (75, 100 or 150μg) into one week old piglets. Analyses of the immediate cytokine response of PBMC after in vitro exposure to Matrix-M (AbISCO-100(®)) revealed only a low expression of mRNA for tumour necrosis factor-α (p<0.05) after 6h incubation. Histological examination revealed an infiltration of leukocytes, haemorrhage and necrosis in muscle 24h after i.m. injection of 150μg Matrix-M in pigs aged eleven weeks. At this time, different grades of reactive lymphoid hyperplasia were recorded in the draining lymph node that was enlarged in three of these six pigs injected with Matrix-M. The global transcriptional response at the site of injection and in the draining lymph node was analyzed using Affymetrix GeneChip Porcine Genome Array. A significant enrichment of gene signatures for the cell types described as "myeloid cells" and "plasmacytoid dendritic cells" was observed at the site of injection in Matrix-M injected pigs compared with pigs injected with saline. A number of genes encoding cytokines/chemokines or their receptors were upregulated at the injection site as well as in the draining lymph node. In the draining lymph node, a majority of the upregulated genes were interferon-regulated genes (IRGs). The expression of IFN-β, but not IFN-α, was increased in the draining lymph nodes of a majority of the pigs exposed to Matrix-M. These IFN-β expressing pigs also expressed increased levels of osteopontin (OPN) or stimulator of interferon genes (STING), two factors known to facilitate the expression of type I IFNs in response to viral infection. Thus, Matrix-M does not appear to induce any harmful inflammatory response in piglets whilst contributing to the innate immunity by activating the type I IFN system

  17. Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis.

    PubMed

    Reitzel, Adam M; Sullivan, James C; Traylor-Knowles, Nikki; Finnerty, John R

    2008-06-01

    Salt marshes are challenging habitats due to natural variability in key environmental parameters including temperature, salinity, ultraviolet light, oxygen, sulfides, and reactive oxygen species. Compounding this natural variation, salt marshes are often heavily impacted by anthropogenic insults including eutrophication, toxic contamination, and coastal development that alter tidal and freshwater inputs. Commensurate with this environmental variability, estuarine animals generally exhibit broader physiological tolerances than freshwater, marine, or terrestrial species. One factor that determines an organism's physiological tolerance is its ability to upregulate "stress-response genes" in reaction to particular stressors. Comparative studies on diverse organisms have identified a number of evolutionarily conserved genes involved in responding to abiotic and biotic stressors. We used homology-based scans to survey the sequenced genome of Nematostella vectensis, the starlet sea anemone, an estuarine specialist, to identify genes involved in the response to three kinds of insult-physiochemical insults, pathogens, and injury. Many components of the stress-response networks identified in triploblastic animals have clear orthologs in the sea anemone, meaning that they must predate the cnidarian-triploblast split (e.g., xenobiotic receptors, biotransformative genes, ATP-dependent transporters, and genes involved in responding to reactive oxygen species, toxic metals, osmotic shock, thermal stress, pathogen exposure, and wounding). However, in some instances, stress-response genes known from triploblasts appear to be absent from the Nematostella genome (e.g., many metal-complexing genes). This is the first comprehensive examination of the genomic stress-response repertoire of an estuarine animal and a member of the phylum Cnidaria. The molecular markers of stress response identified in Nematostella may prove useful in monitoring estuary health and evaluating coastal

  18. Whole-genome analyses resolve early branches in the tree of life of modern birds.

    PubMed

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y W; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Li, Jianwen; Zhang, Fang; Li, Hui; Zhou, Long; Narula, Nitish; Liu, Liang; Ganapathy, Ganesh; Boussau, Bastien; Bayzid, Md Shamsuzzoha; Zavidovych, Volodymyr; Subramanian, Sankar; Gabaldón, Toni; Capella-Gutiérrez, Salvador; Huerta-Cepas, Jaime; Rekepalli, Bhanu; Munch, Kasper; Schierup, Mikkel; Lindow, Bent; Warren, Wesley C; Ray, David; Green, Richard E; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Li, Shengbin; Li, Ning; Huang, Yinhua; Derryberry, Elizabeth P; Bertelsen, Mads Frost; Sheldon, Frederick H; Brumfield, Robb T; Mello, Claudio V; Lovell, Peter V; Wirthlin, Morgan; Schneider, Maria Paula Cruz; Prosdocimi, Francisco; Samaniego, José Alfredo; Vargas Velazquez, Amhed Missael; Alfaro-Núñez, Alonzo; Campos, Paula F; Petersen, Bent; Sicheritz-Ponten, Thomas; Pas, An; Bailey, Tom; Scofield, Paul; Bunce, Michael; Lambert, David M; Zhou, Qi; Perelman, Polina; Driskell, Amy C; Shapiro, Beth; Xiong, Zijun; Zeng, Yongli; Liu, Shiping; Li, Zhenyu; Liu, Binghang; Wu, Kui; Xiao, Jin; Yinqi, Xiong; Zheng, Qiuemei; Zhang, Yong; Yang, Huanming; Wang, Jian; Smeds, Linnea; Rheindt, Frank E; Braun, Michael; Fjeldsa, Jon; Orlando, Ludovic; Barker, F Keith; Jønsson, Knud Andreas; Johnson, Warren; Koepfli, Klaus-Peter; O'Brien, Stephen; Haussler, David; Ryder, Oliver A; Rahbek, Carsten; Willerslev, Eske; Graves, Gary R; Glenn, Travis C; McCormack, John; Burt, Dave; Ellegren, Hans; Alström, Per; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas P; Zhang, Guojie

    2014-12-12

    To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

  19. Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress

    PubMed Central

    Delatte, Benjamin; Jeschke, Jana; Defrance, Matthieu; Bachman, Martin; Creppe, Catherine; Calonne, Emilie; Bizet, Martin; Deplus, Rachel; Marroquí, Laura; Libin, Myriam; Ravichandran, Mirunalini; Mascart, Françoise; Eizirik, Decio L.; Murrell, Adele; Jurkowski, Tomasz P.; Fuks, François

    2015-01-01

    The TET enzymes convert methylcytosine to the newly discovered base hydroxymethylcytosine. While recent reports suggest that TETs may play a role in response to oxidative stress, this role remains uncertain, and results lack in vivo models. Here we show a global decrease of hydroxymethylcytosine in cells treated with buthionine sulfoximine, and in mice depleted for the major antioxidant enzymes GPx1 and 2. Furthermore, genome-wide profiling revealed differentially hydroxymethylated regions in coding genes, and intriguingly in microRNA genes, both involved in response to oxidative stress. These results thus suggest a profound effect of in vivo oxidative stress on the global hydroxymethylome. PMID:26239807

  20. OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    PubMed Central

    Thybert, David; Avner, Stéphane; Lucchetti-Miganeh, Céline; Chéron, Angélique; Barloy-Hubler, Frédérique

    2008-01-01

    Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS) and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: PMID:19117520

  1. Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes.

    PubMed

    Lee, Moon Young; Park, Chanjae; Berent, Robyn M; Park, Paul J; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C; Redelman, Doug; Shen, Tsai-Wei; Park, Jong Kun; Miano, Joseph M; Sanders, Kenton M; Ro, Seungil

    2015-01-01

    Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies.

  2. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time

    PubMed Central

    Feichtinger, Julia; Hernández, Inmaculada; Fischer, Christoph; Hanscho, Michael; Auer, Norbert; Hackl, Matthias; Jadhav, Vaibhav; Baumann, Martina; Krempl, Peter M.; Schmidl, Christian; Farlik, Matthias; Schuster, Michael; Merkel, Angelika; Sommer, Andreas; Heath, Simon; Rico, Daniel; Bock, Christoph; Thallinger, Gerhard G.

    2016-01-01

    ABSTRACT The most striking characteristic of CHO cells is their adaptability, which enables efficient production of proteins as well as growth under a variety of culture conditions, but also results in genomic and phenotypic instability. To investigate the relative contribution of genomic and epigenetic modifications towards phenotype evolution, comprehensive genome and epigenome data are presented for six related CHO cell lines, both in response to perturbations (different culture conditions and media as well as selection of a specific phenotype with increased transient productivity) and in steady state (prolonged time in culture under constant conditions). Clear transitions were observed in DNA‐methylation patterns upon each perturbation, while few changes occurred over time under constant conditions. Only minor DNA‐methylation changes were observed between exponential and stationary growth phase; however, throughout a batch culture the histone modification pattern underwent continuous adaptation. Variation in genome sequence between the six cell lines on the level of SNPs, InDels, and structural variants is high, both upon perturbation and under constant conditions over time. The here presented comprehensive resource may open the door to improved control and manipulation of gene expression during industrial bioprocesses based on epigenetic mechanisms. Biotechnol. Bioeng. 2016;113: 2241–2253. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:27072894

  3. Genome-wide association study of antibody response to Newcastle disease virus in chicken

    PubMed Central

    2013-01-01

    Background Since the first outbreak in Indonesia in 1926, Newcastle disease has become one of the most common and contagious bird diseases throughout the world. To date, enhancing host antibody response by vaccination remains the most efficient strategy to control outbreaks of Newcastle disease. Antibody response plays an important role in host resistance to Newcastle disease, and selection for antibody response can effectively improve disease resistance in chickens. However, the molecular basis of the variation in antibody response to Newcastle disease virus (NDV) is not clear. The aim of this study was to detect genes modulating antibody response to NDV by a genome-wide association study (GWAS) in chickens. Results To identify genes or chromosomal regions associated with antibody response to NDV after immunization, a GWAS was performed using 39,833 SNP markers in a chicken F2 resource population derived from a cross between two broiler lines that differed in their resistance. Two SNP effects reached 5% Bonferroni genome-wide significance (P<1.26×10-6). These two SNPs, rs15354805 and rs15355555, were both on chicken (Gallus gallus) chromosome 1 and spanned approximately 600 Kb, from 100.4 Mb to 101.0 Mb. Rs15354805 is in intron 7 of the chicken Roundabout, axon guidance receptor, homolog 2 (ROBO2) gene, and rs15355555 is located about 243 Kb upstream of ROBO2. Rs15354805 explained 5% of the phenotypic variation in antibody response to NDV, post immunization, in chickens. Rs15355555 had a similar effect as rs15354805 because of its linkage disequilibrium with rs15354805 (r2=0.98). Conclusion The region at about 100 Mb from the proximal end of chicken chromosome 1, including the ROBO1 and ROBO2 genes, has a strong effect on the antibody response to the NDV in chickens. This study paves the way for further research on the host immune response to NDV. PMID:23663563

  4. Network Analysis of Genome-Wide Selective Constraint Reveals a Gene Network Active in Early Fetal Brain Intolerant of Mutation

    PubMed Central

    Choi, Jinmyung; Samocha, Kaitlin E.; Daly, Mark J.

    2016-01-01

    Using robust, integrated analysis of multiple genomic datasets, we show that genes depleted for non-synonymous de novo mutations form a subnetwork of 72 members under strong selective constraint. We further show this subnetwork is preferentially expressed in the early development of the human hippocampus and is enriched for genes mutated in neurological Mendelian disorders. We thus conclude that carefully orchestrated developmental processes are under strong constraint in early brain development, and perturbations caused by mutation have adverse outcomes subject to strong purifying selection. Our findings demonstrate that selective forces can act on groups of genes involved in the same process, supporting the notion that purifying selection can act coordinately on multiple genes. Our approach provides a statistically robust, interpretable way to identify the tissues and developmental times where groups of disease genes are active. PMID:27305007

  5. Early life socioeconomic position and immune response to persistent infections among elderly Latinos.

    PubMed

    Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E

    2016-10-01

    Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age.

  6. Early life socioeconomic position and immune response to persistent infections among elderly Latinos.

    PubMed

    Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E

    2016-10-01

    Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age. PMID:27543684

  7. Early and late mammalian responses to heavy charged particles

    NASA Technical Reports Server (NTRS)

    Ainsworth, E. J.

    1986-01-01

    This overview summarizes murine results on acute lethality responses, inactivation of marrow CFU-S and intestinal microcolonies, testes weight loss, life span shortening, and posterior lens opacification in mice irradiated with heavy charged particles. RBE-LET relationships for these mammalian responses are compared with results from in vitro studies. The trend is that the maximum RBE for in vivo responses tends to be lower and occurs at a lower LET than for inactivation of V79 and T-1 cells in culture. Based on inactivation cross sections, the response of CFU-S in vivo conforms to expectations from earlier studies with prokaryotic systems and mammalian cells in culture. Effects of heavy ions are compared with fission spectrum neutrons, and the results are consistent with the interpretation that RBEs are lower than for fission neutrons at about the same LET, probably due to differences in track structure.

  8. Early Hemostatic Responses to Trauma Identified Using Hierarchical Clustering Analysis

    PubMed Central

    White, N.J.; Contaifer, D.; Martin, E.J.; Newton, J.C.; Mohammed, B.M.; Bostic, J.L.; Brophy, G.M.; Spiess, B.D.; Pusateri, A.E.; Ward, K.R.; Brophy, D.F.

    2015-01-01

    Background Trauma-induced coagulopathy is a complex multifactorial hemostatic response that is poorly understood. Objectives Identify distinct hemostatic responses to trauma and identify key components of the hemostatic system that vary between responses. Patients/Methods Cross-sectional observational study of adult trauma patients at an urban Level I trauma center Emergency Department. Hierarchical clustering analysis was used to identify distinct clusters of similar subjects using vital signs, injury/shock severity, and by comprehensive assessment of coagulation, clot formation, platelet function, and thrombin generation. Results Of 84 total trauma patients included in the model, three distinct trauma clusters were identified. Cluster 1 (N=57) displayed platelet activation, preserved peak thrombin generation, plasma coagulation dysfunction, moderately decreased fibrinogen concentration, and normal clot formation relative to healthy controls. Cluster 2 (N=18) displayed platelet activation, preserved peak thrombin generation, and preserved fibrinogen concentration with normal clot formation. Cluster 3 (N=9) was the most severely injured and shocked and displayed a strong inflammatory and bleeding phenotype. Platelet dysfunction, thrombin inhibition, plasma coagulation dysfunction, and decreased fibrinogen concentration were present in this cluster. Fibrinolytic activation was present in all clusters, but increased more so in Cluster 3. Trauma clusters were different most noticeably in their relative fibrinogen concentration, peak thrombin generation, and platelet-induced clot contraction. Conclusions Hierarchical clustering analysis identified 3 distinct hemostatic responses to trauma. Further insight into the underlying hemostatic mechanisms responsible for these responses is needed. PMID:25816845

  9. Early Response to Antipsychotic Drug Therapy as a Clinical Marker of Subsequent Response in the Treatment of Schizophrenia

    PubMed Central

    Kinon, Bruce J; Chen, Lei; Ascher-Svanum, Haya; Stauffer, Virginia L; Kollack-Walker, Sara; Zhou, Wei; Kapur, Shitij; Kane, John M

    2010-01-01

    Our objective was to prospectively assess whether early (ie, 2 weeks) response to an antipsychotic predicts later (12-week) response and whether ‘switching' early non-responders to another antipsychotic is a better strategy than ‘staying'. This randomized, double-blind, flexible-dosed, 12-week study enrolled 628 patients diagnosed with schizophrenia or schizoaffective disorder. All initiated treatment with risperidone. Early response was defined as ⩾20% improvement on the Positive and Negative Syndrome Scale (PANSS) total score following 2 weeks of treatment. Early responders (ERs) continued on risperidone, whereas early non-responders (ENRs) were randomized (1 : 1) to continue on risperidone 2–6 mg/day or switch to olanzapine 10–20 mg/day for 10 additional weeks. Compared with ENRs, risperidone ERs showed significantly greater reduction in PANSS total score (end point; p<001). Early response/non-response was highly predictive of subsequent clinical outcomes. Switching risperidone ENRs to olanzapine at week 2 resulted in a small but significantly greater reduction in PANSS total score (end point; p=0.020) and in depressive symptoms (end point; p=0.004); the reduction in PANSS was greater among those who were still moderately ill at 2 weeks. Switching risperidone ENRs to olanzapine also resulted in significantly greater increases in triglycerides, a significantly greater decrease in prolactin, and significantly less treatment-emergent dyskinesia. This is the first study to prospectively show that early response/non-response to an antipsychotic (risperidone) is a reliable clinical marker of subsequent clinical outcomes and that a ‘switching' strategy based on this information may lead to greater clinical improvement than staying on a drug for a longer period in some patients. PMID:19890258

  10. Early Diversification of the Tumor Necrosis Superfamily in Teleosts: Genomic Characterization and Expression Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tumor necrosis factor superfamily (TNFSF) of proteins are cytokines involved in diverse immunological and developmental pathways. Little is known about their evolution or expression in lower vertebrate species. Bioinformatic searches of Zebrafish, Tetraodon, and Fugu genome and other teleost E...

  11. Predicted accuracy of and response to genomic selection for new traits in dairy cattle.

    PubMed

    Calus, M P L; de Haas, Y; Pszczola, M; Veerkamp, R F

    2013-02-01

    Genomic selection relaxes the requirement of traditional selection tools to have phenotypic measurements on close relatives of all selection candidates. This opens up possibilities to select for traits that are difficult or expensive to measure. The objectives of this paper were to predict accuracy of and response to genomic selection for a new trait, considering that only a cow reference population of moderate size was available for the new trait, and that selection simultaneously targeted an index and this new trait. Accuracy for and response to selection were deterministically evaluated for three different breeding goals. Single trait selection for the new trait based only on a limited cow reference population of up to 10 000 cows, showed that maximum genetic responses of 0.20 and 0.28 genetic standard deviation (s.d.) per year can be achieved for traits with a heritability of 0.05 and 0.30, respectively. Adding information from the index based on a reference population of 5000 bulls, and assuming a genetic correlation of 0.5, increased genetic response for both heritability levels by up to 0.14 genetic s.d. per year. The scenario with simultaneous selection for the new trait and the index, yielded a substantially lower response for the new trait, especially when the genetic correlation with the index was negative. Despite the lower response for the index, whenever the new trait had considerable economic value, including the cow reference population considerably improved the genetic response for the new trait. For scenarios with a zero or negative genetic correlation with the index and equal economic value for the index and the new trait, a reference population of 2000 cows increased genetic response for the new trait with at least 0.10 and 0.20 genetic s.d. per year, for heritability levels of 0.05 and 0.30, respectively. We conclude that for new traits with a very small or positive genetic correlation with the index, and a high positive economic value

  12. Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans.

    PubMed

    Gitschlag, Bryan L; Kirby, Cait S; Samuels, David C; Gangula, Rama D; Mallal, Simon A; Patel, Maulik R

    2016-07-12

    Mutant mitochondrial genomes (mtDNA) can be viewed as selfish genetic elements that persist in a state of heteroplasmy despite having potentially deleterious metabolic consequences. We sought to study regulation of selfish mtDNA dynamics. We establish that the large 3.1-kb deletion-bearing mtDNA variant uaDf5 is a selfish genome in Caenorhabditis elegans. Next, we show that uaDf5 mutant mtDNA replicates in addition to, not at the expense of, wild-type mtDNA. These data suggest the existence of a homeostatic copy-number control that is exploited by uaDf5 to "hitchhike" to high frequency. We also observe activation of the mitochondrial unfolded protein response (UPR(mt)) in uaDf5 animals. Loss of UPR(mt) causes a decrease in uaDf5 frequency, whereas its constitutive activation increases uaDf5 levels. UPR(mt) activation protects uaDf5 from mitophagy. Taken together, we propose that mtDNA copy-number control and UPR(mt) represent two homeostatic response mechanisms that play important roles in regulating selfish mitochondrial genome dynamics. PMID:27411011

  13. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    PubMed Central

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  14. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib.

    PubMed

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I; Trump, Donald L; Johnson, Candace S; Morrison, Carl D

    2015-10-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5' G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  15. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes

    PubMed Central

    Sharma, Rahul; Xia, Xiaojuan; Riess, Kai; Bauer, Robert; Thines, Marco

    2015-01-01

    Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle. PMID:26314305

  16. Whole-genome association analysis of treatment response in obsessive-compulsive disorder.

    PubMed

    Qin, H; Samuels, J F; Wang, Y; Zhu, Y; Grados, M A; Riddle, M A; Greenberg, B D; Knowles, J A; Fyer, A J; McCracken, J T; Murphy, D L; Rasmussen, S A; Cullen, B A; Piacentini, J; Geller, D; Stewart, S E; Pauls, D; Bienvenu, O J; Goes, F S; Maher, B; Pulver, A E; Valle, D; Lange, C; Mattheisen, M; McLaughlin, N C; Liang, K-Y; Nurmi, E L; Askland, K D; Nestadt, G; Shugart, Y Y

    2016-02-01

    Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as 'response' (n=514) or 'non-response' (n=290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top single-nucleotide polymorphism (SNP) was rs17162912 (P=1.76 × 10(-8)), which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P<10(-5)) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877 and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave P-values of 2.86 × 10(-6) and 8.41 × 10(-6), respectively. The other 35 variations with signals of potential significance (P<10(-4)) involve multiple genes expressed in the brain, including GRIN2B, PCDH10 and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (false discovery rate (FDR)=0.0097) and the serotonergic system (FDR=0.0213). Although the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed. PMID:25824302

  17. Genomic Selection Improves Response to Selection in Resilience by Exploiting Genotype by Environment Interactions

    PubMed Central

    Mulder, Han A.

    2016-01-01

    Genotype by environment interactions (GxE) are very common in livestock and hamper genetic improvement. On the other hand, GxE is a source of genetic variation: genetic variation in response to environment, e.g., environmental perturbations such as heat stress or disease. In livestock breeding, there is tendency to ignore GxE because of increased complexity of models for genetic evaluations and lack of accuracy in extreme environments. GxE, however, creates opportunities to increase resilience of animals toward environmental perturbations. The main aim of the paper is to investigate to which extent GxE can be exploited with traditional and genomic selection methods. Furthermore, we investigated the benefit of reaction norm (RN) models compared to conventional methods ignoring GxE. The questions were addressed with selection index theory. GxE was modeled according to a linear RN model in which the environmental gradient is the contemporary group mean. Economic values were based on linear and non-linear profit equations. Accuracies of environment-specific (G)EBV were highest in intermediate environments and lowest in extreme environments. RN models had higher accuracies of (G)EBV in extreme environments than conventional models ignoring GxE. Genomic selection always resulted in higher response to selection in all environments than sib or progeny testing schemes. The increase in response was with genomic selection between 9 and 140% compared to sib testing and between 11 and 114% compared to progeny testing when the reference population consisted of 1 million animals across all environments. When the aim was to decrease environmental sensitivity, the response in slope of the RN model with genomic selection was between 1.09 and 319 times larger than with sib or progeny testing and in the right direction in contrast to sib and progeny testing that still increased environmental sensitivity. This shows that genomic selection with large reference populations offers great

  18. Genome-Scale Transcriptomic Insights into Early-Stage Fruit Development in Woodland Strawberry Fragaria vesca[C][W

    PubMed Central

    Kang, Chunying; Darwish, Omar; Geretz, Aviva; Shahan, Rachel; Alkharouf, Nadim; Liu, Zhongchi

    2013-01-01

    Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacle’s surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution. The data suggest that the endosperm and seed coat may play a more prominent role than the embryo in auxin and gibberellin biosynthesis for fruit set. A model is proposed to illustrate how hormonal signals produced in the endosperm and seed coat coordinate seed, ovary wall, and receptacle fruit development. The comprehensive fruit transcriptome data set provides a wealth of genomic resources for the strawberry and Rosaceae communities as well as unprecedented molecular insight into fruit set and early stage fruit development. PMID:23898027

  19. FANCD2 influences replication fork processes and genome stability in response to clustered DSBs

    PubMed Central

    Zhu, Jiayun; Su, Fengtao; Mukherjee, Shibani; Mori, Eiichiro; Hu, Burong; Asaithamby, Aroumougame

    2015-01-01

    Fanconi Anemia (FA) is a cancer predisposition syndrome and the factors defective in FA are involved in DNA replication, DNA damage repair and tumor suppression. Here, we show that FANCD2 is critical for genome stability maintenance in response to high-linear energy transfer (LET) radiation. We found that FANCD2 is monoubiquitinated and recruited to the sites of clustered DNA double-stranded breaks (DSBs) specifically in S/G2 cells after high-LET radiation. Further, FANCD2 facilitated the repair of clustered DSBs in S/G2 cells and proper progression of S-phase. Furthermore, lack of FANCD2 led to a reduced rate of replication fork progression and elevated levels of both replication fork stalling and new origin firing in response to high-LET radiation. Mechanistically, FANCD2 is required for correct recruitment of RPA2 and Rad51 to the sites of clustered DSBs and that is critical for proper processing of clustered DSBs. Significantly, FANCD2-decifient cells exhibited defective chromosome segregation, elevated levels of chromosomal aberrations, and anchorage-independent growth in response to high-LET radiation. These findings establish FANCD2 as a key factor in genome stability maintenance in response to high-LET radiation and as a promising target to improve cancer therapy. PMID:26083937

  20. Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Sánchez-Riego, Ana María; López-Maury, Luis; Florencio, Francisco Javier

    2014-01-01

    Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [As(III)] and arsenate [As(V)]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.

  1. Genomic Responses to Arsenic in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Sánchez-Riego, Ana María; López-Maury, Luis; Florencio, Francisco Javier

    2014-01-01

    Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [AsIII] and arsenate [AsV]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media. PMID:24797411

  2. Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Sánchez-Riego, Ana María; López-Maury, Luis; Florencio, Francisco Javier

    2014-01-01

    Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [As(III)] and arsenate [As(V)]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media. PMID:24797411

  3. Measuring Early Childhood Teacher Candidates' Conceptualizations of a Culturally Responsive Classroom Ecology

    ERIC Educational Resources Information Center

    Flores, Belinda Bustos; Riojas-Cortez, Mari

    2009-01-01

    With the increase of Latino preschoolers, it is pressing that early childhood teachers are prepared to create a high quality environment in which all children can succeed. Using the frameworks of cultural responsiveness and classroom management, we developed the Early Childhood Ecology Scale (ECES) as an observational and reflective tool to…

  4. A GENOME-WIDE ASSOCIATION STUDY OF BRONCHODILATOR RESPONSE IN LATINOS IMPLICATES RARE VARIANTS

    PubMed Central

    Drake, Katherine A.; Torgerson, Dara G.; Gignoux, Christopher R.; Galanter, Joshua M.; Roth, Lindsey A.; Huntsman, Scott; Eng, Celeste; Oh, Sam S.; Yee, Sook Wah; Lin, Lawrence; Bustamante, Carlos D.; Moreno-Estrada, Andrés; Sandoval, Karla; Davis, Adam; Borrell, Luisa N.; Farber, Harold J.; Kumar, Rajesh; Avila, Pedro C.; Brigino-Buenaventura, Emerita; Chapela, Rocio; Ford, Jean G.; LeNoir, Michael A.; Lurmann, Fred; Meade, Kelley; Serebrisky, Denise; Thyne, Shannon; Rodríguez-Cintrón, William; Sen, Saunak; Rodríguez-Santana, José R.; Hernandez, Ryan D.; Giacomini, Kathleen M.; Burchard, Esteban G.

