Sample records for early holocene ca

  1. High resolution windows into early Holocene climate: Sr/(Ca) coral records from the Huon Peninsula

    NASA Astrophysics Data System (ADS)

    McCulloch, Malcolm; Mortimer, Graham; Esat, Tezer; Xianhua, Li; Pillans, Brad; Chappell, John

    1996-02-01

    High-precision measurements of Sr/Ca ratios are reported for Porites corals from the uplifted Holocene coral terraces at Huon Peninsula, Papua New Guinea. The early Holocene Porites have UTh mass spectrometric ages of 8920 ± 60 yr and 7370 ± 50 yr, and δ 234U(t) values of 145 ± 2, similar to modern seawater. The Sr/Ca coral records provide 5-6 year high resolution (near weekly) time windows into early Holocene sea surface temperatures. Seasonal temperature fluctuations are generally in the range of ± 1°C, with occasional excursions of ± 2°C, which may indicate the more frequent recurrence of very strong ENSO (El Niño-Southern Oscillation) events. Mean annual Sr/Ca temperatures of 24.2 ± 1.1°C and 22.9 ± 0.8°C have been obtained, which are ˜ 2-3°C cooler than that exhibited by a modern Porites. These results indicate that, during the early Holocene, the equatorial western Pacific ocean was at least several degrees cooler than present-day temperatures. This is consistent with late glacial coral records from the Caribbean that indicate lower (˜ 6°C) sea surface temperatures for the equatorial oceans. The Huon Peninsula corals also indicate that SSTs were several degrees cooler than those in the Caribbean during the early Holocene. Thus, although the northern hemisphere summer radiation maximum occurred at ˜ 10 ka, there appears to have been a significant lag in the response of the equatorial western Pacific ocean to this warming. Cooler early Holocene sea surface temperatures in the western Pacific may have been due to changing patterns of ocean-atmosphere circulation, resulting from the exposure of large areas of continental shelf in the southeast Asia region, a consequence of lower glacial sea levels. It is likely that ocean temperatures in the Huon Peninsula were influenced by the opening at ˜ 7 ka of the Torres Strait, that now separates New Guinea from the Australian mainland.

  2. Solar forcing of Florida Straits surface salinity during the early Holocene

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthew W.; Weinlein, William A.; Marcantonio, Franco; Lynch-Stieglitz, Jean

    2012-09-01

    Previous studies showed that sea surface salinity (SSS) in the Florida Straits as well as Florida Current transport covaried with changes in North Atlantic climate over the past two millennia. However, little is known about earlier Holocene hydrographic variability in the Florida Straits. Here, we combine Mg/Ca-paleothermometry and stable oxygen isotope measurements on the planktonic foraminifera Globigerinoides ruber (white variety) from Florida Straits sediment core KNR166-2 JPC 51 (24° 24.70' N, 83° 13.14' W, 198 m deep) to reconstruct a high-resolution (˜25 yr/sample) early to mid Holocene record of sea surface temperature and δ18OSW (a proxy for SSS) variability. After removing the influence of global δ18OSW change due to continental ice volume variability, we find that early Holocene SSS enrichments are associated with increased evaporation/precipitation ratios in the Florida Straits during periods of reduced solar forcing, increased ice rafted debris in the North Atlantic and the development of more permanent El Niño-like conditions in the eastern equatorial Pacific. When considered with previous high-resolution reconstructions of Holocene tropical atmospheric circulation changes, our results provide evidence that variations in solar forcing over the early Holocene had a significant impact on the global tropical hydrologic cycle.

  3. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe

    PubMed Central

    Väliranta, M.; Salonen, J. S.; Heikkilä, M.; Amon, L.; Helmens, K.; Klimaschewski, A.; Kuhry, P.; Kultti, S.; Poska, A.; Shala, S.; Veski, S.; Birks, H. H.

    2015-01-01

    Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca. 2 °C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. PMID:25858780

  4. Pacific southwest United States Holocene summer paleoclimate inferred from sediment calcite oxygen isotopes (Lake Elsinore, CA)

    NASA Astrophysics Data System (ADS)

    Kirby, M.; Patterson, W. P.; Lachniet, M. S.; Anderson, M.; Noblet, J. A.

    2017-12-01

    Records of past climate inform on the natural range and mechanisms of climate change. In the arid Pacific southwest United States (pswUS), there exist a variety of Holocene records that infer past winter conditions (moisture and/or temperature). Holocene records of summer climate, however, are rare excepting short-lived (<500-1000 yrs) tree ring PDSIs and some pollen-inferred temperature reconstructions. As climate changes due to anthropogenic forcing, the severity of drought is expected to increase in the already water-stressed pswUS. Hot droughts are of considerable concern as summer temperatures rise. As a result, understanding how summer conditions changed in the past is critical to understanding future predictions under varied climate forcings. Here, we present a 9800 year delta-18O(calcite) record from Lake Elsinore, CA. This isotope record is interpreted to reflect late-spring to summer conditions, especially evaporation. Modern water isotope data support this interpretation. Our results reveal a three-part Holocene consisting of a highly evaporative early Holocene, a cooler mid-Holocene, and evaporative late Holocene. Coupled with an inferred winter wetness (run-off) record from Kirby et al. (2010), we estimate the severity of centennial scale Holocene dryness (i.e. dry winters plus hot summers = severe drought). The most severe droughts occur in the early Holocene, decline in the mid-Holocene, and return in the late Holocene. An independently dated isotope record from Lake Elsinore's littoral zone (Kirby et al. 2004) shows similar changes providing confidence in our longer record. Various forcing mechanisms are examined to explain the Elsinore summer record including insolation, Pacific SSTs, and trace gas radiative forcing.

  5. Early-to-middle Holocene sea-level fluctuations, coastal progradation and the Neolithic occupations in Yaojiang valley of southern Hangzhou bay, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sun, Q.; Fan, D.; Chen, Z.

    2017-12-01

    The formation of Holocene coast in eastern China provided material base for the development of Neolithic civilizations. The coastal Yaojiang valley of south Hangzhou bay was one of the examples where the well-known Neolithic Hemudu Culture (HC) of Eastern China initiated. Here, we studied the early-to-middle Holocene environment changes in relation to sea-level fluctuations on the basis of a serial of sediment cores based on a set of new Accelerator Mass Spectrometry radiocarbon (AMS 14C) chronology. The result indicated that relative sea-level rose rapidly in the Yaojiang valley at the early Holocene, reaching its maximum at ca. 8000-7800 cal yr BP and then decelerated at ca. 7800-7500 cal yr BP. The alluvial plain in Yaojiang valley began to form at the foothills first and then grew towards the valley center accompanying with the sea-level stabilization after ca. 7500 cal yr BP. This progressive progradation of alluvial plain would attract the early arrivals of foragers to dwell at the foothills to engaging in rice farming after ca.7000 cal yr BP and starting the epic Hemudu Culture. The HC people then move down to the valley center as more land became available thanks to sediment aggregation and progradation. The rise and development of HC were closely associated with the sea-level induced landscape changes in Yaojiang valley at the early-middle Holocene, and the unstable hydraulic condition in the valley after 5000 cal yr BP could be accountable for the cultural termination.

  6. Sr/Ca proxy sea-surface temperature reconstructions from modern and holocene Montastraea faveolata specimens from the Dry Tortugas National Park

    USGS Publications Warehouse

    Flannery, Jennifer A.; Poore, Richard Z.

    2013-01-01

    Sr/Ca ratios from skeletal samples from two Montastraea faveolata corals (one modern, one Holocene, ~6 Ka) from the Dry Tortugas National Park were measured as a proxy for sea-surface temperature (SST). We sampled coral specimens with a computer-driven triaxial micromilling machine, which yielded an average of 15 homogenous samples per annual growth increment. We regressed Sr/Ca values from resulting powdered samples against a local SST record to obtain a calibration equation of Sr/Ca = -0.0392 SST + 10.205, R = -0.97. The resulting calibration was used to generate a 47-year modern (1961-2008) and a 7-year Holocene (~6 Ka) Sr/Ca subannually resolved proxy record of SST. The modern M. faveolata yields well-defined annual Sr/Ca cycles ranging in amplitude from ~0.3 and 0.5 mmol/mol. The amplitude of ~0.3 to 0.5 mmol/mol equates to a 10-15°C seasonal SST amplitude, which is consistent with available local instrumental records. Summer maxima proxy SSTs calculated from the modern coral Sr/ Ca tend to be fairly stable: most SST maxima from 1961–2008 are 29°C ± 1°C. In contrast, winter minimum SST calculated in the 47-year modern time-series are highly variable, with a cool interval in the early to mid-1970s. The Holocene (~6 Ka) Montastraea faveolata coral also yields distinct annual Sr/Ca cycles with amplitudes ranging from ~0.3 to 0.6 mmol/mol. Absolute Sr/Ca values and thus resulting SST estimates over the ~7-year long record are similar to those from the modern coral. We conclude that Sr/Ca from Montastraea faveolata has high potential for developing subannually resolved Holocene SST records.

  7. Pleistocene and Holocene geomorphological development in the Algarve, southern Portugal

    NASA Astrophysics Data System (ADS)

    Chester, David K.

    2012-06-01

    A detailed chronological framework for Pleistocene and Holocene geomorphology and landscape evolution in the Algarve is proposed. With regards to the Pleistocene, attention has focused on the origin, dating and stratigraphy of the Ludo Formation. Subsuming the classifications of earlier writers, it is now proposed that during the Pliocene a marine transgression occurred across a tectonically controlled basin that was constrained by the mountains of the Algarve interior to the north. Fluvial sands were then deposited in a regressive phase during the late Pliocene/early Pleistocene, while braided streams operating under semi-arid conditions subsequently laid down sands and gravels in the middle and upper Pleistocene. Lying unconformably over the Ludo Formation is an alluvial deposit (Odiáxere gravels and Loulé sands) of late Pleistocene/early Holocene date that is found within the river valleys of the Algarve. In the early-Holocene (ca.10, 000-ca.7000 BP) and early late-Holocene (ca.5000-ca.3000 BP), the situation in the Algarve was one of climatic amelioration (i.e., warmer and wetter conditions), rising sea levels, vegetation colonization, soil development and towards the end of this period trenching of the Odiáxere gravels and Loulé sands. From ca.3000 BP evidence is abundant that humans became important geomorphological agents either acting on their own or in combination with climatic factors. From around 5000 BP, conditions became dryer and, between ca.3000 BP and ca.700 BP, clearance of land by pre-Roman, Roman, and especially Islamic agricultural settlers caused widespread erosion and the deposition of extensive spreads of topsoil dominated sediment within river valleys (i.e., the Holocene terrace) and in coastal estuaries. A period followed up to 1900 CE when agricultural practices were less damaging to the soil, erosion was reduced and the Holocene terrace - together with coastal and estuarine deposits - was incised. In the past century and under

  8. Early Holocene groundwater table fluctuations in relation to rice domestication in the middle Yangtze River basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Liu, Yan; Sun, Qianli; Zong, Yongqiang; Finlayson, Brian; Chen, Zhongyuan

    2017-01-01

    The early Holocene environmental amelioration stimulated the trajectory of Neolithic farming cultures and specific geographic settings played a role in determining the nature of these cultures. Using microfossil evidence, the present study reveals that the fluctuations of the groundwater table substantially influenced rice domestication in the Dongting Lake area of the middle Yangtze River basin in the early Holocene. Our 14C-dated sediment core taken from the Bashidang (BSD) Neolithic site contains evidence that the site was a floodplain prior to human occupation ca. 8600 years ago. Poaceae, which contained wild rice (Oryza sp.) as indicated by combined pollen and phytolith evidence, and low counts of freshwater algae indicated a moist site condition. The area then gradually evolved into wetlands as the water table rose, in response to the increasing monsoon precipitation during the early Holocene. This favored rice domestication, assisted by firing and clearing, that continued to flourish for several hundred years. Finally, rice domestication declined during the late stage of the Pengtoushan culture, accompanied by evidence of the expansion of wetlands reflecting the effects of a rising groundwater table that had caused the cessation of rice farming at the Bashidang site after ca. 8000-7900 cal yr BP. This study shows that there are local effects at particular sites that may differ from the trend at the regional scale, necessitating a careful interpretation of the available evidence.

  9. Small-Mammal Data on Early and Middle Holocene Climates and Biotic Communities in the Bonneville Basin, USA

    NASA Astrophysics Data System (ADS)

    Schmitt, Dave N.; Madsen, David B.; Lupo, Karen D.

    2002-11-01

    Archaeological investigations in Camels Back Cave, western Utah, recovered a series of small-mammal bone assemblages from stratified deposits dating between ca. 12,000 and 500 14C yr B.P. The cave's early Holocene fauna includes a number of species adapted to montane or mesic habitats containing grasses and/or sagebrush (e.g., Lepus townsendii, Marmota flaviventris, Reithrodontomys megalotis, and Brachylagus idahoensis) which suggest that the region was relatively cool and moist until after 8800 14C yr B.P. Between ca. 8600 and 8100 14C yr B.P. these mammals became locally extinct, taxonomic diversity declined, and there was an increase in species well-adapted to xeric, low-elevation habitats, including ground squirrels, Lepus californicus and Neotoma lepida. The early small-mammal record from Camels Back Cave is similar to the 11,300-6000 14C yr B.P. mammalian sequence from Homestead Cave, northwestern Utah, and provides corroborative data on Bonneville Basin paleoenvironments and mammalian responses to middle Holocene desertification.

  10. Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China

    NASA Astrophysics Data System (ADS)

    Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.

    2017-12-01

    Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period

  11. The early Holocene humid period in the Tayma palaeolake, NW Arabian Peninsula -- A high-resolution micro-facies and geochemical approach

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Plessen, Birgit; Dinies, Michèle; Engel, Max; Tjallingii, Rik; Brauer, Achim

    2016-04-01

    The Tayma palaeolake is a rare archive of the early Holocene humid period in northern Arabia (Dinies et al. 2015; Engel et al. 2012). Here we present a ca. 1 m thick and 500 years spanning annually laminated sediment section that was deposited in the centre of the former lake from ca. 8500 to 8000 calibrated years (cal. yrs) BP, as determined by AMS 14C dating of pollen concentrates (Dinies et al. 2015). High-resolution micro-facies analyses based on thin section microscopy, μXRF element scanning, δ18Ocarb and δ13Ccarb measurements on single carbonate laminae, as well as geochemical measurements on bulk samples for TOC, CaCO3, C/N ratio, δ18Ocarb, δ13Ccarb, δ13Corg and δ15N determination were performed in order to investigate the sedimentological and geochemical changes along the varved sequence in great detail. The finely laminated marl sediments are mainly composed of sub-mm thick laminae of endogenic aragonite, organic matter and diatoms, as well as occasional, often graded silt-clay layers. Following an early lake phase from ca. 8700 to 8500 cal. yrs BP characterized by coarsely laminated, presumably non-annual marl sediments that are rich in ostracods, three main varved phases can be distinguished within the investigated section: (1) aragonitic-organic varves from ca. 8500 to 8300 cal. yrs BP, (2) diatom-organic varves from ca. 8300 to 8100 cal. yrs BP that frequently include aragonite laminae and occasionally gastropod and ostracod shells, and (3) organic varves from ca. 8100 to 8000 cal. yrs BP with decreasing diatom and aragonite laminae and an increasing frequency of gypsum layers. After this period, gypsum becomes abundant and fine lamination appears only sporadically. In addition, we observe increasing trends of TOC, C/N and δ13Ccarb and decreasing δ18Ocarb during phase 1 and excess δ18Ocarb, δ13Ccarb and TOC values during phase 2, pointing towards the maximum lake productivity and increased seasonal precipitation. We interpret this

  12. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.

    PubMed

    Mayle, Francis E; Power, Mitchell J

    2008-05-27

    This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.

  13. Small-mammal data on early and middle Holocene climates and biotic communities in the Bonneville Basin, USA

    USGS Publications Warehouse

    Schmitt, D.N.; Madsen, D.B.; Lupo, K.D.

    2002-01-01

    Archaeological investigations in Camels Back Cave, western Utah, recovered a series of small-mammal bone assemblages from stratified deposits dating between ca. 12,000 and 500 14C yr B.P. The cave's early Holocene fauna includes a number of species adapted to montane or mesic habitats containing grasses and/or sagebrush (e.g., Lepus townsendii, Marmota flaviventris, Reithrodontomys megalotis, and Brachylagus idahoensis) which suggest that the region was relatively cool and moist until after 8800 14C yr B.P. Between ca. 8600 and 8100 14C yr B.P. these mammals became locally extinct, taxonomic diversity declined, and there was an increase in species well-adapted to xeric, low-elevation habitats, including ground squirrels, Lepus californicus and Neotoma lepida. The early small-mammal record from Camels Back Cave is similar to the 11,300-6000 14C yr B.P. mammalian sequence from Homestead Cave, northwestern Utah, and provides corroborative data on Bonneville Basin paleoenvironments and mammalian responses to middle Holocene desertification. ?? 2002 University of Washington.

  14. Multiproxy evidence of Holocene climate variability from estuarine sediments, eastern North America

    USGS Publications Warehouse

    Cronin, T. M.; Thunell, R.; Dwyer, G.S.; Saenger, C.; Mann, M.E.; Vann, C.; Seal, R.R.

    2005-01-01

    We reconstructed paleoclimate patterns from oxygen and carbon isotope records from the fossil estuarine benthic foraminifera Elphidium and Mg/ Ca ratios from the ostracode Loxoconcha from sediment cores from Chesapeake Bay to examine the Holocene evolution of North Atlantic Oscillation (NAO)-type climate variability. Precipitation-driven river discharge and regional temperature variability are the primary influences on Chesapeake Bay salinity and water temperature, respectively. We first calibrated modern ??18 Owater to salinity and applied this relationship to calculate trends in paleosalinity from the ??18 Oforam, correcting for changes in water temperature estimated from ostracode Mg /Ca ratios. The results indicate a much drier early Holocene in which mean paleosalinity was ???28 ppt in the northern bay, falling ???25% to ???20 ppt during the late Holocene. Early Holocene Mg/Ca-derived temperatures varied in a relatively narrow range of 13?? to 16??C with a mean temperature of 14.2??C and excursions above 16??C; the late Holocene was on average cooler (mean temperature of 12.8??C). In addition to the large contrast between early and late Holocene regional climate conditions, multidecadal (20-40 years) salinity and temperature variability is an inherent part of the region's climate during both the early and late Holocene, including the Medieval Warm Period and Little Ice Age. These patterns are similar to those observed during the twentieth century caused by NAO-related processes. Comparison of the midlatitude Chesapeake Bay salinity record with tropical climate records of Intertropical Convergence Zone fluctuations inferred from the Cariaco Basin titanium record suggests an anticorrelation between precipitation in the two regions at both millennial and centennial timescales. Copyright 2005 by the American Geophysical Union.

  15. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy)

    USGS Publications Warehouse

    Curry, B Brandon; Henne, Paul; Mezquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calo, Camilla; Tinner, Willy

    2016-01-01

    Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690–6100 mg/l from ca. 10,000–8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to <250 mg/L from ca. 8190 to 7000 cal yr BP at both sites. After ca. 6250 cal yr BP, the ostracode records are strikingly different. Lago Preola became much more saline, with paleosalinity values that ranged from 2270 to about 24,420 mg/L. We suggest that Lago Preola's change from a freshwater to mesosaline lake at about 6250 cal yr BP was related to sea level rise and resulting intrusion of seawater-influenced groundwater. In contrast, Gorgo Basso remained a freshwater lake. The salinity of Gorgo Basso declined somewhat after 6250 cal yr BP, in comparison to the early Holocene, ranging from about 550 to 1680 mg/L. Cypria ophtalmica, a species capable of rapid swimming and flourishing in waters with low dissolved oxygen levels, became dominant at approximately the time when Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response

  16. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Curry, Brandon; Henne, Paul D.; Mesquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calò, Camilla; Tinner, Willy

    2016-10-01

    Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690-6100 mg/l from ca. 10,000-8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to <250 mg/L from ca. 8190 to 7000 cal yr BP at both sites. After ca. 6250 cal yr BP, the ostracode records are strikingly different. Lago Preola became much more saline, with paleosalinity values that ranged from 2270 to about 24,420 mg/L. We suggest that Lago Preola's change from a freshwater to mesosaline lake at about 6250 cal yr BP was related to sea level rise and resulting intrusion of seawater-influenced groundwater. In contrast, Gorgo Basso remained a freshwater lake. The salinity of Gorgo Basso declined somewhat after 6250 cal yr BP, in comparison to the early Holocene, ranging from about 550 to 1680 mg/L. Cypria ophtalmica, a species capable of rapid swimming and flourishing in waters with low dissolved oxygen levels, became dominant at approximately the time when Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response to increased Greco

  17. Early to Middle Holocene sea level fluctuation, coastal progradation and the Neolithic occupation in the Yaojiang Valley of southern Hangzhou Bay, Eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Qianli; Fan, Daidu; Dai, Bin; Ma, Fuwei; Xu, Lichen; Chen, Jing; Chen, Zhongyuan

    2018-06-01

    The Yaojiang Valley (YJV) of southern Hangzhou Bay was the birthplace of the well-known Hemudu Culture (HC), one of the representatives of Neolithic civilization in eastern China. To explore the magnitude of natural environmental effects on the HC trajectory, the palaeo-embayment setting of the YJV was studied in detail for the first time in terms of 3D Holocene strata supported by a series of new radiocarbon-dated cores. The results indicated that the local relative sea level rose rapidly during the Early Holocene in the YJV, reached its maximum flooding surface ca. 7900 cal yr BP, and then remained stable ca. 7900-7600 cal yr BP. Thereupon, an estuary stretching inland was first formed by marine transgression, and then, it was transformed to an alluvial-coastal plain by regressive progradation. The alluvial plain was initiated in the foothills and then spread towards the valley centre after sea level stabilization ca. 7600 cal yr BP. Accompanying these natural environmental changes, the earliest arrivals of foragers in the valley occurred no later than ca. 7000 cal yr BP. They engaged in rice farming and fostered the HC for approximately two millennia from ca. 7000-5000 cal yr BP as more lands developed from coastal progradation. The rise and development of the HC are closely associated with the sea level-induced landscape changes in the YJV in the Early-Middle Holocene, but the enigmatic exodus of the HC people after ca. 5000 cal yr BP is still contentious and possibly linked with the rapid waterlogging and deterioration of this setting in such a low-lying coastal plain as well as with associated social reasons.

  18. Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington

    NASA Astrophysics Data System (ADS)

    Osborn, Gerald; Menounos, Brian; Ryane, Chanone; Riedel, Jon; Clague, John J.; Koch, Johannes; Clark, Douglas; Scott, Kevin; Davis, P. Thompson

    2012-08-01

    Glaciers on stratovolcanoes of the Pacific Northwest of North America offer opportunities for dating late Pleistocene and Holocene glacier advances because tephra and fossil wood are common in lateral moraines and in glacier forefields. We capitalize on this opportunity by examining the Holocene glacial record at Mount Baker, an active stratovolcano in northwest Washington. Earlier workers concluded that glaciers on Mount Baker during the early Holocene were more extensive than during the Little Ice Age and hypothesized that the explanation lay in unusual climatic or hypsometric effects peculiar to large volcanoes. We show that the main argument for an early Holocene glacier advance on Mount Baker, namely the absence of ca 10,000-year-old tephra on part of the south flank of the mountain, is incorrect. Moreover, a lake-sediment core indicates that a small cirque moraine previously thought be of early Holocene age is also likely older than the tephra and consequently of late Pleistocene age. Lateral and end moraines and wood mats ca 2 km downvalley of the present snout of Deming Glacier indicate that an advance during the Younger Dryas interval was little more extensive than the climactic Little Ice Age advance. Tephra and wood between tills in the left lateral moraine of Easton Glacier suggest that ice on Mount Baker was restricted in the early Holocene and that Neoglaciation began ca 6 ka. A series of progressively more extensive Neoglacial advances, dated to about 2.2, 1.6, 0.9, and 0.4 ka, are recorded by stacked tills in the right lateral moraine of Deming Glacier. Intervening retreats were long enough to allow establishment of forests on the moraine. Wood mats in moraines of Coleman and Easton glaciers indicate that Little Ice Age expansion began before 0.7 ka and was followed by retreat and a readvance ca 0.5 ka. Tree-ring and lichen data indicate glaciers on the south side of the mountain reached their maximum extents in the mid-1800s. The similarity between

  19. Centennial to millennial variations of atmospheric methane during the early Holocene

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Woong; Ahn, Jinho; Brook, Edward

    2015-04-01

    Atmospheric CH4 is one of the most important greenhouse gases. Ice core studies revealed strong correlations between millennial CH4 variations and Greenland climate during the last glacial period. However, millennial to sub-millennial CH4 variations during interglacial periods are not well studied. Recently, several high-resolution data sets have been produced for the late Holocene, but it is difficult to distinguish natural- from anthropogenic changes. In contrast, the methane budget of the early Holocene is not affected by anthropogenic disturbances, thus may help us better understand natural CH4 control mechanisms under interglacial climate boundary conditions. Here we present our new high-precision and high-resolution atmospheric CH4 record from Siple Dome ice core, Antarctica that covers the early Holocene. We used our new wet extraction system at Seoul National University that shows a good precision of ~1 ppb. Our data show several tens of ppb of centennial- to millennial CH4 variations and an anti-correlative evolution with Greenland climate on the millennial time scale. The CH4 record could have been affected by many different types of forcing, including temperature, precipitation (monsoon intensity), biomass burning, sea surface temperature, and solar activity. According to our data, early Holocene CH4 is well correlated with records of hematite stained grains (HSG) in North Atlantic sediment records, within age uncertainties. A red-noise spectral analysis yields peaks at frequencies of ~1270 and ~80 years, which are similar to solar frequencies, but further investigations are needed to determine major controlling factor of atmospheric CH4during the early Holocene.

  20. El Nino influence on Holocene reef accretion in Hawai'i

    USGS Publications Warehouse

    Rooney, J.; Fletcher, C.; Grossman, E.; Engels, M.; Field, M.

    2004-01-01

    New observations of reef accretion from several locations show that in Hawai'i accretion during early to middle Holocene time occurred in areas where today it is precluded by the wave regime, suggesting an increase in wave energy. Accretion of coral and coralline algae reefs in the Hawaiian Islands today is largely controlled by wave energy. Many coastal areas in the main Hawaiian Islands are periodically exposed to large waves, in particular from North Pacific swell and hurricanes. These are of sufficient intensity to prevent modern net accretion as evidenced by the antecedent nature of the seafloor. Only in areas sheltered from intense wave energy is active accretion observed. Analysis of reef cores reveals patterns of rapid early Holocene accretion in several locations that terminated by middle Holocene time, ca. 5000 yr ago. Previous analyses have suggested that changes in Holocene accretion were a result of reef growth "catching up" to sea level. New data and interpretations indicate that the end of reef accretion in the middle Holocene may be influenced by factors in addition to sea level. Reef accretion histories from the islands of Kaua'i, O'ahu, and Moloka'i may be interpreted to suggest that a change in wave energy contributed to the reduction or termination of Holocene accretion by 5000 yr ago in some areas. In these cases, the decrease in reef accretion occurred before the best estimates of the decrease in relative sea-level rise during the mid-Holocene high stand of sea level in the main Hawaiian Islands. However, reef accretion should decrease following the termination of relative sea-level rise (ca. 3000 yr ago) if reef growth were "catching up" to sea level. Evidence indicates that rapid accretion occurred at these sites in early Holocene time and that no permanent accretion is occurring at these sites today. This pattern persists despite the availability of hard substrate suitable for colonization at a wide range of depths between -30 m and the

  1. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska

    USGS Publications Warehouse

    Zander, Paul D.; Kaufman, Darrell S.; Kuehn, Stephen C.; Wallace, Kristi L.; Anderson, R. Scott

    2013-01-01

    Marked changes in sediment types deposited in Cabin Lake, near Cordova, Alaska, represent environmental shifts during the early and late Holocene, including fluctuations in the terminal position of Sheridan Glacier. Cabin Lake is situated to receive meltwater during periods when the outwash plain of the advancing Sheridan Glacier had aggraded. A brief early Holocene advance from 11.2 to 11.0 cal ka is represented by glacial rock flour near the base of the sediment core. Non-glacial lake conditions were restored for about 1000 years before the water level in Cabin Lake lowered and the core site became a fen. The fen indicates drier-than-present conditions leading up to the Holocene thermal maximum. An unconformity spanning 5400 years during the mid-Holocene is overlain by peat until 1110 CE when meltwater from Sheridan Glacier returned to the basin. Three intervals of an advanced Sheridan Glacier are recorded in the Cabin Lake sediments during the late Holocene: 1110–1180, 1260–1540 and 1610–1780 CE. The sedimentary sequence also contains the first five reported tephra deposits from the Copper River delta region, and their geochemical signatures suggest that the sources are the Cook Inlet volcanoes Redoubt, Augustine and Crater Peak, and possibly Mt Churchill in the Wrangell Volcanic field.

  2. Early and Middle Holocene evidence for plant use and cultivation in the Middle Cauca River Basin, Cordillera Central (Colombia)

    NASA Astrophysics Data System (ADS)

    Aceituno, Francisco J.; Loaiza, Nicolás

    2014-02-01

    This paper presents the latest results of research done in the Colombian Andean region known as Middle Cauca River Basin, an important location for the study of the origins of plant use and the dispersal of domesticates throughout the Americas due to its geographical position in northwest South America. We discuss human-environment interactions during Pleistocene/Holocene transition to middle Holocene (ca 10,000-4000 BP), specifically human-plant interaction and environmental factors that led to the adoption of horticultural practices. Three lines of evidence are analyzed: archaeological stratigraphy, lithic technology, and microbotanical remains. Our results suggest that early Holocene environmental stability allowed Middle Cauca settlers to use the diverse local resources for several millennia, altering the local vegetation, and leading to the development of horticultural practices that included the use of both local and foreign plants. These results inform the ongoing debate about the antiquity and nature of plant domestication and dispersals in the Americas.

  3. Late-glacial and Holocene records of fire and vegetation from Cradle Mountain National Park, Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Stahle, Laura N.; Chin, Hahjung; Haberle, Simon; Whitlock, Cathy

    2017-12-01

    Fire activity was reconstructed at five sites and vegetation history at three sites in northwest Tasmania, Australia in order to examine the climate and human drivers of environmental change in the region. Watershed-scale reconstructions of fire were compared to regional vegetation history. Fire activity was very low until ca. 12,000 cal yr BP. An early-Holocene fire maximum, ca. 11,800-9800 cal yr BP, occurred during the warmest interval of the Holocene as recorded by regional paleoclimate proxy records. This period of elevated burning was also coincident with an increase in arboreal sclerophyll plant taxa. A maximum in rainforest taxa occurred at ca. 8500-5800 cal yr BP concurrent with sharply diminished biomass burning compared with the early Holocene. The increase in rainforest taxa is attributed to elevated effective moisture during this period. Conditions were drier and variable in the late Holocene as compared with earlier periods. A rise in fire activity at ca. 4800-3200 cal yr BP was accompanied by an increase in sclerophyll taxa and decline of rainforest and subalpine taxa. Elevated palynological richness during the late Holocene co-occurred with high levels of charcoal suggesting that fires promoted high floristic diversity. At Cradle Mountain, there is no clear evidence that fire regimes or vegetation were extensively modified by humans prior to European settlement. Climate was the primary driver of fire activity over millennial timescales as explained by the close relationship between charcoal and climate proxy data.

  4. Climate variability during the deglaciation and Holocene in a high-altitude alpine lake deduced from the sedimentary record from Laguna Seca, Sierra Nevada, southern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott

    2017-04-01

    High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.

  5. Early-Holocene intensified Indian summer monsoon and its impact on vegetation: study based on hydrogen and carbon isotope values in long chain alkane from relict lake sediments in the Central Himalaya

    NASA Astrophysics Data System (ADS)

    Sanyal, P.; Ghosh, S.; Bhushan, R.; Juyal, N.

    2017-12-01

    The early Holocene was characterized by intensified monsoon, however none of the paleoclimatic records showed the magnitude required to shape the observed landform in the Ganges plain and sediment discharge in the Bay of Bengal. The Tropical Rainfall Measurement Mission data suggests that the Central Himalaya ( 2 km altitude) is characterized by high rainfall and hence paleoclimate proxies from this region would provide excellent opportunity to reconstruct the Holocene monsoon. An attempt has been made, for the first time, to reconstruct the Holocene monsoon using n-alkane δDC29 values of lake sediments from Benital area in the Central Himalaya which receives ca. 80% of the mean annual rainfall during summer monsoon. The n-alkane δDC29 values indicated that early Holocene (ca. 9 ka) was characterised by a wet phase with 70% increase in the rainfall followed by the dry middle-late Holocene which is in agreement with existing continental records. However, the change in intensity as inferred in the present study is maximum compared to the existing records. The comparison of δDC29values and the solar insolation data at 30 °N latitude suggested that migration of the Inter Tropical Convergence Zone controlled the variation in monsoonal rainfall. Comparison with the modern plants, the δ13CC29 values indicated that during ca. pre and post 7 ka the lake catchment was dominated by woody and non-woody plants, respectively. The cross plot between δDC29 and δ13CC29 indicated that at higher rainfall, the δ13CC29 values of catchment vegetation were less-responsive.

  6. Early Holocene humidity patterns in the Iberian Peninsula reconstructed from lake, pollen and speleothem records

    NASA Astrophysics Data System (ADS)

    Morellón, Mario; Aranbarri, Josu; Moreno, Ana; González-Sampériz, Penélope; Valero-Garcés, Blas L.

    2018-02-01

    Comparison of selected, well-dated, lacustrine, speleothem and terrestrial pollen records spanning the Holocene onset and the Early Holocene (ca. 11.7-8 cal kyrs BP) in the Iberian Peninsula shows large hydrological fluctuations and landscape changes with a complex regional pattern in timing and intensity. Marine pollen records from Alboran, the Mediterranean and off shore Atlantic sites show a step-wise increase in moisture and forest during this transition. However, available continental records point to two main patterns of spatial and temporal hydrological variability: i) Atlantic-influenced sites located at the northwestern areas (Enol, Sanabria, Lucenza, PRD-4), characterized by a gradual increase in humidity from the end of the Younger Dryas to the Mid Holocene, similarly to most North Atlantic records; and ii) continental and Mediterranean-influenced sites (Laguna Grande, Villarquemado, Fuentillejo, Padul, Estanya, Banyoles, Salines), with prolonged arid conditions of variable temporal extension after the Younger Dryas, followed by an abrupt increase in moisture at 10-9 cal kyrs BP. Different local climate conditions influenced by topography or the variable sensitivity (gradual versus threshold values) of the proxies analyzed in each case are evaluated. Vegetation composition (conifers versus mesothermophilous taxa) and resilience would explain a subdued response of vegetation in central continental areas while in Mediterranean sites, insufficient summer moisture availability could not maintain high lake levels and promote mesophyte forest, in contrast to Atlantic-influenced areas. Comparison with available climate models, Greenland ice cores, North Atlantic marine sequences and continental records from Central and Northern Europe and the whole Mediterranean region underlines the distinctive character of the hydrological changes occurred in inner Iberia throughout the Early Holocene. The persistent arid conditions might be explained by the intensification

  7. Patterns and drivers of Early Holocene vegetation dynamics in Central Europe

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Martin

    2015-04-01

    The rapid warming of the Holocene induced the rearrangement of vegetation across Europe, including the widely synchronous and rapid expansion of hazel (Corylus avellana) at around 10.6 ka BP (Giesecke et al., 2011). The simultaneity of the hazel expansion across large parts of Europe suggests that a climate shift has triggered that expansion. However, it remains poorly understood, which climate parameter has been effective (Huntley, 1993) because hazel expanded simultaneously in areas that today clearly differ in climate. To better understand the causes we studied Early Holocene vegetation dynamics in NE Germany in high temporal and spatial resolution. Analysis combines pollen data from 60 sites, including high resolution data sets, with present-day site patterns of soil and relief using the extended downscaling approach. Using forward modeling of pollen deposition in each sample site the method seeks that vegetation composition on each site type that produces modeled pollen deposition most similar to empiric pollen deposition. The results (Theuerkauf et al., 2014) indicate that first populations of hazel established soon after the Holocene warming at 11.2 ka. These populations were still small and possibly restricted to warm loving slopes, indicating that low summer warmth was the limiting factor. The widespread expansion of hazel started only after 10.8 ka, possibly following a shift to greater summer warmth. Hazel primarily expanded on sites that are today covered by gleyic soils, from which it largely expelled tree birch. Hazel thus obviously could only expand on sites that received additional wetness from ground- and stagnant water. Giesecke T., Bennett K.D., Birks H.J.B., Bjune A.E., Bozilova E., Feurdean A., Finsinger W., Froyd C., Pokorný P., Rösch M., Seppä H., Tonkov S., Valsecchi V., & Wolters S. (2011) The pace of Holocene vegetation change - testing for synchronous developments. Quaternary Science Reviews, 30, 2805-2814. Huntley B. (1993) Rapid

  8. Mid-Holocene drying of the U.S. Great Basin recorded in Nevada speleothems

    NASA Astrophysics Data System (ADS)

    Steponaitis, Elena; Andrews, Alexandra; McGee, David; Quade, Jay; Hsieh, Yu-Te; Broecker, Wallace S.; Shuman, Bryan N.; Burns, Stephen J.; Cheng, Hai

    2015-11-01

    Lake level records point to dramatic changes in Great Basin water balance over the last 25 ka, but the timing and pace of Holocene drying in the region remains poorly documented. Here we present stable isotope and trace metal data from two Lehman Caves, NV speleothems that provide a well-dated record of latest Pleistocene to mid-Holocene hydroclimate in the U.S. Great Basin. Together the stalagmites span the interval between 16.4 ka and 3.8 ka, with a hiatus from 15.0 ka to 12.7 ka. Mg/Ca and δ13C covary throughout the records, consistent with control by the extent of degassing and prior calcite precipitation (PCP); measurements of modern cave and soil waters support PCP as the primary control on drip-water trace-element composition. We therefore interpret Mg/Ca and δ13C as reflecting infiltration rates, with higher values corresponding to drier periods. Both Mg/Ca and δ13C indicate a wet period at the beginning of the record (12.7-8.2 ka) followed by pronounced drying after 8.2 ka. This mid-Holocene drying is consistent with records from around the western United States, including a new compilation of Great Basin lake-level records. The strong temporal correspondence with the collapse of the Laurentide ice sheet over Hudson Bay suggests that this drying may have been triggered by northward movement of the winter storm track as a result of ice sheet retreat. However, we cannot rule out an alternative hypothesis that wet early Holocene conditions are related to equatorial Pacific sea-surface temperature. Regardless, our results suggest that Great Basin water balance in the early Holocene was driven by factors other than orbital changes.

  9. Early and middle holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens.

    PubMed

    Lombardo, Umberto; Szabo, Katherine; Capriles, José M; May, Jan-Hendrik; Amelung, Wulf; Hutterer, Rainer; Lehndorff, Eva; Plotzki, Anna; Veit, Heinz

    2013-01-01

    We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region's past and offers a new context within which the late Holocene "Earthmovers" of the Llanos de Moxos could have emerged.

  10. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa

    USGS Publications Warehouse

    Bettis, E. Arthur; Baker, R.G.; Nations, B.K.; Benn, D.W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ?? 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan. ?? 1990.

  11. Holocene temperature variations at a high-altitude site in the Eastern Alps: a chironomid record from Schwarzsee ob Sölden, Austria

    PubMed Central

    Ilyashuk, Elena A.; Koinig, Karin A.; Heiri, Oliver; Ilyashuk, Boris P.; Psenner, Roland

    2011-01-01

    Few well-dated, quantitative Holocene temperature reconstructions exist from high-altitude sites in the Central Eastern Alps. Here, we present a chironomid-based quantitative reconstruction of mean July air temperatures (TJuly) throughout the Holocene for a remote high-mountain lake, Schwarzsee ob Sölden, situated above the treeline at 2796 m a.s.l. in the Austrian Alps. Applying a chironomid-temperature inference model developed from lakes of the Alpine region to a high-resolution chironomid record from the lake provides evidence for early Holocene (ca 10000–8600 cal yr BP) TJuly of up to 8.5 °C, i.e. >4 °C above the modern (1977–2006) mean July temperature. The reconstruction reveals the so-called ‘8.2-ka cold event’ centered at ca 8250–8000 cal yr BP with temperatures ca 3 °C below the early-Holocene thermal maximum. Rather warm (ca 6 °C) and productive conditions prevailed during ca 7900–4500 cal yr BP. The chironomid record suggests a climate transition between ca 5200 and 4500 cal yr BP to cooler TJuly. A distinct cooling trend is evident from ca 4500 until ca 2500 cal yr BP. Thereafter, the study site experienced its coldest conditions (around 4 °C or less) throughout the rest of the Holocene, with the exception of the warming trend during the late 20th century. Beside other factors, the Northern Hemisphere summer insolation seems to be the major driving force for the long-term trends in TJuly at high altitudes in the Eastern Alps. Due to the extreme location of the lake and the limited temperature range represented by the applied calibration data set, the chironomid-based temperature reconstruction fails to track phases of the late-Holocene climatic history with TJuly cooler than 4 °C. Further chironomid-based palaeoclimate model and down-core studies are required to address this problem, provide more realistic TJuly estimates from undisturbed high-altitude lakes in the Alps, and extract a reliable regional

  12. A humid early Holocene in Yemen interpreted from palaeoecology and taxonomy of freshwater ostracods

    NASA Astrophysics Data System (ADS)

    Mohammed, Munef; Frenzel, Peter; Keyser, Dietmar; Hussain, Fadhl; Abood, Abdulkareem; Sha'af, Abdulmajed; Alzara'e, Sadham; Alammari, Sakher

    2018-01-01

    Lake or marsh sediments in the Qa'a Jahran-Dhamār area indicate a period of higher moisture availability in the early Holocene of the highlands of Yemen. Forty-two marl-peat sediment samples from eight stratigraphic sections of that area have been collected and are examined for the first time for their ostracod associations. Eight species belonging to seven genera and four families are reported. Their ecological tolerances and preferences are used to investigate the climatic and environmental changes in the early to mid-Holocene. Our data are compared and correlated with previous archaeological results, particularly from the region of Qa'a Jahran (Dhamār) in the vicinity of the village of Beyt Nahmi. We conclude that the wettest period of the Holocene was from about 7900 to 7400 cal yr BP, when northwards incursion of the Indian Ocean Monsoon caused intensified monsoon precipitation over southern Arabia.

  13. Holocene vegetation changes through Lac Ledro sediments (Trentino, Italy).

    NASA Astrophysics Data System (ADS)

    Joannin, Sebastien; Vannière, Boris; Galop, Didier; Magny, Michel; Gilli, Adrian; Chapron, Emmanuel; Wirth, Stéfanie; Anselmetti, Flavio; Desmet, Marc

    2010-05-01

    Lake Ledro is part of the French program ANR LAMA (coordinators: M. Magny and N. Combourieu Nebout) which aims to link Holocene paleoenvironmental changes along a north-south transect in Italy. Lake Ledro (652 m a.s.l.; Trentino, north-eastern Italy) is the northward component of the transect. It is located on the southern slope of the Alps and its catchment area covers 131 km2 with mountains culminating at 1500-2000 m. A multi-proxy approach based on biotic and abiotic indicators (lake-level, palynology, geochemistry and geophysic) was developed from deep and littoral cores, including sediment sequences in Early and Middle Bronze Age lake-shore archaeological sites. We aim reconstructing paleoenvironmental changes resulting from both climate and anthropic influences trough the entire Holocene. A deep master core was built after extracting twin cores from a non disturbed sediment zone recognised by seismic-reflexion investigations. The age-depth model is based on 13 AMS 14C ages measured on terrestrial plant macrofossils and the mean temporal resolution for analyses is ca 60 years. Palynological study shows the usual vegetation succession for the southern slope of the Alps. During the first part of the Holocene, abrupt changes are observed in pollen assemblages in relation to changes in other proxies (XRF and Magnetic Susceptibility) and correlate with cold events associated to the deglaciation in the North-Atlantic area. Cool episodes corresponding to the PreBoreal Oscillation (ca 11.3 ka cal BP) and 8.2 ka event are respectively characterized by stopping afforestation and a strong development of Abies in the local ecosystem. During the second part of the Holocene, two declines of arboreal pollen abundance are observed in relation with occurrences in both cereal and anthropic pollen indicators. These two phases are confirmed by increase in soil erosion as indicated by abiotic proxies. They give evidence of two successive steps for human settlement (Early

  14. Holocene multidecadal and multicentennial droughts affecting Northern California and Nevada

    USGS Publications Warehouse

    Benson, L.; Kashgarian, Michaele; Rye, R.; Lund, S.; Paillet, F.; Smoot, J.; Kester, C.; Mensing, S.; Meko, D.; Lindstrom, S.

    2002-01-01

    Continuous, high-resolution ??18O records from cored sediments of Pyramid Lake, Nevada, indicate that oscillations in the hydrologic balance occurred, on average, about every 150 years (yr) during the past 7630 calendar years (cal yr). The records are not stationary; during the past 2740 yr, drought durations ranged from 20 to 100 yr and intervals between droughts ranged from 80 to 230 yr. Comparison of tree-ring-based reconstructions of climate change for the past 1200 yr from the Sierra Nevada and the El alpais region of northwest New Mexico indicates that severe droughts associated with Anasazi withdrawal from Chaco Canyon at 820 cal yr BP (calendar years before present) and final abandonment of Chaco Canyon, Mesa Verde, and the Kayenta area at 650 cal yr BP may have impacted much of the western United States.During the middle Holocene (informally defined in this paper as extending from 8000 to 3000 cal yr BP), magnetic susceptibility values of sediments deposited in Pyramid Lake's deep basin were much larger than late-Holocene (3000-0 cal yr BP) values, indicating the presence of a shallow lake. In addition, the mean ?? 18O value of CaCO3 precipitated between 6500 and 3430 cal yr BP was 1.6??? less than the mean value of CaCO3 precipitated after 2740 cal yr BP. Numerical calculations indicate that the shift in the ??18O baseline probably resulted from a transition to a wetter (> 30%) and cooler (3-5??C) climate. The existence of a relatively dry and warm middle-Holocene climate in the Truckee River - Pyramid Lake system is generally consistent with archeological, sedimentological, chemical, physical, and biological records from various sites within the Great Basin of the western United States. Two high-resolution Holocene-climate records are now available from the Pyramid and Owens lake basins which suggest that the Holocene was characterized by five climatic intervals. TIC and ??18O records from Owens Lake indicate that the first interval in the early Holocene

  15. Holocene multidecadal and multicentennial droughts affecting Northern California and Nevada

    NASA Astrophysics Data System (ADS)

    Benson, Larry; Kashgarian, Michaele; Rye, Robert; Lund, Steve; Paillet, Fred; Smoot, Joseph; Kester, Cynthia; Mensing, Scott; Meko, Dave; Lindström, Susan

    2002-02-01

    Continuous, high-resolution δ18O records from cored sediments of Pyramid Lake, Nevada, indicate that oscillations in the hydrologic balance occurred, on average, about every 150 years (yr) during the past 7630 calendar years (cal yr). The records are not stationary; during the past 2740 yr, drought durations ranged from 20 to 100 yr and intervals between droughts ranged from 80 to 230 yr. Comparison of tree-ring-based reconstructions of climate change for the past 1200 yr from the Sierra Nevada and the El Malpais region of northwest New Mexico indicates that severe droughts associated with Anasazi withdrawal from Chaco Canyon at 820 cal yr BP (calendar years before present) and final abandonment of Chaco Canyon, Mesa Verde, and the Kayenta area at 650 cal yr BP may have impacted much of the western United States.During the middle Holocene (informally defined in this paper as extending from 8000 to 3000 cal yr BP), magnetic susceptibility values of sediments deposited in Pyramid Lake's deep basin were much larger than late-Holocene (3000-0 cal yr BP) values, indicating the presence of a shallow lake. In addition, the mean δ18O value of CaCO 3 precipitated between 6500 and 3430 cal yr BP was 1.6‰ less than the mean value of CaCO 3 precipitated after 2740 cal yr BP. Numerical calculations indicate that the shift in the δ18O baseline probably resulted from a transition to a wetter (>30%) and cooler (3-5°C) climate. The existence of a relatively dry and warm middle-Holocene climate in the Truckee River-Pyramid Lake system is generally consistent with archeological, sedimentological, chemical, physical, and biological records from various sites within the Great Basin of the western United States. Two high-resolution Holocene-climate records are now available from the Pyramid and Owens lake basins which suggest that the Holocene was characterized by five climatic intervals. TIC and δ18O records from Owens Lake indicate that the first interval in the early Holocene

  16. Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland

    NASA Astrophysics Data System (ADS)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Zalzal, Kate

    2016-12-01

    The status of Icelandic ice caps during the early Holocene provides important constraints on North Atlantic climate and the mechanisms behind natural climate variability. A recent study postulates that Drangajökull on Vestfirðir, Iceland, persisted through the Holocene Thermal Maximum (HTM, 7.9-5.5 ka) and may be a relic from the last glacial period. We test this hypothesis with a suite of sediment cores from threshold lakes both proximal and distal to the ice cap's modern margin. Distal lakes document rapid early Holocene deglaciation from the coast and across the highlands south of the glacier. Sediment from Skorarvatn, a lake to the north of Drangajökull, shows that the northern margin of the ice cap reached a size comparable to its contemporary limit by ∼10.3 ka. Two southeastern lakes with catchments extending well beneath modern Drangajökull confirm that by ∼9.2 ka, the ice cap was reduced to ∼20% of its current area. A continuous 10.3ka record of biological productivity from Skorarvatn's sediment indicates local peak warmth occurred between 9 and 6.9 ka. The combination of warm and dry summers on Vestfirðir suggests that Drangajökull very likely melted completely shortly after 9.2 ka, similar to most other Icelandic ice caps.

  17. Faunal reorganisation in terrestrial mammalian communities: evidence from France during the Lateglacial-Early Holocene transition

    NASA Astrophysics Data System (ADS)

    Bridault, Anne

    2010-05-01

    The Lateglacial-Early Holocene transition is characterized by rapid oscillations between warm and cold episodes. Their impact on ecosystem dynamics was particularly pronounced in north-western Europe where hunter-gatherer societies experienced a succession of environmental transformations, including the expansion and dispersal of biotic communities and changing herbivore habitats. Recent archaeozoological studies and AMS direct dating on mammalian bones/or bone collagen allow to map and precise this process at a supra-regional scale (France). At regional scales (i.e. Paris Basin & Jura-Northern French Alps), results indicate a rapid faunal reorganisation at the end of Lateglacial that will be presented in detail. Composition of faunal assemblages remains then unchanged during the Early Holocene. By contrast, significant herbivore habitat changes are recorded during the Early Holocene by other proxies (pollen data and isotopic data) and a decrease in Red Deer size through time is evidenced by osteometrical analyses. Hypotheses regarding the kind of adaptation process experienced by the faunal communities through time will be presented. Factors that may have controlled the observed changes will be discussed.

  18. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa*1

    NASA Astrophysics Data System (ADS)

    Bettis, E. Arthur; Baker, Richard G.; Nations, Brenda K.; Benn, David W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ± 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan.

  19. Major hydrological regime change along the semiarid western coast of South America during the early Holocene

    NASA Astrophysics Data System (ADS)

    Ortega, Cristina; Vargas, Gabriel; Rutllant, José A.; Jackson, Donald; Méndez, César

    2012-11-01

    Water availability in the semiarid western coast of Chile (30-32°S) is conditioned by high interannual precipitation variability, reflecting the transition between arid subtropical and moist mid-latitude climates in the Southeastern Pacific Ocean. A paleoclimate reconstruction based on the latest Pleistocene-Holocene geological record from the Quebrada Santa Julia archeological site in Chile (31°50'S) and on modern meteorological mechanisms producing alluvial episodes in this region indicates a major change in the rainfall regime shortly after 8600 cal yr BP. This, together with other paleoclimate proxies along the west coast of South America (34°-14°S), suggests La Niña-like conditions 13,000-8600 cal yr BP. Based on sedimentological and geomorphologic evidence, we hypothesized that the absence of heavy rainfall events in northern Chile and the new hydrological regime that prevailed ca. 8600-5700 cal yr BP in north-central Chile resulted from an increase in the large-scale westerly flow over central Chile, as expected in near-neutral ENSO conditions. This atmospheric circulation anomaly is compatible with an equatorward shift of the influence of the Southeast Pacific Subtropical Anticyclone relative to the early Holocene, prior to the onset of modern ENSO variability.

  20. Olea europaea L. in the North Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene

    NASA Astrophysics Data System (ADS)

    Carrión, Yolanda; Ntinou, Maria; Badal, Ernestina

    2010-04-01

    The paper aims to define the natural distribution of Olea europaea L. var. sylvestris (Miller) Lehr. in the North Mediterranean basin during the Pleniglacial and the Early-Middle Holocene by means of the identification of its wood-charcoal and/or wood at prehistoric sites. For this purpose we have reviewed the previously available information and we have combined it with new wood-charcoal analyses data. We have taken under consideration the presence and frequency of O. europaea L. in the available wood-charcoal sequences, the characteristics of the accompanying flora, the associated chrono-cultural contexts, the broader biogeographical context and the AMS dates provided by Olea wood-charcoal or endocarps. According to the available evidence, during the Middle and Late Pleniglacial (ca 59-11.5 ka cal. BP), Olea would have persisted in thermophilous refugia located in the southern areas of the North Mediterranean basin, the southern Levant and the north of Africa. The Last Glacial Maximum (ca 22-18 ka cal. BP) probably reduced the distribution area of Olea. During the Preboreal and the Boreal (ca 11 500-8800 cal. BP) the species started to expand in the thermomediterranean bioclimatic level. In the western Mediterranean, during the Atlantic period (ca 8800-5600 cal. BP), the species became very abundant or dominant in the thermophilous plant formations and expanded to favorable enclaves outside the limits of the thermomediterranean level.

  1. Improved marine reservoir age estimation and palaeoclimate synchronisation of the early Holocene Levantine/NW-Arabian region based on identification of the S1 tephra in Dead Sea and Tayma palaeolake sediments

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Wulf, Sabine; Schwab, Markus J.; Serb, Johanna; Plessen, Birgit; Appelt, Oona; Brauer, Achim

    2017-04-01

    Due to a lack of tephras identified in marine and terrestrial palaeoclimate records from the Levantine-Arabian area, this region is still not sufficiently connected to the eastern Mediterranean tephrostratigraphical lattice. Here we report on the first finding of cryptotephra in the Holocene lacustrine sediment records of the Dead Sea and the Tayma palaeolake (NW Arabian Peninsula). The major elemental chemistry of the rhyolitic glass shards proves this tephra identical to the distal 'S1 tephra' identified in the Yammoûneh palaeolake, Lebanon (Develle et al, 2009), in a marine sediment record from the SE Levantine basin (Hamann et al., 2010) and in the Sodmein Cave archaeological site in Egypt (Barton et al., 2015). The 'S1 tephra', most likely corresponding to the early Holocene 'Dikkartın' dome eruption of the Erciyes Daǧ volcano in central Anatolia, Turkey, has been dated in the marine record at 8830 ± 140 cal yr BP. We present new age estimates of the 'S1 tephra' based on radiocarbon dating of terrestrial plant remains (Migowski et al., 2004) and pollen concentrates (Dinies et al., 2015), which reveal modelled ages of 8939 ± 83 cal yr BP in the Dead Sea sediments and 9041 ± 254 cal yr BP in Tayma. This allows the estimation of an early Holocene marine reservoir age of ca. 320 years in the SE Levantine Sea. The timing of the volcanic eruption during the early Holocene humid period, which led to the formation of sapropel S1 in the Mediterranean Sea, and the identification of the 'S1 tephra' more than 1200 km to the south are crucial for the synchronisation of marine and terrestrial palaeoclimate records in the eastern Mediterranean region. References: Barton et al., 2015. The role of cryptotephra in refining the chronology of Late Pleistocene human evolution and cultural change in North Africa. Quaternary Sci. Rev. 118, 151-169. Develle et al., 2009. Early Holocene volcanic ash fallout in the Yammoûneh lacustrine basin (Lebanon): Tephrochronological

  2. Evidence for insolation and Pacific forcing of late glacial through Holocene climate in the Central Mojave Desert (Silver Lake, CA)

    NASA Astrophysics Data System (ADS)

    Kirby, Matthew E.; Knell, Edward J.; Anderson, William T.; Lachniet, Matthew S.; Palermo, Jennifer; Eeg, Holly; Lucero, Ricardo; Murrieta, Rosa; Arevalo, Andrea; Silveira, Emily; Hiner, Christine A.

    2015-09-01

    Silver Lake is the modern terminal playa of the Mojave River in southern California (USA). As a result, it is well located to record both influences from the winter precipitation dominated San Bernardino Mountains - the source of the Mojave River - and from the late summer to early fall North American monsoon at Silver Lake. Here, we present various physical, chemical and biological data from a new radiocarbon-dated, 8.2 m sediment core taken from Silver Lake that spans modern through 14.8 cal ka BP. Texturally, the core varies between sandy clay, clayey sand, and sand-silt-clay, often with abrupt sedimentological transitions. These grain-size changes are used to divide the core into six lake status intervals over the past 14.8 cal ka BP. Notable intervals include a dry Younger Dryas chronozone, a wet early Holocene terminating 7.8 - 7.4 cal ka BP, a distinct mid-Holocene arid interval, and a late Holocene return to ephemeral lake conditions. A comparison to potential climatic forcings implicates a combination of changing summer - winter insolation and tropical and N Pacific sea-surface temperature dynamics as the primary drivers of Holocene climate in the central Mojave Desert.

  3. Penetration of Atlantic Walker Circulation Into East Africa During Early to mid-Holocene: Hydrogen Isotope Evidence From Sacred Lake, Mt. Kenya

    NASA Astrophysics Data System (ADS)

    Hou, J.; Russell, J. M.; Huang, Y.

    2007-12-01

    The tropics play a very important role in global climate variability, yet the mechanisms behind the tropical climate variation remain poorly understood. Here, we present a high-resolution, well-dated record from Sacred Lake, Kenya, East Africa. We measured D/H ratios of botryococcenes, a class of highly specific biomarkers produced by freshwater algae ( Botrycoccus braunii) in a sediment core obtained from this open lake. Our main goal is to examine changes in East African rainfall amount and moisture source during the past 18kyr BP. During the late Pleistocene and late Holocene, the hydrogen isotope records track local hydrological variations inferred from numerous lake level and pollen records from the region. However, during the early to mid-Holocene (10-5ka cal yr BP), the D/H values from Sacred Lake were as much as 90 per mil heavier than during the late Pleistocene and late Holocene. If the "amount effect" is the main control on the isotopic compositions of rainfall during the early to mid Holocene, Our data would suggest drier conditions, which is inconsistent with the "African Humid Period" inferred by numerous records of the mid-Holocene. We propose that the high isotopic ratios in precipitation in East Africa during the early to mid-Holocene is due to an eastward shift in the large-scale atmospheric circulation of the tropics. In East Africa, this shift involves a major increase in moisture source from the Atlantic Ocean relative to Indian Ocean. Heavier isotope ratios of precipitation originated from Atlantic Ocean result from the intensive convection and recycling of water vapor over the Congo Basin, as opposed to Indian moisture that traverses dry land masses and losses moisture rapidly. In comparison to the late Holocene, the early to mid-Holocene is characterized by relatively northerly positioning of the ITCZ and intense monsoon systems as well as weak ENSO. These factors combine to shift the walker circulation eastward, allowing the Atlantic

  4. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland

    NASA Astrophysics Data System (ADS)

    Geirsdóttir, Áslaug; Miller, Gifford H.; Axford, Yarrow; Ólafsdóttir, Sædís

    2009-10-01

    Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961-1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250-1900) as representing the

  5. Holocene climate and cultural evolution in late prehistoric-early historic West Asia

    NASA Astrophysics Data System (ADS)

    Staubwasser, Michael; Weiss, Harvey

    2006-11-01

    The precipitation climatology and the underlying climate mechanisms of the eastern Mediterranean, West Asia, and the Indian subcontinent are reviewed, with emphasis on upper and middle tropospheric flow in the subtropics and its steering of precipitation. Holocene climate change of the region is summarized from proxy records. The Indian monsoon weakened during the Holocene over its northernmost region, the Ganges and Indus catchments and the western Arabian Sea. Southern regions, the Indian Peninsula, do not show a reduction, but an increase of summer monsoon rain across the Holocene. The long-term trend towards drier conditions in the eastern Mediterranean can be linked to a regionally complex monsoon evolution. Abrupt climate change events, such as the widespread droughts around 8200, 5200 and 4200 cal yr BP, are suggested to be the result of altered subtropical upper-level flow over the eastern Mediterranean and Asia. The abrupt climate change events of the Holocene radically altered precipitation, fundamental for cereal agriculture, across the expanse of late prehistoric-early historic cultures known from the archaeological record in these regions. Social adaptations to reduced agro-production, in both dry-farming and irrigation agriculture regions, are visible in the archaeological record during each abrupt climate change event in West Asia. Chronological refinement, in both the paleoclimate and archaeological records, and transfer functions for both precipitation and agro-production are needed to understand precisely the evident causal linkages.

  6. Early Holocene to present landscape dynamics of the tectonic lakes of west-central Mexico

    NASA Astrophysics Data System (ADS)

    Castillo, Miguel; Muñoz-Salinas, Esperanza; Arce, José Luis; Roy, Priyadarsi

    2017-12-01

    Paleoclimatic reconstructions from lake sediments of central Mexico indicate that the environmental conditions in the Holocene have oscillated from cool-dry to warm-wet, thus, landscape erosion rates have been modified accordingly. The Cenozoic tectonics and volcanic activity of west-central Mexico have produced a set of lakes in warmer and drier conditions compared to lakes of central Mexico. Nevertheless, the Holocene landscape dynamics for this area remains understudied. Using age-depth models, OSL and multi-element chemistry analysis of sediments in the lakes of San Marcos and Sayula we explore the landscape dynamics from early Holocene present of west-central Mexico. Our results indicate that the sedimentation rates in San Marcos Lake notably increased from 240 yr BP to the present. Since AD 1950 the sedimentation rate in Sayula Lake rose fourfold the rates of the last 2000 years. Analysis of OSL and chemistry of major elements of sediments indicates that IRSL/BLSL strongly correlates with Ti/Al (R2 = 0.93) and with the mean monthly rainfall (R2 = 0.70). We propose that the IRSL/BLSL can be used as a proxy to infer past changes in landscape dynamics. Analysis of climatic data from the 1950s to present indicates that rainfall, and consequently water runoff, is enhanced in summers free of ENSO conditions. Extreme one-day rainfall can, however, exceed mean seasonal rainfall and occur in all phases of ENSO. Droughts are particularly severe in the phase of La Niña. Our results indicate that the erosion rate in San Marcos Lake was high from ∼8000 to ∼7000 yr BP in a period coinciding with the advance and recession of glaciers in Central Mexico, however, the erosion rates in the last 165 years have surpassed the rates of the early to mid-Holocene. By constraining the age of sediment and using environmental proxies such as the Ti/Al and IRSL/BLSL from lake sediments of Sayula and San Marcos we present the first model of landscape dynamics of this part of Mexico

  7. Millennial-scale climate variations in western Mediterranean during late Pleistocene-early Holocene: multi-proxy analyses from Padul peatbog (southern Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Toney, Jaime L.; Anderson, R. Scott; Kaufman, Darrell; Bright, Jordon; Sachse, Dirk

    2017-04-01

    Padul peatbog, located in southern Iberian Peninsula (western Mediterranean region) is a unique area for palaeoenvironmental studies due to its location, between arid and temperate climates. Previous studies showed that the Padul peatbog contains a continuous record of the last ca. 0.8-1 Ma, so it is an extraordinary site to identify glacial-interglacial phases as well as Heinrich and D-O events, linked to orbital- and suborbital-scale variations. In 2015, a new 42 m long core was taken from this area, providing an excellent sediment record probably for the last ca. 300,000 years. This study is focused on the paleoenvironmental and climatic reconstruction of the late Pleistocene and the early Holocene (ca. from 50,000 to 9,500 cal. yrs BP), using AMS 14C and AAR dating, high-resolution pollen analysis, lithology, continuous XRF-scanning, X-ray diffraction, magnetic susceptibility and organic geochemistry. These different proxies provide information not only about the regional environment change but also about local changes in the conditions of the Padul lake/peatbog due to variations in water temperature, pH or nutrients.

  8. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    NASA Astrophysics Data System (ADS)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  9. Early Holocene turnover, followed by stability, in a Caribbean lizard assemblage

    NASA Astrophysics Data System (ADS)

    Kemp, Melissa E.; Hadly, Elizabeth A.

    2016-03-01

    Understanding how communities are impacted by environmental perturbations is integral for addressing the ongoing biodiversity crisis that impacts ecosystems worldwide. The fossil record serves as a window into ancient interactions and the responses of communities to past perturbations. Here, we re-examine paleontological data from Katouche Bay, Anguilla, a Holocene site in the Lesser Antilles. We reveal that the site was more diverse than previously indicated, with long-term, continuous records of three genera of extant lizards (Anolis, Ameiva, and Thecadactylus), and the early Holocene presence of Leiocephalus, a large ground-dwelling lizard that has since been completely extirpated from the Lesser Antilles. The disappearance of Leiocephalus from Katouche Bay resulted in high turnover, decreased evenness, and decreased species richness-a trend that continues to the present day. Our body size reconstructions for the most abundant genus, Anolis, are consistent with the presence of only one species, Anolis cf. gingivinus, at Katouche Bay throughout the Holocene, contrary to previously published studies. Additionally, we find no evidence of dwarfism in A. cf. gingivinus, which contrasts with a global study of contemporary insular lizards. Our data reveal that the impacts of diversity loss on lizard communities are long lasting and irreversible over millennia.