    2013-01-01

    Rationale The primary rescue medication to treat acute asthma exacerbation is short-acting β2- adrenergic receptor (β2AR) agonists (SABAs), however there is variation in how well an individual responds to treatment. Although these differences may be due to environmental factors, there is mounting evidence for a genetic contribution to variability in bronchodilator drug response (BDR). Methods We performed a genome-wide association study (GWAS) for BDR in 1,782 Latino children with asthma using standard linear regression, adjusting for genetic ancestry and ethnicity, and performed replication studies in an additional 531 Latinos. We also performed admixture mapping across the genome by testing for an association between local European, African, and Native American ancestry and BDR, adjusting for genomic ancestry and ethnicity. Results We identified seven genetic variants associated with BDR at a genome-wide significant threshold (p<5×10−8), all of which had frequencies below 5%. Furthermore, we observed an excess of small p-values driven by rare variants (frequency < 5%), and by variants in the proximity of solute carrier (SLC) genes. Admixture mapping identified five significant peaks; fine mapping within these peaks identified two rare variants in SLC22A15 as being associated with increased BDR in Mexicans. Quantitative PCR and immunohistochemistry identified SLC22A15 as being expressed in the lung and bronchial epithelial cells. Conclusion Our results suggest that rare variation contributes to individual differences in response to albuterol in Latinos, notably in solute carrier genes that include membrane transport proteins involved in the transport of endogenous metabolites and xenobiotics. Resequencing in larger, multi-ethnic population samples and additional functional studies are required to further understand the role of rare variation in BDR. PMID:23992748

  5. The Development of Attention and Response Inhibition in Early Childhood

    ERIC Educational Resources Information Center

    Bartgis, Jami; Thomas, David G.; Lefler, Elizabeth K.; Hartung, Cynthia M.

    2008-01-01

    The goal of this study was to examine the development of attention and response inhibition from ages 5 to 7. Forty children (20 5-year-olds and 20 7-year-olds) completed four counterbalanced phases of a continuous performance task. Phase 1 was designed to measure attention without distraction, Phase 2 was designed to measure attention with…

  6. Early Responsivity to Moral Events: Physiological and Behavioral Correlates?

    ERIC Educational Resources Information Center

    Lamb, Sharon; And Others

    This study investigated toddlers' reactions to morally related events to determine whether age was a factor in emotional reaction, whether the middle of the second year was a salient time for the emergence of emotional reactions to such events, and whether heart rate change could be used as a new measure of moral responsivity. While their heart…

  7. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic.

    PubMed

    Turner, Stephen T; Bailey, Kent R; Fridley, Brooke L; Chapman, Arlene B; Schwartz, Gary L; Chai, High Seng; Sicotte, Hugues; Kocher, Jean-Pierre; Rodin, Andréi S; Boerwinkle, Eric

    2008-08-01

    We conducted a genome-wide association study to identify novel genes influencing diastolic blood pressure (BP) response to hydrochlorothiazide, a commonly prescribed thiazide diuretic preferred for the treatment of high BP. Affymetrix GeneChip Human Mapping 100K Arrays were used to measure single nucleotide polymorphisms across the 22 autosomes in 194 non-Hispanic black subjects and 195 non-Hispanic white subjects with essential hypertension selected from opposite tertiles of the race- and sex-specific distributions of age-adjusted diastolic BP response to hydrochlorothiazide (25 mg daily, PO, for 4 weeks). The black sample consisted of 97 "good" responders (diastolic BP response [mean+/-SD]=-18.3+/-4.2 mm Hg; age=47.1+/-6.1 years; 51.5% women) and 97 "poor" responders (diastolic BP response=-0.18+/-4.3; age=47.4+/-6.5 years; 51.5% women). Haplotype trend regression identified a region of chromosome 12q15 in which haplotypes constructed from 3 successive single nucleotide polymorphisms (rs317689, rs315135, and rs7297610) in proximity to lysozyme (LYZ), YEATS domain containing 4 (YEATS4), and fibroblast growth receptor substrate 2 (FRS2) were significantly associated with diastolic BP response (nominal P=2.39 x 10(-7); Bonferroni corrected P=0.024; simulated experiment-wise P=0.040). Genotyping of 35 additional single nucleotide polymorphisms selected to "tag" linkage disequilibrium blocks in these genes provided corroboration that variation in LYZ and YEATS4 was associated with diastolic BP response in a statistically independent data set of 291 black subjects and in the sample of 294 white subjects. These results support the use of genome-wide association analyses to identify novel genes influencing antihypertensive drug responses. PMID:18591461

  8. Oxidative burst: an early plant response to pathogen infection.

    PubMed Central

    Wojtaszek, P

    1997-01-01

    As plants are confined to the place where they grow, they have to develop a broad range of defence responses to cope with pathogenic infections. The oxidative burst, a rapid, transient, production of huge amounts of reactive oxygen species (ROS), is one of the earliest observable aspects of a plant's defence strategy. First this Review describes the chemistry of ROS (superoxide radical, hydrogen peroxide and hydroxyl radical). Secondly, the role of ROS in defence responses is demonstrated, and some important issues are considered, such as: (1) which of the ROS is a major building element of the oxidative burst; (2) the spatial and temporal regulation of the oxidative burst; and (3) differences in the plant's responses to biotic and abiotic elicitation. Thirdly, the relationships between the oxidative burst and other plant defence responses are indicated. These include: (1) an oxygen consumption, (2) the production of phytoalexins, (3) systemic acquired resistance, (4) immobilization of plant cell wall proteins, (5) changes in membrane permeability and ion fluxes and (6) a putative role in hypersensitive cell death. Wherever possible, the comparisons with models applicable to animal systems are presented. Finally, the question of the origin of ROS in the oxidative burst is considered, and two major hypotheses, (1) the action of NADPH oxidase system analogous to that of animal phagocytes, and (2) the pH-dependent generation of hydrogen peroxide by a cell wall peroxidase, are presented. On the basis of this material, a third 'unifying' hypothesis is presented, where transient changes in the pH of the cell wall compartment are indicated as a core phenomenon in evoking ROS production. Additionally, a germin/oxalate oxidase system which generates H2O2 in response to pathogenic infection is also described. PMID:9148737

  9. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.

    PubMed

    Chalhoub, Boulos; Denoeud, France; Liu, Shengyi; Parkin, Isobel A P; Tang, Haibao; Wang, Xiyin; Chiquet, Julien; Belcram, Harry; Tong, Chaobo; Samans, Birgit; Corréa, Margot; Da Silva, Corinne; Just, Jérémy; Falentin, Cyril; Koh, Chu Shin; Le Clainche, Isabelle; Bernard, Maria; Bento, Pascal; Noel, Benjamin; Labadie, Karine; Alberti, Adriana; Charles, Mathieu; Arnaud, Dominique; Guo, Hui; Daviaud, Christian; Alamery, Salman; Jabbari, Kamel; Zhao, Meixia; Edger, Patrick P; Chelaifa, Houda; Tack, David; Lassalle, Gilles; Mestiri, Imen; Schnel, Nicolas; Le Paslier, Marie-Christine; Fan, Guangyi; Renault, Victor; Bayer, Philippe E; Golicz, Agnieszka A; Manoli, Sahana; Lee, Tae-Ho; Thi, Vinh Ha Dinh; Chalabi, Smahane; Hu, Qiong; Fan, Chuchuan; Tollenaere, Reece; Lu, Yunhai; Battail, Christophe; Shen, Jinxiong; Sidebottom, Christine H D; Wang, Xinfa; Canaguier, Aurélie; Chauveau, Aurélie; Bérard, Aurélie; Deniot, Gwenaëlle; Guan, Mei; Liu, Zhongsong; Sun, Fengming; Lim, Yong Pyo; Lyons, Eric; Town, Christopher D; Bancroft, Ian; Wang, Xiaowu; Meng, Jinling; Ma, Jianxin; Pires, J Chris; King, Graham J; Brunel, Dominique; Delourme, Régine; Renard, Michel; Aury, Jean-Marc; Adams, Keith L; Batley, Jacqueline; Snowdon, Rod J; Tost, Jorg; Edwards, David; Zhou, Yongming; Hua, Wei; Sharpe, Andrew G; Paterson, Andrew H; Guan, Chunyun; Wincker, Patrick

    2014-08-22

    Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

  10. Population genomics of early events in the ecological differentiation of bacteria

    SciTech Connect

    Shapiro, Jesse B.; Friedman, Jonatan; Cordero, Otto X.; Preheim, Sarah P..; Timberlake, Sonia C.; Szabo, Gitta; Polz, Martin F.; Alm, Eric J.

    2012-04-06

    Genetic exchange is common among bacteria, but its effect on population diversity during ecological differentiation remains controversial. A fundamental question is whether advantageous mutations lead to selection of clonal genomes or, as in sexual eukaryotes, sweep through populations on their own. Here, we show that in two recently diverged populations of ocean bacteria, ecological differentiation has occurred akin to a sexual mechanism: A few genome regions have swept through subpopulations in a habitat-specific manner, accompanied by gradual separation of gene pools as evidenced by increased habitat specificity of the most recent recombinations. These findings reconcile previous, seemingly contradictory empirical observations of the genetic structure of bacterial populations and point to a more unified process of differentiation in bacteria and sexual eukaryotes than previously thought.

  11. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.

    PubMed

    Chalhoub, Boulos; Denoeud, France; Liu, Shengyi; Parkin, Isobel A P; Tang, Haibao; Wang, Xiyin; Chiquet, Julien; Belcram, Harry; Tong, Chaobo; Samans, Birgit; Corréa, Margot; Da Silva, Corinne; Just, Jérémy; Falentin, Cyril; Koh, Chu Shin; Le Clainche, Isabelle; Bernard, Maria; Bento, Pascal; Noel, Benjamin; Labadie, Karine; Alberti, Adriana; Charles, Mathieu; Arnaud, Dominique; Guo, Hui; Daviaud, Christian; Alamery, Salman; Jabbari, Kamel; Zhao, Meixia; Edger, Patrick P; Chelaifa, Houda; Tack, David; Lassalle, Gilles; Mestiri, Imen; Schnel, Nicolas; Le Paslier, Marie-Christine; Fan, Guangyi; Renault, Victor; Bayer, Philippe E; Golicz, Agnieszka A; Manoli, Sahana; Lee, Tae-Ho; Thi, Vinh Ha Dinh; Chalabi, Smahane; Hu, Qiong; Fan, Chuchuan; Tollenaere, Reece; Lu, Yunhai; Battail, Christophe; Shen, Jinxiong; Sidebottom, Christine H D; Wang, Xinfa; Canaguier, Aurélie; Chauveau, Aurélie; Bérard, Aurélie; Deniot, Gwenaëlle; Guan, Mei; Liu, Zhongsong; Sun, Fengming; Lim, Yong Pyo; Lyons, Eric; Town, Christopher D; Bancroft, Ian; Wang, Xiaowu; Meng, Jinling; Ma, Jianxin; Pires, J Chris; King, Graham J; Brunel, Dominique; Delourme, Régine; Renard, Michel; Aury, Jean-Marc; Adams, Keith L; Batley, Jacqueline; Snowdon, Rod J; Tost, Jorg; Edwards, David; Zhou, Yongming; Hua, Wei; Sharpe, Andrew G; Paterson, Andrew H; Guan, Chunyun; Wincker, Patrick

    2014-08-22

    Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement. PMID:25146293

  12. An early electrophysiological response associated with expertise in letter perception.

    PubMed

    Wong, Alan C N; Gauthier, Isabel; Woroch, Brion; DeBuse, Casey; Curran, Tim

    2005-09-01

    Expertise with print is likely to optimize visual processes for recognizing characters of a familiar writing system. Although brain activations have been identified for words and letter strings in contrast with other stimuli, relatively little work has focused on the neural basis of single-letter perception. English readers and Chinese-English bilinguals participated in an ERP study and performed a 1-back identity judgment on Roman letters, Chinese characters, pseudofonts, and their string versions. The Chinese-English bilinguals showed an enhanced N170 for both Roman letters and Chinese characters relative to pseudofonts. For the non-Chinese readers, the N170 amplitude was larger for Roman letters relative to Chinese characters and pseudofonts. Our results suggest that changes in relatively early visual processes underlie expert letter perception.

  13. Modular Transcriptional Networks of the Host Pulmonary Response during Early and Late Pneumococcal Pneumonia

    PubMed Central

    Scicluna, Brendon P; van Lieshout, Miriam H; Blok, Dana C; Florquin, Sandrine; van der Poll, Tom

    2015-01-01

    Streptococcus pneumoniae (Spneu) remains the most lethal bacterial pathogen and the dominant agent of community-acquired pneumonia. Treatment has perennially focused on the use of antibiotics, albeit scrutinized due to the occurrence of antibiotic-resistant Spneu strains. Immunomodulatory strategies have emerged as potential treatment options. Although promising, immunomodulation can lead to improper tissue functions either at steady state or upon infectious challenge. This argues for the availability of tools to enable a detailed assessment of whole pulmonary functions during the course of infection, not only those functions biased to the defense response. Thus, through the use of an unbiased tissue microarray and bioinformatics approach, we aimed to construct a comprehensive map of whole-lung transcriptional activity and cellular pathways during the course of pneumococcal pneumonia. We performed genome-wide transcriptional analysis of whole lungs before and 6 and 48 h after Spneu infection in mice. The 4,000 most variable transcripts across all samples were used to assemble a gene coexpression network comprising 13 intercorrelating modules (clusters of genes). Fifty-four percent of this whole-lung transcriptional network was altered 6 and 48 h after Spneu infection. Canonical signaling pathway analysis uncovered known pathways imparting protection, including IL17A/IL17F signaling and previously undetected mechanisms that included lipid metabolism. Through in silico prediction of cell types, pathways were observed to enrich for distinct cell types such as a novel stromal cell lipid metabolism pathway. These cellular mechanisms were furthermore anchored at functional hub genes of cellular fate, differentiation, growth and transcription. Collectively, we provide a benchmark unsupervised map of whole-lung transcriptional relationships and cellular activity during early and late pneumococcal pneumonia. PMID:25998510

  14. Whole-genome analyses resolve early branches in the tree of life of modern birds.

    PubMed

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y W; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Li, Jianwen; Zhang, Fang; Li, Hui; Zhou, Long; Narula, Nitish; Liu, Liang; Ganapathy, Ganesh; Boussau, Bastien; Bayzid, Md Shamsuzzoha; Zavidovych, Volodymyr; Subramanian, Sankar; Gabaldón, Toni; Capella-Gutiérrez, Salvador; Huerta-Cepas, Jaime; Rekepalli, Bhanu; Munch, Kasper; Schierup, Mikkel; Lindow, Bent; Warren, Wesley C; Ray, David; Green, Richard E; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Li, Shengbin; Li, Ning; Huang, Yinhua; Derryberry, Elizabeth P; Bertelsen, Mads Frost; Sheldon, Frederick H; Brumfield, Robb T; Mello, Claudio V; Lovell, Peter V; Wirthlin, Morgan; Schneider, Maria Paula Cruz; Prosdocimi, Francisco; Samaniego, José Alfredo; Vargas Velazquez, Amhed Missael; Alfaro-Núñez, Alonzo; Campos, Paula F; Petersen, Bent; Sicheritz-Ponten, Thomas; Pas, An; Bailey, Tom; Scofield, Paul; Bunce, Michael; Lambert, David M; Zhou, Qi; Perelman, Polina; Driskell, Amy C; Shapiro, Beth; Xiong, Zijun; Zeng, Yongli; Liu, Shiping; Li, Zhenyu; Liu, Binghang; Wu, Kui; Xiao, Jin; Yinqi, Xiong; Zheng, Qiuemei; Zhang, Yong; Yang, Huanming; Wang, Jian; Smeds, Linnea; Rheindt, Frank E; Braun, Michael; Fjeldsa, Jon; Orlando, Ludovic; Barker, F Keith; Jønsson, Knud Andreas; Johnson, Warren; Koepfli, Klaus-Peter; O'Brien, Stephen; Haussler, David; Ryder, Oliver A; Rahbek, Carsten; Willerslev, Eske; Graves, Gary R; Glenn, Travis C; McCormack, John; Burt, Dave; Ellegren, Hans; Alström, Per; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas P; Zhang, Guojie

    2014-12-12

    To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago. PMID:25504713

  15. Whole-genome analyses resolve early branches in the tree of life of modern birds

    PubMed Central

    Jarvis, Erich D.; Mirarab, Siavash; Aberer, Andre J.; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y. W.; Faircloth, Brant C.; Nabholz, Benoit; Howard, Jason T.; Suh, Alexander; Weber, Claudia C.; da Fonseca, Rute R.; Li, Jianwen; Zhang, Fang; Li, Hui; Zhou, Long; Narula, Nitish; Liu, Liang; Ganapathy, Ganesh; Boussau, Bastien; Bayzid, Md. Shamsuzzoha; Zavidovych, Volodymyr; Subramanian, Sankar; Gabaldón, Toni; Capella-Gutiérrez, Salvador; Huerta-Cepas, Jaime; Rekepalli, Bhanu; Munch, Kasper; Schierup, Mikkel; Lindow, Bent; Warren, Wesley C.; Ray, David; Green, Richard E.; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Li, Shengbin; Li, Ning; Huang, Yinhua; Derryberry, Elizabeth P.; Bertelsen, Mads Frost; Sheldon, Frederick H.; Brumfield, Robb T.; Mello, Claudio V.; Lovell, Peter V.; Wirthlin, Morgan; Schneider, Maria Paula Cruz; Prosdocimi, Francisco; Samaniego, José Alfredo; Velazquez, Amhed Missael Vargas; Alfaro-Núñez, Alonzo; Campos, Paula F.; Petersen, Bent; Sicheritz-Ponten, Thomas; Pas, An; Bailey, Tom; Scofield, Paul; Bunce, Michael; Lambert, David M.; Zhou, Qi; Perelman, Polina; Driskell, Amy C.; Shapiro, Beth; Xiong, Zijun; Zeng, Yongli; Liu, Shiping; Li, Zhenyu; Liu, Binghang; Wu, Kui; Xiao, Jin; Yinqi, Xiong; Zheng, Qiuemei; Zhang, Yong; Yang, Huanming; Wang, Jian; Smeds, Linnea; Rheindt, Frank E.; Braun, Michael; Fjeldsa, Jon; Orlando, Ludovic; Barker, F. Keith; Jønsson, Knud Andreas; Johnson, Warren; Koepfli, Klaus-Peter; O’Brien, Stephen; Haussler, David; Ryder, Oliver A.; Rahbek, Carsten; Willerslev, Eske; Graves, Gary R.; Glenn, Travis C.; McCormack, John; Burt, Dave; Ellegren, Hans; Alström, Per; Edwards, Scott V.; Stamatakis, Alexandros; Mindell, David P.; Cracraft, Joel; Braun, Edward L.; Warnow, Tandy; Jun, Wang; Gilbert, M. Thomas P.; Zhang, Guojie

    2015-01-01

    To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago. PMID:25504713

  16. Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis.

    PubMed

    Bac-Molenaar, Johanna A; Granier, Christine; Keurentjes, Joost J B; Vreugdenhil, Dick

    2016-01-01

    Large areas of arable land are often confronted with irregular rainfall resulting in limited water availability for part(s) of the growing seasons, which demands research for drought tolerance of plants. Natural variation was observed for biomass accumulation upon controlled moderate drought stress in 324 natural accessions of Arabidopsis. Improved performance under drought stress was correlated with early flowering and lack of vernalization requirement, indicating overlap in the regulatory networks of flowering time and drought response or correlated responses of these traits to natural selection. In addition, plant size was negatively correlated with relative water content (RWC) independent of the absolute water content (WC), indicating a prominent role for soluble compounds. Growth in control and drought conditions was determined over time and was modelled by an exponential function. Genome-wide association (GWA) mapping of temporal plant size data and of model parameters resulted in the detection of six time-dependent quantitative trait loci (QTLs) strongly associated with drought. Most QTLs would not have been identified if plant size was determined at a single time point. Analysis of earlier reported gene expression changes upon drought enabled us to identify for each QTL the most likely candidates.

  17. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.

    PubMed

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A; Barnes, Michael R; Li, Xiaohui; Warren, Helen R; Chasman, Daniel I; Zhou, Kaixin; Arsenault, Benoit J; Donnelly, Louise A; Wiggins, Kerri L; Avery, Christy L; Griffin, Paula; Feng, QiPing; Taylor, Kent D; Li, Guo; Evans, Daniel S; Smith, Albert V; de Keyser, Catherine E; Johnson, Andrew D; de Craen, Anton J M; Stott, David J; Buckley, Brendan M; Ford, Ian; Westendorp, Rudi G J; Slagboom, P Eline; Sattar, Naveed; Munroe, Patricia B; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C; O'Brien, Eoin; Shaw-Hawkins, Sue; Chen, Y-D Ida; Nickerson, Deborah A; Smith, Joshua D; Dubé, Marie Pierre; Boekholdt, S Matthijs; Hovingh, G Kees; Kastelein, John J P; McKeigue, Paul M; Betteridge, John; Neil, Andrew; Durrington, Paul N; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C; Rice, Kenneth; Smith, Nicholas L; Lumley, Thomas; Whitsel, Eric A; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S; O'Donnell, Christopher J; Vasan, Ramachandran S; Wei, Wei-Qi; Wilke, Russell A; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M; Stafford, Jeanette M; Ding, Jingzhong; Herrington, David M; Kritchevsky, Stephen B; Eiriksdottir, Gudny; Launer, Leonore J; Harris, Tamara B; Chu, Audrey Y; Giulianini, Franco; MacFadyen, Jean G; Barratt, Bryan J; Nyberg, Fredrik; Stricker, Bruno H; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H; Ridker, Paul M; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C; Ballantyne, Christie M; Rotter, Jerome I; Adrienne Cupples, L; Psaty, Bruce M; Palmer, Colin N A; Tardif, Jean-Claude; Colhoun, Helen M; Hitman, Graham; Krauss, Ronald M; Wouter Jukema, J; Caulfield, Mark J

    2014-01-01

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response. PMID:25350695

  18. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

    PubMed Central

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A.; Barnes, Michael R.; Li, Xiaohui; Warren, Helen R.; Chasman, Daniel I.; Zhou, Kaixin; Arsenault, Benoit J.; Donnelly, Louise A.; Wiggins, Kerri L.; Avery, Christy L.; Griffin, Paula; Feng, QiPing; Taylor, Kent D.; Li, Guo; Evans, Daniel S.; Smith, Albert V.; de Keyser, Catherine E.; Johnson, Andrew D.; de Craen, Anton J. M.; Stott, David J.; Buckley, Brendan M.; Ford, Ian; Westendorp, Rudi G. J.; Eline Slagboom, P.; Sattar, Naveed; Munroe, Patricia B.; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C.; O’Brien, Eoin; Shaw-Hawkins, Sue; Ida Chen, Y.-D.; Nickerson, Deborah A.; Smith, Joshua D.; Pierre Dubé, Marie; Matthijs Boekholdt, S.; Kees Hovingh, G.; Kastelein, John J. P.; McKeigue, Paul M.; Betteridge, John; Neil, Andrew; Durrington, Paul N.; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I.; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C.; Rice, Kenneth; Smith, Nicholas L.; Lumley, Thomas; Whitsel, Eric A.; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S.; O’Donnell, Christopher J.; Vasan, Ramachandran S.; Wei, Wei-Qi; Wilke, Russell A.; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M.; Stafford, Jeanette M.; Ding, Jingzhong; Herrington, David M.; Kritchevsky, Stephen B.; Eiriksdottir, Gudny; Launer, Leonore J.; Harris, Tamara B.; Chu, Audrey Y.; Giulianini, Franco; MacFadyen, Jean G.; Barratt, Bryan J.; Nyberg, Fredrik; Stricker, Bruno H.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H.; Ridker, Paul M.; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C.; Ballantyne, Christie M.; Rotter, Jerome I.; Adrienne Cupples, L.; Psaty, Bruce M.; Palmer, Colin N. A.; Tardif, Jean-Claude; Colhoun, Helen M.; Hitman, Graham; Krauss, Ronald M.; Wouter Jukema, J; Caulfield, Mark J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; McCarthy, Mark I.; Spencer, Chris C. A.

    2014-01-01

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response. PMID:25350695

  19. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  20. Whole genome association analysis of treatment response in obsessive-compulsive disorder

    PubMed Central

    Qin, H; Samuels, JF; Wang, Y; Zhu, Y; Grados, MA; Riddle, MA; Greenberg, BD; Knowles, JA; Fyer, AJ; McCracken, JT; Murphy, DL; Rasmussen, SA; Cullen, BA; Piacentini, J; Geller, D; Stewart, SE; Pauls, D; Bienvenu, OJ; Goes, FS; Maher, B; Pulver, AE; Valle, D; Lange, C; Mattheisen, M; McLaughlin, NC; Liang, K-Y; Nurmi, EL; Askland, KD; Nestadt, G; Shugart, YY

    2015-01-01

    Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as “response” (n = 514) or “non-response” (n = 290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top SNP was rs17162912 (P = 1.76×10−8) which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P <10−5) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877, and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave p-values of 2.86×10−6 and 8.41×10−6, respectively. The other 35 variations with signals of potential significance (P <10−4) involve multiple genes expressed in the brain, including GRIN2B, PCDH10, and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (FDR = 0.0097) and the serotonergic system (FDR = 0.0213). While the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed. PMID:25824302

  1. Genomic Instability and DNA Damage Responses in Progeria Arising from Defective Maturation of Prelamin A

    PubMed Central

    Musich, Phillip R.; Zou, Yue

    2009-01-01

    Progeria syndromes have in common a premature aging phenotype and increased genome instability. The susceptibility to DNA damage arises from a compromised repair system, either in the repair proteins themselves or in the DNA damage response pathways. The most severe progerias stem from mutations affecting lamin A production, a filamentous protein of the nuclear lamina. Hutchinson-Gilford progeria syndrome (HGPS) patients are heterozygous for a LMNA gene mutation while Restrictive Dermopathy (RD) individuals have a homozygous deficiency in the processing protease Zmpste24. These mutations generate the mutant lamin A proteins progerin and FC-lamina A, respectively, which cause nuclear deformations and chromatin perturbations. Genome instability is observed even though genome maintenance and repair genes appear normal. The unresolved question is what features of the DNA damage response pathways are deficient in HGPS and RD cells. Here we review and discuss recent findings which resolve some mechanistic details of how the accumulation of progerin/FC-lamin A proteins may disrupt DNA damage response pathways in HGPS and RD cells. As the mutant lamin proteins accumulate they sequester replication and repair factors, leading to stalled replication forks which collapse into DNA double-strand beaks (DSBs). In a reaction unique to HGPS and RD cells these accessible DSB termini bind Xeroderma pigmentosum group A (XPA) protein which excludes normal binding by DNA DSB repair proteins. The bound XPA also signals activation of ATM and ATR, arresting cell cycle progression, leading to arrested growth. In addition, the effective sequestration of XPA at these DSB damage sites makes HGPS and RD cells more sensitive to ultraviolet light and other mutagens normally repaired by the nucleotide excision repair pathway of which XPA is a necessary and specific component. PMID:19851476

  2. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking.