  10. Reconstruction of early Holocene paleoclimate and environment in the SW Kola region, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Grekov, Ivan; Kolka, Vasiliy; Syrykh, Liudmila; Nazarova, Larisa

    2016-04-01

    In the current period of the global climate change it becomes necessary to have a clear understanding of not only the changes taking place in the components of the natural environment, but also to understand development of all interactions between those components. Quaternary terrigenic sediments and lakes of the Kola Peninsula store information about the development of the region in the Late Glacial and Holocene: movements of the glacier, neotectonic activity, post-glacial rebound, formation and development of natural environments after deglaciation. Multi-proxy study of landscapes evolution of the Kola Peninsula in the Late Quaternary will help to establish a detailed reconstruction of climatic and environmental changes of this poor studied sector of the Arctic. Quaternary history on the Kola Peninsula is represented mainly by Late Pleistocene and Holocene sediments covering the Baltic Shield (Lavrova, 1960; Evzerov, 2015). Several palaeolimnological investigations in the Baltic Shield area have been performed earlier (Donner et al., 1977; Anundsen, 1985; Berglund, 2004). Studies of the southern coast of the Kola Peninsula have shown that marine transgression took place in the Late Pleistocene that was then replaced by a regression with variable speed. The slowdown of the uplift of the area took place between 8800 - 6800 BP (cal. years) and corresponded to the time of the Tapes transgression of the Arctic Ocean (Evzerov et al. 2010; Kolka, et al., 2013). Palaeoclimatic studies based on micro-paleontological analyzes indicate uneven development of the Kola Peninsula landscapes in the Late Glacial and Early Holocene. The northern coast of the Peninsula became free of ice first. In this area tundra-steppe vegetation was established for a short time and was later replaced by tundra (Snyder et al, 2000). Southern part of the Kola Peninsula was dependent on the conditions of deglaciation of the White Sea basin and cleared of ice much later (Evzerov et al., 2010; Kolka

  11. Not Just the 8.2 event: Dynamic Early Holocene Climate in Arctic Canada

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Briner, J. P.; Miller, G. H.; Francis, D. R.

    2006-12-01

    Temperature reconstructions from a lake in the eastern Canadian Arctic indicate that peak warmth in the early Holocene was interrupted by two abrupt, short-lived temperature reversals at ~9.l and ~8.5 ka. Summer temperatures at Lake CF8, Baffin Island (~500 km west of Greenland) are inferred from subfossil midge (Chironomidae) assemblages. Our results indicate that the site, like others on Baffin Island, experienced exceptionally warm summers (almost 5°C warmer than present) through much of the early Holocene, presumably in response to enhanced summer insolation. After 1000 years of very warm, stable climate, warmth was interrupted by two discrete cold reversals at ~9.1 and ~8.5 ka, during which multiple cold-stenothermous midge taxa appeared in the lake and summer temperatures dropped more than 3°C. These two clearly-defined reversals, well beyond the range of background variability, were of similar amplitude and duration, and were separated by several centuries of near-peak warmth. The only Holocene events of comparable amplitude at this site are the rapid onset of Holocene warmth, and the more gradual Neoglacial cooling after 8 ka. Abrupt cooling events over the Baffin region are consistent with model simulations of the impacts of freshwater outbursts into the Labrador Sea, such as the Lake Agassiz outburst flood that occurred ~8.4 ka. That there are two discrete events recorded at this site indicates that the "8.2 event" was not uniquely significant in this region; rather, the period between approximately ~9.2 and 8 ka was characterized by repeated climate fluctuations forced by multiple outburst floods or other mechanisms. Thus global correlations among paleoclimate records need not assume that climate perturbations during this time period necessarily correlate with the draining of Lake Agassiz or the 8.2 ka cooling in central Greenland.

  12. Pine nut use in the Early Holocene and beyond: The danger cave archaeobotanical record

    USGS Publications Warehouse

    Rhode, D.; Madsen, D.B.

    1998-01-01

    Nuts of limber pine (Pinus flexilis) from Early Holocene strata in Danger Cave, Utah, are distinguishable by seed-coat sculpturing from pine nuts of single-needled pinyon (Pinus monophylla), which occur in strata dating <7000 years BP. Owls and other taphonomic agents may deposit pine nuts in archaeological sites, but the morphology of the pine nuts in Danger Cave strongly indicate they were deposited by human foragers who brought small quantities with them for food for at least the last 7500 years. Large-scale transport of pine nuts to Danger Cave from distant hinterlands is unlikely, however. The seamless transition from limber pine to pinyon pine nuts in the Danger Cave record suggests that foragers who had utilized limber pine as a food resource easily switched to using pinyon pine nuts when pinyon pine migrated into the region at the close of the Early Holocene.

  13. Early and mid-Holocene age for the Tempanos moraines, Laguna San Rafael, Patagonian Chile

    NASA Astrophysics Data System (ADS)

    Harrison, Stephan; Glasser, Neil F.; Duller, Geoff A. T.; Jansson, Krister N.

    2012-01-01

    Data about the nature and timing of Holocene events from the Southern Hemisphere, especially in southern South America, are required to provide insight into the extent and nature of past climate change in a region where land-based records are restricted. Here we present the first use of single grain Optically Stimulated Luminescence (OSL) dating of a moraine sequence recording glacial advance along the western side of the Patagonian Icefields. Dates from the Tempanos moraines at Laguna San Rafael (LSR) show that the San Rafael Glacier (SRG) advanced to maximum Holocene positions during the period 9.3 to 9.7 ka and at 5.7 ka. Outwash lying beneath the moraine in its northern portion, dated to 7.7 ka, indicates that the glacier front was also advanced at this time. Since these advances span both the regional early Holocene warm-dry phase (11.5 ka to 7.8 ka) and the subsequent cooling and rise in precipitation in the mid-late Holocene (since 6.6 ka) we infer that the advances of the SRG are not simply climate-driven, but that the glacier has also probably responded strongly to non-climatic stimuli such as internal ice dynamics and the transition between calving and non-calving. Many westwards-flowing glaciers in Patagonia were probably calving during much of the Late Pleistocene and Holocene, so we conclude that establishing robust glacial chronologies where climatic and non-climatic factors cannot be distinguished is likely to remain a challenge.

  14. Early- to Mid-Holocene hydroclimate shifts in tropical East Africa: the multi-proxy sediment record from Lake Rutundu, Kenya

    NASA Astrophysics Data System (ADS)

    De Cort, Gijs; Creutz, Mike; Barao, Lucia; Conley, Daniel; Haug, Gerald; Bodé, Samuel; Blaauw, Maarten; Engstrom, Dan; Verschuren, Dirk

    2015-04-01

    Following the generally arid conditions of the Last Glacial Maximum (LGM), a large part of the African continent experienced the Early to Mid-Holocene as a much more humid period than today. This so-called African Humid Period (AHP) coincided with high summertime insolation over the Northern Hemisphere subtropics, causing invigorated monsoons to create moist conditions over the northern parts of the continent. Similarly, equatorial and even low-latitude southeastern Africa experienced a wetter climate due to the post-glacial increase in atmospheric greenhouse gasses ultimately leading to altered Atlantic and Indian Ocean monsoon dynamics. The timing and abruptness of the onset and ending of the AHP in the different regions of the continent have been the subject of major discussion. On the other hand, shorter-lived climate fluctuations within the AHP have received much less attention, due to a scarcity of well-dated, high-resolution African paleoclimate records spanning the entire Holocene. In this study we used the sediment record of Lake Rutundu, a high-altitude crater lake on Mount Kenya, to document multidecadal to millennial-scale hydroclimate variability on the East African equator from the LGM to the present. A multiproxy approach combining core-surface scanning techniques (magnetic susceptibility, X-ray fluorescence) and close-interval bulk-sediment analyses (organic matter and biogenic Si content, grain size, organic δ15N and δ13C) resulted in a high-resolution record firmly anchored in time by an age model based on 210Pb dating and sixteen calibrated radiocarbon ages. This new Lake Rutundu hydroclimate record confirms that moister conditions following the LGM returned to East Africa ca.16 kyr BP, and it contains a perfectly timed Younger Dryas episode (12.8-11.5 kyr BP) of intermittent drought. We find that the Early- to Mid-Holocene period, which in African records is often described as uniformly wet, was in fact punctuated by three distinct, century

  15. European Bison as a Refugee Species? Evidence from Isotopic Data on Early Holocene Bison and Other Large Herbivores in Northern Europe

    PubMed Central

    Bocherens, Hervé; Hofman-Kamińska, Emilia; Drucker, Dorothée G.; Schmölcke, Ulrich; Kowalczyk, Rafał

    2015-01-01

    According to the refugee species concept, increasing replacement of open steppe by forest cover after the last glacial period and human pressure had together forced European bison (Bison bonasus)—the largest extant terrestrial mammal of Europe—into forests as a refuge habitat. The consequent decreased fitness and population density led to the gradual extinction of the species. Understanding the pre-refugee ecology of the species may help its conservation management and ensure its long time survival. In view of this, we investigated the abundance of stable isotopes (δ13C and δ15N) in radiocarbon dated skeletal remains of European bison and other large herbivores—aurochs (Bos primigenius), moose (Alces alces), and reindeer (Rangifer tarandus)—from the Early Holocene of northern Europe to reconstruct their dietary habits and pattern of habitat use in conditions of low human influence. Carbon and nitrogen isotopic compositions in collagen of the ungulate species in northern central Europe during the Early Holocene showed significant differences in the habitat use and the diet of these herbivores. The values of the δ13C and δ15N isotopes reflected the use of open habitats by bison, with their diet intermediate between that of aurochs (grazer) and of moose (browser). Our results show that, despite the partial overlap in carbon and nitrogen isotopic values of some species, Early Holocene large ungulates avoided competition by selection of different habitats or different food sources within similar environments. Although Early Holocene bison and Late Pleistocene steppe bison utilized open habitats, their diets were significantly different, as reflected by their δ15N values. Additional isotopic analyses show that modern populations of European bison utilize much more forested habitats than Early Holocene bison, which supports the refugee status of the species. PMID:25671634

  16. Comparison of eastern tropical Pacific TEX86 and Globigerinoides ruber Mg/Ca derived sea surface temperatures: Insights from the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jennifer E.; Schmidt, Matthew W.; Bianchi, Thomas S.; Smith, Richard W.; Shields, Michael R.; Marcantonio, Franco

    2016-01-01

    The use of the TEX86 temperature proxy has thus far come to differing results as to whether TEX86 temperatures are representative of surface or subsurface conditions. In addition, although TEX86 temperatures might reflect sea surface temperatures based on core-top (Holocene) values, this relationship might not hold further back in time. Here, we investigate the TEX86 temperature proxy by comparing TEX86 temperatures to Mg/Ca temperatures of multiple species of planktonic foraminifera for two sites in the eastern tropical Pacific (on the Cocos and Carnegie Ridges) across the Holocene and Last Glacial Maximum. Core-top and Holocene TEX86H temperatures at both study regions agree well, within error, with the Mg/Ca temperatures of Globigerinoides ruber, a surface dwelling planktonic foraminifera. However, during the Last Glacial Maximum, TEX86H temperatures are more representative of upper thermocline temperatures, and are offset from G. ruber Mg/Ca temperatures by 5.8 °C and 2.9 °C on the Cocos Ridge and Carnegie Ridge, respectively. This offset between proxies cannot be reconciled by using different TEX86 temperature calibrations, and instead, we suggest that the offset is due to a deeper export depth of GDGTs at the LGM. We also compare the degree of glacial cooling at both sites based on both temperature proxies, and find that TEX86H temperatures greatly overestimate glacial cooling, especially on the Cocos Ridge. This study has important implications for applying the TEX86 paleothermometer in the eastern tropical Pacific.

  17. Vegetation history of the English chalklands: a mid-Holocene pollen sequence from the Caburn, East Sussex

    NASA Astrophysics Data System (ADS)

    Waller, Martyn P.; Hamilton, Sue

    2000-03-01

    A pollen diagram has been produced from the base of the Caburn (East Sussex) that provides a temporally and spatially precise record of vegetation change on the English chalklands during the mid-Holocene (ca. 7100 to ca. 3800 cal. yr BP). During this period the slopes above the site appear to have been well-wooded, with vegetation analogous to modern Fraxinus-Acer-Mercurialis communities in which Tilia was also a prominent constituent. However, scrub and grassland taxa such as Juniperus communis, Cornus sanguinea and Plantago lanceolata are also regularly recorded along with, from ca. 6000 cal. yr BP onwards, species specific to Chalk grassland (e.g. Sanguisorba minor). This supports suggestions that elements of Chalk grassland persisted in lowland England through the Holocene. Such communities are most likely to have occupied the steepest slopes, although the processes that maintained them are unclear. Human interference with vegetation close to the site may have begun as early as ca. 6350 cal. yr BP and initially involved a woodland management practice such as coppicing. From the primary Ulmus decline (ca. 5700 cal. yr BP) onwards, phases of limited clearance accompanied by cereal cultivation occurred. Taxus baccata was an important component of the woodland which regenerated between these phases.

  18. Holocene climate variability in the western Mediterranean through a multiproxy analysis from Padul peat bog (Sierra Nevada, Spain)

    NASA Astrophysics Data System (ADS)

    Ramos-Román, María J.; Jiménez-Moreno, Gonzalo; Camuera, Jon; García-Alix, Antonio; Anderson, R. Scott; Jiménez-Espejo, Francisco J.; Sachse, Dirk

    2017-04-01

    The Iberian Peninsula, located in the Mediterranean area, is an interesting location for paleoclimate studies due to its geographic situation between arid and humid climates. Sediments from peat bogs and lakes from Sierra Nevada, in southeastern Iberian Peninsula, have been very informative in terms of how vegetation and wetland environments were impacted by Holocene climate change. These studies are essential if we want to understand the past climate change in the area, which is the key to identify the possible environmental response of the Sierra Nevada ecosystems to future climate scenarios. Padul basin, located in the southwest of the Sierra Nevada mountain range, contains a ca. 100 m-thick peat bog sedimentary sequence that was deposited during the past 1 Ma making this area interesting for paleoenvironmental and paleoclimatic reconstructions. A new 43 m-long sedimentary record has recently been retrieved from the Padul peat bog. In this study we have developed a multiproxy analysis of the Holocene part of the Padul-15-05 core including pollen analysis, XRF-core scanner, magnetic susceptibility and organic geochemistry, supported by an age control based on AMS radiocarbon dates, providing with information about vegetation and climate variability during the past 9.9 cal ka BP. This multiproxy reconstruction of the Padul-15-05 evidences the Mediterranean as a sensitive area with respect to global-scale climate system, showing relevant climate episodes such as the ca. 8, 7.5, 6.5 and 5.5 cal ka BP events during the early and middle Holocene. The trend to aridification to the late Holocene is interrupted by more arid and humid periods as the Iberian Roman Humid Period (from ca. 3 to 1.6 cal ka BP), the Dark Ages (from ca. 1.5 to 1.1 cal ka BP), the Medieval Climate Anomaly (from ca. 1.1 to 1.3 cal ka BP) and the Little Ice Age period (from ca. 500 to 100 cal yr BP).

  19. Late Pleistocene/Early Holocene Evidence of Prostatic Stones at Al Khiday Cemetery, Central Sudan

    PubMed Central

    Usai, Donatella

    2017-01-01

    The recovery of three stone-like ovoid objects within the burial of a pre-Mesolithic (Late Pleistocene/Early Holocene) individual at Al Khiday cemetery (Central Sudan) raises the question of the nature and origin of these objects. The position in which the objects were found in relation to the human skeleton suggested a pathological condition affecting the individual, possibly urinary bladder, kidney stones or gallstones. To solve this issue, a multi-analytical approach, consisting of tomographic, microstructural and compositional analyses, was therefore performed. Based on their microstructure and mineralogical composition, consisting of hydroxylapatite and whitlockite, the investigated stones were identified as primary (endogenous) prostatic calculi. In addition, the occurrence of bacterial imprints also indicates on-going infectious processes in the individual. This discovery of the earliest known case of lithiasis extends the appearance of prostatic stones into the Late Pleistocene/Early Holocene, a disease which therefore can no longer be considered exclusive to the modern era, but which also affected prehistoric individuals, whose lifestyle and diet were significantly different to our own. PMID:28122013

  20. Holocene fire activity and vegetation response in South-Eastern Iberia

    NASA Astrophysics Data System (ADS)

    Gil-Romera, Graciela; Carrión, José S.; Pausas, Juli G.; Sevilla-Callejo, Miguel; Lamb, Henry F.; Fernández, Santiago; Burjachs, Francesc

    2010-05-01

    Since fire has been recognized as an essential disturbance in Mediterranean landscapes, the study of long-term fire ecology has developed rapidly. We have reconstructed a sequence of vegetation dynamics and fire changes across south-eastern Iberia by coupling records of climate, fire, vegetation and human activities. We calculated fire activity anomalies (FAAs) in relation to 3 ka cal BP for 10-8 ka cal BP, 6 ka cal BP, 4 ka cal BP and the present. For most of the Early to the Mid-Holocene uneven, but low fire events were the main vegetation driver at high altitudes where broadleaved and coniferous trees presented a highly dynamic post-fire response. At mid-altitudes in the mainland Segura Mountains, fire activity remained relatively stable, at similar levels to recent times. We hypothesize that coastal areas, both mountains and lowlands, were more fire-prone landscapes as biomass was more likely to have accumulated than in the inland regions, triggering regular fire events. The wet and warm phase towards the Mid-Holocene (between ca 8 and 6 ka cal BP) affected the whole region and promoted the spread of mesophytic forest co-existing with Pinus, as FAAs appear strongly negative at 6 ka cal BP, with a less important role of fire. Mid and Late Holocene landscapes were shaped by an increasing aridity trend and the rise of human occupation, especially in the coastal mountains where forest disappeared from ca 2 ka cal BP. Mediterranean-type vegetation (evergreen oaks and Pinus pinaster- halepensis types) showed the fastest post-fire vegetation dynamics over time.

  1. Climate Change in Lowland Central America During the Late Deglacial and Early Holocene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillesheim, M B; Hodell, D A; Leyden, B W

    2005-02-08

    The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition ({approx}11,250 to 7,500 cal yr BP) inferred from sediment cores retrieved in Lake Peten Itza, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by {approx}11,250 cal yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11,250 to 10,350 cal yr BP, during the Preboreal period, lithologic changes in sedimentsmore » from deep-water cores (>50 m below modern water level) indicate several wet-dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1-4) occurred at 11,200, 10,900, 10,700, and 10,400 cal yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10,350 cal yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Peten Itza with other records from the circum-Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high-latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores-Bermuda high-pressure system. This mechanism operated on millennial-to-submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC).« less

  2. Middle Holocene thermal maximum in eastern Beringia

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.; Bartlein, P. J.

    2015-12-01

    A new systematic review of diverse Holocene paleoenvironmental records (Kaufman et al., Quat. Sci. Rev., in revision) has clarified the primary multi-centennial- to millennial-scale trends across eastern Beringia (Alaska, westernmost Canada and adjacent seas). Composite time series from midges, pollen, and biogeochemical indicators are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies. The paleo observations are also compared with recently published simulations (Bartlein et al., Clim. Past Discuss., 2015) that used a regional climate model to simulate the effects of global and regional-scale forcings at 11 and 6 ka. During the early Holocene (11.5-8 ka), rather than a prominent thermal maximum as suggested previously, the newly compiled paleo evidence (mostly sensitive to summer conditions) indicates that temperatures were highly variable, at times both higher and lower than present, although the overall lowest average temperatures occurred during the earliest Holocene. During the middle Holocene (8-4 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. The paleo evidence for low and variable temperatures during the early Holocene contrasts with more uniformly high temperatures during the middle Holocene and agrees with the climate simulations, which show that temperature in eastern Beringia was on average lower at 11 ka and higher at 6 ka than at present (pre-industrial). Low temperatures during the early Holocene can be attributed in part to the summer chilling caused by flooding the continental shelves, whereas the mid-Holocene thermal maximum was likely driven by the loss of the Laurentide ice sheet, rise in greenhouse gases, higher-than-present summer insolation, and expansion of forest over tundra.

  3. Holocene hydrological changes and human presence in NW Arabia: Insights from lipid biomarker analysis of the Tayma palaeolake sediment record

    NASA Astrophysics Data System (ADS)

    Dräger, Nadine; Schwab, Valérie F.; Plessen, Birgit; Neugebauer, Ina; Dinies, Michèle; Engel, Max; Brauer, Achim; Gleixner, Gerd

    2017-04-01

    Holocene hydrological changes in NW Arabia and their influence on human migration and settlement are scarcely studied due to the lack of suitable climate archives. In particular, mechanisms and sources of increased moisture availability as well as the onset of oasis cultivation and culture during the early Holocene humid period are still not well understood. Here, we present the first Holocene lipid biomarker record of the Arabian Peninsula from the Tayma palaeolake sediment sequence. We applied a combined approach of aquatic, terrestrial and faecal lipid biomarker and compound specific hydrogen isotope analyses, which allow tracing both hydrological and anthropogenic signals in the sediment deposits. Our investigations focused on the early Holocene annually laminated (varved) sediment section (ca. 8500 to 8000 cal. a BP) presenting a phase of maximum lake levels probably caused by increased moisture availability (Dinies et al., 2015; Engel et al., 2012). During the early Holocene high lake level phase our results show increased concentrations of long-chain n-alkanes and faecal biomarkers suggesting grassland expansion and probably human occupation. The increase in grassland during this time is further supported by results from pollen analysis (Dinies et a., 2015). However, the increase in n-alkanes and faecal biomarkers did not occur simultaneously. While the rise of n-alkane concentrations predates the onset of varved sediments by about one century, the increase in faecal biomarker coincides with the beginning of varve preservation. Moreover, comparisons with sedimentological and geochemical data (i.e. diatom layer thickness, organic carbon content, δ13Ccarbonate) suggest a coincidence of highest concentrations of faecal biomarkers and increased lake productivity. We discuss possible causes for these coincidences including prehistoric human activities as well as climate and environmental changes. This study is a contribution to the research project "CLEAR

  4. The Bonneville Estates Rockshelter rodent fauna and changes in Late Pleistocene-Middle Holocene climates and biogeography in the Northern Bonneville Basin, USA

    NASA Astrophysics Data System (ADS)

    Schmitt, Dave N.; Lupo, Karen D.

    2012-07-01

    Excavations at Bonneville Estates Rockshelter, Nevada recovered rodent remains from stratified deposits spanning the past ca. 12,500 14C yr BP (14,800 cal yr BP). Specimens from horizons dating to the late Pleistocene and early Holocene include species adapted to montane and moist and cool habitats, including yellow-bellied marmot (Marmota flaviventris) and bushy-tailed woodrat (Neotoma cinerea). Shortly after 9000 14C BP (10,200 cal yr BP) these mammals became locally extinct, or nearly so, taxonomic diversity declined, and the region became dominated by desert woodrats (Neotoma lepida) and other species well-adapted to xeric, low-elevation settings. The timing and nature of changes in the Bonneville Estates rodent fauna are similar to records reported from nearby Homestead and Camels Back caves and provide corroborative data on terminal Pleistocene-early Holocene environments and mammalian responses to middle Holocene desertification. Moreover, the presence of northern pocket gopher (Thomomys talpoides) at Bonneville Estates adds to a sparse regional record for that species and, similar to Homestead Cave, it appears that the ca. 9500 14C yr BP (10,800 cal yr BP) replacement of the northern pocket gopher by Botta's pocket gopher in the Great Salt Lake Desert vicinity was also in response to climate change.

  5. Extensive Glacier Advances During the Pleistocene-Holocene Transition on Svalbard

    NASA Astrophysics Data System (ADS)

    Ingolfsson, O.; Farnsworth, W. R.; Allaart, L.; Håkansson, L.; Schomacker, A.

    2017-12-01

    A variety of data suggest extensive glacier advances on Svalbard in connection with the Pleistocene-Holocene transition, during period of regional warming. We present a study of a well-constrained end moraine formed during the Lateglacial-early Holocene transition in De Geerbukta, NE Svalbard. The landform was deposited by an outlet glacier re-advancing into a fjord suggesting a far more extended position than the late Holocene maximum. We compare the synchronicity of this glacier advance to climate and 15 other proposed Lateglacial-Early Holocene glacier advances in Svalbard. The evidence suggests that the Lateglacial-Early Holocene glaciers were much more dynamic than hitherto recognized, exhibited re-advances and extended well beyond the extensively studied late Holocene glacial expansion. We suggest that the culmination of the Neoglacial advances during the Little Ice Age does not mark the Holocene maximum extent of most Svalbard glaciers; it is just the most studied and most visible in the geological record. Furthermore, the evidence suggests that the final phase of Svalbard deglaciation, after the last major glaciation, was characterized by widespread advances of Svalbard outlet glaciers. The presentation will discuss the implications of this.

  6. Holocene temperature history of northern Iceland inferred from subfossil midges

    NASA Astrophysics Data System (ADS)

    Axford, Yarrow; Miller, Gifford H.; Geirsdóttir, Áslaug; Langdon, Peter G.

    2007-12-01

    The Holocene temperature history of Iceland is not well known, despite Iceland's climatically strategic location at the intersection of major surface currents in the high-latitude North Atlantic. Existing terrestrial records reveal spatially heterogeneous changes in Iceland's glacier extent, vegetation cover, and climate over the Holocene, but these records are temporally discontinuous and mostly qualitative. This paper presents the first quantitative estimates of temperatures throughout the entire Holocene on Iceland. Mean July temperatures are inferred based upon subfossil midge (Chironomidae) assemblages from three coastal lakes in northern Iceland. Midge data from each of the three lakes indicate broadly similar temperature trends, and suggest that the North Icelandic coast experienced relatively cool early Holocene summers and gradual warming throughout the Holocene until after 3 ka. This contrasts with many sites on Iceland and around the high-latitude Northern Hemisphere that experienced an early to mid-Holocene "thermal maximum" in response to enhanced summer insolation forcing. Our results suggest a heightened temperature gradient across Iceland in the early Holocene, with suppressed terrestrial temperatures along the northern coastal fringe, possibly as a result of sea surface conditions on the North Iceland shelf.

  7. Great Basin Archaeology During the Middle Holocene: a Reflection of Environmental Change

    NASA Astrophysics Data System (ADS)

    Wriston, T.

    2008-12-01

    Varying types of proxy data in the Great Basin of the western United States suggest that the environment changed dramatically during the mid-Holocene. Lake, marsh, and spring systems dried; and dune fields, first established at the end of the Pleistocene, where again activated as sediments were swept from drying basin lowlands. Plant communities reorganized and migrated along elevation gradients to adapt to these changing conditions, and animal populations followed. However, recent data suggests that conditions during the middle Holocene were variable. Minimally, three distinct periods can be recognized, herein named: the Initial Middle Holocene (ca. 8000 to 5800 cal yr BP), the Middle Holocene Gap (ca. 5800 to 5200 cal yr BP), and the Terminal Middle Holocene (ca. 5200 to 4000 cal yr BP). Depending on location and the type of proxy data studied, these periods can vary in their character and timing, but their sequence is increasingly recognized in records of both regional and global-scale. The Initial Middle Holocene is the driest and most volatile of the three periods, with a shift from winter-to summer-dominated precipitation, often delivered by torrential storms. Conversely, the Middle Holocene Gap is a relatively mesic interval with increased winter precipitation and cooler temperatures. A shift towards drier conditions is again evidenced during the Terminal Middle Holocene; however, conditions are never again as dry or as volatile as during the Initial Middle Holocene. The archaeological signature of the Great Basin during the middle Holocene reflects adaptation to this changing environment. During the Initial Middle Holocene, archaeological sites are relatively scarce, and when present, are near water sources substantial enough to persist through the intense drought. The uplands became a focus of sustained seasonal use for the first time as increasingly diverse resources and environments are routinely exploited. It follows that milling gear is a regular and

  8. A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication

    PubMed Central

    Kenney, William F.; Brenner, Mark; Curtis, Jason H.; Arnold, T. Elliott; Schelske, Claire L.

    2016-01-01

    We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used 210Pb and 14C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50–100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century. PMID:26789518

  9. Younger Dryas to Early Holocene paleoclimate in Cantabria (N Spain): Constraints from speleothem Mg, annual fluorescence banding and stable isotope records

    NASA Astrophysics Data System (ADS)

    Rossi, Carlos; Bajo, Petra; Lozano, Rafael P.; Hellstrom, John

    2018-07-01

    The Younger Dryas (YD) stadial represents the most abrupt climate change of the Earth's recent history. Thus, understanding its causes and different local responses is relevant for Quaternary paleoclimatology. We present a speleothem high-resolution proxy record of the Lateglacial to Early Holocene paleoclimate of the Cantabrian Cordillera (N Spain), a strategic location to evaluate the influence of North Atlantic events such as the YD on South-Western Europe. Fluorescence lamination, growth-rate, stable-isotope, and [Mg] records from stalagmite SIR-1 were dated using an age-depth model constrained by U-Th dates and annual-lamina counting. The YD is recorded as a prominent positive δ13C excursion whose chronology (12.95 ± 0.14 to 11.62 ± 0.16 ka) and shape closely agree with the GS-1 stadial as defined in Greenland ice, supporting the event synchronicity in both areas. A colder and drier YD climate limited soil productivity and dripwater availability, leading to higher δ13C and [Mg], reduced growth rate, and virtually absent fluorescence lamination. The early YD record (until ∼12.5 ka) reflects increasing aridity, whereas the late YD (from ∼12.2 ka on) shows the opposite trend. At the YD boundaries, temperature changes influenced the [Mg] record by modifying the Mg partition into calcite. However, this effect was superseded by major changes in dripwater Mg/Ca linked to rainfall variations. During the Early Holocene, the Arnero Sierra was forested and had a relatively warm and humid seasonal climate, indicated in SIR-1 by higher growth rates, lower δ13C and [Mg], and well-developed fluorescent lamination. Similar to other high-resolution stalagmitic records of the Cordillera, from ∼8.5 to 8.0 ka SIR-1 reflects a temporary trend of increasing aridity.

  10. Who were the Nataruk people? Mandibular morphology among late Pleistocene and early Holocene fisher-forager populations of West Turkana (Kenya).

    PubMed

    Mounier, Aurélien; Correia, Maria; Rivera, Frances; Crivellaro, Federica; Power, Ronika; Jeffery, Joe; Wilshaw, Alex; Foley, Robert A; Mirazón Lahr, Marta

    2018-05-29

    Africa is the birthplace of the species Homo sapiens, and Africans today are genetically more diverse than other populations of the world. However, the processes that underpinned the evolution of African populations remain largely obscure. Only a handful of late Pleistocene African fossils (∼50-12 Ka) are known, while the more numerous sites with human fossils of early Holocene age are patchily distributed. In particular, late Pleistocene and early Holocene human diversity in Eastern Africa remains little studied, precluding any analysis of the potential factors that shaped human diversity in the region, and more broadly throughout the continent. These periods include the Last Glacial Maximum (LGM), a moment of extreme aridity in Africa that caused the fragmentation of population ranges and localised extinctions, as well as the 'African Humid Period', a moment of abrupt climate change and enhanced connectivity throughout Africa. East Africa, with its range of environments, may have acted as a refugium during the LGM, and may have played a critical biogeographic role during the heterogene`ous environmental recovery that followed. This environmental context raises a number of questions about the relationships among early Holocene African populations, and about the role played by East Africa in shaping late hunter-gatherer biological diversity. Here, we describe eight mandibles from Nataruk, an early Holocene site (∼10 Ka) in West Turkana, offering the opportunity of exploring population diversity in Africa at the height of the 'African Humid Period'. We use 3D geometric morphometric techniques to analyze the phenotypic variation of a large mandibular sample. Our results show that (i) the Nataruk mandibles are most similar to other African hunter-fisher-gatherer populations, especially to the fossils from Lothagam, another West Turkana locality, and to other early Holocene fossils from the Central Rift Valley (Kenya); and (ii) a phylogenetic connection may have

  11. Nile Delta vegetation response to Holocene climate variability

    USGS Publications Warehouse

    Bernhardt, Christopher E.; Horton, Benjamin P.; Stanley, Jean-Daniel

    2012-01-01

    A 7000 yr palynologic record from Burullus Lagoon, Nile Delta, Egypt, is assessed to investigate changes in terrestrial vegetation in response to Nile flow. Previous studies in this region have shown that sea-level rise in the early to mid-Holocene, and markedly increased human land use during the past several centuries, altered vegetation in and around the lagoon. The pollen record from this study documents changes in delta vegetation that likely reflect variations in Nile flow. We suggest that Cyperaceae pollen is a sensitive marker of precipitation over the Nile headwaters and the resultant Nile flow. Decreases in Cyperaceae pollen, interpreted as a marker for diminished Nile flow, as well as the increase in relative abundance of microscopic charcoal, occurred at ca. 6000–5500, ca. 5000, ca. 4200, and ca. 3000 cal. yr B.P. (calibrated years before present). These correspond to extreme regional and global aridity events associated with a more southerly mean position of the Intertropical Convergence Zone. These changes, also recorded by other proxy studies, indicate that several marked regional drought events affected the Nile Delta region and impacted ancient Egyptian and Middle Eastern civilizations.

  12. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios

    USGS Publications Warehouse

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio

    2000-01-01

    We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern

  13. The NAO Influence on the Early to Mid-Holocene North Atlantic Coastal Upwelling

    NASA Astrophysics Data System (ADS)

    Hernandez, A.; Cachão, M.; Sousa, P.; Trigo, R. M.; Freitas, M. C.

    2017-12-01

    Coastal upwelling regions yield some of the oceanic most productive ecosystems, being crucial for the worldwide social and economic development. Most upwelling systems, emerging cold nutrient-rich deep waters, are located in the eastern boundaries of the Atlantic and Pacific basins, and are driven by meridional wind fields parallel to the coastal shore. These winds are associated with the subsiding branch of the large-scale Anticyclonic high pressure systems that dominate the subtropical ocean basins, and therefore can be displaced or intensified within the context of past and future climate changes. However, the role of the current global warming influencing the coastal upwelling is, as yet, unclear. Therefore it is essential to derive a long-term perspective, beyond the era of instrumental measurements, to detect similar warm periods in the past that have triggered changes in the upwelling patterns. In this work, the upwelling dynamics in the Iberian North Atlantic margin during the early and mid-Holocene is reconstructed, using calcareous nannofossils from a decadally resolved estuarine sediment core located in southwestern Portugal. Results suggest that the coastal dynamics reflects changes in winds direction likely related to shifts in the NAO-like conditions. Furthermore, the reconstructed centennial-scale variations in the upwelling are synchronous with changes in solar irradiance, a major external forcing factor of the climate system that is known to exert influence in atmospheric circulation patterns. In addition, these proxy-based data interpretations are in agreement with wind field and solar irradiance simulation modelling for the mid-Holocene. Therefore, the conclusion that the solar activity via the NAO modulation controlled the North Atlantic upwelling of western Iberia during the early and mid-Holocene at decadal to centennial timescales can be derived. The financial support for attending this meeting was possible through FCT project UID/GEO/50019

  14. How Early Holocene Greening of the Afro-Asian Dust Belt Changed Sources of Mineral Dust in West Asia

    NASA Astrophysics Data System (ADS)

    Pourmand, A.; Sharifi, A.; Goes, L. M.; Clement, A. C.; Canuel, E. A.; Naderi Beni, A.; Ahmady-Birgani, H.

    2016-12-01

    Production, transport and deposition of mineral dust have significant temporal and spatial impacts on different components of the Earth systems. In modern times, dust plumes can be associated with their source origin(s) using satellite and land-based measurements and back-trajectory reconstruction of air masses. Reconstructing past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and their potential source origins. In this contribution, we present a 13,000-year record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in sources of dust over West Asia. The geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from times of high dust fluxes during the Younger Dryas, and that of the mid-late Holocene. This indicates that the composition of mineral dust deposited at the receptor site changed as a function of prevailing atmospheric circulation regimes and land exposure. Simulations of atmospheric circulation over the region show the Northern Hemisphere Westerly Jet (NHWJ) was displaced poleward across the study area during the early Holocene when solar insolation was higher. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia to dominate dust export to West Asia during this period, in contrast to the dominant western and southwest Asian and Eastern African sources that prevail during the modern period.

  15. Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ

    NASA Astrophysics Data System (ADS)

    Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela

    2017-01-01

    The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic

  16. 7300 years of vegetation history and climate for NW Malta: a Holocene perspective

    NASA Astrophysics Data System (ADS)

    Gambin, B.; Andrieu-Ponel, V.; Médail, F.; Marriner, N.; Peyron, O.; Montade, V.; Gambin, T.; Morhange, C.; Belkacem, D.; Djamali, M.

    2015-09-01

    This paper investigates the Holocene vegetation dynamics for Burmarrad in north-west Malta and provides a pollen-based quantitative palaeoclimatic reconstruction for this centrally located Mediterranean archipelago. The pollen record from this site provides new insight into the vegetation changes from 7280 to 1730 cal BP which correspond well with other regional records. The climate reconstruction for the area also provides strong correlation with southern (below 40° N) Mediterranean sites. Our interpretation suggests an initially open landscape during the early Neolithic, surrounding a large palaeobay, developing into a dense Pistacia scrubland ca. 6700 cal BP. From about 4450 cal BP the landscape once again becomes open, coinciding with the start of the Bronze Age on the archipelago. This period is concurrent with increased climatic instability (between 4500 and 3700 cal BP) which is followed by a gradual decrease in summer moisture availability in the late Holocene. During the early Roman occupation period (1972 to 1730 cal BP) the landscape remains generally open with a moderate increase in Olea. This increase, corresponds to archaeological evidence for olive oil production in the area, along with increases in cultivated crop taxa and associated ruderal species, as well as a rise in fire events. The Maltese archipelago provides important insight into vegetation, human impacts and climatic changes in an island context during the Holocene.

  17. 7300 years of vegetation history and climate for NW Malta: a Holocene perspective

    NASA Astrophysics Data System (ADS)

    Gambin, B.; Andrieu-Ponel, V.; Médail, F.; Marriner, N.; Peyron, O.; Montade, V.; Gambin, T.; Morhange, C.; Belkacem, D.; Djamali, M.

    2016-02-01

    This paper investigates the Holocene vegetation dynamics for Burmarrad in Northwest Malta and provides a pollen-based quantitative palaeoclimatic reconstruction for this centrally located Mediterranean archipelago. The pollen record from this site provides new insight into the vegetation changes from 7280 to 1730 cal BP which correspond well with other regional records. The climate reconstruction for the area also provides strong correlation with southern (below 40° N) Mediterranean sites. Our interpretation suggests an initially open landscape during the early Neolithic, surrounding a large palaeobay, developing into a dense Pistacia scrubland ca. 6700 cal BP. From about 4450 cal BP the landscape once again becomes open, coinciding with the start of the Bronze Age on the archipelago. This period is concurrent with increased climatic instability (between 4500 and 3700 cal BP) which is followed by a gradual decrease in summer moisture availability in the late Holocene. During the early Roman occupation period (1972-1730 cal BP) the landscape remains generally open with a moderate increase in Olea. This increase corresponds to archaeological evidence for olive oil production in the area, along with increases in cultivated crop taxa and associated ruderal species, as well as a rise in fire events. The Maltese archipelago provides important insight into vegetation, human impacts, and climatic changes in an island context during the Holocene.

  18. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    NASA Astrophysics Data System (ADS)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø

    2017-12-01

    High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.

  19. Towards a European tephrochronological framework for Termination 1 and the Early Holocene.

    PubMed

    Davies, Siwan M; Branch, Nicholas P; Lowe, J John; Turney, Chris S M

    2002-04-15

    The record of deposition of tephras in Europe and the North Atlantic during the period 18.5-8.0 (14)C ka BP (the Last Termination and Early Holocene) is reviewed. Altogether, 34 tephras originating from four main volcanic provinces (Iceland, the Eifel district, the Massif Central and Italy) have been identified so far in geological sequences spanning this time-interval. Most of the records have been based, until very recently, on observations of visible layers of tephras. Here, we report on the potential for extending the areas over which some of the tephras can be traced by the search for layers of micro-tephra, which are not visible to the naked eye, and on the use of geochemical methods to correlate them with known tephra horizons. This approach has greatly extended the area in Northern Europe over which the Vedde Ash can be traced. The same potential exists in southern Europe, which is demonstrated for the first time by the discovery of a distinct layer of micro-tephra of the Neapolitan Yellow Tuff in a site in the Northern Apennines in Italy, far to the north of the occurrences of visible records of this tephra. The paper closes by considering the potential for developing a robust European tephrostratigraphy to underpin the chronology of records of the Last Termination and Early Holocene, thereby promoting a better understanding of the nature, timing and environmental effects of the abrupt climatic changes that characterized this period.

  20. Tropical North Atlantic Coral-Based Sea Surface Temperature and Salinity Reconstructions From the Little Ice Age and Early Holocene

    NASA Astrophysics Data System (ADS)

    Saenger, C.; Cohen, A.; Oppo, D.; Hubbard, D.

    2006-12-01

    Understanding the magnitude and spatial extent of tropical sea surface temperature (SST) cooling during the Little Ice Age (~1400-1850 A.D.; LIA) is important for elucidating low-latitude paleoclimate, but present estimates are poorly constrained. We used Sr/Ca and δ18O variability within the aragonitic skeleton of the coral genus Montastrea to reconstruct SST and sea surface salinity (SSS) during the LIA and early Holocene (EH) in the tropical Atlantic. Four seasonally-resolved coral Sr/Ca records from St. Croix, U.S. Virgin Islands, and Bermuda indicate SST is highly correlated (r2 = 0.94) with modern Montastrea Sr/Ca and mean annual coral extension. A Sr/Ca -SST calibration that combines temperature and growth rate effects on coral Sr/Ca was applied to fossil St. Croix corals to reconstruct Caribbean climate during 5-10 year intervals of the LIA (440 ± 30 yBP) and EH (7200 ± 30; EH). Contrary to previous coral-based LIA proxy reconstructions, we find mean SST during the LIA was similar to today, but approximately 1.2°C cooler during the EH. Both periods exhibited higher amplitude seasonal variability indicating other SST estimates may be seasonally biased. Based on residual coral δ18O, we find the LIA and EH were saltier, which suggests previous cooling estimates of 1-3°C relative to today may be exaggerated by changes in seawater δ18O. Our results are consistent with a southerly migration of the Intertropical Convergence Zone (ITCZ) during the LIA, but their corroboration requires longer, high-resolution proxy reconstructions that place our two brief multi-annual coral records from the LIA and EH, respectively, within the context of multi-decadal variability.

  1. Environmental, depositional and cultural changes in the upper Pleistocene and early Holocene; the Cinglera del Capello Sequence (Capellades, Spain)

    USGS Publications Warehouse

    Vaquero, Manuel; Allué, Ethel; Bischoff, James L.; Burjachs, Francesc; Vallverdú, Josep

    2013-01-01

    The correlation between environmental and cultural changes is one of the primary archeological and paleoanthropological research topics. Analysis of ice and marine cores has yielded a high-resolution record of millennial-scale changes during the Late Pleistocene and Holocene eras. However, cultural changes are documented in low-resolution continental deposits; thus, their correlation with the millennial-scale climatic sequence is often difficult. In this paper, we present a rare occurrence in which a thick archeological sequence is associated with a high-resolution environmental record. The Cinglera del Capello is a tufa-draped cliff located in the northeastern Iberian Peninsula, 50 km west of Barcelona. This cliff harbors several rock-shelters with Late Pleistocene and Early Holocene deposits. Together, the deposits of four rock-shelters span from 7000 to 70,000 years ago and provide a high-resolution record of the environmental and human dynamics during this timespan. This record allows the correlation of the cultural and environmental changes. The multiproxy approach to the Cinglera evidence indicates that the main cultural stages of the Late Pleistocene and Early Holocene (Middle Paleolithic, Upper Paleolithic and Mesolithic) are associated with significant changes in the environmental and depositional contexts.

  2. New radiocarbon dates for terminal Pleistocene and early Holocene settlements in West Turkana, northern Kenya

    NASA Astrophysics Data System (ADS)

    Beyin, Amanuel; Prendergast, Mary E.; Grillo, Katherine M.; Wang, Hong

    2017-07-01

    The Turkana Basin in northern Kenya is located in an environmentally sensitive region along the eastern African Rift system. Lake Turkana's sensitivity to fluctuations in precipitation makes this an ideal place to study prehistoric human adaptations during key climatic transitions. Here we present eleven radiocarbon dates from two recently excavated sites in West Turkana, Kokito 01 and Kokito 02. The sites span the Pleistocene-Holocene transition, a time of fluctuating lake levels and novel cultural responses within the region. Several scenarios are laid out for the interpretation of site chronologies, and these are discussed with reference to the terminal Pleistocene and early Holocene chronological record for the region. Given the paucity of well-dated sites from this timespan in the Turkana Basin, the new radiocarbon dates are an important step toward establishing human settlement history and associated cultural developments in the region.

  3. 'Cape capture': Geologic data and modeling results suggest the holocene loss of a Carolina Cape

    USGS Publications Warehouse

    Thieler, E.R.; Ashton, A.D.

    2011-01-01

    For more than a century, the origin and evolution of the set of cuspate forelands known as the Carolina Capes-Hatteras, Lookout, Fear, and Romain-off the eastern coast of the United States have been discussed and debated. The consensus conceptual model is not only that these capes existed through much or all of the Holocene transgression, but also that their number has not changed. Here we describe bathymetric, lithologic, seismic, and chronologic data that suggest another cape may have existed between Capes Hatteras and Lookout during the early to middle Holocene. This cape likely formed at the distal end of the Neuse-Tar-Pamlico fiuvial system during the early Holocene transgression, when this portion of the shelf was fiooded ca. 9 cal (calibrated) kyr B.P., and was probably abandoned by ca. 4 cal kyr B.P., when the shoreline attained its present general configuration. Previously proposed mechanisms for cape formation suggest that the large-scale, rhythmic pattern of the Carolina Capes arose from a hydrodynamic template or the preexisting geologic framework. Numerical modeling, however, suggests that the number and spacing of capes can be dynamic, and that a coast can self-organize in response to a high-angle-wave instability in shoreline shape. In shoreline evolution model simulations, smaller cuspate forelands are subsumed by larger neighbors over millennial time scales through a process of 'cape capture.' The suggested former cape in Raleigh Bay represents the first interpreted geological evidence of dynamic abandonment suggested by the self-organization hypothesis. Cape capture may be a widespread process in coastal environments with large-scale rhythmic shoreline features; its preservation in the sedimentary record will vary according to geologic setting, physical processes, and sea-level history. ?? 2011 Geological Society of America.

  4. Skeletal variation among early Holocene North American humans: implications for origins and diversity in the Americas.

    PubMed

    Auerbach, Benjamin M

    2012-12-01

    The movement of humans into the Americas remains a major topic of debate among scientific disciplines. Central to this discussion is ascertaining the timing and migratory routes of the earliest colonizers, in addition to understanding their ancestry. Molecular studies have recently argued that the colonizing population was isolated from other Asian populations for an extended period before proceeding to colonize the Americas. This research has suggested that Beringia was the location of this "incubation," though archaeological and skeletal data have not yet supported this hypothesis. This study employs the remains of the five most complete North American male early Holocene skeletons to examine patterns of human morphology at the earliest observable time period. Stature, body mass, body breadth, and limb proportions are examined in the context of male skeletal samples representing the range of morphological variation in North America in the last two millennia of the Holocene. These are also compared with a global sample. Results indicate that early Holocene males have variable postcranial morphologies, but all share the common trait of wide bodies. This trait, which is retained in more recent indigenous North American groups, is associated with adaptations to cold climates. Peoples from the Americas exhibit wider bodies than other populations sampled globally. This pattern suggests the common ancestral population of all of these indigenous American groups had reduced morphological variation in this trait. Furthermore, this provides support for a single, possibly high latitude location for the genetic isolation of ancestors of the human colonizers of the Americas. Copyright © 2012 Wiley Periodicals, Inc.

  5. High - Resolution SST Record Based on Mg/Ca Ratios of Late Holocene Planktonic Foraminifers From the Great Bahama Bank

    NASA Astrophysics Data System (ADS)

    Mueller, A.; Reijmer, J. J.; Roth, S.

    2001-12-01

    We analyzed five different planktic foraminifera species in the high resolution core MD 992201 off the Great Bahama Bank (79° 16.34 W; 25° 53.49 N) in 290 m water depth. This 38.05 m long core comprises a 7,000 year long Holocene record. The selected species were Orbulina universa, Globigerinoides ruber, Globigerinoides sacculifer, Globorotalia menardii and Globigerinella aequilateralis, which live in the upper 200 m of the water column. The Mg/Ca ratios of these different foraminifers show species-specific values, which represent a distinct habitat depth. With this species-specific Mg/Ca ratios we can reconstruct a temperature profile through the water column. The lowest Mg/Ca are shown by G. menardii (2.5 - 4 mmol/mol), followed by G. sacculifer (4.2 - 5.6 mmol/mol), G. ruber (5.1 - 7.2 mmol/mol) and G. aequilateralis (5.5 - 8.7 mmol/mol). Highest are shown by O. universa (6 - 14 mmol/mol). During the Little Ice Age, the Mg/Ca ratios of all species except for the deeper dwelling G. menardii, became more variable and showed lower ratios. The shallow dwelling species like G. ruber and G. sacculifer display an increase in the Mg/Ca ratios during the Medieval Warm Period. Our data show that transferring Mg/Ca ratios into SST based calibration curves known from literature needs re-evaluation. Species-specific calibration seems to be necessary to achieve reliable results.

  6. Rapid thinning of Pine Island Glacier in the early Holocene.

    PubMed

    Johnson, J S; Bentley, M J; Smith, J A; Finkel, R C; Rood, D H; Gohl, K; Balco, G; Larter, R D; Schaefer, J M

    2014-02-28

    Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet, has been undergoing rapid thinning and retreat for the past two decades. We demonstrate, using glacial-geological and geochronological data, that Pine Island Glacier (PIG) also experienced rapid thinning during the early Holocene, around 8000 years ago. Cosmogenic (10)Be concentrations in glacially transported rocks show that this thinning was sustained for decades to centuries at an average rate of more than 100 centimeters per year, which is comparable with contemporary thinning rates. The most likely mechanism was a reduction in ice shelf buttressing. Our findings reveal that PIG has experienced rapid thinning at least once in the past and that, once set in motion, rapid ice sheet changes in this region can persist for centuries.

  7. North Atlantic forcing of moisture delivery to Europe throughout the Holocene

    PubMed Central

    Smith, Andrew C.; Wynn, Peter M.; Barker, Philip A.; Leng, Melanie J.; Noble, Stephen R.; Tych, Wlodek

    2016-01-01

    Century-to-millennial scale fluctuations in precipitation and temperature are an established feature of European Holocene climates. Changes in moisture delivery are driven by complex interactions between ocean moisture sources and atmospheric circulation modes, making it difficult to resolve the drivers behind millennial scale variability in European precipitation. Here, we present two overlapping decadal resolution speleothem oxygen isotope (δ18O) records from a cave on the Atlantic coastline of northern Iberia, covering the period 12.1–0 ka. Speleothem δ18O reveals nine quasi-cyclical events of relatively wet-to-dry climatic conditions during the Holocene. Dynamic Harmonic Regression modelling indicates that changes in precipitation occurred with a ~1500 year frequency during the late Holocene and at a shorter length during the early Holocene. The timing of these cycles coincides with changes in North Atlantic Ocean conditions, indicating a connectivity between ocean conditions and Holocene moisture delivery. Early Holocene climate is potentially dominated by freshwater outburst events, whilst ~1500 year cycles in the late Holocene are more likely driven by changes internal to the ocean system. This is the first continental record of its type that clearly demonstrates millennial scale connectivity between the pulse of the ocean and precipitation over Europe through the entirety of the Holocene. PMID:27109216

  8. ‘Cape capture’: Geologic data and modeling results suggest the Holocene loss of a Carolina Cape

    USGS Publications Warehouse

    Thieler, E. Robert; Ashton, Andrew D.

    2011-01-01

    For more than a century, the origin and evolution of the set of cuspate forelands known as the Carolina Capes—Hatteras, Lookout, Fear, and Romain—off the eastern coast of the United States have been discussed and debated. The consensus conceptual model is not only that these capes existed through much or all of the Holocene transgression, but also that their number has not changed. Here we describe bathymetric, lithologic, seismic, and chronologic data that suggest another cape may have existed between Capes Hatteras and Lookout during the early to middle Holocene. This cape likely formed at the distal end of the Neuse-Tar-Pamlico fluvial system during the early Holocene transgression, when this portion of the shelf was flooded ca. 9 cal (calibrated) kyr B.P., and was probably abandoned by ca. 4 cal kyr B.P., when the shoreline attained its present general configuration. Previously proposed mechanisms for cape formation suggest that the large-scale, rhythmic pattern of the Carolina Capes arose from a hydrodynamic template or the preexisting geologic framework. Numerical modeling, however, suggests that the number and spacing of capes can be dynamic, and that a coast can self-organize in response to a high-angle-wave instability in shoreline shape. In shoreline evolution model simulations, smaller cuspate forelands are subsumed by larger neighbors over millennial time scales through a process of ‘cape capture.’ The suggested former cape in Raleigh Bay represents the first interpreted geological evidence of dynamic abandonment suggested by the self-organization hypothesis. Cape capture may be a widespread process in coastal environments with large-scale rhythmic shoreline features; its preservation in the sedimentary record will vary according to geologic setting, physical processes, and sea-level history.

  9. Fluvial development of the Nete valley during the Late Weichselian and early Holocene: new data from a cross-section south of Kasterlee (NE-Belgium)

    NASA Astrophysics Data System (ADS)

    Beerten, Koen; Van Nieuland, Jasper; Vandenberghe, Dimitri; Deforce, Koen; Rogiers, Bart

    2014-05-01

    The Late Quaternary geomorphology and stratigraphy of the fluvial deposits in the Kleine Nete valley is poorly documented, apart from the classic paper by Munaut and Paulissen (1973) on the palaeo-ecology of this river valley. A good description of the fluvial development within this catchment over longer timescales would help to understand palaeohydrological conditions, as it may give insight into changes in river bed elevation and palaeo-channel morphology. As such, existing hydrological models can be tested for conditions that are different than today, by unlocking the palaeohydrological archive. During road construction works, a cross-section through the Kleine Nete alluvium could be observed, directly (tens of meters) south of the present river course and underneath an abandoned channel that is traceable on historical maps and still visible in the landscape today. The river's alluvium is very thin - the sediment thickness usually does not exceed 2-3 m - while the composition is monotonous, either sand or peat with at a thin loamy layer at the top. Different fluvial facies, including horizontally laminated and cross-bedded sands, channel-fill sands, in-situ (?) peat layers, reworked peat mixed with sand, and loamy alluvium were encountered and sampled for grain-size analysis, palynological analysis and optically stimulated luminescence (OSL) dating. The preliminary results show that vertical aggradation took place during the late Pleniglacial (between ca. 20-16 ka) over a large area (probably by a braided river). This aggradation phase was followed by incision and the development of confined channels that subsequently were filled with basal peat and channel sands during the Late Glacial (ca. 15-12 ka) and the early Holocene (ca. 11 ka). The different dimensions of the observed channels (cross-section and river bed elevation), in comparison with those of the present-day river, suggest that large parts of the alluvial plain were experiencing different

  10. A new late glacial to early Holocene palaeobotanical and archaeological record in the Eastern Pre-Alps: the Palughetto basin (Cansiglio Plateau, Italy)

    NASA Astrophysics Data System (ADS)

    Avigliano, Roberto; di Anastasio, Giulio; Improta, Salvatore; Peresani, Marco; Ravazzi, Cesare

    2000-12-01

    A late glacial to early Holocene lacustrine and peat succession, rich in conifer remains and including some palaeolithic flint artefacts, has been investigated in the Palughetto intermorainic basin (Venetian Pre-Alps). The geomorphological and stratigraphical relationships, 14C dates and pollen analyses allow a reconstruction of the environmental history of the basin and provide significant insights into the reforestation and peopling of the Pre-Alps. The onset of peat accumulation is dated to 14.4-14.1 kyr cal. BP, coinciding with reforestation at middle altitudes that immediately post-dates the immigration of Larix decidua and Picea abies subsp. europaea. Plant macrofossils point to the expansion of spruce about 14.3 kyr cal. BP, so far one of the earliest directly dated in the late glacial period of southern Europe. The previous hypothesis of an early Holocene spruce immigration in the Southern Alps from Slovenia needs reconsideration. Organic sedimentation stopped at the end of the Younger Dryas and was followed by the evolution of hydromorphic soils containing lithic artefacts, anthropic structures and wood charcoal. The typological features of the flint implements refer human occupation of the site to the end of the recent Epigravettian. Charcoals yielded dates either consistent with, or younger than, the archaeological chronology, in the early and middle Holocene.

  11. Neoglacial Antarctic sea-ice expansion driven by mid-Holocene retreat of the Ross Ice Shelf.

    NASA Astrophysics Data System (ADS)

    Bendle, J. A.; Newton, K.; Mckay, R. M.; Crosta, X.; Etourneau, J.; Anya, A. B.; Seki, O.; Golledge, N. R.; Bertler, N. A. N.; Willmott, V.; Schouten, S.; Riesselman, C. R.; Masse, G.; Dunbar, R. B.

    2017-12-01

    Recent decades have seen expanding Antarctic sea-ice coverage, coeval with thinning West Antarctic Ice Sheet (WAIS) ice shelves and the rapid freshening of surface and bottom waters along the Antarctic margin. The mid-Holocene Neoglacial transition represents the last comparable baseline shift in sea-ice behaviour. The drivers and feedbacks involved in both the recent and Holocene events are poorly understood and characterised by large proxy-model mismatches. We present new records of compound specific fatty acid isotope analyses (δ2H-FA), highly-branched isoprenoid alkenes (HBIs) TEX86L temperatures, grain-size, mass accumulations rates (MARs) and image analyses from a 171m Holocene sediment sequence from Site U1357 (IODP leg 318). In combination with published records we reconstruct Holocene changes in glacial meltwater, sedimentary inputs and sea-ice. The early Holocene (11 to 10 ka) is characterised by large fluctuations in inputs of deglacial meltwater and sediments and seismic evidence of downlapping material from the south, suggesting a dominating influence from glacial retreat of the local outlet glaciers. From 10 to 8 ka there is decreasing meltwater inputs, an onlapping drift and advection of material from the east. After ca. 8 ka positively correlated δ2H-FA and MARs infer that pulses of glacial melt correlate to stronger easterly currents, driving erosion of material from upstream banks and that the Ross Ice Shelf (RIS) becomes a major influence. A large mid-Holocene meltwater pulse (preceded by warming TEX86L temperatures) is evident between ca. 6 to 4.5 ka, culminating in a rapid and permanent increase in sea-ice from 4.5 ka. This is coeval with cosmogenic nuclide evidence for a rapid thinning of the Antarctic ice sheet during the mid-Holocene (Hein et al., 2016). We suggest this represents a final major pulse of deglaciation from the Ross Ice Shelf, which initiates the Neoglacial, driving cool surface waters along the coast and greater sea

  12. Origin and dynamics of the northern South American coastal savanna belt during the Holocene - the role of climate, sea-level, fire and humans

    NASA Astrophysics Data System (ADS)

    Alizadeh, Kamaleddin; Cohen, Marcelo; Behling, Hermann

    2015-08-01

    Presence of a coastal savanna belt expanding from British Guiana to northeastern Brazil cannot be explained by present-day climate. Using pollen and charcoal analyses on an 11.6 k old sediment core from a coastal depression in the savanna belt near the mouth of the Amazon River we investigated the paleoenvironmental history to shed light on this question. Results indicate that small areas of savanna accompanied by a forest type composed primarily by the genus Micropholis (Sapotaceae) that has no modern analog existed at the beginning of the Holocene. After 11,200 cal yr BP, savanna accompanied by few trees replaced the forest. In depressions swamp forest developed and by ca 10,000 cal yr BP replaced by Mauritia swamps. Between 8500 and 5600 cal yr BP gallery forest (composed mainly of Euphorbiaceae) and swamp forest succeeded the treeless savanna. The modern vegetation with alternating gallery forest and savanna developed after 5600 cal yr BP. We suggest that the early Holocene no-analog forest is a relict of previously more extensive forest under cooler and moister Lateglacial conditions. The early Holocene savanna expansion indicates a drier phase probably related to the shift of the Intertropical Convergence Zone (ITCZ) towards its northernmost position. The mid-Holocene forest expansion is probably a result of the combined influence of equatorwards shift of ITCZ joining the South Atlantic Convergence Zone (SACZ). The ecosystem variability during the last 5600 cal yr BP, formed perhaps under influence of intensified ENSO condition. High charcoal concentrations, especially during the early Holocene, indicate that natural and/or anthropogenic fires may have maintained the savanna. However, our results propose that climate change is the main driving factor for the formation of the coastal savanna in this region. Our results also show that the early Holocene sea level rise established mangroves near the study site until 7500 cal yr BP and promoted swamp formation in

  13. Vegetation changes and timberline fluctuations in the Central Alps as indicators of holocene climatic oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wick, L.; Tinner, W.

    Pollen and plant-macrofossil data are presented for two lakes near the timberline in the Italian (Lago Basso, 2250 m) and Swiss Central Alps (Gouille Rion, 2343 m). The reforestation at both sites started at 9700-9500 BP with Pinus cembra, Larix decidua, and Betula. The timberline reached its highest elevation between 8700 and 5000 BP and retreated after 5000 BP, due to a mid-Holocene climatic change and increasing human impact since about 3500 BP (Bronze Age). The expansion of Picea abies at Lago Basso between ca. 7500 and 6200 BP was probably favored by cold phases accompanied by increased oceanicity, whereasmore » in the area of Gouille Rion, where spruce expanded rather late (between 4500 and 3500 BP), human influence equality might have been important. The mass expansion of Alnus viridis between ca. 5000 and 3500 BP probably can be related to both climatic change and human activity at timberline. During the early and middle Holocene a series of timberline fluctuations is recorded as declines in pollen and macrofossil concentrations of the major tree species, and as increases in nonarboreal pollen in the pollen percentage diagram of Gouille Rion. Most of the periods of low timberline can be correlated by radiocarbon dating the climatic changes in the Alps as indicated by glacier advances in combination with palynological records, solifluction, and dendroclimatical data. Lago Basso and Gouille Rion are the only sites in the Alps showing complete palaeobotanical records of cold phases between 10,000 and 2000 BP with very good time control. The altitudinal range of the Holocene treeline fluctuations caused by climate most likely was not more than 100 to 150 m. A possible correlation of a cold period at ca. 7500-6500 BP (Misox oscillation) in the Alps is made with paleoecological data from North American and Scandinavia and a climate signal in the GRIP ice core from central Greenland 8200 yr ago (ca. 7400 yr uncal. BP).« less

  14. Holocene sea-level changes in the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike

    2014-05-01

    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above

  15. Pollen from accurately dated speleothems supports alpine glacier low-stands during the early Holocene

    NASA Astrophysics Data System (ADS)

    Festi, Daniela; Hoffmann, Dirk L.; Luetscher, Marc

    2016-07-01

    Deciphering pollen assemblages from alpine speleothems holds potential to provide unique information about past vegetation in rapidly changing environments. Here, we reconstruct subsurface aerosol transport at Milchbach cave (Switzerland, 1840 m asl) based on the pollen content of two Holocene stalagmites. We demonstrate that pollen is chiefly associated with bacterially mediated calcite fabrics, typical of a well-ventilated cave system. In contrast, pollen is absent from columnar calcite fabrics confirming that hydrological transport is not a significant process for the incorporation of pollen into speleothems at Milchbach cave. Our results support significant changes in the subsurface ventilation regime, which can be associated with the waxing and waning of Upper Grindelwald glacier. Pollen assemblages obtained from six carbonate sub-samples attest the presence of a mixed deciduous forest in the Grindelwald valley during the early and middle Holocene, in agreement with coeval regional pollen records. This study demonstrates that even small amounts of calcite (0.3-2.8 cm3) are capable of delivering pollen spectra representative of the original vegetation if sufficiently elevated deposition fluxes are provided.

  16. Clinal variation of some mammals during the Holocene in Missouri

    NASA Astrophysics Data System (ADS)

    Purdue, James R.

    1980-03-01

    Eastern cottontail ( Sylvilagus floridanus), fox squirrel ( Sciurus niger), and gray squirrel ( Sciurus carolinensis) were examined for clinal variation during the Holocene. Modern samples of all three species displayed strong east-west patterns along the western edge of the eastern deciduous forest: S. floridanus and S. niger decrease and S. carolinensis increases in size. Archeological samples of S. carolinensis from Rodgers Shelter (23BE125), Benton County, Missouri, and Graham Cave (23MT2), Montgomery County, Missouri, indicated an increase in size from early to middle Holocene. Sylvilagus floridanus from Rodgers Shelter decreased in size from early to middle Holocene and then increased during the late Holocene to modern proportions. A literature survey reveals that clinal variation is a common phenomenon among modern homeotherms. In introduced species, clinal variation has developed after relatively few generations, indicating rapid adaptations to environmental conditions; often winter climatic variables are implicated. Morphological variation in the study species during the Holocene is interpreted as a response to changing climates. Studies of morphological clines may lead to another valuable data source for reconstructing past ecologies.

  17. Holocene temperature history at the west Greenland Ice Sheet margin reconstructed from lake sediments

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.

    2011-12-01

    Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.

  18. Palaeoclimate significance of speleothems in crystalline rocks: a test case from the Late Glacial and early Holocene (Vinschgau, northern Italy)

    NASA Astrophysics Data System (ADS)

    Koltai, Gabriella; Cheng, Hai; Spötl, Christoph

    2018-03-01

    Partly coeval flowstones formed in fractured gneiss and schist were studied to test the palaeoclimate significance of this new type of speleothem archive on a decadal-to-millennial timescale. The samples encompass a few hundred to a few thousand years of the Late Glacial and the early Holocene. The speleothem fabric is primarily comprised of columnar fascicular optic calcite and acicular aragonite, both indicative of elevated Mg / Ca ratios in the groundwater. Stable isotopes suggest that aragonite is more prone to disequilibrium isotope fractionation driven by evaporation and prior calcite/aragonite precipitation than calcite. Changes in mineralogy are therefore attributed to these two internal fracture processes rather than to palaeoclimate. Flowstones formed in the same fracture show similar δ18O changes on centennial scales, which broadly correspond to regional lacustrine δ18O records, suggesting that such speleothems may provide an opportunity to investigate past climate conditions in non-karstic areas. The shortness of overlapping periods in flowstone growth and the complexity of in-aquifer processes, however, render the establishment of a robust stacked δ18O record challenging.

  19. Holocene environmental change at the oasis of Tayma

    NASA Astrophysics Data System (ADS)

    Engel, Max; Brückner, Helmut; Wellbrock, Kai; Pint, Anna; Grottker, Matthias; Voss, Peter; Ginau, Andreas; Klasen, Nicole; Frenzel, Peter

    2013-04-01

    The oasis of Tayma in northwestern Saudi Arabia has a rich cultural heritage comprising a large number of historic buildings and artefacts from the late Neolithic onwards. Extensive groundwater resources and the location at a branch of the Incense Road connecting south Arabia and the eastern Mediterranean determined the site's importance in Antiquity. This paper reports about Holocene environmental change at Tayma setting the frame for the interpretation of the archaeological record. Humid conditions during the early Holocene are inferred for the Arabian Peninsula (AP) based on the investigation of sabkhas, palaeo-lakes, sand dunes, wadis, speleothems and marine sediments. Most of these climate archives are located in the southern and southeastern part of the AP, where a northward shift of the Intertropical Convergence Zone (ITCZ) triggered increased rainfall at the onset of the Holocene. At Tayma, where the influence of the ITCZ shift can be excluded, the sedimentary infill of a sabkha basin, the micro- and macrofaunal record, a digital elevation model based on DGPS measurements, and 14C-AMS data indicate the presence of a perennial lake with a minimum depth of 13 m, a stored water volume of 1.16 107 m3 and a surface of 18.45 km2 between 10,000-9000 cal BP. Foraminiferal test malformations and the shape of sieve pores on ostracod valves were used to detect trends in palaeo-salinity and ecological stress conditions. Contraction of the lake at least after 8500 cal BP is a response to a long-term aridisation trend subsequent to the early Holocene. Based on the hydrological water balance equation, quantitative data on minimum palaeo-rainfall during the early Holocene humid period were determined. Input parameters for the equation are the minimum lake level, lake surface and lake volume during the peak of the early Holocene humid period as well as palaeo-evapotranspiration, groundwater infiltration, and surface runoff. A perennial lake in the endorheic basin of the

  20. Holocene disturbance dynamics from a pine-dominated forest in central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Hebda, N.; Condor, N.; Hebda, R.; Hawkes, B.

    2013-12-01

    A lake sediment record was retrieved from the Sub-Boreal Pine-Spruce biogeoclimatic zone on the Chilcotin Plateau in central British Columbia, Canada. The record is being analyzed for charcoal, pollen, and magnetic susceptibility, as well as insect and mollusc content. The oldest radiocarbon age is 9.2 cal BP, illustrating that the record spans most of the Holocene. Regarding fire disturbance, charcoal fragments are persistent throughout the core, revealing that fire disturbance has characterized the site for millennia. In total, 74 fire events were recognized. During the warm dry early Holocene, fire frequency was 12-15 fires 2000 yr-1 and peak magnitudes were low, possibly in response to a more open landscape. A change in fire regime occurred at ca. 5000 cal BP, as fire frequency increased, peaking at ca. 20 fires 2000 yr-1 by 3000 cal BP. Peak magnitude likewise increased notably, possibly in response to the development of denser forest cover. On-going analysis of pollen will better constrain the vegetation history in this poorly sampled region. In contrast to charcoal, which was pervasive, Dendroctonus ponderosae (mountain pine beetle) remains were absent in both modern and paleo samples. Given that several insect outbreaks have occurred in the region in the last 100 years, the scarcity of remains is likely related to taphonomic issues.

  1. Change in seasonality in the southwest tropical Pacific during the Holocene: a data -model comparison

    NASA Astrophysics Data System (ADS)

    Correge, T.; Deschamps, C.; Duprey, N.; Pujol, N.; Braconnot, P.; Charlier, K.; Lazareth, C. E.; Le Cornec, F.; Malaizé, B.

    2012-12-01

    Our ability to successfully predict future climate change relies heavily on the improvement of climate models. One way to do so is to compare model outputs with paleodata. The aim of the French ELPASO program (El Niño in the Past: Simulations and Observations) is to conduct such comparisons in the tropics to study the evolution of ENSO in the late Pleistocene, and more particularly during the Holocene, and the link to the background climate state (including the seasonal cycle). We generated multi-decadal time series of SST derived from Sr/Ca analyses of massive Porites corals from Vanuatu dating from 10 ka, 6.8 ka, 6.2 ka and 4.2 ka. For each time series, the mean seasonal cycle was calculated and compared to simulations from the IPSL-CM4 model (Braconnot et al., 2012; Luan et al., 2012). When insolation parameters (in particular precession) are taken into account for the 9.5 ka and 6 ka simulations, the model predicts that the seasonal cycle should be reduced in the southern hemisphere and enhanced in the northern hemisphere during the early and mid Holocene. In contrast, coral data from Vanuatu indicate enhanced mean seasonal cycles at 10 ka, 6.8 ka and 6.2 ka. The coral dating from 4.2 ka is the only one showing a reduced seasonal cycle compared to the present. Various scenarios will be proposed to reconcile this discrepancy. Braconnot, P. et al. Impact of Earth's orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics, Clim. Dynam., 38, 1081-1092, doi:10.1007/s00382-011-1029-x, 2012. Luan, Y. et al. 2012. Early and mid-Holocene climate in the tropical Pacific: seasonal cycle and interannual variability induced by insolation changes. Clim. Past, 8, 1093-1108 ; doi:10.5194/cp-8-1093-2012

  2. Lakeside Cemeteries in the Sahara: 5000 Years of Holocene Population and Environmental Change

    PubMed Central

    Sereno, Paul C.; Garcea, Elena A. A.; Jousse, Hélène; Stojanowski, Christopher M.; Saliège, Jean-François; Maga, Abdoulaye; Ide, Oumarou A.; Knudson, Kelly J.; Mercuri, Anna Maria; Stafford, Thomas W.; Kaye, Thomas G.; Giraudi, Carlo; N'siala, Isabella Massamba; Cocca, Enzo; Moots, Hannah M.; Dutheil, Didier B.; Stivers, Jeffrey P.

    2008-01-01

    Background Approximately two hundred human burials were discovered on the edge of a paleolake in Niger that provide a uniquely preserved record of human occupation in the Sahara during the Holocene (∼8000 B.C.E. to the present). Called Gobero, this suite of closely spaced sites chronicles the rapid pace of biosocial change in the southern Sahara in response to severe climatic fluctuation. Methodology/Principal Findings Two main occupational phases are identified that correspond with humid intervals in the early and mid-Holocene, based on 78 direct AMS radiocarbon dates on human remains, fauna and artifacts, as well as 9 OSL dates on paleodune sand. The older occupants have craniofacial dimensions that demonstrate similarities with mid-Holocene occupants of the southern Sahara and Late Pleistocene to early Holocene inhabitants of the Maghreb. Their hyperflexed burials compose the earliest cemetery in the Sahara dating to ∼7500 B.C.E. These early occupants abandon the area under arid conditions and, when humid conditions return ∼4600 B.C.E., are replaced by a more gracile people with elaborated grave goods including animal bone and ivory ornaments. Conclusions/Significance The principal significance of Gobero lies in its extraordinary human, faunal, and archaeological record, from which we conclude the following: The early Holocene occupants at Gobero (7700–6200 B.C.E.) were largely sedentary hunter-fisher-gatherers with lakeside funerary sites that include the earliest recorded cemetery in the Sahara.Principal components analysis of craniometric variables closely allies the early Holocene occupants at Gobero with a skeletally robust, trans-Saharan assemblage of Late Pleistocene to mid-Holocene human populations from the Maghreb and southern Sahara.Gobero was abandoned during a period of severe aridification possibly as long as one millennium (6200–5200 B.C.E).More gracile humans arrived in the mid-Holocene (5200–2500 B.C.E.) employing a diversified

  3. Contributions of a Strengthened Early Holocene Monsoon and Sediment Loading to Present-Day Subsidence of the Ganges-Brahmaputra Delta

    NASA Astrophysics Data System (ADS)

    Karpytchev, M.; Ballu, V.; Krien, Y.; Becker, M.; Goodbred, S.; Spada, G.; Calmant, S.; Shum, C. K.; Khan, Z.

    2018-02-01

    The contribution of subsidence to relative sea level rise in the Ganges-Brahmaputra delta (GBD) is largely unknown and may considerably enhance exposure of the Bengal Basin populations to sea level rise and storm surges. This paper focuses on estimating the present-day subsidence induced by Holocene sediment in the Bengal Basin and by oceanic loading due to eustatic sea level rise over the past 18 kyr. Using a viscoelastic Earth model and sediment deposition history based on in situ measurements, results suggest that massive sediment influx initiated in the early Holocene under a strengthened South Asian monsoon may have contributed significantly to the present-day subsidence of the GBD. We estimate that the Holocene loading generates up to 1.6 mm/yr of the present-day subsidence along the GBD coast, depending on the rheological model of the Earth. This rate is close to the twentieth century global mean sea level rise (1.1-1.7 mm/yr). Thus, past climate change, by way of enhanced sedimentation, is impacting vulnerability of the GBD populations.

  4. Late Glacial and Early Holocene Climatic Changes Based on a Multiproxy Lacustrine Sediment Record from Northeast Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokorowski, H D; Anderson, P M; Sletten, R S

    Palynological (species assemblage, pollen accumulation rate), geochemical (carbon to nitrogen ratios, organic carbon and biogenic silica content), and sedimentological (particle size, magnetic susceptibility) data combined with improved chronology and greater sampling resolution from a new core from Elikchan 4 Lake provide a stronger basis for defining paleoenvironmental changes than was previously possible. Persistence of herb-dominated tundra, slow expansion of Betula and Alnus shrubs, and low percentages of organic carbon and biogenic silica suggest that the Late-Glacial transition (ca. 16,000-11,000 cal. yr BP) was a period of gradual rather than abrupt vegetation and climatic change. Consistency of all Late-Glacial data indicatesmore » no Younger Dryas climatic oscillation. A dramatic peak in pollen accumulation rates (ca. 11,000-9800 cal. yr BP) suggests a possible summer temperature optimum, but finer grain-sizes, low magnetic susceptibility, and greater organic carbon and biogenic silica, while showing significant warming at ca. 11,000 cal. yr BP, offer no evidence of a Holocene thermal maximum. When compared to trends in other paleo-records, the new Elikchan data underscore the apparent spatial complexity of climatic responses in Northeast Siberia to global forcings between ca. 16,000-9000 cal. yr BP.« less

  5. Holocene eolian activity in the Minot dune field, North Dakota

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

    1997-01-01

    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  6. Glacial inception during the late Holocene without carbon emissions from early agriculture: lessons from the stage-19 glacial inception

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Tzedakis, P. C.

    2013-12-01

    Decreases in orbitally-forced summer insolation along with downward trends in greenhouse gases (GHG) have been precursors to incipient glaciation in the past. In the last several thousand years of the current interglacial, while summer insolation has decreased, there was a reversal of the downward trends in CH4 and CO2 concentration within the Holocene around 5,000 and 7,000 years ago. While the cause of this reversal remains unresolved, a leading hypothesis is Ruddiman's Early Anthropogenic Hypothesis that early agriculture, starting several thousand years ago, caused emissions of GHG large enough to reverse natural downward trends in CO2 and CH4 and kept Earth's climate anomalously warm, with the corollary that this may have prevented incipient glaciation during the late Holocene. Here we use the 1-degree, fully coupled Community Climate System Model version 4 (CCSM4) with climate forcings (orbital parameters and GHG) of a previous glacial inception to investigate whether glacial inception should have occurred prior to the industrial revolution if the concentrations of CH4 and CO2 had followed their natural downward trends throughout the Holocene. Tzedakis et al. [2012] show that for the previous eight interglacials, Stage 11 and Stage 19 are the best analogs of the Holocene because of their low eccentricities, and Stage 19 is a better analog than Stage 11 for the Holocene due to the in-phase relationship between obliquity and precession. Furthermore, their study suggests that 777 ka BP (777,000 years before present) is the timing of glacial inception for Stage 19, based on the occurrence of the earliest bipolar seesaw event associated with glacial melting. Not only do the orbital parameters at 777 ka BP resemble pre-industrial conditions, but the concentrations of CO2 at that time were essentially the same as their expected 'natural' pre-industrial values in the absence of anthropogenic greenhouse emissions. Our multi-millennial coupled CCSM4 simulations show

  7. Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea

    NASA Astrophysics Data System (ADS)

    Limmer, David R.; BöNing, Philipp; Giosan, Liviu; Ponton, Camilo; KöHler, Cornelia M.; Cooper, Matthew J.; Tabrez, Ali R.; Clift, Peter D.

    2012-01-01

    We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned ˜100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higherɛNdvalues compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. HigherɛNdvalues seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4-6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.

  8. People, lakes and seashores: Studies from the Baltic Sea basin and adjacent areas in the early and Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Groß, Daniel; Zander, Annabell; Boethius, Adam; Dreibrodt, Stefan; Grøn, Ole; Hansson, Anton; Jessen, Catherine; Koivisto, Satu; Larsson, Lars; Lübke, Harald; Nilsson, Björn

    2018-04-01

    During the Early and Mid-Holocene significant changes in the ecology and socio-cultural spheres occurred around the Baltic Sea. Because of the underlying climatic changes and thus environmental alterations, the area was the scene for various cultural developments during the period under investigation. In the course of the melting of the glaciers at the end of the last Ice Age, isostatic and eustatic movements caused continual changes to the Baltic Sea basin. Changes in water level, however, affected not only the Early and Mid-Holocene coastlines, but also the whole Baltic Sea drainage system, including large lakes, rivers and watersheds in the hinterland were also dramatically impacted by these ecological changes. Prehistoric people were thus affected by changes in resource availability and reduction or enlargement of their territories, respectively. In order to evaluate the impact of changes in the water and land networks on the environment, resource availability, and human behaviour, and to reconstruct human responses to these changes, we pursue an interdisciplinary approach connecting environmental and archaeological research highlighted through different case studies.

  9. Holocene Mass Transport Deposits in Western Norwegian fjords and lakes revealing prehistoric earthquake history of Scandinavia

    NASA Astrophysics Data System (ADS)

    Bellwald, B.; Hjelstuen, B. O.; Sejrup, H. P.; Kuvås, J.; Stokowy, T.

    2016-12-01

    The sensitivity of fjord sediments to seismic shaking makes fjord systems appropriate study sites when extending regional earthquake catalogs back in time and when estimating recurrence rates of prehistoric earthquakes in intraplate settings. In this study we compiled evidence of 140 postglacial mass movement events and their associated mass transport deposits (MTDs) from previously analyzed and new sediment cores and high-resolution seismic profiles from 22 fjord systems and six lakes in Western Norway. Evaluation of trigger mechanisms make us infer that most of these mass movement events were initiated by regional earthquakes, and that both climate-related processes and tsunamis most likely can be excluded as trigger mechanism for most of the events. A total of 33 individual earthquakes has been identified, which most likely outbalance the historically recorded events in magnitude, thus indicating magnitudes >6. Frequency plots of MTDs suggest high seismic activity in the early Holocene (11000-9700 cal. yrs BP), followed by seismic quiescence in the mid-Holocene before a seismic reactivation took place at 4000 cal. yrs BP. Coevally-triggered MTDs at 8100 cal. yrs BP are identified in all the archives, and are correlating with the age of the offshore Storegga slide. We estimate earthquake recurrence rates of 1/80 years directly after the last deglaciation of Western Norway (12800-11600 ca. yrs BP), 1/200 years for the early Holocene and 1/300 years for the last 4000 years. Our compilation suggests that the mid-Holocene is characterized by low seismic activity, suggesting recurrence rates of 1/1300 years. Comparisons of the Western Norwegian dataset with paleoseimologic studies of other previously glaciated intraplate settings indicate that both Scandinavia and the Alps show similar trends as Western Norway, whereas Eastern Canada is not correlating with the paleoseismologic trend of this study, which could be explained by different deglaciation histories.

  10. Refining the time span between the early Holocene Askja-S and Hässeldalen tephras through differential dating based on varve counting from Lake Czechowskie (N Poland)

    NASA Astrophysics Data System (ADS)

    Ott, Florian; Wulf, Sabine; Serb, Johanna; Słowiński, Michał; Obremska, Milena; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim

    2016-04-01

    Robust chronological framework is a crucial necessity for palaeoclimate reconstructions and especially for synchronizing records to decipher climatic teleconnections. Volcanic ash deposits (tephra) provide isochronous time marker that can be utilized as tie-lines to synchronize sedimentary archives. Advances in the detection and identification of non-visible (crypto-) tephra, often transported over thousands of kilometers, also allows identifying ash deposits even in distal records. We report the first findings of co-existing early Holocene Hässeldalen and Askja-S cryptotephras in a varved sediment record in Lake Czechowskie (JC, northern Poland). Annual layer counting was used to establish a varve chronology and micro-facies analyses, relative calcium (Ca) and titanium (Ti) concentrations were used to decipher between lake productivity and detrital flux. Here we focus (i) on the determination of the time span between both tephras, (ii) revised age estimates for the Askja-S tephra and (iii) the sedimentological response of the JC record to the Preboreal Oscillation (PBO), a short lived cold episode during the early Holocene. A differential dating approach revealed a time span of 152 +11/-8 varve years counted in the JC sediment record between both tephras. Since the varved interval of the JC sediment record comprising the tephras is floating, we anchored the floating varve chronology to an absolute timescale by using the radiocarbon-dated Hässeldalen Tephra (11,380 ± 216 cal a BP, Wohlfarth et al, 2006). The resulting age for the Askja-S of 11,454-11,002 cal a BP is, even considering the rather large uncertainties, a few decades to several hundred years older than most radiocarbon based age models, but it supports the original age model from Hässseldala port. The sediment response to the PBO cold period is seen only in a slight decrease in titanium, a proxy for detrital matter flux. Varve micro-facies did not change during this interval confirming a weak impact

  11. Subsistence strategies in Argentina during the late Pleistocene and early Holocene

    NASA Astrophysics Data System (ADS)

    Martínez, Gustavo; Gutiérrez, María A.; Messineo, Pablo G.; Kaufmann, Cristian A.; Rafuse, Daniel J.

    2016-07-01

    This paper highlights regional and temporal variation in the presence and exploitation of faunal resources from different regions of Argentina during the late Pleistocene and early Holocene. Specifically, the faunal analysis considered here includes the zooarchaeological remains from all sites older than 7500 14C years BP. We include quantitative information for each reported species (genus, family, or order) and we use the number of identified specimens (NISP per taxon and the NISPtotal by sites) as the quantitative measure of taxonomic abundance. The taxonomic richness (Ntaxatotal and Ntaxaexploited) and the taxonomic heterogeneity or Shannon-Wiener index are estimated in order to consider dietary generalization or specialization, and ternary diagrams are used to categorize subsistence patterns of particular sites and regions. The archaeological database is composed of 78 sites which are represented by 110 stratigraphic contexts. Our results demonstrate that although some quantitative differences between regions are observed, artiodactyls (camelids and deer) were the most frequently consumed animal resource in Argentina. Early hunter-gatherers did not follow a specialized predation strategy in megamammals. A variety in subsistence systems, operating in parallel with a strong regional emphasis is shown, according to specific environmental conditions and cultural trajectories.

  12. Multiproxy Reduced-Dimension Reconstruction of Holocene Tropical Pacific SST Fields and Indian Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Gill, E.; Rajagopalan, B.; Molnar, P. H.; Marchitto, T. M., Jr.; Kushnir, Y.

    2016-12-01

    We develop a multiproxy reduced-dimension methodology that blends magnesium calcium (Mg/Ca) and alkenone (UK'37) paleo sea surface temperature (SST) records from the eastern and western equatorial Pacific to recreate snapshots of full field SSTs and zonal wind anomalies from 10 to 2 ka BP in 2000-year increments. In the reconstruction, the zonal SST difference (average west Pacific SST minus average east Pacific SST) is largest at 10 ka (0.26°C), with coldest SST anomalies of -0.9°C in the eastern equatorial Pacific and concurrent easterly maximum zonal wind anomalies of 7 m s-1 throughout the central Pacific. From 10 to 2 ka, the entire equatorial Pacific warms, but at a faster rate in the east than in the west. These patterns are broadly consistent with previous inferences of reduced El Niño-Southern Oscillation variability associated with a cooler and/or "La Niña-like" state during the early to middle Holocene. At present there is a strong negative correlation between tropical pacific SSTs and Indian summer monsoon strength. Assuming ENSO-monsoon teleconnections were the same during early Holocene, we would expect a cooler tropical Pacific to enhance the summer Indian monsoon. To test this idea, we used the same tropical Pacific SST proxy records and a similar reduced-dimension technique to reconstruct fields of Arabian Sea wind-stress curl and Indian summer monsoon precipitation. Reconstructions for 10 ka reveal wind-stress curl anomalies of 30% greater than present day off the coastlines of Oman and Yemen, which suggest greater coastal upwelling and an enhanced monsoon jet during this time. Spatial rainfall reconstructions reveal the greatest difference in precipitation at 10 ka over the core monsoon region ( 20-60% greater than present day). Specifically, reconstructions from 10 ka reveal 40-60% greater rainfall over North West India, a region home to abundant paleo-lake records spanning the Holocene but is at present remarkably dry ( 200-450 mm of annual

  13. Non-Linear Response to Holocene Insolation Forcing Recorded by High-Resolution Lake Sediment Records Across Iceland

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Miller, G. H.; Axford, Y.

    2009-12-01

    suggests a change in state occurred in the catchments of the lakes. TOC reflects the balance between changes in primary productivity within the lakes, which appears to dominate the early and middle Holocene, and the flux of soil carbon to the lake during periods of catchment instability that dominates the record after ~2.5 ka. In HAK TOC the flux of soil carbon to the lake is high when cold summers are accompanied by dry, windy winters. The two southern lakes exhibit a substantial overprinting after settlement, although the northern and southern records start to depart ca. 1.5 ka, well before settlement, possibly reflecting an earlier onset of late Holocene cooling off northwest Iceland than in the south where the Irminger current maintains warmer coastal temperatures.

  14. Glaciological reconstruction of Holocene ice margins in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Birkel, S. D.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2014-12-01

    The past few decades of climate warming have brought overall margin retreat to the Greenland Ice Sheet. In order to place recent and projected changes in context, we are undertaking a collaborative field-modeling study that aims to reconstruct the Holocene history of ice-margin fluctuation near Thule (~76.5°N, 68.7°W), and also along the North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W). Fieldwork reported by Kelly et al. (2013) reveals that ice in the study areas was less extensive than at present ca. 4700 (GIS) and ca. 880 (NIC) cal. years BP, presumably in response to a warmer climate. We are now exploring Holocene ice-climate coupling using the University of Maine Ice Sheet Model (UMISM). Our approach is to first test what imposed climate anomalies can afford steady state ice margins in accord with field data. A second test encompasses transient simulation of the Holocene, with climate boundary conditions supplied by existing paleo runs of the Community Climate System Model version 4 (CCSM4), and a climate forcing signal derived from Greenland ice cores. In both cases, the full ice sheet is simulated at 10 km resolution with nested domains at 0.5 km for the study areas. UMISM experiments are underway, and results will be reported at the meeting.

  15. A Holocene record of endogenic iron and manganese precipitation, isotopic composition of endogenic carbonate, and vegetation history in a lake-fen complex in northwestern Minnesota

    USGS Publications Warehouse

    Dean, Walter E.; Doner, Lisa A.

    2011-01-01

    Little Shingobee Lake and Fen are part of an extensive network of lakes and wetlands in the Shingobee River headwaters area of northwestern Minnesota. Prior to about 9800 radiocarbon years, most of the lakes in the Shingobee watershed area were interconnected to form glacial Lake Willobee. From 9800 to 7700 radiocarbon years, the level of Lake Willobee fell as a result of breaching of a dam, leaving small separated basins containing the existing lakes and wetlands. The dominant components in the sediments in a 9-meter core from Little Shingobee Lake (LSL-B), and lacustrine sediments under 3.3 meters of peat in a 17-meter core from Little Shingobee Fen (LSF-10) are detrital clastic material, endogenic CaCO3, and organic matter. The detrital fraction in the Holocene section in core LSL-B varies considerably from 7 weight percent to 82 weight percent and closely parallels the concentration of detrital quartz measured by X-ray diffraction. The CaCO3 concentration, which also varies considerably from 10 weight percent to 70 weight percent, is generally antithetic to the detrital concentration owing to the dilution of detrital material by CaCO3, particularly during the early to middle Holocene (about 9000-6500 calendar years). The organic-matter content varies from 5 weight percent to 25 weight percent and, together with CaCO3, serves to dilute the allogenic detrital fraction. In both cores almost all of the iron (Fe) and manganese (Mn) is in endogenic minerals, presumed to be oxyhydroxide minerals, that are important components throughout the core; little Fe and Mn are contributed by detrital aluminosilicate minerals. The endogenic Fe mineral, calculated as Fe(OH)3, forms a larger percentage of the sediment than endogenic organic material throughout most of the Holocene section in the LSL-B core and in the lacustrine sediments below the peat in the LSF-10 core. Biogenic silica as opal (biopal; diatom debris) was not measured, but the average calculated biopal is 5

  16. Early Holocene vegetation - climate interactions in the central part of European Russia

    NASA Astrophysics Data System (ADS)

    Novenko, Elena; Olchev, Alexander

    2017-04-01

    The new Early Holocene vegetation and climate reconstruction (approximately 10100 -7800 cal. yr. BP) for the forest zone the central European Russia are based on pollen records from three key regions located in taiga, mixed coniferous-broadleaved and broadleaved forest zones. The climatic parameters (the mean annual temperature and precipitation) and total forest coverage during the early Holocene were reconstructed using the Best Modern Analogue technique. Information about moistening conditions was revealed from reconstructions of actual evapotranspiration (ET) and potential evaporation (PET). For calculation of the annual ET and PET rates of the forest landscapes a regression model was applied. The model is based on nonlinear approximations of annual values of ET and PET provided by the Levenberg-Marquardt method using the results of numerical simulations of ET and PET carried out by a Mixfor-SVAT model for the forests with different species compositions under various thermal and moistening conditions. Mixfor-SVAT is an one-dimensional model of the energy, H2O and CO2 exchange between vertically structured mono- and multi-specific forest stands and the atmosphere (Olchev et al., 2002). Obtained results showed that the considered period was characterized by relatively low air temperatures and high precipitation compared with modern conditions. Analysis of the long-term pattern of the mean annual temperature for all three regions reveal two synchronous significant cooling periods observed in 9100-9300 cal. yr. BP and 8100-8500 cal. yr. BP as well as rapid growth of the air temperature in 8100-7800 cal. yr. BP, when the annual temperatures increased by 3°C during about 300 years. The cooling phase of 8100-8500 cal. yr. BP could be corresponded to the distinct "8.2 ka event" widely recorded across Europe. Periods of climate warming are coincided with periods of precipitation rise whereas the cool phases are characterized by its decrease. The lowest ET and PET rates

  17. Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene

    NASA Astrophysics Data System (ADS)

    Jennings, Anne E.; Andrews, John T.; Ó Cofaigh, Colm; Onge, Guillaume St.; Sheldon, Christina; Belt, Simon T.; Cabedo-Sanz, Patricia; Hillaire-Marcel, Claude

    2017-08-01

    Three radiocarbon dated sediment cores from trough mouth fans on the central west Greenland continental slope were studied to determine the timing and processes of Greenland Ice Sheet (GIS) retreat from the shelf edge during the last deglaciation and to test the role of ocean forcing (i.e. warm ocean water) thereon. Analyses of lithofacies, quantitative x-ray diffraction mineralogy, benthic foraminiferal assemblages, the sea-ice biomarker IP25, and δ18 O of the planktonic foraminifera Neogloboquadrina pachyderma sinistral from sediments in the interval from 17.5-10.8 cal ka BP provide consistent evidence for ocean and ice sheet interactions during central west Greenland (CWG) deglaciation. The Disko and Uummannaq ice streams both retreated from the shelf edge after the last glacial maximum (LGM) under the influence of subsurface, warm Atlantic Water. The warm subsurface water was limited to depths below the ice stream grounding lines during the LGM, when the GIS terminated as a floating ice shelf in a sea-ice covered Baffin Bay. The deeper Uummannaq ice stream retreated first (ca. 17.1 cal ka BP), while the shallower Disko ice stream retreated at ca. 16.2 cal ka BP. The grounding lines were protected from accelerating mass loss (calving) by a buttressing ice shelf and by landward shallowing bathymetry on the outer shelf. Calving retreat was delayed until ca. 15.3 cal ka BP in the Uummannaq Trough and until 15.1 cal ka BP in the Disko Trough, during another interval of ocean warming. Instabilities in the Laurentide, Innuitian and Greenland ice sheets with outlets draining into northern Baffin Bay periodically released cold, fresh water that enhanced sea ice formation and slowed GIS melt. During the Younger Dryas, the CWG records document strong cooling, lack of GIS meltwater, and an increase in iceberg rafted material from northern Baffin Bay. The ice sheet remained in the cross-shelf troughs until the early Holocene, when it retreated rapidly by calving and strong

  18. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    USGS Publications Warehouse

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  19. Holocene aeolian activity in the Gonghe Basin, north-eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, Georg; Lai, Zhongping; Lehmkuhl, Frank; Schulte, Philipp

    2016-04-01

    The Gonghe Basin is located on the north-eastern edge of Tibetan Plateau and has a mean altitude of 3000 m asl. With a size of 20.000 km² it is the largest intramontane Basin on the north-eastern Plateau. The well-studied Qinghai Basin is situated north of the Basin, while the drier central Plateau is further south-west. Previous research indicated an early onset of the aeolian accumulation in the Qinghai Basin at around 18 ka while in the areas further to the south-west aeolian archives date back only to the beginning of the Holocene. First new OSL ages from aeolian sand and loess indicate a intermediate timing of the aeolian accumulation in the Gonghe Basin at the transition from the late glacial to the Holocene. Late glacial and early Holocene ages of aeolian sediments were hitherto associated with wetter climate conditions caused by the strengthening of the Asian summer monsoon. Higher moisture availability resulted in an increased vegetation cover, leading to the permanent stabilization of the aeolian sediments. Under glacial climate conditions a constant remobilization of the sediments can be assumed. The new OSL ages from the Gonghe Basin indicate a progressive shift of the monsoonal strength in westward directions during the late glacial until the early Holocene.

  20. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico

    PubMed Central

    Ranere, Anthony J.; Piperno, Dolores R.; Holst, Irene; Dickau, Ruth; Iriarte, José

    2009-01-01

    Molecular evidence indicates that the wild ancestor of maize is presently native to the seasonally dry tropical forest of the Central Balsas watershed in southwestern Mexico. We report here on archaeological investigations in a region of the Central Balsas located near the Iguala Valley in Guerrero state that show for the first time a long sequence of human occupation and plant exploitation reaching back to the early Holocene. One of the sites excavated, the Xihuatoxtla Shelter, contains well-stratified deposits and a stone tool assemblage of bifacially flaked points, simple flake tools, and numerous handstones and milling stone bases radiocarbon dated to at least 8700 calendrical years B.P. As reported in a companion paper (Piperno DR, et al., in this issue of PNAS), starch grain and phytolith residues from the ground and chipped stone tools, plus phytoliths from directly associated sediments, provide evidence for maize (Zea mays L.) and domesticated squash (Cucurbita spp.) in contexts contemporaneous with and stratigraphically below the 8700 calendrical years B.P. date. The radiocarbon determinations, stratigraphic integrity of Xihuatoxtla's deposits, and characteristics of the stone tool assemblages associated with the maize and squash remains all indicate that these plants were early Holocene domesticates. Early agriculture in this region of Mexico appears to have involved small groups of cultivators who were shifting their settlements seasonally and engaging in a variety of subsistence pursuits. PMID:19307573

  1. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  2. Holocene Erosion Patterns in European Alps Viewed from Lake Sediment

    NASA Astrophysics Data System (ADS)

    Arnaud, F.; Poulenard, J.; Giguet-Covex, C.; Wilhelm, B.; Revillon, S.; Jenny, J. P.; Revel, M.; Enters, D.; Bajard, M.; Fouinat, L.; Doyen, E.; Simonneau, A.; Chapron, E.; Vannière, B.; Sabatier, P.

    2016-12-01

    In this paper we review the scientific efforts that were led over the last decades to reconstruct erosion from continuous alpine lake sediment records. Whereas most available geological records of Holocene terrigenous input focused in climate we propose a regional approach without any a priori regarding erosion forcing factors. In that aim, we integrated a set of sediment sequences from various environment along an altitudinal gradient from 200 up to 2400m asl in Northern French Alps. Altogether our data point climate change as one of the main factor of erosion variability. In particular, the last two cold spells that occurred during the early middle age (Dark Age) and between the 14th and the 20th century AD (Little Ice Age) appear to be outstanding compared to any other periods of enhanced erosion along the Holocene. The climatic forcing of those erosion phases is supported by an increase in the contribution of glacier-eroded material at a regional scale. However, at local scales, our data point the growing importance, since at least the mid Bronze Age (ca. 3500 cal. BP) of human activities as a major erosion factor. This influence peaked during the late Iron Age and Antiquity periods (200 BC - 400 AD) when we record a regional generalised period of enhanced erosion in response to the development of pasturing activities. Thanks to provenance and weathering markers, we evidenced a strong relationship between the changes in ecosystems, soil development and erosion patterns. We hence showed the vegetal colonisation of bared soil led to a period of intense weathering while new soils were under formation between 11,000 and 8,000 cal. BP. Soils then knew an optimum until the onset of the Neoglacial at ca. 4,500 cal. BP prior to decline under both climate and human pressures. Altogether our data point the complexity of processes that affected the Earth critical zone along the Holocene and especially since humans became a major geologic agent. However, we highlight the

  3. Holocene climate changes in eastern Beringia (NW North America) - A systematic review of multi-proxy evidence

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C. G.; McKay, Nicholas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng

    2016-09-01

    Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7-8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest

  4. The horse pinworm (Oxyuris equi) in archaeology during the Holocene: Review of past records and new data.

    PubMed

    Dufour, Benjamin; Hugot, Jean-Pierre; Lepetz, Sébastien; Le Bailly, Matthieu

    2015-07-01

    This paper focuses on the horse pinworm, Oxyuris equi, in archaeology during the Holocene period, and presents an overview of past published occurrences, early mentions in texts, and new data from our paleoparasitology research. This original compilation shows that the most ancient record of the horse pinworm dates to ca. 2500 years before present (ybp) in Central Asia and to ca. 2020 ybp in Western Europe. It also shows that the parasite is not detected on the American continent until contemporary periods. The role of European migrations from 1492 (Christopher Columbus) is discussed to explain the transfer of the horse pinworm from the Old World to the Americas. The absence of any record of this parasite before ca. 2500 ybp in Eurasia could be explained by parasite ecology, unfavorable sampling and scarcity of horse archeological remains. For the Americas, the absence of horse for long periods can be an additional explanation for the absence of the parasite. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Holocene glacial fluctuations in southern South America

    NASA Astrophysics Data System (ADS)

    Reynhout, S.; Sagredo, E. A.; Kaplan, M. R.; Aravena, J. C.; Martini, M. A.; Strelin, J. A.; Schaefer, J. M.

    2016-12-01

    Understanding the timing and magnitude of former glacier fluctuations is critical to decipher long-term climatic trends and to unravel both natural cycles and human impact on the current glacial behavior. Despite more than seven decades of research efforts, a unifying model of Holocene glacial fluctuations in Southern South America remains elusive. Here, we present the state-of-the-art regarding the timing of Holocene glacial fluctuation in southern Patagonia-Tierra del Fuego, with a focus on a new generation of high-resolution radiocarbon and 10Be surface exposure dating chronologies. Recently acquired evidence suggest that after receding from advanced Late Glacial positions, Patagonian glaciers were for the most part close to, or even behind, present ice margins during the Early Holocene. On the other hand, emerging chronologies indicate that in some areas there were extensive expansions (century scale?) that punctuated the warm interval. Subsequently, we have evidence of multiple millennial timescale glacial advances starting in the middle Holocene. Several glacial maxima are defined by moraines and other landforms from 7000 years ago to the 19th century, with a gap sometime between 4,500 and 2,500 years ago. The last set of advances began around 800-600 years ago. Although glacial activity is documented in Patagonia at the same time as the European Little Ice Age, the extent of these glacial events are less prominent than those of the mid-Holocene. The causes that may explain these glacial fluctuations remain elusive. Finally, we discuss ongoing efforts to better define the timing and extent of Holocene glaciations in southern South America, and to establish the basis to test competing hypothesis of regional Holocene climate variability.

  6. Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Axford, Yarrow; Briner, Jason P.; Miller, Gifford H.; Francis, Donna R.

    2009-03-01

    A continuous record of insect (Chironomidae) remains preserved in lake sediments is used to infer temperature changes at a small lake in Arctic Canada through the Holocene. Early Holocene summers at the study site were characterized by more thermophilous assemblages and warmer inferred temperatures than today, presumably in response to the positive anomaly in Northern Hemisphere summer insolation. Peak early Holocene warmth was interrupted by two cold reversals between 9.5 and 8 cal ka BP, during which multiple cold-stenothermous chironomid taxa appeared in the lake. The earlier reversal appears to correlate with widespread climate anomalies around 9.2 cal ka BP; the age of the younger reversal is equivocal but it may correlate with the 8.2 cal ka BP cold event documented elsewhere. Widespread, abrupt climate shifts in the early Holocene illustrate the susceptibility of the climate system to perturbations, even during periods of enhanced warmth in the Northern Hemisphere.

  7. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene

    NASA Astrophysics Data System (ADS)

    Zheng, Yanhong; Pancost, Richard D.; Naafs, B. David A.; Li, Qiyuan; Liu, Zhao; Yang, Huan

    2018-07-01

    Northeast (NE) China lies in the northernmost part of the East Asian Summer monsoon (EASM) region. Although a series of Holocene climatic records have been obtained from lakes and peats in this region, the Holocene hydrological history and its controls remain unclear. More specifically, it is currently debated whether NE China experienced a dry or wet climate during the early Holocene. Here we reconstruct changes in mean annual air temperature and peat soil moisture across the last ∼13,000 year BP using samples from the Gushantun and Hani peat, located in NE China. Our approach is based on the distribution of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) and the abundance of the archaeal isoprenoidal (iso)GDGT crenarchaeol. Using the recently developed peat-specific MAATpeat temperature calibration we find that NE China experienced a relatively warm early Holocene (∼5-7 °C warmer than today), followed by a cooling trend towards modern-day values during the mid- and late Holocene. Moreover, crenarchaeol concentrations, brGDGT-based pH values, and the distribution of 6-methyl brGDGTs, all indicate an increase in soil moisture content from the early to late Holocene in both peats, which is largely consistent with other data from NE China. This trend towards increasing soil moisture/wetter conditions across the Holocene in NE China records contrasts with the trends observed in other parts of the EASM region, which exhibit an early and/or mid-Holocene moisture/precipitation maximum. However, the Holocene soil moisture variations and temperature-moisture relationships (warm-dry and cold-wet) observed in NE China are similar to those observed in the core area of arid central Asia which is dominated by the westerlies. We therefore propose that an increase in the intensity of the westerlies across the Holocene, driven by increasing winter insolation, expanding Arctic sea ice extent and the enhanced Okhotsk High, caused an increase in moisture

  8. Age and height distribution of holocene transgressive deposits in eastern North Island, New Zealand

    USGS Publications Warehouse

    Ota, Y.; Berryman, K.R.; Hull, A.G.; Miyauchi, T.; Iso, N.

    1988-01-01

    Holocene transgressive deposits are frequently exposed near the present-day coastline of the study area along eastern North Island, New Zealand. They occur in sites of former estuaries that were filled during the postglacial rise in sea level. We present one hundred radiocarbon dates of Holocene transgressive deposits from the study area, ranging in age from ca. 10,000 to 5500 yr B.P. Relative sea level curves up to ca. 6000 yr B.P. were reconstructed for six locations. The curves have similar slopes prior to about 7000 yr B.P., indicating that sea level rise was much more rapid than any tectonic uplift at that time. The postglacial rise in sea level in New Zealand is considered, in general, to have culminated at about 6500 yr B.P. but the upper limit ages of transgressive deposits in our study area vary from ca. 5500 to 7000 yr B.P. At sites where the uplift rate is high the postglacial transgression culminated rather earlier than ca. 6500 yr B.P., and at sites where there is subsidence or there is very low uplift the culmination is later than ca. 6500 yr B.P. Nine of fourteen dates from fossil trees in growth position, that grew in and were buried by estuarine silt, cluster in the age range ca. 8000-8400 yr B.P. These data support the view that there was a minor regression or stillstand in the eustatic sea level rise at that time. Eleven tectonic subregions are recognized in the study area on the basis of average uplift rate. Most of these subregions coincide with those established from the number and ages of younger Holocene marine terraces of probable coseismic origin. ?? 1988.

  9. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records

    NASA Astrophysics Data System (ADS)

    Hu, Chaoyong; Henderson, Gideon M.; Huang, Junhua; Xie, Shucheng; Sun, Ying; Johnson, Kathleen R.

    2008-02-01

    A reconstruction of Holocene rainfall is presented for southwest China — an area prone to drought and flooding due to variability in the East Asian monsoon. The reconstruction is derived by comparing a new high-resolution stalagmite δ18O record with an existing record from the same moisture transport pathway. The new record is from Heshang Cave (30°27'N, 110°25'E; 294 m) and shows no sign of kinetic or evaporative effects so can be reliably interpreted as a record of local rainfall composition and temperature. Heshang lies 600 km downwind from Dongge Cave which has a published high-resolution δ18O record (Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854-857). By differencing co-eval δ18O values for the two caves, secondary controls on δ18O (e.g. moisture source, moisture transport, non-local rainfall, temperature) are circumvented and the resulting Δ δ18O signal is controlled directly by the amount of rain falling between the two sites. This is confirmed by comparison with rainfall data from the instrumental record, which also allows a calibration of the Δ δ18O proxy. The calibrated Δ δ18O record provides a quantitative history of rainfall in southwest China which demonstrates that rainfall was 8% higher than today during the Holocene climatic optimum (≈ 6 ka), but only 3% higher during the early Holocene. Significant multi-centennial variability also occurred, with notable dry periods at 8.2 ka, 4.8-4.1 ka, 3.7-3.1 ka, 1.4-1.0 ka and during the Little Ice Age. This Holocene rainfall record provides a good target with which to test climate models. The approach used here, of combining stalagmite records from more than one location, will also allow quantification of rainfall patterns for past times in other regions.

  10. A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece)

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Leng, M. J.; Rethemeyer, J.

    2013-02-01

    A Late Glacial to Holocene sediment sequence (Co1260, 717 cm) from Lake Dojran, located at the boarder of the F.Y.R. of Macedonia and Greece, has been investigated to provide information on climate variability in the Balkan region. A robust age-model was established from 13 radiocarbon ages, and indicates that the base of the sequence was deposited at ca. 12 500 cal yr BP, when the lake-level was low. Variations in sedimentological (H2O, TOC, CaCO3, TS, TOC/TN, TOC/TS, grain-size, XRF, δ18Ocarb, δ13Ccarb, δ13Corg) data were linked to hydro-acoustic data and indicate that warmer and more humid climate conditions characterised the remaining period of the Younger Dryas until the beginning of the Holocene. The Holocene exhibits significant environmental variations, including the 8.2 and 4.2 ka cooling events, the Medieval Warm Period and the Little Ice Age. Human induced erosion processes in the catchment of Lake Dojran intensified after 2800 cal yr BP.

  11. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution

    PubMed Central

    Lecavalier, Benoit S.; Fisher, David A.; Milne, Glenn A.; Vinther, Bo M.; Tarasov, Lev; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S.

    2017-01-01

    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4–5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800–7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland. PMID:28512225

  12. Late-glacial to Holocene environmental changes and climate variability: evidence from Voldafjorden, western Norway

    NASA Astrophysics Data System (ADS)

    Sejrup, H. P.; Haflidason, H.; Flatebø, T.; Klitgaard Kristensen, D.; Grøsfjeld, K.; Larsen, E.

    2001-02-01

    Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine-grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9-7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large-scale sliding on the continental margin off Norway (the Storegga Tsunami).During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea-surface summer temperatures, possibly with year-round sea-ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea-surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4-9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0

  13. Holocene water mass history off NE Greenland - A first high-resolution sediment record from the western Fram Strait

    NASA Astrophysics Data System (ADS)

    Zehnich, Marc; Palme, Tina; Spielhagen, Robert F.; Hass, H. Christian; Bauch, Henning A.

    2017-04-01

    While the Holocene history of the eastern Fram Strait seems well investigated, no high-resolution paleoenvironmental records were available from the western Fram Strait so far. A new sedimentary record, obtained during expedition PS93.1 (2015) of RV Polarstern on the outermost NE Greenland shelf, allows for the first time to reconstruct Holocene changes in near-surface salinities, temperature, stratification and water masses (polar waters vs. Atlantic Water), potentially related to variations of the freshwater and sea ice export from the Arctic Ocean. The 260 cm long sedimentary record from site PS93/025 (80.5°N, 8.5°W) was investigated for sediment composition, foraminifer contents, grain size variations (sortable silt) and the isotopic composition of planktic foraminifers. Radiocarbon datings reveal an age of 10.2 cal-ka for the core base and continuous sedimentation throughout most of the Holocene. The sediments are generally very fine-grained (<2% sand). The grain size record reveals a fining-upwards trend and sediments from <6.5 cal-ka consist of <0.5% coarse fraction. A comparison of foraminifer and coarse fraction abundances shows strong similarities. Apparently the contribution of coarse terrestrial material from iceberg transport was extremely low throughout the last 10.2 cal-ka. Foraminifer abundances (both planktic and benthic) are high in Early Holocene sediments until ca. 7 cal-ka and decrease rapidly thereafter. This is interpreted to reflect a relatively strong advection of Atlantic Water to the NW Fram Strait, which correlates well with similar findings on the eastern side of the Arctic Gateway. Sortable silt grain sizes are high (27-32 µm) in the older part of the record and gradually decrease between 7 cal-ka and 4 cal-ka. After ca. 4 cal-ka, sortable silt shows values of 20-22 µm and little variation. Considering also the grain-size distribution curves, we propose a decline of bottom current velocities on the outer NE Greenland shelf after 7

  14. Reconstruction of Holocene environmental changes in Southern Kurils (North-Western Pacific) based on palaeolake sediment proxies from Shikotan Island

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Grebennikova, Tatiana A.; Razjigaeva, Nadezhda G.; Ganzey, Larisa A.; Belyanina, Nina I.; Arslanov, Khikmat A.; Kaistrenko, Victor M.; Gorbunov, Aleksey O.; Kharlamov, Andrey A.; Rudaya, Natalia; Palagushkina, Olga; Biskaborn, Boris K.; Diekmann, Bernhard

    2017-12-01

    We investigated a well-dated sediment section of a palaeolake situated in the coastal zone of Shikotan Island (Lesser Kurils) for organic sediment-geochemistry and biotic components (diatoms, chironomids, pollen) in order to provide a reconstruction of the palaeoenvironmental changes and palaeo-events (tsunamis, sea-level fluctuations and landslides) in Holocene. During the ca 8000 years of sedimentation the changes in organic sediment-geochemistry and in composition of the diatoms and chironomids as well as the shifts in composition of terrestrial vegetation suggest that the period until ca 5800 cal yr BP was characterized by a warm and humid climate (corresponds to middle Holocene optimum) with climate cooling thereafter. A warm period reconstructed from ca 900 to at least ca 580 cal yr BP corresponds to a transition to a Nara-Heian-Kamakura warm stage and can be correlated to a Medieval Warm Period. After 580 cal yr PB, the lake gradually dried out and climatic signals could not be obtained from the declining lacustrine biological communities, but the increasing role of spruce and disappearance of the oak from the vegetation give evidences of the climate cooling that can be correlated with the LIA. The marine regression stages at the investigated site are identified for ca 6200-5900 (at the end of the middle Holocene transgression), ca 5500-5100 (Middle Jomon regression or Kemigawa regression), and ca 1070-360 cal yr BP (at the end of Heian transgression). The lithological structure of sediments and the diatom compositions give evidences for the multiple tsunami events of different strengths in the Island. Most remarkable of them can be dated at around ca 7000, 6460, 5750, 4800, 950 cal yr BP. The new results help to understand the Holocene environmental history of the Southern Kurils as a part of the Kuril-Kamchatka and Aleutian Marginal Sea-Island Arc Systems in the North-Western Pacific region.

  15. Sea-level change and demography during the last glacial termination and early Holocene across the Australian continent

    NASA Astrophysics Data System (ADS)

    Williams, Alan N.; Ulm, Sean; Sapienza, Tom; Lewis, Stephen; Turney, Chris S. M.

    2018-02-01

    Future changes in sea-level are projected to have significant environmental and social impacts, but we have limited understanding of comparable rates of change in the past. Using comprehensive palaeoenvironmental and archaeological datasets, we report the first quantitative model of the timing, spatial extent and pace of sea-level change in the Sahul region between 35-8 ka, and explore its effects on hunter-gatherer populations. Results show that the continental landmass (excluding New Guinea) increased to 9.80 million km2 during the Last Glacial Maximum (LGM), before a reduction of 2.12 million km2 (or ∼21.6%) to the early Holocene (8 ka). Almost 90% of this inundation occurs during and immediately following Meltwater Pulse (MWP) 1a between 14.6 and 8 ka. The location of coastlines changed on average by 139 km between the LGM and early Holocene, with some areas >300 km, and at a rate of up to 23.7 m per year (∼0.6 km land lost every 25-year generation). Spatially, inundation was highly variable, with greatest impacts across the northern half of Australia, while large parts of the east, south and west coastal margins were relatively unaffected. Hunter-gatherer populations remained low throughout (<30,000), but following MWP1a, increasing archaeological use of the landscape, comparable to a four-fold increase in populations, and indicative of large-scale migration away from inundated regions (notably the Bass Strait) are evident. Increasing population density resulting from MWP1a (from 1/655 km2 to 1/71 km2) may be implicated in the development of large and complex societies later in the Holocene. Our data support the hypothesis that late Pleistocene coastal populations were low, with use of coastal resources embedded in broad-ranging foraging strategies, and which would have been severely disrupted in some regions and at some time periods by sea-level change outpacing tolerances of mangals and other near-shore ecological communities.

  16. New Holocene Slip-rate Sites Along the Mojave San Andreas Fault Near Palmdale, CA

    NASA Astrophysics Data System (ADS)

    Young, E. K.; Cowgill, E.; Scharer, K. M.

    2016-12-01

    The slip rate for the Mojave San Andreas fault (MSAF) is poorly known: the long-term ( 413ky) geologic rate is as high as 37mm/yr [1] while the geodetic slip rate is as low as 15mm/yr [2]. To determine the Holocene-average rate for the MSAF, we investigated several offset landforms near Palmdale, CA using detailed surficial mapping and 14C analyses of charcoal collected from hand-dug excavations. Site X-12 preserves two offset markers sourced from a north-flowing catchment south of the fault. One is a terrace riser cut into older alluvium that is abutted by the eastern margin of a Qf3 fan and is displaced by 75 m. Offset of the riser and the alluvium generated a north-facing fault-scarp that was eroded to form a small fan on top of the eastern margin of the Qf3 fan. The second offset is a beheaded channel that is incised into the Qf3 fan north of the fault and is displaced 50m, and thus formed after the riser was offset by 25m. To date these landforms we opened 5 excavations at the site, with emphasis on the beheaded channel. Dates from within the Qf3 fan south/upstream of the fault and abandoned bedload in the beheaded channel give maximum and minimum ages for the channel incision of 1500calBP and 600calBP, respectively, implying a rate ≥33mm/yr. Future work seeks to date post-abandonment channel-fill deposits and the upper and lower bounds on the terrace riser. At a second site, Ranch Center, a north-flowing stream cut across a shutter ridge north of the fault and was then offset and deflected 80m before cutting a new channel across the fault. Future work here seeks to date the bases of the alluvial fans deposited by the abandoned and active channels to obtain maximum and minimum ages for the 80 m offset, respectively. Rates from these sites should help to better define the Holocene slip rate on the MSAF. 1) Matmon et al., 2005, GSAB. v. 117 p. 795 2) Becker et al., 2005, Geoph.. J. Int., v. 160 p. 634

  17. Appalachian Piedmont landscapes from the Permian to the Holocene

    USGS Publications Warehouse

    Cleaves, E.T.

    1989-01-01

    Between the Potomac and Susquehanna Rivers and from the Blue Ridge to the Fall Zone, landscapes of the Piedmont are illustrated for times in the Holocene, Late Wisconsin, Early Miocene, Early Cretaceous, Late Triassic, and Permian. Landscape evolution took place in tectonic settings marked by major plate collisions (Permian), arching and rifting (Late Triassic) and development of the Atlantic passive margin by sea floor spreading (Early Cretaceous). Erosion proceeded concurrently with tectonic uplift and continued after cessation of major tectonic activity. Atlantic Outer Continental Shelf sediments record three major erosional periods: (1) Late Triassic-Early Jurassic; (2) Late Jurassic-Early Cretaceous; and (3) Middle Miocene-Holocene. The Middle Miocene-Holocene pulse is related to neotectonic activity and major climatic fluctuations. In the Piedmont upland the Holocene landscape is interpreted as an upland surface of low relief undergoing dissection. Major rivers and streams are incised into a landscape on which the landforms show a delicate adjustment to rock lithologies. The Fall Zone has apparently evolved from a combination of warping, faulting, and differential erosion since Late Miocene. The periglacial environment of the Late Wisconsin (and earlier glacial epochs) resulted in increased physical erosion and reduced chemical weathering. Even with lowered saprolitization rates, geochemical modeling suggests that 80 m or more of saprolite may have formed since Late Miocene. This volume of saprolite suggests major erosion of upland surfaces and seemingly contradicts available field evidence. Greatly subdued relief characterized the Early Miocene time, near the end of a prolonged interval of tropical morphogenesis. The ancestral Susquehanna and Potomac Rivers occupied approximately their present locations. In Early Cretaceous time local relief may have been as much as 900 m, and a major axial river draining both the Piedmont and Appalachians flowed southeast

  18. Holocene palaeoenvironmental history of the Amazonian mangrove belt

    NASA Astrophysics Data System (ADS)

    Cohen, Marcelo Cancela Lisboa; Pessenda, Luiz Carlos Ruiz; Behling, Hermann; de Fátima Rossetti, Dilce; França, Marlon Carlos; Guimarães, José Tasso Felix; Friaes, Yuri; Smith, Clarisse Beltrão

    2012-11-01

    Wetland dynamic in the northern Brazilian Amazon region during the Holocene was reviewed using palynological, carbon and nitrogen isotopes records, and C/N ratio previously published. The integration of 72 radiocarbon dates recorded in 34 sediment cores sampled along the marine and fluvial littoral, and mainly influenced by the Amazon River, reveals that marine influence and mangrove vegetation were wider than today on the mouth of Amazon River between >8990-8690 and 2300-2230 cal yr BP, forming a continuous mangrove belt along the northern Brazilian Amazon littoral. The establishment of this mangrove strip is a direct consequence of the marine incursion caused by post-glacial sea-level rise possibly associated with tectonic subsidence during the Early and Middle Holocene. In the Late Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral, which is currently dominated by mangroves and salt-marsh vegetation, has persistently had brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the fragmentation of this continuous mangrove line during the Late Holocene was caused by the increase of river freshwater discharge associated to the change from dry into wet climates in the Late Holocene. This caused a significant decrease of tidal water salinity in areas near the mouth of Amazon River. These changes in the Amazon discharge are probably associated with dry and wet periods in the northern Amazon region during the Holocene.

  19. Sediment Buffering and Transport in the Holocene Indus River System

    NASA Astrophysics Data System (ADS)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  20. Role of ice sheet dynamics in the collapse of the early-Holocene Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Matero, I. S. O.; Gregoire, L. J.; Cornford, S. L.; Ivanovic, R. F.

    2017-12-01

    The last stage of the deglaciation of the Laurentide Ice Sheet (LIS) during the early Holocene Thermal Maximum ( 9000 to 7000 years ago) provides an analogy and insight to the possible responses of contemporary ice sheets in a warming climate. What makes LIS particularly interesting is that meltwater from the collapse of an ice saddle over Hudson Bay was recently shown to be the primary forcing for the period of abrupt northern hemisphere cooling known as the 8.2 ka event. The evolution of the LIS during this period was likely influenced by its interaction with marginal lakes and the ocean, and its major ice stream, which exported ice towards Hudson Strait. Accurately simulating the early Holocene LIS evolution thus requires a model such as BISICLES, capable of accurately and efficiently resolving ice stream dynamics and grounding line migration thanks to the combined use of higher order physics and adaptive mesh refinement. We drive the BISICLES model using a positive degree day mass balance scheme with monthly precipitation and temperature from the HadCM3 climate model under climatic conditions from 10,000 to 8,000 years ago. We test the effect of varying the initial topographies and ice thicknesses from different timeslices in the ICE-6Gc reconstruction. We also test different parameterisations for the basal friction based on the thicknesses of the underlying sediments. These simulations evaluate the role of the Hudson Strait ice stream, ice sheet dynamics and interactions with the adjacent proglacial Lake Agassiz and North Atlantic Ocean in the collapse of the LIS. Our results highlight that the choice of parameterisation for basal friction has major effects on ice sheet dynamics and evolution.

  1. A multi-proxy reconstruction of Holocene climate change from Blessberg Cave, Germany

    NASA Astrophysics Data System (ADS)

    Breitenbach, Sebastian F. M.; Plessen, Birgit; Wenz, Sarah; Leonhardt, Jens; Tjallingii, Rik; Scholz, Denis; Jochum, Klaus Peter; Marwan, Norbert

    2016-04-01

    Although Holocene climate dynamics were relatively stable compared to glacial conditions, climatic changes had significant impact on ecosystems and human society on various timescales (Mayewski et al. 2004, Donges et al. 2015, Tan et al. 2015). Precious few high-resolution records on Holocene temperature and precipitation conditions in Central Europe are available (e.g., von Grafenstein et al. 1999, Fohlmeister et al. 2012). Here we present a speleothem-based reconstruction of past climate dynamics from Blessberg Cave, Thuringia, central Germany. Three calcitic stalagmites were recovered when the cave was discovered during tunneling operations in 2008. Samples BB-1, -2 and -3 were precisely dated by the 230Th/U-method, with errors between 10 and 160 years (2σ). The combined record covers large parts of the Holocene (10 - 0.4 ka BP). δ13C and δ18O were analysed at 100 μm resolution. To gain additional insights in infiltration conditions, Sr/Ca and S/Ca were measured on BB-1 and BB-3 using an Röntgenanalytik Eagle XXL μXRF scanner. Differences to other central European records (e.g., von Grafenstein et al. 1999, Fohlmeister et al. 2012) suggest complex interaction between multiple factors influencing speleothem δ18O in Blessberg Cave. Furthermore, no clear influence of the North Atlantic Oscillation on our proxies is found. However, a link across the N Atlantic realm is indicated by a centennial-scale correlation between Blessberg δ18O values and minerogenic input into lake SS1220 in Greenland over the last 5 ka (Olsen et al. 2012). In addition, recurrence analysis indicates an imprint of Atlantic Bond events on Blessberg δ18O values (Marwan et al. 2014), corroborating the suggested link with high northern latitudes. Larger runoff into the Greenland lake seems to be associated with lower δ18O, higher δ13C and S/Ca ratios, as well as lower Sr/Ca ratios in Blessberg Cave speleothems. This might be linked to lower local temperature and/or changes in

  2. Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells

    NASA Astrophysics Data System (ADS)

    Livsey, C.; Spero, H. J.; Kozdon, R.

    2016-12-01

    The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target <5 μm - sized domains for δ18O using secondary ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments

  3. Late Glacial to Early Holocene socio-ecological responses to climatic instability within the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Fernández-López de Pablo, Javier; Jones, Samantha E.; Burjachs, Francesc

    2018-03-01

    The period spanning the Late Glacial and the Early Holocene (≈19-8.2 ka) witnessed a dramatic sequence of climate and palaeoenvironmental changes (Rasmussen et al., 2014). Interestingly, some of the most significant transformations ever documented in human Prehistory took place during this period such as the intensification of hunter-gatherer economic systems, the domestication process of wild plants and animals, and the spread of farming across Eurasia. Understanding the role of climate and environmental dynamics on long-term cultural and economic trajectories, as well as specific human responses to episodes of rapid climate change, still remains as one of the main challenges of archaeological research (Kintigh et al., 2014).

  4. Holocene environmental changes in northern Lebanon as inferred from a multiproxy study on lacustrine-palustrine sediment

    NASA Astrophysics Data System (ADS)

    Vidal, L.; Hage-Hassan, J.; Gasse, F. A.; Demory, F.; van Campo, E.; Develle, A.; Elias, A.

    2013-12-01

    The reconstruction of the Levantine post-glacial environmental evolution is essential to understand the interactions between variability of regional water cycle, dynamics of the global climate, and cultural evolution. Here, we present an Holocene record from the karstic Yammouneh basin (34.06N-34.09N; 36.0E-36.03E, 1360 m a.s.l.), located on the eastern flank of Mount Lebanon (northern Levant). Two new sedimentary profiles (from 1 gully and 1 trench) complement former data from 2 trenches and 1 core collected in different points of the basin (Daeron et al., 2007; Develle et al., 2009, 2010). A total of 42 AMS 14C dating (partly carbonized wood) provide a solid chronology from the YD to present. Holocene sediments (1.5 to 3.6 m thick) consist of pale lacustrine chalk interrupted by an ash layer and remarkable centimetric beds of ocher to dark brown silty clays used, in addition to 14C ages, as stratigraphical markers. Lacustrine biogenic remains are diversified and abundant (ostracods, gastropods, charophytes, chlorophyceae, plant debris...) all reflecting a freswater, generally shallow waterbody. We analysed the sediment mineralogy, TOM contents, magnetic properties (magnetic susceptibility and its frequency dependence), pollen and calcite oxygen isotope composition derived from ostracod shells. Results reveal the following main features : 1- intervals dominated by authigenic calcite suggest that the major water supply was the karstic springs, which still deliver Ca-rich water and low surface runoff; 2- the lake oxygen isotope composition has been impacted by the source isotope composition throughout the Holocene and by increased inland rainfall during the early Holocene; 3- a decideous oak forest, implying much more soil water availability than today, was developed around the lake from ca. 11.5 to 9.5 kyr (the very bad pollen preservation after 8.3 kyr reflects oxidation or frequent oscillations of the water level); 4- four paleosols evidenced from lithofacies and

  5. Paleoeskimo Demographic History in the Canadian Arctic (ca. 4800-800 B.P.) and its Relationship to Mid-Late Holocene Climate Variability.

    NASA Astrophysics Data System (ADS)

    Savelle, J. M.

    2014-12-01

    Paleoeskimos were the first occupants of the central and eastern Canadian Arctic, spreading east from the Bering Strait region beginning approximately 4800 B.P., and occupied much of the Canadian Arctic through to their eventual disappearance ca. 800 B.P. Extensive regional archaeological site surveys throughout this area by the author and Arthur S. Dyke indicate that Paleoskimo populations underwent a series of population 'boom' (rapid expansion) and 'bust' (population declines and local extinctions) over the 4,000 year occupation history, including in the purported stable 'core area' of Foxe Basin. In this paper, we examine the contemporaneity of the local boom and bust cycles in a pan-Canadian Arctic context, and in turn examine the relationship of these cycles to mid-late Holocene climate variability.

  6. Tephra layers from Holocene lake sediments of the Sulmona Basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area

    NASA Astrophysics Data System (ADS)

    Giaccio, B.; Messina, P.; Sposato, A.; Voltaggio, M.; Zanchetta, G.; Galadini, F.; Gori, S.; Santacroce, R.

    2009-12-01

    products from the so-called "Protohistoric" or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600-4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between the major Plinian "Pomici di Mercato" (ca 9000 yrs BP) and "Pomici di Avellino" eruptions. Alternatively, since at present there is no evidence of a similar significant activity in the proximal area of this well-known volcano, a hitherto unknown origin of these tephras cannot be role out. The results of the present study provide new data that enrich our previous knowledge of the Holocene tephrostratigraphy and tephrochronology in central Italy, and a new model for the recent explosive activity of the Peninsular Italy volcanoes and the dispersal of the related pyroclastic deposits.

  7. Climate variability during the Holocene inferred from northeastern Iberian speleothems

    NASA Astrophysics Data System (ADS)

    Moreno, A.; Bartolomé, M.; Sancho, C.; Belmonte, Á.; Stoll, H.; Cacho, I.; Edwards, R. L.; Hellstrom, J.

    2012-04-01

    Although the general climate trends during the Holocene in the Iberian Peninsula have been well described after the study of marine and lacustrine records, many questions regarding the timing of some of the events together with the characterization of the higher-frequency climate variability are still poorly understood. New speleothem records from several caves in northeastern Iberia provide data to explore Holocene climate changes. The selected caves are located in a latitudinal transect from the Pyrenees to the Iberian Range and placed at different altitude. Two of them, 5 de Agosto and Pot au Feu, belong to the same karstic complex in Cotiella massif (Central Pyrenees, 1600 m asl). Seso Cave, also in the Central Pyrenees but at 781 m of altitude, and Molinos cave, a cavity very rich in speleothems located at 1040 m in the Iberian Range, complete the transect. Although in all the caves precipitation coming from Atlantic fronts dominates over the year, a significant Mediterranean influence, specially in summer months, is identified after rainfall monitoring. Speleothem formation during the Holocene occurred at a very low pace in 5 de Agosto cave (80yrs/mm) and increased dramatically at low-altitude caves and during particular periods proved to be wetter (eg. Early Holocene in Molinos cave, less than 10yr/mm). In Seso and Pot au Feu caves, up to seven studied speleothems only grew during short climatic events such as the Iron Cold Period (3000-2500 cal yr BP) or the Little Ice Age (1300-1850 yr AD) that, although cold, were particularly humid periods in northeastern Spain. First stable isotope results highlight the importance of comparing speleothems with similar growing rates and from the same cave to extract climate information and discard other influences. From the integration of four stalagmites from Molinos cave covering since the Holocene onset to 2000 cal yrs BP, the Early Holocene (11.7-8.5 ka BP) with d13C values between -11 and - 9‰ appears as the

  8. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing

    NASA Astrophysics Data System (ADS)

    Baker, Jonathan L.; Lachniet, Matthew S.; Chervyatsova, Olga; Asmerom, Yemane; Polyak, Victor J.