    PubMed

    Sekiguchi, Yuji; Ohashi, Akiko; Parks, Donovan H; Yamauchi, Toshihiro; Tyson, Gene W; Hugenholtz, Philip

    2015-01-01

    Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using differential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of non-flagellar based gliding motility, and have a strikingly large number of sensory and response regulator genes. We propose that the KSB3 filaments are highly sensitive to their surroundings and that cellular processes, including those causing bulking, are controlled by external stimuli. The obtained genomes lay the foundation for a more detailed understanding of environmental cues used by KSB3 filaments, which may lead to more robust treatment options to prevent bulking.

  3. Inflammatory response to isocyanates and onset of genomic instability in cultured human lung fibroblasts.

    PubMed

    Mishra, P K; Bhargava, A; Raghuram, G V; Gupta, S; Tiwari, S; Upadhyaya, R; Jain, S K; Maudar, K K

    2009-02-10

    Lungs comprise the primary organ exposed to environmental toxic chemicals, resulting in diverse respiratory ailments and other disorders, including carcinogenesis. Carcinogenesis is a multi-stage phenomenon, which involves a series of genetic alterations that begin with genomic instability provoked by certain factors such as inflammation and DNA damage and end with the development of cancer. Isocyanates such as methyl isocyanate are the chief metabolic intermediates in many industrial settings with diverse applications; exposure to them can lead to severe hypersensitive, mutagenic and genotoxic alterations. We examined the molecular mechanisms underlying isocyanate-mediated inflammatory responses and their probable role in the onset of genomic instability in cultured IMR-90 human lung fibroblasts. The isocyanates induced inflammation, resulting in extensive DNA damage, evidenced by increases in ATM, ATR, gammaH2AX, and p53 expression levels. The apoptotic index also increased. Chromosomal anomalies in treated cells included over-expression of centrosome protein and variable amplification of inter-simple sequence repeats, further demonstrating isocyanate-induced genomic instability. This information could be useful in the design of new approaches for risk assessment of potential industrial disasters.

  4. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking

    PubMed Central

    Ohashi, Akiko; Parks, Donovan H.; Yamauchi, Toshihiro; Tyson, Gene W.

    2015-01-01

    Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using differential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of non-flagellar based gliding motility, and have a strikingly large number of sensory and response regulator genes. We propose that the KSB3 filaments are highly sensitive to their surroundings and that cellular processes, including those causing bulking, are controlled by external stimuli. The obtained genomes lay the foundation for a more detailed understanding of environmental cues used by KSB3 filaments, which may lead to more robust treatment options to prevent bulking. PMID:25650158

  5. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants

    PubMed Central

    Osakabe, Yuriko; Watanabe, Takahito; Sugano, Shigeo S; Ueta, Risa; Ishihara, Ryosuke; Shinozaki, Kazuo; Osakabe, Keishi

    2016-01-01

    Genome editing using the CRISPR/Cas9 system can be used to modify plant genomes, however, improvements in specificity and applicability are still needed in order for the editing technique to be useful in various plant species. Here, using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, we generated new alleles for OST2, a proton pump in Arabidopsis, with no off-target effects. By following expression of Cas9 and the tru-gRNAs, newly generated mutations in CRIPSR/Cas9 transgenic plants were detected with high average mutation rates of up to 32.8% and no off-target effects using constitutive promoter. Reducing nuclear localization signals in Cas9 decreased the mutation rate. In contrast, tru-gRNA Cas9 cassettes driven by meristematic- and reproductive-tissue-specific promoters increased the heritable mutation rate in Arabidopsis, showing that high expression in the germ line can produce bi-allelic mutations. Finally, the new mutant alleles obtained for OST2 exhibited altered stomatal closing in response to environmental conditions. These results suggest further applications in molecular breeding to improve plant function using optimized plant CRISPR/Cas9 systems. PMID:27226176

  6. Infectious diseases of marine molluscs and host responses as revealed by genomic tools.

    PubMed

    Guo, Ximing; Ford, Susan E

    2016-03-01

    More and more infectious diseases affect marine molluscs. Some diseases have impacted commercial species including MSX and Dermo of the eastern oyster, QPX of hard clams, withering syndrome of abalone and ostreid herpesvirus 1 (OsHV-1) infections of many molluscs. Although the exact transmission mechanisms are not well understood, human activities and associated environmental changes often correlate with increased disease prevalence. For instance, hatcheries and large-scale aquaculture create high host densities, which, along with increasing ocean temperature, might have contributed to OsHV-1 epizootics in scallops and oysters. A key to understanding linkages between the environment and disease is to understand how the environment affects the host immune system. Although we might be tempted to downplay the role of immunity in invertebrates, recent advances in genomics have provided insights into host and parasite genomes and revealed surprisingly sophisticated innate immune systems in molluscs. All major innate immune pathways are found in molluscs with many immune receptors, regulators and effectors expanded. The expanded gene families provide great diversity and complexity in innate immune response, which may be key to mollusc's defence against diverse pathogens in the absence of adaptive immunity. Further advances in host and parasite genomics should improve our understanding of genetic variation in parasite virulence and host disease resistance. PMID:26880838

  7. Photoacoustic imaging of early inflammatory response using gold nanorods

    NASA Astrophysics Data System (ADS)

    Kim, Kang; Huang, Sheng-Wen; Ashkenazi, Shai; O'Donnell, Matthew; Agarwal, Ashish; Kotov, Nicholas A.; Denny, Michael F.; Kaplan, Mariana J.

    2007-05-01

    Gold nanorods have unusually strong absorption in near infrared, which can be utilized for an optical imaging with nanocolloids. The feasibility of photoacoustic imaging of inflammatory responses using bioconjugated gold nanorods is demonstrated. To target the stimulated cells, gold nanorods were conjugated to anti-intercellular adhesion molecule-1 (ICAM-1) which binds to cell surfaces over expressing ICAM-1. A monolayer of stimulated endothelial cells labeled with bioconjugated gold nanorods was scanned using a high frequency transducer. Photoacoustic images differentiated inflamed cells from control cells and matched well with fluorescence images. This technology may permit identification of critical inflammation sites such as blood vessels.

  8. Activation of oxidative stress-responsive signaling pathways in early splenotoxic response of aniline

    SciTech Connect

    Wang Jianling; Wang Gangduo; Ansari, G.A.S.; Khan, M. Firoze

    2008-07-15

    Aniline exposure causes toxicity to the spleen, which leads to a variety of sarcomas, and fibrosis appears to be an important preneoplastic lesion. However, early molecular mechanisms in aniline-induced toxicity to the spleen are not known. Previously, we have shown that aniline exposure results in iron overload and induction of oxidative stress in the spleen, which can cause transcriptional upregulation of fibrogenic/inflammatory cytokines via activation of oxidative stress (OS)-responsive signaling pathways. To test this mechanism, male SD rats were treated with aniline (1mmol/kg/day via gavage) for 7days, an experimental condition that precedes the appearance of fibrosis. Significant increases in both NF-{kappa}B and AP-1 binding activity was observed in the nuclear extracts of splenocytes from aniline-treated rats as determined by ELISAs, and supported by Western blot data showing increases in p-I{kappa}B{alpha}, p-p65 and p-c-Jun. To understand the upstream signaling events which could account for the activation of NF-{kappa}B and AP-1, phosphorylation patterns of I{kappa}B kinases (IKK{alpha} and IKK{beta}) and mitogen-activated protein kinases (MAPKs) were pursued. Our data showed remarkable increases in both p-IKK{alpha} and p-IKK{beta} in the splenocytes from aniline-treated rats, suggesting their role in the phosphorylation of both I{kappa}B{alpha} and p65 subunits. Furthermore, aniline exposure led to activation of all three classes of MAPKs, as evident from increased phosphorylation of extracellular-signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK1/2) and p38 MAPKs, which could potentially contribute to the observed activation of both AP-1 and NF-{kappa}B. Activation of upstream signaling molecules was also associated with simultaneous increases in gene transcription of cytokines IL-1, IL-6 and TNF-{alpha}. The observed sequence of events following aniline exposure could initiate a fibrogenic and/or tumorigenic response in the spleen.

  9. Using the Acropora digitifera genome to understand coral responses to environmental change.

    PubMed

    Shinzato, Chuya; Shoguchi, Eiichi; Kawashima, Takeshi; Hamada, Mayuko; Hisata, Kanako; Tanaka, Makiko; Fujie, Manabu; Fujiwara, Mayuki; Koyanagi, Ryo; Ikuta, Tetsuro; Fujiyama, Asao; Miller, David J; Satoh, Nori

    2011-08-18

    Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes. PMID:21785439

  10. Using the Acropora digitifera genome to understand coral responses to environmental change.

    PubMed

    Shinzato, Chuya; Shoguchi, Eiichi; Kawashima, Takeshi; Hamada, Mayuko; Hisata, Kanako; Tanaka, Makiko; Fujie, Manabu; Fujiwara, Mayuki; Koyanagi, Ryo; Ikuta, Tetsuro; Fujiyama, Asao; Miller, David J; Satoh, Nori

    2011-07-24

    Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.

  11. Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia.

    PubMed

    Rios, Jonathan; Stein, Evan; Shendure, Jay; Hobbs, Helen H; Cohen, Jonathan C

    2010-11-15

    Whole-genome sequencing is a potentially powerful tool for the diagnosis of genetic diseases. Here, we used sequencing-by-ligation to sequence the genome of an 11-month-old breast-fed girl with xanthomas and very high plasma cholesterol levels (1023 mg/dl). Her parents had normal plasma cholesterol levels and reported no family history of hypercholesterolemia, suggesting either an autosomal recessive disorder or a de novo mutation. Known genetic causes of severe hypercholesterolemia were ruled out by sequencing the responsible genes (LDLRAP, LDLR, PCSK9, APOE and APOB), and sitosterolemia was ruled out by documenting a normal plasma sitosterol:cholesterol ratio. Sequencing revealed 3 797 207 deviations from the reference sequence, of which 9726 were nonsynonymous single-nucleotide substitutions. A total of 9027 of the nonsynonymous substitutions were present in dbSNP or in 21 additional individuals from whom complete exonic sequences were available. The 699 novel nonsynonymous substitutions were distributed among 604 genes, 23 of which were single-copy genes that each contained 2 nonsynonymous substitutions consistent with an autosomal recessive model. One gene, ABCG5, had two nonsense mutations (Q16X and R446X). This finding indicated that the infant has sitosterolemia. Thus, whole-genome sequencing led to the diagnosis of a known disease with an atypical presentation. Diagnosis was confirmed by the finding of severe sitosterolemia in a blood sample obtained after the infant had been weaned. These findings demonstrate that whole-genome (or exome) sequencing can be a valuable aid to diagnose genetic diseases, even in individual patients. PMID:20719861

  12. Storey building early monitoring based on rapid seismic response analysis

    NASA Astrophysics Data System (ADS)

    Julius, Musa, Admiral; Sunardi, Bambang; Rudyanto, Ariska

    2016-05-01

    Within the last decade, advances in the acquisition, processing and transmission of data from seismic monitoring has contributed to the growth in the number structures instrumented with such systems. An equally important factor for such growth can be attributed to the demands by stakeholders to find rapid answers to important questions related to the functionality or state of "health" of structures during and immediately of a seismic events. Consequently, this study aims to monitor the storey building based on seismic response i. e. earthquake and tremor analysis at short time lapse using accelerographs data. This study used one of storey building (X) in Jakarta city that suffered the effects of Kebumen earthquake January 25th 2014, Pandeglang earthquake July 9th 2014, and Lebak earthquake November 8th 2014. Tremors used in this study are tremors after the three following earthquakes. Data processing used to determine peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), spectral acceleration (SA), spectral velocity (SV), spectral displacement (SD), A/V ratio, acceleration amplification and effective duration (te). Then determine the natural frequency (f0) and peak of H/V ratio using H/V ratio method.The earthquakes data processing result shows the value of peak ground motion, spectrum response, A/V ratio and acceleration amplification increases with height, while the value of the effective duration give a different viewpoint of building dynamic because duration of Kebumen earthquake shows the highest energy in the highest floor but Pandeglang and Lebak earthquake in the lowest floor. Then, tremors data processing result one month after each earthquakes shows the natural frequency of building in constant value. Increasing of peak ground motion, spectrum response, A/V ratio, acceleration amplification, then decrease of effective duration following the increase of building floors shows that the building construction supports the

  13. Prognostic modeling in early stage lung cancer: an evolving process from histopathology to genomics.

    PubMed

    Harpole, David H

    2007-05-01

    The goal is to validate a molecular-based tumor model that identifies patients at low-risk for cancer recurrence and who will not benefit from adjuvant chemotherapy. The remaining patients will be randomized to observation (present standard of care) or adjuvant chemotherapy to determine efficacy of adjuvant in this population. Investigators have focused on the identification of markers that may predict poor prognosis as a way to "enrich" the population by separating those likely to have early recurrence and cancer death from those not needing additional treatment after resection. The initial projects refined predictive models of cancer recurrence after resection for patients with early stage non-small cell lung cancer.

  14. Effect of the Responsive Environment Early Education Program for Low Birth Weight Children of Preschool Age.

    ERIC Educational Resources Information Center

    Askins, Billy E.; And Others

    This paper describes an external evaluation study of the Responsive Environment Early Education Program (formerly known as the Responsive Environment Program for Spanish American Children), an educational intervention program for "high risk" (low birth weight) 3-, 4-, and 5-year-old children in Clovis, New Mexico. Major goals of the program are:…

  15. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view.

    PubMed

    Mira, Nuno P; Teixeira, Miguel Cacho; Sá-Correia, Isabel

    2010-10-01

    Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.

  16. Effect of Bodily Fluids from Honey Bee (Apis mellifera) Larvae on Growth and Genome-Wide Transcriptional Response of the Causal Agent of American Foulbrood Disease (Paenibacillus larvae)

    PubMed Central

    Hawley, Alyse K.; Foster, Leonard J.; De Vos, Paul; de Graaf, Dirk C.

    2014-01-01

    Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Gram-positive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general down-regulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related genes. A theoretical mechanism of carbon catabolite repression is discussed. PMID:24586572

  17. Early immune response and regulation of IL-2 receptor subunits

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J. B.; Cogoli, Augusto

    2005-01-01

    MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.

  18. DNA Methylation: A Mechanism for Embedding Early Life Experiences in the Genome

    ERIC Educational Resources Information Center

    Szyf, Moshe; Bick, Johanna

    2013-01-01

    Although epidemiological data provide evidence that early life experience plays a critical role in human development, the mechanism of how this works remains in question. Recent data from human and animal literature suggest that epigenetic changes, such as DNA methylation, are involved not only in cellular differentiation but also in the…

  19. Draft Genome Sequence of Cercospora arachidicola, Cause of Early Leaf Spot in Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cercospora arachidicola and Cercosporidium personatum, causal agents of early and late leaf spot, respectively, are important fungal pathogens of peanut. Leaf spot disease is a major contributor to the economic losses experienced by peanut farmers and the industry. Though peanut germplasms with so...

  20. Draft Genome Sequence of Cercospora arachidicola, Causal Agent of Early Leaf Spot in Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cercospora arachidicola, an economically important pathogen of peanut, is the cause of early leaf spot disease. Despite its significance, insufficient genetic information is available for utilization. Understanding the genetic diversity of this pathogen is crucial for peanut breeding programs to d...

  1. Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development

    PubMed Central

    Kaplan, Tommy; Li, Xiao-Yong; Sabo, Peter J.; Thomas, Sean; Stamatoyannopoulos, John A.; Biggin, Mark D.; Eisen, Michael B.

    2011-01-01

    Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6–0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription factor binding may be

  2. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes

    PubMed Central

    Hua, Yingpeng; Zhou, Ting; Ding, Guangda; Yang, Qingyong; Shi, Lei; Xu, Fangsen

    2016-01-01

    Allotetraploid rapeseed (Brassica napus L. AnAnCnCn, 2n=4x=38) is highly susceptible to boron (B) deficiency, a widespread limiting factor that causes severe losses in seed yield. The genetic variation in the sensitivity to B deficiency found in rapeseed genotypes emphasizes the complex response architecture. In this research, a B-inefficient genotype, ‘Westar 10’ (‘W10’), responded to B deficiencies during vegetative and reproductive development with an over-accumulation of reactive oxygen species, severe lipid peroxidation, evident plasmolysis, abnormal floral organogenesis, and widespread sterility compared to a B-efficient genotype, ‘Qingyou 10’ (‘QY10’). Whole-genome re-sequencing (WGS) of ‘QY10’ and ‘W10’ revealed a total of 1 605 747 single nucleotide polymorphisms and 218 755 insertions/deletions unevenly distributed across the allotetraploid rapeseed genome (~1130Mb). Digital gene expression (DGE) profiling identified more genes related to B transporters, antioxidant enzymes, and the maintenance of cell walls and membranes with higher transcript levels in the roots of ‘QY10’ than in ‘W10’ under B deficiency. Furthermore, based on WGS and bulked segregant analysis of the doubled haploid (DH) line pools derived from ‘QY10’ and ‘W10’, two significant quantitative trait loci (QTLs) for B efficiency were characterized on chromosome C2, and DGE-assisted QTL-seq analyses then identified a nodulin 26-like intrinsic protein gene and an ATP-binding cassette (ABC) transporter gene as the corresponding candidates regulating B efficiency. This research facilitates a more comprehensive understanding of the differential physiological and transcriptional responses to B deficiency and abundant genetic diversity in rapeseed genotypes, and the DGE-assisted QTL-seq analyses provide novel insights regarding the rapid dissection of quantitative trait genes in plant species with complex genomes. PMID:27639094

  3. Early IFN type I response: Learning from microbial evasion strategies.

    PubMed

    Coccia, Eliana M; Battistini, Angela

    2015-03-01

    Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies. PMID:25869307

  4. Early IFN type I response: Learning from microbial evasion strategies.

    PubMed

    Coccia, Eliana M; Battistini, Angela

    2015-03-01

    Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies.

  5. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata.

    PubMed

    Ling, Zhihao; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing

    2015-10-01

    Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory. PMID:26306554

  6. Genome-wide identification of soybean WRKY transcription factors in response to salt stress.

    PubMed

    Yu, Yanchong; Wang, Nan; Hu, Ruibo; Xiang, Fengning

    2016-01-01

    Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance. PMID:27386364

  7. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata.

    PubMed

    Ling, Zhihao; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing

    2015-10-01

    Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory.

  8. Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins

    PubMed Central

    Marín-de la Rosa, Nora; Pfeiffer, Anne; Hill, Kristine; Locascio, Antonella; Bhalerao, Rishikesh P.; Miskolczi, Pal; Grønlund, Anne L.; Wanchoo-Kohli, Aakriti; Thomas, Stephen G.; Bennett, Malcolm J.; Lohmann, Jan U.; Blázquez, Miguel A.; Alabadí, David

    2015-01-01

    The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis. PMID:26134422

  9. A genome-wide association study of antidepressant response in Koreans

    PubMed Central

    Myung, W; Kim, J; Lim, S-W; Shim, S; Won, H-H; Kim, Seonwoo; Kim, Sangha; Lee, M-S; Chang, H S; Kim, J-W; Carroll, B J; Kim, D K

    2015-01-01

    We conducted a three-stage genome-wide association study (GWAS) of response to antidepressant drugs in an ethnically homogeneous sample of Korean patients in untreated episodes of nonpsychotic unipolar depression, mostly of mature onset. Strict quality control was maintained in case selection, diagnosis, verification of adherence and outcome assessments. Analyzed cases completed 6 weeks of treatment with adequate plasma drug concentrations. The overall successful completion rate was 85.5%. Four candidate single-nucleotide polymorphisms (SNPs) on three chromosomes were identified by genome-wide search in the discovery sample of 481 patients who received one of four allowed selective serotonin reuptake inhibitor (SSRI) antidepressant drugs (Stage 1). In a focused replication study of 230 SSRI-treated patients, two of these four SNP candidates were confirmed (Stage 2). Analysis of the Stage 1 and Stage 2 samples combined (n=711) revealed GWAS significance (P=1.60 × 10-8) for these two SNP candidates, which were in perfect linkage disequilibrium. These two significant SNPs were confirmed also in a focused cross-replication study of 159 patients treated with the non-SSRI antidepressant drug mirtazapine (Stage 3). Analysis of the Stage 1, Stage 2 and Stage 3 samples combined (n=870) also revealed GWAS significance for these two SNPs, which was sustained after controlling for gender, age, number of previous episodes, age at onset and baseline severity (P=3.57 × 10-8). For each SNP, the response rate decreased (odds ratio=0.31, 95% confidence interval: 0.20–0.47) as a function of the number of minor alleles (non-response alleles). The two SNPs significantly associated with antidepressant response are rs7785360 and rs12698828 of the AUTS2 gene, located on chromosome 7 in 7q11.22. This gene has multiple known linkages to human psychological functions and neurobehavioral disorders. Rigorous replication efforts in other ethnic populations are recommended. PMID:26348319

  10. Novel integrative genomic tool for interrogating lithium response in bipolar disorder.

    PubMed

    Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M

    2015-01-01

    We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery. PMID:25646593

  11. Novel integrative genomic tool for interrogating lithium response in bipolar disorder.

    PubMed

    Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M

    2015-01-01

    We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery.

  12. Genome at Juncture of Early Human Migration: A Systematic Analysis of Two Whole Genomes and Thirteen Exomes from Kuwaiti Population Subgroup of Inferred Saudi Arabian Tribe Ancestry

    PubMed Central

    Alsmadi, Osama; Hebbar, Prashantha; Antony, Dinu; Behbehani, Kazem; Thanaraj, Thangavel Alphonse

    2014-01-01

    Population of the State of Kuwait is composed of three genetic subgroups of inferred Persian, Saudi Arabian tribe and Bedouin ancestry. The Saudi Arabian tribe subgroup traces its origin to the Najd region of Saudi Arabia. By sequencing two whole genomes and thirteen exomes from this subgroup at high coverage (>40X), we identify 4,950,724 Single Nucleotide Polymorphisms (SNPs), 515,802 indels and 39,762 structural variations. Of the identified variants, 10,098 (8.3%) exomic SNPs, 139,923 (2.9%) non-exomic SNPs, 5,256 (54.3%) exomic indels, and 374,959 (74.08%) non-exomic indels are ‘novel’. Up to 8,070 (79.9%) of the reported novel biallelic exomic SNPs are seen in low frequency (minor allele frequency <5%). We observe 5,462 known and 1,004 novel potentially deleterious nonsynonymous SNPs. Allele frequencies of common SNPs from the 15 exomes is significantly correlated with those from genotype data of a larger cohort of 48 individuals (Pearson correlation coefficient, 0.91; p <2.2×10−16). A set of 2,485 SNPs show significantly different allele frequencies when compared to populations from other continents. Two notable variants having risk alleles in high frequencies in this subgroup are: a nonsynonymous deleterious SNP (rs2108622 [19:g.15990431C>T] from CYP4F2 gene [MIM:*604426]) associated with warfarin dosage levels [MIM:#122700] required to elicit normal anticoagulant response; and a 3′ UTR SNP (rs6151429 [22:g.51063477T>C]) from ARSA gene [MIM:*607574]) associated with Metachromatic Leukodystrophy [MIM:#250100]. Hemoglobin Riyadh variant (identified for the first time in a Saudi Arabian woman) is observed in the exome data. The mitochondrial haplogroup profiles of the 15 individuals are consistent with the haplogroup diversity seen in Saudi Arabian natives, who are believed to have received substantial gene flow from Africa and eastern provenance. We present the first genome resource imperative for designing future genetic studies in Saudi Arabian

  13. Genome-Wide Analysis of Polymorphisms Associated with Cytokine Responses in Smallpox Vaccine Recipients

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Pankratz, V. Shane; Haralambieva, Iana H.; Vierkant, Robert A.; Poland, Gregory A.

    2014-01-01

    The role that genetics plays in response to infection or disease is becoming increasingly clear as we learn more about immunogenetics and host-pathogen interactions. Here we report a genome-wide analysis of the effects of host genetic variation on cytokine responses to vaccinia virus stimulation in smallpox vaccine recipients. Our data show that vaccinia stimulation of immune individuals results in secretion of inflammatory and Th1 cytokines. We identified multiple SNPs significantly associated with variations in cytokine secretion. These SNPs are found in genes with known immune function, as well as in genes encoding for proteins involved in signal transduction, cytoskeleton, membrane channels and ion transport, as well as others with no previously identified connection to immune responses. The large number of significant SNP associations implies that cytokine secretion in response to vaccinia virus is a complex process controlled by multiple genes and gene families. Follow-up studies to replicate these findings and then pursue mechanistic studies will provide a greater understanding of how genetic variation influences vaccine responses. PMID:22610502

  14. Question 7: Comparative Genomics and Early Cell Evolution: A Cautionary Methodological Note

    NASA Astrophysics Data System (ADS)

    Islas, Sara; Hernández-Morales, Ricardo; Lazcano, Antonio

    2007-10-01

    Inventories of the gene content of the last common ancestor (LCA), i.e., the cenancestor, include sequences that may have undergone horizontal transfer events, as well as sequences that have originated in different pre-cenancestral epochs. However, the universal distribution of highly conserved genes involved in RNA metabolism provide insights into early stages of cell evolution during which RNA played a much more conspicuous biological role, and is consistent with the hypothesis that extant living systems were preceded by an RNA/protein world. Insights into the traits of primitive entities from which the LCA evolved may be derived from the analysis of paralogous gene families, including those formed by sequences that resulted from internal elongation events. Three major types of paralogous gene families can be recognized. The importance of this grouping for understanding the traits of early cells is discussed.

  15. Oxidative Stress and Heat-Shock Responses in Desulfovibrio vulgaris by Genome-Wide Transcriptomic Analysis

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Hogan, Mike; Vitiritti, Luigi; Brockman, Fred J.