    2017-06-01

    The global temperature evolution during the Holocene is poorly known. Whereas proxy data suggest that warm conditions prevailed in the Early to mid-Holocene with subsequent cooling, model reconstructions show long-term warming associated with ice-sheet retreat and rising greenhouse gas concentrations. One reason for this contradiction could be the under-representation of indicators for winter climate in current global proxy reconstructions. Here we present records of carbon and oxygen isotopes from two U-Th-dated stalagmites from Kinderlinskaya Cave in the southern Ural Mountains that document warming during the winter season from 11,700 years ago to the present. Our data are in line with the global Holocene temperature evolution reconstructed from transient model simulations. We interpret Eurasian winter warming during the Holocene as a response to the retreat of Northern Hemisphere ice sheets until about 7,000 years ago, and to rising atmospheric greenhouse gas concentrations and winter insolation thereafter. We attribute negative δ18O anomalies 11,000 and 8,200 years ago to enhanced meltwater forcing of North Atlantic Ocean circulation, and a rapid decline of δ13C during the Early Holocene with stabilization after about 10,000 years ago to afforestation at our study site. We conclude that winter climate dynamics dominated Holocene temperature evolution in the continental interior of Eurasia, in contrast to regions more proximal to the ocean.

  9. Climate Controls on Last Glacial Maximum to Early Holocene Glacier Extents in the Rwenzori Mountains, Uganda-Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Jackson, M. S.; Kelly, M. A.; Russell, J. M.; Baber, M.; Loomis, S. E.

    2014-12-01

    The climate controls on past and present tropical glacier fluctuations are unclear. Here we present a chronology of past glacial extents in the Rwenzori Mountains (~1ºN, 30ºE), on the border of Uganda and the Democratic Republic of Congo, and compare this with local and regional paleoclimate records to infer the climate controls on glaciation. The Rwenzori Mountains host the most extensive glacial system in Africa and are composed of quartz-rich bedrock lithologies, enabling 10Be dating. Our dataset includes thirty 10Be ages of boulders on moraines estimated to have been deposited between the end of the last glacial period and early Holocene time. In the Mubuku Valley, eight 10Be ages of large (~50-150 m relief) lateral moraines that extend down to ~2000 m asl indicate that deposition occurred at ~23.4 ka (n=4) and ~20.1 ka (n=4), contemporaneously with the global Last Glacial Maximum (LGM). Local and regional paleoclimate records document dry, cool conditions in East Africa during this time. Therefore, we suggest that cooler temperatures were a primary influence on the LGM glacial extents. Upvalley from these samples, six 10Be ages of boulders on moraines (between 3450 and 3720 m asl) document stillstands or readvances of glacier ice at ~14.3 ka (n=2), ~13.2 ka (n=2), and ~11.1 ka (n=2). In the nearby Nyagumasani Valley sixteen 10Be ages of boulders on moraines at similar elevations (3870-4020 m asl) indicate stillstands or readvances at ~11.5 ka (n=4), ~10.6 ka (n=4), and ~10.5 ka (n=4). Local and regional paleoclimate records indicate dry conditions during Younger Dryas time, wet conditions during early Holocene time, and no significant late-glacial temperature reversal. Thus, the relationship between glacier advance and climate conditions during late-glacial time remains enigmatic. We continue to develop the moraine chronology in order to improve our interpretations of climate controls on glacier fluctuations during late-glacial to early Holocene time.

  10. Inter-group violence among early Holocene hunter-gatherers of West Turkana, Kenya.

    PubMed

    Mirazón Lahr, M; Rivera, F; Power, R K; Mounier, A; Copsey, B; Crivellaro, F; Edung, J E; Maillo Fernandez, J M; Kiarie, C; Lawrence, J; Leakey, A; Mbua, E; Miller, H; Muigai, A; Mukhongo, D M; Van Baelen, A; Wood, R; Schwenninger, J-L; Grün, R; Achyuthan, H; Wilshaw, A; Foley, R A

    2016-01-21

    The nature of inter-group relations among prehistoric hunter-gatherers remains disputed, with arguments in favour and against the existence of warfare before the development of sedentary societies. Here we report on a case of inter-group violence towards a group of hunter-gatherers from Nataruk, west of Lake Turkana, which during the late Pleistocene/early Holocene period extended about 30 km beyond its present-day shore. Ten of the twelve articulated skeletons found at Nataruk show evidence of having died violently at the edge of a lagoon, into which some of the bodies fell. The remains from Nataruk are unique, preserved by the particular conditions of the lagoon with no evidence of deliberate burial. They offer a rare glimpse into the life and death of past foraging people, and evidence that warfare was part of the repertoire of inter-group relations among prehistoric hunter-gatherers.

  11. Holocene Record Of The Cuitzeo Lake, Michoacan, Central Mexico

    NASA Astrophysics Data System (ADS)

    Israde-Alcantar, I.; Bischoff, J.; Cram, S.; Ruiz-Fernandez, C.; Barron, J.; Lozano-Garcia, S.; Ortega-Guerrero, B.; Garduño-Monroy, V. H.

    2007-05-01

    A 205 cm-long core spanning the last ca.10,000 years was taken in the western basin of Lake Cuitzeo, located in the tectonic depressions of central Mexico. Age control for the core is provided by four AMS dates on organic sediment. The uppermost 30 cm of the core appears to be highly bioturbated according to Pb210 chronologies. A time plot of mass-accumulation rates of sediment (g/cm2/kyr) shows high rates from 10,000 to 6000 yrs BP, strikingly reduced mid-Holocene rates, and increasing rates post 1000 yrs (which could be due to introduction of European ranching and agriculture). Organic and inorganic carbon (TOC. TIC), diatoms, iron and titanium concentrations were analyzed and used to infer variations in the hydrological cycle and climatic conditions. The lower part of the core (ca.8000 C14 yr B.P.) is characterized by high percents of CaCO3 (more than 35 percent) which rapidly declines to values less than 20 percent after ca. 6000 C14 yr B.P., likely reflecting reduced summer precipitation due to decline summer insolation. Coincident with this decline in percents CaCO3 there is a decline greater that two-fold sediment accumulation rates and an increase in percents TOC. Two peaks TOC are recorded at 909 and 6744 C14 yr B.P. suggesting increased precipitation. The TOC peak at 909 C14 yr B.P. may be associated with increased precipitation during the Medieval Warm Period. The middle Holocene TOC peak at 6744 C14 yr B.P. coincides with a period of increased precipitation in the Cariaco Basin of Venezuela. These changes in precipitation are similar to those recorded in lake records from Guatemala and the marine record of the Cariaco Basin and can be explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ). The upper 100 cm of the core was studied at 1 cm intervals for metals (Al, Fe, Ti, Pb, etc.) using ICPMS geochemistry. These metals show strong cycles throughout the studied interval which may reflect wet-dry cycles. A two fold

  12. Long-term deforestation in NW Spain: linking the Holocene fire history to vegetation change and human activities

    NASA Astrophysics Data System (ADS)

    Kaal, Joeri; Carrión Marco, Yolanda; Asouti, Eleni; Martín Seijo, Maria; Martínez Cortizas, Antonio; Costa Casáis, Manuela; Criado Boado, Felipe

    2011-01-01

    The Holocene fire regime is thought to have had a key role in deforestation and shrubland expansion in Galicia (NW Spain) but the contribution of past societies to vegetation burning remains poorly understood. This may be, in part, due to the fact that detailed fire records from areas in close proximity to archaeological sites are scarce. To fill this gap, we performed charcoal analysis in five colluvial soils from an archaeological area (Campo Lameiro) and compared the results to earlier studies from this area and palaeo-ecological literature from NW Spain. This analysis allowed for the reconstruction of the vegetation and fire dynamics in the area during the last ca 11 000 yrs. In the Early Holocene, Fabaceae and Betula sp. were dominant in the charcoal record. Quercus sp. started to replace these species around 10 000 cal BP, forming a deciduous forest that prevailed during the Holocene Thermal Maximum until ˜5500 cal BP. Following that, several cycles of potentially fire-induced forest regression with subsequent incomplete recovery eventually led to the formation of an open landscape dominated by shrubs (Erica sp. and Fabaceae). Major episodes of forest regression were (1) ˜5500-5000 cal BP, which marks the mid-Holocene cooling after the Holocene Thermal Maximum, but also the period during which agropastoral activities in NW Spain became widespread, and (2) ˜2000-1500 cal BP, which corresponds roughly to the end of the Roman Warm Period and the transition from the Roman to the Germanic period. The low degree of chronological precision, which is inherent in fire history reconstructions from colluvial soils, made it impossible to distinguish climatic from human-induced fires. Nonetheless, the abundance of synanthropic pollen indicators (e.g. Plantago lanceolata and Urtica dioica) since at least ˜6000 cal BP strongly suggests that humans used fire to generate and maintain pasture.

  13. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China

    NASA Astrophysics Data System (ADS)

    Wen, Ruilin; Xiao, Jule; Fan, Jiawei; Zhang, Shengrui; Yamagata, Hideki

    2017-11-01

    There is a controversy regarding whether the high precipitation delivered by an intensified East Asian summer monsoon occurred during the early Holocene, or during the middle Holocene, especially in the context of the monsoonal margin region. The conflicting views on the subject may be caused by chronological uncertainties and ambiguities in the interpretation of different climate proxies measured in different sedimentary sequences. Here, we present a detailed record of the Holocene evolution of vegetation in northern China based on a high-resolution pollen record from Dali Lake, located near the modern summer monsoon limit. From 12,000-8300 cal BP, the sandy land landscape changed from desert to open elm forest and shrubland, while dry steppe dominated the hilly lands and patches of birch forest developed in the mountains. Between 8300 and 6000 cal BP, elm forest was extensively distributed in the sandy lands, while typical steppe covered the hilly lands and mixed coniferous-broadleaved forests expanded in the mountains. Our pollen evidence contradicts the view that the monsoonal rainfall increased during the early Holocene; rather, it indicates that the East Asian summer monsoon did not become intensified until ∼8000 cal BP in northern China. The low precipitation during the early Holocene can be attributed to the boundary conditions, i.e., to the remnant high-latitude Northern Hemisphere ice sheets and the relatively low global sea level.

  14. Holocene carbon dynamics at the forest-steppe ecotone of southern Siberia.

    PubMed

    Mackay, Anson William; Seddon, Alistair W R; Leng, Melanie J; Heumann, Georg; Morley, David W; Piotrowska, Natalia; Rioual, Patrick; Roberts, Sarah; Swann, George E A

    2017-05-01

    The forest-steppe ecotone in southern Siberia is highly sensitive to climate change; global warming is expected to push the ecotone northwards, at the same time resulting in degradation of the underlying permafrost. To gain a deeper understanding of long-term forest-steppe carbon dynamics, we use a highly resolved, multiproxy, palaeolimnological approach, based on sediment records from Lake Baikal. We reconstruct proxies that are relevant to understanding carbon dynamics including carbon mass accumulation rates (CMAR; g C m -2  yr -1 ) and isotope composition of organic matter (δ 13 C TOC ). Forest-steppe dynamics were reconstructed using pollen, and diatom records provided measures of primary production from near- and off-shore communities. We used a generalized additive model (GAM) to identify significant change points in temporal series, and by applying generalized linear least-squares regression modelling to components of the multiproxy data, we address (1) What factors influence carbon dynamics during early Holocene warming and late Holocene cooling? (2) How did carbon dynamics respond to abrupt sub-Milankovitch scale events? and (3) What is the Holocene carbon storage budget for Lake Baikal. CMAR values range between 2.8 and 12.5 g C m -2  yr -1 . Peak burial rates (and greatest variability) occurred during the early Holocene, associated with melting permafrost and retreating glaciers, while lowest burial rates occurred during the neoglacial. Significant shifts in carbon dynamics at 10.3, 4.1 and 2.8 kyr bp provide compelling evidence for the sensitivity of the region to sub-Milankovitch drivers of climate change. We estimate that 1.03 Pg C was buried in Lake Baikal sediments during the Holocene, almost one-quarter of which was buried during the early Holocene alone. Combined, our results highlight the importance of understanding the close linkages between carbon cycling and hydrological processes, not just temperatures, in southern Siberian environments

  15. Insight into the latitudinal distribution of methane emissions throughout the Holocene from ice core methane records.

    NASA Astrophysics Data System (ADS)

    Sowers, T. A.; Vladimirova, D.; Blunier, T.

    2017-12-01

    During the preAnthropogenic era (prior to 1600AD) the interpolar CH4 gradient (IPG) is effectively dictated by the ratio of tropical to Pan Arctic CH4 emissions. IPG records from ice cores in Greenland and Antarctica provide fundamental information for assessing the latitudinal distribution of CH4 emissions and their relation to global climate change. We recently constructed a high-resolution (100yr) record of IPG changes throughout the Holocene using the ReCAP (E. Greenland) and WAIS (W. Antarctica) ice cores. Contemporaneous samples from both cores were analyzed on the same day to minimize analytical uncertainties associated with IPG reconstructions. CH4results from the WAIS core were indistinguishable from previous results suggesting our analytical scheme was intact (± 3ppb). Our reconstructed IPG showed early Holocene IPG values of 65ppb declining throughout the Holocene to values approximating 45 ppb during the latest portion of the Holocene (preAnthropogenic). We then utilized an eight box atmospheric methane box model (EBAMM) to quantify emission scenarios that agree with ice core CH4 records (concentration, IPG and isotopic composition). Our results are consistent with the idea that early Holocene peatland development in the PanArctic regions followed glacier retreat near the end of the last glacial termination contributing an additional 20Tg of CH4/yr relative to the late Holocene. In addition, we had to invoke elevated biomass burning emissions (40Tg/yr) during the early Holocene to account for the elevated d13CH4 values.

  16. Holocene glacier fluctuations and migration of Neolithic yak pastoralists into the high valleys of northwest Bhutan

    NASA Astrophysics Data System (ADS)

    Meyer, M. C.; Hofmann, Ch.-Ch.; Gemmell, A. M. D.; Haslinger, E.; Häusler, H.; Wangda, D.

    2009-06-01

    Here we present geomorphologic, palaeoenvironmental and archaeo-botanical data which elucidate the Late Pleistocene and Holocene glacial history of the high, mountain-locked Himalayan valleys in northwest Bhutan and provide one of the earliest proofs of human activity yet known for the High Himalaya range. In this area, difficult to access, close linkage between climatic change, glacier fluctuations and human migration patterns has been discovered. Glacier systems in the studied area are characterized by avalanching and debris mantled glacier snouts, with the significant local influence of the Indian summer monsoon causing decoupling of glacier responses from temperature changes but supporting the idea of monsoonal forcing. Geomorphologic mapping, together with Optically Stimulated Luminescence (OSL) and radiocarbon dating of ice-proximal sediments, has been used to construct a local glacial chronology. Local ice-stream networks developed during the Early Holocene (ca 10,000-9000 a ago) and during the early part of the Mid Holocene (6710 ± 90-4680 ± 155 cal a BP) at which times there were ice advances of about 5 km from the modern glacier termini. At such times, the intensity of pro- and periglacial processes would have intensified and ice-dammed lakes were probably common as well, rendering human colonization of the high valleys in northwest Bhutan impossible. An abrupt shift to dry climatic conditions on the Tibetan Plateau between 5000 and 4500 a BP coincided with glacial decay and the onset of morphodynamically stable conditions on the broad valley floors of the high valleys in this part of the Himalaya. Palynological data suggest that the sudden disappearance of juniper and rhododendron pollen, the immediate onset of pollen input from cereals (confirmed by detailed SEM analysis) and a clear pattern of over-grazing, trampling and peat deterioration can be linked to human arrival in the valleys at ca 4280 ± 130 cal a BP. Extensive charcoal horizons dating to

  17. The variability of the North Atlantic Oscillation throughout the Holocene

    NASA Astrophysics Data System (ADS)

    Wassenburg, Jasper; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Wei, Wei; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev; Sabaoui, Abdellah; Lohmann, Gerrit; Andreae, Meinrat; Immenhauser, Adrian

    2013-04-01

    The North Atlantic Oscillation (NAO) has a major impact on Northern Hemisphere winter climate. Trouet et al. (2009) reconstructed the NAO for the last millennium based on a Moroccan tree ring PDSI (Palmer Drought Severity Index) reconstruction and a Scottish speleothem record. More recently, Olsen et al. (2012) extended the NAO record back to 5.2 ka BP based on a lake record from West Greenland. It is, however, well known that the NAO exhibits non-stationary behavior and the use of a single location for a NAO reconstruction may not capture the complete variability. In addition, the imprint of the NAO on European rainfall patterns in the Early and Mid Holocene on (multi-) centennial timescales is still largely unknown. This is related to difficulties in establishing robust correlations between different proxy records and the fact that proxies may not only reflect winter conditions (i.e., the season when the NAO has the largest influence). Here we present a precisely dated, high resolution speleothem δ18O record from NW Morocco covering the complete Early and Mid Holocene. Carbon and oxygen isotopes were measured at a resolution of 15 years. A multi-proxy approach provides solid evidence that speleothem δ18O values reflect changes in past rainfall intensity. The Moroccan record shows a significant correlation with a speleothem rainfall record from western Germany, which covers the entire Holocene (Fohlmeister et al., 2012). The combination with the extended speleothem record from Scotland, speleothem records from north Italy and the NAO reconstruction from West Greenland (Olsen et al., 2012) allows us to study the variability of the NAO during the entire Holocene. The relation between West German and Northwest Moroccan rainfall has not been stationary, which is evident from the changing signs of correlation. The Early Holocene is characterized by a positive correlation, which changes between 9 and 8 ka BP into a negative correlation. Simulations with the state

  18. Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence

    USGS Publications Warehouse

    Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C.G.; McKay, Nicolas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng

    2016-01-01

    Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7–8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest

  19. Holocene tectonics and fault reactivation in the foothills of the north Cascade Mountains, Washington

    USGS Publications Warehouse

    Sherrod, Brian L.; Barnett, Elizabeth; Schermer, Elizabeth; Kelsey, Harvey M.; Hughes, Jonathan; Foit, Franklin F.; Weaver, Craig S.; Haugerud, Ralph; Hyatt, Tim

    2013-01-01

    We use LiDAR imagery to identify two fault scarps on latest Pleistocene glacial outwash deposits along the North Fork Nooksack River in Whatcom County, Washington (United States). Mapping and paleoseismic investigation of these previously unknown scarps provide constraints on the earthquake history and seismic hazard in the northern Puget Lowland. The Kendall scarp lies along the mapped trace of the Boulder Creek fault, a south-dipping Tertiary normal fault, and the Canyon Creek scarp lies in close proximity to the south-dipping Canyon Creek fault and the south-dipping Glacier Extensional fault. Both scarps are south-side-up, opposite the sense of displacement observed on the nearby bedrock faults. Trenches excavated across these scarps exposed folded and faulted late Quaternary glacial outwash, locally dated between ca. 12 and 13 ka, and Holocene buried soils and scarp colluvium. Reverse and oblique faulting of the soils and colluvial deposits indicates at least two late Holocene earthquakes, while folding of the glacial outwash prior to formation of the post-glacial soil suggests an earlier Holocene earthquake. Abrupt changes in bed thickness across faults in the Canyon Creek excavation suggest a lateral component of slip. Sediments in a wetland adjacent to the Kendall scarp record three pond-forming episodes during the Holocene—we infer that surface ruptures on the Boulder Creek fault during past earthquakes temporarily blocked the stream channel and created an ephemeral lake. The Boulder Creek and Canyon Creek faults formed in the early to mid-Tertiary as normal faults and likely lay dormant until reactivated as reverse faults in a new stress regime. The most recent earthquakes—each likely Mw > 6.3 and dating to ca. 8050–7250 calendar years B.P. (cal yr B.P.), 3190–2980 cal. yr B.P., and 910–740 cal. yr B.P.—demonstrate that reverse faulting in the northern Puget Lowland poses a hazard to urban areas between Seattle (Washington) and Vancouver

  20. Tracking Nile Delta Vulnerability to Holocene Change

    PubMed Central

    Marriner, Nick; Flaux, Clément; Morhange, Christophe; Stanley, Jean-Daniel

    2013-01-01

    Understanding deltaic resilience in the face of Holocene climate change and human impacts is an important challenge for the earth sciences in characterizing the full range of present and future wetland responses to global warming. Here, we report an 8000-year mass balance record from the Nile Delta to reconstruct when and how this sedimentary basin has responded to past hydrological shifts. In a global Holocene context, the long-term decrease in Nile Delta accretion rates is consistent with insolation-driven changes in the ‘monsoon pacemaker’, attested throughout the mid-latitude tropics. Following the early to mid-Holocene growth of the Nile’s deltaic plain, sediment losses and pronounced erosion are first recorded after ~4000 years ago, the corollaries of falling sediment supply and an intensification of anthropogenic impacts from the Pharaonic period onwards. Against the backcloth of the Saharan ‘depeopling’, reduced river flow underpinned by a weakening of monsoonal precipitation appears to have been particularly conducive to the expansion of human activities on the delta by exposing productive floodplain lands for occupation and irrigation agriculture. The reconstruction suggests that the Nile Delta has a particularly long history of vulnerability to extreme events (e.g. floods and storms) and sea-level rise, although the present sediment-starved system does not have a direct Holocene analogue. This study highlights the importance of the world’s deltas as sensitive archives to investigate Holocene geosystem responses to climate change, risks and hazards, and societal interaction. PMID:23922692

  1. Early Holocene Great Salt Lake

    USGS Publications Warehouse

    Oviatt, Charles G.; Madsen, David B.; Miller, David; Thompson, Robert S.; McGeehin, John P.

    2015-01-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5–10.2 cal ka BP; 10–9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column — a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  2. Holocene environmental changes in northern Lebanon as inferred from a multiproxy study on lacustrine-palustrine sediment

    NASA Astrophysics Data System (ADS)

    Vidal, Laurence; Jenna, Hage-Hassen; Demory, François; Develle, Anne-Lise; van Campo, Elise; Elias, Ata

    2016-04-01

    The reconstruction of the Levantine post-glacial environmental evolution is essential to understand the interactions between variability of regional water cycle, dynamics of the global climate, and cultural evolution. We present a paleolacustrine record from the karstic Yammouneh basin (34.06N-34.09N; 36.0E-36.03E, 1360 m a.s.l.), located on the eastern flank of Mount Lebanon (northern Levant). Holocene sediments (retrieved from gully and a trenbch) (1.5 to 3.6 m thick) consist of pale lacustrine chalk interrupted by an ash layer and remarkable centimetric beds of ocher to dark brown silty clays used, in addition to 14C ages, as stratigraphical markers. Lacustrine biogenic remains are diversified and abundant (ostracods, gastropods, charophytes, chlorophyceae, plant debris…) all reflecting a freswater, generally shallow waterbody. We analysed the sediment mineralogy and geochemistry, TOM contents, magnetic properties, pollen and calcite oxygen isotope composition derived from ostracod shells. These sequences are compared to former data from 2 trenches and 1 core collected in different points of the basin (Daeron et al., 2007; Develle et al., 2009, 2010). A total of 42 AMS 14C dating (partly carbonized wood) provide a solid chronology from the YD to present. Results reveal the following main features : 1- intervals dominated by authigenic calcite suggest that the major water supply was the karstic springs, which still deliver Ca-rich water and low surface runoff; 2- the lake oxygen isotope composition has been impacted by the source isotope composition throughout the Holocene and by increased inland rainfall during the early Holocene; 3- a decideous oak forest, implying much more soil water availability than today, was developed around the lake from ca. 11.5 to 9.5 kyr (the very bad pollen preservation after 8.3 kyr reflects oxidation or frequent oscillations of the water level); 4- four paleosols evidenced from lithofacies and magnetic properties are identified

  3. Holocene climatic fluctuations and periodic changes in the Asian southwest monsoon region

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxiang; Niu, Jie; Ming, Qingzhong; Shi, Zhengtao; Lei, Guoliang; Huang, Linpei; Long, Xian'e.; Chang, Fengqin

    2018-05-01

    Climatic changes in the Asian southwest monsoon (ASWM) during the Holocene have become a topic of recent studies. It is important to understand the patterns and causes of Holocene climatic changes and their relationship with global changes. Based on the climate proxies and wavelet analysis of Lugu Lake in the ASWM region, the climatic fluctuations and periodic changes in the ASWM region during the Holocene have been reconstructed with a high-precision chronology. The results indicate the intensification of ASWM began to increase with Northern Hemisphere low-latitude solar insolation (LSI) and solar activity during the early Holocene, and gradually decreased during the late Holocene, exhibiting an apparent synchrony with numerous records of ASWM region. Meanwhile, an apparent 1000-a quasi-periodic signal is present in the environment proxies, and it demonstrates that the environmental change in the ASWM region has been driven mainly by LSI and solar activity.

  4. Aeolian processes during the Holocene in Gannan Region, Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yang, S.; Cheng, T.; Li, S.; Liang, M.

    2016-12-01

    Aeolian desertification occurring in the Tibetan Plateau has received attention recently for it has become a severe environmental problem by accelerating the grassland degradation and eco-environment damage. The Gannan Region is located in the northeastern Tibetan Plateau with a mean altitude of 3500m. It is highly sensitive to global environmental change and human disturbance. Serious soil erosion and desertification and extensive land degradation have caused heavy eco-environmental impacts. To investigate the evolution of the desertification in Holocene in the Plateau is of great importance for understanding the desertification trend under the global changes in the Tibetan Plateau. Loess and aeolian sands is a key geological archive related to desertification processes and the past environment changes. In this study a typical 8.5m-thick loess-sands profile named MQQ, was selected at the Maqu city. It is situated on the first terrace (T1) of the Yellow River. Detailed accelerator mass spectrometry (AMS) 14C dating of bulk organic matter content has shown the Aeolian sediments of the MQQ section occurring since the early Holocene. the mass-specific frequency-dependent magnetic susceptibility (χfd) and grainsize records show a clear upward increase in the contents of superparamagnetic grains and fine fractions in grain size, which indicates a gradual wetting trend during the Holocene.The sediment rates change from very high in the early Holocene to low values after 8.2 ka. The wetting process can be divided into three steps: 10.0-8.2 ka, 8.2-3.0 ka and 3.0-present. It indicates that the climate in the eastern Tibetan Plateau was dry during the early Holocene. After that the climate was getting wet gradually. The variations of the westerlies and the Asian monsoon may cause the environmental change in this region.

  5. Late Holocene methane rise caused by orbitally controlled increase in tropical sources.

    PubMed

    Singarayer, Joy S; Valdes, Paul J; Friedlingstein, Pierre; Nelson, Sarah; Beerling, David J

    2011-02-03

    Considerable debate surrounds the source of the apparently 'anomalous' increase of atmospheric methane concentrations since the mid-Holocene (5,000 years ago) compared to previous interglacial periods as recorded in polar ice core records. Proposed mechanisms for the rise in methane concentrations relate either to methane emissions from anthropogenic early rice cultivation or an increase in natural wetland emissions from tropical or boreal sources. Here we show that our climate and wetland simulations of the global methane cycle over the last glacial cycle (the past 130,000 years) recreate the ice core record and capture the late Holocene increase in methane concentrations. Our analyses indicate that the late Holocene increase results from natural changes in the Earth's orbital configuration, with enhanced emissions in the Southern Hemisphere tropics linked to precession-induced modification of seasonal precipitation. Critically, our simulations capture the declining trend in methane concentrations at the end of the last interglacial period (115,000-130,000 years ago) that was used to diagnose the Holocene methane rise as unique. The difference between the two time periods results from differences in the size and rate of regional insolation changes and the lack of glacial inception in the Holocene. Our findings also suggest that no early agricultural sources are required to account for the increase in methane concentrations in the 5,000 years before the industrial era.

  6. Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA

    USGS Publications Warehouse

    Whitlock, Cathy; Dean, Walter E.; Fritz, Sherilyn C.; Stevens, Lora R.; Stone, Jeffery R.; Power, Mitchell J.; Rosenbaum, Joseph R.; Pierce, Kenneth L.; Bracht-Flyr, Brandi B.

    2012-01-01

    A 9400-yr-old record from Crevice Lake, a semi-closed alkaline lake in northern Yellowstone National Park, was analyzed for pollen, charcoal, geochemistry, mineralogy, diatoms, and stable isotopes to develop a nuanced understanding of Holocene environmental history in a region of northern Rocky Mountains that receives both summer and winter precipitation. The limited surface area, conical bathymetry, and deep water (> 31 m) of Crevice Lake create oxygen-deficient conditions in the hypolimnion and preserve annually laminated sediment (varves) for much of the record. Pollen data indicate that the watershed supported a closed Pinus-dominated forest and low fire frequency prior to 8200 cal yr BP, followed by open parkland until 2600 cal yr BP, and open mixed-conifer forest thereafter. Fire activity shifted from infrequent stand-replacing fires initially to frequent surface fires in the middle Holocene and stand-replacing events in recent centuries. Low values of δ18O suggest high winter precipitation in the early Holocene, followed by steadily drier conditions after 8500 cal yr BP. Carbonate-rich sediments before 5000 cal yr BP imply warmer summer conditions than after 5000 cal yr BP. High values of molybdenum (Mo), uranium (U), and sulfur (S) indicate anoxic bottom-waters before 8000 cal yr BP, between 4400 and 3900 cal yr BP, and after 2400 cal yr BP. The diatom record indicates extensive water-column mixing in spring and early summer through much of the Holocene, but a period between 2200 and 800 cal yr BP had strong summer stratification, phosphate limitation, and oxygen-deficient bottom waters. Together, the proxy data suggest wet winters, protracted springs, and warm effectively wet summers in the early Holocene and less snowpack, cool springs, warm dry summers in the middle Holocene. In the late Holocene, the region and lake experienced extreme changes in winter, spring, and summer conditions, with particularly short springs and dry summers and winters during

  7. A Holocene temperature reconstruction from northern New Zealand: a test of North Atlantic Holocene climate patterns as a global template

    NASA Astrophysics Data System (ADS)

    van den Bos, Valerie; Rees, Andrew; Newnham, Rewi; Augustinus, Paul

    2017-04-01

    Holocene climate variability has been well defined in the North Atlantic (Walker et al., 2012), but the global extent of this climate change stratigraphy is debatable. If the North Atlantic serves as a global template for Holocene climate, then New Zealand (NZ) is ideally positioned to test this assertion, as it is distal from the northern drivers. Additionally, it is one of the few landmasses in the Southern Hemisphere that is influenced by both sub-tropical and extra-tropical climatic regimes, which may be more important controls in the southern mid-latitudes. Although much work has been done to characterise the Holocene in NZ using pollen, most of these records lack the resolution or sensitivity to determine whether abrupt or short-lived events occurred. The NZ-INTIMATE climate event stratigraphy lacks a type section for the Holocene (Alloway et al., 2007). Records from northern NZ typically show little change, other than a possible early Holocene warming. Here, we present a combined pollen and chironomid temperature reconstruction from Lake Pupuke (northern NZ), the first of its kind in NZ that covers the entire Holocene. By comparing mean annual temperatures reconstructed from fossil pollen and mean summer temperatures inferred from chironomid remains, we can assess changes in seasonality. Mean summer temperature was reconstructed from the chironomid record using a weighted averaging partial least squares (WA-PLS) model (n comp = 2, r2booth = 0.77, RMSEP = 1.4°C) developed from an expanded version of Dieffenbacher-Krall et al. (2007)'s chironomid training set. Preliminary results show evidence for cool summers during the early Holocene as well as around the period of the Little Ice Age as defined in the North Atlantic region. These and other climate patterns determined from the Pupuke chironomid and pollen records will be compared with other evidence from northern New Zealand and with the North Atlantic record of Holocene climate variability. References

  8. Holocene paleoceanography of Bigo Bay, west Antarctic Peninsula: Connections between surface water productivity and nutrient utilization and its implication for surface-deep water mass exchange

    NASA Astrophysics Data System (ADS)

    Kim, Sunghan; Yoo, Kyu-Cheul; Lee, Jae Il; Khim, Boo-Keun; Bak, Young-Suk; Lee, Min Kyung; Lee, Jongmin; Domack, Eugene W.; Christ, Andrew J.; Yoon, Ho Il

    2018-07-01

    Paleoceanographic changes in response to Holocene climate variability in Bigo Bay, west Antarctic Peninsula (WAP) were reconstructed through geochemical, isotopic, sedimentological, and microfossil analysis. Core WAP13-GC47 is composed of 4 lithologic units. Unit 4 was deposited under ice shelf settings. Unit 3 represents the mid-Holocene open marine conditions. Unit 2 indicates lateral sediment transport by a glacier advance during the Neoglacial period. The chronological contrast between the timing of open marine conditions at core WAP13-GC47 (ca. 7060 cal. yr BP at 540 cm) and the ages of calcareous shell fragments (ca. 8500 cal. yr BP) in Unit 2b suggests sediment reworking during the Neoglacial period. Unit 1 was deposited during the Medieval Warm Period (MWP) and the Little Ice Age (LIA). Surface water productivity, represented by biogenic opal and total organic carbon (TOC) concentrations, increased and bulk δ15N (nitrate utilization) decreased during the warmer early to middle Holocene and the MWP. In contrast, surface water productivity decreased with increased bulk δ15N during the colder Neoglacial period and LIA in Bigo Bay. The nitrate utilization was enhanced during cold periods in association with strong surface water stratification resulting from increased sea ice meltwater discharge or proximity to an ice shelf calving front in Bigo Bay. Reduced nitrate utilization during warm periods is related to weak stratification induced by less sea ice meltwater input and stronger Circumpolar Deep Water influence.

  9. North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses

    NASA Astrophysics Data System (ADS)

    Magny, M.; Combourieu Nebout, N.; de Beaulieu, J. L.; Bout-Roumazeilles, V.; Colombaroli, D.; Desprat, S.; Francke, A.; Joannin, S.; Peyron, O.; Revel, M.; Sadori, L.; Siani, G.; Sicre, M. A.; Samartin, S.; Simonneau, A.; Tinner, W.; Vannière, B.; Wagner, B.; Zanchetta, G.; Anselmetti, F.; Brugiapaglia, E.; Chapron, E.; Debret, M.; Desmet, M.; Didier, J.; Essallami, L.; Galop, D.; Gilli, A.; Haas, J. N.; Kallel, N.; Millet, L.; Stock, A.; Turon, J. L.; Wirth, S.

    2013-04-01

    On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north-south transect, data collected in the Central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the Central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300-4500 cal BP to the south and 9000-4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the Central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the Eastern, but also in the Central and the Western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by

  10. Holocene Vegetation and Fire Dynamics on the Chilcotin Plateau, BC, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Hebda, R.; Hawkes, B.

    2014-12-01

    The Chilcotin Plateau is a high elevation plateau in the west central interior of British Columbia, Canada. It is characterised by a continental climate and located in a rainshadow setting. Pine-dominated forests dominate. The region is prone to frequent fires and mountain pine beetle outbreaks. Several surface sediment cores and an overlapping Livingstone sediment core were collected from centrally-located Scum Lake and analysed for pollen, charcoal and insect remains. During the early-Holocene warm-dry interval, a non-arboreal vegetation community dominated by grass and sage dominated and surface fire disturbance was frequent. Model predictions suggest that non-arboreal vegetation may expand in this region in the future, suggesting that the fire regime will likewise change as in the early-Holocene. In the mid-Holocene, pine, possibly Pinus ponderosa, increased in abundance, suggesting that a surface fire regime persisted at that time. Pinus contorta pollen increased in the late-Holocene, representing the establishment of the modern forest and mixed/crown fire regime. Fire return intervals typically ranged between 20-100 years, consistent with tree-ring based observation (40-70 years). Analyses of the surface cores revealed that identifiable mountain pine beetle remains were rare, suggesting that alternative approaches may be required to assess to insect disturbance through time.

  11. Holocene paleoenvironments of Northeast Iowa

    USGS Publications Warehouse

    Baker, R.G.; Bettis, E. Arthur; Schwert, D.R.; Horton, D.G.; Chumbley, C.A.; Gonzalez, Luis A.; Reagan, M.K.

    1996-01-01

    This paper presents the biotic. sedimentary, geomorphic, and climatic history of the upper part of the Roberts Creek Basin, northeastern Iowa for the late-glacial and Holocene, and compares these records with a C-O isotopic sequence from Coldwater Cave. 60 km northwest of Roberts Creek. The biotic record (pollen, vascular plant and bryophyle macrofossils. and insects) is preserved in floodplain alluvium that underlies three constructional surfaces separated by low scarps. Each surface is underlain by a lithologically and temporally distinct alluvial fill. The highest surface is underlain by the Gunder Member of the Deforest Formation, dating from 11 000 to 4000 yr BP; beneath the intermediate level is the Roberts Creek Member, dating from 4000 to 400 yr BP; and the lowest level is underlain by the Camp Creek Member, deposited during the last 380 yr. Pollen and plant macrofossils in the alluvial fill show that a typical late-glacial spruce forest was replaced by Quercus and Ulmus in the early Holocene. This early-to-middle Holocene forest became dominated by mesic elements such as Acer saccharum, Tilia americana, Ostrya virginiana, and Carpinus caroliniana as late as 5500 yr BP; in contrast, the closest sites to the west and north were at their warmest and driest and were covered by prairie vegetation between 6500 and 5500 yr BP. After 5500 yr BP, the forest in the Roberts Creek area was replaced by prairie, as indicated by a rich assemblage of plant macrofossils, although only Ambrosia and Poaceae became abundant in the pollen record. The return of Quercus ??? 3000 BP (while nonarboreal pollen percentages remained relatively high) indicates that oak savanna prevailed with little change until settlement time. The bryophyte assemblages strongly support the vascular plant record. Rich fen species characteristic of boreal habitats occur only in the late-glacial. They are replaced by a number of deciduous-forest elements when early-to-middle Holocene forests were

  12. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell

    PubMed Central

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-01-01

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution. PMID:25736488

  13. Multi-proxy evidence for climate-driven changes in arctic lakes from northern Russia over the Holocene.

    NASA Astrophysics Data System (ADS)

    Self, Angela; Brooks, Stephen; Jones, Vivienne; Solovieva, Nadia; McGowan, Suzanne; Rosén, Peter; Parrott, Emily; Seppä, Heikki; Salonen, Sakari

    2010-05-01

    suggest that the lake water was relatively high in TOC. Spruce forest became established within the catchment during the early - mid Holocene, which appears to have stimulated algal production. Throughout this period July air temperatures are inferred to have gradually declined to present-day values and the climate became more maritime. From ca. 4000 cal yrs BP July air temperatures remained stable but continentality increased leading to a shorter ice-free period. The pollen and macrofossil record indicates a transition to tundra vegetation ca 3000 cal yr BP which coincides with major changes in pigments, chironomids and diatoms. High resolution reconstruction of climate variability over the last 200 years from two tundra lakes on the Putoran Plateau, western Siberia, suggest that mean July air temperatures warmed by approximately 0.5°C between ca 1820 - 1980 and have remained relatively stable over the last 30 years. However major compositional changes in the chironomid and diatom assemblages have occurred within the last 125 - 50 years. Since the 1970s increases in the instrumental June temperature record and a chironomid-inferred shift to a more maritime climate have been accompanied by increases in diatom accumulation rates together with an increase in within-lake productivity and a trend towards increased algal productivity (as highlighted by stable isotope analysis). The synchronicity of the changes suggests the biota may be responding to lengthening of the ice-free period and related limnological changes. The changes in these Russian lakes corroborate results from Europe and Arctic Canada and indicate a circumpolar pattern of climate-driven regime change in arctic lakes in the last 100 years.

  14. Holocene Vegetation and Climate History of the Northern Bighorn Basin, Southern Montana

    NASA Astrophysics Data System (ADS)

    Lyford, Mark E.; Betancourt, Julio L.; Jackson, Stephen T.

    2002-09-01

    Records of Holocene vegetation and climate change at low elevations (<2000 m) are rare in the central Rocky Mountain region. We developed a record of Holocene vegetation and climate change from 55 14C-dated woodrat middens at two low-elevation sites (1275 to 1590 m), currently vegetated by Juniperus osteosperma woodlands, in the northern Bighorn Basin. Macrofossil and pollen analyses show that the early Holocene was cooler than today, with warming and drying in the middle Holocene. During the Holocene, boreal ( Juniperus communis, J. horizontalis) and montane species ( J. scopulorum) were replaced by a Great Basin species ( J. osteosperma). J. osteosperma colonized the east side of the Pryor Mountains 4700 14C yr B.P. Downward movement of lower treeline indicates wetter conditions between 4400 and 2700 14C yr B.P. Increased aridity after 2700 14C yr B.P. initiated expansion of J. osteosperma from the east to west side of the Pryor Mountains.

  15. Holocene vegetation and climate history of the northern Bighorn Basin, southern Montana

    USGS Publications Warehouse

    Lyford, M.E.; Betancourt, J.L.; Jackson, S.T.

    2002-01-01

    Records of Holocene vegetation and climate change at low elevations (<2000 m) are rare in the central Rocky Mountain region. We developed a record of Holocene vegetation and climate change from 55 14C-dated woodrat middens at two low-elevation sites (1275 to 1590 m, currently vegetated by Juniperus osteosperma woodlands, in the northern Bighorn Basin. Macrofossil and pollen analyses show that the early Holocene was cooler than today, with warming and drying in the middle Holocene. During the Holocene, boreal (Juniperus communis, J. horizontalis) and montane species (J. scopulorum) were replaced by a Great Basin species (J. osteosperma). J. osteosperma colonized the east side of the Pryor Mountains 4700 14C yr B.P. Downward movement of lower treeline indicates wetter conditions between 4400 and 2700 14C yr B.P. Increased aridity after 2700 14C yr B.P. initiated expansion of J. osteosperma from the east to west side of the Pryor Mountains. ?? 2002 University of Washington.

  16. The Brazilian megamastofauna of the Pleistocene/Holocene transition and its relationship with the early human settlement of the continent

    NASA Astrophysics Data System (ADS)

    Hubbe, Alex; Hubbe, Mark; Neves, Walter A.

    2013-03-01

    One of the most intriguing questions regarding the Brazilian Late Quaternary extinct megafauna and Homo sapiens is to what extent they coexisted and how humans could have contributed to the former's extinction. The aim of this article is to review the chronological and archaeological evidences of their coexistence in Brazil and to evaluate the degree of direct interaction between them. Critical assessment of the Brazilian megafauna chronological data shows that several of the late Pleistoscene/early Holocene dates available so far cannot be considered reliable, but the few that do suggest that at least two species (Catonyx cuvieri, ground sloth; Smilodon populator, saber-toothed cat) survived until the beginning of the Holocene in Southeast Brazil. Archaeological data indicates that the first human groups arrived in Brazil and were inhabiting this region during the last millennia of the Pleistocene and, consequently, they coexisted with the extinct fauna in some parts of Brazil for at least one thousand years. There is no robust evidence favoring any kind of direct interaction between humans and megafauna prior to their extinction. To date, it is not possible to properly judge the indirect influence of humans (landscape transformation, introduction of predators, among others) in this extinction event. Intense and to some extent unique climate changes between the Last Glacial Maximum and the Holocene favors the interpretation that they had a major contribution to the megafauna extinction, although the scarcity of data impedes the proper testing of this hypothesis.

  17. North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses

    NASA Astrophysics Data System (ADS)

    Magny, M.; Combourieu-Nebout, N.; de Beaulieu, J. L.; Bout-Roumazeilles, V.; Colombaroli, D.; Desprat, S.; Francke, A.; Joannin, S.; Ortu, E.; Peyron, O.; Revel, M.; Sadori, L.; Siani, G.; Sicre, M. A.; Samartin, S.; Simonneau, A.; Tinner, W.; Vannière, B.; Wagner, B.; Zanchetta, G.; Anselmetti, F.; Brugiapaglia, E.; Chapron, E.; Debret, M.; Desmet, M.; Didier, J.; Essallami, L.; Galop, D.; Gilli, A.; Haas, J. N.; Kallel, N.; Millet, L.; Stock, A.; Turon, J. L.; Wirth, S.

    2013-09-01

    On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north-south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300-4500 cal BP to the south and 9000-4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated

  18. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages

    NASA Astrophysics Data System (ADS)

    Samartin, Stéphanie; Heiri, Oliver; Joos, Fortunat; Renssen, Hans; Franke, Jörg; Brönnimann, Stefan; Tinner, Willy

    2017-02-01

    Understanding past climate trends is key for reliable projections of global warming and associated risks and hazards. Uncomfortably large discrepancies between vegetation-based summer temperature reconstructions (mainly based on pollen) and climate model results have been reported for the current interglacial, the Holocene. For the Mediterranean region these reconstructions indicate cooler-than-present mid-Holocene summers, in contrast with expectations based on climate models and long-term changes in summer insolation. We present new quantitative and replicated Holocene summer temperature reconstructions based on fossil chironomid midges from the northern central Mediterranean region. The Holocene thermal maximum is reconstructed 9,000-5,000 years ago and estimated to have been 1-2 °C warmer in mean July temperature than the recent pre-industrial period, consistent with glacier and marine records, and with transient climate model runs. This combined evidence implies that widely used pollen-based summer temperature reconstructions in the Mediterranean area are significantly biased by precipitation or other forcings such as early land use. Our interpretation can resolve the previous discrepancy between climate models and quantitative palaeotemperature records for millennial-scale Holocene summer temperature trends in the Mediterranean region. It also suggests that pollen-based evidence for cool mid-Holocene summers in other semi-arid to arid regions of the Northern Hemisphere may have to be reconsidered, with potential implications for global-scale reconstructions.

  19. Holocene climate variability and oceanographic changes off western South Africa

    NASA Astrophysics Data System (ADS)

    Zhao, Xueqin; Dupont, Lydie; E Meadows, Michael; Schefuß, Enno; Bouimetarhan, Ilham; Wefer, Gerold

    2017-04-01

    South Africa is located at a critical transition zone between subtropical and warm-temperate climate zones influenced by the Indian and Atlantic oceans. Presently, the seasonal changes of atmospheric and oceanic systems induce a pronounced rainfall seasonality comprised of two different rainfall zones over South Africa. How did this seasonality develop during the Holocene? To obtain a better understanding of how South African climates have evolved during the Holocene, we conduct a comprehensive spatial-temporal approach including pollen and dinoflagellate cyst records from marine sediment samples retrieved from the Namaqualand mudbelt, a Holocene terrigenous mud deposit on the shelf of western South Africa. The representation of different vegetation communities in western South Africa is assessed through pollen analysis of surface sediments. This approach allows for climate reconstructions of the summer rainfall zone (SRZ) using Group 1 (Poaceae, Cyperaceae, Phragmites-type and Typha) and winter rainfall zone (WRZ) using Group 2 (Restionaceae, Ericaceae, Anthospermum, Stoebe/Elytropappus-type, Cliffortia, Passerina, Artemisia-type and Pentzia-type) from a single marine archive. The fossil pollen data from gravity core GeoB8331-4 indicate contrasting climate patterns in the SRZ and WRZ especially during the early and middle Holocene. The rainfall amount in the SRZ is dominated by insolation forcing, while in the WRZ it is mainly attributed to the latitudinal position of the southern westerlies. Dinoflagellate cyst data show significantly different oceanographic conditions associated with climate changes on land. High percentages of autotrophic taxa like Operculodinium centrocarpum and Spiniferites spp. indicate warm and stratified conditions during the early Holocene, suggesting reduced upwelling. In contrast, the middle Holocene is characterized by a strong increase in heterotrophic taxa in particular Lejeunecysta paratenella and Echinidinium spp., indicating cool

  20. Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca (Bolivia/Peru)

    NASA Astrophysics Data System (ADS)

    Hanselman, Jennifer A.; Gosling, William D.; Paduano, Gina M.; Bush, Mark B.

    2005-10-01

    Two long sediment records (cores LTO1-2B and LT01-3B) from Lake Titicaca, Bolivia/Peru, are compared with a previously analysed Holocene record from this lake (core NE98-1PC). The Holocene records of LT01-2B and NE98-1PC are similar. There are striking differences, however, between the MIS 5e sections of the long cores and the Holocene records. In these records, temperature is probably the dominant parameter that determines the total fossil pollen concentration and is used to time the onset and termination of deglaciation. In contrast, the relative and absolute abundance of specific taxa (e.g. Polylepis/Acaena, Chenopodiaceae) are indicators of relative moisture availability. Although the Holocene contains a period of aridity between ca. 8000 cal. yr BP and 4300 cal. yr BP, it is a minor event compared with the more extreme aridity of MIS 5e. Core LT01-3B showed similar trends during MIS 5e when compared to LT01-2B, as did NE98-1PC when comparing Holocene records. MIS 5e and the Holocene are markedly different interglacials, depicted by shifts in pollen concentration and taxa representation over time.

  1. Holocene paleoenviroments of northwest Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.G.; Bettis, E.A. III; Schwert, D.P.

    1996-05-01

    This paper presents the biotic, sedimentary, geomorphic, and climatic history of the upper part of the Roberts Creek Basin, northeastern Iowa for the late-glacial and Holocene, and compares these records with a C-O isotopic sequence from Coldwater Cave, 60 km northwest of Roberts Creek. the biotic record (pollen, vascular plant and bryophyte macrofossils, and insects) is preserved in floodplain alluvium that underlies three constructional surfaces separated by low scarps. Each surface is underlain by a lithologically and temporally distinct alluvial fill. The highest surface is underlain by the Gunder Member of the Deforest Formation, dating from 11,000 to 4000 yrmore » BP; beneath the intermediate level is the Roberts Creek Member, dating from 4000 to 400 yr BP; and the lowest level is underlain by the Camp Creek Member, deposited during the last 380 yr. Pollen and plant macrofossils in the alluvial fill show that a typical late-glacial spruce forest was replaced by Quercus and Ulmus in the early Holocene. This early-to-middle Holocene forest became dominated by medic elements such as Acer saccharum, Tila americana, Ostyra virginiana, and Carpinus caroliniana as late as 5500 yr BP; in contrast, the closest sites to the west and north were at their warmest and driest were covered by prairie vegetation between 6500 and 5500 yr BP. After 5500 yr BP, the forest in the roberts Creek area was replaced by prairie, as indicated by a rich assemblage of plant macrofossils, although only Ambrosia and Poaceae became abundant in the pollen record. The return of Quercus {approx} 3000 BP (while nonarboreal pollen percentages remained relatively high) indicates the oak savanna prevailed with little change until settlement time. 83 refs., 17 figs., 5 tabs.« less

  2. The Biogeophysical Climatic Impacts of Anthropogenic Land Use Change during the Holocene

    NASA Astrophysics Data System (ADS)

    Smith, Clare; Singarayer, Joy; Valdes, Paul; Kaplan, Jed; Branch, Nicholas

    2016-04-01

    The first agricultural societies were established around 10ka BP and had spread across much of Europe and southern Asia by 5.5ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with HadCM3 were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) potential natural vegetation simulated by TRIFFID but no land-use changes, and (ii) where the anthropogenic land use model, KK10 (Kaplan et al., 2009, 2011*) has been used to set the HadCM3 crop regions. Snapshot simulations have been run at 1,000 year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results indicate that in regions of early land disturbance such as Europe and S.E. Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7ka BP in the June/July/August (JJA) season and throughout the entire annual cycle by 2-3ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. Large-scale precipitation features such as the Indian monsoon, the intertropical convergence zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies

  3. A Holocene molluscan succession from floodplain sediments of the upper Lena River (Lake Baikal region), Siberia

    NASA Astrophysics Data System (ADS)

    White, Dustin; Preece, Richard C.; Shchetnikov, Alexander A.; Parfitt, Simon A.; Dlussky, Konstantin G.

    2008-05-01

    Floodplain sediments of the upper Lena River near Basovo in south-central Siberia have yielded the most detailed Holocene molluscan succession yet reported from the entire eastern Palaearctic. Over 72,500 shells from at least 28 species of terrestrial and 23 species of freshwater mollusc have been recovered, an abundance and diversity far higher than previously reported from the region. The molluscan assemblages are dominated by land snails, especially members of the genus Vallonia, represented by five species including Vallonia tenuilabris and two poorly known species Vallonia kamtschatica and Vallonia cf. chinensis. Other noteworthy species recovered include Gastrocopta theeli, Carychium pessimum, Vertigo extima (southernmost record), Vertigo microsphaera and the first Asian records of three other taxa ( Vertigo geyeri, Vertigo genesii and Vertigo parcedentata). Illustrations are provided for the critical species, since opinions differ about the status of various taxa and the correct names that should be used. The molluscan assemblages show clear successional trends during the early to mid-Holocene, reflecting episodes of dryness/wetness on the floodplain. Drier conditions at ca 6350 14C yr BP coincide with major changes in the archaeological record seen at other sites in the region but it remains unclear whether the two are linked. A prominent charcoal-rich horizon dated to ca 2800 14C yr BP marks a burning event in the catchment, which resulted in a two-fold increase in sediment accumulation rate. Remains of small mammals occurred throughout the sequence including a tooth of Microtus cf. maximowiczii, possibly the first occurrence of Ungar vole west of Lake Baikal. The faunal analyses have been integrated with a detailed pedological study of the sedimentary profile and a chronology was obtained by means of 12 AMS radiocarbon dates. This study provides the first detailed palaeoecological information relating to Holocene molluscan assemblages from the Cis

  4. Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water

    NASA Astrophysics Data System (ADS)

    Peck, Victoria L.; Allen, Claire S.; Kender, Sev; McClymont, Erin L.; Hodgson, Dominic A.

    2015-07-01

    Recent intensification of wind-driven upwelling of warm upper circumpolar deep water (UCDW) has been linked to accelerated melting of West Antarctic ice shelves and glaciers. To better assess the long term relationship between UCDW upwelling and the stability of the West Antarctic Ice Sheet, we present a multi-proxy reconstruction of surface and bottom water conditions in Marguerite Bay, West Antarctic Peninsula (WAP), through the Holocene. A combination of sedimentological, diatom and foraminiferal records are, for the first time, presented together to infer a decline in UCDW influence within Marguerite Bay through the early to mid Holocene and the dominance of cyclic forcing in the late Holocene. Extensive glacial melt, limited sea ice and enhanced primary productivity between 9.7 and 7.0 ka BP is considered to be most consistent with persistent incursions of UCDW through Marguerite Trough. From 7.0 ka BP sea ice seasons increased and productivity decreased, suggesting that UCDW influence within Marguerite Bay waned, coincident with the equatorward migration of the Southern Hemisphere Westerly Winds (SWW). UCDW influence continued through the mid Holocene, and by 4.2 ka BP lengthy sea ice seasons persisted within Marguerite Bay. Intermittent melting and reforming of this sea ice within the late Holocene may be indicative of episodic incursions of UCDW into Marguerite Bay during this period. The cyclical changes in the oceanography within Marguerite Bay during the late Holocene is consistent with enhanced sensitively to ENSO forcing as opposed to the SWW-forcing that appears to have dominated the early to mid Holocene. Current measurements of the oceanography of the WAP continental shelf suggest that the system has now returned to the early Holocene-like oceanographic configuration reported here, which in both cases has been associated with rapid deglaciation.

  5. Development of the mixed conifer forest in northern New Mexico and its relationship to Holocene environmental change

    NASA Astrophysics Data System (ADS)

    Anderson, R. Scott; Jass, Renata B.; Toney, Jaime L.; Allen, Craig D.; Cisneros-Dozal, Luz M.; Hess, Marcey; Heikoop, Jeff; Fessenden, Julianna

    2008-03-01

    Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. An Artemisia steppe, then an open Picea woodland grew around a small pond until ca. 11,700 cal yr BP when Pinus ponderosa became established. C/N ratios, δ13C and δ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.

  6. Development of the mixed conifer forest in northern New Mexico and its relationship to Holocene environmental change

    USGS Publications Warehouse

    Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Allen, Craig D.; Cisneros-Dozal, L. M.; Hess, M.; Heikoop, Jeff; Fessenden, J.

    2008-01-01

    Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. AnArtemisiasteppe, then an openPiceawoodland grew around a small pond until ca. 11,700 cal yr BP whenPinus ponderosabecame established. C/N ratios,δ 13C andδ 15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.

  7. Holocene temperature variability revealed by brGDGTs in subtropical southwestern China

    NASA Astrophysics Data System (ADS)

    Feng, X.; Zhao, C.

    2017-12-01

    Subtropical areas are important source region of moisture and heat in global climate system. Paleoclimate reconstructions from these regions, especially quantitative records, would not only help to better understand the nature of climate system through time, but also provide important constraining dataset for long-term ecosystem variations in these ecological important areas. To date, quantitative climate records with reliable chronological controls are still limited from terrestrial archives in subtropical areas. Here we present a 50-year-resolution quantitative temperature record throughout the Holocene based on branched GDGTs at a small alpine lake, Tiancai Lake (26°38'E, 99°43'N, 3898 m.a.s.l) in southwestern China. The record is based on a temporal calibration between instrumental mean annual air temperature (MAAT) and brGDGT compounds (GDGT-IIIa, GDGT-IIa', GDGT-IIb, GDGT-Ia and GDGT-Ic). The MAAT was relatively low -0.6 ° between 11 and 7.5 ka, then abruptly increased 1 ° to 4 °until 7 ka. The MAAT was relatively warm 2° between 7 and 1 ka, then decreased to 1° over the last 1 ka. The Middle to Late Holocene was 3 ° warmer than the Early Holocene. The MAAT variation at Lake Tiancai is supported by changes in evergreen oaks and Tsuga from the same sediment core, suggesting that the growth of cold-tolerant forest in place of subtropical evergreen broadleaved forest has been driven by the decrease in MAAT. The early Holocene cold interval revealed by our record and pollen data is different with the chironomid-based summer temperature reconstruction from the same lake, the latter has been driven by summer insolation. This difference suggests that a pronounced winter contribution to the mean annual temperature during the early Holocene, which was probably caused by a low winter insolation, and strengthened by a sparse vegetation cover and influences of winter ice/snow cover in tropical high latitude regions.

  8. Alkenone-based reconstructions show four-phase Holocene temperature history for Arctic Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, W. G. M.; D'Andrea, W. J.; Bakke, J.; Balascio, N.; Werner, J.; Bradley, R. S.

    2016-12-01

    Situated at the crossroads of global oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth`s climate system. Amplified by sea-ice feedbacks, even modest shifts in regional heat budget drive large climate responses. This is highlighted by the dramatic response of the Arctic to global warming. Assessing the signature of underlying forcings require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such data are scarce and sparse in the Arctic, limiting our ability to address these issues. We present two quantitative Holocene-length summer temperature reconstructions from the Arctic Svalbard archipelago. Temperature estimates are based on alkenone unsaturation ratios measured on sediment cores from two lakes. Our data reveal a dynamic Holocene temperature history, with reconstructed lake water temperatures spanning a range of 6-8 °C, and characterized by four phases. The Early Holocene was marked by an early ( 10.5 ka cal. BP) onset of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between 10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between 7.8-7 ka cal. BP and 4.4-3.5 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent eastern Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around cold mean conditions. This study improves our understanding of Arctic climate dynamics by demonstrating that Holocene Svalbard temperatures were governed by an alternation of forcing mechanism.

  9. A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution

    NASA Astrophysics Data System (ADS)

    Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.

    2016-05-01

    The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by

  10. Glaciation in the Andes during the Lateglacial and Holocene

    NASA Astrophysics Data System (ADS)

    Rodbell, Donald T.; Smith, Jacqueline A.; Mark, Bryan G.

    2009-10-01

    This review updates the chronology of Andean glaciation during the Lateglacial and the Holocene from the numerous articles and reviews published over the past three decades. The Andes, which include some of the world's wettest and driest mountainous regions, offer an unparalleled opportunity to elucidate spatial and temporal patterns of glaciation along a continuous 68-degree meridional transect. The geographic and altitudinal extent of modern glaciers and the sensitivity of both modern and former glaciers to respond to changes in specific climatic variables reflect broad-scale atmospheric circulation and consequent regional moisture patterns. Glaciers in the tropical Andes and in the mid-latitude Andes are likely to have been far more sensitive to changes in temperature than glaciers in the dry subtropical Andes. Broad-scale temporal and spatial patterns of glaciation during the Lateglacial are apparent. In the southernmost Andes, the Lateglacial chronology appears to have a strong Antarctic signature with the best-dated moraines correlating closely with the Antarctic Cold Reversal. The southernmost Andes do not appear to have experienced a significant ice advance coeval with the Younger Dryas (YD) climatic reversal. At the other end of the Andes, from ˜0 to 9°N, a stronger YD connection may exist, but critical stratigraphic and geochronologic work is required before a YD ice advance can be fully demonstrated. In the central Andes of Peru, well-dated moraines record a significant ice readvance at the onset of the YD, but ice was retreating during much of the remaining YD interval. The spatial-temporal pattern of Holocene glaciation exhibits tantalizing but incomplete evidence for an Early to Mid-Holocene ice advance(s) in many regions, but not in the arid subtropical Andes, where moraines deposited during or slightly prior to the Little Ice Age (LIA) record the most extensive advance of the Holocene. In many regions, there is strong evidence for Neoglacial

  11. The Holocene Records of Glycerol Dialkyl Glycerol Tetraethers From the Northern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Park, Y.; Yamamoto, M.; Nam, S.; Polyak, L. V.

    2013-12-01

    We analyzed glycerol dialkyl glycerol tetraethers (GDGTs) in Cores HOTRAX 05-01 JPC5 and JPC 8, and ARA02B 01-GC in the northern Chukchi Sea. All of the three cores showed a similar changing pattern in GDGT composition during the Holocene. In the beginning of early Holocene, both isoprenoid and branched GDGT concentrations were low, and BIT and CBT were relatively high. The similar composition is found in modern sediments from the western Arctic Ocean north of 75°N, suggesting that the northern Chukchi Sea was covered by perennial sea ice. GDGT concentration increased, and BIT and CBT decreased during the early Holocene and reached the same level as those in modern sediments at 8 ka. TEX86 and CBT/MBT indices showed millennial-scale variation. We interpret that these proxies did not simply indicate temperatures but were affected by the relative contribution of different sediment sources. Millennial-scale variability likely reflected changes in sediment transport in the northern Chukchi Sea.

  12. Late Pleistocene and Early Holocene lake-level fluctuations in the Lahontan Basin, Nevada: Implications for the distribution of archaeological sites

    USGS Publications Warehouse

    Adams, K.D.; Goebel, Thomas; Graf, K.; Smith, G.M.; Camp, A.J.; Briggs, R.W.; Rhode, D.

    2008-01-01

    The Great Basin of the western U.S. contains a rich record of late Pleistocene and Holocene lake-level fluctuations as well as an extensive record of human occupation during the same time frame. We compare spatial-temporal relationships between these records in the Lahontan basin to consider whether lake-level fluctuations across the Pleistocene-Holocene transition controlled distribution of archaeological sites. We use the reasonably well-dated archaeological record from caves and rockshelters as well as results from new pedestrian surveys to investigate this problem. Although lake levels probably reached maximum elevations of about 1230-1235 m in the different subbasins of Lahontan during the Younger Dryas (YD) period, the duration that the lakes occupied the highest levels was brief Paleoindian and early Archaic archaeological sites are concentrated on somewhat lower and slightly younger shorelines (???1220-1225 in) that also date from the Younger Dryas period. This study suggests that Paleoindians often concentrated their activities adjacent to large lakes and wetland resources soon after they first entered the Great Basin. ?? 2008 Wiley Periodicals, Inc.

  13. Latest Pleistocene and Holocene Glacier Fluctuations in southernmost Patagonia

    NASA Astrophysics Data System (ADS)

    Menounos, B.; Maurer, M.; Clague, J. J.; osborn, G.; Ponce, F.; Davis, P. T.; Rabassa, J.; Coronato, A.; Marr, R.

    2011-12-01

    Summer insolation has been proposed to explain long-term glacier fluctuations during the Holocene. If correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Testing this insolation hypothesis has been hampered by dating uncertainties of many Holocene glacier chronologies from Patagonia. We report on our ongoing research aimed at developing a regional glacier chronology at the southern end of the Andes north and west of Ushuaia, Argentina. We have found evidence for an advance of cirque glaciers at the end of the Pleistocene; one or locally two closely spaced moraines extend up to 2 km beyond Little Ice Age moraines. Radiocarbon dating of terrestrial macrofossils recovered from basal sediments behind two of these moraines yielded ages of 10,320 ± 25 and 10,330 ± 30 14C yr BP. These moraines may record glacier advances coeval with the Antarctic Cold Reversal; surface exposure dating of these moraines is currently in progress to test this hypothesis. We find no evidence of Holocene moraines older than 6800 14C yr BP, based on the distribution of Hudson tephra of that age. At some sites, there is evidence for an early Neoglacial advance of glaciers slightly beyond (< 0.5 km) Little Ice Age limits. Terrestrial macrofossils at the upper contact of basal till from one site yielded an age of 4505 ± 30 14C yr BP; this age overlaps the most probable age range of early Neoglacial ice expansion in southern Patagonia reported by Porter (2000) and the age of plants killed by expansion of the Quelccaya Ice Cap in Peru. We have documented multiple wood mats with stumps in growth position separated by till units in a 100 m section of the northeast lateral moraine at Stoppani Glacier (54.78 S, 68.98 W), 50 km west of Ushuaia. Ten radiocarbon ages on these wood mats range in age from 3510 ± 15 to 135 ± 15 14C yr BP. The mats decrease in age up-section; many overlap with published age ranges for

  14. Holocene Climate in Northwest Greenland Inferred from Oxygen Isotopes of Preserved Aquatic Organic Material

    NASA Astrophysics Data System (ADS)

    Lasher, G. E.; Axford, Y.; McFarlin, J. M.; Kelly, M. A.; Osterberg, E. C.; Farnsworth, L. B.; Kotecki, P.

    2015-12-01

    Oxygen isotopes of paleo lake-water archived in subfossil aquatic organic material offer new insights into Arctic Holocene climate history. Here we present new constraints on the timing and magnitude of Holocene climate change in NW Greenland inferred from δ18O of chironomid head capsules, Cladocera ephippia, and aquatic macrophytes. δ18O of chironomids from surface sediments of multiple lakes in the region show consistent enrichment relative to lake-water (-18 to -22 ‰), on the order of 23 ‰. Lake-water δ18O collected during the summer of 2014 is comparable to modern and historical seasonal local meteoric water, and landscape position suggests dominantly precipitation inputs. Sediment cores recovered from two small, non-glacial lakes in 2014 near Thule Air Base capture continuous 7.7 kyr and 10.4 kyr records. δ18O of chironomids and macrophytes from Secret Lake decreases after 6 ka by 3 ‰ into the Neoglacial. Early Holocene values from Wax Lips Lake (informal name) are 3 to 4 ‰ higher than modern and decrease to the present, except for a large negative excursion ~5 ka. This is contemporaneous with a major change in stratigraphy and the hypothesized transient incursion of a regional, ice-dammed glacial lake system. At both lakes, declining δ18O from the early/middle to late Holocene is clearly recorded in multiple aquatic materials and is greater in magnitude than the mid to late Holocene changes in δ18O of the nearest ice core records (Agassiz and Camp Century, ~2 ‰). The temperature change of 4 to 6 °C inferred from this new δ18O approach is also larger than, but within the error of, chironomid assemblage based temperatures from Wax Lips Lake by McFarlin et al. (this meeting). This may indicate larger temperature changes at the ice sheet's margin than inferred from high-elevation ice core sites and/or some overprinting by enhanced evaporation of lake-water in the warmer climate of the early Holocene.

  15. Preliminary Study of Late Pleistocene to Early Holocene Plant Food Strategies in China

    NASA Astrophysics Data System (ADS)

    Hayashi Tang, M.; Liu, X.; Fritz, G.; Zhao, Z.

    2017-12-01

    In recent decades, studies on the domestication and early cultivation of seed crops have contributed significantly to how we understand human-plant interactions, and their impact on human social organisation and the environment. It is becoming clear, however, that plants have been critical to the human diet for much longer and in more diverse ways than previously assumed. This paper is a preliminary attempt at identifying and addressing early prehistoric plant food strategies in China. In particular, very little is known about the use of vegetatively propagated plants, despite their significant representation in modern crops. Many ingredients of Chinese medicine are also roots and tubers (or vegetative storage organs, VSOs). Unlike seed crops, however, we lack a systematic criterion for examining diagnostic characters of different VSO taxa in the archaeological record. To address this issue, we characterized commonly consumed and historically significant VSOs in China, by studying experimentally charred modern samples under the optical microscope and scanning electron microscope. We then compared the characteristics of these modern VSO samples against plant remains from Late Pleistocene to early Holocene archaeological sites in China, such as Zengpiyan (Guangxi), Zhaoguodong (Guizhou), and Jiahu (Henan) sites. We found that different taxa of VSOs can be differentiated by using multiple lines of evidence, including: shape and size of various cells, texture and arrangement of cell walls, as well as anatomical arrangements of organs, especially the vascular bundles. Though identification can be difficult when fragile cell structures have collapsed or deteriorated, more robust features are often preserved for diagnosis. Our results suggest that the potential for studying the role of vegetatively propagated plants in early human-environmental interactions is overlooked, and can be expanded significantly with further investment in their systematic identification.

  16. Coral reconstruction of Holocene oscillations in the extent of the Indo-Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie; McGregor, Helen; Gagan, Michael

    2010-05-01

    The Indo-Pacific Warm Pool (IPWP) plays a key role in the propagation and amplification of climate changes through its influence on the global distribution of heat and water vapour. However, little is known about past changes in the size and position of the IPWP. We use a total of 48 modern and fossil coral records from the Mentawai Islands (Sumatra, Indonesia) and Muschu/Koil Islands (Papua New Guinea) to reconstruct oscillations in the extent of the IPWP since the mid-Holocene. We firstly show that reliable estimates of mean sea surface temperature (SST) can be obtained from fossil corals by using low-resolution Sr/Ca analysis of a suite of corals to overcome the large uncertainties associated with mean Sr/Ca-SST estimates from individual coral colonies. The coral records indicate that the southeastern and southwestern margins of the IPWP were predominantly 1.2oC ± 0.3oC cooler than present during the mid-Holocene, and we suggest that this was due to a contraction of the southern margins of the IPWP associated with the more northerly position of the ITCZ. Comparison with speleothem records of Asian monsoon rainfall further indicates that short-lived shifts to warmer than present SSTs at the coral sites during the mid-Holocene coincide with intervals of abrupt monsoon weakening (and southward displacements of the ITCZ). Examination of our coral reconstruction alongside the Kilimanjaro ice core record suggests that the Indian Ocean Dipole also adopted a more positive mean state during the mid-Holocene when the southern margins of the IPWP contracted. These results suggest that the Asian monsoon-IOD interaction that exists at interannual time scales also persists over centennial to millennial scales. The dynamic and inter-connected behaviour of the IPWP with tropical climate systems during the mid-Holocene highlights the fundamental importance of the warm pool region for understanding climate change throughout the tropics and beyond.

  17. The Holocene British and Irish ancient forest fossil beetle fauna: implications for forest history, biodiversity and faunal colonisation

    NASA Astrophysics Data System (ADS)

    Whitehouse, Nicki J.

    2006-08-01

    This paper presents a new review of our knowledge of the ancient forest beetle fauna from Holocene archaeological and palaeoecological sites in Great Britain and Ireland. It examines the colonisation, dispersal and decline of beetle species, highlighting the scale and nature of human activities in the shaping of the landscape of the British Isles. In particular, the paper discusses effects upon the insect fauna, and examines in detail the fossil record from the Humberhead Levels, eastern England. It discusses the local extirpation of up to 40 species in Britain and 15 species in Ireland. An evaluation of the timing of extirpations is made, suggesting that many species in Britain disappear from the fossil record between ca 3000 and 1000 cal BC (ca 5000-3000 cal BP), although some taxa may well have survived until considerably later. In Ireland, there are two distinct trends, with a group of species which seem to be absent after ca 2000 cal BC (ca 4000 cal BP) and a further group which survives until at least as late as the medieval period. The final clearance of the Irish landscape over the last few hundred years was so dramatic, however, that some species which are not especially unusual in a British context were decimated. Reasons behind the extirpation of taxa are examined in detail, and include a combination of forest clearance and human activities, isolation of populations, lack of temporal continuity of habitats, edaphic and competition factors affecting distribution of host trees (particularly pine), lack of forest fires and a decline in open forest systems. The role of climate change in extirpations is also evaluated. Consideration is given to the significance of these specialised ancient forest inhabitants in Ireland in the absence of an early Holocene land-bridge which suggests that colonisation was aided by other mechanisms, such as human activities and wood rafting. Finally, the paper discusses the Continental origins of the British and Irish fauna and

  18. Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event

    NASA Astrophysics Data System (ADS)

    González-Sampériz, P.; Utrilla, P.; Mazo, C.; Valero-Garcés, B.; Sopena, MC.; Morellón, M.; Sebastián, M.; Moreno, A.; Martínez-Bea, M.

    2009-03-01

    The Central Ebro River Basin (NE Spain) is the most northern area of truly semi-arid Mediterranean climate in Europe and prehistoric human occupation there has been strongly influenced by this extreme environmental condition. Modern climate conditions single out this region due to the harsh environment, characterised by the highest absolute summer temperatures of the Ebro River Basin. The Bajo Aragón region (SE Ebro River Basin) was intensively populated during the Early Holocene (9400-8200 cal yr BP) but the settlements were abandoned abruptly at around 8200 cal yr BP. We propose that this "archaeological silence" was caused by the regional impact of the global abrupt 8.2 ka cold event. Available regional paleoclimate archives demonstrate the existence of an aridity crisis then that interrupted the humid Early Holocene. That environmental crisis would have forced hunter-gatherer groups from the Bajo Aragón to migrate to regions with more favourable conditions (i.e. more humid mountainous areas) and only return in the Neolithic. Coherently, archaeological sites persist during this crisis in the nearby Iberian Range (Maestrazgo) and the North Ebro River area (Pre-Pyrenean mountains and along the northwestern Ebro Basin).

  19. A mid-holocene fauna from Bear Den Cave, Sequoia National Park, California

    USGS Publications Warehouse

    Mead, Jim I.; McGinnis, Thomas W.; Keeley, Jon E.

    2006-01-01

    Test excavation of floor fill deposits in the first room in Bear Den Cave, Sequoia National Park, produced fossiliferous sediments down to at least 40 cm depth. Radiocarbon analysis of charcoal from this layer indicates an early-middle Holocene age of 7220 CAL BP. The fossil accumulation represents prey recovered from generations of ringtail (Bassariscus astutus) dung. Microvertebrate remains include salamanders, lizards, snakes, and mammals. The recovery of Aneides ferreus/vagransfrom early-middle Holocene deposits in Bear Den Cave is a first for this species group. Equally interesting is the recovery of Plethodon sp. Neither taxa live in the Sierra Nevada today. The fossil-rich deposits of Bear Den Cave indicate that future paleoecological studies will be productive in Sequoia National Park.

  20. Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11

    NASA Astrophysics Data System (ADS)

    Kleinen, Thomas; Brovkin, Victor; Munhoven, Guy

    2016-11-01

    Trends in the atmospheric concentration of CO2 during three recent interglacials - the Holocene, the Eemian and Marine Isotope Stage (MIS) 11 - are investigated using an earth system model of intermediate complexity, which we extended with process-based modules to consider two slow carbon cycle processes - peat accumulation and shallow-water CaCO3 sedimentation (coral reef formation). For all three interglacials, model simulations considering peat accumulation and shallow-water CaCO3 sedimentation substantially improve the agreement between model results and ice core CO2 reconstructions in comparison to a carbon cycle set-up neglecting these processes. This enables us to model the trends in atmospheric CO2, with modelled trends similar to the ice core data, forcing the model only with orbital and sea level changes. During the Holocene, anthropogenic CO2 emissions are required to match the observed rise in atmospheric CO2 after 3 ka BP but are not relevant before this time. Our model experiments show a considerable improvement in the modelled CO2 trends by the inclusion of the slow carbon cycle processes, allowing us to explain the CO2 evolution during the Holocene and two recent interglacials consistently using an identical model set-up.

  1. Holocene aridification of India

    USGS Publications Warehouse

    Ponton, C.; Giosan, L.; Eglinton, T.I.; Fuller, D.Q.; Johnson, J.E.; Kumar, P.; Collett, T.S.

    2012-01-01

    Spanning a latitudinal range typical for deserts, the Indian peninsula is fertile instead and sustains over a billion people through monsoonal rains. Despite the strong link between climate and society, our knowledge of the long-term monsoon variability is incomplete over the Indian subcontinent. Here we reconstruct the Holocene paleoclimate in the core monsoon zone (CMZ) of the Indian peninsula using a sediment core recovered offshore from the mouth of Godavari River. Carbon isotopes of sedimentary leaf waxes provide an integrated and regionally extensive record of the flora in the CMZ and document a gradual increase in aridity-adapted vegetation from ???4,000 until 1,700 years ago followed by the persistence of aridity-adapted plants after that. The oxygen isotopic composition of planktonic foraminifer Globigerinoides ruber detects unprecedented high salinity events in the Bay of Bengal over the last 3,000 years, and especially after 1,700 years ago, which suggest that the CMZ aridification intensified in the late Holocene through a series of sub-millennial dry episodes. Cultural changes occurred across the Indian subcontinent as the climate became more arid after ???4,000 years. Sedentary agriculture took hold in the drying central and south India, while the urban Harappan civilization collapsed in the already arid Indus basin. The establishment of a more variable hydroclimate over the last ca. 1,700 years may have led to the rapid proliferation of water-conservation technology in south India. Copyright 2012 by the American Geophysical Union.

  2. Human-environment interaction during the Mesolithic- Neolithic transition in the NE Iberian Peninsula. Vegetation history, climate change and human impact during the Early-Middle Holocene in the Eastern Pre-Pyrenees

    NASA Astrophysics Data System (ADS)

    Revelles, J.; Burjachs, F.; Palomo, A.; Piqué, R.; Iriarte, E.; Pérez-Obiol, R.; Terradas, X.

    2018-03-01

    The synthetic analysis of several pollen records from sub-Mediterranean lowland Pre-Pyrenean regions evidences expansion of forests during the Early Holocene in Northeastern Iberia and the establishment of dense deciduous broadleaf forests during the Holocene Climate Optimum. Pollen records show the broadleaf deciduous forests resilience against cooling phases during the Mid-Holocene period, with slight regressions of oak woodlands and expansion of conifers or xerophytic taxa contemporary to some cooling episodes (i.e. 8.2 and 7.2 kyr cal. BP). Major vegetation changes influenced by climate change occurred in the transition to the Late Holocene, in terms of the start of a succession from broadleaf deciduous forests to evergreen sclerophyllous woodlands. The lack of evidence of previous occupation seems to support the Neolithisation of the NE Iberian Peninsula as a result of a process of migration of farming populations to uninhabited or sparsely inhabited territories. In that context, remarkable changes in vegetation were recorded from 7.3 kyr cal. BP onwards in the Lake Banyoles area, where the establishment of permanent farming settlements caused the deforestation of oak woodlands. In La Garrotxa region, short deforestation episodes affecting broadleaf deciduous forests, together with expansion of grasslands and presence of Cerealia-t were documented in the period 7.4-6.0 kyr cal. BP. Finally, in the coastal area, where less evidence of Early Neolithic occupations is recorded, evidence of Neolithic impact is reflected in the presence of Cerealia-t in 6.5-6.2 kyr cal. BP, but no strong human transformation of landscape was carried out until more recent chronologies.

  3. A high resolution history of the El Niño - Southern Oscillation and of the solar activity during the Late Glacial - Early Holocene in the subtropical Andean region.

    NASA Astrophysics Data System (ADS)

    Giralt, S.; Schimmel, M.; Hernández, A.; Bao, R.; Valero-Garcés, B. L.; Sáez, A.; Pueyo, J. J.

    2009-04-01

    High-resolution laminated lacustrine sediments are excellent archives of the past hydrological changes and they provide valuable insights about the climatic processes that trigger these changes. The paleoclimatic records located in the Southern Hemisphere are fundamental for understanding the evolution of the El Niño - Southern Oscillation (ENSO) since this climatic phenomena is the main cause of droughts and floods in many areas of South America and other regions of the world, like Spain and Egypt. Available regional paleoclimate reconstructions show that modern climatic patterns in South America were established during the Late Holocene. The laminated sediments of Lago Chungará (18° 15' S - 69° 10' W, 4520 m a.s.l., Chilean altiplano) have allowed us to characterize the evolution of this climatic phenomena for the transition Late Glacial - Early Holocene (12,300 - 9,500 calendar years BP) as well as its relationship with other climate forcings, namely the solar activity. The studied sediments correspond to the lowermost 2.4 m of 8 m long Kullemberg cores recovered from this lake. These sediments are mainly made up of greenish and whitish laminae and thin layers constituted by diatomaceous oozes with carbonates and organic matter, arranged in rhythms and cycles. X-ray fluorescence (XRF) (Al, Si, S, K, Ca, Ti, Mn, Fe, Rb, Sr, Zn, Sb and Ba) analyses, total organic carbon (TOC), total carbon (TC), x-ray diffraction (XRD), biogenic silica, stable isotopes (delta18O and delta13C) on carbonates and on diatoms (delta18O) and magnetic susceptibility were determined in order to characterize the sediments of Lago Chungará. Previous statistical studies (cluster and Principal Component Analyses (PCA)) were used to disentangle the paleoclimatic signal from the other ones (volcanic and tectonic). The chronological model framework was built using 6 radiocarbon dates, allowing us to establish that laminated couplets were deposited on a pluriannual basis. These couplets are

  4. Ground-Penetrating Radar Study of Fort Morgan Peninsula Holocene Beach Ridges as Sea-level Indicators

    NASA Astrophysics Data System (ADS)

    Philbin, A.; Frederick, B.; Blum, M. D.; Tsoflias, G. P.

    2017-12-01

    Holocene sea-level change along the northern Gulf of Mexico (GoM) coast is controversial. One view interprets basal peats from the Mississippi Delta to indicate continual sea-level (SL) rise for the GoM as a whole. An alternate view proposes that data from the subsiding delta is primarily a subsidence signal, and that sandy non-deltaic shorelines indicate that regional SL reached present elevations by the middle Holocene, with minor oscillations since then. In fact, new regional long-term subsidence records from biostratigraphic indicators display significant subsidence in deltaic areas where basal-peat data were collected, and negligible rates along the GoM shoreline to the east. However, the use of sandy progradational shorelines, commonly known as "beach ridge systems", has been criticized for a lack of precise sea-level indicators, and therefore discounted. This research focuses on developing Holocene progradational sandy shorelines along the Alabama coast in the eastern GoM as SL indicators. Sandy shorelines in this area are ideal to examine SL change because they are well preserved, sufficiently distant from the subsiding delta, well mapped, and ages are known from previous work. Two-dimensional ground-penetrating radar imaging of well-dated beach-ridge successions is used here to examine and identify changes through time in the elevation of the shoreface clinoform topset-foreset break, which represents the transition between flat-lying foreshore and seaward-dipping shoreface facies, and forms in the intertidal zone. Beach-ridge successions with optical luminescence ages of ca. 5500-4800 yrs BP display topset-foreset breaks at current mean sea-level elevation, whereas beach-ridge successions from ca. 3500-2400 yrs BP display topset-foreset breaks that are 1 m above present mean SL and the elevation of modern topset-foreset breaks. These data support the view that current sea-level was reached by the middle Holocene, and was higher than present for at least

  5. An Early Holocene Record of Cimex (Hemiptera: Cimicidae) From Western North America.

    PubMed

    Adams, Martin E; Jenkins, Dennis L

    2017-07-01

    The subfossil remains of 14 cimicids (Hemiptera: Cimicidae) were recovered during archaeological investigations of the Paisley Five Mile Point Cave site (35LK3400), an exceptionally well-dated (n = 229 radiocarbon dates) late Pleistocene-early Holocene rock shelter site in south-central Oregon. Nine of the specimens have been assigned to three modern species of Nearctic Cimicidae-Cimex antennatus Usinger & Ueshima, Cimex latipennis Usinger & Ueshima, and Cimex pilosellus (Horváth)-whereas the remaining five individuals were too fragmentary to positively identify. The chronology of the insect assemblage puts one specimen at circa 5,100 calibrated years before present (cal. yr BP), and the remaining 13 range in age from 9,400 to almost 11,000 cal. yr BP. Although fossil and subfossil cimicid remains have been recovered at other archaeological sites, the fossil record for bed bugs is largely undocumented. The Paisley Caves specimens thus far represent the oldest remains of the genus in probable contact with humans on record. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Ancestral Ca2+ Signaling Machinery in Early Animal and Fungal Evolution

    PubMed Central

    Cai, Xinjiang; Clapham, David E.

    2012-01-01

    Animals and fungi diverged from a common unicellular ancestor of Opisthokonta, yet they exhibit significant differences in their components of Ca2+ signaling pathways. Many Ca2+ signaling molecules appear to be either animal-specific or fungal-specific, which is generally believed to result from lineage-specific adaptations to distinct physiological requirements. Here, by analyzing the genomic data from several close relatives of animals and fungi, we demonstrate that many components of animal and fungal Ca2+ signaling machineries are present in the apusozoan protist Thecamonas trahens, which belongs to the putative unicellular sister group to Opisthokonta. We also identify the conserved portion of Ca2+ signaling molecules in early evolution of animals and fungi following their divergence. Furthermore, our results reveal the lineage-specific expansion of Ca2+ channels and transporters in the unicellular ancestors of animals and in basal fungi. These findings provide novel insights into the evolution and regulation of Ca2+ signaling critical for animal and fungal biology. PMID:21680871

  7. Late Quaternary Productivity Records from Coccolith Sr/Ca

    NASA Astrophysics Data System (ADS)

    Stoll, H. M.; Burke, A.; Mejia Ramirez, L. M.; Shimizu, N.; Ziveri, P. P. I.

    2014-12-01

    The Sr/Ca of coccoliths has been proposed as an indicator of productivity on the basis of correlation with export production in sediment traps and across upwelling productivity gradients, although the mechanism responsable for this relationship is not clear. For diverse oceanographic settings in the Late Quaternary, we compare coccolith Sr/Ca productivity records with those of other productivity indicators and proxies for mechanisms of productivity forcing. For the Somalia Basin in the Arabian Sea, coccolith Sr/Ca shows a large variation coherent with precessional forcing of wind strength as a mechanism for productivity regulation. During the glacial, the Sr/Ca peak is decoupled from productivity indicators based on organic C accumulation rate. For the Northern Bay of Bengal, coccolith Sr/Ca, Ba/Ti, and relative abundance of G. bulloides, all suggest greater productivity during the interglacial periods, consisted with Nd isotopic evidence for greater riverine nutrient inputs. In the Andaman Sea, coccolith Sr/Ca is highest during precessional maxima in the summer monsoon, consistent with proxies for chemical weathering in the Irawaddy rivershed. In the Eastern Mediterranean, coccolith Sr/Ca is on average low, and peaks during the E. Holocene interval characterized by deposition of sapropel S1. The peak in Sr/Ca however is comparable to the level maintained throughout the Holocene in the Western Mediterranean, where no sapropel occurs, implicating deepwater oxygen levels as a significant contributor to sapropel formation. Finally, on the Agulhas Bank, minima in coccolith Sr/Ca occur during obliquity minima which are periods of anomalous equatorward deposition of IRD in the Southern Ocean. Northward explansion of the westerly wind field during these cold intervals, block upwelling on the Agulhas Bank and result in low productivity.

  8. Holocene shifts of the southern westerlies across the South Atlantic

    NASA Astrophysics Data System (ADS)

    Voigt, Ines; Chiessi, Cristiano M.; Prange, Matthias; Mulitza, Stefan; Groeneveld, Jeroen; Varma, Vidya; Henrich, Ruediger

    2015-02-01

    The southern westerly winds (SWW) exert a crucial influence over the world ocean and climate. Nevertheless, a comprehensive understanding of the Holocene temporal and spatial evolution of the SWW remains a significant challenge due to the sparsity of high-resolution marine archives and appropriate SWW proxies. Here we present a north-south transect of high-resolution planktonic foraminiferal oxygen isotope records from the western South Atlantic. Our proxy records reveal Holocene migrations of the Brazil-Malvinas Confluence (BMC), a highly sensitive feature for changes in the position and strength of the northern portion of the SWW. Through the tight coupling of the BMC position to the large-scale wind field, the records allow a quantitative reconstruction of Holocene latitudinal displacements of the SWW across the South Atlantic. Our data reveal a gradual poleward movement of the SWW by about 1-1.5° from the early to the mid-Holocene. Afterward, variability in the SWW is dominated by millennial scale displacements on the order of 1° in latitude with no recognizable longer-term trend. These findings are confronted with results from a state-of-the-art transient Holocene climate simulation using a comprehensive coupled atmosphere-ocean general circulation model. Proxy-inferred and modeled SWW shifts compare qualitatively, but the model underestimates both orbitally forced multimillennial and internal millennial SWW variability by almost an order of magnitude. The underestimated natural variability implies a substantial uncertainty in model projections of future SWW shifts.

  9. High-resolution climatic evolution of coastal northern California during the past 16,000 years

    USGS Publications Warehouse

    Barron, J.A.; Heusser, L.; Herbert, T.; Lyle, M.

    2003-01-01

    Holocene and latest Pleistocene oceanographic conditions and the coastal climate of northern California have varied greatly, based upon high-resolution studies (ca. every 100 years) of diatoms, alkenones, pollen, CaCO3%, and total organic carbon at Ocean Drilling Program (ODP) Site 1019 (41.682??N, 124.930??W, 980 m water depth . Marine climate proxies (alkenone sea surface temperatures [SSTs] and CaCO3%) behaved remarkably like the Greenland Ice Sheet Project (GISP)-2 oxygen isotope record during the B??lling-Allerod, Younger Dryas (YD), and early part of the Holocene. During the YD, alkenone SSTs decreased by >3??C below mean B??lling-Allerod and Holocene SSTs. The early Holocene (ca. 11.6 to 8.2 ka) was a time of generally warm conditions and moderate CaCO3 content (generally >4%). The middle part of the Holocene (ca. 8.2 to 3.2 ka) was marked by alkenone SSTs that were consistently 1-2??C cooler than either the earlier or later parts of the Holocene, by greatly reduced numbers of the gyre-diatom Pseudoeunotia doliolus (<10%), and by a permanent drop in CaCO3% to <3%. Starting at ca. 5.2 ka, coastal redwood and alder began a steady rise, arguing for increasing effective moisture and the development of the north coast temperate rain forest. At ca. 3.2 ka, a permanent ca. 1??C increase in alkenone SST and a threefold increase in P. doliolus signaled a warming of fall and winter SSTs. Intensified (higher amplitude and more frequent) cycles of pine pollen alternating with increased alder and redwood pollen are evidence that rapid changes in effective moisture and seasonal temperature (enhanced El Nin??o-Southern Oscillation [ENSO] cycles) have characterized the Site 1019 record since about 3.5 ka.

  10. Liquefaction along Late Pleistocene to early Holocene Faults as Revealed by Lidar in Northwest Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Webb, J.; Gardner, T.

    2016-12-01

    In northwest Tasmania well-preserved mid-Holocene beach ridges with maximum radiocarbon ages of 5.25 ka occur along the coast; inland are a parallel set of lower relief beach ridges of probable MIS 5e age. The latter are cut by northeast-striking faults clearly visible on LIDAR images, with a maximum vertical displacement (evident as difference in topographic elevation) of 3 m. Also distinct on the LIDAR images are large sand boils along the fault lines; they are up to 5 m in diameter and 2-3 m high and mostly occur on the hanging wall close to the fault traces. Without LIDAR it would have been almost impossible to distinguish either the fault scarps or the sand boils. Excavations through the sand boils show that they are massive, with no internal structure, suggesting that they formed in a single event. They are composed of well-sorted, very fine white sand, identical to the sand in the underlying beach ridges. The sand boils overlie a peaty paleosol; this formed in the tea-tree swamp that formerly covered the area, and has been offset along the faults. Radiocarbon dating of the buried organic-rich paleosol gave ages of 14.8-7.2 ka, suggesting that the faulting is latest Pleistocene to early Holocene in age; it occurred prior to deposition of the mid-Holocene beach ridges, which are not offset. The beach ridge sediments are up to 7 m thick and contain an iron-cemented hard pan 1-3 m below the surface. The water table is very shallow and close to the ground surface, so the sands of the beach ridges are mostly saturated. During faulting these sands experienced extensive liquefaction. The resulting sand boils rose to a substantial height of 2-3 m, probably possibly reflecting the elevation of the potentiometric surface within the confined part of the beach ridge sediments below the iron-cemented hard pan. Motion on the faults was predominantly dip slip (shown by an absence of horizontal offset) and probably reverse, which is consistent with the present-day northwest

  11. Fire and vegetation history on Santa Rosa Island, Channel Islands, and long-term environmental change in southern California

    USGS Publications Warehouse

    Starratt, Scott W.; Pinter, N.; Anderson, Robert S.; Jass, R.B.

    2009-01-01

    The long-term history of vegetation and fire was investigated at two locations – Soledad Pond (275 m; from ca. 12 000 cal. a BP) and Abalone Rocks Marsh (0 m; from ca. 7000 cal. a BP) – on Santa Rosa Island, situated off the coast of southern California. A coastal conifer forest covered highlands of Santa Rosa during the last glacial, but by ca. 11 800 cal. a BP Pinus stands, coastal sage scrub and grassland replaced the forest as the climate warmed. The early Holocene became increasingly drier, particularly after ca. 9150 cal. a BP, as the pond dried frequently, and coastal sage scrub covered the nearby hillslopes. By ca. 6900 cal. a BP grasslands recovered at both sites. Pollen of wetland plants became prominent at Soledad Pond after ca. 4500 cal. a BP, and at Abalone Rocks Marsh after ca. 3465 cal. a BP. Diatoms suggest freshening of the Abalone Rocks Marsh somewhat later, probably by additional runoff from the highlands. Introduction of non-native species by ranchers occurred subsequent to AD 1850. Charcoal influx is high early in the record, but declines during the early Holocene when minimal biomass suggests extended drought. A general increase occurs after ca. 7000 cal. a BP, and especially after ca. 4500 cal. a BP. The Holocene pattern closely resembles population levels constructed from the archaeological record, and suggests a potential influence by humans on the fire regime of the islands, particularly during the late Holocene.

  12. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene

    NASA Astrophysics Data System (ADS)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.

    2012-04-01

    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  13. Effects of Holocene climate change on mercury deposition in Elk Lake, Minnesota: The importance of eolain transport in the mercury cycle

    USGS Publications Warehouse

    Cannon, W.F.; Dean, W.E.; Bullock, J.H.

    2003-01-01

    Sediments in Elk Lake, Minnesota, consist of 10,400 varve layers that provide a precise chronology for Holocene fluctuations in climate and biota recorded in the strata. Progressively greater concentrations and accumulation rates of mercury since ca. A.D. 1875 reflect deposition of anthropogenic mercury additions to the atmosphere. Within the Holocene record are numerous short intervals in which mercury concentrations and accumulation rates exceed the modern values. The highest mercury concentrations formed ca. 8 ka, coincident with a rapid change from cool, moist conditions to warm, dry conditions. A related change in flora from pine forest to prairie caused destruction of organic forest soils and the release of mercury that had been sequestered in them, resulting in a short- lived pulse of mercury to the lake. Accumulation rates of mercury were highest during the 4 k.y. mid-Holocene dry interval and show a correlation with periods of rapid deposition of eolian dust. The mercury was probably bound to wind-borne mineral particles, which were derived from an unidentified mercury-rich source region west of Elk Lake.

  14. Holocene evolution of the northeastern corner of the Nile Delta

    NASA Astrophysics Data System (ADS)

    Sneh, A.; Weissbrod, T.; Ehrlich, A.; Horowitz, A.; Moshkovitz, S.; Rosenfeld, A.

    1986-09-01

    The constructive phase of the modern Nile Delta, as manifested in a 48-m section drilled east of the Suez Canal, commenced in very early Holocene times. Sands rich in marine fauna were deposited in the littoral zone and the shoreline was more than 20 km landward of its present-day position. Subsequently, clays and silts were dumped from the Nile distributaries and the marine faunal spectrum became very limited and brackish. Later in early and middle Holocene times the sediments deposited were rich in freshwater, delta-plain diatoms and pollen and in allochthonous fern spores from the tropics, indicating proximity of a distributary mouth. The middle part of the section (22.5-17.5 m) is very poor in faunal and floral remains; pollen grains from sabkha vegetation are abundant. The environment, which seems lagoonal and slightly hypersaline, is related to the sea regression in middle Holocene times. Euryhaline pelecypods, dating from about 3000 yr B.P., are abundant around the 8-m depth. Upward, there is an increase in pollen grains from sabkhas; the section is poor in diatoms and those present are mostly euryhaline and lagoonal. Allochthonous spores derived from the nearby Pelusiac Branch are abundant. Between 3000 and 2000 yr B.P. the constructive phase of the modern delta terminated and winnowed sands began accreting in front of the delta plain.

  15. Testing the apatite depletion hypothesis for early Holocene ecosystem acidification using the lake sediment record at Krâkenes, Norway.

    NASA Astrophysics Data System (ADS)

    Thrasher, I. M.; Boyle, J. F.; Chiverrell, R. C.; Plater, A. J.

    2009-04-01

    Lakes created by retreating ice at the end of the last glaciation underwent rapid acidification during the first few thousand years of their existence, a phenomenon that has been attributed in part to progressive leaching of soil bases since it was discovered more than 80 years ago. Though a role for leaching is still acknowledged, the most recent studies see this as subordinate to the effects of biological and climatic changes initiated by deglaciation, chiefly primary vegetation succession and species immigration. However, we propose a simpler alternative explanation, based on the geochemical modelling of runoff acidity. This shows that the extent and timing of early Holocene lake acidification in eight published palaeoecological records can be explained by leaching of the calcium phosphate mineral apatite from the granitic till soils of their catchments, at a rate controlled by simple dissolution kinetic factors. If confirmed, this hypothesis has important implications for our understanding of long-term lake ecosystem development. Not only does it mean that the mechanism is inherently irreversible, in contrast to the alternative ecological and climatic mechanisms which are not. Also, it reinforces the view that long-term ecosystem modelling cannot safely neglect nutrient limitation, as is currently the practice in widely used global dynamic vegetation models. Here we present a NERC-funded programme of research that uses the sediment mineral record of Kråkenes (western Norway), the best studied early Holocene lake sediment sequence in the world, to provide a simple, critical and unambiguous test of this hypothesis.

  16. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China

    NASA Astrophysics Data System (ADS)

    Li, Jianyong; Dodson, John; Yan, Hong; Wang, Weiming; Innes, James B.; Zong, Yongqiang; Zhang, Xiaojian; Xu, Qinghai; Ni, Jian; Lu, Fengyan

    2018-02-01

    Quantitative proxy-based and high-resolution palaeoclimatic datasets are scarce for the lower reaches of the Yangtze River (LYR) basin. This region is in a transitional vegetation zone which is climatologically sensitive; and as a birthplace for prehistorical civilization in China, it is important to understand how palaeoclimatic dynamics played a role in affecting cultural development in the region. We present a pollen-based and regionally-averaged Holocene climatic twin-dataset for mean total annual precipitation (PANN) and mean annual temperature (TANN) covering the last 10,000 years for the LYR region. This is based on the technique of weighted averaging-partial least squares regression to establish robust calibration models for obtaining reliable climatic inferences. The pollen-based reconstructions generally show an early Holocene climatic optimum with both abundant monsoonal rainfall and warm thermal conditions, and a declining pattern of both PANN and TANN values in the middle to late Holocene. The main driving forces behind the Holocene climatic changes in the LYR area are likely summer solar insolation associated with tropical or subtropical macro-scale climatic circulations such as the Intertropical Convergence Zone (ITCZ), Western Pacific Subtropical High (WPSH), and El Niño/Southern Oscillation (ENSO). Regional multi-proxy comparisons indicate that the Holocene variations in precipitation and temperature for the LYR region display an in-phase relationship with other related proxy records from southern monsoonal China and the Indian monsoon-influenced regions, but are inconsistent with the Holocene moisture or temperature records from northern monsoonal China and the westerly-dominated region in northwestern China. Overall, our comprehensive palaeoclimatic dataset and models may be significant tools for understanding the Holocene Asian monsoonal evolution and for anticipating its future dynamics in eastern Asia.

  17. Early Solar System Alkali Fractionation Events Recorded by K-Ca Isotopes in the Yamato-74442 LL-Chondritic Breccia

    NASA Technical Reports Server (NTRS)

    Tatsunori, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2015-01-01

    Radiogenic ingrowth of Ca-40 due to decay of K-40 occurred early in the solar system history causing the Ca-40 abundance to vary within different early-former reservoirs. Marshall and DePaolo ] demonstrated that the K-40/Ca-40 decay system could be a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [3,4] determined 40K/40Ca ages of lunar granitic rock fragments and discussed the chemical characteristics of their source materials. Recently, Yokoyama et al. [5] showed the application of the K-40/Ca-40 chronometer for high K/Ca materials in ordinary chondrites (OCs). High-precision calcium isotopic data are needed to constrain mixing processes among early solar system materials and the time of planetesimal formation. To better constrain the solar system calcium isotopic compositions among astromaterials, we have determined the calcium isotopic compositions of OCs and an angrite. We further estimated a source K/Ca ratio for alkali-rich fragments in a chondritic breccia using the estimated solar system initial Ca-40/Ca-44.

  18. Holocene South Asian Monsoon Climate Change - Potential Mechanisms and Effects on Past Civilizations

    NASA Astrophysics Data System (ADS)

    Staubwasser, M.; Sirocko, F.; Grootes, P. M.; Erlenkeuser, H.; Segl, M.

    2002-12-01

    Planktonic oxygen isotope ratios from the laminated sediment core 63KA off the river Indus delta dated with 80 AMS radiocarbon ages reveal significant climate changes in the south Asian monsoon system throughout the Holocene. The most prominent event of the early-mid Holocene occurred after 8.4 ka BP and is within dating error of the GISP/GRIP event centered at 8.2 ka BP. The late Holocene is generally more variable, and shows non-periodic cycles in the multi-centennial frequency band. The largest change of the entire Holocene occurred at 4.2 ka BP and is concordant with the end of urban Harappan civilization in the Indus valley. Opposing isotopic trends across the northern Arabian Sea surface indicate a reduction in Indus river discharge at that time. Consequently, sustained drought may have initiated the archaeologically recorded interval of southeastward habitat tracking within the Harappan cultural domain. The hemispheric significance of the 4.2 ka BP event is evident from concordant climate change in the eastern Mediterranean and the Middle East. The late Holocene cycles in South Asia, which most likely represent drought cycles, vary between 250 and 800 years and are coherent with the evolution of cosmogenic radiocarbon production rates in the atmosphere. This suggests that solar variability is the fundamental cause behind late Holocene rainfall changes at least over south Asia.

  19. New stratigraphic constraints on Holocene glacier advances at Mt. Baker, Washington

    NASA Astrophysics Data System (ADS)

    Clark, D.; Ryane, C.; Tucker, D.; Davis, T.; Bowerman, N.; Osborn, G.; Clague, J.; Menounos, B.; Scott, K.; Guilderson, T.; Riedel, J.; Steig, E.

    2007-12-01

    New data from a lake sediment core and moraine exposures at Mt. Baker, WA, indicate that a purported early Holocene glacier advance occurred earlier, likely at the end of the Pleistocene. Previous workers used 14C ages associated with small cirque moraines on the SW flank of Mt. Baker, along with the apparent absence of a distinctive scoria (set SC; 8850 14C yr BP, ~9900 cal yr BP) from other moraines on Mt. Baker, as evidence for an advance at ~8400 14C yr BP (~9450 cal yr BP). Such an advance is important to test because it would contrast with glacial records throughout most of the rest of western North America. A 1.2-m sediment core collected from Pocket Lake, which is dammed by one of the previously dated cirque moraines, contains three tephras: Baker set BA (~5800 14C yr BP; 6600 cal yr BP), Mazama ash (6800 14C yr BP; 7600 cal yr BP), and a basal set of ash beds that are tentatively identified as Baker set SC. The lowest macrofossil in the core, ~2 cm above the top of the basal ash beds, yielded an age of 7640 ± 50 14C yr BP (~8400 cal yr BP), consistent with the tephra being SC. Initial geochemical analyses of the tephra also support this identification. These findings indicate that the previous age on the cirque moraine, from organics near the surface of the till, provides a minimum rather than a direct age for the advance that formed the moraine. A 14C age of 11,400 ± 110 14C yr BP (~13,300 cal yr BP) on bulk sediments below the basal ash is likely contaminated and therefore too old. Tephra overlying other ridges at Mt. Baker that were previously identified as post-SC, early-Holocene moraines has been identified as set SC. The ridges thus are actually pre-SC rather than post-SC in age; they may not be moraines in any event. Meanwhile, abundant 14C ages on tills below Deming Glacier indicate both Younger Dryas and Neoglacial advances, but no early Holocene advances. Together, these observations indicate that glaciers in the Mt. Baker area advanced during

  20. Timing and nature of Holocene glacier advances at the northwestern end of the Himalayan-Tibetan orogen

    NASA Astrophysics Data System (ADS)

    Saha, Sourav; Owen, Lewis A.; Orr, Elizabeth N.; Caffee, Marc W.

    2018-05-01

    Holocene glacial chronostratigraphies are developed for four glaciated valleys at the northwestern end of the Himalayan-Tibetan orogen using geomorphic mapping and cosmogenic 10Be surface exposure dating. The study areas include the Hamtah valley in the Lahul Himalaya, and the Karzok, Lato and upper Stok valleys in Zanskar. Five local glacial stages are dated to ∼10.4, ∼6.1-3.3, ∼2.1-0.9, ∼0.7-0.4, and ∼0.3-0.2 ka based on 49 new moraine boulder ages. Large age dispersions are evident for each of the local glacial stages. This is especially the case for ∼6.1-3.3 and ∼2.1-0.9 ka, which is likely a result of prior and/or incomplete exposures in very young moraine boulders. An additional compilation of 187 published 10Be moraine boulder ages help define seven Himalayan Holocene regional glacial stages (HHs) for the northwestern end of the Himalayan-Tibetan orogen. These HHs date to ∼10.9-9.3, ∼8.2-7.4, ∼6.9-4.3, ∼4.5-2.8, ∼2.7-1.8, ∼1.8-0.9, and <1 ka. Early Holocene glacier advances were generally more extensive and had larger equilibrium-line altitude depressions (ΔELA = ∼425 ± 229 m) than glacier advances during the mid-Holocene (ΔELA = ∼141 ± 106) and late Holocene (ΔELA = ∼124 ± 121 m). The early Holocene glacier advances likely correspond to orbitally-forced northerly migration of the Intertropical Convergence Zone and enhanced summer monsoon. The timing of the majority of HHs during mid- and late Holocene corresponds well with the North Atlantic cooling that is likely teleconnected via mid-latitude westerlies, particularly during ∼8 ka and after ∼5 ka. These chronostratigraphies suggest that Holocene glaciation in the northwestern part of the Himalayan-Tibetan orogen is largely influenced by long-term orbital forcing amplified by large-scale migration of the Earth's thermal equator and the associated hemispheric oceanic-atmospheric systems.

  1. Holocene relative sea-level change in Hiroshima Bay, Japan: A semi-quantitative reconstruction based on ostracodes

    USGS Publications Warehouse

    Yasuhara, Moriaki; Seto, Koji

    2006-01-01

    Holocene relative sea-level changes in Hiroshima Bay were reconstructed from fossil ostracodes from a core, using a semi-quantitative method. In Hiroshima Bay, relative sea level rose rapidly (about 25 m) between ca. 9000 cal yr BP and ca. 5800 cal yr BP, after which it gradually fell (about 5 m) to its present level. The peak in relative sea level occurred at ca. 5800 cal yr BP. The sea-level curve for Hiroshima Bay is similar to curves for tectonically stable areas of Japan (e.g., Osaka Bay). ?? by the Palaeontological Society of Japan.

  2. Middle to late Holocene coastal evolution along the south coast of Upolu Island, Samoa

    USGS Publications Warehouse

    Goodwin, I.D.; Grossman, E.E.

    2003-01-01

    Stratigraphic surveys and sedimentological analyses of coastal sediments and reef cores along the south coast of Upolu Island, Samoa, reveal that during the middle Holocene this coast was characterised by barrier spits, open lagoons, and estuaries. These estuarine systems matured during the late Holocene, with progressive sedimentation and inlet closure, leading to the dominance of mangrove swamps in the past 1000 years. Contemporaneous with the transition of open estuaries to mangrove swamps was the aggradation and progradation of coastal plains. The coastal progradation since 700-1000 years BP is best explained by increased sediment availability and reduced incident wave energy at the shore resulting from the shallowing and subsequent cessation of reef crest accretion following the mid-Holocene sea-level highstand ca. ???4500 yr BP. A small relative sea-level (RSL) lowering since 700-1000 years may have contributed to the positive sediment budget. This study highlights the need for island-wide coastal surveys to assess the relative roles of RSL, sediment budgets, and hydrodynamics on coastal evolution and stability. Differences in coastal evolution around Upolu Island may also be influenced by differential tectonic movements associated with late Holocene volcanism, coseismicity, and/ or submarine landslides. ?? 2003 Elsevier B.V. All rights reserved.

  3. Patagonian and southern South Atlantic view of Holocene climate

    NASA Astrophysics Data System (ADS)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Denton, G. H.; Anderson, R. F.; Vandergoes, M. J.; Finkel, R. C.; Schwartz, R.; Travis, S. G.; Garcia, J. L.; Martini, M. A.; Nielsen, S. H. H.

    2016-06-01

    We present a comprehensive 10Be chronology for Holocene moraines in the Lago Argentino basin, on the east side of the South Patagonian Icefield. We focus on three different areas, where prior studies show ample glacier moraine records exist because they were formed by outlet glaciers sensitive to climate change. The 10Be dated records are from the Lago Pearson, Herminita Península-Brazo Upsala, and Lago Frías areas, which span a distance of almost 100 km adjacent to the modern Icefield. New 10Be ages show that expanded glaciers and moraine building events occurred at least at 6120 ± 390 (n = 13), 4450 ± 220 (n = 7), 1450 or 1410 ± 110 (n = 18), 360 ± 30 (n = 5), and 240 ± 20 (n = 8) years ago. Furthermore, other less well-dated glacier expansions of the Upsala Glacier occurred between 1400 and ∼1000 and ∼2300 and ∼2000 years ago. The most extensive glaciers occurred over the interval from ∼6100 to ∼4500 years ago, and their margins over the last ∼600 years were well within and lower than those in the middle Holocene. The 10Be ages agree with 14C-limiting data for the glacier histories in this area. We then link southern South American, adjacent South Atlantic, and other Southern Hemisphere records to elucidate broader regional patterns of climate and their possible causes. In the early Holocene, a far southward position of the westerly winds fostered warmth, small Patagonian glaciers, and reduced sea ice coverage over the South Atlantic. Although we infer a pronounced southward displacement of the westerlies during the early Holocene, these conditions did not occur throughout the southern mid-high latitudes, an important exception being over the southwest Pacific sector. Subsequently, a northward locus and/or expansion of the winds over the Patagonia-South Atlantic sector promoted the largest glaciers between ∼6100 and ∼4500 years ago and greatest sea ice coverage. Over the last few millennia, the South Patagonian Icefield has experienced

  4. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.

    2018-03-01

    Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study

  5. Holocene precipitation changes in the deep tropics recorded by Speleothems (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, X.; Auler, A. S.; Edwards, R.; Kong, X.; Cheng, H.; Cruz, F. W.; Wang, Y.; Broecker, W. S.

    2010-12-01

    We have obtained a high-resolution oxygen isotope (δ18O) record of cave calcite from Paraiso Cave, eastern Amazon, which covers most of the Holocene. Its chronology was determined by U-Th ages from three column-shaped stalagmites. Their δ18O profiles replicate among their contemporaneous growth periods. Therefore, the samples were likely precipitated under equilibrium conditions and their oxygen isotopic variations are primarily caused by climate change. We find that the δ18O decreases steadily from ~11.0 to 5.0 thousand years ago, with a growth gap between ~8.4 to 6.3 thousand years ago, and then gradually increases until the present. The large amplitude of the δ18O change (up to 4 per mil) suggests that the variation in δ18O value is dominated by meteoric precipitation change at this equatorial site. In order to investigate the interactions between the Intertropical Convergence Zone (ITCZ), monsoons and El Niño-Southern Oscillation (ENSO) activity during the Holocene, we compare the Paraiso record to speleothem records from other locations in the deep tropics, namely, cave sites from Flores, Borneo and Peru. We find that all these speleothem records are consistent, with a progressive δ18O decrease (rainfall increase) during the early Holocene, probably in response to the southward retreat of the ITCZ from its northernmost location in the early Holocene. This is evident from the strong anti-correlation between the speleothem monsoonal records from China and southern Brazil. However, our record is distinct from the others during the last 4 thousand years, when it switches to a continuous δ18O increase (rainfall decrease) trend, while the others flatten out. We propose that, during the late Holocene, the strengthened South American Summer Monsoon may override the ENSO influence and cause the discrepancy in precipitation between eastern Amazon and other deep tropical cave sites.

  6. Late Holocene (ca. AD 370-1210) ecosystem changes inferred from a stalagmite from northwestern Madagascar: the role of the ITCZ and human activity

    NASA Astrophysics Data System (ADS)

    Voarintsoa, N. R. G.; Railsback, L. B.; Brook, G. A.; Wang, L.; Liang, F.; Cheng, H.; Edwards, R. L.

    2015-12-01

    High-resolution stable isotope records combined with petrographic examination of stalagmite MA3 from Anjohibe Cave provide a better understanding of the climatically- and anthropogenically- induced ecosystem change in NW Madagascar between ca. AD 370 and 1210. The record suggests strong climatic control prior to ca. 700 and strong influence of human activities after ca. 920. Prior to 700, monsoonal rainfall and ecosystem change seem to respond to the change in the relative position of the ITCZ. This is inferred from the positive correlation between δ13C and δ18O and T anomalies in the Northern Hemisphere. A cooler NH pushed the ITCZ southward, thus favoring longer visits in northwestern Madagascar and strengthening the Malagasy monsoon. This offered favorable conditions to vegetation cover growth (the opposite was possible during warmer NH). The period between ca. 675 and 700 is the driest and might represent a period of abrupt change in vegetation cover as suggested by the stalagmite's petrography, smaller layer specific width, and greater values of both δ13C and δ18O. This drier period is followed by slight change in hydrology and a gradual recovery in vegetation in NW Madagascar, which lasted until ca. 920. This change is reflected in the decrease of stable isotope values and an increase in the layer specific width. Since ca. 920, the records suggest that the ecosystem change around the cave was controlled by something other than climate. The coincidence in time with human settlement and the gradual shift from lower to higher δ13C would suggest a strong involvement of human activities, particularly the practice of "tavy" or slash-and burn activities. This finding is important because Madagascar has experienced major ecological changes since the late Holocene, the cause of which has raised two hypotheses as to whether caused by severe climate change or by human activities. Deciphering the difference between human-induced and abrupt climatic changes has been

  7. New Data on Vegetation and Climate Reconstruction in the Baikal-Patom Highland (Eastern Siberia) in the Last Glacial Maximum and Early Holocene

    NASA Astrophysics Data System (ADS)

    Henry, A.; Bezrukova, E. V.; Teten'kin, A. V.; Kuz'min, M. I.

    2018-02-01

    The first results of anthracological investigation for Eastern Siberia on the carbonaceous remains of woody and shrubby plants at the archaeological sites Kovrizhka III and IV in the lower reaches of the Vitim River are presented. The results of anthracological studies enabled us to obtain new data on changes in vegetation and climate along the lower reaches of the Vitim River. As a result, new data on human habitation in the lower reaches of the Vitim River in the last glacial maximum and early Holocene were obtained.

  8. Model based paleoclimate interpretations of Holocene oxygen isotope records from the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Steinman, B. A.; Pompeani, D. P.; Abbott, M. B.; Ortiz, J. D.; Stansell, N.; Mihindukulasooriya, L. N.; Hillman, A. L.; Finkenbinder, M. S.

    2015-12-01

    Oxygen isotope measurements of authigenic carbonate from Cleland Lake (British Columbia), Paradise Lake (British Columbia), and Lime Lake (Washington) provide an ~9,000 year Holocene record of precipitation-evaporation balance variations in the Pacific Northwest. Both Cleland Lake and Paradise Lake are small, surficially closed-basin systems with no active inflows or outflows. Lime Lake is surficially open with a seasonally active overflow. We sampled the lake sediment cores at 1-60 mm intervals (~3-33 years per sample on average) and measured the isotopic composition of fine-grained, authigenic CaCO3 in each sample. Negative δ18O values, which indicate wetter conditions in closed-basin lakes, occur in Cleland Lake and Paradise Lake sediment during the mid-Holocene and are followed by more positive δ18O values, which suggest drier conditions, in the late Holocene. The δ18O record from Lime Lake, which principally reflects changes in the isotopic composition of precipitation, exhibits less variability than the closed-basin lake records and follows an increasing trend from the mid-Holocene to present. Power spectrum analysis of the Cleland Lake δ18O data from 1,000 yr BP to present demonstrates significant periodicities of ~6 and ~67 years that likely reflect the enhancement of El Niño Southern Oscillation (ENSO) variability in the late Holocene with an associated multidecadal (i.e., 50 to 70 yr) component of the Pacific Decadal Oscillation. Results from mid-Holocene (6,000 yr BP) climate model simulations conducted as part of the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3) indicate that in much of western North America, the cold season was wetter, and the warm season (April-September) was considerably drier (relative to the late Holocene), leading to an overall drier climate in western North America but with enhanced hydroclimatic seasonality. This is consistent with inferences from the Cleland and Paradise Lake δ18O records, which lake

  9. Holocene reef development where wave energy reduces accommodation

    USGS Publications Warehouse

    Grossman, Eric E.; Fletcher, Charles H.

    2004-01-01

    Analyses of 32 drill cores obtained from the windward reef of Kailua Bay, Oahu, Hawaii, indicate that high wave energy significantly reduced accommodation space for reef development in the Holocene and produced variable architecture because of the combined influence of sea-level history and wave exposure over a complex antecedent topography. A paleostream valley within the late Pleistocene insular limestone shelf provided accommodation space for more than 11 m of vertical accretion since sea level flooded the bay 8000 yr BP. Virtually no net accretion (pile-up of fore-reef-derived rubble (rudstone) and sparse bindstone, and (3) a final stage of catch-up bindstone accretion in depths > 6 m. Coral framestone accreted at rates of 2.5-6.0 mm/yr in water depths > 11 m during the early Holocene; it abruptly terminated at ~4500 yr BP because of wave scour as sea level stabilized. More than 4 m of rudstone derived from the upper fore reef accreted at depths of 6 to 13 m below sea level between 4000 and 1500 yr BP coincident with late Holocene relative sea-level fall. Variations in the thickness, composition, and age of these reef facies across spatial scales of 10-1000 m within Kailua Bay illustrate the importance of antecedent topography and wave-related stress in reducing accommodation space for reef development set by sea level. Although accommodation space of 6 to 17 m has existed through most of the Holocene, the Kailua reef has been unable to catch up to sea level because of persistent high wave stress.

  10. A Holocene Record of Hydrological Fluctuations in the Northern Chilean Altiplano (Lago Chungará)

    NASA Astrophysics Data System (ADS)

    Valero-Garces, B. L.; Saez, A.; Pueyo, J.; Taberner, C.; Bao, R.; Schnurrenberger, D.; Myrbo, A.; Shapley, M.; Herrera, C.; Moreno-Caballud, A.; Gonzalez-Samperiz, P.; Giralt, S.; Oriol-Gibert, R.; Edwards, L.; Schwalb, A.

    2004-12-01

    Holocene records of moisture availability in the Central Andes and the Altiplano show contrasting and even opposite signals and time-transgressive millennial-scale climatic changes across the region, particularly between the Titicaca Basin and the Atacama Altiplano. A multiproxy study of a 13 kyr record of Lago Chungará (18° 15' S, 69° 10' W, 4520 m a.s.l.) provides new data to solve some of the paleoclimate controversies as regional moisture availability patterns during the early and mid Holocene and the onset of modern ENSO conditions. Lago Chungara originated after the emplacement of the Parinacota volcano debris avalanche that blocked the Chungará River prior to 13 cal. kyrs ago. A seismic survey and fifteen Kullenberg cores allowed a detailed 3-D reconstruction of the 8 m long sedimentary sequence. The chronological model is based on 5 AMS 14C on bulk organic matter and 3 U/Th dates on authigenic carbonates and shells. To assess the typically large (and variable) reservoir effect, we dated modern sediments and waters, and constrained the model with time markers based on a 210Pb age model for the last 150 yrs, volcanic ashes of known age, and the U/Th dates. We performed high-resolution analyses by an X-ray fluorescence core scanner and magnetic, sedimentological, mineralogical, isotopic, and biological (pollen, diatoms and ostracodes) analyses on selected cores. Statistical analyses helped to separate the volcanism from climate as the key driving forces in the hydrological and sedimentological evolution of the lake. Three main lacustrine units are identified on top of the pre Parinacota avalanche substrate. The basal unit (13 - 7.2 cal. kyrs BP) is a finely laminated diatomite. The middle unit (7.2 - 4.5 cal. kyrs BP) is banded and it is composed of diatomites and carbonate-rich layers. The diatomaceous upper unit (after 4.5 cal. kyrs BP) is banded to massive, and it contains abundant volcanic layers (lapilli, ash layers). Increased volcanic activity after

  11. Tropical ocean-atmospheric forcing of Late Glacial and Holocene glacier fluctuations in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Stansell, Nathan D.; Licciardi, Joseph M.; Rodbell, Donald T.; Mark, Bryan G.

    2017-05-01

    Evaluating the timing and style of past glacier fluctuations in the tropical Andes is important for our scientific understanding of global environmental change. Terrestrial cosmogenic nuclide ages on moraine boulders combined with 14C-dated clastic sediment records from alpine lakes document glacial variability in the Cordillera Blanca of Peru during the last 16 ka. Late Glacial ice extents culminated at the start of the Antarctic Cold Reversal and began retracting prior to the Younger Dryas. Multiple moraine crests dating to the early Holocene mark brief readvances or stillstands that punctuated overall retreat of the Queshque Valley glacier terminus during this interval. Glaciers were less extensive during the middle Holocene before readvancing during the latest Holocene. These records suggest that tropical Atlantic and Pacific ocean-atmospheric processes exerted temporally variable forcing of Late Glacial and Holocene glacial changes in the Peruvian Andes.

  12. Holocene vegetation, environment and anthropogenic influence in the Fuzhou Basin, southeast China

    NASA Astrophysics Data System (ADS)

    Yue, Yuanfu; Zheng, Zhuo; Rolett, Barry V.; Ma, Ting; Chen, Cong; Huang, Kangyou; Lin, Gongwu; Zhu, Guangqi; Cheddadi, Rachid

    2015-03-01

    A ∼40 m sediment core (FZ4) was collected from the Fuzhou Basin, near the lower reaches of the Min River, in Fujian Province on the southeast coast of China. The sediment and pollen record contributes to our understanding of Holocene paleogeography, including local changes in vegetation and climate in the context of Neolithic cultural developments. The sediment record reveals a fluvial environment in the Fuzhou Basin during the late Pleistocene, and it demonstrates that a change from fluvial to estuarine conditions at ∼9000 cal yr BP resulted from postglacial sea level rise. Evidence of abundant marine diatoms and tidal flat laminations observed in the FZ4 sediments, implies that the Fuzhou Basin was under marine influence between ∼9000 and ∼2000 cal yr BP. After 2000 cal yr BP, a rapid retreat in coastline associated with fluvial aggradation and coastal progradation produced more shallow water for wetlands and initiated formation of the floodplain landscape. The pollen record reveals the presence of a dense subtropical forest between ca. 9000 and 7000 cal yr BP, representing the Holocene thermal maximum, which is linked with rising sea level and marine transgression in the Fuzhou Basin. Between ca. 5500 and 2000 cal yr BP, the thermophilous forest dominated by Castanopsis retreated and coniferous forest expanded, reflecting moderate climatic cooling during this period. Timing of the high frequencies for Pinus and ferns correspond with the mid-late Holocene cooling trend recorded in local mountain peatland and coastal regions of the lower Yangtze and Hanjiang deltas. Anthropogenically induced land cover change was negligible prior to the Tanshishan cultural period, which marks the beginning of Neolithic era sedentary village life on the Fujian coast around 5500 BP. The pollen transition at ca. 3000-1500 cal yr BP, distinguished by rising frequencies of Poaceae and taxa (including Cyperaceae and Artemisia) closely associated with agricultural land cover

  13. Sequence stratigraphy and environmental background of the late Pleistocene and Holocene occupation in the Southeast Primor'ye (the Russian Far East)

    NASA Astrophysics Data System (ADS)

    Chlachula, Jiri; Krupyanko, Alexander A.

    2016-06-01

    The paper presents the results of Quaternary palaeoecology and geoarchaeology studies in the Zerkal'naya Basin, with new insights about sequenced natural shifts during the prehistoric occupation of this marginally explored NE Asian maritime territory. The Basin is part of the continental drainage system and the main physiographic and biotic corridor for peopling of the transitive coastal interior SE Primor'ye Region. The Final Pleistocene and Holocene environmental (biotic and abiotic) proxy records from the Upper/Final Palaeolithic to early historical sites document a dynamic climate change with vegetation cover transformations within riverine and mountain valley ecosystems of the Russian Far East. Most of the archaeological sites located on the low terraces and bedrock promontories along the main river channel and its tributary streams suggest traditional hunter gathered lifestyles based on seasonal salmon-fishing supplemented by pastoral economy. Tundra-forests with larch trees, dwarf birch thickets and polypod ferns from the basal stratigraphic units of the late Last Glacial occupation sites associated with the Upper Palaeolithic micro-blade and bifacial stone tool traditions (14C-dated to 19,000-12,000 cal yrs BP) indicate rather pronounced conditions and much lower MAT comparing today. Following a final Pleistocene cooling event, a major climate warming marked the onset of Holocene accompanied by a regional humidity increase promoting the formation of a mixed broadleaved-coniferous oak-dominant taiga, and culminating in the mid-Holocene Climatic Optimum. The appearance of mosaic parklands ca. 5,000-4,000 cal yrs BP. may be partly attributed to the expansion of the Far Eastern Neolithic cultures practicing forest clearance for pastures and dwellings. A progressing landscape opening indicated by the spread of light-demanding thickets and birch-dominated riverine biotopes with Artemisia suggests a further vegetation cover transformation during the late Neolithic

  14. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Kong, W.; Chiang, J. C. H.

    2015-12-01

    The Holocene East Asian Summer Monsoon (EASM) was characterized by a trend to weaker monsoon intensity paced by orbital insolation. Here, we attribute the stronger EASM intensity in the early-mid Holocene to changes in the timing of the transition between the EASM seasonal stages - Spring, pre Mei- Yu, Mei-Yu, and Summer - during that time. Following the recent 'jet transition hypothesis' (Chiang et al., 2015), we explore the role of north-south displacement of the westerlies relative to the Tibetan Plateau that is hypothesized to control the downstream EASM seasonality changes across the Holocene. To this end, we analyze model simulations of the Holocene EASM, compare the simulated Holocene climate with the paleodata observations, and examine the role of atmospheric circulation and specifically the westerlies in modulating the East Asia summer climate. The PMIP3 climate model simulations suggest that, compared to the pre-industrial, the Mei-Yu onset and the transition from Mei-Yu to Summer rainfall occur earlier in the mid-Holocene. The advanced seasonal rainfall transition is accompanied by the weakened and northward-shifted upstream westerlies. In our atmospheric general circulation model (coupled to a slab ocean) simulations of various time periods across the Holocene (9ka, 6ka, 3ka, and pre-industrial), we quantitatively show that the timing and the length of each rainfall stage are closely related to the jet position over East Asia. We also show that the simulated changes in the maximum annual rainfall band and dust emission over East Asia largely agree with the paleo-proxy observations. In addition, we find that changes to the seasonal rainfall transitions, latitudinal westerly position, and stationary eddy activity over East Asia co-vary across the Holocene. In particular, we argue that the changes in the rainfall seasonal transitions are tied to an altered stationary wave pattern, resembling today's the so-called 'Silk Road Pattern', riding along the

  15. Drivers of Holocene sea-level change in the Caribbean

    USGS Publications Warehouse

    Khan, Nicole; Ashe, Erica; Horton, Benjamin P.; Dutton, Andrea; Kopp, Robert E.; Brocard, Gilles; Engelhart, Simon E.; Hill, David F.; Peltier, W.R.; Vane, Christopher H.; Scatena, Fred N.

    2017-01-01

    We present a Holocene relative sea-level (RSL) database for the Caribbean region (5°N to 25°N and 55°W to 90°W) that consists of 499 sea-level index points and 238 limiting dates. The database was compiled from multiple sea-level indicators (mangrove peat, microbial mats, beach rock and acroporid and massive corals). We subdivided the database into 20 regions to investigate the influence of tectonics and glacial isostatic adjustment on RSL. We account for the local-scale processes of sediment compaction and tidal range change using the stratigraphic position (overburden thickness) of index points and paleotidal modeling, respectively. We use a spatio-temporal empirical hierarchical model to estimate RSL position and its rates of change in the Caribbean over 1-ka time slices. Because of meltwater input, the rates of RSL change were highest during the early Holocene, with a maximum of 10.9 ± 0.6 m/ka in Suriname and Guyana and minimum of 7.4 ± 0.7 m/ka in south Florida from 12 to 8 ka. Following complete deglaciation of the Laurentide Ice Sheet (LIS) by ∼7 ka, mid-to late-Holocene rates slowed to < 2.4 ± 0.4 m/ka. The hierarchical model constrains the spatial extent of the mid-Holocene highstand. RSL did not exceed the present height during the Holocene, except on the northern coast of South America, where in Suriname and Guyana, RSL attained a height higher than present by 6.6 ka (82% probability). The highstand reached a maximum elevation of +1.0 ± 1.1 m between 5.3 and 5.2 ka. Regions with a highstand were located furthest away from the former LIS, where the effects from ocean syphoning and hydro-isostasy outweigh the influence of subsidence from forebulge collapse.

  16. Late Holocene expansion of Siberian dwarf pine (Pinus pumila) in Kamchatka in response to increased snow cover as inferred from lacustrine oxygen-isotope records

    NASA Astrophysics Data System (ADS)

    Hammarlund, Dan; Klimaschewski, Andrea; St. Amour, Natalie A.; Andrén, Elinor; Self, Angela E.; Solovieva, Nadia; Andreev, Andrei A.; Barnekow, Lena; Edwards, Thomas W. D.