    2006-05-30

    Abstract Sulfate-reducing bacteria, like Desulfovibrio vulgaris have developed a set of reactions allowing them to survive in environments. To obtain further knowledge of the protecting mechanisms employed in D. vulgaris against the oxidative stress and heat shock, we performed a genome-wide transcriptomic analysis to determine the cellular responses to both stimuli. The results showed that 130 genes were responsive to oxidative stress, while 427 genes responsive to heat-shock, respectively. Functional analyses suggested that the genes regulated were involved in a variety of cellular functions. Metabolic analysis showed that amino acid biosynthetic pathways were induced by both oxidative stress and heat shock treatments, while fatty acid metabolism, purine and cofactor biosynthesis were induced by heat shock only. Rubrerythrin gene (rbR) were upregulated by the oxidative stress, suggesting its important role in the oxidative resistance, whereas the expression of rubredoxin oxidoreductase (rbO), superoxide ismutase (sodB) and catalase (katA) genes were not subjected to regulation by oxidative stress in D. vulgaris. In addition, the results showed that thioredoxin reductase (trxB) was responsive to oxidative stress, suggesting the thiol-specific redox system might be involved in oxidative protection in D. vulgaris. Comparison of cellular responses to oxidative stress and heat-shock allowed the identification of 66 genes that showed a similar drastic response to both environmental stimuli, implying that they might be part of the general stress response (GSR) network in D. vulgaris, which was further supported by the finding of a conserved motif upstream these common-responsive genes.

  16. Liver genomic responses to ciguatoxin: evidence for activation of phase I and phase II detoxification pathways following an acute hypothermic response in mice.

    PubMed

    Morey, Jeanine S; Ryan, James C; Bottein Dechraoui, Marie-Yasmine; Rezvani, Amir H; Levin, Edward D; Gordon, Christopher J; Ramsdell, John S; Van Dolah, Frances M

    2008-06-01

    Ciguatoxins (CTX) are polyether neurotoxins that target voltage-gated sodium channels and are responsible for ciguatera, the most common fish-borne food poisoning in humans. This study characterizes the global transcriptional response of mouse liver to a symptomatic dose (0.26 ng/g) of the highly potent Pacific ciguatoxin-1 (P-CTX-1). At 1 h post-exposure 2.4% of features on a 44K whole genome array were differentially expressed (p < or = 0.0001), increasing to 5.2% at 4 h and decreasing to 1.4% by 24 h post-CTX exposure. Data were filtered (/fold change/ > or = 1.5 and p < or = 0.0001 in at least one time point) and a trend set of 1550 genes were used for further analysis. Early gene expression was likely influenced prominently by an acute 4 degrees C decline in core body temperature by 1 h, which resolved by 8 h following exposure. An initial downregulation of 32 different solute carriers, many involved in sodium transport, was observed. Differential gene expression in pathways involving eicosanoid biosynthesis and cholesterol homeostasis was also noted. Cytochrome P450s (Cyps) were of particular interest due to their role in xenobiotic metabolism. Twenty-seven genes, mostly members of Cyp2 and Cyp4 families, showed significant changes in expression. Many Cyps underwent an initial downregulation at 1 h but were quickly and strongly upregulated at 4 and 24 h post-exposure. In addition to Cyps, increases in several glutathione S-transferases were observed, an indication that both phase I and phase II metabolic reactions are involved in the hepatic response to CTX in mice. PMID:18353800

  17. Comparative genome-scale analysis of niche-based stress-responsive genes in Lactobacillus helveticus strains.

    PubMed

    Senan, Suja; Prajapati, Jashbhai B; Joshi, Chaitanya G

    2014-04-01

    Next generation sequencing technologies with advanced bioinformatic tools present a unique opportunity to compare genomes from diverse niches. The identification of niche-specific stress-responsive genes can help in characterizing robust strains for multiple applications. In this study, we attempted to compare the stress-responsive genes of a potential probiotic strain, Lactobacillus helveticus MTCC 5463, and a cheese starter strain, Lactobacillus helveticus DPC 4571, from a gut and dairy niche, respectively. Sequencing of MTCC 5463 was done using 454 GS FLX, and contigs were assembled using GS Assembler software. Genome analysis was done using BLAST hits and the prokaryotic annotation server RAST. The MTCC 5463 genome carried multiple orthologs of genes governing stress responses, whereas the DPC 4571 genome lacked in the number of major stress-response proteins. The absence of the bile salt hydrolase gene in DPC 4571 and its presence in MTCC 5463 clearly indicated niche adaptation. Further, MTCC 5463 carried higher copy numbers of genes contributing towards heat, cold, osmotic, and oxidative stress resistance as compared with DPC 4571. Through comparative genomics, we could thus identify stress-responsive gene sets required to adapt to gut and dairy niches.

  18. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    PubMed Central

    2013-01-01

    Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted

  19. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study

    PubMed Central

    Davenport, Emma E; Burnham, Katie L; Radhakrishnan, Jayachandran; Humburg, Peter; Hutton, Paula; Mills, Tara C; Rautanen, Anna; Gordon, Anthony C; Garrard, Christopher; Hill, Adrian V S; Hinds, Charles J; Knight, Julian C

    2016-01-01

    Summary Background Effective targeted therapy for sepsis requires an understanding of the heterogeneity in the individual host response to infection. We investigated this heterogeneity by defining interindividual variation in the transcriptome of patients with sepsis and related this to outcome and genetic diversity. Methods We assayed peripheral blood leucocyte global gene expression for a prospective discovery cohort of 265 adult patients admitted to UK intensive care units with sepsis due to community-acquired pneumonia and evidence of organ dysfunction. We then validated our findings in a replication cohort consisting of a further 106 patients. We mapped genomic determinants of variation in gene transcription between patients as expression quantitative trait loci (eQTL). Findings We discovered that following admission to intensive care, transcriptomic analysis of peripheral blood leucocytes defines two distinct sepsis response signatures (SRS1 and SRS2). The presence of SRS1 (detected in 108 [41%] patients in discovery cohort) identifies individuals with an immunosuppressed phenotype that included features of endotoxin tolerance, T-cell exhaustion, and downregulation of human leucocyte antigen (HLA) class II. SRS1 was associated with higher 14 day mortality than was SRS2 (discovery cohort hazard ratio (HR) 2·4, 95% CI 1·3–4·5, p=0·005; validation cohort HR 2·8, 95% CI 1·5–5·1, p=0·0007). We found that a predictive set of seven genes enabled the classification of patients as SRS1 or SRS2. We identified cis-acting and trans-acting eQTL for key immune and metabolic response genes and sepsis response networks. Sepsis eQTL were enriched in endotoxin-induced epigenetic marks and modulated the individual host response to sepsis, including effects specific to SRS group. We identified regulatory genetic variants involving key mediators of gene networks implicated in the hypoxic response and the switch to glycolysis that occurs in sepsis, including HIF1α and

  20. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response.

    PubMed

    Moffat, Bradford A; Chenevert, Thomas L; Lawrence, Theodore S; Meyer, Charles R; Johnson, Timothy D; Dong, Qian; Tsien, Christina; Mukherji, Suresh; Quint, Douglas J; Gebarski, Stephen S; Robertson, Patricia L; Junck, Larry R; Rehemtulla, Alnawaz; Ross, Brian D

    2005-04-12

    Assessment of radiation and chemotherapy efficacy for brain cancer patients is traditionally accomplished by measuring changes in tumor size several months after therapy has been administered. The ability to use noninvasive imaging during the early stages of fractionated therapy to determine whether a particular treatment will be effective would provide an opportunity to optimize individual patient management and avoid unnecessary systemic toxicity, expense, and treatment delays. We investigated whether changes in the Brownian motion of water within tumor tissue as quantified by using diffusion MRI could be used as a biomarker for early prediction of treatment response in brain cancer patients. Twenty brain tumor patients were examined by standard and diffusion MRI before initiation of treatment. Additional images were acquired 3 weeks after initiation of chemo- and/or radiotherapy. Images were coregistered to pretreatment scans, and changes in tumor water diffusion values were calculated and displayed as a functional diffusion map (fDM) for correlation with clinical response. Of the 20 patients imaged during the course of therapy, 6 were classified as having a partial response, 6 as stable disease, and 8 as progressive disease. The fDMs were found to predict patient response at 3 weeks from the start of treatment, revealing that early changes in tumor diffusion values could be used as a prognostic indicator of subsequent volumetric tumor response. Overall, fDM analysis provided an early biomarker for predicting treatment response in brain tumor patients. PMID:15805192

  1. A novel comparative pattern count analysis reveals a chronic ethanol-induced dynamic shift in immediate early NF-κB genome-wide promoter binding during liver regeneration.

    PubMed

    Kuttippurathu, Lakshmi; Patra, Biswanath; Hoek, Jan B; Vadigepalli, Rajanikanth

    2016-03-01

    Liver regeneration after partial hepatectomy is a clinically important process that is impaired by adaptation to chronic alcohol intake. We focused on the initial time points following partial hepatectomy (PHx) to analyze the genome-wide binding activity of NF-κB, a key immediate early regulator. We investigated the effect of chronic alcohol intake on immediate early NF-κB genome-wide localization, in the adapted state as well as in response to partial hepatectomy, using chromatin immunoprecipitation followed by promoter microarray analysis. We found many ethanol-specific NF-κB binding target promoters in the ethanol-adapted state, corresponding to the regulation of biosynthetic processes, oxidation-reduction and apoptosis. Partial hepatectomy induced a diet-independent shift in NF-κB binding loci relative to the transcription start sites. We employed a novel pattern count analysis to exhaustively enumerate and compare the number of promoters corresponding to the temporal binding patterns in ethanol and pair-fed control groups. The highest pattern count corresponded to promoters with NF-κB binding exclusively in the ethanol group at 1 h post PHx. This set was associated with the regulation of cell death, response to oxidative stress, histone modification, mitochondrial function, and metabolic processes. Integration with the global gene expression profiles to identify putative transcriptional consequences of NF-κB binding patterns revealed that several of ethanol-specific 1 h binding targets showed ethanol-specific differential expression through 6 h post PHx. Motif analysis yielded co-incident binding loci for STAT3, AP-1, CREB, C/EBP-β, PPAR-γ and C/EBP-α, likely participating in co-regulatory modules with NF-κB in shaping the immediate early response to PHx. We conclude that adaptation to chronic ethanol intake disrupts the NF-κB promoter binding landscape with consequences for the immediate early gene regulatory response to the acute challenge of PHx.

  2. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV) genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    PubMed Central

    Tachezy, Ruth; Rector, Annabel; Havelkova, Marta; Wollants, Elke; Fiten, Pierre; Opdenakker, Ghislain; Jenson, A Bennett; Sundberg, John P; Van Ranst, Marc

    2002-01-01

    Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus). The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV) were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs) differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs) papillomavirus (FPV) reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution. PMID:12110158

  3. Exposure to dim light at night during early development increases adult anxiety-like responses.

    PubMed

    Borniger, Jeremy C; McHenry, Zachary D; Abi Salloum, Bachir A; Nelson, Randy J

    2014-06-22

    Early experiences produce effects that may persist throughout life. Therefore, to understand adult phenotype, it is important to investigate the role of early environmental stimuli in adult behavior and health. Artificial light at night (LAN) is an increasingly common phenomenon throughout the world. However, animals, including humans, evolved under dark night conditions. Many studies have revealed affective, immune, and metabolic alterations provoked by aberrant light exposure and subsequent circadian disruption. Pups are receptive to entraining cues from the mother and then light early during development, raising the possibility that the early life light environment may influence subsequent behavior. Thus, to investigate potential influences of early life exposure to LAN on adult phenotype, we exposed mice to dim (~5 lux; full spectrum white light) or dark (~0 lux) nights pre- and/or postnatally. After weaning at 3 weeks of age, all mice were maintained in dark nights until adulthood (9 weeks of age) when behavior was assessed. Mice exposed to dim light in early life increased anxiety-like behavior and fearful responses on the elevated plus maze and passive avoidance tests. These mice also displayed reduced growth rates, which ultimately normalized during adolescence. mRNA expression of brain derived neurotrophic factor (BDNF), a neurotrophin previously linked to early life environment and adult phenotype, was not altered in the prefrontal cortex or hippocampus by early life LAN exposure. Serum corticosterone concentrations were similar between groups at weaning, suggesting that early life LAN does not elicit a long-term physiologic stress response. Dim light exposure did not influence behavior on the open field, novel object, sucrose anhedonia, or forced swim tests. Our data highlight the potential deleterious consequences of low levels of light during early life to development and subsequent behavior. Whether these changes are due to altered maternal behavior

  4. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation

    PubMed Central

    2012-01-01

    Background Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient. Results The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes. Conclusions Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world. PMID:22835381

  5. The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs.

    PubMed

    Duncan, Elizabeth J; Leask, Megan P; Dearden, Peter K

    2013-05-01

    The pea aphid (Acyrthosiphon pisum) can reproduce either sexually or asexually (parthenogenetically), giving rise, in each case, to almost identical adults. These two modes of reproduction are accompanied by differences in ovarian morphology and the developmental environment of the offspring, with sexual forms producing eggs that are laid, whereas asexual development occurs within the mother. Here we examine the effect each mode of reproduction has on the expression of key maternal and axis patterning genes; orthodenticle (otd), hunchback (hb), caudal (cad) and nanos (nos). We show that three of these genes (Ap-hb, Ap-otd and Ap-cad) are expressed differently between the sexually and asexually produced oocytes and embryos of the pea aphid. We also show, using immunohistochemistry and cytoskeletal inhibitors, that Ap-hb RNA is localized differently between sexually and asexually produced oocytes, and that this is likely due to differences in the 3' untranslated regions of the RNA. Furthermore, Ap-hb and Ap-otd have extensive expression domains in early sexually produced embryos, but are not expressed at equivalent stages in asexually produced embryos. These differences in expression likely correspond with substantial changes in the gene regulatory networks controlling early development in the pea aphid. These data imply that in the evolution of parthenogenesis a new program has evolved to control the development of asexually produced embryos, whilst retaining the existing, sexual, developmental program. The patterns of modification of these developmental processes mirror the changes that we see in developmental processes between species, in that early acting pathways in development are less constrained, and evolve faster, than later ones. We suggest that the evolution of the novel asexual development pathway in aphids is not a simple modification of an ancestral system, but the evolution of two very different developmental mechanisms occurring within a single

  6. Genome-wide genetic and transcriptomic investigation of variation in antibody response to dietary antigens.

    PubMed

    Rubicz, Rohina; Yolken, Robert; Alaedini, Armin; Drigalenko, Eugene; Charlesworth, Jac C; Carless, Melanie A; Severance, Emily G; Krivogorsky, Bogdana; Dyer, Thomas D; Kent, Jack W; Curran, Joanne E; Johnson, Matthew P; Cole, Shelley A; Almasy, Laura; Moses, Eric K; Blangero, John; Göring, Harald H H

    2014-07-01

    Increased immunoglobulin G (IgG) response to dietary antigens can be associated with gastrointestinal dysfunction and autoimmunity. The underlying processes contributing to these adverse reactions remain largely unknown, and it is likely that genetic factors play a role. Here, we estimate heritability and attempt to localize genetic factors influencing IgG antibody levels against food-derived antigens using an integrative genomics approach. IgG antibody levels were determined by ELISA in >1,300 Mexican Americans for the following food antigens: wheat gliadin; bovine casein; and two forms of bovine serum albumin (BSA-a and BSA-b). Pedigree-based variance components methods were used to estimate additive genetic heritability (h(2) ), perform genome-wide association analyses, and identify transcriptional signatures (based on 19,858 transcripts from peripheral blood lymphocytes). Heritability estimates were significant for all traits (0.15-0.53), and shared environment (based on shared residency among study participants) was significant for casein (0.09) and BSA-a (0.33). Genome-wide significant evidence of association was obtained only for antibody to gliadin (P = 8.57 × 10(-8) ), mapping to the human leukocyte antigen II region, with HLA-DRA and BTNL2 as the best candidate genes. Lack of association of known celiac disease risk alleles HLA-DQ2.5 and -DQ8 with antigliadin antibodies in the studied population suggests a separate genetic etiology. Significant transcriptional signatures were found for all IgG levels except BSA-b. These results demonstrate that individual genetic differences contribute to food antigen antibody measures in this population. Further investigations may elucidate the underlying immunological processes involved.

  7. Genome-wide genetic and transcriptomic investigation of variation in antibody response to dietary antigens

    PubMed Central

    Rubicz, Rohina; Yolken, Robert; Alaedini, Armin; Drigalenko, Eugene; Charlesworth, Jac C.; Carless, Melanie A.; Severance, Emily G.; Krivogorsky, Bogdana; Dyer, Thomas D.; Kent, Jack W.; Curran, Joanne E.; Johnson, Matthew P.; Cole, Shelley A.; Almasy, Laura; Moses, Eric K.; Blangero, John; Göring, Harald H.H.

    2014-01-01

    Increased immunoglobulin G (IgG) response to dietary antigens can be associated with gastrointestinal dysfunction and autoimmunity. The underlying processes contributing to these adverse reactions remain largely unknown, and it is likely that genetic factors play a role. Here we estimate heritability and attempt to localize genetic factors influencing IgG antibody levels against food-derived antigens using an integrative genomics approach. IgG antibody levels were determined by ELISA in >1300 Mexican Americans for the following food antigens: wheat gliadin; bovine casein; and two forms of bovine serum albumin (BSA-a and BSA-b). Pedigree-based variance components methods were used to estimate additive genetic heritability (h2), perform genome-wide association analyses, and identify transcriptional signatures (based on 19,858 transcripts from peripheral blood lymphocytes). Heritability estimates were significant for all traits (0.15-0.53), and shared environment (based on shared residency among study participants) was significant for casein (0.09) and BSA-a (0.33). Genome-wide significant evidence of association was obtained only for antibody to gliadin (p=8.57×10-8), mapping to the human leukocyte antigen II region, with HLA-DRA and BTNL2 as the best candidate genes. Lack of association of known celiac disease risk alleles HLA-DQ2.5 and -DQ8 with anti-gliadin antibodies in the studied population suggests a separate genetic etiology. Significant transcriptional signatures were found for all IgG levels except BSA-b. These results demonstrate that individual genetic differences contribute to food antigen antibody measures in this population. Further investigations may elucidate the underlying immunological processes involved. PMID:24962563

  8. Genome-wide survey of the gene expression response to saprolegniasis in Atlantic salmon.

    PubMed

    Roberge, Christian; Páez, David J; Rossignol, Orlane; Guderley, Helga; Dodson, Julian; Bernatchez, Louis

    2007-02-01

    Pathogenic saprolegniaceae species are among the major disease-causing agents in farmed salmonids and in freshwater fish in general. Recent studies have used high-throughput cDNA-based methods to identify new potential actors of fish defence systems against various bacteria and viruses. However, the response of fish to fungal or fungus-like pathogens is still poorly documented. Here, we used a 16,006-gene salmonid cDNA microarray to identify genes which transcription levels are modified in juvenile Atlantic salmon (Salmo salar) affected with saprolegniasis compared to healthy fish from the same families. Our results confirmed the importance of non-specific immunity in the response of fish to saprolegniaceae infections and identified both similarities and differences in their genome-wide transcriptional response to oomycetes compared with their responses to bacterial or viral infections. Moreover, several clones with no known homologues were shown to be over-transcribed in infected fish. These may represent as yet unidentified immune-relevant genes in fish. PMID:16806477

  9. Genome-wide analysis for identification of salt-responsive genes in common wheat.

    PubMed

    Kawaura, Kanako; Mochida, Keiichi; Ogihara, Yasunari

    2008-08-01

    To identify salt-responsive genes in wheat, global expression analysis of transcripts was carried out using oligo-DNA microarrays. Microarrays have been designed from approximately 32,000 unique wheat genes classified from a large number of expressed sequence tags (ESTs). Two-week-old seedlings of wheat were treated with 150 mM NaCl for 1, 6, and 24 h, and their roots and shoots were separately subjected to analyses. Consequently, 5,996 genes showed changes in expression of more than twofold and were classified into 12 groups according to correlations in expression patterns. These salt-responsive genes were assigned functions using the Gene Ontology (GO). Genes assigned to transcription factor, transcription-regulator activity, and DNA-binding functions were preferentially classified into early response groups. On the other hand, those assigned transferase and transporter activity were classified into late response groups. These data suggest that multiple signal transduction pathways in response to salinity exist in wheat. Transcription factors (TFs) which have been reported as participants in salt-tolerant pathway changed their expression levels in response to salt treatment. Among them, only a few TFs show high sequence homologies to genes in rice. These investigations suggest that salt-responsive genes identified by this study are candidates for salt-stress tolerance uniquely in wheat.

  10. Multifractal analysis of visualized room impulse response for detecting early reflections.

    PubMed

    Pavlović, Milan; Ristić, Dragan M; Reljin, Irini; Mijić, Miomir

    2016-05-01

    This paper describes an improved method for detecting early reflections in the initial part of the room impulse response using multifractals. The proposed method uses the two-dimensional multifractal analysis. The room impulse response is visualized as a spectrogram image which is then subjected to the multifractal analysis. The algorithm is based on describing local regularity in the image using distribution of Hölder exponents. The time positions of the selected Hölder exponents in the image are utilized in detecting early reflections. The obtained results show better efficiency of the proposed algorithm compared to the previous one-dimensional multifractal analysis based algorithm. PMID:27250194

  11. Population genomic analyses of early-phase Atlantic Salmon (Salmo salar) domestication/captive breeding

    PubMed Central

    Mäkinen, Hannu; Vasemägi, Anti; McGinnity, Philip; Cross, Tom F; Primmer, Craig R

    2015-01-01

    Domestication can have adverse genetic consequences, which may reduce the fitness of individuals once released back into the wild. Many wild Atlantic salmon (Salmo salarL.) populations are threatened by anthropogenic influences, and they are supplemented with captively bred fish. The Atlantic salmon is also widely used in selective breeding programs to increase the mean trait values for desired phenotypic traits. We analyzed a genomewide set of SNPs in three domesticated Atlantic salmon strains and their wild conspecifics to identify loci underlying domestication. The genetic differentiation between domesticated strains and wild populations was low (FST < 0.03), and domesticated strains harbored similar levels of genetic diversity compared to their wild conspecifics. Only a few loci showed footprints of selection, and these loci were located in different linkage groups among the different wild population/hatchery strain comparisons. Simulated scenarios indicated that differentiation in quantitative trait loci exceeded that in neutral markers during the early phases of divergence only when the difference in the phenotypic optimum between populations was large. This study indicates that detecting selection using standard approaches in the early phases of domestication might be challenging unless selection is strong and the traits under selection show simple inheritance patterns. PMID:25667605

  12. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis

    PubMed Central

    Martin, Hilary C.; Kim, Grace E.; Pagnamenta, Alistair T.; Murakami, Yoshiko; Carvill, Gemma L.; Meyer, Esther; Copley, Richard R.; Rimmer, Andrew; Barcia, Giulia; Fleming, Matthew R.; Kronengold, Jack; Brown, Maile R.; Hudspith, Karl A.; Broxholme, John; Kanapin, Alexander; Cazier, Jean-Baptiste; Kinoshita, Taroh; Nabbout, Rima; Bentley, David; McVean, Gil; Heavin, Sinéad; Zaiwalla, Zenobia; McShane, Tony; Mefford, Heather C.; Shears, Deborah; Stewart, Helen; Kurian, Manju A.; Scheffer, Ingrid E.; Blair, Edward; Donnelly, Peter; Kaczmarek, Leonard K.; Taylor, Jenny C.

    2014-01-01

    In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequential testing of candidate genes known to be associated with specific sub-phenotypes, but the diagnostic yield of this approach can be low. We conducted whole-genome sequencing (WGS) on six patients with severe early-onset epilepsy who had previously been refractory to molecular diagnosis, and their parents. Four of these patients had a clinical diagnosis of Ohtahara Syndrome (OS) and two patients had severe non-syndromic early-onset epilepsy (NSEOE). In two OS cases, we found de novo non-synonymous mutations in the genes KCNQ2 and SCN2A. In a third OS case, WGS revealed paternal isodisomy for chromosome 9, leading to identification of the causal homozygous missense variant in KCNT1, which produced a substantial increase in potassium channel current. The fourth OS patient had a recessive mutation in PIGQ that led to exon skipping and defective glycophosphatidyl inositol biosynthesis. The two patients with NSEOE had likely pathogenic de novo mutations in CBL and CSNK1G1, respectively. Mutations in these genes were not found among 500 additional individuals with epilepsy. This work reveals two novel genes for OS, KCNT1 and PIGQ. It also uncovers unexpected genetic mechanisms and emphasizes the power of WGS as a clinical tool for making molecular diagnoses, particularly for highly heterogeneous disorders. PMID:24463883

  13. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

    PubMed Central

    van der Lee, Robin; ter Horst, Rob; Szklarczyk, Radek; Netea, Mihai G.; Andeweg, Arno C.; van Kuppeveld, Frank J. M.; Huynen, Martijn A.

    2015-01-01

    The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known RLR pathway components that collectively predict novel members. We demonstrate that RLR pathway genes, among others, tend to evolve rapidly, interact with viral proteins, contain a limited set of protein domains, are regulated by specific transcription factors, and form a tightly connected interaction network. Using a Bayesian approach to integrate these signatures, we propose likely novel RLR regulators. RNAi knockdown experiments revealed a high prediction accuracy, identifying 94 genes among 187 candidates tested (~50%) that affected viral RNA-induced production of IFNβ. The discovered antiviral regulators may participate in a wide range of processes that highlight the complexity of antiviral defense (e.g. MAP3K11, CDK11B, PSMA3, TRIM14, HSPA9B, CDC37, NUP98, G3BP1), and include uncharacterized factors (DDX17, C6orf58, C16orf57, PKN2, SNW1). Our validated RLR pathway list (http://rlr.cmbi.umcn.nl/), obtained using a combination of integrative genomics and experiments, is a new resource for innate antiviral immunity research. PMID:26485378

  14. Early Response in Cellulitis: A Prospective Study of Dynamics and Predictors

    PubMed Central

    Bruun, Trond; Oppegaard, Oddvar; Hufthammer, Karl Ove; Langeland, Nina; Skrede, Steinar

    2016-01-01

    Background. Skin and soft tissue infections are common reasons for medical care. Use of broad-spectrum therapy and costs have increased. Assessment of early treatment response has been given a central role both in clinical trials and everyday practice. However, there is a paucity of data on the dynamics of response, causes of early nonresponse, and how early nonresponse affects resource use and predicts outcome. Methods. We prospectively enrolled 216 patients hospitalized with cellulitis. Clinical and biochemical response data during the first 3 days of treatment were analyzed in relation to baseline factors, antibiotic use, surgery, and outcome. Multivariable analysis included logistic lasso regression. Results. Clinical or biochemical response was observed in the majority of patients the day after treatment initiation. Concordance between clinical and biochemical response was strongest at days 2 and 3. Female sex, cardiovascular disease, higher body mass index, shorter duration of symptoms, and cellulitis other than typical erysipelas were predictors of nonresponse at day 3. In contrast, baseline factors were not predictive of clinical failure assessed posttreatment. Among cases with antibiotic treatment escalation by day 2, 90% (37/41) had nonresponse at day 1, but only 5% (2/40) had inappropriate initial therapy. Nonresponse at day 3 was a predictor of treatment duration >14 days, but not of clinical failure. Conclusions. Nonpharmacological factors had a major impact on early response dynamics. Delayed response was rarely related to inappropriate therapy but strongly predictive of early treatment escalation, suggesting that broadening antibiotic treatment may often be premature. PMID:27402819

  15. Transcriptional dynamics reveal critical roles for non-coding RNAs in the immediate-early response.

    PubMed

    Aitken, Stuart; Magi, Shigeyuki; Alhendi, Ahmad M N; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Khachigian, Levon M; Okada-Hatakeyama, Mariko; Semple, Colin A

    2015-04-01

    The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset. PMID:25885578

  16. Transcriptional dynamics reveal critical roles for non-coding RNAs in the immediate-early response.

    PubMed

    Aitken, Stuart; Magi, Shigeyuki; Alhendi, Ahmad M N; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Khachigian, Levon M; Okada-Hatakeyama, Mariko; Semple, Colin A

    2015-04-01

    The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.

  17. Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response

    PubMed Central

    Aitken, Stuart; Magi, Shigeyuki; Alhendi, Ahmad M. N.; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O.; Arner, Erik; Carninci, Piero; Forrest, Alistair R. R.; Hayashizaki, Yoshihide; Khachigian, Levon M.; Okada-Hatakeyama, Mariko; Semple, Colin A.

    2015-01-01

    The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset. PMID:25885578

  18. Genomic correlates of variability in immune response to an oral cholera vaccine

    PubMed Central

    Majumder, Partha P; Sarkar-Roy, Neeta; Staats, Herman; Ramamurthy, T; Maiti, Sujit; Chowdhury, Goutam; Whisnant, Carol C; Narayanasamy, K; Wagener, Diane K

    2013-01-01

    Cholera is endemic to many countries. Recent major outbreaks of cholera have prompted World Health Organization to recommend oral cholera vaccination as a public-health strategy. Variation in percentage of seroconversion upon cholera vaccination has been recorded across populations. Vaccine-induced responses are influenced by host genetic differences. We have investigated association between single-nucleotide polymorphic (SNP) loci in and around 296 immunologically relevant genes and total anti-lipopolysaccharide (LPS) antibody response to a killed whole-cell vaccine, comprising LPS from multiple strains of Vibrio cholerae. Titers derived from standard vibriocidal assays were also analyzed to gain further insights on validated SNP associations. Vaccination was administered to 1000 individuals drawn from India. Data on two independent random subsets, each comprising ∼500 vaccinees, were used for discovery of genomic associations and validation, respectively. Significant associations of four SNPs and haplotypes in three genes (MARCO, TNFAIP3 and CXCL12) with AR were discovered and validated, of which two in TNFAIP3 and CXCL12 were also significantly associated with immunity (fourfold increase in vibriocidal titers). CXCL12 is a neutrophil and lymphocyte chemoattractant that is upregulated in response to V. cholerae infection. LPS in the vaccine possibly provides signals that mimic those of the live bacterium. TNFAIP3 promotes intestinal epithelial barrier integrity and provides tight junction protein regulation; possible requirements for adequate response to the vaccine. LPS is a potent activator of innate immune responses and a ligand of MARCO. Variants in this gene have been found to be associated with LPS response, but not with high vibriocidal titer level. PMID:23249958

  19. Genome-Wide Association of Lipid-Lowering Response to Statins in Combined Study Populations

    PubMed Central

    Hyde, Craig L.; Chasman, Daniel I.; Smith, Joshua D.; McCarty, Catherine A.; Li, Xiaohui; Wilke, Russell A.; Rieder, Mark J.; Williams, Paul T.; Ridker, Paul M.; Chatterjee, Aurobindo; Rotter, Jerome I.; Nickerson, Deborah A.; Stephens, Matthew; Krauss, Ronald M.

    2010-01-01

    Background Statins effectively lower total and plasma LDL-cholesterol, but the magnitude of decrease varies among individuals. To identify single nucleotide polymorphisms (SNPs) contributing to this variation, we performed a combined analysis of genome-wide association (GWA) results from three trials of statin efficacy. Methods and Principal Findings Bayesian and standard frequentist association analyses were performed on untreated and statin-mediated changes in LDL-cholesterol, total cholesterol, HDL-cholesterol, and triglyceride on a total of 3932 subjects using data from three studies: Cholesterol and Pharmacogenetics (40 mg/day simvastatin, 6 weeks), Pravastatin/Inflammation CRP Evaluation (40 mg/day pravastatin, 24 weeks), and Treating to New Targets (10 mg/day atorvastatin, 8 weeks). Genotype imputation was used to maximize genomic coverage and to combine information across studies. Phenotypes were normalized within each study to account for systematic differences among studies, and fixed-effects combined analysis of the combined sample were performed to detect consistent effects across studies. Two SNP associations were assessed as having posterior probability greater than 50%, indicating that they were more likely than not to be genuinely associated with statin-mediated lipid response. SNP rs8014194, located within the CLMN gene on chromosome 14, was strongly associated with statin-mediated change in total cholesterol with an 84% probability by Bayesian analysis, and a p-value exceeding conventional levels of genome-wide significance by frequentist analysis (P = 1.8×10−8). This SNP was less significantly associated with change in LDL-cholesterol (posterior probability = 0.16, P = 4.0×10−6). Bayesian analysis also assigned a 51% probability that rs4420638, located in APOC1 and near APOE, was associated with change in LDL-cholesterol. Conclusions and Significance Using combined GWA analysis from three clinical trials involving nearly 4

  20. Characterization of transgenic mice containing adenovirus early region 3 genomic DNA.

    PubMed Central

    Fejer, G; Gyory, I; Tufariello, J; Horwitz, M S

    1994-01-01

    Human adenoviruses (Ad) contain a complex transcription region (E3) which codes for proteins that interact with several arms of the immune system. However, E3 genes are not essential for replication in tissue culture. An E3-encoded 19,000-molecular-weight (19K) glycoprotein (gp19K) binds to the class I major histocompatibility complex (MHC) in the endoplasmic reticulum and prevents MHC transport to the cell surface. Three other E3 proteins are involved in the inhibition of apoptosis by tumor necrosis factor alpha. The entire E3 genomic DNA was utilized to produce transgenic mice to study the effect of the E3 proteins on pathogenesis of various infectious agents and to investigate the in vivo synthesis and processing of the multiple E3 mRNAs and proteins. There was basal expression of the E3 promoter in the thymus, kidneys, uterus, and testes and at all levels of the gastrointestinal tract. In addition, the E3 promoter of the transgene could be activated in some other organs, including the liver, by infection of these animals with an E3-deficient Ad (Ad7001) which contains a functional E1A region. Transactivation in vivo could also be demonstrated by infusion of bacterial lipopolysaccharide. There appeared to be differential ratios of expression between several of the E3 mRNAs in transgenic lung fibroblasts and primary kidney cells cultured from the transgenic animals. This observation suggested that there was differential mRNA splicing that was organ specific. These transgenic animals should provide a useful model for studying the effects of the E3 proteins on the immune system and on diseases affected either by control of MHC or by selected functions of tumor necrosis factor that are inhibitable by Ad E3 proteins. Images PMID:8057467

  1. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise.

    PubMed

    White-Schwoch, Travis; Davies, Evan C; Thompson, Elaine C; Woodruff Carr, Kali; Nicol, Trent; Bradlow, Ann R; Kraus, Nina

    2015-10-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But this auditory learning rarely occurs in ideal listening conditions-children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3-5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features-even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response

  2. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties

  3. Genomic and Genotoxic Responses to Controlled Weathered-Oil Exposures Confirm and Extend Field Studies on Impacts of the Deepwater Horizon Oil Spill on Native Killifish

    PubMed Central

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA. PMID:25208076

  4. Genomic and genotoxic responses to controlled weathered-oil exposures confirm and extend field studies on impacts of the Deepwater Horizon oil spill on native killifish.

    PubMed

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼ 10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA.

  5. Genomic and genotoxic responses to controlled weathered-oil exposures confirm and extend field studies on impacts of the Deepwater Horizon oil spill on native killifish.

    PubMed

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼ 10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA. PMID:25208076

  6. Viral evasion mechanisms of early antiviral responses involving regulation of ubiquitin pathways.

    PubMed

    Rajsbaum, Ricardo; García-Sastre, Adolfo

    2013-08-01

    Early innate and cell-intrinsic responses are essential to protect host cells against pathogens. In turn, viruses have developed sophisticated mechanisms to establish productive infections by counteracting host innate immune responses. Increasing evidence indicates that these antiviral factors may have a dual role by directly inhibiting viral replication as well as by sensing and transmitting signals to induce antiviral cytokines. Recent studies have pointed at new, unappreciated mechanisms of viral evasion of host innate protective responses including manipulating the host ubiquitin (Ub) system. Virus-mediated inhibition of antiviral factors by Ub-dependent degradation is emerging as a crucial mechanism for evading the antiviral response. In addition, recent studies have uncovered new mechanisms by which virus-encoded proteins inhibit Ub and Ub-like (Ubl) modification of host proteins involved in innate immune signaling pathways. Here we discuss recent findings and novel strategies that viruses have developed to counteract these early innate antiviral defenses.

  7. Recurrent Rare Genomic Copy Number Variants and Bicuspid Aortic Valve Are Enriched in Early Onset Thoracic Aortic Aneurysms and Dissections

    PubMed Central

    Prakash, Siddharth; Kuang, Shao-Qing; Regalado, Ellen; Guo, Dongchuan; Milewicz, Dianna

    2016-01-01

    Thoracic Aortic Aneurysms and Dissections (TAAD) are a major cause of death in the United States. The spectrum of TAAD ranges from genetic disorders, such as Marfan syndrome, to sporadic isolated disease of unknown cause. We hypothesized that genomic copy number variants (CNVs) contribute causally to early onset TAAD (ETAAD). We conducted a genome-wide SNP array analysis of ETAAD patients of European descent who were enrolled in the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). Genotyping was performed on the Illumina Omni-Express platform, using PennCNV, Nexus and CNVPartition for CNV detection. ETAAD patients (n = 108, 100% European American, 28% female, average age 20 years, 55% with bicuspid aortic valves) were compared to 7013 dbGAP controls without a history of vascular disease using downsampled Omni 2.5 data. For comparison, 805 sporadic TAAD patients with late onset aortic disease (STAAD cohort) and 192 affected probands from families with at least two affected relatives (FTAAD cohort) from our institution were screened for additional CNVs at these loci with SNP arrays. We identified 47 recurrent CNV regions in the ETAAD, FTAAD and STAAD groups that were absent or extremely rare in controls. Nine rare CNVs that were either very large (>1 Mb) or shared by ETAAD and STAAD or FTAAD patients were also identified. Four rare CNVs involved genes that cause arterial aneurysms when mutated. The largest and most prevalent of the recurrent CNVs were at Xq28 (two duplications and two deletions) and 17q25.1 (three duplications). The percentage of individuals harboring rare CNVs was significantly greater in the ETAAD cohort (32%) than in the FTAAD (23%) or STAAD (17%) cohorts. We identified multiple loci affected by rare CNVs in one-third of ETAAD patients, confirming the genetic heterogeneity of TAAD. Alterations of candidate genes at these loci may contribute to the pathogenesis of TAAD. PMID:27092555

  8. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response.

    PubMed

    Lin, Yi-Fan; Schulz, Anna M; Pellegrino, Mark W; Lu, Yun; Shaham, Shai; Haynes, Cole M

    2016-05-19

    Mitochondrial genomes (mitochondrial DNA, mtDNA) encode essential oxidative phosphorylation (OXPHOS) components. Because hundreds of mtDNAs exist per cell, a deletion in a single mtDNA has little impact. However, if the deletion genome is enriched, OXPHOS declines, resulting in cellular dysfunction. For example, Kearns-Sayre syndrome is caused by a single heteroplasmic mtDNA deletion. More broadly, mtDNA deletion accumulation has been observed in individual muscle cells and dopaminergic neurons during ageing. It is unclear how mtDNA deletions are tolerated or how they are propagated in somatic cells. One mechanism by which cells respond to OXPHOS dysfunction is by activating the mitochondrial unfolded protein response (UPR(mt)), a transcriptional response mediated by the transcription factor ATFS-1 that promotes the recovery and regeneration of defective mitochondria. Here we investigate the role of ATFS-1 in the maintenance and propagation of a deleterious mtDNA in a heteroplasmic Caenorhabditis elegans strain that stably expresses wild-type mtDNA and mtDNA with a 3.1-kilobase deletion (∆mtDNA) lacking four essential genes. The heteroplasmic strain, which has 60% ∆mtDNA, displays modest mitochondrial dysfunction and constitutive UPR(mt) activation. ATFS-1 impairment reduced the ∆mtDNA nearly tenfold, decreasing the total percentage to 7%. We propose that in the context of mtDNA heteroplasmy, UPR(mt) activation caused by OXPHOS defects propagates or maintains the deleterious mtDNA in an attempt to recover OXPHOS activity by promoting mitochondrial biogenesis and dynamics. PMID:27135930

  9. Life on the edge: functional genomic response of Ignicoccus hospitalis to the presence of Nanoarchaeum equitans

    PubMed Central

    Giannone, Richard J; Wurch, Louie L; Heimerl, Thomas; Martin, Stanton; Yang, Zamin; Huber, Harald; Rachel, Reinhard; Hettich, Robert L; Podar, Mircea

    2015-01-01

    The marine hyperthermophilic crenarchaeon Ignicoccus hospitalis supports the propagation on its surface of Nanoarchaeum equitans, an evolutionarily enigmatic archaeon that resembles highly derived parasitic and symbiotic bacteria. The cellular and molecular mechanisms that enable this interarchaea relationship and the intimate physiologic consequences to I. hospitalis are unknown. Here, we used concerted proteomic and transcriptomic analyses to probe into the functional genomic response of I. hospitalis as N. equitans multiplies on its surface. The expression of over 97% of the genes was detected at mRNA level and over 80% of the predicted proteins were identified and their relative abundance measured by proteomics. These indicate that little, if any, of the host genomic information is silenced during growth in the laboratory. The primary response to N. equitans was at the membrane level, with increases in relative abundance of most protein complexes involved in energy generation as well as that of several transporters and proteins involved in cellular membrane stabilization. Similar upregulation was observed for genes and proteins involved in key metabolic steps controlling nitrogen and carbon metabolism, although the overall biosynthetic pathways were marginally impacted. Proliferation of N. equitans resulted, however, in selective downregulation of genes coding for transcription factors and replication and cell cycle control proteins as I. hospitalis shifted its physiology from its own cellular growth to that of its ectosymbiont/parasite. The combination of these multiomic approaches provided an unprecedented level of detail regarding the dynamics of this interspecies interaction, which is especially pertinent as these organisms are not genetically tractable. PMID:25012904

  10. Evolution of a Cellular Immune Response in Drosophila: A Phenotypic and Genomic Comparative Analysis

    PubMed Central

    Salazar-Jaramillo, Laura; Paspati, Angeliki; van de Zande, Louis; Vermeulen, Cornelis Joseph; Schwander, Tanja; Wertheim, Bregje

    2014-01-01

    Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila. PMID:24443439

  11. Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli

    PubMed Central

    Saproo, Sameer

    2010-01-01

    Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population

  12. Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection.

    PubMed

    Bordes, Jacques; Ravel, C; Jaubertie, J P; Duperrier, B; Gardet, O; Heumez, E; Pissavy, A L; Charmet, G; Le Gouis, J; Balfourier, F

    2013-03-01

    Modern wheat (Triticum aestivum L.) varieties in Western Europe have mainly been bred, and selected in conditions where high levels of nitrogen-rich fertilizer are applied. However, high input crop management has greatly increased the risk of nitrates leaching into groundwater with negative impacts on the environment. To investigate wheat nitrogen tolerance characteristics that could be adapted to low input crop management, we supplied 196 accessions of a wheat core collection of old and modern cultivars with high or moderate amounts of nitrogen fertilizer in an experimental network consisting of three sites and 2 years. The main breeding traits were assessed including grain yield and grain protein content. The response to nitrogen level was estimated for grain yield and grain number per m(2) using both the difference and the ratio between performance at the two input levels and the slope of joint regression. A large variability was observed for all the traits studied and the response to nitrogen level. Whole genome association mapping was carried out using 899 molecular markers taking into account the five ancestral group structure of the collection. We identified 54 main regions involving almost all chromosomes that influence yield and its components, plant height, heading date and grain protein concentration. Twenty-three regions, including several genes, spread over 16 chromosomes were involved in the response to nitrogen level. These chromosomal regions may be good candidates to be used in breeding programs to improve the performance of wheat varieties at moderate nitrogen input levels.

  13. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection.

    PubMed

    Calla, Bernarda; Blahut-Beatty, Laureen; Koziol, Lisa; Zhang, Yunfang; Neece, David J; Carbajulca, Doris; Garcia, Alexandre; Simmonds, Daina H; Clough, Steven J

    2014-08-01

    Oxalate oxidases (OxO) catalyse the degradation of oxalic acid (OA). Highly resistant transgenic soybean carrying an OxO gene and its susceptible parent soybean line, AC Colibri, were tested for genome-wide gene expression in response to the necrotrophic, OA-producing pathogen Sclerotinia sclerotiorum using soybean cDNA microarrays. The genes with changed expression at statistically significant levels (overall F-test P-value cut-off of 0.0001) were classified into functional categories and pathways, and were analysed to evaluate the differences in transcriptome profiles. Although many genes and pathways were found to be similarly activated or repressed in both genotypes after inoculation with S. sclerotiorum, the OxO genotype displayed a measurably faster induction of basal defence responses, as observed by the differential changes in defence-related and secondary metabolite genes compared with its susceptible parent AC Colibri. In addition, the experiment presented provides data on several other transcripts that support the hypothesis that S. sclerotiorum at least partially elicits the hypersensitive response, induces lignin synthesis (cinnamoyl CoA reductase) and elicits as yet unstudied signalling pathways (G-protein-coupled receptor and related). Of the nine genes showing the most extreme opposite directions of expression between genotypes, eight were related to photosynthesis and/or oxidation, highlighting the importance of redox in the control of this pathogen.

  14. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica

    PubMed Central

    Qin, Yurong; Duan, Hui; Yin, Weilun; Xia, Xinli

    2011-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. Populus euphratica is a typical abiotic stress-resistant woody species. This study presents an efficient method for genome-wide discovery of new drought stress responsive miRNAs in P. euphratica. High-throughput sequencing of P. euphratica leaves found 197 conserved miRNAs between P. euphratica and Populus trichocarpa. Meanwhile, 58 new miRNAs belonging to 38 families were identified, an increase in the number of P. euphratica miRNAs. Twenty-six new and 21 conserved miRNA targets were verified by degradome sequencing, and target annotation showed that these targets were involved in multiple biological processes, including transcriptional regulation and response to stimulus. Furthermore, comparison of high-throughput sequencing with miRNA microarray profiling data indicated that 104 miRNA sequences were up-regulated, whereas 27 were down-regulated under drought stress. This preliminary characterization provides a framework for future analysis of miRNA genes and their roles in key poplar traits such as stress resistance, and could be useful for plant breeding and environmental protection PMID:21511902

  15. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations

    PubMed Central

    Taymaz-Nikerel, Hilal; Cankorur-Cetinkaya, Ayca; Kirdar, Betul

    2016-01-01

    Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to the changing conditions. Genome-wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors, such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short and long term. This review focuses on response of yeast cells to diverse stress inducing perturbations, including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, and to genetic interventions such as deletion and overexpression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions. PMID:26925399

  16. A genomic and clinical prognostic index for hepatitis C-related early-stage cirrhosis that predicts clinical deterioration

    PubMed Central

    King, Lindsay Y.; Canasto-Chibuque, Claudia; Johnson, Kara B.; Yip, Shun; Chen, Xintong; Kojima, Kensuke; Deshmukh, Manjeet; Venkatesh, Anu; Tan, Poh Seng; Sun, Xiaochen; Villanueva, Augusto; Sangiovanni, Angelo; Nair, Venugopalan; Mahajan, Milind; Kobayashi, Masahiro; Kumada, Hiromitsu; Iavarone, Massimo; Colombo, Massimo; Fiel, Maria Isabel; Friedman, Scott L.; Llovet, Josep M.; Chung, Raymond T.; Hoshida, Yujin

    2014-01-01

    Objective The number of patients with hepatitis C virus (HCV)-related cirrhosis is increasing, leading to a rising risk of complications and death. Prognostic stratification in patients with early-stage cirrhosis is still challenging. We aimed to develop and validate a clinically useful prognostic index based on genomic and clinical variables to identify patients at high risk of disease progression. Design We developed a prognostic index, comprised of a 186-gene signature validated in our previous genome-wide profiling study, bilirubin (>1mg/dL), and platelet count (<100,000/mm3), in an Italian HCV cirrhosis cohort (training cohort, n=216, median follow-up 10 years). The gene signature test was implemented utilizing a digital transcript counting (nCounter) assay specifically developed for clinical use, and the prognostic index was evaluated using archived specimens from an independent cohort of HCV-related cirrhosis in the U.S. (validation cohort, n=145, median follow-up 8 years). Results In the training cohort, the prognostic index was associated with hepatic decompensation (HR=2.71, p=0.003), overall death (HR=6.00, p<0.001), hepatocellular carcinoma (HR=3.31, p=0.001), and progression of Child-Turcotte-Pugh class (HR=6.70, p<0.001). The patients in the validation cohort were stratified into high (16%), intermediate (42%), or low (42%) risk group by the prognostic index. The high-risk group had a significantly increased risk of hepatic decompensation (HR=7.36, p<0.001), overall death (HR=3.57, p=0.002), liver-related death (HR=6.49, p<0.001), and all liver-related adverse events (HR=4.98, p<0.001). Conclusion A genomic and clinical prognostic index readily available for clinical use was successfully validated, warranting further clinical evaluation for prognostic prediction, and clinical trial stratification and enrichment for preventive interventions. PMID:25143343

  17. Effects of racial and ethnic group and health literacy on responses to genomic risk information in a medically underserved population

    PubMed Central

    Kaphingst, Kimberly A.; Stafford, Jewel D.; McGowan, Lucy D’Agostino; Seo, Joann; Lachance, Christina R.; Goodman, Melody S.

    2015-01-01

    Objective Few studies have examined how individuals respond to genomic risk information for common, chronic diseases. This randomized study examined differences in responses by type of genomic information [genetic test/family history] and disease condition [diabetes/heart disease] and by race/ethnicity in a medically underserved population. Methods 1057 English-speaking adults completed a survey containing one of four vignettes (two-by-two randomized design). Differences in dependent variables (i.e., interest in receiving genomic assessment, discussing with doctor or family, changing health habits) by experimental condition and race/ethnicity were examined using chi-squared tests and multivariable regression analysis. Results No significant differences were found in dependent variables by type of genomic information or disease condition. In multivariable models, Hispanics were more interested in receiving a genomic assessment than Whites (OR=1.93; p<0.0001); respondents with marginal (OR=1.54; p=0.005) or limited (OR=1.85; p=0.009) health literacy had greater interest than those with adequate health literacy. Blacks (OR=1.78; p=0.001) and Hispanics (OR=1.85; p=0.001) had greater interest in discussing information with family than Whites. Non-Hispanic Blacks (OR=1.45; p=0.04) had greater interest in discussing genomic information with a doctor than Whites. Blacks (β= −0.41; p<0.001) and Hispanics (β= −0.25; p=0.033) intended to change fewer health habits than Whites; health literacy was negatively associated with number of health habits participants intended to change. Conclusions Findings suggest that race/ethnicity may affect responses to genomic risk information. Additional research could examine how cognitive representations of this information differ across racial/ethnic groups. Health literacy is also critical to consider in developing approaches to communicating genomic information. PMID:25622080

  18. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses1[OPEN

    PubMed Central

    McKeown, Meghan; Fjellheim, Siri

    2016-01-01

    The ability of plants to match their reproductive output with favorable environmental conditions has major consequences both for lifetime fitness and geographic patterns of diversity. In temperate ecosystems, some plant species have evolved the ability to use winter nonfreezing cold (vernalization) as a cue to ready them for spring flowering. However, it is unknown how important the evolution of vernalization responsiveness has been for the colonization and subsequent diversification of taxa within the northern and southern temperate zones. Grasses of subfamily Pooideae, including several important crops, such as wheat (Triticum aestivum), barley (Hordeum vulgare), and oats (Avena sativa), predominate in the northern temperate zone, and it is hypothesized that their radiation was facilitated by the early evolution of vernalization responsiveness. Predictions of this early origin hypothesis are that a response to vernalization is widespread within the subfamily and that the genetic basis of this trait is conserved. To test these predictions, we determined and reconstructed vernalization responsiveness across Pooideae and compared expression of wheat vernalization gene orthologs VERNALIZATION1 (VRN1) and VRN3 in phylogenetically representative taxa under cold and control conditions. Our results demonstrate that vernalization responsive Pooideae species are widespread, suggesting that this trait evolved early in the lineage and that at least part of the vernalization gene network is conserved throughout the subfamily. These results are consistent with the hypothesis that the evolution of vernalization responsiveness was important for the initial transition of Pooideae out of the tropics and into the temperate zone. PMID:27474116

  19. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses.

    PubMed

    McKeown, Meghan; Schubert, Marian; Marcussen, Thomas; Fjellheim, Siri; Preston, Jill C

    2016-09-01

    The ability of plants to match their reproductive output with favorable environmental conditions has major consequences both for lifetime fitness and geographic patterns of diversity. In temperate ecosystems, some plant species have evolved the ability to use winter nonfreezing cold (vernalization) as a cue to ready them for spring flowering. However, it is unknown how important the evolution of vernalization responsiveness has been for the colonization and subsequent diversification of taxa within the northern and southern temperate zones. Grasses of subfamily Pooideae, including several important crops, such as wheat (Triticum aestivum), barley (Hordeum vulgare), and oats (Avena sativa), predominate in the northern temperate zone, and it is hypothesized that their radiation was facilitated by the early evolution of vernalization responsiveness. Predictions of this early origin hypothesis are that a response to vernalization is widespread within the subfamily and that the genetic basis of this trait is conserved. To test these predictions, we determined and reconstructed vernalization responsiveness across Pooideae and compared expression of wheat vernalization gene orthologs VERNALIZATION1 (VRN1) and VRN3 in phylogenetically representative taxa under cold and control conditions. Our results demonstrate that vernalization responsive Pooideae species are widespread, suggesting that this trait evolved early in the lineage and that at least part of the vernalization gene network is conserved throughout the subfamily. These results are consistent with the hypothesis that the evolution of vernalization responsiveness was important for the initial transition of Pooideae out of the tropics and into the temperate zone. PMID:27474116

  20. Elevated Peritoneal Fluid TNF-α Incites Ovarian Early Growth Response Factor 1 Expression and Downstream Protease Mediators

    PubMed Central

    Birt, Julie A.; Nabli, Henda; Stilley, Julie A.; Windham, Emma A.; Frazier, Shellaine R.