    2015-11-01

    Holocene records of cellulose-inferred lake-water δ18O were produced from two lake-sediment sequences obtained in central and northern Kamchatka, Russian Far East. The sediment records share similar fluctuations in δ18O during the interval of ca. 5000-800 cal yr BP that correspond (inversely) with changes in K+ content of the GISP2 ice-core record from Greenland, a proxy for the relative strength of the Siberian High, suggesting control by climate-related variability in δ18O of regional precipitation. The dramatic expansion of Siberian dwarf pine (Pinus pumila) in northern and central Kamchatka between ca. 5000 and 4000 cal yr BP, as inferred from pollen records from the same and neighbouring sites, appears to have occurred at a time of progressively declining δ18O of precipitation. This development is interpreted as reflecting a regional cooling trend accompanied by increasing winter snowfall related to gradual intensification of the Siberian High from ca. 5000 to ca. 3000 cal yr BP. A thicker and more long-lasting snow cover can be assumed to have favoured P. pumila by providing a competitive advantage over other boreal and subalpine tree and shrub species in the region during the later part of the Holocene. These results, which are the first of their kind from Kamchatka, provide novel insight into the Holocene vegetational and climatic development in easternmost Asia, as well as long-term atmospheric circulation dynamics in Beringia.

  17. Cyclic changes of Asian monsoon intensity during the early mid-Holocene from annually-laminated stalagmites, central China

    NASA Astrophysics Data System (ADS)

    Liu, Dianbing; Wang, Yongjin; Cheng, Hai; Edwards, R. L.; Kong, Xinggong

    2015-08-01

    Climate during the early Holocene was highly variable due to the complex interplay of external and internal forcing mechanisms. The relative importance for them on the Asian monsoon (AM) evolution yet remains to be resolved. Here we present two-to six-yr-resolution oxygen isotope (δ18O) records of five stalagmites, four of which are annually-laminated, from Qingtian Cave, central China, revealing detailed AM variability between 10.9 and 6.1 ka BP. Over the contemporaneous periods, the δ18O records agree well with each other at multi-decadal to centennial timescales. When pieced together with the previously published isotopic data from the same cave, the final δ18O record reveals detailed AM variability from the last deglaciation to the mid-Holocene, consistent with other cave records. The most striking feature of the δ18O record is the recurrence of centennial-scale oscillations, especially during the annually-counted period (8.8-6.1 ka BP). Cross-wavelet analyses between the δ18O record and solar proxies show strong coherence at 200-yr cycle, suggesting that solar output was actively involved as a primary contributor. The AM depression at 8.2 ka BP is indistinguishable in amplitude and pattern from a series of weak AM events after 8 ka BP. We speculate that these centennial-scale AM changes might be regulated by the positive feedbacks of oceanic/atmospheric interactions to the solar activity under the condition of the retreat of continental ice-sheets.

  18. Holocene Enviromental Changes in AN Amazonian Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Moreira, L.; Moreira-Turcq, P. F.; Turcq, B.; Cordeiro, R. C.

    2011-12-01

    not change, suggesting the permanence of a flooded vegetation. The carbon flux increases significantly, reaching peaks of 17 g C/m2/year. The Aulacoseira sp became dominant reaching a peak in this phase. These characteristics show conditions progressively wetter during the Late Holocene. The shift from a shorter annual water levels during the Early-Mid Holocene (phase III) to a long annual high water levels since 3200 years cal BP can suggest a climate change from a drier Early-mid Holocene to a wetter Late Holocene.

  19. The biogeophysical climatic impacts of anthropogenic land use change during the Holocene

    NASA Astrophysics Data System (ADS)

    Smith, M. C.; Singarayer, J. S.; Valdes, P. J.; Kaplan, J. O.; Branch, N. P.

    2015-10-01

    The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with HadCM3 were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) potential natural vegetation simulated by TRIFFID but no land-use changes, and (ii) where the anthropogenic land use model, KK10 (Kaplan et al., 2009, 2011) has been used to set the HadCM3 crop regions. Snapshot simulations have been run at 1000 year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results indicate that in regions of early land disturbance such as Europe and S.E. Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June/July/August (JJA) season and throughout the entire annual cycle by 2-3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. Large-scale precipitation features such as the Indian monsoon, the intertropical convergence zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies

  20. Midwestern Holocene paleoenvironments revealed by floodplain deposits in northeastern Iowa

    USGS Publications Warehouse

    Chumbley, C.A.; Baker, R.G.; Bettis, E. Arthur

    1990-01-01

    Pollen analysis of pond deposits in the upper reaches of a stream from northeastern Iowa, an area beyond the last glacial margin, provides a nearly complete record of vegetational changes during the last 12.5 thousand years. Sixty-one radiocarbon dates provide good chronological control. Spruce forest was replaced by deciduous forest before 9 1 thousand years ago, followed by prairie from 5.4 to 3.5 thousand years ago, and oak savanna from 3.5 thousand years ago until presettlement times. The prairie invasion was nearly 3 thousand years later here than at other sites in Iowa and Minnesota, documenting a late Holocene, rather than an early-middle Holocene, period of maximum warmth and dryness for the southern part of the upper Midwest.

  1. Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaju; An, Chen-Bang; Huang, Yongsong; Morrill, Carrie; Chen, Fa-Hu

    2017-12-01

    Numerous studies have demonstrated that there are major differences in the timing of maximum Holocene precipitation between the monsoonal East Asia and westerly dominated Central Asia, but it is unclear if the moisture differences are also associated with corresponding temperature contrasts. Here we present the first alkenone-based paleotemperature reconstructions for the past 21 kyr from Lake Balikun, central Asia. We show, unlike the initiation of Holocene warm conditions at ∼11 kyr BP in the monsoon regions, the arid central Asia remained in a glacial-like cold condition prior to 8 kyr BP and experienced abrupt warming of ∼9 °C after the collapse of the Laurentide ice sheet. Comparison with pollen and other geochemical data indicates the abrupt warming is closely associated with major increase in the moisture supply to the region. Together, our multiproxy data indicate ∼2 thousand years delay of temperature and moisture optimum relative to local summer insolation maximum, suggesting major influence of the Laurentide ice sheet and other high latitude ice sheet forcings on the regional atmospheric circulation. In addition, our data reveal a temperature drop by ∼4 °C around 4 kyr BP lasting multiple centuries, coinciding with severe increases in aridity previously reported based on multiproxy data. In contrast, model simulations display a much less pronounced delay in the initiation of Holocene warm conditions, raising unresolved questions about the relative importance of local radiative forcing and high-latitude ice on temperature in this region.

  2. Precise Surface Exposure Dating of Early Holocene and Little Ice Age Moraines in the Cordillera Vilcabamba of Southern Peru

    NASA Astrophysics Data System (ADS)

    Licciardi, J. M.; Schaefer, J. M.; Lund, D. C.; Taggart, J. R.

    2008-12-01

    We have established precise ages of two glacial events in the tropical Andean highlands of southern Peru. The field site is located on the flanks of Nevado Salcantay (6271 m asl; 13°20'S latitude), the highest peak in the Cordillera Vilcabamba. A two-fold sequence of nested lateral and end moraines was mapped in a glacial trough emanating from the south face of Salcantay. Well-defined outer and inner moraines were deposited by valley glaciers that terminated 5 km and 3 km, respectively, from their head on the Salcantay massif. Cosmogenic 10Be surface exposure dating of boulders on the outer (n = 7) and inner (n = 7) moraine crests expands upon initial age control for these deposits and improves substantially on the precision of earlier 10Be measurements. The new results yield mean ages of 9.0 ± 0.3 ka for the outer moraine and 195 ± 24 years for the inner moraine, corresponding to glacial events during the early and latest Holocene. These ages are derived using the CRONUS-Earth 10Be exposure age calculator with Lal-Stone production rate scaling and the default height-pressure relationship. The inner moraine age correlates with the timing of the Little Ice Age as defined from northern mid- and high latitude records, and indicates considerable expansion of glaciers heading on Nevado Salcantay during this climatic minimum. Recent geomorphic mapping has identified similar sequences of moraines in adjacent drainages on and near Salcantay, suggesting a broader regional signal of two prominent Holocene glacial events in this segment of the southern Peruvian Andes; 10Be dating of these additional moraines is underway. Our new glacier chronologies complement ice core and lacustrine paleoclimate records in the vicinity, thereby increasing spatial and temporal coverage for identifying patterns of climate change in the tropical Andes during the Holocene. Apart from their paleoclimatic significance, the results also demonstrate a newly- developed capability of 10Be exposure

  3. Simple technologies and diverse food strategies of the Late Pleistocene and Early Holocene at Huaca Prieta, Coastal Peru

    PubMed Central

    Dillehay, Tom D.; Goodbred, Steve; Pino, Mario; Vásquez Sánchez, Víctor F.; Tham, Teresa Rosales; Adovasio, James; Collins, Michael B.; Netherly, Patricia J.; Hastorf, Christine A.; Chiou, Katherine L.; Piperno, Dolores; Rey, Isabel; Velchoff, Nancy

    2017-01-01

    Simple pebble tools, ephemeral cultural features, and the remains of maritime and terrestrial foods are present in undisturbed Late Pleistocene and Early Holocene deposits underneath a large human-made mound at Huaca Prieta and nearby sites on the Pacific coast of northern Peru. Radiocarbon ages indicate an intermittent human presence dated between ~15,000 and 8000 calendar years ago before the mound was built. The absence of fishhooks, harpoons, and bifacial stone tools suggests that technologies of gathering, trapping, clubbing, and exchange were used primarily to procure food resources along the shoreline and in estuarine wetlands and distant mountains. The stone artifacts are minimally worked unifacial stone tools characteristic of several areas of South America. Remains of avocado, bean, and possibly cultivated squash and chile pepper are also present, suggesting human transport and consumption. Our new findings emphasize an early coastal lifeway of diverse food procurement strategies that suggest detailed observation of resource availability in multiple environments and a knowledgeable economic organization, although technologies were simple and campsites were seemingly ephemeral and discontinuous. These findings raise questions about the pace of early human movement along some areas of the Pacific coast and the level of knowledge and technology required to exploit maritime and inland resources. PMID:28560337

  4. Simple technologies and diverse food strategies of the Late Pleistocene and Early Holocene at Huaca Prieta, Coastal Peru.

    PubMed

    Dillehay, Tom D; Goodbred, Steve; Pino, Mario; Vásquez Sánchez, Víctor F; Tham, Teresa Rosales; Adovasio, James; Collins, Michael B; Netherly, Patricia J; Hastorf, Christine A; Chiou, Katherine L; Piperno, Dolores; Rey, Isabel; Velchoff, Nancy

    2017-05-01

    Simple pebble tools, ephemeral cultural features, and the remains of maritime and terrestrial foods are present in undisturbed Late Pleistocene and Early Holocene deposits underneath a large human-made mound at Huaca Prieta and nearby sites on the Pacific coast of northern Peru. Radiocarbon ages indicate an intermittent human presence dated between ~15,000 and 8000 calendar years ago before the mound was built. The absence of fishhooks, harpoons, and bifacial stone tools suggests that technologies of gathering, trapping, clubbing, and exchange were used primarily to procure food resources along the shoreline and in estuarine wetlands and distant mountains. The stone artifacts are minimally worked unifacial stone tools characteristic of several areas of South America. Remains of avocado, bean, and possibly cultivated squash and chile pepper are also present, suggesting human transport and consumption. Our new findings emphasize an early coastal lifeway of diverse food procurement strategies that suggest detailed observation of resource availability in multiple environments and a knowledgeable economic organization, although technologies were simple and campsites were seemingly ephemeral and discontinuous. These findings raise questions about the pace of early human movement along some areas of the Pacific coast and the level of knowledge and technology required to exploit maritime and inland resources.

  5. New insights into broad spectrum communities of the Early Holocene Near East: The birds of Hallan Çemi

    NASA Astrophysics Data System (ADS)

    Zeder, Melinda A.; Spitzer, Megan D.

    2016-11-01

    The Early Holocene in Near East was a pivotal transitional period that witnessed dramatic changes in climate and environment, human settlement, major changes in subsistence strategies focusing on a broad range of different plant and animal resources, and a radical restructuring of social relations. The remarkable corpus of avifauna from the Early Holocene site of Hallan Çemi in southeastern Turkey sheds new light on key issues about this dynamic period that has been termed the ;Broad Spectrum Revolution;. The avifauna from this important site demonstrate how Hallan Çemi occupants took advantage of the site's strategic location at the junction of multiple environmental zones by extracting a diverse range of seasonally available resources from both near-by and more distant eco-zones to cobble together a stable subsistence economy capable of supporting this small community throughout the year. They give testimony to the impacts of resource utilization over time, especially on species unable to rebound from sustained human hunting. At the same time, they show how Hallan Çemi residents mitigated these impacts by replacing depleted resources with alternative, more resilient ones that could be more sustainably harvested. They open a window onto the growing investment in feasting and ritual activity that helped bind this community together. In so doing they provide a means of empirically evaluating the efficacy of contrasting explanatory frameworks for the Broad Spectrum Revolution that gave rise to the subsequent domestication of plant and animals in the Near East. Contrary to frameworks that cast these developments as responses to resource depression, lessons learned from the Hallan Çemi avifauna lend support to frameworks that emphasize the human capacity to strategically target, capitalize, and improve upon circumscribed resource rich environments in a way that permits more permanent occupation of these niches. And they underscore the degree to which social and

  6. Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations

    NASA Astrophysics Data System (ADS)

    Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.

    2017-12-01

    Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level

  7. Lateglacial and Holocene climatic changes in south-eastern Patagonia inferred from carbonate isotope records of Laguna Potrok Aike (Argentina)

    NASA Astrophysics Data System (ADS)

    Oehlerich, M.; Mayr, C.; Gussone, N.; Hahn, A.; Hölzl, S.; Lücke, A.; Ohlendorf, C.; Rummel, S.; Teichert, B. M. A.; Zolitschka, B.

    2015-04-01

    First results of strontium, calcium, carbon and oxygen isotope analyses of bulk carbonates from a 106 m long sediment record of Laguna Potrok Aike, located in southern Patagonia are presented. Morphological and isotopic investigations of μm-sized carbonate crystals in the sediment reveal an endogenic origin for the entire Holocene. During this time period the calcium carbonate record of Laguna Potrok Aike turned out to be most likely ikaite-derived. As ikaite precipitation in nature has only been observed in a narrow temperature window between 0 and 7 °C, the respective carbonate oxygen isotope ratios serve as a proxy of hydrological variations rather than of palaeotemperatures. We suggest that oxygen isotope ratios are sensitive to changes of the lake water balance induced by intensity variations of the Southern Hemisphere Westerlies and discuss the role of this wind belt as a driver for climate change in southern South America. In combination with other proxy records the evolution of westerly wind intensities is reconstructed. Our data suggest that weak SHW prevailed during the Lateglacial and the early Holocene, interrupted by an interval with strengthened Westerlies between 13.4 and 11.3 ka cal BP. Wind strength increased at 9.2 ka cal BP and significantly intensified until 7.0 ka cal BP. Subsequently, the wind intensity diminished and stabilised to conditions similar to present day after a period of reduced evaporation during the "Little Ice Age". Strontium isotopes (87Sr/86Sr ratio) were identified as a potential lake-level indicator and point to a lowering from overflow conditions during the Glacial (∼17 ka cal BP) to lowest lake levels around 8 ka cal BP. Thereafter the strontium isotope curve resembles the lake-level curve which is stepwise rising until the "Little Ice Age". The variability of the Ca isotope composition of the sediment reflects changes in the Ca budget of the lake, indicating higher degrees of Ca utilisation during the period with

  8. A multi-proxy record of Holocene hydroclimate change from a windward montane wetland, Molokai, Hawaii

    NASA Astrophysics Data System (ADS)

    Beilman, D. W.; Kallstrom, R.; Elison Timm, O.; Nichols, J. E.; Massa, C.

    2016-12-01

    A core raised from a windward mountain bog on the Island of Molokai, Hawaii was studied to reconstruct changes in hydroclimate and ecosystem response. The 250-cm radiocarbon-dated profile shows that formation of peat (organic matter greater than 90% and bulk density below 0.2 g cm-3) began around 10,000 years ago, in response to wetter conditions needed to waterlog and stabilize soil organic matter, and has continued through the Holocene. A previously-published pollen record from this site has no chronological information, but suggests that the dominant forest species have been present throughout but varied substantially in their relative abundance over Holocene time. The stable carbon isotope value of organic matter (δ13COM) showed a pattern of increasingly more-positive values from 10,000 to 8000 years ago, consistent with decreased stomatal conductance in woody vegetation and an early Holocene drying trend. An overall Holocene decrease in rainfall over the Pacific near Hawaii is also observed in transient model simulations forced by insolation, greenhouse gases and ice. Between 4000 and 2000 years ago, more-negative δ13COM values and a maximum in organic carbon accumulation suggest a period of somewhat wetter climate that seems to have ended around 2,000 years ago. The distribution and abundance of leaf wax compounds including alkyl lipids in the profile suggests a lower relative abundance of woody species 8000 to 3000 years ago and a shift towards more woody inputs preceding the arrival of humans. Taken together, evidence from this windward location shows an overall decrease in rainfall during the Holocene in general agreement with other Hawaii proxy data and model simulations. But these new data also show important millennial-scale changes in hydroclimate and ecosystem responses. Comparison to proxy records at leeward Hawaii locations revealed an onset of peat formation at around the same time at a similar elevation in the early Holocene, but both

  9. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing

    2018-03-01

    Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing

  10. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin

    USGS Publications Warehouse

    Kay, Suzanne M.; Burns, W. Matthew; Copeland, Peter; Mancilla, Oscar

    2006-01-01

    Evidence for a Miocene period of transient shallow subduction under the Neuquén Basin in the Andean backarc, and an intermittent Upper Cretaceous to Holocene frontal arc with a relatively stable magma source and arc-to-trench geometry comes from new 40Ar/39Ar, major- and trace-element, and Sr, Pb, and Nd isotopic data on magmatic rocks from a transect at ∼36°–38°S. Older frontal arc magmas include early Paleogene volcanic rocks erupted after a strong Upper Cretaceous contractional deformation and mid-Eocene lavas erupted from arc centers displaced slightly to the east. Following a gap of some 15 m.y., ca. 26–20 Ma mafic to acidic arc-like magmas erupted in the extensional Cura Mallín intra-arc basin, and alkali olivine basalts with intraplate signatures erupted across the backarc. A major change followed as ca. 20–15 Ma basaltic andesite–dacitic magmas with weak arc signatures and 11.7 Ma Cerro Negro andesites with stronger arc signatures erupted in the near to middle backarc. They were followed by ca. 7.2–4.8 Ma high-K basaltic to dacitic hornblende-bearing magmas with arc-like high field strength element depletion that erupted in the Sierra de Chachahuén, some 500 km east of the trench. The chemistry of these Miocene rocks along with the regional deformational pattern support a transient period of shallow subduction that began at ca. 20 Ma and climaxed near 5 Ma. The subsequent widespread eruption of Pliocene to Pleistocene alkaline magmas with an intraplate chemistry in the Payenia large igneous province signaled a thickening mantle wedge above a steepening subduction zone. A pattern of decreasingly arc-like Pliocene to Holocene backarc lavas in the Tromen region culminated with the eruption of a 0.175 ± 0.025 Ma mafic andesite. The northwest-trending Cortaderas lineament, which generally marks the southern limit of Neogene backarc magmatism, is considered to mark the southern boundary of the transient shallow subduction zone.

  11. A Tibetan lake sediment record of Holocene Indian summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Polisar, Pratigya J.; Lei, Yanbin; Thompson, Lonnie G.; Yao, Tandong; Finney, Bruce P.; Bain, Daniel J.; Pompeani, David P.; Steinman, Byron A.

    2014-08-01

    Sedimentological data and hydrogen isotopic measurements of leaf wax long-chain n-alkanes (δDwax) from an alpine lake sediment archive on the southeastern Tibetan Plateau (Paru Co) provide a Holocene perspective of Indian summer monsoon (ISM) activity. The sedimentological data reflect variations in lake level and erosion related to local ISM rainfall over the Paru Co catchment, whereas δDwax reflects integrated, synoptic-scale ISM dynamics. Our results indicate that maximum ISM rainfall occurred between 10.1 and ˜5.2 ka, during which time there were five century-scale high and low lake stands. After 5.2 ka, the ISM trended toward drier conditions to the present, with the exception of a pluvial event centered at 0.9 ka. The Paru Co results share similarities with paleoclimate records from across the Tibetan Plateau, suggesting millennial-scale ISM dynamics were expressed coherently. These millennial variations largely track gradual decreases in orbital insolation, the southward migration of the Intertropical Convergence Zone (ITCZ), decreasing zonal Pacific sea surface temperature (SST) gradients and cooling surface air temperatures on the Tibetan Plateau. Centennial ISM and lake-level variability at Paru Co closely track reconstructed surface air temperatures on the Tibetan Plateau, but may also reflect Indian Ocean Dipole events, particularly during the early Holocene when ENSO variability was attenuated. Variations in the latitude of the ITCZ during the early and late Holocene also appear to have exerted an influence on centennial ISM rainfall.

  12. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change

    USGS Publications Warehouse

    Ullman, David J.; Carlson, Anders E.; Hostetler, Steven W.; Clark, Peter U.; Cuzzone, Joshua; Milne, Glenn A.; Winsor, Kelsey; Caffee, Marc A.

    2016-01-01

    Despite elevated summer insolation forcing during the early Holocene, global ice sheets retained nearly half of their volume from the Last Glacial Maximum, as indicated by deglacial records of global mean sea level (GMSL). Partitioning the GMSL rise among potential sources requires accurate dating of ice-sheet extent to estimate ice-sheet volume. Here, we date the final retreat of the Laurentide Ice Sheet with 10Be surface exposure ages for the Labrador Dome, the largest of the remnant Laurentide ice domes during the Holocene. We show that the Labrador Dome deposited moraines during North Atlantic cold events at ∼10.3 ka, 9.3 ka and 8.2 ka, suggesting that these regional climate events helped stabilize the retreating Labrador Dome in the early Holocene. After Hudson Bay became seasonally ice free at ∼8.2 ka, the majority of Laurentide ice-sheet melted abruptly within a few centuries. We demonstrate through high-resolution regional climate model simulations that the thermal properties of a seasonally ice-free Hudson Bay would have increased Laurentide ice-sheet ablation and thus contributed to the subsequent rapid Labrador Dome retreat. Finally, our new 10Be chronology indicates full Laurentide ice-sheet had completely deglaciated by 6.7 ± 0.4 ka, which re quires that Antarctic ice sheets contributed 3.6–6.5 m to GMSL rise since 6.3–7.1 ka.

  13. Latitudinal Expansion of the Holocene Optimum in the East Asian Monsoon Region

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Sun, L.; Zhan, T.; Huang, W.; Zhou, X.; Hao, Q.; He, X.; Zhao, C.; Zhang, J.; Qiao, Y.; Ge, J.; Yan, P.; Shao, D.; Chu, Z.; Yang, W.

    2014-12-01

    With increasingly abundant high resolution and high precision records of East Asian monsoon, its spatial and temporal dynamics during the Holocene have been extensively studied. However, partly due to the lack of records in high latitude areas and the age uncertainties, these studies characterized a wide range of spatial-temporal patterns of Holocene Optimum (HO). We reconstructed a 14,000-year record of vegetation using sediments from a crater lake in Northeast China. Analyses of the vegetation time series show that HO began around 6,000 a BP in Northeast China, significantly later than generally recognized. By comparison with Holocene records of vegetation in other regions of the East Asia, we found a marked northward shift of initial time of HO from 10,600 a BP in South China to 6,000 a BP in Northeast China, which appeared to be forced by the shrinkage of the northern hemisphere ice-sheet (NHIS) during early to mid Holocene. Finally, we fitted a regression model of initial HO time on latitude, which allows us to make prediction of initial HO time based on their geographical locations. This study reveals a strong relationship between latitude and initial HO times and provides a window towards understanding the joint forcing of high and low latitude factors on regional climate.

  14. Can preoperative and postoperative CA19-9 levels predict survival and early recurrence in patients with resectable hilar cholangiocarcinoma?

    PubMed

    Wang, Jun-Ke; Hu, Hai-Jie; Shrestha, Anuj; Ma, Wen-Jie; Yang, Qin; Liu, Fei; Cheng, Nan-Sheng; Li, Fu-Yu

    2017-07-11

    To investigate the predictive values of preoperative and postoperative serum CA19-9 levels on survival and other prognostic factors including early recurrence in patients with resectable hilar cholangiocarcinoma. In univariate analysis, increased preoperative and postoperative CA19-9 levels in the light of different cut-off points (37, 100, 150, 200, 400, 1000 U/ml) were significantly associated with poor survival outcomes, of which the cut-off point of 150 U/ml showed the strongest predictive value (both P < 0.001). Preoperative to postoperative increase in CA19-9 level was also correlated with poor survival outcome (P < 0.001). In multivariate analysis, preoperative CA19-9 level > 150 U/ml was significantly associated with lymph node metastasis (OR = 3.471, 95% CI 1.216-9.905; P = 0.020) and early recurrence (OR = 8.280, 95% CI 2.391-28.674; P = 0.001). Meanwhile, postoperative CA19-9 level > 150 U/ml was also correlated with early recurrence (OR = 4.006, 95% CI 1.107-14.459; P = 0.034). Ninety-eight patients who had undergone curative surgery for hilar cholangiocarcinoma between 1995 and 2014 in our institution were selected for the study. The correlations of preoperative and postoperative serum CA19-9 levels on the basis of different cut-off points with survival and various tumor factors were retrospectively analyzed with univariate and multivariate methods. In patients with resectable hilar cholangiocarcinoma, serum CA19-9 predict survival and early recurrence. Patients with increased preoperative and postoperative CA19-9 levels have poor survival outcomes and higher tendency of early recurrence.

  15. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Wu, Duo; Chen, Jianhui; Zhou, Aifeng; Yu, Junqing; Shen, Ji; Wang, Sumin; Huang, Xiaozhong

    2016-12-01

    Climatic and environmental changes in the northeastern Tibetan Plateau are controlled by the Asian summer monsoon (ASM) and the westerlies, two key circulation components of the global climate system which directly affect a large human population and associated ecosystems in eastern Asia. During the past few decades, a series of Holocene palaeoclimatic records have been obtained from sediment cores from Lake Qinghai and from various other geological archives in the surrounding area of the northeastern Tibetan Plateau. However, because of uncertainties regarding the sediment chronologies and the climatic significance of the proxies used, the nature of Holocene climatic changes in the region remains unclear and even controversial. Here we review all major classes of the published data from drilled cores from Lake Qinghai, as well as other evidence from lakes and aeolian deposits from surrounding areas, in order to reconstruct changes in moisture patterns and possible summer monsoon evolution in the area during the Holocene. Combining the results of moisture and precipitation proxies such as vegetation history, pollen-based precipitation reconstruction, aeolian activity, lake water depth/lake level changes, salinity and sediment redness, we conclude that moisture and precipitation began to increase in the early Holocene, reached their maximum during the middle Holocene, and decreased during the late Holocene - similar to the pattern of the East Asian summer monsoon (EASM) in northern China. It is clear that the region experienced a relatively dry climate and weak EASM during the early Holocene, as indicated by relatively low tree pollen percentages and fluctuating pollen concentrations; generally low lake levels of Lake Qinghai and the adjacent Lake Hurleg and Lake Toson in the Qaidam Basin; and widely distributed aeolian sand deposition in the Lake Qinghai Basin and the nearby Gonghe Basin to the south, and in the eastern Qaidam Basin to the west. We argue that the

  16. Holocene multidecadal- to millennial-scale variations in Iceland-Scotland overflow and their relationship to climate

    NASA Astrophysics Data System (ADS)

    Mjell, Tor Lien; Ninnemann, Ulysses S.; Eldevik, Tor; Kleiven, Helga Kikki F.

    2015-05-01

    The Nordic Seas overflows are an important part of the Atlantic thermohaline circulation. While there is growing evidence that the overflow of dense water changed on orbital time scales during the Holocene, less is known about the variability on shorter time scales beyond the instrumental record. Here we reconstruct the relative changes in flow strength of Iceland-Scotland Overflow Water (ISOW), the eastern branch of the overflows, on multidecadal-millennial time scales. The reconstruction is based on mean sortable silt (SS>¯) from a sediment core on the Gardar Drift (60°19'N, 23°58'W, 2081 m). Our SS>¯ record reveals that the main variance in ISOW vigor occurred on millennial time scales (1-2 kyr) with particularly prominent fluctuations after 8 kyr. Superimposed on the millennial variability, there were multidecadal-centennial flow speed fluctuations during the early Holocene (10-9 kyr) and one prominent minimum at 0.9 kyr. We find a broad agreement between reconstructed ISOW and regional North Atlantic climate, where a strong (weak) ISOW is generally associated with warm (cold) climate. We further identify the possible contribution of anomalous heat and freshwater forcing, respectively, related to reconstructed overflow variability. We infer that ocean poleward heat transport can explain the relationship between regional climate and ISOW during the middle to late Holocene, whereas freshwater input provides a possible explanation for the reduced overflow during early Holocene (8-10 kyr).

  17. Unexpected early extinction of the European pond turtle (Emys orbicularis) in Sweden and climatic impact on its Holocene range.

    PubMed

    Sommer, Robert S; Lindqvist, Charlotte; Persson, Arne; Bringsøe, Henrik; Rhodin, Anders G J; Schneeweiss, Norbert; Siroký, Pavel; Bachmann, Lutz; Fritz, Uwe

    2009-03-01

    Using ancient DNA sequences of subfossil European pond turtles (Emys orbicularis) from Britain, Central and North Europe and accelerator mass spectrometry radiocarbon dating for turtle remains from most Swedish sites, we provide evidence for a Holocene range expansion of the pond turtle from the southeastern Balkans into Britain, Central Europe and Scandinavia, according to the 'grasshopper pattern' of Hewitt. Northeastern Europe and adjacent Asia were colonized from another refuge located further east. With increasing annual mean temperatures, pond turtles reached southern Sweden approximately 9800 years ago. Until approximately 5500 years ago, rising temperatures facilitated a further range expansion up to Ostergötland, Sweden (approximately 58 degrees 30'N). However, around 5500 years ago pond turtle records suddenly terminate in Sweden, some 1500 years before the Holocene thermal maximum ended in Scandinavia and distinctly earlier than previously thought. This extinction coincides with a temporary cooling oscillation during the Holocene thermal maximum and is likely related to lower summer temperatures deteriorating reproductive success. Although climatic conditions improved later again, recolonization of Sweden from southern source populations was prevented by the Holocene submergence of the previous land connection via the Danish Straits that occurred approximately 8500 years ago.

  18. Interpreting the Holocene fluctuations of Quelccaya Ice Cap, Peru: using a combination of glacial and non-glacial lake records

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Smith, C.; Beal, S. A., Jr.; Tapia, P. M.

    2016-12-01

    The past fluctuations of Quelccaya Ice Cap (QIC) are an indicator of tropical paleoclimate. At QIC, ice core and glacial geological records provide late Holocene climate constraints. However, early and middle Holocene QIC fluctuations are less well-known. To interpret past QIC fluctuations, we present Holocene-long lake sediment records from Challpacocha, a lake fed by QIC meltwater, and Yanacocha, a lake that has not received meltwater during the Holocene. To assess the clastic sediment delivered to Challpacocha by QIC meltwater, we compare visual stratigraphy, X-ray fluorescence chemistry, grainsize, loss on ignition and clastic flux records from both lakes (additional Yanacocha proxies are presented by Axford et al. (this meeting, abstract 157985)). We compare the meltwater derived clastic sediment record from Challpacocha with moraine and stratigraphic records of past ice extents during the late Holocene. This comparison indicates that clastic sediment flux in Challpacocha increased during QIC recession and decreased during QIC advance, or significantly reduced QIC extent. We then use the Challpacocha clastic sediment record to interpret early and middle Holocene QIC fluctuations. Based on the Challpacocha sediment record, combined with prior work, we suggest that from 11 to 6.5 ka QIC was similar to or smaller than its late Holocene extent. From 6.9 to 6.5 ka QIC may have been absent from the landscape. At 3-2.4 and 0.62-0.31 ka QIC experienced the most extensive Holocene fluctuations. We compare the clastic sediment fluxes from Challpacocha and Pacococha (a nearby lake fed by QIC; Rodbell et al., 2008) to infer QIC expansion between 6.5-5 ka. This is supported by 14C ages of in-situ subfossil plants which indicate ice advance at 6.3-4.7 ka (Thompson et al., 2006, 2013; Buffen et al., 2009). Our study highlights the value of using multiple datasets to improve lake sediment record interpretations.

  19. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  20. Holocene cultural history of Red jungle fowl (Gallus gallus) and its domestic descendant in East Asia

    NASA Astrophysics Data System (ADS)

    Peters, Joris; Lebrasseur, Ophélie; Deng, Hui; Larson, Greger

    2016-06-01

    Nearly three decades ago, zooarchaeologists postulated that chicken husbandry was practiced in Northern China by ∼8.0 ka calBP. Recently, ancient mitogenome analyses of galliform remains suggested that Red jungle fowl (Gallus gallus) was already present in the Yellow River basin several millennia earlier, shortly after the onset of the Holocene. If these conclusions are correct, the origins of chicken domestication and husbandry in the region may have been spurred by agricultural innovations in the lower Yellow River basin including millet cultivation, pig husbandry, and dog breeding. In addition, the dispersal of poultry farming from East Asia to Asia Minor and Europe could therefore date to the Neolithic along ancient trade routes across Central Asia rather than via South Asia and Mesopotamia. For this scenario to be plausible, the post-Pleistocene climatic conditions must have been favourable to allow for a northward extension of the native distribution of tropical Red jungle fowl currently not found north of ∼25°N. This study combines Holocene palaeoclimate and archaeofaunal archives with new zooarchaeological insights alongside a discussion of methodological issues and cultural aspects in order to revisit the hypothesis of an early Holocene Gallus domestication and Neolithic poultry husbandry in Northern China. Our results regarding the natural and cultural history of Red jungle fowl and domestic chickens in East Asia, and the timing of chicken dispersal across the Old World suggest that an early Holocene domestication of chickens is problematic at best. We conclude by postulating an alternative model for the early exploitation of a key domestic species in present-day East Asia.

  1. Holocene moisture changes in western China, Central Asia, inferred from stalagmites

    NASA Astrophysics Data System (ADS)

    Cai, Yanjun; Chiang, John C. H.; Breitenbach, Sebastian F. M.; Tan, Liangcheng; Cheng, Hai; Edwards, R. Lawrence; An, Zhisheng

    2017-02-01

    Central Asia lies at the convergence between the Mediterranean and Asian monsoon climates, and there is a complex interaction between the westerlies with the monsoon to form the climate of that region and its variability. The region is highly vulnerable to changes in rainfall, highlighting the need to understand the underlying controls. We present a stalagmite-based δ18O record from Kesang Cave in western China, using MC-ICP-MS U-series dating and stable isotope analysis. Stalagmite calcite δ18O largely documents changes in the δ18O of precipitation. δ18O in stalagmites was low during the early and middle Holocene (10.0-3.0 ka BP), and shifted to higher values between 3.0 and 2.0 ka BP. After 2.0 ka BP, δ18O fluctuates with distinct centennial-scale variations. Drawing from results of state-of-the-art atmospheric general circulation model simulations for the preindustrial period and 9 ka BP, we propose that changes in moisture source regions and the wetter climate both contributed to the isotopic depletion of precipitation during the early and middle Holocene. Multiple records from surrounding regions indicate a generally wetter climate during the early and mid- Holocene, supporting our interpretation on the speleothem δ18O. Changes in precipitation seasonality do not appear to be a viable explanation for the observed changes, nor increased penetration of monsoonal moisture to the study site. We speculate that the climatic regime shifted around 3.0-2.0 ka BP towards a drier climate, resulting in temperature having dominant control on precipitation δ18O. The demise of three settlements around 500AD at the margin of Tarim Basin coincided with a period of decreased precipitation and increased temperature that likely affected local water resources, underscoring the potential impact of climate on human habitation in this region.

  2. Incremental Holocene slip rates from the Hope fault at Hossack Station, Marlborough fault zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hatem, A. E.; Dolan, J. F.; Langridge, R.; Zinke, R. W.; McGuire, C. P.; Rhodes, E. J.; Van Dissen, R. J.

    2015-12-01

    The Marlborough fault system, which links the Alpine fault with the Hikurangi subduction zone within the complex Australian-Pacific plate boundary zone, partitions strain between the Wairau, Awatere, Clarence and Hope faults. Previous best estimates of dextral strike-slip along the Hope fault are ≤ ~23 mm/yr± 4 mm/year. Those rates, however, are poorly constrained and could be improved using better age determinations in conjunction with measurements of fault offsets using high-resolution imagery. In this study, we use airborne lidar- and field-based mapping together with the subsurface geometry of offset channels at the Hossack site 12 km ESE of Hanmer Springs to more precisely determine stream offsets that were previously identified by McMorran (1991). Specifically, we measured fault offsets of ~10m, ~75 m, and ~195m. Together with 65 radiocarbon ages on charcoal, peat, and wood and 25 pending post-IR50-IRSL225 luminescence ages from the channel deposits, these offsets yield three different fault slip rates for the early Holocene, the late Holocene, and the past ca. 500-1,000 years. Using the large number of age determinations, we document in detail the timing of initiation and abandonment of each channel, enhancing the geomorphic interpretation at the Hossack site as channels deform over many earthquake cycles. Our preliminary incremental slip rate results from the Hossack site may indicate temporally variable strain release along the Hope fault. This study is part of a broader effort aimed at determining incremental slip rates and paleo-earthquake ages and displacements from all four main Marlborough faults. Collectively, these data will allow us to determine how the four main Marlborough faults have work together during Holocene-late Pleistocene to accommodate plate-boundary deformation in time and space.

  3. Exploring Holocene climate fluctuations registered in Bosnian stalagmites adopting a multiproxy approach

    NASA Astrophysics Data System (ADS)

    Chiarini, Veronica; Couchoud, Isabelle; Drysdale, Russell; Bajo, Petra; Milanolo, Simone; Hellstrom, John; De Waele, Jo

    2016-04-01

    The central Mediterranean area, a crucial region for present day and future climate change, has been characterised by contrasting patterns between northern and southern climate influences over the Holocene (e.g. Magny et al., 2012; Peyron et al., 2013). Several records from the Italian Peninsula identify this phenomenon: relatively dry conditions experienced during the first half of the Holocene are followed by an increase in moisture in the northern regions, while in the southern portion of the Peninsula the opposite trend occurs. On the Balkan side of the Adriatic Sea, this contrasting pattern is less well documented. The available studies focused on lake sediments show a more gradual and less warm early Holocene and more stable conditions during the early-mid Holocene compared to Italy (Bordon et al., 2009; Vogel et al., 2010). Several speleothems have been collected from Banja Stijena and Govještica Caves (Bosnia and Herzegovina). Preliminary U-Th dating allowed to choose the five most promising samples for further study. Stable oxygen and carbon isotopes have been analysed along the stalagmite growth axes and trace elements of one sample have been investigated. Air-mass back-trajectory analyses of present day precipitation in the area have been performed in association with GNIP rainfall isotope data analyses, with the aim of understanding the parameters driving rainfall stable oxygen isotope composition variations. Considering the impossibility of having a detailed monitoring of cave conditions due to the practical difficulties of identifying the original location of the samples collected, petrographic observations have been coupled with δ13C and δ18O in order to improve the understanding of the environmental processes recorded by these samples, as suggested in Frisia (2015) and Borsato et al. (2015). Here we will present the results of these multiproxy analyses, exploring the potential of these samples in recording regional climate fluctuations and

  4. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations

    NASA Astrophysics Data System (ADS)

    Menviel, L.; Joos, F.

    2012-03-01

    The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.

  5. Hydrologic response of the Crow Wing Watershed, Minnesota, to mid-Holocene climate change

    USGS Publications Warehouse

    Person, M.; Roy, P.; Wright, H.; Gutowski, W.; Ito, E.; Winter, T.; Rosenberry, D.; Cohen, D.

    2007-01-01

    In this study, we have integrated a suite of Holocene paleoclimatic proxies with mathematical modeling in an attempt to obtain a comprehensive picture of how watersheds respond to past climate change. A three-dimensional surface-water-groundwater model was developed to assess the effects of mid-Holocene climate change on water resources within the Crow Wing Watershed, Upper Mississippi Basin in north central Minnesota. The model was first calibrated to a 50 yr historical record of average annual surface-water discharge, monthly groundwater levels, and lake-level fluctuations. The model was able to reproduce reasonably well long-term historical records (1949-1999) of water-table and lake-level fluctuations across the watershed as well as stream discharge near the watershed outlet. The calibrated model was then used to reproduce paleogroundwater and lake levels using climate reconstructions based on pollen-transfer functions from Williams Lake just outside the watershed. Computed declines in mid-Holocene lake levels for two lakes at opposite ends of the watershed were between 6 and 18 m. Simulated streamflow near the outlet of the watershed decreased to 70% of modern average annual discharge after ???200 yr. The area covered by wetlands for the entire watershed was reduced by ???16%. The mid-Holocene hydrologic changes indicated by these model results and corroborated by several lake-core records across the Crow Wing Watershed may serve as a useful proxy of the hydrologic response to future warm, dry climatic forecasts (ca. 2050) made by some atmospheric general-circulation models for the glaciated Midwestern United States. ?? 2007 Geological Society of America.

  6. Climatic oscillations in central Italy during the Last Glacial-Holocene transition: the record from Lake Accesa

    NASA Astrophysics Data System (ADS)

    Magny, Michel; de Beaulieu, Jacques-Louis; Drescher-Schneider, Ruth; Vannière, Boris; Walter-Simonnet, Anne-Véronique; Millet, Laurent; Bossuet, Gilles; Peyron, Odile

    2006-05-01

    This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake-level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial-early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north-central Italy). On the basis of an age-depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas-Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700-11 650 cal. yr BP. Four sub-millennial scale cooling phases were recognised from pollen data at ca. 14 300-14 200, 13 900-13 700, 13 400-13 100 and 11 350-11 150 cal.yrBP. The last three may be Mediterranean equivalents to the Older Dryas (GI-1d), Intra-Allerød (GI-1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice-core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra-Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake-level record shows that the sub-millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2ka cold reversal. Copyright

  7. Climate and Fuel Controls on North American Paleofires: Smoldering to Flaming in the Late-Glacial-Holocene Transition

    NASA Technical Reports Server (NTRS)

    Han, Y. M.; Peteet, D. M.; Arimoto, R.; Cao, J. J.; An, Z. S.; Sritrairat, S.; Yan, B. Z.

    2016-01-01

    Smoldering and flaming fires, which emit different proportions of organic (OC) and black carbon (BC, in the form of char and soot), have long been recognized in modern wildfire observations but never in a paleo-record, and little is known about their interactions with climate. Here we show that in the late glacial-early Holocene transition period, when the climate was moist, relatively high quantities of char were deposited in Linsley Pond, Connecticut, USA while soot was more abundant during the warmer and drier early Holocene interval. The highest soot mass accumulation rates (MARs) occurred at the beginning of the Holocene as fuel availability increased through the climatic transition when boreal forests were locally extirpated. These variations with time are related to the different formation pathways of char and soot, which are governed by combustion efficiency. This study provides an approach for differentiating smoldering from flaming combustion in paleo-wildfire reconstructions. Our results suggest that climate and fuel loads control the occurrence of different wildfire types and precipitation may play a key role.

  8. Climate and Fuel Controls on North American Paleofires: Smoldering to Flaming in the Late-glacial-Holocene Transition

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Peteet, D. M.; Arimoto, R.; Cao, J. J.; An, Z. S.; Sritrairat, S.; Yan, B. Z.

    2016-02-01

    Smoldering and flaming fires, which emit different proportions of organic (OC) and black carbon (BC, in the form of char and soot), have long been recognized in modern wildfire observations but never in a paleo-record, and little is known about their interactions with climate. Here we show that in the late glacial-early Holocene transition period, when the climate was moist, relatively high quantities of char were deposited in Linsley Pond, Connecticut, USA while soot was more abundant during the warmer and drier early Holocene interval. The highest soot mass accumulation rates (MARs) occurred at the beginning of the Holocene as fuel availability increased through the climatic transition when boreal forests were locally extirpated. These variations with time are related to the different formation pathways of char and soot, which are governed by combustion efficiency. This study provides an approach for differentiating smoldering from flaming combustion in paleo-wildfire reconstructions. Our results suggest that climate and fuel loads control the occurrence of different wildfire types and precipitation may play a key role.

  9. Climate and Fuel Controls on North American Paleofires: Smoldering to Flaming in the Late-glacial-Holocene Transition.

    PubMed

    Han, Y M; Peteet, D M; Arimoto, R; Cao, J J; An, Z S; Sritrairat, S; Yan, B Z

    2016-02-10

    Smoldering and flaming fires, which emit different proportions of organic (OC) and black carbon (BC, in the form of char and soot), have long been recognized in modern wildfire observations but never in a paleo-record, and little is known about their interactions with climate. Here we show that in the late glacial-early Holocene transition period, when the climate was moist, relatively high quantities of char were deposited in Linsley Pond, Connecticut, USA while soot was more abundant during the warmer and drier early Holocene interval. The highest soot mass accumulation rates (MARs) occurred at the beginning of the Holocene as fuel availability increased through the climatic transition when boreal forests were locally extirpated. These variations with time are related to the different formation pathways of char and soot, which are governed by combustion efficiency. This study provides an approach for differentiating smoldering from flaming combustion in paleo-wildfire reconstructions. Our results suggest that climate and fuel loads control the occurrence of different wildfire types and precipitation may play a key role.

  10. Multi-Decadal to Millennial Scale Holocene Hydrologic Variation in the Southern Hemisphere Tropics of South America

    NASA Astrophysics Data System (ADS)

    Ekdahl, E. J.; Fritz, S. C.; Baker, P. A.; Burns, S. J.; Coley, K.; Rigsby, C. A.

    2005-12-01

    Numerous sites in the Northern Hemisphere show multi-decadal to millennial scale climate variation during the Holocene, many of which have been correlated with changes in atmospheric radiocarbon production or with changes in North Atlantic oceanic circulation. The manifestation of such climate variability in the hydrology of the Southern Hemisphere tropics of South America is unclear, because of the limited number of records at suitably high resolution. In the Lake Titicaca drainage basin of Bolivia and Peru, high-resolution lacustrine records reveal the overall pattern of Holocene lake-level change, the influence of precessional forcing of the South American Summer Monsoon, and the effects of high-frequency climate variability in records of lake productivity and lake ecology. Precessional forcing of regional precipitation is evident in the Lake Titicaca basin as a massive (ca. 85 m) mid-Holocene decline in lake level beginning about 7800 cal yr BP and a subsequent rise in lake level after 4000 cal yr BP. Here we show that multi-decadal to millennial-scale climate variability, superimposed upon the envelope of change at orbital time scales, is similar in timing and pattern to the ice-rafted debris record of Holocene Bond events in the North Atlantic. A high-resolution carbon isotopic record from Lake Titicaca that spans the entire Holocene suggests that cold intervals of Holocene Bond events are periods of increased precipitation, thus indicating an anti-phasing of precipitation variation on the Altiplano relative to the Northern Hemisphere tropics. A similar pattern of variation is also evident in high-resolution (2-30 yr spacing) diatom and geochemical records that span the last 7000 yr from two smaller lakes, Lagos Umayo and Lagunillas, in the Lake Titicaca drainage basin.

  11. A Holocene record of ocean productivity and upwelling from the northern California continental slope

    NASA Astrophysics Data System (ADS)

    Addison, J. A.; Barron, J. A.; Finney, B.; Kusler, J. E.; Bukry, D.; Heusser, L. E.; Alexander, C. R., Jr.

    2016-12-01

    The Holocene upwelling history of the northern California continental slope is examined using a 7-m-long marine sediment core (TN062-O550; 40.9°N, 124.6°W, 550 m water depth) collected offshore from Eureka, CA, that spans the last 7,400 calibrated years before present (cal yrs BP). A combination of biogenic sediment concentrations (opal, total organic C, and total N), stable isotopes (organic matter δ13C and bulk sedimentary δ15N), and key microfossil indicators of upwelling were used to test the hypothesis that marine productivity in the California Current System (CCS) driven by coastal upwelling has co-varied with global Holocene millennial-scale warm intervals. Results show biogenic sediment accumulation in TN062-O550 varied considerably during the Holocene, despite being located within 50 km of the mouth of the Eel River, one of the largest sources of terrigenous sediment to the Northeast Pacific Ocean margin. A key time interval beginning at 2900 cal yr BP indicates the onset of modern upwelling in the CCS, and that this period also corresponds to the most intense period of upwelling in the last 7,400 years. When these results are placed into a regional CCS context during the Holocene, it was found that the timing of upwelling intensification as recorded in TN062-O550 corresponds closely to that seen at nearby ODP Site 1019 as well as in the Santa Barbara Basin of southern California. Other CCS records with less high-quality age control show similar results, which suggest late Holocene upwelling intensification may be synchronous throughout the CCS. Based on the strong correspondence between the alkenone-derived sea surface temperature record at ODP Site 1019 and the onset of late Holocene upwelling in northern California, we tentatively suggest that regional CCS warming may be conducive to upwelling intensification in the future.

  12. Inception of a global atlas of Holocene sea levels

    NASA Astrophysics Data System (ADS)

    Khan, Nicole; Rovere, Alessio; Engelhart, Simon; Horton, Benjamin

    2017-04-01

    Determining the rates, mechanisms and geographic variability of sea-level change is a priority science question for the next decade of ocean research. To address these research priorities, the HOLocene SEA-level variability (HOLSEA) working group is developing the first standardized global synthesis of Holocene relative sea-level data to: (1) estimate the magnitudes and rates of global mean sea-level change during the Holocene; and (2) identify trends in spatial variability and decipher the processes responsible for geographic differences in relative sea-level change. Here we present the preliminary efforts of the working group to compile the database, which includes sea-level index points and limiting data from a range of different indicators across seven continents from the Last Glacial Maximum to present. We follow a standard protocol that incorporates full consideration of vertical and temporal uncertainty for each sea-level index point, including uncertainties associated with the relationship of each indicator to past sea-level and the methods used to date each indicator. We describe the composition of the global database, identify gaps in data availability, and highlight our effort to create an online platform to access the data. These data will be made available in a special issue of Quaternary Science Reviews and archived on NOAA's National Centers for Environmental Information (NCEI) in early 2018. We also invite researchers who collect or model Holocene sea-level data to participate. Long-term, this effort will enhance predictions of 21st century sea-level rise, and provide a vital contribution to the assessment of natural hazards with respect to sea-level rise and coastal response.

  13. The evolution of Saharan dust input in Lanzarote (Canary Islands): Lower Holocene triggering by human activity in the northwest Sahara?

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, H.; Oberhänsli, H.; Faust, D.; Zöller, L.; Hambach, U.; Fuchs, M.

    2009-04-01

    A Holocene increase of Saharan dust input to the area of the Canary islands is accompanied by a strong coarsening of this material during the Early Holocene as recorded in loess-like sediments deposited on Lanzarote. Whereas natural causes can be ruled out for the coarsening that is exceptional during the period of the last 180 ka, it is assumed that anthropogenic activity strongly mobilized dust in an area on the pathway of dust prior to its arrival in Lanzarote comprising parts of Western Sahara and northern Mauritania. Although scarce archaeological data from the coastal area of that region do not point to strong anthropogenic activity during the Early Holocene yet, a high density of unexplored archaeological remains reported from the coastal hinterlands does not exclude this hypothesis. Thus, the results of this study highlight the need of further archaeological investigations in that Saharan region.

  14. Estuarine development and early Holocene transgression across an aeolianite substrate, Caesarea, central Israel

    NASA Astrophysics Data System (ADS)

    Goff, John A.; Austin, James A.; Goodman-Tchernov, Beverly N.

    2018-04-01

    Estuaries are important features on the coastal landscape due to their potential for rich, diverse, and abundant resources. The modern coast of the southeast Mediterranean is largely devoid of estuaries except in rare circumstances where ample sands are delivered to the shore, such as east of the Nile Delta. Whether or not today's condition is reflective of that present during lower sea-levels is greatly speculative in part due to a dearth of high-resolution sub-surface mapping in the shallower (< 45 m) continental shelf. We report here on a multibeam bathymetry and near-surface seismic stratigraphy survey offshore of Caesarea, along the central Israeli coast; within which we find evidence of preserved estuarine sediments in water depths 45-10 mbsl, both within paleo-channels of the Crocodile and Hadera rivers, and more broadly across the shelf. These water depths correspond to early Holocene dates ( 10.5-7.5 ka) which, based on global sea-level curves, was a period of rapid ( 1-1.7 cm/yr) sea-level rise. Now-submerged aeolianite ridges (locally referred to as 'kurkar'), cemented aeolian deposits formed during pre-Last-Glacial-Maximum (LGM) seaward advance (regression) of the coastline, likely provided some offshore barrier for estuarine development. These were insufficient, however, to account for all the estuarine deposition interpreted, leading us to hypothesize that sand-constructed barrier islands were also present as sea-level rose during the Holocene. This supply of sand, clearly greater than what is evident today, could have originated from sea-level rise phase eroding Nile Delta sediments transported northward by littoral currents, or from increased output from local rivers during wetter climatic conditions. We also observe a transition from linear, shore-parallel aeolianite ridge morphology features on land and in shallow water, to nested, arcuate features below 30 mbsl. Whereas the linear ridges are thought to be coastal foredune remnants abandoned by

  15. A late Holocene paleoenvironmental reconstruction from Agua Caliente, southern Belize, linked to regional climate variability and cultural change at the Maya polity of Uxbenká

    NASA Astrophysics Data System (ADS)

    Walsh, Megan K.; Prufer, Keith M.; Culleton, Brendan J.; Kennett, Douglas J.

    2014-07-01

    We report high-resolution macroscopic charcoal, pollen and sedimentological data for Agua Caliente, a freshwater lagoon located in southern Belize, and infer a late Holocene record of human land-use/climate interactions for the nearby prehistoric Maya center of Uxbenká. Land-use activities spanning the initial clearance of forests for agriculture through the drought-linked Maya collapse and continuing into the historic recolonization of the region are all reflected in the record. Human land alteration in association with swidden agriculture is evident early in the record during the Middle Preclassic starting ca. 2600 cal yr BP. Fire slowly tapered off during the Late and Terminal Classic, consistent with the gradual political demise and depopulation of the Uxbenká polity sometime between ca. 1150 and 950 cal yr BP, during a period of multiple droughts evident in a nearby speleothem record. Fire activity was at its lowest during the Maya Postclassic ca. 950-430 cal yr BP, but rose consistent with increasing recolonization of the region between ca. 430 cal yr BP and present. These data suggest that this environmental record provides both a proxy for 2800 years of cultural change, including colonization, growth, decline, and reorganization of regional populations, and an independent confirmation of recent paleoclimate reconstructions from the same region.

  16. The utility of serum CA-125 in predicting extra-uterine disease in apparent early-stage endometrial cancer.

    PubMed

    Nicklin, James; Janda, Monika; Gebski, Val; Jobling, Thomas; Land, Russell; Manolitsas, Tom; McCartney, Anthony; Nascimento, Marcelo; Perrin, Lewis; Baker, Jannah F; Obermair, Andreas

    2012-08-15

    Surgical staging in early-stage uterine cancer is controversial. Preoperative serum CA-125 may be of clinical value in predicting the presence of extra-uterine disease in patients with apparent early-stage endometrial cancer. Between October 6, 2005, and June 17, 2010, 760 patients were enrolled in an international, multicentre, prospective randomized trial (LACE) comparing laparotomy with laparoscopy in the management of endometrial cancer apparently confined to the uterus. Of these, 657 patients with endometrial adenocarcinoma had a preoperative serum CA-125 value recorded. Multiple cross-validation analysis was undertaken to correlate preoperative serum CA-125 with stage of disease (Stage I vs. Stage II+) after surgery. Patients' median preoperative serum CA-125 was 14 U/ml. A cutoff point of 30 U/ml was associated with the smallest misclassification error, and using this cutoff, 98 patients (14.9%) had elevated CA-125 levels. Of those, 36 (36.7%) had evidence of extra-uterine disease. Of the 116 patients (17.7%) with evidence of extra-uterine disease, 31.0% had an elevated CA-125 level. On univariate and multivariable logistic regression analysis, only preoperative CA-125 level, but no other preoperative clinical characteristics were found to be associated with extra-uterine spread of disease. Utilizing a cutoff point of 30 U/ml achieved a sensitivity, specificity, positive predictive value and negative predictive value of 31.0, 88.5, 36.7 and 85.7%, respectively. Elevated CA-125 above 30 U/ml in patients with apparent early-stage disease is a risk factor for the presence of extra-uterine disease and may assist clinicians in the management of patients with clinical Stage I endometrial cancer. Copyright © 2011 UICC.

  17. Seawater-derived neodymium isotope records in the Chukchi Sea, western Arctic Ocean during Holocene: implications for oceanographic circulation

    NASA Astrophysics Data System (ADS)

    Lee, Borom; Nam, Seung-Il; Huh, Youngsook; Lee, Mi Jung

    2015-04-01

    Changes in oceanographic circulation in the Artic have a large influence on the global oceanic and climate system of the Earth through the geological times. In particular, freshwater input from the North Pacific to the western Arctic Ocean affects the Atlantic meridional overturning circulation (AMOC) after the opening of the Bering Strait. Seawater-derived neodymium isotope in marine sediments has been used as a proxy to trace the origin of water masses and oceanic circulation system. The global average residence time of Nd is shorter than the global ocean mixing time and dissolved Nd in seawater behaves quasi-conservatively. In the modern Arctic Ocean, the Nd isotope distribution is dominated by Atlantic source water, although the circum-Arctic riverine discharge and Pacific-derived waters also have noticeable impacts. In this study, we investigated seawater-derived neodymium isotope records from a sediment core recovered from the Chukchi Sea to understand the changes in hydrograhic circulation of the western Arctic during the Holocene. A gravity core, ARA02B 01A, was collected on the northern shelf of the Chukchi Sea (73°37.8939'N, 166°30.9838'W, ca. 111 m in water depth) during the RV Araon expedition in 2011. To obtain seawater-derived Nd records, we extracted Fe-Mn oxide coatings as an authigenic fraction from bulk sediments by leaching with acid-reducing solution after removing carbonate by leaching with acetic acid. Our preliminary results might show a general pattern of increasing radiogenic ɛNd values through Holocene intervals. Therefore, it implies that ɛNd results may be related with variations in the intensity of Bering Strait inflow during the last ~9.31 ka BP. The radiogenic trend was strongly pronounced from the late Holocene (ɛNd -7.23; ca. 8.84 ka BP) to the middle Holocene (ɛNd -4.78; ca. 6.18 ka BP) and vaguely during the middle Holocene. After 4.13 ka BP, ɛNd values were increased again from -4.86 to -4.03 at 0.57 ka BP. But 87Sr/86Sr

  18. The roles of fire in Holocene ecosystem changes of West Africa

    NASA Astrophysics Data System (ADS)

    Dupont, L. M.; Schefuß, E.

    2018-01-01

    The climate changes associated with the Holocene wet phase in the Sahara, the African Humid Period, are subject to ongoing debate discussing interactions between climate and vegetation and possible feedbacks between vegetation, albedo, desertification, and dust. However, very little attention has been given to the role of fire in shaping the land cover, although it is known that fires are important in the formation and consolidation of the African savanna. To fill this gap, we investigated the interaction between precipitation changes, vegetation shifts, and fire occurrence in West Africa by combining stable isotope measurements on plant waxes with pollen and micro-charcoal counts of marine sediments retrieved offshore of Cape Blanc. Our study focuses on the roles of fire at the dry limit of savanna during the Holocene evolution of precipitation changes indicating that the impact of fire during a relative wet climate differs from that during aridification. During the humid early Holocene, increased savanna extension and diversification ran parallel to increased fire occurrence. In contrast, after aridification of northern Africa started at the end of the African Humid Period, a maximum in fire occurrence correlated with a deterioration of the vegetation promoting desertification.

  19. The Wasatch fault zone, utah-segmentation and history of Holocene earthquakes

    USGS Publications Warehouse

    Machette, M.N.; Personius, S.F.; Nelson, A.R.; Schwartz, D.P.; Lund, W.R.

    1991-01-01

    The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of 6.5 have occurred since 1860. Although the time scale of the clustering is different-130 years vs 1100 years-we consider the central Nevada-eastern California Seismic Belt to be a historic analog for movement on the WFZ during the past 1500 years. We have found no evidence that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not ruptured in the past 3600 years-a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-rupturing earthquakes in the region suggests that earthquakes having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)-each associated with tens of kilometers of surface rupture and several meters of normal dip slip-have occurred about every four centuries during the Holocene and should be expected in the future. ?? 1991.

  20. Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations

    NASA Astrophysics Data System (ADS)

    Grosjean, Martin; Suter, Peter J.; Trachsel, Mathias; Wanner, Heinz

    2007-03-01

    During the hot summer of 2003, reduction of an ice field in the Swiss Alps (Schnidejoch) uncovered spectacular archaeological hunting gear, fur, leather and woollen clothing and tools from four distinct windows of time: Neolithic Age (4900 to 4450 cal. yr BP), early Bronze Age (4100-3650 cal. yr BP), Roman Age (1st-3rd century AD), and Medieval times (8-9th century AD and 14-15th century AD). Transalpine routes connecting northern Italy with the northern Alps during these slots is consistent with late Holocene maximum glacier retreat. The age cohorts of the artefacts are separated which is indicative of glacier advances when the route was difficult and not used for transit. The preservation of Neolithic leather indicates permanent ice cover at that site from ca. 4900 cal. yr BP until AD 2003, implying that the ice cover was smaller in 2003 than at any time during the last 5000 years. Current glacier retreat is unprecedented since at least that time. This is highly significant regarding the interpretation of the recent warming and the rapid loss of ice in the Alps. Copyright

  1. Wetlands sediment record from the upper Yarlung Tsangpo valley, southwest Tibetan Plateau, reveals mid-Holocene Epipaleolithic human occupation coincident with increased early and mid-Holocene wetness driven by enhanced Indian Monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Hudson, A. M.; Olsen, J. W.; Quade, J.; Lei, G.; Huth, T.; Zhang, H.; Perreault, C.

    2016-12-01

    The headwaters of the Yarlung Tsangpo river valley, located in the southwestern Tibetan Plateau, are characterized by a cold and dry climate, but contain abundant river-marginal wetlands environments, which fluctuate in extent in response to changes in local water table elevation. This region receives 80% of precipitation from the Indian Monsoon, which forms the dominant control on moisture availability, and hence wetlands extent. Our paleowetlands record, based on 14C dating of organic-rich paleowetlands deposits, provides a novel record of Holocene monsoon intensity. The wetlands deposits consist of four sedimentary units that indicate decreasing wetlands extent and monsoon intensity since 10.4 ka BP. Wet conditions occurred at ˜10.4 ka BP, ˜9.6 ka BP and ˜7.9-4.8 ka BP, with similar-to-modern conditions from ˜4.6-2.0 ka BP, and drier-than-modern conditions from ˜2.0 ka BP to present. Wetland changes correlate with monsoon intensity changes identified in nearby records, with weak monsoon intervals corresponding to desiccation and erosion of wetlands deposits. Dating of in situ ceramic and microlithic artifacts in wetlands sediments at multiple sites indicates Epipaleolithic human occupation of the YT valley after 6.6 ka BP. Artifact typology study reveals a similar microlithic technology was employed across the high plateau interior, but XRF obsidian provenance reveals separate northeast and southwest lithic conveyance zones. This indicates widespread colonization of the high, arid Tibetan Plateau interior by one or more highly mobile human populations during the early and mid-Holocene, coincident with favorable warm, wet climate conditions.

  2. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Chiang, J. C. H.; Kong, W.; Swenson, L. M.

    2016-12-01

    The Holocene East Asian Summer Monsoon (EASM) evolution was previously characterized as a trend towards weaker monsoon intensity paced by orbital insolation. We argue that this evolution is more accurately characterized as changes in the transition timing and duration of the EASM seasonal stages (Spring, pre Mei-Yu, Mei-Yu, Midsummer), and tied to the north-south displacement of the westerlies relative to Tibet. To this end, we employ atmospheric general circulation model time-slice simulations across the Holocene, and objectively identify the transition timing and duration of the EASM seasonal stages. Compared to the late Holocene, we find an earlier onset of Mei-Yu and an earlier transition from Mei-Yu to Summer in the early-mid Holocene, resulting in a shortened Mei-Yu and prolonged Summer stage. These changes are accompanied by an earlier northward positioning of the westerlies relative to Tibet. Our hypothesis provides a more satisfactory explanation for two key observations of Holocene East Asian climate: the `asynchronous Holocene optimum', and changes to East Asian dustiness. Our results highlight a key difference in the way that the East Asian monsoon dynamically responds to precessional insolation changes compared to the other monsoons. For other monsoon systems, changes to the land-ocean contrast drive changes to monsoon intensity. While this also occurs for the East Asian monsoon, more importantly changes to the meridional position of the westerlies relative to the Tibetan Plateau determine the timing of seasonal transitions; a northward shift triggers earlier seasonal rainfall transitions and in particular a shorter Mei-Yu and longer Midsummer stage. By similar reasoning, changes to obliquity also strongly affect East Asian summer monsoon seasonality, with a larger tilt resulting in earlier northward shift of the westerlies.

  3. Holocene climate variability in arid Central Asia as revealed from high-resolution sedimentological and geochemical analyses of laminated sediments from Lake Chatyr Kol (Central Tian Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Lauterbach, S.; Plessen, B.; Dulski, P.; Mingram, J.; Prasad, S.