    2013-01-01

    Endometriosis-associated infertility manifests itself via multiple, poorly understood mechanisms. Our goal was to characterize signaling pathways, between peritoneal endometriotic lesions and the ovary, leading to failed ovulation. Genome-wide microarray analysis comparing ovarian tissue from an in vivo endometriosis model in the rat (Endo) with controls (Sham) identified 22 differentially expressed genes, including transiently expressed early growth response factor 1 (Egr1). The Egr1 regulates gene requisites for ovulation. The Egr1 promoter is responsive to tumor necrosis factor-alpha (TNF-α) signaling. We hypothesized that altered expression of ovarian EGR1 is induced by elevated peritoneal fluid TNF-α which is upregulated by the presence of peritoneal endometriosis. Endo rats, compared to controls, had more peritoneal fluid TNF-α and quantitative, spatial differences in Egr1 mRNA and EGR1 protein localization in follicular compartments. Interactions between elevated peritoneal fluid TNF-α and overexpression of follicular Egr1/EGR1 expression may affect downstream protease pathways impeding ovulation in endometriosis. Preliminary studies identified similar patterns of EGR1 protein localization in human ovaries from women with endometriosis and compared to those without endometriosis. PMID:23427178

  1. The epicardium as modulator of the cardiac autonomic response during early development.

    PubMed

    Kelder, Tim P; Duim, Sjoerd N; Vicente-Steijn, Rebecca; Végh, Anna M D; Kruithof, Boudewijn P T; Smits, Anke M; van Bavel, Thomas C; Bax, Noortje A M; Schalij, Martin J; Gittenberger-de Groot, Adriana C; DeRuiter, Marco C; Goumans, Marie-José; Jongbloed, Monique R M

    2015-12-01

    The cardiac autonomic nervous system (cANS) modulates heart rate, contraction force and conduction velocity. The embryonic chicken heart already responds to epinephrine prior to establishment of the cANS. The aim of this study was to define the regions of the heart that might participate in modulating the early autonomic response to epinephrine. Immunofluorescence analysis reveals expression of neural markers tubulin beta-3 chain and neural cell adhesion molecule in the epicardium during early development. In addition, expression of the β2 adrenergic receptor, the receptor for epinephrine, was found in the epicardium. Ex-ovo micro-electrode recordings in hearts with inhibition of epicardial outgrowth showed a significantly reduced response of the heart rate to epinephrine compared to control hearts. This study suggests a role for the epicardium as autonomic modulator during early cardiac development. PMID:26527381

  2. Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State

    ERIC Educational Resources Information Center

    Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.

    2015-01-01

    Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…

  3. Caregiver Responsiveness during Preschool Supports Cooperation in Kindergarten: Moderation by Children's Early Compliance

    ERIC Educational Resources Information Center

    Pratt, Megan E.; Lipscomb, Shannon T.; McClelland, Megan M.

    2016-01-01

    Research Findings: The current study examined how children's parent-reported compliance at age 3 (36 months) moderated the effects of 2 dimensions of directly observed early care and education (ECE) process quality (positivity/responsivity and cognitive stimulation) during the prekindergarten year (54 months) on teacher reports of children's…

  4. Designing a Measurement Framework for Response to Intervention in Early Childhood Programs

    ERIC Educational Resources Information Center

    McConnell, Scott R.; Wackerle-Hollman, Alisha K.; Roloff, Tracy A.; Rodriguez, Michael

    2014-01-01

    The overall architecture and major components of a measurement system designed and evaluated to support Response to Intervention (RTI) in the areas of language and literacy in early childhood programs are described. Efficient and reliable measurement is essential for implementing any viable RTI system, and implementing such a system in early…

  5. Response to Intervention: Implications for the Proficiency of Early Childhood Special Educators

    ERIC Educational Resources Information Center

    Mack, Faite R-P.; Smith, Vernon G.; Straight, Holly

    2010-01-01

    Collaboration seems to be an almost inherent theme in most current trends and theories shaping early childhood special education reform; so much so, that we possibly reference these theories only in terms of their collaborative nature, without fully understanding them. Response to Intervention is currently getting a great deal of attention, not…

  6. Pre-Service Teacher Disposition Development: Cultural Reciprocity and Responsivity in Early Childhood Special Education Practica

    ERIC Educational Resources Information Center

    Van Steenberg, Vicki

    2012-01-01

    This qualitative Case Study explored the integrative process of pre-service teachers' disposition development for cultural reciprocity and responsiveness. Over the course of ten months, pre-service teachers completed two Early Childhood Special Education practica in diverse urban communities. The pre-service teachers were placed in public…

  7. The Confluence of Adverse Early Experience and Puberty on the Cortisol Awakening Response

    ERIC Educational Resources Information Center

    Quevedo, Karina; Johnson, Anna E.; Loman, Michelle L.; LaFavor, Theresa L.; Gunnar, Megan

    2012-01-01

    Associations between early deprivation/neglect in the form of institutional care with the cortisol awakening response (CAR) were examined as a function of pubertal status among 12- and 13-year-old postinstitutionalized youth. CARs indexed hypothalamic-pituitary-adrenocortical reactivity. Postinstitutionalized youth were compared to youth adopted…

  8. Responsive Teaching: Early Intervention for Children with Down Syndrome and Other Disabilities

    ERIC Educational Resources Information Center

    Mahoney, Gerald; Perales, Frida; Wiggers, Bridgette; Herman, Bob

    2006-01-01

    Responsive Teaching is an early intervention curriculum designed to address the cognitive, language, and social emotional needs of young children with developmental problems. This innovative intervention model was derived from research conducted primarily with children with Down syndrome and their mothers. Results from these studies indicated that…

  9. Effectiveness of Community-Based Early Intervention Based on Pivotal Response Treatment

    ERIC Educational Resources Information Center

    Smith, Isabel M.; Flanagan, Helen E.; Garon, Nancy; Bryson, Susan E.

    2015-01-01

    Preschoolers (n = 118) with autism spectrum disorder (ASD) participated in this prospective effectiveness study of an early intervention program. Treatment entailed parent training and therapist-implemented components, incorporating Pivotal Response Treatment and Positive Behaviour Support. Standardized ability and behavioural measures were…

  10. Responsive Parenting: Establishing Early Foundations for Social, Communication, and Independent Problem-Solving Skills

    ERIC Educational Resources Information Center

    Landry, Susan H.; Smith, Karen E.; Swank, Paul R.

    2006-01-01

    Mothers whose infants varied in early biological characteristics (born at term, n = 120; born at very low birth weight [VLBW], n = 144) were randomized to a target group (n = 133) or developmental feedback comparison group (n = 131) to determine whether learning responsive behaviors would facilitate infant development. The target condition…

  11. Gene Transfer and the Reconstruction of Life's Early History from Genomic Data

    NASA Astrophysics Data System (ADS)

    Gogarten, J. Peter; Fournier, Gregory; Zhaxybayeva, Olga

    2008-03-01

    The metaphor of the unique and strictly bifurcating tree of life, suggested by Charles Darwin, needs to be replaced (or at least amended) to reflect and include processes that lead to the merging of and communication between independent lines of descent. Gene histories include and reflect processes such as gene transfer, symbioses and lineage fusion. No single molecule can serve as a proxy for the tree of life. Individual gene histories can be reconstructed from the growing molecular databases containing sequence and structural information. With some simplifications these gene histories can be represented by furcating trees; however, merging these gene histories into web-like organismal histories, including the transfer of metabolic pathways and cell biological innovations from now-extinct lineages, has yet to be accomplished. Because of these difficulties in interpreting the record retained in molecular sequences, correlations with biochemical fossils and with the geological record need to be interpreted with caution. Advances to detect and pinpoint transfer events promise to untangle at least a few of the intertwined histories of individual genes within organisms and trace them to the organismal ancestors. Furthermore, analysis of the shape of molecular phylogenetic trees may point towards organismal radiations that might reflect early mass extinction events that occurred on a planetary scale.

  12. Familial early-onset dementia with complex neuropathologic phenotype and genomic background.

    PubMed

    Alexander, John; Kalev, Ognian; Mehrabian, Shima; Traykov, Latchezar; Raycheva, Margariata; Kanakis, Dimitrios; Drineas, Petros; Lutz, Mirjam I; Ströbel, Thomas; Penz, Thomas; Schuster, Michael; Bock, Christoph; Ferrer, Isidro; Paschou, Peristera; Kovacs, Gabor G

    2016-06-01

    Despite significant progress in our understanding of hereditary neurodegenerative diseases, the list of genes associated with early-onset dementia is not yet complete. In the present study, we describe a familial neurodegenerative disorder characterized clinically as the behavioral and/or dysexecutive variant of Alzheimer's disease with neuroradiologic features of Alzheimer's disease, however, lacking amyloid-β deposits in the brain. Instead, we observed a complex, 4 repeat predominant, tauopathy, together with a TAR DNA-binding protein of 43 kDa proteinopathy. Whole-exome sequencing on 2 affected siblings and 1 unaffected aunt uncovered a large number of candidate genes, including LRRK2 and SYNE2. In addition, DDI1, KRBA1, and TOR1A genes possessed novel stop-gain mutations only in the patients. Pathway, gene ontology, and network interaction analysis indicated the involvement of pathways related to neurodegeneration but revealed novel aspects also. This condition does not fit into any well-characterized category of neurodegenerative disorders. Exome sequencing did not disclose a single disease-specific gene mutation suggesting that a set of genes working together in different pathways may contribute to the etiology of the complex phenotype. PMID:27143436

  13. Gene Transfer and the Reconstruction of Life's Early History from Genomic Data

    NASA Astrophysics Data System (ADS)

    Gogarten, J. Peter; Fournier, Gregory; Zhaxybayeva, Olga

    The metaphor of the unique and strictly bifurcating tree of life, suggested by Charles Darwin, needs to be replaced (or at least amended) to reflect and include processes that lead to the merging of and communication between independent lines of descent. Gene histories include and reflect processes such as gene transfer, symbioses and lineage fusion. No single molecule can serve as a proxy for the tree of life. Individual gene histories can be reconstructed from the growing molecular databases containing sequence and structural information. With some simplifications these gene histories can be represented by furcating trees; however, merging these gene histories into web-like organismal histories, including the transfer of metabolic pathways and cell biological innovations from now-extinct lineages, has yet to be accomplished. Because of these difficulties in interpreting the record retained in molecular sequences, correlations with biochemical fossils and with the geological record need to be interpreted with caution. Advances to detect and pinpoint transfer events promise to untangle at least a few of the intertwined histories of individual genes within organisms and trace them to the organismal ancestors. Furthermore, analysis of the shape of molecular phylogenetic trees may point towards organismal radiations that might reflect early mass extinction events that occurred on a planetary scale.

  14. BIRC5 Genomic Copy Number Variation in Early-Onset Breast Cancer

    PubMed Central

    Ghaffari, Kimia; Hashemi, Mehrdad; Ebrahimi, Elmira; Shirkoohi, Reza

    2016-01-01

    Background: Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) gene is an inhibitor of apoptosis that expresses in human embryonic tissues but it is absent in most healthy adult tissues. The copy number of BIRC5 has been indicated to be highly increased in tumor tissues; however, its association with the age of onset in breast cancer is not well understood. Methods: Forty tumor tissues of breast cancer were obtained from Tumor Bank of Cancer Institute, Imam Khomeini Hospital, Tehran, Iran. BIRC5 gene copy number variation (CNV) was evaluated using Multiplex Ligation-dependent Probe Amplification (MLPA) and then compared with the age of onset for each patient. Results: BIRC5 amplification was seen in 17.5% of cases. Also, a significant association was observed between BIRC5 gene amplification and individuals under 40 years of age (P=0.04). Conclusion: BIRC5 gene has the potential to be a marker for the detection and prognosis of cancer at an early age. PMID:27372966

  15. Ethological concepts revisited: immediate early gene induction in response to sexual stimuli in birds.

    PubMed

    Ball, G F; Balthazar, J

    2001-05-01

    Courtship behaviors were interpreted by ethologists as being examples of 'sign stimuli' that would act as 'releasers' of stereotypic species-typical behaviors in conspecifics. A key component of the sign stimulus concept is that some form of stimulus filtering occurs that is responsible for the marked selective behavioral responsiveness. Studies of immediate early gene induction in the avian brain in response to conspecific stimuli associated with courtship and mating reveal that such gene induction is highly selective. In male Japanese quail (Coturnix japonica), studies of the immediate early gene c-fos or zenk have been conducted in birds engaging in both appetitive and consummatory aspects of male sexual behavior. High induction of immediate early genes occurs in hypothalamic and limbic areas such as the medial preoptic nucleus, bed nucleus striae terminalis and parts of the archistriatum in birds who had copulated and/or who had expressed a learned social proximity response, reflecting appetitive sexual behavior. Immediate early gene expression was also increased in telencephalic areas such as the hyperstriatum ventrale that presumably plays a role in the integration of sensory cues related to female recognition. In European starlings, studies of zenk induction have been conducted in females who hear male-typical courtship song. Clayton and Mello had shown that zenk is induced in the auditory telencephalon of canaries and zebra finches at high levels specifically in response to conspecific song. Immediate early genes such as fos and zenk are also expressed in song control nuclei specifically in association with song production. In starlings it was found that song was effective in rapidly inducing zenk expression in the auditory telencephalon in males and in females in the breeding as well as in the non-breeding season. Thus, the expression is not greater in females who use song to choose mates or during the breeding season when females are choosing mates

  16. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid.

    PubMed

    Ding, Haiping; Qin, Cheng; Luo, Xirong; Li, Lujiang; Chen, Zhe; Liu, Hongjun; Gao, Jian; Lin, Haijian; Shen, Yaou; Zhao, Maojun; Lübberstedt, Thomas; Zhang, Zhiming; Pan, Guangtang

    2014-08-11

    Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in

  17. Heterosis in Early Maize Ear Inflorescence Development: A Genome-Wide Transcription Analysis for Two Maize Inbred Lines and Their Hybrid

    PubMed Central

    Ding, Haiping; Qin, Cheng; Luo, Xirong; Li, Lujiang; Chen, Zhe; Liu, Hongjun; Gao, Jian; Lin, Haijian; Shen, Yaou; Zhao, Maojun; Lübberstedt, Thomas; Zhang, Zhiming; Pan, Guangtang

    2014-01-01

    Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in

  18. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes.

    PubMed

    Slamovits, Claudio H; Saldarriaga, Juan F; Larocque, Allen; Keeling, Patrick J

    2007-09-14

    The mitochondrial genome and the expression of the genes within it have evolved to be highly unusual in several lineages. Within alveolates, apicomplexans and dinoflagellates share the most reduced mitochondrial gene content on record, but differ from one another in organisation and function. To clarify how these characteristics originated, we examined mitochondrial genome form and expression in a key lineage that arose close to the divergence of apicomplexans and dinoflagellates, Oxyrrhis marina. We show that Oxyrrhis is a basal member of the dinoflagellate lineage whose mitochondrial genome has some unique characteristics while sharing others with apicomplexans or dinoflagellates. Specifically, Oxyrrhis has the smallest gene complement known, with several rRNA fragments and only two protein coding genes, cox1 and a cob-cox3 fusion. The genome appears to be highly fragmented, like that of dinoflagellates, but genes are frequently arranged as tandem copies, reminiscent of the repeating nature of the Plasmodium genome. In dinoflagellates and Oxyrrhis, genes are found in many arrangements, but the Oxyrrhis genome appears to be more structured, since neighbouring genes or gene fragments are invariably the same: cox1 and the cob-cox3 fusion were never found on the same genomic fragment. Analysing hundreds of cDNAs for both genes and circularized mRNAs from cob-cox3 showed that neither uses canonical start or stop codons, although a UAA terminator is created in the cob-cox3 fusion mRNA by post-transcriptional oligoadenylation. mRNAs from both genes also use a novel 5' oligo(U) cap. Extensive RNA editing is characteristic of dinoflagellates, but we find no editing in Oxyrrhis. Overall, the combination of characteristics found in the Oxyrrhis genome allows us to plot the sequence of many events that led to the extreme organisation of apicomplexan and dinoflalgellate mitochondrial genomes.

  19. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia.

  20. Causal effects of the early caregiving environment on development of stress response systems in children

    PubMed Central

    McLaughlin, Katie A.; Sheridan, Margaret A.; Tibu, Florin; Fox, Nathan A.; Zeanah, Charles H.; Nelson, Charles A.

    2015-01-01

    Disruptions in stress response system functioning are thought to be a central mechanism by which exposure to adverse early-life environments influences human development. Although early-life adversity results in hyperreactivity of the sympathetic nervous system (SNS) and hypothalamic–pituitary–adrenal (HPA) axis in rodents, evidence from human studies is inconsistent. We present results from the Bucharest Early Intervention Project examining whether randomized placement into a family caregiving environment alters development of the autonomic nervous system and HPA axis in children exposed to early-life deprivation associated with institutional rearing. Electrocardiogram, impedance cardiograph, and neuroendocrine data were collected during laboratory-based challenge tasks from children (mean age = 12.9 y) raised in deprived institutional settings in Romania randomized to a high-quality foster care intervention (n = 48) or to remain in care as usual (n = 43) and a sample of typically developing Romanian children (n = 47). Children who remained in institutional care exhibited significantly blunted SNS and HPA axis responses to psychosocial stress compared with children randomized to foster care, whose stress responses approximated those of typically developing children. Intervention effects were evident for cortisol and parasympathetic nervous system reactivity only among children placed in foster care before age 24 and 18 months, respectively, providing experimental evidence of a sensitive period in humans during which the environment is particularly likely to alter stress response system development. We provide evidence for a causal link between the early caregiving environment and stress response system reactivity in humans with effects that differ markedly from those observed in rodent models. PMID:25902515

  1. Genome-Wide Study of the Adaptation of Saccharomyces cerevisiae to the Early Stages of Wine Fermentation

    PubMed Central

    Novo, Maite; Mangado, Ana; Quirós, Manuel; Morales, Pilar; Salvadó, Zoel; Gonzalez, Ramon

    2013-01-01

    This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative) stages of the fermentation process. Finally, we found adenine and lysine

  2. Coordinate regulation of two cytoplasmic RNA species transcribed from early region 2 of the adenovirus 2 genome.

    PubMed

    Goldenberg, C J; Rosenthal, R; Bhaduri, S; Raskas, H

    1981-06-01

    Early region 2 (E2) of the adenovirus 2 genome specifies a 72,000-dalton DNA-binding protein that is required for viral DNA replication. Electron microscopy studies have detected two major forms of 20S E2 mRNA, one species with a 5' leader from map position 75 and a second form having a leader from position 72 (Chow et al., J. Mol. Biol. 134:265-303, 1979). Only the species with a leader from position 75 was detected at early times; however, both forms were found at late times. We have analyzed the temporal regulation of E2 expression by documenting mRNA accumulation in the cytoplasm. Kinetic studies of pulse-labeled RNAs demonstrated a peak of E2 cytoplasmic RNa synthesis at 10 to 12 h, coinciding with the time of maximal synthesis of the 72,000-dalton DNA binding protein and viral DNA. To estimate the relative abundances of the two major E2 RNA species at various times during infection, total E2 cytoplasmic and polysomal 20S RNAs were isolated by hybridization-selection with specific DNA probes. The leader sequences in the selected RNAs were then quantitated by further RNA-DNA hybridization. We found that the elevated accumulation rate for E2 cytoplasmic RNA at late times reflected an increase in formation of both major species. Moreover, for all time points examined 66% of the mRNA species had a 5' end from map position 75, and 33% had a 5' terminus from position 72. Continuous labeling experiments provided evidence that both RNA forms have comparable half-lives. The results suggest that the two major species encoded by E2 are regulated in a coordinate fashion late in infection.

  3. Genomic responses to hepatitis B virus (HBV) infection in primary human hepatocytes

    PubMed Central

    Ancey, Pierre-Benoit; Testoni, Barbara; Gruffaz, Marion; Cros, Marie-Pierre; Durand, Geoffroy; Le Calvez-Kelm, Florence; Durantel, David; Herceg, Zdenko; Hernandez-Vargas, Hector

    2015-01-01

    Viral infections are able to modify the host's cellular programs, with DNA methylation being a biological intermediate in this process. The extent to which viral infections deregulate gene expression and DNA methylation is not fully understood. In the case of Hepatitis B virus (HBV), there is evidence for an interaction between viral proteins and the host DNA methylation machinery. We studied the ability of HBV to modify the host transcriptome and methylome, using naturally infected primary human hepatocytes to better mimic the clinical setting. Gene expression was especially sensitive to culture conditions, independently of HBV infection. However, we identified non-random changes in gene expression and DNA methylation occurring specifically upon HBV infection. There was little correlation between expression and methylation changes, with transcriptome being a more sensitive marker of time-dependent changes induced by HBV. In contrast, a set of differentially methylated sites appeared early and were stable across the time course experiment. Finally, HBV-induced DNA methylation changes were defined by a specific chromatin context characterized by CpG-poor regions outside of gene promoters. These data support the ability of HBV to modulate host cell expression and methylation programs. In addition, it may serve as a reference for studies addressing the genome-wide consequences of HBV infection in human hepatocytes. PMID:26565721

  4. Genomic responses to hepatitis B virus (HBV) infection in primary human hepatocytes.

    PubMed

    Ancey, Pierre-Benoit; Testoni, Barbara; Gruffaz, Marion; Cros, Marie-Pierre; Durand, Geoffroy; Le Calvez-Kelm, Florence; Durantel, David; Herceg, Zdenko; Hernandez-Vargas, Hector

    2015-12-29

    Viral infections are able to modify the host's cellular programs, with DNA methylation being a biological intermediate in this process. The extent to which viral infections deregulate gene expression and DNA methylation is not fully understood. In the case of Hepatitis B virus (HBV), there is evidence for an interaction between viral proteins and the host DNA methylation machinery. We studied the ability of HBV to modify the host transcriptome and methylome, using naturally infected primary human hepatocytes to better mimic the clinical setting.Gene expression was especially sensitive to culture conditions, independently of HBV infection. However, we identified non-random changes in gene expression and DNA methylation occurring specifically upon HBV infection. There was little correlation between expression and methylation changes, with transcriptome being a more sensitive marker of time-dependent changes induced by HBV. In contrast, a set of differentially methylated sites appeared early and were stable across the time course experiment. Finally, HBV-induced DNA methylation changes were defined by a specific chromatin context characterized by CpG-poor regions outside of gene promoters.These data support the ability of HBV to modulate host cell expression and methylation programs. In addition, it may serve as a reference for studies addressing the genome-wide consequences of HBV infection in human hepatocytes.

  5. Reduced anticipatory dopamine responses to food in rats exposed to high fat during early development.

    PubMed

    Naef, L; Moquin, L; Gratton, A; Walker, C-D

    2013-06-01

    We have previously demonstrated that exposure to high fat (HF) during early development alters the presynaptic regulation of mesolimbic dopamine (DA), and increases incentive motivation for HF food rewards. The goal of the present experiments was to examine the long-term consequences of early exposure to HF on anticipatory and consumatory nucleus accumbens (NAc) DA responses to HF food rewards. Mothers were maintained on a HF (30% fat) or control diet (CD; 5% fat) from gestation day 13 to postnatal day 22 when offspring from both diet groups were weaned and maintained on the CD until adulthood. In vivo NAc DA responses to food anticipation and consumption were measured in a Pavlovian conditioning paradigm using voltammetry in freely moving rats. HF-exposed offspring displayed reduced NAc DA responses to a tone previously paired with the delivery of HF food rewards. In an unconditioned protocol, consumatory NAc DA responses could be isolated, and were similar in HF and control offspring. These data demonstrate that exposure to HF through maternal diet during early development might program behavioral and functional responses associated with mesolimbic DA neurotransmission, thus leading to an increased HF feeding and obesity.

  6. Cell-Type Specific Responses to DNA Replication Stress in Early C. elegans Embryos

    PubMed Central

    Stevens, Holly; Williams, Ashley B.

    2016-01-01

    To better understand how the cellular response to DNA replication stress is regulated during embryonic development, we and others have established the early C. elegans embryo as a model system to study this important problem. As is the case in most eukaryotic cell types, the replication stress response is controlled by the ATR kinase in early worm embryos. In this report we use RNAi to systematically characterize ATR pathway components for roles in promoting cell cycle delay during a replication stress response, and we find that these genetic requirements vary, depending on the source of stress. We also examine how individual cell types within the embryo respond to replication stress, and we find that the strength of the response, as defined by duration of cell cycle delay, varies dramatically within blastomeres of the early embryo. Our studies shed light on how the replication stress response is managed in the context of embryonic development and show that this pathway is subject to developmental regulation. PMID:27727303

  7. Whole-genome expression analysis reveals genes associated with treatment response to escitalopram in major depression.