    2013-12-01

    A pronounced trend from a predominantly wet climate during the early Holocene towards significantly drier conditions since the mid-Holocene, mainly attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, climate in the adjacent regions of mid-latitude arid Central Asia, located north and northwest of the Tibetan Plateau, is supposed to have been characterized by pronounced dry conditions during the early Holocene, wet conditions during the mid-Holocene and a rather moderate drying during the late Holocene, which is mainly attributed to the complex interplay between the mid-latitude Westerlies and the ASM. However, although mid-latitude Central Asia thus might represent a key region for the understanding of teleconnections between the ASM system and the Westerlies, knowledge about past climate development in this region is still ambiguous due to the limited number of high-resolution palaeoclimate records. Hence, new well-dated and highly resolved palaeoclimate records from this region are expected to provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, a sediment core of about 6.25 m length has been recovered from alpine Lake Chatyr Kol (40°36' N, 75°14' E, 3530 m a. s. l., surface area ~170 km2, maximum depth ~20 m), located in the Central Tian Shan of Kyrgyzstan. Sediment microfacies analysis on large-scale petrographic thin sections reveals continuously sub-mm scale laminated sediments throughout the record except for the uppermost ca. 60 cm. Microsedimentological characterization of these laminae, which are most probably

  4. Are There Spatial or Temporal Patterns to Holocene Explosive Eruptions in the Aleutian Archipelago? A Work in Progress

    NASA Astrophysics Data System (ADS)

    Martin, C.; Nicolaysen, K. P.; McConville, K.; Hatfield, V.; West, D.

    2013-12-01

    By examining the existing geological and archeological record of radiocarbon dated Aleutian tephras of the last 12,000 years, this study sought to determine whether there were spatial or temporal patterns of explosive eruptive activity. The Holocene tephra record has important implications because two episodes of migration and colonization by humans of distinct cultures established the Unangan/Aleut peoples of the Aleutian Islands concurrently with the volcanic activity. From Aniakchak Volcano on the Alaska Peninsula to the Andreanof Islands (158 to 178° W longitude), 55 distinct tephras represent significant explosive eruptions of the last 12,000 years. Initial results suggest that the Andreanof and Fox Island regions of the archipelago have had frequent explosive eruptions whereas the Islands of Four Mountains, Rat, and Near Island regions have apparently had little or no eruptive activity. However, one clear result of the investigation is that sampling bias strongly influences the apparent spatial patterns. For example field reconnaissance in the Islands of Four Mountains documents two Holocene calderas and a minimum of 20 undated tephras in addition to the large ignimbrites. Only the lack of significant explosive activity in the Near Islands seems a valid spatial result as archeological excavations and geologic reports failed to document Holocene tephras there. An intriguing preliminary temporal pattern is the apparent absence of large explosive eruptions across the archipelago from ca. 4,800 to 6,000 yBP. To test the validity of apparent patterns, a statistical treatment of the compiled data grappled with the sampling bias by considering three confounding variables: larger island size allows more opportunity for geologic preservation of tephras; larger magnitude eruption promotes tephra preservation by creating thicker and more widespread deposits; the comprehensiveness of the tephra sampling of each volcano and island varies widely because of logistical and

  5. Holocene climatic change, aeolian sedimentation and the nomadic Anthropocene in Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, F.; Schlütz, F.

    2009-04-01

    Geomorphological and palynological studies from the Nianbaoyeze Shan in Eastern Tibet provides detailed information on the Holocene landscape and vegetation development of a mountain system located on the westernmost boundary of the modern forest belt. In addition, detailed sedimentological work was done on a section south of the Anyemachin Shan further west. Our study provides detailed information on the late glacial landscape and vegetation development of eastern Tibet. Based on a suite of geomorphological and palynological proxy data from the Nianbaoyeze Shan on the eastern margin of the Tibetan Plateau (33°N/101°E, 3300-4500 m asl) we reconstruct recent landscape dynamics as a function of climate change and the longevity of human influence. Study results constrain several major phases of aeolian sedimentation between 50 - 15 ka and various glacier advances during the Late Pleistocene, the Holocene and the Little Ice Age (LIA). Increased aeolian deposition was primarily associated with periods of more extensive glacial ice extent. Fluvial and alluvial sediment pulses also document an increase of erosion starting at about 4000 cal yr B.P. coinciding with cooling (Neoglacial) and a growing anthropo-zoogenic influence. Evidence for periglacial mass movements indicate that the late Holocene cooling started at around 2000 cal yr B.P. demonstrating increased surface activity under the combined effects of human influence and climate deterioration (LIA). In a section south of the Anyemachin about 150 km further west Holocene silt and paleosols development match to these results but showing higher Holocene aeolian activity. The Holocene vegetation history started with an open landscape dominated by pioneer shrubs along braided rivers (<10,600 - 9800 cal yr B.P.), followed by the spreading of conifers (Picea, Juniperus, Abies) and Betula-trees accompanied by a successive closing of the vegetation cover by Poaceae, Cyperaceae and herbs (9800 - 8300 cal yr B.P.). First

  6. A new model evaluating Holocene sediment dynamics: Insights from a mixed carbonate-siliciclastic lagoon (Bora Bora, Society Islands, French Polynesia, South Pacific)

    NASA Astrophysics Data System (ADS)

    Isaack, Anja; Gischler, Eberhard; Hudson, J. Harold; Anselmetti, Flavio S.; Lohner, Andreas; Vogel, Hendrik; Garbode, Eva; Camoin, Gilbert F.

    2016-08-01

    Mixed carbonate-siliciclastic lagoons of barrier reefs provide great potential as sedimentary archives focusing on paleoenvironmental and paleoclimatic changes as well as on event deposition. Sediment sources include lagoonal carbonate production, the marginal reef and the volcanic hinterland. Mixed carbonate-siliciclastic continent-attached coastal lagoons have been intensively studied, however, their isolated oceanic counterparts have been widely disregarded. Here, we present a new model of Holocene sediment dynamics in the barrier-reef lagoon of Bora Bora based on sedimentological, paleontological, geochronological and geochemical data. The lagoonal succession started with a Pleistocene soil representing the Lowstand Systems Tract. As the rising Holocene sea inundated the carbonate platform, peat accumulated locally 10,650-9400 years BP. Mixed carbonate-siliciclastic sedimentation started ca. 8700-5500 years BP and represents the Transgressive Systems Tract. During that time, sediments were characterized by relatively coarse grain size and contained high amounts of terrestrial material from the volcanic hinterland as well as carbonate sediments mainly produced within the lagoon. Siliciclastic content decreases throughout the Holocene. After the rising sea had reached its modern level, sand aprons formed between reef crest and lagoon creating transport pathways for reef-derived material leading to carbonate-dominated sedimentation ca. 6000-3000 years BP during the Highstand Systems Tract. However, mainly fine material was transported and accumulated in the lagoon while coarser grains were retained on the prograding sand apron. From ca. 4500-500 years BP, significant variations in grain-size, total organic carbon as indicator for primary productivity, Ca and Cl element intensities as qualitative indicators for carbonate availability and lagoonal salinity are seen. Such patterns could indicate event (re-)deposition and correlate with contemporaneous event deposits

  7. Late-Glacial to Early Holocene Climate Changes from a Central Appalachians Pollen and Macrofossil Record

    NASA Technical Reports Server (NTRS)

    Kneller, Margaret; Peteet, Dorothy

    1997-01-01

    A Late-glacial to early Holocene record of pollen, plant macrofossils and charcoal, based on two cores, is presented for Browns Pond in the central Appalachians of Virginia. An AMS radiocarbon chronology defines the timing of moist and cold excursions, superimposed upon the overall warming trend from 14,200 to 7,500 C-14 yr B.P. This site shows cold, moist conditions from approximately 14,200 to 12,700 C-14 yr B.P., with warming at 12,730, 11,280 and 10,050 C-14 yr B.P. A decrease in deciduous broad-leaved tree taxa and Pinus strobus (haploxylon) pollen, simultaneous with a re-expansion of Abies denotes a brief, cold reversal from 12,260 to 12,200 C-14 yr B.P. A second cold reversal, inferred from increases in montane conifers, is centered at 7,500 C-14 yr B.P. The cold reversals at Browns Pond may be synchronous with climate change in Greenland, and northwestern Europe. Warming at 11,280 C-14 yr B.P. shows the complexity of regional climate responses during the Younger Dryas chronozone.

  8. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China

    NASA Astrophysics Data System (ADS)

    Long, Hao; Shen, Ji; Chen, Jianhui; Tsukamoto, Sumiko; Yang, Linhai; Cheng, Hongyi; Frechen, Manfred

    2017-10-01

    Arid central Asia (ACA) is one of the largest arid (desert) areas in the world, and its climate is dominated by the westerlies. In this study, we examined sand dune evolution from the Bayanbulak Basin in the Tian Shan (Xinjiang, NW China), aiming to infer the Holocene moisture history of the ACA. Combined with stratigraphic observation and environmental proxies analysis (grain size, magnetic susceptibility and total organic content), large numbers of luminescence ages from multiple sites (eight sections, 79 samples) were applied to reconstruct the evolution of the sand dune accumulation in the study basin. The overall results imply very dry conditions characterized by sand dune accumulation at ∼12-6.5 ka, a wet interval between ∼6.5 and 0.8 ka when soil formation occurred, and decreased moisture during the last 0.8 ka. This moisture variation pattern is generally consistent with that inferred from many lacustrine records in the core zone of ACA, suggesting a widespread dry period in the early-to-middle Holocene and relatively wet middle-to-late Holocene. Thus, the moisture history derived from the current sand dune system contrasts with that in Asian monsoon areas, which are characterized by a strong monsoon (high precipitation) in the early and mid-Holocene and a weak monsoon (low precipitation and dry climate) during the late Holocene. Our results strongly suggest that the winter solar insolation and the external boundary conditions such as atmospheric CO2 concentration, ice sheets, and meltwater fluxes, have been major influential factors triggering the Holocene moisture evolution in the core zone of ACA.

  9. Holocene dinoflagellate cyst record of climate and marine primary productivity change in the Santa Barbara Basin, southern California.

    NASA Astrophysics Data System (ADS)

    Pospelova, Vera; Mertens, Kenneth N.; Hendy, Ingrid, L.; Pedersen, Thomas F.

    2015-04-01

    High-resolution sedimentary records of dinoflagellate cysts and other marine palynomorphs from the Santa Barbara Basin (Ocean Drilling Program Hole 893A) demonstrate large variability of primary productivity during the Holocene, as the California Current System responded to climate change. Throughout the sequence, dinoflagellate cyst assemblages are characterized by the dominance of cysts produced by heterotrophic dinoflagellates, and particularly by Brigantedinium, accompanied by other upwelling-related taxa such as Echinidinium and cysts of Protoperidinium americanum. During the early Holocene (~12-7 ka), the species richness is relatively low (16 taxa) and genius Brigantedinium reaches the highest relative abundance, thus indicating nutrient-rich and highly productive waters. The middle Holocene (~7-3.5 ka) is characterized by relatively constant cyst concentrations, and dinoflagellate cyst assemblages are indicative of a slight decrease in sea-surface temperature. A noticeable increase and greater range of fluctuations in the cyst concentrations during the late Holocene (~3.5-1 ka) indicate enhanced marine primary productivity and increased climatic variability, most likely related to the intensification of El Niño-like conditions. Keywords: dinoflagellate cysts, Holocene, North Pacific, climate, primary productivity.

  10. A previously unrecognized path of early Holocene base flow and elevated discharge from Lake Minong to Lake Chippewa across eastern Upper Michigan

    USGS Publications Warehouse

    Loope, Walter L.; Jol, Harry M.; Fisher, Timothy G.; Blewett, William L.; Loope, Henry M.; Legg, Robert J.

    2014-01-01

    It has long been hypothesized that flux of fresh meltwater from glacial Lake Minong in North America's Superior Basin to the North Atlantic Ocean triggered rapid climatic shifts during the early Holocene. The spatial context of recent support for this idea demands a reevaluation of the exit point of meltwater from the Superior Basin. We used ground penetrating radar (GPR), foundation borings from six highway bridges, a GIS model of surface topography, geologic maps, U.S. Department of Agriculture–Natural Resources Conservation Service soils maps, and well logs to investigate the possible linkage of Lake Minong with Lake Chippewa in the Lake Michigan Basin across eastern Upper Michigan. GPR suggests that a connecting channel lies buried beneath the present interlake divide at Danaher. A single optical age hints that the channel aggraded to 225 m as elevated receipt of Lake Agassiz meltwater in the Superior Basin began to wane <10.6 ka. The large supply of sediment required to accommodate aggradation was immediately available at the channel's edge in the littoral shelves of abandoned Lake Algonquin and in distal parts of post-Algonquin fans. As discharge decreased further, the aggraded channel floor was quickly breached and interbasin flow to Lake Chippewa was restored. Basal radiocarbon ages on wood from small lakes along the discharge path and a GIS model of Minong's shoreline are consistent with another transgression of Minong after ca. 9.5 ka. At the peak of the latter transgression, the southeastern rim of the Superior Basin (Nadoway Drift Barrier) failed, ending Lake Minong. Upon Minong's final drop, aggradational sediments were deposited at Danaher, infilling the prior breach.

  11. Alpine Holocene Tree Ring Isotope Records - A Synthesis of a Multi-Proxy Approach in Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Ziehmer, Malin Michelle; Nicolussi, Kurt; Schlüchter, Christian; Leuenberger, Markus

    2017-04-01

    cellulose content is determined for each individual sample and carbon, oxygen and hydrogen isotopic ratios are measured simultaneously (Loader et al., 2015). The isotope records of carbon, oxygen and hydrogen show distinct low-frequency trends for the Early- and Mid-Holocene, but the individual series per proxy are often offset in their isotopic signature. As the sampling sites in our study are distributed along a SW-NE transect, the influence of the site conditions (latitude, longitude, elevation, exposition) and the tree species is tested and subsequently a correction is applied to the individual series. In addition, the tree-ring width records operate as a helpful tool in detecting and attributing the influence of larch budmoth outbreaks on the cellulose content and isotope records. We here present a synthesis of the applied multi-proxy approach and its ability to reconstruct Holocene climate variability for the time span from 9000 to 3500 years b2k covering the Early-Holocene (9000 to 7200 years b2k) and Mid-Holocene (7200 to 4200 years b2k) and the transition to the late Holocene (4200 to 3500 years b2k) as well as the recent 400 years including the modern warming. References Becker, B., & Kromer, B. Palaeogeogr. Palaeoclimatol. Palaeoecol., 1993, 103(1): 67-71 Boettger, T., et al. Anal. Chem., 2007, 79: 4603-4612 Büntgen, U. et al. Science, 2011, 331(6017): 578-582 Laumer, W., et al. Rapid Commun. Mass Spectrom., 2009, 23: 1934-1940 Loader, N.J., et al. Anal. Chem., 2015, 87: 376-380 Nicolussi K., et al. The Holocene, 2009, 19(6): 909-920

  12. South Asian climate change at the end of urban Harappan (Indus valley) civilization and mechanisms of Holocene monsoon variability

    NASA Astrophysics Data System (ADS)

    Staubwasser, M.; Sirocko, F.; Erlenkeuser, H.; Grootes, P. M.; Segl, M.

    2003-04-01

    Planktonic oxygen isotope ratios from the well-dated laminated sediment core 63KA off the river Indus delta are presented. The record reveals significant climate changes in the south Asian monsoon system throughout the Holocene. The most prominent event of the early-mid Holocene occurred after 8.4 ka BP and is within dating error of the GISP/GRIP event centered at 8.2 ka BP. The late Holocene is generally more variable and the largest change of the entire Holocene occurred at 4.2 ka BP. This event is concordant with the end of urban Harappan civilization in the Indus valley. Opposing isotopic trends across the northern Arabian Sea surface indicate a reduction in Indus river discharge at that time. Consequently, sustained drought may have initiated the archaeologically recorded interval of southeastward habitat tracking within the Harappan cultural domain. The hemispheric significance of the 4.2 ka BP event is evident from concordant climate change in the eastern Mediterranean and the Middle East. The remainder of the late Holocene shows drought cycles of approximately 700 years that are coherent with the evolution of cosmogenic radiocarbon production rates in the atmosphere. This suggests that solar variability is one fundamental cause behind late Holocene rainfall changes over south Asia.

  13. Large floods and climatic change during the Holocene on the Ara River, Central Japan

    NASA Astrophysics Data System (ADS)

    Grossman, Michael J.

    2001-07-01

    A reconstruction of part of the Holocene large flood record for the Ara River in central Japan is presented. Maximum intermediate gravel-size dimensions of terrace and modern floodplain gravels were measured along an 18-km reach of the river and were used in tractive force equations to estimate minimum competent flood depths. Results suggest that the magnitudes of large floods on the Ara River have varied in a non-random fashion since the end of the last glacial period. Large floods with greater magnitudes occurred during the warming period of the post-glacial and the warmer early to middle Holocene (to ˜5500 years BP). A shift in the magnitudes of large floods occurred ˜5500-5000 years BP. From this time, during the cooler middle to late Holocene, large floods generally had lower magnitudes. In the modern period, large flood magnitudes are the largest in the data set. As typhoons are the main cause of large floods on the Ara River in the modern record, the variation in large flood magnitudes suggests that the incidence of typhoon visits to the central Japan changed as the climate changed during the Holocene. Further, significant dates in the large flood record on the Ara River correspond to significant dates in Europe and the USA.

  14. Late Pleistocene and Holocene vegetation and climate changes in the Lake Baikal region

    NASA Astrophysics Data System (ADS)

    Demske, D.; Heumann, G.; Granoszewski, W.; Mamakowa, K.; Piotrowska, N.; Bluszcz, A.; Goslar, T.

    2003-04-01

    Palynological high-resolution records from Lake Baikal sediments document strong vegetational changes during the transitions from an open landscape to Late Glacial shrublands and Holocene forests. For three core sites, investigated within EU-Project CONTINENT, sporomorph concentrates were used for AMS 14C dating of environmental changes. The pollen record from the northern lake site, located in vicinity to the Barguzin Mountains, shows pronounced maxima of Salix and Picea corresponding to late Pleistocene warming. A peak maximum in Alnus fruticosa during the Younger Dryas cooling coincided with low abundance of green algae in the lake and a decline in Picea trees. Fern-rich forests with Picea, Larix and Betula developed during early Holocene. With an abrupt expansion of Pteridium ferns Abies appeared in the northeastern Baikal region, reflecting optimum conditions for dark taiga. Among pines Pinus sibirica prevailed prior to the spread of P. sylvestris. Expansion of pines points to a distinct decrease in precipitation. A palynological sequence from the same site reflects the vegetation development during the last interglacial, with differences indicated by higher abundance of Abies. The upper part of the interglacial record comprises the transition to stadial conditions. Further pollen spectra are probably equivalent to first interstadials of the early glacial period (Zyryansk). Comparison with southern sites, in vicinity to the Selenga Delta and the Khamar-Daban Mountains, reveals that regional and temporal differentiation of Holocene vegetation development and climate conditions was closely related to the distribution of mountain ranges.

  15. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    USGS Publications Warehouse

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  16. Charcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities

    PubMed Central

    Hudspith, Victoria A.; Belcher, Claire M.; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ∼10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  17. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.

    PubMed

    Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.

  18. Holocene Beaver Effects on Small Streams in Yellowstone and Implications for Stream Restoration

    NASA Astrophysics Data System (ADS)

    Persico, L. P.; Meyer, G.

    2005-12-01

    It has been asserted that beaver ( Castor canadensis) damming has sustained long-term aggradation and exerted a dominant control on the morphology of small streams over much of North America. However, data on the temporal and spatial dimensions of beaver influence are extremely limited. Using beaver pond deposits and berms (abandoned dams), we document geomorphic effects of beavers on first- to fourth-order streams in semiarid-subhumid northern Yellowstone National Park, USA. Beavers were ubiquitous in the early 20th century, but are currently rare. Some formerly dammed streams have become ephemeral in recent droughts, suggesting that climate may be a significant factor controlling beaver occupation. Radiocarbon dating of wood preserved in pond deposits and berms shows notable periods of beaver activity 3655-3855, 1555-955, and 455-150 cal yr BP, but a distinct lack of activity 950-700 cal yr BP during the Medieval Climatic Anomaly, a time of severe multidecadal droughts in Yellowstone and the western USA. The spatial scale over which beavers incurred significant aggradation is controlled largely by geomorphic settings conducive to damming. Low-gradient (0.07 to 0.001) reaches with contributing areas of 4 to 70 km2 are typical for dam sites. Reaches with downstream valley constrictions are most susceptible to aggradation. Only a small fraction of the total stream length in the study area has experienced significant aggradation attributable to beaver damming, as shown by accumulations of sand and finer sediment of up to 3 m, thicker than typical overbank sediments. These sediments locally contain evidence of ponding in laminations, gleying, and high organic content. Many reaches show no evidence of any net aggradation since deglaciation. Many beaver-aggraded reaches are now incised, typically 1.5-2 m and up to 3 m. Some reaches have early Holocene (ca. 10150-8000 cal yr BP) terraces with treads ~2 m above current bankfull level, underlain by both gravelly and fine

  19. The Lateglacial and Holocene history of annually laminated Lake Tiefer See

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Martin; Dräger, Nadine; Lampe, Reinhard; Lorenz, Sebastian; Kienel, Ulrike; Schult, Manuela; Słowiński, Michał; Wulf, Sabine; Zawiska, Izabela; Brauer, Achim

    2015-04-01

    Lake Tiefer See (N 53.59, E 12.53) is one of the rare lakes with a long sequence of annually laminated Holocene sediments in northern Central Europe. The lake is a valuable link between laminated lakes in more oceanic climates of the Eifel region and NW Germany and laminated lakes in the more continental climate of Poland. It thus provides great potential to study past climate, vegetation and human land use along that climate transition. The sediments of Lake Tiefer See show repeated changes in varve quality and composition. To disentangle in how far these changes relate to either past climate change, lake water level fluctuations or to changes in the local environment caused by e.g. human activity, we studied 16 sediment cores taken mainly from the lake margin. Almost all cores show interruptions in sedimentation namely during the mid-Holocene, suggesting that the lake water level has been lowered during this period. However, peat-gyttia alternations point at lake level fluctuations also during the early and late Holocene. Discontinuous sedimentation in cores from intermediate depth points at recurring slumping events. The pollen record additionally indicates prominent alternations in land use intensity throughout the late Holocene. By testing correlation between the hydrological changes, changes in land use intensity and changes in the sediment record we discuss effects of climate change and further factors on varve formation in Lake Tiefer See. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415.

  20. Late Holocene and recent rainforest cultural landscapes of North Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Steinberger, L. M.; Moss, P. T.; Haberle, S.; Cosgrove, R.; Ferrier

    2011-12-01

    The tropical rainforests of North Queensland, Australia, have been environments of significant human activity for several thousand years. Palaeoecological research has highlighted the long-term effects of Quaternary climate change on these environments at a broad spatial scale, including the expansion of tropical rainforest across the region following the termination of the Last Glacial Maximum. However, identifying the effects of a hunter-gatherer Aboriginal population has been more difficult. Palaeoecological suggestions of Pleistocene Aboriginal burning, based on pollen and charcoal records, have relied on coincident timing with a general narrative of colonisation rather than direct links with archaeological evidence. Current research is explicitly examining the environmental consequences of human activity in North Queensland rainforests by producing local palaeoecological data directly linked to sites and periods of human occupation. Pollen, macrocharcoal and phytolith records have been produced from sites of human activity within the rainforest. Late Holocene Aboriginal occupation of the rainforest is demonstrated to have had significant cultural links to patches of open vegetation that existed within the rainforest. While these patches are likely to have originated as edaphically controlled remnants of Pleistocene vegetation, their expansion and maintenance in the late Holocene is associated with increasing intensity of Aboriginal occupation of the rainforest. Late Holocene Aboriginal rainforest occupation is also contrasted with the historical European colonisation of the rainforest in the late 19th century, which resulted in the most significant environmental changes in the region since the early Holocene. Historical and ethnographic records provide important cultural context for understanding the transition between Aboriginal and European cultural landscapes of the rainforest.

  1. Holocene Paleolimnological Records from Thule, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2012-12-01

    Assessing Holocene climatic and environmental variability around the margin of the Greenland Ice Sheet provides important information against which to compare ice sheet margin fluctuations. Here, we report preliminary results from ongoing research in northwestern Greenland. We present records of physical properties of lake sediments and use these to make inferences about the evolution of the lake and its surroundings over the latter half of the Holocene. We collected two sediment cores, 90 and 72 cm in length, from a small (surface area ~0.3 km2), shallow (maximum depth ~4.5 m) lake at 76°33'40''N 68°26'31''W near Thule Air Base in July 2012. The length of the cores was limited by the length of the core barrel and does not reflect the total thickness of sediment in the lake. The lake is situated within the glacial limit and likely formed subsequent to deglaciation of the region during early Holocene time. No glaciers exist within the lake's catchment today; the primary modern source of sediment is a perennial inflow from the west. We developed a preliminary depth-age model using radiocarbon ages of terrestrial organic macrofossils. Thus far, we have analyzed the sediments for magnetic susceptibility and loss-on-ignition. A radiocarbon age of 6069 ± 90 cal yr BP at the base of the core indicates that the sediments preserve a continuous record of middle to late Holocene conditions. The top of both cores consists of a thick (~12 cm) layer of dark gray unlaminated sediments, while the rest of the material in both cores is lighter brown to olive, finely laminated sediment. The upper layer is characterized by low water content (<25%), low loss-on-ignition (<5%), and high magnetic susceptibility (~150-250 x10-6). Conversely, the laminated sediments beneath have higher water content (~40-50%), higher loss-on-ignition (~5-10%), and much lower magnetic susceptibility (<50 x10-6). We hypothesize that the upper, less organic unit may represent a single event in the lake

  2. Biomarker evidence for increasing aridity in south-central India over the Holocene

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Wilkes, H.; Prasad, S.; Brauer, A.; Basavaiah, N.; Strecker, M. R.; Sachse, D.

    2012-12-01

    Summer monsoonal rainfall has played an important role in the development and sustenance of the largely agro-based economy in the Indian subcontinent in the recent past. A better understanding of past variations in monsoonal rainfall can therefore lead to an assessment of its potential impact on early human societies. However, our knowledge of spatiotemporal patterns of past monsoon strength, as inferred from proxy records, is limited due to the lack of high-resolution paleo-hydrological records from continental archives. Here, we reconstruct centennial-scale hydrological variability associated with changes in the intensity of the Indian Summer Monsoon based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10-m-long sediment core from saline-alkaline Lonar Lake, situated in the core 'monsoon zone' of south-central India. We identified three periods of distinct hydrology over the Holocene in south-central India. The period between 10.4 and 6.5 ka BP was characterized by a relatively high abundance of land-plant biomarkers, such as long-chain n-alkanes. The composition of these leaf-wax n-alkanes (weighted average of concentration of different chain-length n-alkanes, expressed as the ACL index) and their negative δ13C (-30‰ to -33 ‰) indicate the dominance of woody C3 vegetation in the catchment, and negative δD (-170‰ to -175‰) values argue for a wet period due to an intensified monsoon. Rapid fluctuations in abundance of both terrestrial and aquatic biomarkers between 6.5 and 4 ka BP indicate an unstable lake ecosystem, culminating in a transition to arid conditions. Higher ACL values and a pronounced shift to more positive δ13C values (up to -22‰) of leaf-wax n-alkanes over this period indicate a change of dominant vegetation to C4 grasses. Along with a 40‰ increase in leaf wax n-alkane δD values, which likely resulted from less rainfall and/or higher plant evapotranspiration, we interpret this period

  3. Holocene Climate, Fire and Vegetation Change Inferred from Lacustrine Proxies in the Tropical Andes, Laguna Yanacocha, SE Peru

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Isaacson, M.; Matthews-Bird, F.; Schellinger, G. C.; Carrio, C. L.; Kelly, M. A.; Lowell, T. V.; Beal, S. A., Jr.; Stroup, J. S.; Tapia, P. M.

    2016-12-01

    We present a 12,000-year long paleoenvironmental reconstruction from a small high-elevation lake in southeastern Peru. Climate and environmental change are inferred from chironomid species assemblages, charcoal abundance, size and morphology, and the abundance of some important pollen and spore types (Poaceae, Asteraceae, Isoetes). We employ a new chironomid training set developed for tropical South America (Matthews-Bird et al. 2016) to interpret shifts in chironomid assemblages. The sedimentary record from Yanacocha was first discussed by Beal et al. (2014), who reconstructed Hg deposition and measured metals, biogenic silica and loss-on-ignition through the Holocene. Additional downcore proxies are presented by Stroup et al. (this meeting). Yanacocha sits at 4910 m asl and less than 2 km from Quelccaya Ice Cap (QIC), but the lake's watershed has been topographically isolated from glacier meltwater since 12.3 ka. We compare our inferences from biological proxies with independent constraints on paleoclimate derived from published reconstructions of QIC fluctuations. Previous studies found that temperature was the primary driver of late Holocene fluctuations of QIC (e.g., Stroup et al. 2014), but records from the broader region indicate the Holocene also saw major changes in hydroclimate. Most modern precipitation at Yanacocha derives from the Amazon Basin to the east, and El Niño years are associated with drier conditions. Holocene sediments at Yanacocha likely thus record both changes in temperature and hydroclimate. Vegetation was sparse and no charcoal was preserved prior to 11.7 ka, whereas the early Holocene saw the highest overall pollen concentrations of the entire record and the onset of charcoal preservation. An increase in charcoal abundance, decrease in pollen concentrations, and shifts in vegetation and chironomid assemblages at Yanacocha suggest drier conditions from 9 to 3.5 ka, consistent with widespread regional evidence for early to middle

  4. Calcite raft geochemistry as a hydrological proxy for Holocene aquifer conditions in Hoyo Negro and Ich Balam (Sac Actun Cave System), Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Chatters, James C.; Rissolo, Dominique; Schwarcz, Henry P.; Collins, Shawn V.; Kim, Sang-Tae; Nava Blank, Alberto; Luna Erreguerena, Pilar

    2017-11-01

    Two cores from calcite rafts deposits located in Cenote Ich Balam and Hoyo Negro were dated and analyzed for 87Sr/86Sr, δ18O, δ13C, Sr/Ca and Cl/Ca. The geochemical records show changing aquifer salinity spanning the last ∼ 8.5 cal kyrs BP and interrelationships with Holocene climate trends (wet and dry periods). During the wet mid-Holocene, the salinity of the meteoric Water Mass (WM; at 7.8-8.3 cal kyrs BP) was relatively high at 1.5-2.7 ppt and then became less saline (1.0-1.5 ppt) during the last ∼ 7000 yrs as climate became progressively drier. High salinity of the meteoric WM during the wet mid-Holocene is attributed to increased turbulent mixing between the meteoric and underlying marine WM. Increased precipitation, in terms of amount, frequency, and intensity (e.g. hurricanes) causes higher flow of meteoric water towards the coast and mixing at the halocline, a phenomenon recorded with recent instrumental monitoring of the aquifer. Conversely, during dry periods reduced precipitation and flow in the meteoric WM would result in lower salinity. Karst properties and Holocene sea-level rise also seem to have an effect on the aquifer. When the regionally extensive network of shallow cave passages (∼ 10-12 m water depth) are flooded at ∼ 8000 cal yrs BP, there is a rapid shift in salinity. This study demonstrates that calcite raft deposits can be used as paleo-environmental recorders documenting the effects of sea level and climate change on aquifer condition.

  5. Contrasting Responses of the Humboldt Current Ecosystem between the Holocene and MIS5e Interglacials Revealed from Multiple Sediment Records

    NASA Astrophysics Data System (ADS)

    Salvatteci, R.; Schneider, R. R.; Blanz, T.; Martinez, P.; Crosta, X.

    2016-12-01

    The Humboldt Current Ecosystem (HCE) off Peru yields about 10% of the global fish catch, producing more fish per unit area than any other region in the world. The high productivity is maintained by the upwelling of cold, nutrient-rich water from the oxygen minimum zone (OMZ), driven by strong trade winds. However, the potential impacts of climate change on upwelling dynamics and oceanographic conditions in the near future are uncertain, threatening local and global economies. Here, we unravel the response of the HCE to contrasting climatic conditions during the last two interglacials (i.e. Holocene and MIS5e) providing an independent insight about the relation between climatic factors and upwelling and productivity dynamics. For this purpose, we used multiple cores to reconstruct past changes in OMZ and upwelling intensity, productivity and fish biomass variability. Chronologies for the Holocene were obtained by multiple 14C ages and laminae correlations among cores, while for the MIS5e they were mainly done by correlation of prominent features in several proxies with other published records. We used a multiproxy approach including alkenones to reconstruct sea surface temperatures, δ15N as a proxy for water column denitrification, redox sensitive metals as proxies for sediment redox conditions, and diatom and fish debris assemblages to reconstruct ecological changes. The results show a very different response of the HCE to climate conditions during the last 2 interglacials, likely driven by changes in Tropical Pacific dynamics. During the Holocene we find that 1) the Late Holocene exhibits higher multi-centennial scale variability compared to the Early Holocene, 2) increased upwelling and a weak OMZ during the mid-Holocene, and 3) long term increase in productivity (diatoms and fishes) from the Early to the Late Holocene. During the MIS5e we find an 1) intense OMZ, 2) strong water column stratification, 3) high siliceous biomass, and 4) low fish biomass compared

  6. Lacustrine records of continental climate in northwest Greenland through the Holocene and Last Interglacial

    NASA Astrophysics Data System (ADS)

    McFarlin, J. M.; Axford, Y.; Osburn, M. R.; Lasher, G. E.; Francis, D. R.; Kelly, M. A.; Osterberg, E. C.

    2015-12-01

    Lake sediment records provide opportunities for high-resolution observations of paleoclimate that help to place modern climate change in geologic context. Here we present a terrestrial record of July air temperature for northwest Greenland (Nunatarssuaq, ~25 km east of the Thule Air Base) through the Holocene and a prior warm period, inferred from subfossil insect remains (Chironomidae) preserved in lacustrine sediments. In addition, we discuss ongoing work in characterizing the sources and isotopic composition of leaf waxes preserved in the same sediments. Multiple parallel sediment cores were collected in the summers of 2012 and 2014 from Wax Lips Lake (informal name), a non-glacial lake situated <2 km from the current margin of the Greenland Ice Sheet. Radiocarbon ages were obtained on aquatic mosses from intact laminae, and indicate that the record spans the Holocene, beginning at ~10.4 ka, as well as an interval beyond the range of 14C (>44 ka) and thus predates the Last Glacial Maximum (LGM). Our results demonstrate temperatures warmer than present through the early and mid Holocene followed by cooling in the late Holocene. Material that pre-dates the LGM contains insect assemblages indicating temperatures warmer than the warmest millennia of the Holocene. We interpret this material as most likely dating to the Last Interglacial Period (MIS 5). Along with assemblages of Chironomidae, we find subfossil Chaoboridae in one section of the pre-LGM sediments, suggesting exceptionally warm conditions based upon the distribution of modern-day Chaoborus. We find abundant n-alkanes and n-acids are preserved in the Holocene and pre-LGM sediments, allowing for complementary compound-specific δD analyses and identification of organic matter source in addition to chironomid derived temperature records.

  7. Holocene lake level changes at a lowland lake in northeastern Germany inferred from acoustic sub-bottom profiling and a transect of sediment cores

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Zawiska, Izabela; Słowiński, Michał; Brauer, Achim

    2015-04-01

    Holocene lake level changes were studied at Lake Fürstenseer See, a typical lake with complex basin morphology in northeastern German sandur area. An acoustic sub-bottom profile and a transect of four long sediment cores in the deepest lake sub-basin were analyzed. The cores were dated with AMS-14C and correlated with multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera, carbonate isotopes). At sites in 10 and 15 m water depth, shifts in the sand-mud boundary, i.e. sediment limit sensu Digerfeldt (1986), allowed quantitative estimates of the absolute amplitude of lake level changes. At sites in 20 and 23 m water depth, the negative correlation of Ca and Ti reflect lake level changes qualitatively. During high lake stands massive organic muds were deposited. Lower lake levels isolated the lake sub-basins which reduced the overall water circulation and lead to the deposition of Ti-poor carbonate muds. Furthermore, macrofossil and subfossil Cladocera analyses were used as proxies for the intense reworking at the slope and for the trophic state of the lake, respectively. Lake levels were up to 4 m higher, e.g. around 5000 cal. yrs BP and during the Medieval time period (see also Kaiser et al., 2014). During the early to mid-Holocene (between 9400 and 6400 cal. yrs BP), Lake Fürstenseer See fluctuated at an at least 3-m lower level. Further water level changes can be related to known climatic events and regional human impact. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology: 127-144. John Wiley & Sons, New York. Kaiser, K., Küster, M., Fülling, A., Theuerkauf, M., Dietze, E., Graventein, H., Koch, P.J., Bens, O., Brauer, A., 2014. Littoral landforms and pedosedimentary sequences indicating late Holocene lake-level changes in northern central Europe ' A case study from northeastern Germany. Geomorphology 216, 58-78.

  8. The dating and interpretation of Chusang indicates permanent human occupation of the interior of the Tibetan Plateau in the early Holocene

    NASA Astrophysics Data System (ADS)

    Meyer, Michael; Aldenderfer, Mark; Wang, Zhijun; Hoffmann, Dirk; Dahl, Jenny; Degering, Detlev; Haas, Randy; Schlütz, Frank; Gliganic, Luke; May, Jan-Hendrik

    2017-04-01

    central plateau. We suggest that migration onto the plateau during the early Holocene was enabled by the wetter regional climate at that time. These findings challenge (i) current models of the occupation of the Tibetan Plateau and (ii) the original dating of Chusang that - based on OSL multi-grain dating - suggests and an age for the imprints of ca. 20 ka. 1. Aldenderfer, M. (2011): Peopling the Tibetan plateau: Insights from archaeology. High Alt. Med. Biol. 12, 141-147. 2. Chen, F. H. et al. (2015): Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347, 248-250. 3. Meyer, M.C. et al. (2017): Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science 355, 64-67. 4. Lu, D. et al. (2016): Ancestral Origins and Genetic History of Tibetan Highlanders. The American Journal of Human Genetics 99, 580-594. 5. Xiang, K. et al. (2013): Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Molecular biology and evolution 30, 1889-1898.

  9. Holocene vegetation change in the northern Peten and its implications for Maya prehistory

    NASA Astrophysics Data System (ADS)

    Wahl, David; Byrne, Roger; Schreiner, Thomas; Hansen, Richard

    2006-05-01

    An ˜8400 cal yr record of vegetation change from the northern Peten, Guatemala, provides new insights into the environmental history of the archaeological area known as the Mirador Basin. Pollen, loss on ignition, and magnetic susceptibility analyses indicate warm and humid conditions in the early to mid-Holocene. Evidence for a decrease in forest cover around 4600 cal yr B.P. coincides with the first appearance of Zea mays pollen, suggesting that human activity was responsible. The period between 3450 cal yr B.P. and 1000 cal yr B.P. is characterized by a further decline in forest pollen types, includes an abrupt increase in weedy taxa, and exhibits the highest magnetic susceptibility values since the early Holocene, all of which suggest further agricultural disturbance in the watershed. A brief drop in disturbance indicators around 1800 cal yr B.P. may represent the Preclassic abandonment of the area. Changing pollen frequencies around 1000 cal yr B.P. indicate a cessation of human disturbance, which represents the Late Classic collapse of the southern Maya lowlands.

  10. Impact of Arctic shelf summer stratification on Holocene climate variability

    NASA Astrophysics Data System (ADS)

    Thibodeau, Benoit; Bauch, Henning A.; Knies, Jochen

    2018-07-01

    Understanding the dynamic of freshwater and sea-ice export from the Arctic is crucial to better comprehend the potential near-future climate change consequences. Here, we report nitrogen isotope data of a core from the Laptev Sea to shed light on the impact of the Holocene Siberian transgression on the summer stratification of the Laptev Sea. Our data suggest that the oceanographic setting was less favourable to sea-ice formation in the Laptev Sea during the early to mid-Holocene. It is only after the sea level reached a standstill at around 4 ka that the water column structure in the Laptev Sea became more stable. Modern-day conditions, often described as "sea-ice factory", were reached about 2 ka ago, after the development of a strong summer stratification. These results are consistent with sea-ice reconstruction along the Transpolar Drift, highlighting the potential contribution of the Laptev Sea to the export of freshwater from the Arctic Ocean.

  11. Isotopic signature of Tian-Shan mountain soils as a record of climatic changes of the Late Pleistocene and Holocene

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. O.

    2018-01-01

    Specific features of the polygenetic mountain soils of the Tian-Shan (Kyrgystan) are due to the action of present-day and relict soil processes that vary in age and intensity under the influence of glacier movements and climatic fluctuations. These properties can be used as indicators of paleoclimatic changes. The diagnosis of ancient pedogenesis was based on criteria with the longest response time, namely, soil morphology, characteristics of organic matter, 13C-NMR spectra of soil humic acids, isotope composition of humus and carbonates, and the soil age. The results indicate a glacial climate of the Late Pleistocene, a dry and cold climate during the Early Holocene, warm and dry conditions of soil formation in the Middle Holocene, and humidity climate of the Late Holocene.

  12. Pottery use by early Holocene hunter-gatherers of the Korean peninsula closely linked with the exploitation of marine resources

    NASA Astrophysics Data System (ADS)

    Shoda, Shinya; Lucquin, Alexandre; Ahn, Jae-ho; Hwang, Chul-joo; Craig, Oliver E.

    2017-08-01

    The earliest pottery on the Korean peninsula dates to the early Holocene, notably later than other regions of East Asia, such as Japan, the Russian Far East and Southern China. To shed light on the function of such early Korean pottery and to understand the motivations for its adoption, organic residue analysis was conducted on pottery sherds and adhered surface deposit on the wall of pottery vessels (foodcrusts) excavated from the Sejuk shell midden (7.7-6.8ka calBP) on the southeastern coast and the Jukbyeon-ri site (7.9-6.9ka calBP) on the eastern coast of the Korean peninsula, that represents the earliest pottery assemblages with reliable radiocarbon dates. Through chemical and isotopic residue analysis, we conclude that the use of pottery at these sites was oriented towards marine resources, supported by lipid biomarkers typical of aquatic organisms and stable carbon isotope values that matched authentic marine reference fats. The findings contrast with other archaeological evidence, which shows that a wider range of available food resources were exploited. Therefore, we conclude pottery was used selectively for processing aquatic organisms perhaps including the rendering of aquatic oils for storage. Early pottery use in Korea is broadly similar to other prehistoric temperate hunter-gatherers, such as in Japan, northern Europe and northern America. However, it is also notable that elaborately decorated red burnished pottery excavated from isolated location at the Jukbyeon-ri site had a different usage pattern, which indicates that division of pottery use by vessel form was established even at this early stage.

  13. Organic carbon preservation in Southeastern Arabian Sea sediments since mid-Holocene: Implications to South Asian Summer Monsoon variability

    NASA Astrophysics Data System (ADS)

    Nagoji, Siddhesh S.; Tiwari, Manish

    2017-09-01

    The earlier studies show a contrasting long-term trend of the South Asian Summer Monsoon (SASM) after attaining the precessional forcing induced mid-Holocene maximum. The increasing total organic carbon (TOC) concentration of marine sediments in the Southeastern Arabian Sea (SEAS) has been interpreted to imply strengthening SASM since mid-Holocene by a few studies. However, TOC concentration is also influenced by redox conditions, sedimentation rate, and an influx of terrigenous matter depending on the regional settings. So, it needs to be ascertained whether the TOC concentration of the sediments in the SEAS is a signal of productivity related to the SASM strength or preservation. Therefore, we studied multiple proxies (TOC, total nitrogen, atomic C/N, δ13Corg, CaCO3, and major and trace elements concentration) for determining the productivity, redox conditions, detrital supply, and provenance in a sediment core from the upper continental slope of the SEAS spanning the past ˜4700 years at centennial scale resolution. The present study shows that the observed increase in the TOC values since the mid-Holocene is a result of better preservation caused by increased sedimentation rate and enhanced reducing conditions. We further show that the SASM has been declining since mid-Holocene after attaining a precession-forced maximum, which corroborates the earlier model ensemble studies.

  14. Geomorphic and sedimentary responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene environmental change

    NASA Astrophysics Data System (ADS)

    Arauza, Hanna M.; Simms, Alexander R.; Bement, Leland C.; Carter, Brian J.; Conley, Travis; Woldergauy, Ammanuel; Johnson, William C.; Jaiswal, Priyank

    2016-01-01

    Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.

  15. Pleistocene and Holocene Iberian flora: a complete picture and review

    NASA Astrophysics Data System (ADS)

    González Sampériz, Penélope

    2010-05-01

    A detailed analysis of the location and composition of Iberian vegetation types during the whole Pleistocene and Holocene periods shows a complex patched landscape with persistence of different types of ecosystems, even during glacial times. In addition, recent, high-resolution palaeoecological records are changing the traditional picture of post-glacial vegetation succession in the Iberian Peninsula. The main available charcoal and pollen sequences include, coniferous and deciduous forest, steppes, shrublands, savannahs and glacial refugia during the Pleistocene for Meso-thermophytes (phytodiversity reservoirs), in different proportions. This panorama suggests an environmental complexity that relates biotic responses to climate changes forced by Milankovitch cycles, suborbital forcings and by the latitudinal and physiographic particularities of the Iberian Peninsula. Thus, many factors are critical in the course of vegetational developments and strong regional differences are observed since the Early Pleistocene. Currently, the flora of Iberia is located in two biogeographical/climatic regions: the Eurosiberian and the Mediterranean. The first one includes northern and northwestern areas of the peninsula, where post-glacial responses of vegetation are very similar to Central Europe, although with some particularities due to its proximity to both the Atlantic Ocean and the Mediterranean region. The second one comprises the main territory of Iberia and shows more complex patterns and singularities, now and in the past. Steppe landscapes dominated extensive areas over all the territory during the cold spells of the Quaternary, especially during the Late Pleistocene up to the Last Glacial Maximum, but differences in composition of the dominant taxa (Compositae versus Artemisia) are observed since the Early Pleistocene, probably related to moisture regional gradients. Coastal shelves and intramountainous valleys, even in continental areas, are spots of floristic

  16. Fossil insects may provide unique information on structures and disturbances in past forest ecosystems - examples from Holocene studies in southern Sweden

    NASA Astrophysics Data System (ADS)

    Lemdahl, Geoffrey; Gustavsson, Gunnar; Olsson, Fredrik; Gaillard, Marie-José

    2010-05-01

    Insects are complex organisms that play an important role in all types of forest ecosystems. Insect remains are often abundant in waterlogged sediments and peat, and the majority of the fossils may be identified to species level, thus contributing with specific information. The occurrence of species feeding or confined to one or a few species of herbaceous plants, shrubs and trees may confirm or improve/refine the interpretations based on pollen and plant macrofossil analyses. Many insects, particularly ground living animals, select open, sun exposed habitats or closed shaded areas. Such indicators are valuable for reconstructions of forest/landscape openness. However, unique information can be provided by fossil insect assemblages. Insect studies carried out at two natural sites in southern Sweden with complete Holocene peat stratigraphies (Olsson and Lemdahl 2009) and a number of sites covering parts of the Holocene (e.g. Gaillard and Lemdahl 1994, Gustavsson et al. 2009) provide strong evidence on changes in forest structure and the occurrence and nature of disturbances. Studies in Britain have yielded similar results (e.g. Whitehouse 2006). Saproxylic beetles indicate the presence of dead wood, which clearly was a more prominent component in ancient woodlands than in present forests, and beetles confined to wood mould suggest the presence of large hollow trees. Finds of pyrophilic species, of which some are very rare in European woodlands today, together with layers of charcoal, suggest that fire was a major disturbance factor during most of the Holocene in southern Sweden. Whereas macroscopic charcoal fragments indicate local fires, the presence of pyrophilic insects is an indication of continuous fire activity at the regional spatial scale. Remains of dung beetles indicate extensive grazing by megaherbivores during early Holocene, and more intensive grazing during late Holocene, whereas such indicators are absent from mid Holocene records, which correlates

  17. Mid-Late Holocene Asian monsoon variations recorded in the Lake Rara sediment, western Nepal

    NASA Astrophysics Data System (ADS)

    Nakamura, A.; Yokoyama, Y.; Maemoku, H.; Yagi, H.; Okamura, M.; Matsuoka, H.; Miyake, N.; Adhikari, D.; Dangol, V.; Miyairi, Y.; Obrochta, S.; Matsuzaki, H.; Ikehara, M.

    2011-12-01

    ZS, Wu JY, Kelly MJ, Dykoski, CA, Li XD. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308: 854-857.

  18. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Tinner, Willy; van Leeuwen, Jacqueline F. N.; Colombaroli, Daniele; Vescovi, Elisa; van der Knaap, W. O.; Henne, Paul D.; Pasta, Salvatore; D'Angelo, Stefania; La Mantia, Tommaso

    2009-07-01

    We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests ( Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic ( Ficus carica-Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000-6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilex- O. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and

  19. Characterising Late-Holocene glacier variability in the southern tropical Andes

    NASA Astrophysics Data System (ADS)

    Bromley, G.; Winckler, G.; Hall, B. L.; Schaefer, J. M.

    2011-12-01

    Accurate resolution of both the timing and magnitude of Late-Holocene climate events, such as the Little Ice Age, is vital in order to test different hypotheses for the causes and propagation of such climate variability. However, in contrast to higher latitudes, well-dated records from the tropics are relatively rare and the overall climatic structure of the last millennium remains unresolved. Much of this uncertainty stems from difficulties associated with radiocarbon dating in these dry, often high-altitude environments, a situation that now is being addressed through the application and refinement of cosmogenic surface-exposure methods. We present detailed Late-Holocene moraine records, resolved with radiocarbon and surface-exposure dating, from sites across the Andes of southern Peru. Specifically, we describe glacial records from both the arid Western Cordillera, where glaciation is limited by moisture availability, and the humid Eastern Cordillera, where ablation is controlled primarily by air temperature. In both locations, the most recent advance is marked by two to three unweathered terminal moraines located several hundred metres beyond the modern ice margins. Our chronology indicates that, while the advance occurred broadly in step with the classic 'Little Ice Age', the maximum glacial extent in southern Peru was achieved relatively early on and that the 18th and 19th centuries were dominated by glacier retreat. In a broader temporal context, our data also confirm that, in contrast to northern temperate latitudes, the event in southern Peru was the most recent significant interruption in a progressive Holocene retreat. The consistency in glacier response between the different climate zones suggests (i) that this pattern of Late-Holocene climate variability was of at least regional extent and (ii) that temperature fluctuations were the primary driving mechanism.

  20. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Zheng, Xufeng; Li, Anchun; Wan, Shiming; Jiang, Fuqing; Kao, Shuh Ji; Johnson, Cody

    2014-07-01

    Deep-sea fan sediments provide an excellent geological archive for paleoenvironment reconstruction. Grain size, clay mineral and elemental (Ti, Fe, Ca) compositions were measured for a core retrieved from a submarine fan in the Okinawa Trough. Varimax-rotated Principal Component Analysis (V-PCA) on time-evolution of grain size spectrum reveals that, since the Holocene, sediment was transported mainly by the benthic nepheloid layer (33%) and upper layers (33%) which is driven by the East Asian winter monsoon (EAWM). The intensification of the Kuroshio Current during the Holocene, masks the fluvial signal of the summer monsoon and obstructs clay minerals derived from the Yellow River, a major contributor prior to 12 ka BP. A new grain size index (GSI), which represents the EAWM well, exhibits a negative correlation with the δ18O record in Dongge Cave, China during the Holocene when sea level was relatively steady. This anticorrelation suggests the southward migration of the Intertropical Convergence Zone (ITCZ). The consistency among our records and rainfall records in Peru, Ti counts in the Cariaco Basin, monsoon records in Oman and the averaged summer insolation pattern at 30°N further support the ITCZ's impact on monsoon systems globally. Cross-Correlation Analyses for GSI and log(Ti/Ca) against δ18O record in Dongge Cave reveal a decoupling between the East Asian winter and summer monsoon during 5500-2500 cal yr BP, with greater complexity in the last 2500 years. This can be attributed to exacerbated ENSO mode fluctuations and possibly anthropogenic interference superimposed on insolation and ITCZ forcing.

  1. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Zheng, Xufeng; Li, Anchun; Wan, Shiming; Kao, Shuhji; Kuhn, Gerhard

    2016-04-01

    Deep-sea fan sediments provide an excellent geological archive for paleoenvironment reconstruction. Grain size, clay mineral and elemental (Ti, Fe, Ca) compositions were measured for a core retrieved from a submarine fan in the Okinawa Trough. Varimax-rotated Principal Component Analysis (V-PCA) on time-evolution of grain size spectrum reveals that, since the Holocene, sediment was transported mainly by the benthic nepheloid layer (33%) and upper layers (33%) which is driven by the East Asian winter monsoon (EAWM). The intensification of the Kuroshio Current during the Holocene, masks the fluvial signal of the summer monsoon and obstructs clay minerals derived from the Yellow River, a major contributor prior to 12 ka BP. A new grain size index (GSI), which represents the EAWM well, exhibits a negative correlation with the δ18O record in Dongge Cave, China during the Holocene when sea level was relatively steady. This anticorrelation suggests the southward migration of the Intertropical Convergence Zone (ITCZ). The consistency among our records and rainfall records in Peru, Ti counts in the Cariaco Basin, monsoon records in Oman and the averaged summer insolation pattern at 30°N further support the ITCZ's impact on monsoon systems globally. Cross-Correlation Analyses for GSI and log(Ti/Ca) against δ18O record in Dongge Cave reveal a decoupling between the East Asian winter and summer monsoon during 5500-2500 cal yr BP, with greater complexity in the last 2500 years. This can be attributed to exacerbated ENSO mode fluctuations and possibly anthropogenic interference superimposed on insolation and ITCZ forcing.

  2. The sedimentary records of Holocene environmental changes from the Central High of the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Filikci, Betul; Çağatay, Namık; Kadir Eriş, Kürşad; Akyol, Mustafa; Yalamaz, Burak; Uçarkuş, Gülsen; Henry, Pierre

    2015-04-01

    The Sea of Marmara (SoM) is located between the Aegean Sea and the Black Sea, to which it is connected via the Istanbul (Bosphorus) and Canakkale (Dardanelles) straits having sill depths of 65 and 35 m, respectively. It has a two-way water mass exchange with a permanent pycnocline located at 20-25 m water depth. With the objective of determining Holocene paleoenvironmental changes, we studied a 8.36 m-long piston core recovered from the Central High of the SoM at a water depth of 835 m, using multiproxy analyses such as total organic and inorganic carbon, high resolution µ-XRF core scanner analysis, grain size, magnetic susceptibility and density. A 2 cm-thick tephra layer with high K and Zr and relatively low magnetic susceptibility occurs at 2.1 meter below sea floor (mbsf), which is correlated with the Avellino (Somma-Vesuvius, Italy) eruption dated at 3.9 ka BP, according to the previous studies. Using this age and assuming a uniform sedimentation rate, the base of the core dates back to ca 8 ka BP. The core includes organic-rich (sapropelic) sediments with 1.5 % to 2.2%) in its top 3.5 m and bottom 1 m. Sapropelic layers are olive green and in part laminated, and contain occasional reddish brown spots and laminae formed by oxidation of iron monosulphides. The core also contains some few mm- to cm-thick sandy-silty mass-flow units below 2.4 mbsf, some of which could have been triggered by the earthquake activity on the Central High segment of the North Anatolian Fault, just a few km away from the core location. Variations in Ca-Ti ratio suggest millennial-scale climatic changes during the Holocene. Keywords: Sea of Marmara, Holocene paleoenvironmental records, tephra, turbidites, TOC analysis, XRF analysis, physical properties.

  3. Past collapse and late Holocene reestablishment of the Petermann Ice Tongue, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.

    2017-12-01

    Petermann Glacier, Northwest Greenland, has been a stable outlet glacier of the Greenland Ice Sheet on historical timescales. Yet, anomalous calving events in 2010 and 2012 and oceanographic studies over the last decade indicate that Petermann Glacier and its ice tongue are especially sensitive to ice-ocean interactions, leading many to speculate on its future stability. To place these observations in the context of a longer timeframe and better understand the sensitivity of Petermann Glacier to future climate change, a 2015 international and interdisciplinary expedition of the Icebreaker Oden collected a suite of sediment cores from Petermann Fjord, spanning the mid to late Holocene and forming a transect from beneath the modern ice tongue to the mouth of the fjord (25 - 80 km from the modern grounding line). We characterize the stratigraphy ( 5.5 - 6.5 m at piston core sites) using a combination of X-ray fluorescence (XRF) scanning geochemistry, computed tomography (CT) scanning, and particle-size specific magnetic measurements on these cores and nearby terrestrial samples. Age-depth modeling, based on radiocarbon dated benthic foraminifera, is in progress with reservoir age corrections assessed using paleomagnetic comparisons to regional and global records. We observe changes in the composition and spatial pattern of ice rafted debris (IRD) and sediment fabric that reveal a dynamic history. Following early Holocene deglaciation of the region, a paleo-ice tongue broke up and an extended period of seasonally open marine conditions ensued through the middle Holocene. This ice-tongue collapse was followed by a large increase in the relative abundance of Petermann sourced IRD of non-local granitic composition. This granitic IRD component steadily declined through the middle Holocene, reaching negligible contributions when the ice tongue was reestablished in the late Holocene. Regional paleoenvironmental studies suggest warmer oceanographic and atmospheric conditions

  4. Holocene fire occurrence and alluvial responses at the leading edge of pinyon–juniper migration in the Northern Great Basin, USA

    USGS Publications Warehouse

    Weppner, Kerrie N.; Pierce, Jennifer L.; Betancourt, Julio L.

    2013-01-01

    Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the interaction of changing climate, fire and vegetation along the migrating front of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occurrence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals. Fire peaks occurred ~ 10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas ~ 9500–7200, 6700–4700 and ~ 1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled episodic fires and debris flows during the early and late Holocene, whereas drier climates and reduced vegetation caused frequent sheetflooding during the mid-Holocene. Increased fires during the wetter and more variable late Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until ~ 700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~ 850–700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in accelerated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass invasion.

  5. Southern westerly winds: a pacemaker of Holocene glacial fluctuations in Patagonia?

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Reynhout, S.; Kaplan, M. R.; Patricio, M. I.; Aravena, J. C.; Martini, M. A.; Schaefer, J. M.

    2017-12-01

    A well-resolved glacial chronology is crucial to compare sequences of glacial/climate events within and between regions, and thus, to unravel mechanisms underlying past climate changes. Important efforts have been made towards understanding the Holocene climate evolution of the Southern Andes; however, the timing, patterns and causes of glacial fluctuations during this period still remain elusive. Recent advances in terrestrial cosmogenic nuclide surface exposure dating, together with the establishment of a Patagonian 10Be production rate, have opened new possibilities for establishing high-resolution glacial chronologies at centennial/decadal scale. Here we present a 10Be surface exposure chronology of fluctuations of a small, climate-sensitive mountain glacier at Mt. Fitz Roy area (49.3°S), spanning from the last glacial termination to the present. Thirty new 10Be ages show glacial advances and moraine building events at 17.1±0.9 ka, 13.5±0.5 ka, 10.2±0.7 ka or 9.9±0.5 ka, 6.9±0.2 ka, 6.1±0.3 ka, 4.5±0.2 ka and 0.5±0.1 ka. Similar to the pattern observed in New Zealand, this sequence features progressively less extensive glacial advances during the late-glacial and early Holocene, followed by advances of roughly similar extent during the mid- to late-Holocene. We suggest that while the magnitude of Holocene glacial fluctuations in Patagonia is modulated by SH summer insolation ("modulator"), the specific timing of these glacial events is influenced by centennial-scale shifts of the Southern Westerly Winds ("pacemaker").

  6. Demise of reef-flat carbonate accumulation with late Holocene sea-level fall: Evidence from Molokai, Hawaii

    USGS Publications Warehouse

    Engels, M.S.; Fletcher, C.H.; Field, M.; Conger, C.L.; Bochicchio, C.

    2008-01-01

    Twelve cores from the protected reef-flat of Molokai revealed that carbonate sediment accumulation, ranging from 3 mm year-1 to less than 1 mm year-1, ended on average 2,500 years ago. Modern sediment is present as a mobile surface veneer but is not trapped within the reef framework. This finding is consistent with the arrest of deposition at the end of the mid-Holocene highstand, known locally as the "Kapapa Stand of the Sea," ???2 m above the present datum ca. 3,500 years ago in the main Hawaiian Islands. Subsequent erosion, non-deposition, and/or a lack of rigid binding were probable factors leading to the lack of reef-flat accumulation during the late Holocene sea-level fall. Given anticipated climate changes, increased sedimentation of reef-flat environments is to be expected as a consequence of higher sea level. ?? 2008 Springer-Verlag.

  7. Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave

    NASA Astrophysics Data System (ADS)

    Xia, Qikai; Zhao, Jian-xin; Collerson, K. D.

    2001-12-01

    Mass spectrometric uranium-series dating and C-O isotopic analysis of a stalagmite from Lynds Cave, northern Tasmania, Australia provide a high-resolution record of regional climate change between 5100 and 9200 yr before present (BP). Combined δ18O, δ13C, growth rate, initial 234U/238U and physical property (color, transparency and porosity) records allow recognition of seven climatic stages: Stage I (>9080 yr BP) - a relatively dry period at the beginning of stalagmite growth evidenced by elevated 234U/238U; Stage II (9080-8600 yr BP) - a period of unstable climate characterized by high-frequency variability in temperature and bio-productivity; Stage III (8600-8000 yr BP) - a period of stable and moderate precipitation and stable and high bio-productivity, with a continuously rising temperature; Stage IV (8000-7400 yr BP) - the warmest period with high evaporation and low effective precipitation (rainfall less evaporation); Stage V (7400-7000 yr BP) - the wettest period with highest stalagmite growth and enhanced but unstable bio-productivity; Stage VI (7000-6600 yr BP) - a period with a significantly reduced precipitation and bio-productivity without noticeable change in temperature; Stage VII (6600-5100 yr BP) - a period of lowest temperature and precipitation marking a significant climatic deterioration. Overall, the records suggest that the warmest climate occurred between 8000 and 7400 yr BP, followed by a wettest period between 7400 and 7000 yr BP. These are broadly correlated with the so-called 'Mid Holocene optimum' previously proposed using pollen and lake level records. However, the timing and resolution of the speleothem record from Lynds Cave are significantly higher than in both the pollen and lake level records. This allows us to correlate the abrupt change in physical property, δ18O, δ13C, growth rate, and initial 234U/238U of the stalagmite at ˜8000 yr BP with a global climatic event at Early-Mid Holocene transition.

  8. Late Wisconsin and Early Holocene runoff through the upper Ohio River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kite, J.S.

    A tentative absolute chronology is emerging from radiocarbon dates on glacial, alluvial and colluvial sediments in the upper Ohio River basin. Radiocarbon dates for Gallipolis Lock and Dam indicate the river eroded down to its present bedrock floor before 22,400 yr B.P. Data from several sites indicate aggradation began soon after 22,400 yr B.P., coincident with, or just before, a glacier advance into the upper Ohio basin. Sand and gravel aggraded in glaciated tributaries and the main valley, whereas silt, fine sand, and clay accumulated in unglaciated tributaries. Slope instability and colluvial deposition were extensive at this time. Aggradation continuedmore » until 25 to 40 m of sediments filled the Ohio River Valley. The paucity of radiocarbon dates prohibits precise determination of when peak aggradation occurred and how that peak related to glacial and climatic events. Although the Laurentide Ice Sheet retreated out of the basin by about 14,000 yr B.P., the river remained braided until at least 13,000 yr B.P., possibly because of slope instability in a cold late Wisconsin climate or the time required for the river to adjust to reduced outwash sediment supply. Coarse late-glacial channel deposits may reflect increased flood discharges after 13,000 B.P. and onset of the transition from a braided system to a meandering channel. However, the upper Ohio River seems not to have taken on its modern morphology until the early Holocene. Most dated overbank deposits on tributaries are younger than 10,000 yr B.P.; most on the Ohio River are younger than 8,500 yr B.P.« less

  9. High-resolution Record of Holocene Climate, Vegetation, and Fire from a Raised Peat Bog, Prince Edward Island, Canadian Maritimes

    NASA Astrophysics Data System (ADS)

    Peros, M. C.; Chan, K.; Ponsford, L.; Carroll, J.; Magnan, G.

    2014-12-01

    Raised peat bogs receive all precipitation and nutrients from the atmosphere and are thus widely used archives for information on past environments and climates. In this paper we provide high-resolution multi-proxy data from a raised bog from northeastern Prince Edward Island, located in the Gulf of St. Lawrence, Canada. We studied testate amoeba (a proxy for water table depth), macrocharcoal (a proxy for local-scale fire), peat humification (a proxy for decomposition), plant macrofossils (indicative of local-scale vegetation), and organic matter content (yielding carbon accumulation rates) from a 5.5 m long core lifted from the center of Baltic Bog. Eleven AMS radiocarbon dates show that peat accumulation began before 9000 cal yr BP and continued almost uninterrupted until the present. The macrofossil data show that a transition from a sedge-dominated fen to a sphagnum-dominated bog occurred around 8000 cal yr BP, and sphagnum remained dominant in the bog throughout most of the Holocene. A testate amoeba-based reconstruction of water table depth indicates that conditions were drier during the early Holocene (~8000 to 5000 cal yr BP) and became gradually wetter into the late Holocene. In addition, a number of higher frequency shifts in precipitation are inferred throughout the Holocene on the basis of the testate amoeba and humification results. The macrocharcoal evidence indicates fire—probably in the surrounding forest—was relatively more common during the early Holocene, perhaps due to drier climate conditions. A large influx of charcoal at around 2000 cal yr BP suggests the presence of one or more major fires at this time, and a concurrent decrease in the rate of peat accumulation indicates the fire may have affected the bog itself. The data from Baltic Bog is broadly comparable to other proxy data (in particular pollen studies) from the Canadian Maritimes. This work is important because it: 1) helps us better understand the role of hydroclimatic

  10. Holocene history and environmental reconstruction of a Hercynian mire and surrounding mountain landscape based on multiple proxies

    NASA Astrophysics Data System (ADS)

    Dudová, Lydie; Hájková, Petra; Opravilová, Věra; Hájek, Michal

    2014-07-01

    We discovered the first peat section covering the entire Holocene in the Hrubý Jeseník Mountains, representing an island of unique alpine vegetation whose history may display transitional features between the Hercynian and Carpathian regions. We analysed pollen, plant macrofossils (more abundant in bottom layers), testate amoebae (more abundant in upper layers), peat stratigraphy and chemistry. We found that the landscape development indeed differed from other Hercynian mountains located westward. This is represented by Pinus cembra and Larix during the Pleistocene/Holocene transition, the early expansion of spruce around 10,450 cal yr BP, and survival of Larix during the climatic optimum. The early Holocene climatic fluctuations are traced in our profile by species compositions of both the mire and surrounding forests. The mire started to develop as a calcium-rich percolation fen with some species recently considered to be postglacial relicts (Meesia triquetra, Betula nana), shifted into ombrotrophy around 7450 cal yr BP by autogenic succession and changed into a pauperised, nutrient-enriched spruce woodland due to modern forestry activities. We therefore concluded that its recent vegetation is not a product of natural processes. From a methodological viewpoint we demonstrated how using multiple biotic proxies and extensive training sets in transfer functions may overcome taphonomic problems.