    PubMed

    Pettai, Kristi; Milani, Lili; Tammiste, Anu; Võsa, Urmo; Kolde, Raivo; Eller, Triin; Nutt, David; Metspalu, Andres; Maron, Eduard

    2016-09-01

    The reasons for variability in treatment response in major depressive disorder (MDD) are not fully understood, but there is accumulating evidence suggesting that therapeutic outcomes of antidepressants can be influenced by genetic factors. In the present study we applied the microarray Illumina platform for whole genome expression profiling in depressive patients treated with escitalopram medication in order to identify genes underlying response to antidepressant treatment. The initial study sample consisted of 135 outpatients with major depressive disorder (mean age 31.1±11.6 years, 68% females) treated with escitalopram 10-20mg/day for 12 weeks, from which 87 patients (55 females) were included in gene expression analyzing. The gene expression profiles were measured on peripheral blood cells at baseline, at week 4 and at the end of treatment (week 12) using BeadChips Illumina. The fold change was used to demonstrate rate of changes in average gene expressions between studied groups. Statistical analyses were performed using the false discovery rate (FDR). The most interesting gene, which showed the predictive effect on treatment outcome by delineating low dose responders and treatment-resistant patients at the beginning of medication, was NLGN2, belonging to a family of neuronal cell surface proteins and involving in synapse formation. In addition, the several gene clusters, related to immune response, signal transduction and neurotrophin pathway, have distinguished responders from non-responders at the week 4 of treatment. After 4 weeks of escitalopram treatment (10mg/day), the YWHAZ gene has showed the highest transcriptional change in responders as compared with non-responders. Finally, at the end of the treatment we noticed that at least three genes (NR2C2, ZNF641, FKBP1A) have been strongly associated with resistance to escitalopram. Thus the results of this study support that exploration of peripheral gene expression is a useful tool in the further

  8. The Impact of HIV Co-Infection on the Genomic Response to Sepsis.

    PubMed

    Huson, Michaëla A M; Scicluna, Brendon P; van Vught, Lonneke A; Wiewel, Maryse A; Hoogendijk, Arie J; Cremer, Olaf L; Bonten, Marc J M; Schultz, Marcus J; Franitza, Marek; Toliat, Mohammad R; Nürnberg, Peter; Grobusch, Martin P; van der Poll, Tom

    2016-01-01

    HIV patients have an increased risk to develop sepsis and HIV infection affects several components of the immune system involved in sepsis pathogenesis. We hypothesized that HIV infection might aggrevate the aberrant immune response during sepsis, so we aimed to determine the impact of HIV infection on the genomic host response to sepsis. We compared whole blood leukocyte gene expression profiles among sepsis patients with or without HIV co-infection in the intensive care unit (ICU) and validated our findings in a cohort of patients admitted to the same ICUs in a different time frame. To examine the influence of HIV infection per se, we also determined the expression of genes of interest in a cohort of asymptomatic HIV patients. We identified a predominantly common host response in sepsis patients with or without HIV co-infection. HIV positive sepsis patients in both ICU cohorts showed overexpression of genes involved in granzyme signaling (GZMA, GZMB), cytotoxic T-cell signaling (CD8A, CD8B) and T-cell inhibitory signaling (LAG3), compared to HIV negative patients. Enhanced expression of CD8A, CD8B and LAG3 was also unmasked in asymptomatic HIV patients. Plasma levels of granzymes in sepsis patients were largely below detection limit, without differences according to HIV status. These results demonstrate that sepsis is characterized by a massive common response with few differences between HIV positive and HIV negative sepsis patients. Observed differences in granzyme signaling, cytotoxic T-cell signaling and T-cell inhibitory signaling appear to be changes commonly observed in asymptomatic HIV patients which persist during sepsis.

  9. The Impact of HIV Co-Infection on the Genomic Response to Sepsis

    PubMed Central

    Huson, Michaëla A. M.; Scicluna, Brendon P.; van Vught, Lonneke A.; Wiewel, Maryse A.; Hoogendijk, Arie J.; Cremer, Olaf L.; Bonten, Marc J. M.; Schultz, Marcus J.; Franitza, Marek; Toliat, Mohammad R.; Nürnberg, Peter; Grobusch, Martin P.; van der Poll, Tom

    2016-01-01

    HIV patients have an increased risk to develop sepsis and HIV infection affects several components of the immune system involved in sepsis pathogenesis. We hypothesized that HIV infection might aggrevate the aberrant immune response during sepsis, so we aimed to determine the impact of HIV infection on the genomic host response to sepsis. We compared whole blood leukocyte gene expression profiles among sepsis patients with or without HIV co-infection in the intensive care unit (ICU) and validated our findings in a cohort of patients admitted to the same ICUs in a different time frame. To examine the influence of HIV infection per se, we also determined the expression of genes of interest in a cohort of asymptomatic HIV patients. We identified a predominantly common host response in sepsis patients with or without HIV co-infection. HIV positive sepsis patients in both ICU cohorts showed overexpression of genes involved in granzyme signaling (GZMA, GZMB), cytotoxic T-cell signaling (CD8A, CD8B) and T-cell inhibitory signaling (LAG3), compared to HIV negative patients. Enhanced expression of CD8A, CD8B and LAG3 was also unmasked in asymptomatic HIV patients. Plasma levels of granzymes in sepsis patients were largely below detection limit, without differences according to HIV status. These results demonstrate that sepsis is characterized by a massive common response with few differences between HIV positive and HIV negative sepsis patients. Observed differences in granzyme signaling, cytotoxic T-cell signaling and T-cell inhibitory signaling appear to be changes commonly observed in asymptomatic HIV patients which persist during sepsis. PMID:26871709

  10. Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis.

    PubMed

    Ma, Zhengang; Li, Chunfeng; Pan, Guoqing; Li, Zhihong; Han, Bing; Xu, Jinshan; Lan, Xiqian; Chen, Jie; Yang, Donglin; Chen, Quanmei; Sang, Qi; Ji, Xiaocun; Li, Tian; Long, Mengxian; Zhou, Zeyang

    2013-01-01

    Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for

  11. Genome-Wide Transcriptional Response of Silkworm (Bombyx mori) to Infection by the Microsporidian Nosema bombycis

    PubMed Central

    Pan, Guoqing; Li, Zhihong; Han, Bing; Xu, Jinshan; Lan, Xiqian; Chen, Jie; Yang, Donglin; Chen, Quanmei; Sang, Qi; Ji, Xiaocun; Li, Tian; Long, Mengxian; Zhou, Zeyang

    2013-01-01

    Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for

  12. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency

    PubMed Central

    2012-01-01

    Background Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. Results A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. Conclusions The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency. PMID:22433273

  13. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.

    PubMed

    Chandran, Anil Kumar Nalini; Priatama, Ryza A; Kumar, Vikranth; Xuan, Yuanhu; Je, Byoung Il; Kim, Chul Min; Jung, Ki-Hong; Han, Chang-Deok

    2016-08-01

    Nitrogen (N) is the most important macronutrient for plant growth and grain yields. For rice crops, nitrate and ammonium are the major N sources. To explore the genomic responses to ammonium supplements in rice roots, we used 17-day-old seedlings grown in the absence of external N that were then exposed to 0.5mM (NH4)2SO4 for 3h. Transcriptomic profiles were examined by microarray experiments. In all, 634 genes were up-regulated at least two-fold by the N-supplement when compared with expression in roots from untreated control plants. Gene Ontology (GO) enrichment analysis revealed that those upregulated genes are associated with 23 GO terms. Among them, metabolic processes for diverse amino acids (i.e., aspartate, threonine, tryptophan, glutamine, l-phenylalanine, and thiamin) as well as nitrogen compounds are highly over-represented, demonstrating that our selected genes are suitable for studying the N-response in roots. This enrichment analysis also indicated that nitrogen is closely linked to diverse transporter activities by primary metabolites, including proteins (amino acids), lipids, and carbohydrates, and is associated with carbohydrate catabolism and cell wall organization. Integration of results from omics analysis of metabolic pathways and transcriptome data using the MapMan tool suggested that the TCA cycle and pathway for mitochondrial electron transport are co-regulated when rice roots are exposed to ammonium. We also investigated the expression of N-responsive marker genes by performing a comparative analysis with root samples from plants grown under different NH4(+) treatments. The diverse responses to such treatment provide useful insight into the global changes related to the shift from an N-deficiency to an enhanced N-supply in rice, a model crop plant. PMID:27340859

  14. Whole-genome expression analysis reveals genes associated with treatment response to escitalopram in major depression.

    PubMed

    Pettai, Kristi; Milani, Lili; Tammiste, Anu; Võsa, Urmo; Kolde, Raivo; Eller, Triin; Nutt, David; Metspalu, Andres; Maron, Eduard

    2016-09-01

    The reasons for variability in treatment response in major depressive disorder (MDD) are not fully understood, but there is accumulating evidence suggesting that therapeutic outcomes of antidepressants can be influenced by genetic factors. In the present study we applied the microarray Illumina platform for whole genome expression profiling in depressive patients treated with escitalopram medication in order to identify genes underlying response to antidepressant treatment. The initial study sample consisted of 135 outpatients with major depressive disorder (mean age 31.1±11.6 years, 68% females) treated with escitalopram 10-20mg/day for 12 weeks, from which 87 patients (55 females) were included in gene expression analyzing. The gene expression profiles were measured on peripheral blood cells at baseline, at week 4 and at the end of treatment (week 12) using BeadChips Illumina. The fold change was used to demonstrate rate of changes in average gene expressions between studied groups. Statistical analyses were performed using the false discovery rate (FDR). The most interesting gene, which showed the predictive effect on treatment outcome by delineating low dose responders and treatment-resistant patients at the beginning of medication, was NLGN2, belonging to a family of neuronal cell surface proteins and involving in synapse formation. In addition, the several gene clusters, related to immune response, signal transduction and neurotrophin pathway, have distinguished responders from non-responders at the week 4 of treatment. After 4 weeks of escitalopram treatment (10mg/day), the YWHAZ gene has showed the highest transcriptional change in responders as compared with non-responders. Finally, at the end of the treatment we noticed that at least three genes (NR2C2, ZNF641, FKBP1A) have been strongly associated with resistance to escitalopram. Thus the results of this study support that exploration of peripheral gene expression is a useful tool in the further

  15. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish.

    PubMed

    Yoo, Sa Kan; Freisinger, Christina M; LeBert, Danny C; Huttenlocher, Anna

    2012-10-15

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.

  16. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish

    PubMed Central

    Yoo, Sa Kan; Freisinger, Christina M.; LeBert, Danny C.

    2012-01-01

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H2O2 at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H2O2. A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration. PMID:23045550

  17. Genome wide expression profiling of two accession of G. herbaceum L. in response to drought

    PubMed Central

    2012-01-01

    Background Genome-wide gene expression profiling and detailed physiological investigation were used for understanding the molecular mechanism and physiological response of Gossypium herbaceum, which governs the adaptability of plants in drought conditions. Recently, microarray-based gene expression analysis is commonly used to decipher genes and genetic networks controlling the traits of interest. However, the results of such an analysis are often plagued due to a limited number of genes (probe sets) on microarrays. On the other hand, pyrosequencing of a transcriptome has the potential to detect rare as well as a large number of transcripts in the samples quantitatively. We used Affymetrix microarray as well as Roche's GS-FLX transcriptome sequencing for a comparative analysis of cotton transcriptome in leaf tissues under drought conditions. Results Fourteen accessions of Gossypium herbaceum were subjected to mannitol stress for preliminary screening; two accessions, namely Vagad and RAHS-14, were selected as being the most tolerant and most sensitive to osmotic stress, respectively. Affymetrix cotton arrays containing 24,045 probe sets and Roche's GS-FLX transcriptome sequencing of leaf tissue were used to analyze the gene expression profiling of Vagad and RAHS-14 under drought conditions. The analysis of physiological measurements and gene expression profiling showed that Vagad has the inherent ability to sense drought at a much earlier stage and to respond to it in a much more efficient manner than does RAHS-14. Gene Ontology (GO) studies showed that the phenyl propanoid pathway, pigment biosynthesis, polyketide biosynthesis, and other secondary metabolite pathways were enriched in Vagad under control and drought conditions as compared with RAHS-14. Similarly, GO analysis of transcriptome sequencing showed that the GO terms responses to various abiotic stresses were significantly higher in Vagad. Among the classes of transcription factors (TFs) uniquely

  18. Tris(1,3-dichloro-2-propyl)phosphate Induces Genome-Wide Hypomethylation within Early Zebrafish Embryos

    PubMed Central

    2016-01-01

    Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production volume organophosphate-based plasticizer and flame retardant widely used within the United States. Using zebrafish as a model, the objectives of this study were to determine whether (1) TDCIPP inhibits DNA methyltransferase (DNMT) within embryonic nuclear extracts; (2) uptake of TDCIPP from 0.75 h postfertilization (hpf, 2-cell) to 2 hpf (64-cell) or 6 hpf (shield stage) leads to impacts on the early embryonic DNA methylome; and (3) TDCIPP-induced impacts on cytosine methylation are localized to CpG islands within intergenic regions. Within this study, 5-azacytidine (5-azaC, a DNMT inhibitor) was used as a positive control. Although 5-azaC significantly inhibited zebrafish DNMT, TDCIPP did not affect DNMT activity in vitro at concentrations as high as 500 μM. However, rapid embryonic uptake of 5-azaC and TDCIPP from 0.75 to 2 hpf resulted in chemical- and chromosome-specific alterations in cytosine methylation at 2 hpf. Moreover, TDCIPP exposure predominantly resulted in hypomethylation of positions outside of CpG islands and within intragenic (exon) regions of the zebrafish genome. Overall, these findings provide the foundation for monitoring DNA methylation dynamics within zebrafish as well as identifying potential associations among TDCIPP exposure, adverse health outcomes, and DNA methylation status within human populations. PMID:27574916

  19. Early COPD patients with lung hyperinflation associated with poorer lung function but better bronchodilator responsiveness

    PubMed Central

    Chen, Chunlan; Jian, Wenhua; Gao, Yi; Xie, Yanqing; Song, Yan; Zheng, Jinping

    2016-01-01

    Background It is unknown whether aggressive medication strategies should be used for early COPD with or without lung hyperinflation. We aimed to explore the characteristics and bronchodilator responsiveness of early COPD patients (stages I and II) with/without lung hyperinflation. Methods Four hundred and six patients with COPD who performed both lung volume and bronchodilation tests were retrospectively analyzed. Residual volume to total lung capacity >120% of predicted values indicated lung hyperinflation. The characteristics and bronchodilator responsiveness were compared between the patients with and without lung hyperinflation across all stages of COPD. Results The percentages of patients with lung hyperinflation were 72.7% in the entire cohort, 19.4% in stage I, 68.5% in stage II, 95.3% in stage III, and 100.0% in stage IV. The patients with lung hyperinflation exhibited poorer lung function but better bronchodilator responsiveness of both forced expiratory volume in 1 second and forced vital capacity than those without lung hyperinflation during early COPD (t=2.21–5.70, P=0.000–0.029), especially in stage I, while age, body mass index, smoking status, smoking history, and disease duration were similar between the two subgroups in the same stages. From stages I to IV of subgroups with lung hyperinflation, stage I patients had the best bronchodilator responsiveness. Use of bronchodilator responsiveness of forced vital capacity to detect the presence of lung hyperinflation in COPD patients showed relatively high sensitivities (69.5%–75.3%) and specificities (70.3%–75.7%). Conclusion We demonstrated the novel finding that early COPD patients with lung hyperinflation are associated with poorer lung function but better bronchodilator responsiveness and established a simple method for detecting lung hyperinflation. PMID:27785008

  20. USF-1 Is Critical for Maintaining Genome Integrity in Response to UV-Induced DNA Photolesions

    PubMed Central

    Mouchet, Nicolas; Vaulont, Sophie; Prince, Sharon; Galibert, Marie-Dominique

    2012-01-01

    An important function of all organisms is to ensure that their genetic material remains intact and unaltered through generations. This is an extremely challenging task since the cell's DNA is constantly under assault by endogenous and environmental agents. To protect against this, cells have evolved effective mechanisms to recognize DNA damage, signal its presence, and mediate its repair. While these responses are expected to be highly regulated because they are critical to avoid human diseases, very little is known about the regulation of the expression of genes involved in mediating their effects. The Nucleotide Excision Repair (NER) is the major DNA–repair process involved in the recognition and removal of UV-mediated DNA damage. Here we use a combination of in vitro and in vivo assays with an intermittent UV-irradiation protocol to investigate the regulation of key players in the DNA–damage recognition step of NER sub-pathways (TCR and GGR). We show an up-regulation in gene expression of CSA and HR23A, which are involved in TCR and GGR, respectively. Importantly, we show that this occurs through a p53 independent mechanism and that it is coordinated by the stress-responsive transcription factor USF-1. Furthermore, using a mouse model we show that the loss of USF-1 compromises DNA repair, which suggests that USF-1 plays an important role in maintaining genomic stability. PMID:22291606

  1. Regularization Method for Predicting an Ordinal Response Using Longitudinal High-dimensional Genomic Data

    PubMed Central

    Hou, Jiayi

    2015-01-01

    An ordinal scale is commonly used to measure health status and disease related outcomes in hospital settings as well as in translational medical research. In addition, repeated measurements are common in clinical practice for tracking and monitoring the progression of complex diseases. Classical methodology based on statistical inference, in particular, ordinal modeling has contributed to the analysis of data in which the response categories are ordered and the number of covariates (p) remains smaller than the sample size (n). With the emergence of genomic technologies being increasingly applied for more accurate diagnosis and prognosis, high-dimensional data where the number of covariates (p) is much larger than the number of samples (n), are generated. To meet the emerging needs, we introduce our proposed model which is a two-stage algorithm: Extend the Generalized Monotone Incremental Forward Stagewise (GMIFS) method to the cumulative logit ordinal model; and combine the GMIFS procedure with the classical mixed-effects model for classifying disease status in disease progression along with time. We demonstrate the efficiency and accuracy of the proposed models in classification using a time-course microarray dataset collected from the Inflammation and the Host Response to Injury study. PMID:25720102

  2. Inherited adaptation of genome-rewired cells in response to a challenging environment

    PubMed Central

    David, Lior; Stolovicki, Elad; Haziz, Efrat; Braun, Erez

    2010-01-01

    Despite their evolutionary significance, little is known about the adaptation dynamics of genomically rewired cells in evolution. We have confronted yeast cells carrying a rewired regulatory circuit with a severe and unforeseen challenge. The essential HIS3 gene from the histidine biosynthesis pathway was placed under the exclusive regulation of the galactose utilization system. Glucose containing medium strongly represses the GAL genes including HIS3 and these rewired cells are required to operate this essential gene. We show here that although there were no adapted cells prior to the encounter with glucose, a large fraction of cells adapted to grow in this medium and this adaptation was stably inherited. The adaptation relied on individual cells that switched into an adapted state and, thus, the adaptation was due to a response of many individual cells to the change in environment and not due to selection of rare advantageous phenotypes. The adaptation of numerous individual cells by heritable phenotypic switching in response to a challenge extends the common evolutionary framework and attests to the adaptive potential of regulatory circuits. PMID:20811567

  3. Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.

    PubMed

    Kim, Jinho; Jeong, Yong

    2013-01-01

    Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.

  4. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver.

    PubMed

    Chorley, Brian; Ward, William; Simmons, Steven O; Vallanat, Beena; Veronesi, Bellina

    2014-12-01

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.

  5. Genome-wide linkage using the Social Responsiveness Scale in Utah autism pedigrees

    PubMed Central

    2010-01-01

    Background Autism Spectrum Disorders (ASD) are phenotypically heterogeneous, characterized by impairments in the development of communication and social behaviour and the presence of repetitive behaviour and restricted interests. Dissecting the genetic complexity of ASD may require phenotypic data reflecting more detail than is offered by a categorical clinical diagnosis. Such data are available from the Social Responsiveness Scale (SRS) which is a continuous, quantitative measure of social ability giving scores that range from significant impairment to above average ability. Methods We present genome-wide results for 64 multiplex and extended families ranging from two to nine generations. SRS scores were available from 518 genotyped pedigree subjects, including affected and unaffected relatives. Genotypes from the Illumina 6 k single nucleotide polymorphism panel were provided by the Center for Inherited Disease Research. Quantitative and qualitative analyses were done using MCLINK, a software package that uses Markov chain Monte Carlo (MCMC) methods to perform multilocus linkage analysis on large extended pedigrees. Results When analysed as a qualitative trait, linkage occurred in the same locations as in our previous affected-only genome scan of these families, with findings on chromosomes 7q31.1-q32.3 [heterogeneity logarithm of the odds (HLOD) = 2.91], 15q13.3 (HLOD = 3.64), and 13q12.3 (HLOD = 2.23). Additional positive qualitative results were seen on chromosomes 6 and 10 in regions that may be of interest for other neuropsychiatric disorders. When analysed as a quantitative trait, results replicated a peak found in an independent sample using quantitative SRS scores on chromosome 11p15.1-p15.4 (HLOD = 2.77). Additional positive quantitative results were seen on chromosomes 7, 9, and 19. Conclusions The SRS linkage peaks reported here substantially overlap with peaks found in our previous affected-only genome scan of clinical diagnosis. In addition, we

  6. Genomic structure and immunological response of an STAT4 family member from rock bream (Oplegnathus fasciatus).

    PubMed

    Premachandra, H K A; Elvitigala, Don Anushka Sandaruwan; Bathige, S D N K; Whang, Ilson; Lee, Youngdeuk; De Zoysa, Mahanama; Lee, Jehee

    2013-12-01

    The Janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway plays a critical role in host defense against viral and bacterial infections. STAT proteins are a group of transcription factors that translocate into the nucleus and are critical for the induction of many genes crucial for the allergic cascade and immune defense. In the present study, a member of the STAT4 family was identified from rock bream (RbSTAT4) at the genomic level, and its transcriptional regulation in response to different pathological stimuli under in vivo conditions was investigated. The genomic sequence of RbSTAT4 is approximately 15.6 kb in length, including a putative core promoter region and 24 exons interrupted by 23 introns. Bioinformatics analysis of RbSTAT4 identified the presence of typical and conserved features of the STAT4 family, including the STAT_int domain, STAT alpha domain, STAT bind domain, linker domain, SH2 domain, and transcriptional activation domain. According to the phylogenetic analysis, RbSTAT4 exhibited the closest evolutionary proximity with the STAT4 member from mandarin fish (Siniperca chuatsi). The RbSTAT4 transcript in healthy rock breams was detected to have ubiquitous expression in 11 different tissues examined, where liver and spleen tissues showed moderate expressions compared with the highest expression level detected in gill tissue. The time-course in vivo immune stimulation of rock bream with lipopolysaccharide, poly I:C, live Edwardsiella tarda, and rock bream iridovirus caused significant transcriptional regulation of the RbSTAT4 expression in gill, head kidney, and spleen tissues, suggesting that RbSTAT4 is involved in immune regulation mechanisms and/or signaling cascades, orchestrating against both bacterial and viral pathogens.

  7. ARTEMIS stabilizes the genome and modulates proliferative responses in multipotent mesenchymal cells

    PubMed Central

    2010-01-01

    Background Unrepaired DNA double-stranded breaks (DSBs) cause chromosomal rearrangements, loss of genetic information, neoplastic transformation or cell death. The nonhomologous end joining (NHEJ) pathway, catalyzing sequence-independent direct rejoining of DSBs, is a crucial mechanism for repairing both stochastically occurring and developmentally programmed DSBs. In lymphocytes, NHEJ is critical for both development and genome stability. NHEJ defects lead to severe combined immunodeficiency (SCID) and lymphoid cancer predisposition in both mice and humans. While NHEJ has been thoroughly investigated in lymphocytes, the importance of NHEJ in other cell types, especially with regard to tumor suppression, is less well documented. We previously reported evidence that the NHEJ pathway functions to suppress a range of nonlymphoid tumor types, including various classes of sarcomas, by unknown mechanisms. Results Here we investigate roles for the NHEJ factor ARTEMIS in multipotent mesenchymal stem/progenitor cells (MSCs), as putative sarcomagenic cells of origin. We demonstrate a key role for ARTEMIS in sarcoma suppression in a sensitized mouse tumor model. In this context, we found that ARTEMIS deficiency led to chromosomal damage but, paradoxically, enhanced resistance and proliferative potential in primary MSCs subjected to various stresses. Gene expression analysis revealed abnormally regulated stress response, cell proliferation, and signal transduction pathways in ARTEMIS-defective MSCs. Finally, we identified candidate regulatory genes that may, in part, mediate a stress-resistant, hyperproliferative phenotype in preneoplastic ARTEMIS-deficient MSCs. Conclusions Our discoveries suggest that Art prevents genome damage and restrains proliferation in MSCs exposed to various stress stimuli. We propose that deficiency leads to a preneoplastic state in primary MSCs and is associated with aberrant proliferative control and cellular stress resistance. Thus, our data

  8. Using physiology and behaviour to understand the responses of fish early life stages to toxicants.

    PubMed

    Sloman, K A; McNeil, P L

    2012-12-01

    The use of early life stages of fishes (embryos and larvae) in toxicity testing has been in existence for a long time, generally utilizing endpoints such as morphological defects and mortality. Behavioural endpoints, however, may represent a more insightful evaluation of the ecological effects of toxicants. Indeed, recent years have seen a considerable increase in the use of behavioural measurements in early life stages reflecting a substantial rise in zebrafish Danio rerio early life-stage toxicity testing and the development of automated behavioural monitoring systems. Current behavioural endpoints identified for early life stages in response to toxicant exposure include spontaneous activity, predator avoidance, capture of live food, shoaling ability and interaction with other individuals. Less frequently used endpoints include measurement of anxiogenic behaviours and cognitive ability, both of which are suggested here as future indicators of toxicant disruption. For many simple behavioural endpoints, there is still a need to link behavioural effects with ecological relevance; currently, only a limited number of studies have addressed this issue. Understanding the physiological mechanisms that underlie toxicant effects on behaviour so early in life has received far less attention, perhaps because physiological measurements can be difficult to carry out on individuals of this size. The most commonly established physiological links with behavioural disruption in early life stages are similar to those seen in juveniles and adults including sensory deprivation (olfaction, lateral line and vision), altered neurogenesis and neurotransmitter concentrations. This review highlights the importance of understanding the integrated behavioural and physiological response of early life stages to toxicants and identifies knowledge gaps which present exciting areas for future research.

  9. Genomic copy number imbalances associated with bone and non-bone metastasis of early-stage breast cancer.

    PubMed

    Liu, Yanhong; Zhou, Renke; Baumbusch, Lars O; Tsavachidis, Spyros; Brewster, Abenaa M; Do, Kim-Anh; Sahin, Aysegul; Hortobagyi, Gabriel N; Taube, Joseph H; Mani, Sendurai A; Aarøe, Jørgen; Wärnberg, Fredrik; Børresen-Dale, Anne-Lise; Mills, Gordon B; Thompson, Patricia A; Bondy, Melissa L

    2014-01-01

    The aim of this study is to identify and validate copy number aberrations in early-stage primary breast tumors associated with bone or non-bone metastasis. Whole-genome molecular inversion probe arrays were used to evaluate copy number imbalances (CNIs) in breast tumors from 960 early-stage patients with information about site of metastasis. The CoxBoost algorithm was used to select metastasis site-related CNIs and to fit a Cox proportional hazards model. Gains at 1q41 and 1q42.12 and losses at 1p13.3, 8p22, and Xp11.3 were significantly associated with bone metastasis. Gains at 2p11.2, 3q21.3-22.2, 3q27.1, 10q23.1, and 14q13.2-3 and loss at 7q21.11 were associated with non-bone metastasis. To examine the joint effect of CNIs and clinical predictors, patients were stratified into three risk groups (low, intermediate, and high) based on the sum of predicted linear hazard ratios. For bone metastasis, the hazard (95 % confidence interval) for the low-risk group was 0.32 (0.11-0.92) compared to the intermediate-risk group and 2.99 (1.74-5.11) for the high-risk group. For non-bone metastasis, the hazard for the low-risk group was 0.34 (0.17-0.66) and 2.33 (1.59-3.43) for the high-risk group. The prognostic value of loss at 8p22 for bone metastasis and gains at 10q23.1 for non-bone metastasis, and gain at 11q13.5 for both bone and non-bone metastases were externally validated in 335 breast tumors pooled from four independent cohorts. Distinct CNIs are independently associated with bone and non-bone metastasis for early-stage breast cancer patients across cohorts. These data warrant consideration for tailoring surveillance and management of metastasis risk.

  10. Mitochondrial response to oxidative and nitrosative stress in early stages of diabetes.

    PubMed

    Noriega-Cisneros, Ruth; Cortés-Rojo, Christian; Manzo-Avalos, Salvador; Clemente-Guerrero, Mónica; Calderón-Cortés, Elizabeth; Salgado-Garciglia, Rafael; Montoya-Pérez, Rocío; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2013-11-01

    Diabetes mellitus (DM) is associated with increased production of reactive oxygen and nitrogen species; consequently, an increase in lipid peroxidation and a decrease in antioxidants resulting in mitochondrial dysfunction. Using a rat model of DM induced by streptozotocin, we show the opposite: an increase in NO levels, S-nitrosylation, aconitase activity, and total glutathione and a decrease in lipid peroxidation at early stages of diabetes. These data imply that the decrease in lipid peroxidation is a vital early response to hyperglycemia to prevent escalation of ROS generation in mitochondria. These results also suggest a need for novel therapeutic targets to prevent the neurological consequences of diabetes.

  11. The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD)

    PubMed Central

    Terragna, Carolina; Remondini, Daniel; Martello, Marina; Zamagni, Elena; Pantani, Lucia; Patriarca, Francesca; Pezzi, Annalisa; Levi, Giuseppe; Offidani, Massimo; Proserpio, Ilaria; De Sabbata, Giovanni; Tacchetti, Paola; Cangialosi, Clotilde; Ciambelli, Fabrizio; Viganò, Clara Virginia; Dico, Flores Angela; Santacroce, Barbara; Borsi, Enrica; Brioli, Annamaria; Marzocchi, Giulia; Castellani, Gastone; Martinelli, Giovanni; Palumbo, Antonio; Cavo, Michele

    2016-01-01

    The prime focus of the current therapeutic strategy for Multiple Myeloma (MM) is to obtain an early and deep tumour burden reduction, up to the level of complete response (CR). To date, no description of the characteristics of the plasma cells (PC) prone to achieve CR has been reported. This study aimed at the molecular characterization of PC obtained at baseline from MM patients in CR after bortezomib-thalidomide-dexamethasone (VTD) first line therapy. One hundred and eighteen MM primary tumours obtained from homogeneously treated patients were profiled both for gene expression and for single nucleotide polymorphism genotype. Genomic results were used to obtain a predictor of sensitivity to VTD induction therapy, as well as to describe both the transcription and the genomic profile of PC derived from MM with subsequent optimal response to primary induction therapy. By analysing the gene profiles of CR patients, we identified a 5-gene signature predicting CR with an overall median accuracy of 75% (range: 72%–85%). In addition, we highlighted the differential expression of a series of genes, whose deregulation might explain patients' sensitivity to VTD therapy. We also showed that a small copy number loss, covering 606Kb on chromosome 1p22.1 was the most significantly associated with CR patients. PMID:26575327

  12. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response.

    PubMed

    de Brito, Cyro Alves; Goldoni, Adriana Letícia; Sato, Maria Notomi

    2009-09-01

    The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.

  13. Apparent Motion Suppresses Responses in Early Visual Cortex: A Population Code Model

    PubMed Central

    Van Humbeeck, Nathalie; Putzeys, Tom; Wagemans, Johan

    2016-01-01

    Two stimuli alternately presented at different locations can evoke a percept of a stimulus continuously moving between the two locations. The neural mechanism underlying this apparent motion (AM) is thought to be increased activation of primary visual cortex (V1) neurons tuned to locations along the AM path, although evidence remains inconclusive. AM masking, which refers to the reduced detectability of stimuli along the AM path, has been taken as evidence for AM-related V1 activation. AM-induced neural responses are thought to interfere with responses to physical stimuli along the path and as such impair the perception of these stimuli. However, AM masking can also be explained by predictive coding models, predicting that responses to stimuli presented on the AM path are suppressed when they match the spatio-temporal prediction of a stimulus moving along the path. In the present study, we find that AM has a distinct effect on the detection of target gratings, limiting the maximum performance at high contrast levels. This masking is strongest when the target orientation is identical to the orientation of the inducers. We developed a V1-like population code model of early visual processing, based on a standard contrast normalization model. We find that AM-related activation in early visual cortex is too small to either cause masking or to be perceived as motion. Our model instead predicts strong suppression of early sensory responses during AM, consistent with the theoretical framework of predictive coding. PMID:27783622

  14. Girls’ Challenging Social Experiences in Early Adolescence Predict Neural Response to Rewards and Depressive Symptoms1

    PubMed Central

    Casement, Melynda D.; Guyer, Amanda E.; Hipwell, Alison; McAloon, Rose L.; Hoffmann, Amy M.; Keenan, Kathryn; Forbes, Erika E.

    2014-01-01

    Developmental models of psychopathology posit that exposure to social stressors may confer risk for depression in adolescent girls by disrupting neural reward circuitry. The current study tested this hypothesis by examining the relationship between early adolescent social stressors and later neural reward processing and depressive symptoms. Participants were 120 girls from an ongoing longitudinal study of precursors to depression across adolescent development. Low parental warmth, peer victimization, and depressive symptoms were assessed when the girls were 11 and 12 years old, and participants completed a monetary reward guessing fMRI task and assessment of depressive symptoms at age 16. Results indicate that low parental warmth was associated with increased response to potential rewards in the medial prefrontal cortex (mPFC), striatum, and amygdala, whereas peer victimization was associated with decreased response to potential rewards in the mPFC. Furthermore, concurrent depressive symptoms were associated with increased reward anticipation response in mPFC and striatal regions that were also associated with early adolescent psychosocial stressors, with mPFC and striatal response mediating the association between social stressors and depressive symptoms. These findings are consistent with developmental models that emphasize the adverse impact of early psychosocial stressors on neural reward processing and risk for depression in adolescence. PMID:24397999

  15. Early response evaluation and prediction in neoadjuvant-treated patients with esophageal cancer

    PubMed Central

    Theisen, Joerg; Krause, Bernd; Peschel, Christian; Schmid, Roland; Geinitz, Hans; Friess, Helmut

    2009-01-01

    Since the introduction of multimodal therapy regimens, the prognosis of esophageal cancer has improved. There is undoubtedly true for patients with surgically resected tumors in the case of a response to neoadjuvant chemotherapy or chemoradiation. Important conclusions can be drawn from this regarding the indication for perioperative therapies, the radicality of surgery, or the surgical indications. Thus, most of the current research in this field is aimed at the early identification of this subset of patients, at the beginning of, or even before, neoadjuvant treatment. Conventional staging tools have failed to predict responses to neoadjuvant therapy. However, molecular imaging methods, e.g. positron emission tomography (PET)-scans, have shown promising results in the early selection of responders and non-responders during the course of neoadjuvant therapy, allowing physicians to alter the treatment plan accordingly. Even more desirable is the identification of potential responders before the start of neoadjuvant therapy. Preliminary molecular data on biopsy specimens demonstrate the possibility of early response prediction in these patients. We present the current knowledge on response evaluation and prediction in esophageal cancer and draw conclusions for future clinical practice and studies in this review. PMID:21160793

  16. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle.

    PubMed

    Mehla, Kusum; Magotra, Ankit; Choudhary, Jyoti; Singh, A K; Mohanty, A K; Upadhyay, R C; Srinivasan, Surendran; Gupta, Pankaj; Choudhary, Neelam; Antony, Bristo; Khan, Farheen

    2014-01-10

    Environmental-induced hyperthermia compromises animal production with drastic economic consequences to global animal agriculture and jeopardizes animal welfare. Heat stress is a major stressor that occurs as a result of an imbalance between heat production within the body and its dissipation and it affects animals at cellular, molecular and ecological levels. The molecular mechanism underlying the physiology of heat stress in the cattle remains undefined. The present study sought to evaluate mRNA expression profiles in the cattle blood in response to heat stress. In this study we report the genes that were differentially expressed in response to heat stress using global scale genome expression technology (Microarray). Four Sahiwal heifers were exposed to 42°C with 90% humidity for 4h followed by normothermia. Gene expression changes include activation of heat shock transcription factor 1 (HSF1), increased expression of heat shock proteins (HSP) and decreased expression and synthesis of other proteins, immune system activation via extracellular secretion of HSP. A cDNA microarray analysis found 140 transcripts to be up-regulated and 77 down-regulated in the cattle blood after heat treatment (P<0.05). But still a comprehensive explanation for the direction of fold change and the specific genes involved in response to acute heat stress still remains to be explored. These findings may provide insights into the underlying mechanism of physiology of heat stress in cattle. Understanding the biology and mechanisms of heat stress is critical to developing approaches to ameliorate current production issues for improving animal performance and agriculture economics.

  17. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves

    PubMed Central

    Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  18. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves.

    PubMed

    Dong, Chun-Juan; Cao, Ning; Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  19. Incomplete immune response to coxsackie B viruses associates with early autoimmunity against insulin.

    PubMed

    Ashton, Michelle P; Eugster, Anne; Walther, Denise; Daehling, Natalie; Riethausen, Stephanie; Kuehn, Denise; Klingel, Karin; Beyerlein, Andreas; Zillmer, Stephanie; Ziegler, Anette-Gabriele; Bonifacio, Ezio

    2016-09-08

    Viral infections are associated with autoimmunity in type 1 diabetes. Here, we asked whether this association could be explained by variations in host immune response to a putative type 1 etiological factor, namely coxsackie B viruses (CVB). Heterogeneous antibody responses were observed against CVB capsid proteins. Heterogeneity was largely defined by different binding to VP1 or VP2. Antibody responses that were anti-VP2 competent but anti-VP1 deficient were unable to neutralize CVB, and were characteristic of children who developed early insulin-targeting autoimmunity, suggesting an impaired ability to clear CVB in early childhood. In contrast, children who developed a GAD-targeting autoimmunity had robust VP1 and VP2 antibody responses to CVB. We further found that 20% of memory CD4(+) T cells responding to the GAD65247-266 peptide share identical T cell receptors to T cells responding to the CVB4 p2C30-51 peptide, thereby providing direct evidence for the potential of molecular mimicry as a mechanism for GAD autoimmunity. Here, we highlight functional immune response differences between children who develop insulin-targeting and GAD-targeting autoimmunity, and suggest that children who lose B cell tolerance to insulin within the first years of life have a paradoxical impaired ability to mount humoral immune responses to coxsackie viruses.

  20. Incomplete immune response to coxsackie B viruses associates with early autoimmunity against insulin

    PubMed Central

    Ashton, Michelle P.; Eugster, Anne; Walther, Denise; Daehling, Natalie; Riethausen, Stephanie; Kuehn, Denise; Klingel, Karin; Beyerlein, Andreas; Zillmer, Stephanie; Ziegler, Anette-Gabriele; Bonifacio, Ezio

    2016-01-01

    Viral infections are associated with autoimmunity in type 1 diabetes. Here, we asked whether this association could be explained by variations in host immune response to a putative type 1 etiological factor, namely coxsackie B viruses (CVB). Heterogeneous antibody responses were observed against CVB capsid proteins. Heterogeneity was largely defined by different binding to VP1 or VP2. Antibody responses that were anti-VP2 competent but anti-VP1 deficient were unable to neutralize CVB, and were characteristic of children who developed early insulin-targeting autoimmunity, suggesting an impaired ability to clear CVB in early childhood. In contrast, children who developed a GAD-targeting autoimmunity had robust VP1 and VP2 antibody responses to CVB. We further found that 20% of memory CD4+ T cells responding to the GAD65247-266 peptide share identical T cell receptors to T cells responding to the CVB4 p2C30-51 peptide, thereby providing direct evidence for the potential of molecular mimicry as a mechanism for GAD autoimmunity. Here, we highlight functional immune response differences between children who develop insulin-targeting and GAD-targeting autoimmunity, and suggest that children who lose B cell tolerance to insulin within the first years of life have a paradoxical impaired ability to mount humoral immune responses to coxsackie viruses. PMID:27604323

  1. Incomplete immune response to coxsackie B viruses associates with early autoimmunity against insulin.

    PubMed

    Ashton, Michelle P; Eugster, Anne; Walther, Denise; Daehling, Natalie; Riethausen, Stephanie; Kuehn, Denise; Klingel, Karin; Beyerlein, Andreas; Zillmer, Stephanie; Ziegler, Anette-Gabriele; Bonifacio, Ezio

    2016-01-01

    Viral infections are associated with autoimmunity in type 1 diabetes. Here, we asked whether this association could be explained by variations in host immune response to a putative type 1 etiological factor, namely coxsackie B viruses (CVB). Heterogeneous antibody responses were observed against CVB capsid proteins. Heterogeneity was largely defined by different binding to VP1 or VP2. Antibody responses that were anti-VP2 competent but anti-VP1 deficient were unable to neutralize CVB, and were characteristic of children who developed early insulin-targeting autoimmunity, suggesting an impaired ability to clear CVB in early childhood. In contrast, children who developed a GAD-targeting autoimmunity had robust VP1 and VP2 antibody responses to CVB. We further found that 20% of memory CD4(+) T cells responding to the GAD65247-266 peptide share identical T cell receptors to T cells responding to the CVB4 p2C30-51 peptide, thereby providing direct evidence for the potential of molecular mimicry as a mechanism for GAD autoimmunity. Here, we highlight functional immune response differences between children who develop insulin-targeting and GAD-targeting autoimmunity, and suggest that children who lose B cell tolerance to insulin within the first years of life have a paradoxical impaired ability to mount humoral immune responses to coxsackie viruses. PMID:27604323

  2. Implementation of an Alert and Response System in Haiti during the Early Stage of the Response to the Cholera Epidemic

    PubMed Central

    Santa-Olalla, Patricia; Gayer, Michelle; Magloire, Roc; Barrais, Robert; Valenciano, Marta; Aramburu, Carmen; Poncelet, Jean Luc; Gustavo Alonso, Juan Carlos; Van Alphen, Dana; Heuschen, Florence; Andraghetti, Roberta; Lee, Robert; Drury, Patrick; Aldighieri, Sylvain

    2013-01-01

    The start of the cholera epidemic in Haiti quickly highlighted the necessity of the implementation of an Alert and Response (A&R) System to complement the existing national surveillance system. The national system had been able to detect and confirm the outbreak etiology but required external support to monitor the spread of cholera and coordinate response, because much of the information produced was insufficiently timely for real-time monitoring and directing of a rapid, targeted response. The A&R System was designed by the Pan American Health Organization/World Health Organization in collaboration with the Haiti Ministry of Health, and it was based on a network of partners, including any institution, structure, or individual that could identify, verify, and respond to alerts. The defined objectives were to (1) save lives through early detection and treatment of cases and (2) control the spread through early intervention at the community level. The operational structure could be broken down into three principle categories: (1) alert (early warning), (2) verification and assessment of the information, and (3) efficient and timely response in coordination with partners to avoid duplication. Information generated by the A&R System was analyzed and interpreted, and the qualitative information was critical in qualifying the epidemic and defining vulnerable areas, particularly because the national surveillance system reported incomplete data for more than one department. The A&R System detected a number of alerts unrelated to cholera and facilitated rapid access to that information. The sensitivity of the system and its ability to react quickly was shown in May of 2011, when an abnormal increase in alerts coming from several communes in the Sud-Est Department in epidemiological weeks (EWs) 17 and 18 were noted and disseminated network-wide and response activities were implemented. The national cholera surveillance system did not register the increase until EWs 21 and

  3. Implementation of an alert and response system in Haiti during the early stage of the response to the cholera epidemic.

    PubMed

    Santa-Olalla, Patricia; Gayer, Michelle; Magloire, Roc; Barrais, Robert; Valenciano, Marta; Aramburu, Carmen; Poncelet, Jean Luc; Gustavo Alonso, Juan Carlos; Van Alphen, Dana; Heuschen, Florence; Andraghetti, Roberta; Lee, Robert; Drury, Patrick; Aldighieri, Sylvain

    2013-10-01

    The start of the cholera epidemic in Haiti quickly highlighted the necessity of the implementation of an Alert and Response (A&R) System to complement the existing national surveillance system. The national system had been able to detect and confirm the outbreak etiology but required external support to monitor the spread of cholera and coordinate response, because much of the information produced was insufficiently timely for real-time monitoring and directing of a rapid, targeted response. The A&R System was designed by the Pan American Health Organization/World Health Organization in collaboration with the Haiti Ministry of Health, and it was based on a network of partners, including any institution, structure, or individual that could identify, verify, and respond to alerts. The defined objectives were to (1) save lives through early detection and treatment of cases and (2) control the spread through early intervention at the community level. The operational structure could be broken down into three principle categories: (1) alert (early warning), (2) verification and assessment of the information, and (3) efficient and timely response in coordination with partners to avoid duplication. Information generated by the A&R System was analyzed and interpreted, and the qualitative information was critical in qualifying the epidemic and defining vulnerable areas, particularly because the national surveillance system reported incomplete data for more than one department. The A&R System detected a number of alerts unrelated to cholera and facilitated rapid access to that information. The sensitivity of the system and its ability to react quickly was shown in May of 2011, when an abnormal increase in alerts coming from several communes in the Sud-Est Department in epidemiological weeks (EWs) 17 and 18 were noted and disseminated network-wide and response activities were implemented. The national cholera surveillance system did not register the increase until EWs 21 and

  4. Factors associated with early response to olanzapine and clinical and functional outcomes of early responders treated for schizophrenia in the People’s Republic of China

    PubMed Central

    Ye, Wenyu; Montgomery, William; Kadziola, Zbigniew; Liu, Li; Xue, Haibo; Stensland, Michael D; Treuer, Tamas

    2014-01-01

    Background The aims of this analysis were to identify factors associated with early response (at 4 weeks) to olanzapine treatment and to assess whether early response is associated with better longer-term outcomes for patients with schizophrenia in the People’s Republic of China. Methods A post hoc analysis of a multi-country, 6-month, prospective, observational study of outpatients with schizophrenia or bipolar mania who initiated or switched to treatment with oral olanzapine was conducted using data from the Chinese schizophrenia subgroup (n=330). Factors associated with early response were identified using a stepwise logistic regression with baseline clinical characteristics, baseline participation in a weight control program, and adherence with antipsychotics during the first 4 weeks of treatment. Mixed models for repeated measures with baseline covariates were used to compare outcomes over time between early responders and early nonresponders to olanzapine. Results One hundred and thirty patients (40%) achieved an early response. Early response was independently predicted by higher baseline Clinical Global Impressions-Severity score (odds ratio [OR] 1.51, 95% confidence interval [CI] 1.15–1.97), fewer years since first diagnosis (OR 0.94, CI 0.90–0.98), a greater number of social activities (OR 1.22, CI 1.05–1.40), participation in a weight control program (OR 1.81, CI 1.04–3.15), and high adherence with antipsychotics during the first 4 weeks of treatment (OR 2.98, CI 1.59–5.58). Relative to early nonresponders, early responders were significantly more likely to meet treatment response criteria at endpoint, had significantly greater symptom improvement (Clinical Global Impressions-Severity), and had significantly greater improvement in functional outcomes (all P<0.05). Conclusion High levels of adherence to prescribed antipsychotics and participation in a weight control program were associated with early response to olanzapine in Chinese patients

  5. Response of transgenic rice at germination and early seedling growth under salt stress.

    PubMed

    Jamil, Muhammad; Rha, Eui Shik

    2007-12-01

    The response of germination and early seedling growth of different transgenic rice lines (T-99, T-112, T-115 and T-121) were examined in different levels of salinity (0, 50, 100 and 150 mM NaCl). Final germination, germination rate (1/t50, where t50 is the time to 50% of germination) and early seedling growth were assessed. Final germination percentage was inhibited with increasing salt concentrations. The required time for germination also increased with increasing salinity levels. The seedling growth was also reduced by salt concentrations, particularly at 150 mM. Root and shoot lengths, root/shoot ratio, fresh weights of root and shoot were also decreased with increasing salt stress. T-99 and T-112 had shown greater performance at germination and early seedling growth as compared to other transgenic lines.

  6. Differential neural control in early bilinguals and monolinguals during response inhibition.

    PubMed

    Rodríguez-Pujadas, Aina; Sanjuán, Ana; Fuentes, Paola; Ventura-Campos, Noelia; Barrós-Loscertales, Alfonso; Ávila, César

    2014-05-01

    We tested the hypothesis that early bilinguals and monolinguals use different brain areas when performing nonlinguistic executive control tasks. For this, we explored brain activity of early bilinguals and monolinguals during a manual stop-signal paradigm. Behaviorally, bilinguals and monolinguals did not show significant differences in the task, which led us to compare brain activation that cannot be attributed to differences in performance. Analyses demonstrated that monolinguals activated the anterior cingulate cortex more than bilinguals when performing the stop-signal task. These results offer direct support for the notion that early bilingualism exerts an effect on neural circuitry responsible for executive control. Consistent with recent reports, we found that bilinguals used the anterior cingulate more efficiently than monolinguals to monitor nonlinguistic cognitive conflicts.

  7. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter.

    PubMed

    Shaughnessy, Ronan G; Meade, Kieran G; Cahalane, Sarah; Allan, Brenda; Reiman, Carla; Callanan, John J; O'Farrelly, Cliona

    2009-12-15

    Salmonella enterica serovar Typhimurium and Campylobacter jejuni are major human pathogens, yet colonise chickens without causing pathology. The aim of this study was to compare intestinal innate immune responses to both bacterial species, in a 4-week-old broiler chicken model. Challenged and control birds were sacrificed and tissue samples taken for histopathology and RNA extraction. No significant clinical or pathological changes were observed in response to infection with either bacterial species. Expression of selected genes involved in pathogen detection and the innate immune response were profiled in caecal tissues by quantitative real-time PCR. TLR4 and TLR21 gene expression was transiently increased in response to both bacterial species (P<0.05). Significant increases in TLR5 and TLR15 gene expression were detected in response to S. Typhimurium but not to C. jejuni. Transient increases of proinflammatory cytokine (IL6 and IFNG) and chemokine (IL8 and K60) genes increased as early as 6h in response to S. Typhimurium. Minimal cytokine gene expression was detected in response to C. jejuni after 20h. IL8 gene expression however, was significantly increased by 24-fold (P<0.01). The differential expression profiles of innate immune genes in both infection models shed light on the tailored responses of the host immune system to specific microbes. It is further evidence that innate regulation of these responses is an important prerequisite to preventing development of disease.

  8. A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE) Consensus Sequence Repeats in the Viral Genome.

    PubMed

    Kumar, Ashutosh; Singh, Himanshu N; Pareek, Vikas; Raza, Khursheed; Dantham, Subrahamanyam; Kumar, Pavan; Mochan, Sankat; Faiq, Muneeb A

    2016-01-01

    Owing to the reports of microcephaly as a consistent outcome in the fetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV)-microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favor of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1) sequence homology between ZIKV genome and the response element of an early neural tube developmental marker "retinoic acid" in human DNA and (2) comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE) consensus sequence (5'-AGGTCA-3') in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly) and other viruses available in National Institute of Health genetic sequence database (GenBank) for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause fetal brain defects (for which maternal-fetal transmission during developing stage may be required). The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although, bioinformatic evidence and embryological

  9. A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE) Consensus Sequence Repeats in the Viral Genome.

    PubMed

    Kumar, Ashutosh; Singh, Himanshu N; Pareek, Vikas; Raza, Khursheed; Dantham, Subrahamanyam; Kumar, Pavan; Mochan, Sankat; Faiq, Muneeb A

    2016-01-01

    Owing to the reports of microcephaly as a consistent outcome in the fetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV)-microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favor of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1) sequence homology between ZIKV genome and the response element of an early neural tube developmental marker "retinoic acid" in human DNA and (2) comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE) consensus sequence (5'-AGGTCA-3') in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly) and other viruses available in National Institute of Health genetic sequence database (GenBank) for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause fetal brain defects (for which maternal-fetal transmission during developing stage may be required). The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although, bioinformatic evidence and embryological

  10. Genome-wide association study of response to cognitive–behavioural therapy in children with anxiety disorders

    PubMed Central

    Coleman, Jonathan R. I.; Lester, Kathryn J.; Keers, Robert; Roberts, Susanna; Curtis, Charles; Arendt, Kristian; Bögels, Susan; Cooper, Peter; Creswell, Cathy; Dalgleish, Tim; Hartman, Catharina A.; Heiervang, Einar R.; Hötzel, Katrin; Hudson, Jennifer L.; In-Albon, Tina; Lavallee, Kristen; Lyneham, Heidi J.; Marin, Carla E.; Meiser-Stedman, Richard; Morris, Talia; Nauta, Maaike H.; Rapee, Ronald M.; Schneider, Silvia; Schneider, Sophie C.; Silverman, Wendy K.; Thastum, Mikael; Thirlwall, Kerstin; Waite, Polly; Wergeland, Gro Janne; Breen, Gerome; Eley, Thalia C.

    2016-01-01

    Background Anxiety disorders are common, and cognitive–behavioural therapy (CBT) is a first-line treatment. Candidate gene studies have suggested a genetic basis to treatment response, but findings have been inconsistent. Aims To perform the first genome-wide association study (GWAS) of psychological treatment response in children with anxiety disorders (n = 980). Method Presence and severity of anxiety was assessed using semi-structured interview at baseline, on completion of treatment (post-treatment), and 3 to 12 months after treatment completion (follow-up). DNA was genotyped using the Illumina Human Core Exome-12v1.0 array. Linear mixed models were used to test associations between genetic variants and response (change in symptom severity) immediately post-treatment and at 6-month follow-up. Results No variants passed a genome-wide significance threshold (P = 5 × 10−8) in either analysis. Four variants met criteria for suggestive significance (P<5 × 10−6) in association with response post-treatment, and three variants in the 6-month follow-up analysis. Conclusions This is the first genome-wide therapygenetic study. It suggests no common variants of very high effect underlie response to CBT. Future investigations should maximise power to detect single-variant and polygenic effects by using larger, more homogeneous cohorts. PMID:26989097

  11. Differential host response, rather than early viral replication efficiency, correlates with pathogenicity caused by influenza viruses.

    PubMed

    Askovich, Peter S; Sanders, Catherine J; Rosenberger, Carrie M; Diercks, Alan H; Dash, Pradyot; Navarro, Garnet; Vogel, Peter; Doherty, Peter C; Thomas, Paul G; Aderem, Alan

    2013-01-01

    Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB -mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains.

  12. Image-guided genomic analysis of tissue response to laser-induced thermal stress

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.

    2011-05-01

    The cytoprotective response to thermal injury is characterized by transcriptional activation of ``heat shock proteins'' (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.

  13. Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins

    PubMed Central

    Jay, Kyle A.; Smith, Dana L.

    2016-01-01

    Telomeres cap the ends of chromosomes, protecting them from degradation and inappropriate DNA repair processes that can lead to genomic instability. A short telomere elicits increased telomerase action on itself that replenishes telomere length, thereby stabilizing the telomere. In the prolonged absence of telom