  11. Holocene temperature shifts around Greenland: Paleolimnological approaches to quantifying past warmth and documenting its consequences

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Lasher, G. E.; McFarlin, J. M.; Francis, D. R.; Kelly, M. A.; Langdon, P. G.; Levy, L.; Osburn, M. R.; Osterberg, E. C.

    2015-12-01

    Insolation-driven warmth across the Arctic during the early to middle Holocene (the Holocene Thermal Maximum, or HTM) represents a geologically accessible analog for future warming and its impacts. Improved constraints on the magnitude and seasonality of HTM warmth around Greenland's margins can advance the use of paleoclimate data to test and improve climate and ice sheet models. Here we present an overview of our recent efforts to reconstruct climate through the Holocene around the margins of the Greenland Ice Sheet using multiple proxies in lake sediments. We use insect (chironomid) assemblages to derive quantitative estimates of Holocene temperatures at sites with minimal soil and vegetation development near the eastern, northwestern and western margins of the ice sheet. Our chironomid-based temperature reconstructions consistently imply HTM July air temperatures 3 to 4.5 °C warmer than the pre-industrial late Holocene in these sectors of Greenland. The timing of reconstructed peak warmth differs between sites, with onset varying from ~10 ka to ~6.5 ka, but in good agreement with glacial geology and other evidence from each region. Our reconstructed temperature anomalies are larger than those typically inferred from annually-integrated indicators from the ice sheet itself, but comparable to the few other quantitative summer temperature estimates available from beyond the ice sheet on Greenland. Additional records are needed to confirm the magnitude of HTM warmth and to better define its seasonality and spatial pattern. To provide independent constraints on paleotemperatures and to elucidate additional aspects of Holocene paleoclimate, we are also employing oxygen isotopes of chironomid remains and other aquatic organic materials, and molecular organic proxies, in parallel (see Lasher et al. and McFarlin et al., this meeting). Combined with glacial geologic evidence, these multi-proxy records elucidate diverse aspects of HTM climate around Greenland - including

  12. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area

    PubMed Central

    WU, HAO; XU, FENG-LEI; YIN, YONG; DA, PENG; YOU, XIAO-DONG; XU, HUI-MIN; TANG, YAN

    2015-01-01

    Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation. PMID:25873216

  13. Late glacial to Holocene water level and climate changes in the Gulf of Gemlik, Sea of Marmara: evidence from multi-proxy data

    NASA Astrophysics Data System (ADS)

    Filikci, Betül; Eriş, Kürşad Kadir; Çağatay, Namık; Sabuncu, Asen; Polonia, Alina

    2017-10-01

    Multi-proxy analyses of new piston core M13-08 together with seismic data from the Gulf of Gemlik provide a detailed record of paleoceanographic and paleoclimatic changes with special emphasis on the timing of the connections between the Sea of Marmara (SoM) and the Gulf of Gemlik during the late Pleistocene to Holocene. The deposition of a subaqueous delta sourced from the Armutlu River to the north is attributed to the lowstand lake level at -60 m in the gulf prior to 13.5 cal ka BP. On the basis of the seismic data, it is argued that the higher lake level (-60 m) in the gulf compared to the SoM level (-85 m) attests to its disconnection from the SoM during the late glacial period. Ponto-Caspian assemblages in the lacustrine sedimentary unit covering the time period between 13.5 and 12 cal ka BP represent a relict that was introduced into the gulf by a Black Sea outflow during the marine isotope stage 3 interstadial. Contrary to the findings of previous studies, the data suggest that such an outflow into the Gulf of Gemlik during the late glacial period could have occurred only if the SoM lake level (-85 m) was shallower than the sill depth (-55 m) of the gulf in the west. A robust age model of the core indicates the connection of the gulf with the marine SoM at 12 cal ka BP, consistent with the sill depth (-55 m) of the gulf on the global sea level curve. Strong evidence of a marine incursion into the gulf is well documented by the μ-XRF Sr/Ca data. The available profiles of elemental ratios in core M13-08, together with the age-depth model, imply that a warm and wet climate prevailed in the gulf during the early Holocene (12-10.1 cal ka BP), whereas the longest drought occurred during the middle Holocene (8.2-5.4 cal ka BP). The base of the main Holocene sapropel in the gulf is dated at 10.1 cal ka BP, i.e., 500 years younger than its equivalent in the SoM. The late Holocene is earmarked by warm and wet climate periods (5.0-4.2 and 4.2-2.7 cal ka BP) with some

  14. Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: Changing sediment provenance and basin hydrography over the past 20,000 years

    USGS Publications Warehouse

    Piper, David Z.; Calvert, S.E.

    2011-01-01

    The elemental geochemistry of Late Pleistocene and Holocene sediments of the Black Sea, recovered in box cores from the basin margins and a 5-m gravity core from the central abyssal region of the basin, identifies two terrigenous sediment sources over the last 20 kyrs. One source region includes Anatolia and the southern Caucasus; the second region is the area drained by rivers entering the Black Sea from Eastern Europe. Alkali metal:Al and heavy:light rare-earth element ratios reveal that the relative contribution of the two sources shifted abruptly every few thousand years during the late glacial and early Holocene lacustrine phase of the basin. The shifts in source were coeval with changes in the lake level as determined from the distribution of quartz and the heavy mineral-hosted trace elements Ti and Zr.The geochemistry of the abyssal sediments further recorded a sequence of changes to the geochemistry of the water column following the lacustrine phase, when high salinity Mediterranean water entered the basin beginning 9.3 kyrs BP. Bottom water that had been oxic throughout the lake phase became anoxic at approximately 8.4 kyrs BP, as recorded by the accumulation from the water column of several redox-sensitive trace metals (Mo, Re, U). The accumulation of organic carbon and several trace nutrients (Cd, Cu, Ni, Zn) increased sharply ca. 0.4 kyrs later, at 8.0 kyrs BP, reflecting an increase of primary productivity. Its increase was coeval with a shift in the dinoflagellate ecology from stenohaline to euryhaline assemblages. During this profound environmental change from the lacustrine to the marine phase, the accumulation rate of the lithogenous sediment fraction decreased as much as 10-fold in response to the rise of the water level in the basin from a low stand ca. 9.3 ka to its current level.

  15. Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: Changing sediment provenance and basin hydrography over the past 20,000 years

    USGS Publications Warehouse

    Piper, D.Z.; Calvert, S.E.

    2011-01-01

    The elemental geochemistry of Late Pleistocene and Holocene sediments of the Black Sea, recovered in box cores from the basin margins and a 5-m gravity core from the central abyssal region of the basin, identifies two terrigenous sediment sources over the last 20. kyrs. One source region includes Anatolia and the southern Caucasus; the second region is the area drained by rivers entering the Black Sea from Eastern Europe. Alkali metal:Al and heavy:light rare-earth element ratios reveal that the relative contribution of the two sources shifted abruptly every few thousand years during the late glacial and early Holocene lacustrine phase of the basin. The shifts in source were coeval with changes in the lake level as determined from the distribution of quartz and the heavy mineral-hosted trace elements Ti and Zr. The geochemistry of the abyssal sediments further recorded a sequence of changes to the geochemistry of the water column following the lacustrine phase, when high salinity Mediterranean water entered the basin beginning 9.3. kyrs BP. Bottom water that had been oxic throughout the lake phase became anoxic at approximately 8.4. kyrs BP, as recorded by the accumulation from the water column of several redox-sensitive trace metals (Mo, Re, U). The accumulation of organic carbon and several trace nutrients (Cd, Cu, Ni, Zn) increased sharply ca. 0.4. kyrs later, at 8.0. kyrs BP, reflecting an increase of primary productivity. Its increase was coeval with a shift in the dinoflagellate ecology from stenohaline to euryhaline assemblages. During this profound environmental change from the lacustrine to the marine phase, the accumulation rate of the lithogenous sediment fraction decreased as much as 10-fold in response to the rise of the water level in the basin from a low stand ca. 9.3. ka to its current level.

  16. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    Treesearch

    Megan K. Walsh; Christopher A. Pearl; Cathy Whitlock; Patrick J. Bartlein; Marc A. Worona

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11 000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11 000-7500 calendar years before present [cal yr BP]), warmer, drier summers than at...

  17. Two phases of the Holocene East African Humid Period: Inferred from a high-resolution geochemical record off Tanzania

    NASA Astrophysics Data System (ADS)

    Liu, Xiting; Rendle-Bühring, Rebecca; Kuhlmann, Holger; Li, Anchun

    2017-02-01

    During the Holocene, the most notably climatic change across the African continent is the African Humid Period (AHP), however the pace and primary forcing for this pluvial condition is still ambiguous, particularly in East Africa. We present a high-resolution marine sediment record off Tanzania to provide insights into the climatic conditions of inland East Africa during the Holocene. Major element ratios (i.e., log-ratios of Fe/Ca and Ti/Ca), derived from X-Ray Fluorescence scanning, have been employed to document variations in humidity in East Africa. Our results show that the AHP is represented by two humid phases: an intense humid period from the beginning of the Holocene to 8 ka (AHP I); and a moderate humid period spanning from 8 to 5.5 ka (AHP II). On the basis of our geochemical record and regime detection, the termination of the AHP initiated at 5.5 ka and ceased around 3.5 ka. Combined with other paleoclimatic records around East Africa, we suggest that the humid conditions in this region responded to Northern Hemisphere (NH) summer insolation. The AHP I and II might have been related to an eastward shift of the Congo Air Boundary and warmer conditions in the western Indian Ocean, which resulted in additional moisture being delivered from the Atlantic and Indian Oceans during the NH summer and autumn, respectively. We further note a drought event throughout East Africa north of 10°S around 8.2 ka, which may have been related to the southward migration of the Intertropical Convergence Zone in response to the NH cooling event.

  18. Holocene Activity of the Quelccaya Ice Cap: A Working Model

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Smith, C. A.; Kelly, M. A.; Stroup, J. S.

    2012-12-01

    The patterns and magnitudes of past climate change in the topics are still under discussion. We contribute here by reporting on patterns of glacier length changes of the largest glacier in the tropics, Quelccaya Ice Cap (~13.9°S, 70.9°W, summit at 5645 m). This ice cap has several local domes that may have different patterns of length changes because of differing elevations of the domes (high to the north, lower to the south). Prior work (Mark et al. 2003, Abbott et al., 2004; Thompson et al., 2005; Buffen, et al., 2009), new radiocarbon ages, and stratigraphic and geomorphic relationships are used to determine the general pattern of length changes for the outlets from this ice cap. We exploit geomorphic relationships and present new radiocarbon ages on interpreted stratigraphic sections to determine the pattern of length changes for this ice cap. Ice retreated during late glacial times (Rodbell and Seltzer, 2000; Kelly et al., in press). By 11,400 yr BP it had reached a position ~1.2 km beyond its present (2000 AD) extent. While length during the early Holocene is problematic, present evidence permits, but does not prove, extents of 0.5 to 1.0 km down-valley from the present margin. Between 6400 and 4400 yr BP the ice cap was smaller than present, but it advanced multiple times during the late Holocene. Lengths of up to 1 km beyond present were achieved at 3400 yr BP and ~500 yr BP. Additionally, the ice advanced to 0.8 km beyond its present margin at 1600 yr BP. Because these glaciers were temperate, we take these lengths to represent primarily changes in temperature. This may suggest that lowering insolation values in the northern hemisphere during the Holocene provide a first order control on tropical temperatures. Alternatively, it may be that major reorganization of the topical circulation belts about 5000 yr BP yields two configurations of the QIC and hence Holocene temperatures - one at the present ice margin and and the second about 1 km beyond the

  19. Lacustrine Records of Holocene Mountain Glacier Fluctuations from Western Greenland

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A.; Briner, J. P.; Bennike, O.

    2014-12-01

    Recent studies have focused on documenting fluctuations of the Greenland Ice Sheet margin throughout the Holocene but few data exist that constrain past changes of local glaciers independent of the ice sheet. Our research combines proglacial lake sediment analysis with cosmogenic 10Be dating of Holocene moraines and radiocarbon dating of ice-cap-killed vegetation with an overall objective to use this multi-proxy approach to generate a detailed record of the coupled climate-glacier system through the Holocene. Here, we present lacustrine records of mountain glacier variability from continuous pro-glacial lake sediment sequences recovered from two glaciated catchments in northeastern Nuussuaq, western Greenland. We use radiocarbon-dated sediments from Sikuiui and Pauiaivik lakes to reconstruct the timing of advance and retreat of local glaciers. Sediments were characterized with magnetic susceptibility (MS), gamma density, Itrax XRF and visible reflectance spectroscopy at 0.2 cm intervals and sediment organic matter at 0.5 cm intervals. Basal radiocarbon ages provide minimum-age constraints on deglaciation from Sikuiui and Pauiaivik lakes of ~9.6 and 8.7 ka, respectively. Organic-rich gyttja from deglaciation until ~5.0 ka in Pauiaivik Lake suggests minimal glacial extent there while slightly elevated MS values from ~9.0 - 7.0 ka in Sikuiui Lake may reflect early Holocene glacial advances. Minerogenic sediment input gradually increases starting at ~5.0 ka in Pauiaivik Lake, which we interpret as the onset of Neoglaciation in the catchment. Furthermore, a distinct episode of enhanced glacial activity from ~4.0 - 2.2 ka in Sikuiui Lake may be correlative to a period of persistent snowline lowering evidenced by radiocarbon dates of ice-killed vegetation from nearby ice cap margins. Results from these lacustrine records and our ice-killed vegetation dataset suggest a middle Holocene onset of Neoglaciation ~5.0 - 4.0 ka in this region. We are supplementing these records

  20. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia

    NASA Astrophysics Data System (ADS)

    Mackay, Anson W.; Bezrukova, Elena V.; Leng, Melanie J.; Meaney, Miriam; Nunes, Ana; Piotrowska, Natalia; Self, Angela; Shchetnikov, Alexander; Shilland, Ewan; Tarasov, Pavel; Wang, Luo; White, Dustin

    2012-05-01

    Boreal ecosystems are highly vulnerable to climate change, and severe ecological impacts in the near future are virtually certain to occur. We undertook a multiproxy study on an alpine lake (ESM-1) at the modern tree-line in boreal, southern Siberia. Steppe and tundra biomes were extensive in eastern Sayan landscapes during the early Holocene. Boreal forest quickly expanded by 9.1 ka BP, and dominated the landscape until c 0.7 ka BP, when the greatest period of compositional turnover occurred. At this time, alpine meadow landscape expanded and Picea obovata colonised new habitats along river valleys and lake shorelines, because of prevailing cool, moist conditions. During the early Holocene, chironomid assemblages were dominated by cold stenotherms. Diatoms for much of the Holocene were dominated by alkaliphilous, fragilarioid taxa, up until 0.2 ka BP, when epiphytic species expanded, indicative of increased habitat availability. C/N mass ratios ranged between 9.5 and 13.5 (11.1-15.8 C/N atomic ratios), indicative of algal communities dominating organic matter contributions to bottom sediments with small, persistent contributions from vascular plants. However, δ13C values increased steadily from -34.9‰ during the early Holocene (9.3 ka BP) to -24.8‰ by 0.6 ka BP. This large shift in magnitude may be due to a number of factors, including increasing within-lake productivity, increasing disequilibrium between the isotopic balance of the lake with the atmosphere as the lake became isotopically ‘mature’, and declining soil respiration linked to small, but distinct retreat in forest biomes. The influence of climatic variables on landscape vegetation was assessed using redundancy analysis (RDA), a linear, direct ordination technique. Changes in July insolation at 60 °N significantly explained over one-fifth of the variation in species composition, while changes in estimates of northern hemisphere temperature and ice-rafted debris events in the North Atlantic

  1. Reconciling divergent trends and millennial variations in Holocene temperatures.

    PubMed

    Marsicek, Jeremiah; Shuman, Bryan N; Bartlein, Patrick J; Shafer, Sarah L; Brewer, Simon

    2018-01-31

    Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in 'growing degree days'-a measure of the accumulated warmth above five degrees Celsius per year-of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that climate

  2. Reconciling divergent trends and millennial variations in Holocene temperatures

    NASA Astrophysics Data System (ADS)

    Marsicek, Jeremiah; Shuman, Bryan N.; Bartlein, Patrick J.; Shafer, Sarah L.; Brewer, Simon

    2018-02-01

    Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in ‘growing degree days’—a measure of the accumulated warmth above five degrees Celsius per year—of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that

  3. Holocene Relative Sea-Level Changes from Near-, Intermediate-, and Far-Field Locations

    NASA Astrophysics Data System (ADS)

    Walker, J. S.; Khan, N.; Shaw, T.; Ashe, E.; Vacchi, M.; Peltier, W. R.; Kopp, R. E.; Horton, B.

    2015-12-01

    Holocene relative sea-level (RSL) records exhibit spatial and temporal variability that arises mainly from the interaction of eustatic (land ice volume and thermal expansion) and isostatic (glacio- and hydro-) factors. We fit RSL histories from near-, intermediate-, and far-field locations with noisy-input Gaussian process models to assess rates of RSL change from selected study areas. Records from near-field regions (e.g., Antarctica, Greenland, Canada, Sweden, and Scotland) reveal a complex pattern of RSL fall from a maximum marine limit due to the net effect of eustatic sea-level rise and glacial-isostatic uplift with rates of RSL fall as great as -69 ± 9 m/ka. Intermediate-field regions (e.g., mid-Atlantic and Pacific coasts of the United States, Netherlands, Southern France, St. Croix) display variable rates of RSL rise from the cumulative effect of isostatic and eustatic factors. Fast rates of RSL rise (up to 10 ± 1 m/ka) are found in the early Holocene in regions near the center of forebulge collapse. Far-field RSL records exhibit a mid-Holocene highstand, the timing (between 8 and 4 ka) and magnitude (between <1 and 6 m) of which varies across South America, Africa, Asia and Australia regions.

  4. Holocene geological records of flood regime in French Alps

    NASA Astrophysics Data System (ADS)

    Arnaud, Fabien; Wilhelm, Bruno; Giguet-Covex, Charline; Jenny, Jean-Philippe; Fouinat, Laurent; Sabatier, Pierre; Debret, Maxime; Révillon, Sidonie; Chapron, Emmanuel; Revel, Marie

    2014-05-01

    In this paper we present a review of a ca. 10-years research effort (1-9) aiming at reconstructing floods dynamics in in French Alps through the Holocene, based on lake sediment records. We will particularly discuss how such geological records can be considered as representative of past climate. This implies a wise interpretation of data in order to really understand "what does the core really says". Namely, we showed that different lake systems record different types of flood events. Low altitude lakes, fed by large-scale catchment areas are more sensitive to regional heavy rainfall events (2-5), whereas high altitude small lakes record local extreme rainfall events (6). Moreover, human societies' development must be taken into account as it is susceptible to modulate the climate-geological record relationship (7). Altogether our data permit the establishment of a Holocene-long perspective upon both regional heavy rainfall and torrential activities in high elevation sites. We hence show that both types of events frequency co-evolve in Northern as well as Southern French Alps where Holocene colder spells generally present higher flood frequencies (6-9). On the other hand, intensities of torrential events present a North-South opposite pattern: during warm spells (e.g. the Medieval Warm Period or nowadays), northern Alps are subject to rare but extremely intense heavy rainfall events, whereas in the southern Alps torrential floods are both rare and weak. During cold spells (e.g. the Little Ice Age), the inverse pattern is observed: torrential floods are more frequent everywhere and above-average intensity in Southern Alps. This point is particularly important for risk management in mountain areas in a context of global warming. Our results point out how complex can be the response of regional system to global climate changes. We are hence far from completely understanding this complexity which is moreover imperfectly simulated by climate models. As geological

  5. CHANGES IN LOWLAND FLOODPLAIN SEDIMENTATION PROCESSES: PRE-DISTURBANCE TO POST-REHABILITATION, COSUMNES RIVER, CA. (R825433)

    EPA Science Inventory

    During the late Holocene, sediment deposition on the lowland Cosumnes River floodplain, CA has depended on factors that varied temporally and spatially, such as basin subsidence, sea level rise, flow, and sediment supply from both the Sacramento River system and from the Cosum...

  6. Early Holocene change in atmospheric circulation in the Northern great plains: An upstream view of the 8.2 ka cold event

    USGS Publications Warehouse

    Dean, W.E.; Forester, R.M.; Bradbury, J.P.

    2002-01-01

    Elk Lake, in northwestern Minnesota, contains numerous proxy records of climatic and environmental change contained in varved sediments with annual resolution for the last 10,000 years. These proxies show that about 8200 calendar years ago (8.2 cal. ka; 7300 radiocarbon years) Elk Lake went from a well-stratified lake that was wind-protected in a boreal forest to a well-mixed lake in open prairie savanna receiving northwesterly wind-blown dust, probably from the dry floor of Lake Agassiz. This change in climate marks the initiation of the widely recognized mid-Holocene "altithermal" in central North America. The coincidence of this change with the so-called 8.2 cal. ka cold event, recognized in ice-core and other records from the circum-North Atlantic, and thought by some to be caused by catastrophic discharge of freshwater from proglacial lakes Agassiz and Ojibway, suggests that the two "events" might be related. Our interpretation of the Elk Lake proxy records, and of other records from less accurately dated sites, suggests that change in climate over North America was the result of a fundamental change in atmospheric circulation in response to marked changes in the relative proportions of land, water, and, especially, glacial ice in North America during the early Holocene. This change in circulation probably post-dates the final drainage of proglacial lakes along the southern margin of the Laurentide ice sheet, and may have produced a minor perturbation in climate over Greenland that resulted in a brief cold pulse detected in ice cores. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Buried paleoindian-age landscapes in stream valleys of the central plains, USA

    USGS Publications Warehouse

    Mandel, R.D.

    2008-01-01

    A systematic study of late-Quaternary landscape evolution in the Central Plains documented widespread, deeply buried paleosols that represent Paleoindian-age landscapes in terrace fills of large streams (> 5th order), in alluvial fans, and in draws in areas of western Kansas with a thick loess mantle. Alluvial stratigraphic sections were investigated along a steep bio-climatic gradient extending from the moist-subhumid forest-prairie border of the east-central Plains to the dry-subhumid and semi-arid shortgrass prairie of the west-central Plains. Radiocarbon ages indicate that most large streams were characterized by slow aggradation accompanied by cumulic soil development from ca. 11,500 to 10,000??14C yr B.P. In the valleys of some large streams, such as the Ninnescah and Saline rivers, these processes continued into the early Holocene. The soil-stratigraphic record in the draws of western Kansas indicates slow aggradation punctuated by episodes of landscape stability and pedogenesis beginning as early as ca. 13,300??14C yr B.P. and spanning the Pleistocene-Holocene boundary. The development record of alluvial fans in western Kansas is similar to the record in the draws; slow aggradation was punctuated by multiple episodes of soil development between ca. 13,000 and 9000??14C yr B.P. In eastern Kansas and Nebraska, development of alluvial fans was common during the early and middle Holocene, but evidence shows fan development as early as ca. 11,300??14C yr B.P. Buried soils dating between ca. 12,600 and 9000??14C yr B.P. were documented in fans throughout the region. In stream valleys across the Central Plains, rapid alluviation after ca. 9000??14C yr B.P. resulted in deeply buried soils that may harbor Paleoindian cultural deposits. Hence, the paucity of recorded stratified Paleoindian sites in the Central Plains is probably related to poor visibility (i.e., deep burial in alluvial deposits) instead of limited human occupation in the region during the terminal

  8. Sensitivity of the marine-terminating margins to Holocene climate change in south and southeast Greenland

    NASA Astrophysics Data System (ADS)

    Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.

    2016-12-01

    The marine-terminating glaciers of the Greenland Ice Sheet (GrIS) are responding rapidly to present-day climate change. More than one-third of the GrIS's discharge flows to the ocean through the marine-terminating outlet glaciers of southeastern Greenland, making it a potentially important region of the ice sheet. Documenting how these outlet glaciers have responded to longer-term past climate change (i.e. the Holocene) allows for more accurate predictions of their response to future climate changes. Here, we present 36 new 10Be ages on boulders perched on bedrock and on bedrock that record the timing of ice marginal fluctuations in several fjords in southeast and south Greenland, a region where little is known about past ice fluctuations due to its relative inaccessibility. We show that at Skjoldungen Sund (63.4N), deglaciation was rapid, beginning by 10.1 ± 0.4 ka. Deglaciation occurred concurrently at Timmiarmiut Fjord (62.7N), 100 km to the south, at 10.3 ± 0.4 ka. We suggest that this was in response to the warming ocean and air temperatures of the early Holocene. Additionally, 10Be ages on boulders perched on bedrock just distal to the historic­ moraines in Timmiarmiut Fjord date to 1.7 ± 0.1 ka, indicating the presence of a late Holocene advance prior to the Little Ice Age. In southern Greenland, deglaciation at Lindenow Fjord (60.6N), which drains the Julienhåb ice cap, occurred at 11.2 ± 0.4 ka. The ice then retreated up-fjord at a rate of 70-100 m yr-1, comparable with modern retreat rates of 30-100 m yr-1. We hypothesize that the earlier deglaciation at Lindenow Fjord by 1 ka may indicate that the Julienhåb ice cap was more sensitive to early Holocene warming than the GrIS. Additional 10Be ages from Prins Christen Fjord and near Qaqortoq are forthcoming. These new 10Be ages provide a longer-term perspective of marine-terminating outlet glacier fluctuations in Greenland and show that the ice sheet responded sensitively to Holocene climate change.

  9. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Ouyang, Tingping; Li, Mingkun; Zhao, Xiang; Zhu, Zhaoyu; Tian, Chengjing; Qiu, Yan; Peng, Xuechao; Hu, Qiao

    2016-05-01

    Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1) Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2) XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3) the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4) The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5) During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.

  10. Late Pleistocene/Holocene craniofacial morphology in Mesoamerican Paleoindians: implications for the peopling of the New World.

    PubMed

    González-José, Rolando; Neves, Walter; Lahr, Marta Mirazón; González, Silvia; Pucciarelli, Héctor; Hernández Martínez, Miquel; Correal, Gonzalo

    2005-12-01

    Several studies on craniofacial morphology showed that most Paleoindians, who were the first settlers of the New World, clearly differ from modern Amerindians and East Asians, their supposed descendants and sister group, respectively. Here we present new evidence supporting this view from the Late Pleistocene/Early Holocene horizon from Mexico, as well as from the most complete set of dated Paleoindian remains. We analyzed the phenotypic resemblance of early Mexicans with other South Paleoamerican and modern human series. Two independent approaches to the data were used. In the first case, individual specimens were tested for morphological similarity with a set of modern reference samples. In the second analysis, Mexican specimens were treated as a sample in order to compute minimum genetic distances. Results from both approaches tend to associate early Mexican skulls with Paleoindians from Brazil, an Archaic sample from Colombia, and several circum-Pacific populations. These results give support to a model in which morphologically generalized groups of non-Northeast Asian descent (the so-called Paleoamericans) entered the continent first, and then dispersed from North to South America through Central America. The large geographic dispersal of Paleoamericans, and their presence in Mexico in the Early Holocene, raise new issues about the continent's settlement scenario. 2005 Wiley-Liss, Inc.

  11. Holocene sea-level changes along the Strait of Magellan and Beagle Channel, southernmost South America

    NASA Astrophysics Data System (ADS)

    Porter, Stephen C.; Stuiver, Minze; Heusser, Calvin J.

    1984-07-01

    Radiocarbon-dated marine sediments from five coastal sites along the Strait of Magellan and Beagle Channel in southernmost Chile permit construction of a curve of relative sea-level fluctuations during the Holocene. Morphologic and stratigraphic data point to coastal submergence during the early Holocene as the sea rose to a maximum level at least 3.5 m higher than present about 5000 yr ago. Progressive emergence then followed during the late Holocene. Data from widely separated localities define a smooth curve, the form of which is explainable in terms of isostatic and hydroisostatic deformation of the crust resulting from changing ice and water loads. Apparently anomalous data from one site located more than 100 km behind the outer limit of the last glaciation may reflect isostatic response to deglaciation. The sea-level curve resembles one derived by Clark and Bloom (1979, In "Proceedings of the 1978 International Symposium on Coastal Evolution in the Quaternary, Sao Paulo, Brasil," pp. 41-60. Sao Paulo) using a spherical Earth model, both in amplitude and in the timing of the maximum submergence.

  12. The Early Anthropogenic Hypothesis: Challenges and Responses

    NASA Astrophysics Data System (ADS)

    Ruddiman, William F.

    2007-12-01

    Ruddiman (2003) proposed that late Holocene anthropogenic intervention caused CH4 and CO2 increases that kept climate from cooling and that preindustrial pandemics caused CO2 decreases and a small cooling. Every aspect of this early anthropogenic hypothesis has been challenged: the timescale, the issue of stage 11 as a better analog, the ability of human activities to account for the gas anomalies, and the impact of the pandemics. This review finds that the late Holocene gas trends are anomalous in all ice timescales; greenhouse gases decreased during the closest stage 11 insolation analog; disproportionate biomass burning and rice irrigation can explain the methane anomaly; and pandemics explain half of the CO2 decrease since 1000 years ago. Only ˜25% of the CO2 anomaly can, however, be explained by carbon from early deforestation. The remainder must have come from climate system feedbacks, including a Holocene ocean that remained anomalously warm because of anthropogenic intervention.

  13. Recent and Holocene Climate Change Controls on Vegetation and Carbon Accumulation in Alaskan Coastal Muskegs

    NASA Technical Reports Server (NTRS)

    Peteet, Dorothy M.; Nichols, Jonathan E.; Moy, Christopher M.; McGeachy, Alicia; Perez, Max

    2015-01-01

    Pollen, spore, macrofossil and carbon data from a peatland near Cordova, Alaska, reveal insights into the climate-vegetation-carbon interactions from the initiation of the Holocene, c. the last 11.5 ka, to the present (1 ka = 1000 calibrated years before present where 0 = 1950 CE). The Holocene period is characterized by early deposition of gyttja in a pond environment with aquatics such as Nuphar polysepalum and Potamogeton, and a significant regional presence of Alnus crispa subsp. sinuata. Carbon accumulation (50 g/m2/a) was high for a short interval in the early Holocene when Sphagnum peat accumulated, but was followed by a major decline to 13 g/m2/a from 7 to 3.7 ka when Cyperaceae and ericads such as Rhododendron (formerly Ledum) groenlandicum expanded. This shift to sedge growth is representative of many peatlands throughout the south-central region of Alaska, and indicates a drier, more evaporative environment with a large decline in carbon storage. The subsequent return to Sphagnum peat after 4 ka in the Neoglacial represents a widespread shift to moister, cooler conditions, which favored a resurgence of ericads, such as Andromeda polifolia, and increased carbon accumulation rate. The sustained Alnus expansion visible in the top 10 cm of the peat profile is correlative with glacial retreat and warming of the region in the last century, and suggests this colonization will continue as temperature increases and ice melts.

  14. Rainfall in the Negev Desert during the middle Holocene, based on 13C of organic matter in land snail shells

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.

    1990-09-01

    Analysis of stable carbon isotope ratios ( {13C}/{12C}) of organic matter in land snail shells is used to infer middle Holocene rainfall amounts in the Negev Desert by reconstructing the distribution of C 4 plants in the family Chenopodiaceae. The organics are derived from the diet of the snails, which consists of plant material, and are enriched in 13C where C 4 plants are present. A survey of modern plant communities indicates that in areas receiving ≥300 mm mean annual rainfall, nearly all plant communities consist of C 3 species only (no C 4 chenopodes), whereas in areas under ≤230 mm rainfall, most plant communities contain one or more C 4 chenopode species. In between is a transition zone consisting of a mosaic of both pure C 3 and mixed C 3 + C 4 plant communities. Isotopic results for fossil land snails indicate a consistent geographic pattern throughout the middle Holocene, from ca. 6500 to 3000 yr B.P., with the transition zone located ca. 20 km south of its present position. This implies a near doubling of rainfall within this region as compared to present.

  15. The Holocene warm-humid phases in the North China Plain as recorded by multi-proxy records

    NASA Astrophysics Data System (ADS)

    Cui, Jianxin; Zhou, Shangzhe; Chang, Hong

    2009-02-01

    The grain size and palinology of sediment and the frequency of 14C dada provide an integrated reconstruction of the Holocene warm-humid phases of the North China Plain. Two clear intense and long-lasting warm-humid phases were identified by comprehensive research in this region. The first phase was dated back to the early Holocene (9 000-7 000 a BP), and the second was centered at 5 000-3 000 a BP. The warm-humid episode between 9 000 and 7 000 a BP was also recognized at other sites showing global climatic trends rather than local events. Compared with the concern to the warm-humid phase of the early Holocene, the second one was not paid enough attention in the last few decades. The compilation of the Holocene paleoclimate data suggests that perhaps the second warm-humid phase was pervasive in monsoon region of China. In perspective of environmental archaeology, much attention should be devoted to it, because the flourish and adaptation of the Neolithic cultures and the building up of the first state seem to corresponding to the general warm-humid climatic conditions of this period. In addition, a warm-humid interval at 7 200-6 500 a BP was recognized by the grain size data from three sites. However, this warm-humid event was not shown in pollen assemblage and temporal distribution of 14C data. Perhaps, the resolution for climatic reconstruction from pollen and temporal distribution of 14C data cited here is relatively low and small-amplitude and short-period climatic events cannot be well reflected by the data. Due to the difference in locality and elevation of sampling site, as well as in resolution of proxy records, it is difficult to make precise correlation. Further work is needed in the future.

  16. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in Central Europe

    PubMed Central

    Knitlová, Markéta; Horáček, Ivan

    2017-01-01

    Wood mice of the genus Apodemus are an essential component of small mammal communities throughout Europe. Molecular data suggest the postglacial colonization of current ranges from south European glacial refugia, different in particular species. Yet, details on the course of colonization and Holocene history of particular species are not available, partly because of a lack of reliable criteria for species identification in the fossil record. Using a sample of extant species, we analyzed variation patterns and between-species overlaps for a large set of metric and non-metric dental variables and established the criteria enabling the reliable species identification of fragmentary fossil material. The corresponding biometrical analyses were undertaken with fossil material of the genus (2528 items, 747 MNI) from 22 continuous sedimentary series in the Czech Republic and Slovakia, from LGM to Recent. In Central Europe, the genus is invariantly absent in LGM assemblages but regularly appears during the Late Vistulian. All the earliest records belong to A. flavicollis, the species clearly predominating in the fossil record until the Late Holocene. A. uralensis accompanied it in all regions until the late Boreal when disappeared from the fossil record (except for Pannonia). A few items identified as A. sylvaticus had already appeared in the early Holocene assemblages, first in the western part of the region, yet the regular appearance of the species is mostly in the post-Neolithic age. A. agrarius appeared sparsely from the Boreal with a maximum frequency during the post-Neolithic period. The results conform well to the picture suggested by molecular phylogeography but demonstrate considerable differences among particular species in dynamic of the range colonization. Further details concerning Holocene paleobiogeography of individual species in the medium latitude Europe are discussed. PMID:28282422

  17. Holocene paleoecology of an estuary on Santa Rosa Island, California

    USGS Publications Warehouse

    Cole, K.L.; Liu, Gaisheng

    1994-01-01

    The middle to late Holocene history and early Anglo-European settlement impacts on Santa Rosa Island, California, were studied through the analysis of sediments in a small estuarine marsh. A 5.4-m-long sediment core produced a stratigraphic and pollen record spanning the last 5200 yr. Three major zones are distinguishable in the core. The lowermost zone (5200 to 3250 yr B.P.) represents a time of arid climate with predominantly marine sediment input and high Chenopodiaceae and Ambrosia pollen values. The intermediate zone (3250 yr B.P. to 1800 A.D.) is characterized by greater fresh water input and high values for Asteraceae and Cyperaceae pollen and charcoal particles. The uppermost zone (1800 A.D. to present) documents the unprecedented erosion, sedimentation, and vegetation change that resulted from the introduction of large exotic herbivores and exotic plants to the island during Anglo-European settlement. The identification of pollen grains of Torrey Pine (Pinus torreyana) documents the persistence of this endemic species on the island throughout the middle to late Holocene.

  18. A Tree-Ring Chronology and Paleoclimate Record for the Younger Dryas-Early Holocene Transition from Northeastern North America

    NASA Technical Reports Server (NTRS)

    Griggs, Carol; Peteet, Dorothy; Kromer, Bernd; Grote, Todd; Southon, John

    2017-01-01

    Spruce and tamarack logs dating from the Younger Dryas and Early Holocene (YDEH; approx. 12.9 - 11.3k cal a BP) were found at Bell Creek in the Lake Ontario lowlands of the Great Lakes region, North America. A 211-year tree-ring chronology dates to approx. 11 755 -11 545 cal a BP, across the YDEH transition. A 23-year period of higher year-to-year ring-width variability dates to around 11 650 cal a BP, infers strong regional climatic perturbations and may represent the end of the YD. Tamarack and spruce were dominant species throughout the YD - EH interval at the site, indicating that boreal conditions persisted into the EH, in contrast to geographical regions immediately south and east of the lowlands, but consistent with the Great Lakes interior lowlands. This infers that Bell Creek was at the eastern boundary of a boreal ecotone, perhaps a result of its lower elevation and the non-analog dynamics of the Laurentide Ice Sheet. This finding suggests that the ecotone boundary extended farther east during the YD - EH transition than previously thought.

  19. Lake Sediment Particle Size Analysis for Holocene Paleoenvironmental Study of Steens Mountain, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Morris, J.; Stoner, J. S.; Reilly, B. T.; Hatfield, R. G.; Konyndyk, D.; Abbott, M. B.; Finkenbinder, M. S.; Hillman, A. L.

    2016-12-01

    In order to better understand climate trends in the late Pleistocene and Holocene in southeast Oregon, we present a sedimentological analysis of Fish Lake, Harney County, Oregon. Fish Lake (42° 44' 15" N, 118° 38' 57" W, 2,246.7 m) sits on the west slope of Steens Mountain, a fault-block mountain of Miocene basalt, adjacent to a glacial moraine. The present environment is high desert with sub alpine steppe vegetation, receiving approximately 12" of precipitation annually. The lake was cored in August 2013 with a series of overlapping drives, correlated by six distinct tephra and magnetic susceptibility. The composite section provides a 7.5 m continuous record of at least the last 13 ka, constrained by an age model built with 13 terrestrial macrofossil 14C dates. The recovered sediments, consisting of fine terrigenous and biogenous material in varying proportions, were analyzed with computed tomography (CT) scans, x-ray fluorescence (XRF) scans, magnetic measurements, loss on ignition (LOI), and sediment grain-size. CT and LOI data reveal a low density, high organic interval in the early Holocene ( 8.5-11 ka) with relatively coarse and well-sorted grain-size, suggesting an extended period of low lake level and low precipitation. Sediment grain-sizes are variable through the middle and late Holocene with high amplitude longer period features from 3 ka to the present. We investigate these grain-size fluctuations in the context of regional Holocene records.

  20. Measuring Holocene Indian Summer Monsoon Precipitation through Lake Sedimentary Proxies, Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Perello, M. M.; Bird, B. W.; Lei, Y.; Polissar, P. J.; Thompson, L. G.; Yao, T.

    2017-12-01

    The Tibetan Plateau is the headwaters of several major river systems in South Asia, which serve as essential water resources for more than 40% of the world's population. The majority of regional precipitation that sustains these water resources is from the Indian summer monsoon (ISM), which can experience considerably variability in response to local and remote forcings and teleconnections. Despite the ISM's importance, its sensitivity to long term and abrupt changes in climatic boundary conditions is not well established with the modern instrumental record or the available body of paleoclimate data. Here, we present results from an ongoing study that utilizes lake sediment records to provide a longer record of relative levels of precipitation and lake level during the monsoon season. The sediments cores used in this study were collected from five lakes along an east-west transect in the Eastern Tibetan Plateau (87-95°E). Using these records, we assess temporal and spatial variability in the intensity of the ISM throughout the Holocene on decadal frequencies. Multiple proxies, including sedimentology, grain size, geochemistry, terrestrial and aquatic leaf wax isotopes, and diatom community assemblages, are used to assess paleo-precipitation and lake level. Preliminary records from our lakes indicate regional trends in monsoon strength, with higher lake levels in the Early Holocene, but with greater variability in the Late Holocene than in other regional paleoclimate records. We have also observed weak responses in our lakes to the Late Holocene events, the Medieval Climate Anomaly and the Little Ice Age. These paleoclimate reconstructions furthers our understanding of strong versus weak monsoon intensities and can be incorporated in climate models for predicting future monsoon conditions.

  1. Geochemical and Geophysical Analysis of Holocene-aged Sediments from Southeastern Tulare Lake, CA

    NASA Astrophysics Data System (ADS)

    Prosser, L.; Jackson, B.; Roza, J.

    2015-12-01

    Tulare Lake is located in the San Joaquin Valley of California west of the Sierra Nevada mountains (Preston, 1981). The Poso Canal trench locality is located in the southeastern portion of Tulare Lake in the Ton Tachi lake plane south of the Atwell Island sand spit. This area was chosen because these sediments lie beneath a road bed that predates agricultural tilling, preserving late-Holocene lake sediments. Sediments from trench TL13-7C were sampled for geophysical and geochemical analyses in order to create a higher resolution lake-level history during the late-Holocene than had been possible using only lithologic descriptions. The new record is comprised of grain size, clay percentage, carbon/nitrogen (C/N) ratios, total inorganic carbon (TIC), total organic carbon (TOC), and nitrogen (N) analyses taken at 2-cm intervals over 181-cm of section comprising four lithologic units. From oldest to youngest, Unit 1A consists of relatively equal and steady percentages of clay, silt, and sand, and relatively low C/N ratios, TIC, TOC, and N, suggesting an unproductive lake and relatively deep lake levels at this high elevation site. Fluctuating C/N ratios, a steady decrease in clay percentage, and a steady increase in sand percentage in Unit 1B suggests periods of flooding and fluctuating lake levels and eventually shallow evaporative lake conditions, as evidenced by a considerable and sudden increase in TIC (to 4.51%) in Unit 2. In addition to the drastic change in TIC, Unit 2 shows evidence of a large influx of terrestrial organic matter perhaps transported by floods by an increase in sand percentage and two pronounced spikes in C/N ratios to 38 and 65 (Meyers and Lallier-Verges, 1999). Unit 3 shows low but steady levels of clay and sand percentages, and higher but steady levels of silt. Levels of TIC, TOC, C/N, and N are all steady, with relatively higher levels of TOC and N, which are indicators of high lake level and productivity (Cohen, 2003). Unit 4 is very similar

  2. Optical Dating of Holocene Dune Sands in the Ferris Dune Field, Wyoming

    NASA Astrophysics Data System (ADS)

    Stokes, Stephen; Gaylord, David R.

    1993-05-01

    Optical dating of late Quaternary quartz dune sands from the Clear Creek portion of Ferris dune field, Wyoming, demonstrates the considerable potential of the technique as a chronostratigraphic tool. A sequence of radiocarbon-dated Holocene interdune strata permit optical dating of the intercalated dune sand to be tested; the concordance is good. The optical dates for the aeolian deposits not datable by radiocarbon suggest that aeolian sedimentation at Clear Creek peaked during two relatively short phases at ca. 8500 and 4000 yr B.P. The dates indicate that aeolian accumulation maxima (at least in the Clear Creek area) may not be synchronous with previously defined phases of marked aridity.

  3. Cosmogenic 10Be Dating of Early and Latest Holocene Moraines on Nevado Salcantay in the Southern Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Licciardi, J. M.; Schaefer, J. M.; Lund, D. C.

    2007-12-01

    A two-fold sequence of nested lateral and end moraines was mapped in a glacial trough emanating from the southwest flank of Nevado Salcantay (6271 m; ~13°S latitude), the highest peak in the Cordillera Vilcabamba of southern Peru. The field area is situated 25 km due south of the archaeological site of Machu Picchu. Outer and inner moraines in the sequence were deposited by valley glaciers that terminated ~5 km and ~3 km, respectively, from their headwall on the Salcantay summit massif. Cosmogenic 10Be surface exposure dating of granitic boulders sampled on the Salcantay moraines is underway and has provided the first numerical ages for these deposits. Initial results indicate ages of 8.1 ± 0.1 10Be ka for the outer moraine and 200 ± 20 10Be years for the sharp-crested inner moraine. These ages are derived using the CRONUS-Earth 10Be exposure age calculator (version 2.0) and expressed with respect to the Lal- Stone production rate scaling scheme using the standard atmosphere. The outer and inner moraine ages correspond to glacial events during the early and latest Holocene, respectively. Further 10Be dating of the mapped moraines and similar deposits observed in adjacent drainages on Nevado Salcantay is anticipated to yield a high-resolution chronology of valley glaciation in this segment of the southern Peruvian Andes. The new results bridge an important gap between existing Andean glacier records to the north and south, and complement available ice core and lacustrine paleoclimate records in the vicinity, thereby expanding spatial and temporal coverage for identifying patterns of Holocene climate change in the tropical Andes. Notably, the inner moraine age correlates with the timing of the Little Ice Age as defined in northern mid- and high latitude glacier records, and suggests considerable expansion of valley glaciers in the southern Peruvian Andes during this climatic minimum. Apart from their paleoclimatic significance, the initial results also demonstrate

  4. Similar speleothem δ18O signals indicating diverging climate variations in inland central Asia and monsoonal south Asia during the Holocene

    NASA Astrophysics Data System (ADS)

    Jin, Liya; Zhang, Xiaojian

    2017-04-01

    High-resolution and precisely dated speleothem oxygen isotope (δ18O) records from Asia have provided key evidence for past monsoonal changes. It is found that δ18O records of stalagmites from Kesang Cave (42°52'N, 81°45'E, Xinjiang, China) in inland central Asia were very similar to those from Qunf Cave (17°10'N, 54°18'E, southern Oman) in South Asia, shifting from light to heavy throughout the Holocene, which was regarded as a signal that strong Asian summer monsoon (ASM) may have intruded into the Kesang Cave site and/or adjacent areas in inland central Asia to produce heavy rainfall during the high insolation times (e.g. the early Holocene). However, this is in contrast to conclusions based on other Holocene proxy records and modeling simulations, showing a persistent wetting trend in arid central Asia during the Holocene with a dryer condition in the early Holocene and the wettest condition in the late Holocene. With an analysis of model-proxy data comparison, we revealed a possible physical mechanism responsible for the Holocene evolution of moisture/precipitation in Asian summer monsoon (ASM)-dominated regions and that in the inland central Asia. It is revealed that a recurrent circumglobal teleconnection (CGT) pattern in the summertime mid-latitude circulation of the Northern Hemisphere was closely related to the ASM and the climate of inland central Asia, acting as a bridge linking the ASM to insolation, high-latitude forcing (North Atlantic sea surface temperature (SST)), and low-latitude forcing (tropical Ocean SST). Also, the CGT influence speleothem δ18O values in South Asia via its effect on the amount of precipitation. In addition, the moisture source from the Indian Ocean is associated with relatively high δ18O values compared with that from the North Atlantic Ocean, leading to increased precipitation δ18O values. Hence, the CGT has probably been the key factor responsible for the in-phase relationship in speleothem δ18O values (Kesang Cave

  5. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis

    2015-10-01

    The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the

  6. Vegetation response to early holocene warming as an analog for current and future changes: Special section

    USGS Publications Warehouse

    Cole, K.L.

    2010-01-01

    Temperatures in southwestern North America are projected to increase 3.5-4 ??C over the next 60-90 years. This will precipitate ecological shifts as the ranges of species change in response to new climates. During this shift, rapid-colonizing species should increase, whereas slow-colonizing species will at first decrease, but eventually become reestablished in their new range. This successional process has been estimated to require from 100 to over 300 years in small areas, under a stable climate, with a nearby seed source. How much longer will it require on a continental scale, under a changing climate, without a nearby seed source? I considered this question through an examination of the response of fossil plant assemblages from the Grand Canyon, Arizona, to the most recent rapid warming of similar magnitude that occurred at the start of the Holocene, 11,700 years ago. At that time, temperatures in southwestern North America increased about 4 ??C over less than a century. Grand Canyon plant species responded at different rates to this warming climate. Early-successional species rapidly increased, whereas late-successional species decreased. This shift persisted throughout the next 2700 years. I found two earlier, less-extreme species shifts following rapid warming events around 14,700 and 16,800 years ago. Late-successional species predominated only after 4000 years or more of relatively stable temperature. These results suggest the potential magnitude, duration, and nature of future ecological changes and have implications for conservation plans, especially those incorporating equilibrium assumptions or reconstituting past conditions. When these concepts are extended to include the most rapid early-successional colonizers, they imply that the recent increases in invasive exotics may be only the most noticeable part of a new resurgence of early-successional vegetation. Additionally, my results challenge the reliability of models of future vegetation and carbon

  7. Holocene vegetational and coastal environmental changes from the Lago Crispim record in northeastern Pará State, eastern Amazonia.

    PubMed

    Behling, H; Lima da Costa, M

    2001-04-01

    Vegetational and coastal environmental changes have been interpreted from a 600cm long and 764014C yr B.P. old sediment core from Lago Crispim located in the northeastern Pará State in northern Brazil. The radiocarbon dated sediment core was studied by multi-element geochemistry, pollen and charcoal analysis.Holocene Atlantic sea-level rise caused an elevation of local water table, which allowed the formation of organic deposits in a probably former inter-dune valley. Dense, diverse and tall Amazon rain forest, and some restinga (coastal vegetation) covered the study area at the beginning of the record at 764014C yr B.P. Mangrove vegetation developed along rivers close to the core site at that time. Subsequent decrease in less mangrove vegetation near the study site indicates a sea-level regression, beginning since around 700014C yr B.P. Lower sea-levels probably favoured the formation of a local Mauritia/Mauritiella palm swamp at 662014C yr B.P. Oscillations of higher and lower sea-level stands probably changed the size of the local palm swamp area several times between 6620 and 363014C yr B.P. Sea-level transgression at around 363014C yr B.P., caused marked coastal environmental changes: the development of mangroves near the site, the replacement of the local palm swamp by a Cyperaceae swamp, the substitution of the surrounding former Amazon rain forest and some restinga vegetation mainly by salt marshes. High amount carbonised particles suggest a strong human impact by burning on the coastal ecosystems during this late Holocene period.Highest concentrations of NaCl and also Ca, Mg and K in the upper sediment core indicate that the Atlantic was close during the late Holocene period. The core site, which is today 500m from the coastline and only 1-2m above modern sea-level, was apparently never reached by marine excursions during the Holocene.Less representation of mangrove since ca. 184014C yr B.P., may be related due to a slightly lower sea-level or to human

  8. Floodplain construction of the Rio Grande at El Paso, Texas, USA: response to Holocene climate change

    NASA Astrophysics Data System (ADS)

    Hall, Stephen A.; Peterson, John A.

    2013-04-01

    The Rio Grande is one of the larger rivers in North America, and the development of its floodplain is related to Holocene climate and climate change. The late Pleistocene through early Holocene channel is characterized by a meander or braided system with lateral cutting and backfilling, resulting in the valley-wide deposition of massive to cross-bedded, fine-to-medium textured sand. The late Pleistocene-early Holocene floodplain is also the sand source for the adjacent Bolson sand sheet. The sand sheet stopped accumulating new sand 5000 yrs ago, an event directly related to the shutting off of the sand supply caused by the deposition of overbank muds that covered and sealed the floodplain surface. During the middle Holocene, the river may have dried intermittently with the floodplain becoming deflated and local sand dunes forming on the floodplain. After 5000 yrs the climate was less arid and the river shifted to a regime of increased flooding and overbank deposition of silt and clay. By 2500 yrs, a late Holocene period of wet climate resulted in further overbank deposition and the formation of a cumulic Mollisol across the floodplain, the Socorro paleosol. The period of wet climate corresponds to the Audubon Neoglacial and active rock glaciers in the southern Rocky Mountains, speleothem growth in nearby caves, and other evidence for wet-cool conditions in the region. After 1000 yrs, the climate became drier, and the deposition and accumulation of overbank muds by the flooding Rio Grande came to a halt. Even though the river has flooded often in historic times, and presumably during late prehistoric times as well, there is little evidence for deposition of overbank sediments on the floodplain since A.D. 1000. Accordingly, the present-day surface of the Lower Valley is ten centuries old. Three channels occur on the US side of the Lower Valley floodplain, and during the past 2500 yrs stream flow has shifted from one to the other by the avulsion process of channel

  9. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea

    USGS Publications Warehouse

    Rashid, H.; Flower, B.P.; Poore, R.Z.; Quinn, T.M.

    2007-01-01

    Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.

  10. Holocene Millennial Time Scale Hydrological Changes In Central-east Africa

    NASA Astrophysics Data System (ADS)

    Jolly, D.; Bonnefille, R.; Beaufort, L.

    The Holocene hydrological changes of a tropical swamp is reconstructed using a high resolution pollen record (ca 50 yrs) from the Kuruyange valley (Burundi, Africa, 3°35'S, 29°41'E), at 2000 m elevation. The sequence was dated by 10 radiocarbon dates, allowing reconstruction between ca 12 500 and 1000 cal yr B.P. In the Kuruyange swamp, peat accumulated rapidly at a sedimentation rate varying from 0.73 (prior to 6200 cal yr B.P.) to 1.51 mm/yr (during the late Holocene). A pollen index of water table, based on a ratio of aquatic versus non-aquatic plants has been used in order to test the hypothesis of hydrological constraints on the swampy ecosystem. Eight arid phases are evidenced by the index minima at 12 200, 11 200, 9900, 8600, 6500, 5000, 3400, 1600 cal yr B.P. The good agreement existing between this index and independent data such as (i) low-resolution East-African lake level reconstruct ions (Gillespie et al., 1983) and (ii) ?18O analyses from Arabian Sea (Sirocko et al., 1993) suggests the water table level responds to the monsoon dynamic. The Index varies periodically with a combination of 1/1515, 1/880 and 1/431 years-1 frequencies, revealed by time series analyses (Blackman-Tukey and Maximum Entropy). The extrapolation of the composite curve based on these 3 periodicities show that two major climatic events defined in the high latitudes between 1000 and 660 cal yr B.P. (Medieval Warm Period) and between 500 and 100 cal yr B.P. (Little Ice Age) are recorded in our data and show respectively high and low stands of the water table. Our results support some previous pollen-derived climate estimates in Ethiopia done by Bonnefille and Umer (1994). Moreover, the "1500 year" cycle registered in our data from the tropics, already evidenced in higher latitudes (Wijmstra et al., 1984; Bondet al., 1997; Schulz et al., 1999; Bond et al., 2001) support the hypothesis of strong teleconnections between tropical/subtropical and polar climates during the deglaciation

  11. A model for the Holocene extinction of the mammal megafauna in Ecuador

    NASA Astrophysics Data System (ADS)

    Ficcarelli, G.; Coltorti, M.; Moreno-Espinosa, M.; Pieruccini, P. L.; Rook, L.; Torre, D.

    2003-03-01

    This paper presents the results of multidisciplinary research in the Ecuadorian coastal regions, with particular emphasis on the Santa Elena Peninsula. The new evidence, together with previous data gathered on the Ecuadorian cordillera during the last 12 years, allows us to formulate a model that accounts for most of the mammal megafauna extinction at the Pleistocene/Holocene transition. After the illustration of geomorphological and paleontological evidences of the area of the Santa Elena Peninsula (and other sites), and of a summary of the paleoclimatic data, the main results and conclusions of this work are: (1) Late Pleistocene mammal assemblages survived in the Ecuadorian coast until the Early Holocene sea level rise; (2) Prior to the extinction of most of the megafauna elements (mastodons, ground sloths, equids, sabre-tooth felids), the mammal communities at Santa Elena Peninsula comprise elements with differing habitat requirements, attesting conditions of high biological pressure; (3) At the El Cautivo site (Santa Elena Peninsula), we have discovered Holocene sediments containing the first known occurrences in Ecuador of lithic artifacts that are associated with mammal megafauna remains; (4) During the last 10,000 years, the coastal region of Ecuador underwent significant changes in vegetation cover. At the Pleistocene/Holocene transition the climate changed from very arid conditions to humid conditions. Our data indicates that the megafauna definitively abandoned the Cordillera areas around 12,000 yr BP due to t he increasing aridity, and subsequently migrated to coastal areas where ecological conditions still were suitable, Santa Elena Peninsula and mainly Amazonian areas being typical. We conclude that the unusual high faunal concentrations and the change to dense vegetation cover (due to a rapid increase in precipitation in the lower Holocene) at 8000-6000 yr BP, caused the final collapse and extinction of most elements of the mammal megafauna

  12. Timing of atmospheric precipitation in the Zagros Mountains inferred from a multi-proxy record from Lake Mirabad, Iran

    NASA Astrophysics Data System (ADS)

    Stevens, Lora R.; Ito, Emi; Schwalb, Antje; Wright, Herbert E.

    2006-11-01

    A sediment core 7.2 m long from Lake Mirabad, Iran, was examined for loss-on-ignition, mineralogy, oxygen-isotopic composition of authigenic calcite, and trace-element composition of ostracodes to complement earlier pollen and ostracode-assemblage studies. Pollen, ostracode-inferred lake level, and high Sr/Ca ratios indicate that the early Holocene (10000 to 6500 cal yr BP) was drier than the late Holocene. Low δ18O values during this interval are interpreted as resulting from winter-dominated precipitation, characteristic of a Mediterranean climate. Increasing δ18O values after 6500 cal yr BP signal a gradual increase in spring rains, which are present today. A severe 600-yr drought occurred at ca. 5500 cal yr BP, shortly after the transition from pistachio-almond to oak forest. During the late Holocene, two milder droughts occurred at about 1500 and 500 cal yr BP. Within the resolution of the record, no drought is evident during the collapse of the Akkadian empire (4200-3900 cal yr BP). Rather, a decrease in δ18O values to early-Holocene levels may indicate the return to a Mediterranean precipitation regime.

  13. Late Pleistocene/Early Holocene Migratory Behavior of Ungulates Using Isotopic Analysis of Tooth Enamel and Its Effects on Forager Mobility.

    PubMed

    Pilaar Birch, Suzanne E; Miracle, Preston T; Stevens, Rhiannon E; O'Connell, Tamsin C

    2016-01-01

    Zooarchaeological and paleoecological investigations have traditionally been unable to reconstruct the ethology of herd animals, which likely had a significant influence on the mobility and subsistence strategies of prehistoric humans. In this paper, we reconstruct the migratory behavior of red deer (Cervus elaphus) and caprids at the Pleistocene-Holocene transition in the northeastern Adriatic region using stable oxygen isotope analysis of tooth enamel. The data show a significant change in δ18O values from the Pleistocene into the Holocene, as well as isotopic variation between taxa, the case study sites, and through time. We then discuss the implications of seasonal faunal availability as determining factors in human mobility patterns.

  14. Holocene and Last Interglacial climate of the Faroe Islands from sedimentary leaf wax hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Curtin, L.; D'Andrea, W. J.; de Wet, G.; Balascio, N.; Bradley, R. S.

    2017-12-01

    The climate of the North Atlantic region is extremely sensitive to changes in ocean and atmospheric circulation, and understanding past natural variability in North Atlantic climate provides important context for modern climate change. Here, we present Holocene and Eemian hydrogen isotope (δD) records from leaf waxes preserved in lacustrine sediments from the North Atlantic Faroe Islands and interpret them as a proxy for temperature and hydroclimate variability. In addition to helping to constrain the timing and amplitude of climate evolution during each of these interglacial periods, the data can be used to directly compare Eemian and Holocene climate using the same proxy from the same terrestrial location. Of the leaf waxes measured, the δD values of long-chain and mid-chain n-alkanes showed two different signals, which we interpret to represent leaf water δD values and lake water δD values, respectively. The δD values for long-chain and mid-chain fatty acids were most similar to the mid-chain n-alkanes, and likely represent a mixture of terrestrial and aquatic sources. Leaf wax-inferred δD values of precipitation during the early Holocene (10,000 to 8,000 cal yr BP) are 13‰ enriched compared to the remainder of the Holocene (after 8,000 cal yr BP), which show relatively stable values over time. Inferred lake water δD values decreased slowly over the late Holocene, suggesting a gradual transition to a wetter climate after 4,000 cal yr BP. At 2,000 cal yr BP there was a significant change in the distribution of leaf waxes that suggests a transition from shrubland to grassland, but which pre-dates the pollen evidence for this transition. The last interglacial period has been suggested as an analog for future climate conditions. We found that long-chain alkane δD values from the Eemian are most similar to the earliest Holocene, which corroborate previous pollen studies suggesting a warmer climate at the Faroe Islands during this period.

  15. Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield

    NASA Astrophysics Data System (ADS)

    Strelin, Jorge A.; Kaplan, Michael R.; Vandergoes, Marcus J.; Denton, George H.; Schaefer, Joerg M.

    2014-10-01

    We present new geomorphic, stratigraphic, and chronologic data for Holocene glacier fluctuations in the Lago Argentino basin on the eastern side of the southern Patagonian Andes. Chronologic control is based on 14C and surface-exposure 10Be dating. After the Lateglacial maximum at 13,000 cal yrs BP, the large ice lobes that filled the eastern reaches of Lago Argentino retreated and separated into individual outlet glaciers; this recession was interrupted only by a stillstand or minor readvance at 12,200 cal yrs BP. The eight largest of these individual outlet glaciers are, from north to south: Upsala, Agassiz, Onelli, Spegazzini, Mayo, Ameghino, Perito Moreno, and Grande (formerly Frías). Holocene recession of Upsala Glacier exposed Brazo Cristina more than 10,115 ± 100 cal yrs BP, and reached inboard of the Holocene moraines in Agassiz Este Valley by 9205 ± 85 cal yrs BP; ice remained in an inboard position until 7730 ± 50 cal yrs BP. Several subsequent glacier readvances are well documented for the Upsala and Frías glaciers. The Upsala Glacier readvanced at least seven times, the first being a relatively minor expansion - documented only in stratigraphic sections - between 7730 ± 50 and 7210 ± 45 cal yrs BP. The most extensive Holocene advances of Upsala Glacier resulted in the deposition of the Pearson 1 moraines and related landforms, which are divided into three systems. The Pearson 1a advance occurred about 6000-5000 cal yrs BP and was followed by the slightly less-extensive Pearson 1b and 1c advances dated to 2500-2000 and 1500-1100 cal yrs BP, respectively. Subsequent advances of Upsala Glacier resulted in deposition of the Pearson 2 moraines and corresponding landforms, also separated into three systems, Pearson 2a, 2b, and 2c, constructed respectively at ˜700, >400, and <300 cal yrs BP to the early 20th century. Similar advances are also recorded by moraine systems in front of Grande Glacier and herein separated into the Frías 1 and Frías 2a, 2b

  16. Quantifying the effects of land use and climate on Holocene vegetation in Europe

    NASA Astrophysics Data System (ADS)

    Marquer, Laurent; Gaillard, Marie-José; Sugita, Shinya; Poska, Anneli; Trondman, Anna-Kari; Mazier, Florence; Nielsen, Anne Birgitte; Fyfe, Ralph M.; Jönsson, Anna Maria; Smith, Benjamin; Kaplan, Jed O.; Alenius, Teija; Birks, H. John B.; Bjune, Anne E.; Christiansen, Jörg; Dodson, John; Edwards, Kevin J.; Giesecke, Thomas; Herzschuh, Ulrike; Kangur, Mihkel; Koff, Tiiu; Latałowa, Małgorzata; Lechterbeck, Jutta; Olofsson, Jörgen; Seppä, Heikki

    2017-09-01

    Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen-based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming

  17. Holocene sea level, a semi-empirical contemplation

    NASA Astrophysics Data System (ADS)

    Bittermann, K.; Kemp, A.; Vermeer, M.; Rahmstorf, S.

    2017-12-01

    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the `Holocene Optimum'. From ­­there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with semi-empirical sea-level models. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., et al. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews, 103, 91

  18. Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany

    NASA Astrophysics Data System (ADS)

    Sirocko, Frank; Dietrich, Stephan; Veres, Daniel; Grootes, Pieter M.; Schaber-Mohr, Katja; Seelos, Klemens; Nadeau, Marie-Josée; Kromer, Bernd; Rothacker, Leo; Röhner, Marieke; Krbetschek, Matthias; Appleby, Peter; Hambach, Ulrich; Rolf, Christian; Sudo, Masafumi; Grim, Stephanie

    2013-02-01

    During the last twelve years the ELSA Project (Eifel Laminated Sediment Archive) at Mainz University has drilled a total of about 52 cores from 27 maar lakes and filled-in maar basins in the Eifel/Germany. Dating has been completed for the Holocene cores using 6 different methods (210Pb and 137Cs activities, palynostratigraphy, event markers, varve counting, 14C). In general, the different methods consistently complement one another within error margins. Event correlation was used for relating typical lithological changes with historically known events such as the two major Holocene flood events at 1342 AD and ca 800 BC. Dating of MIS2-MIS3 core sections is based on greyscale tuning, radiocarbon and OSL dating, magnetostratigraphy and tephrochronology. The lithological changes in the sediment cores demonstrate a sequence of events similar to the North Atlantic rapid climate variability of the Last Glacial Cycle. The warmest of the MIS3 interstadials was GI14, when a forest with abundant spruce covered the Eifel area from 55 to 48 ka BP, i.e. during a time when also other climate archives in Europe suggested very warm conditions. The forest of this "Early Stage 3 warm phase" developed subsequently into a steppe with scattered birch and pine, and finally into a glacial desert at around 25 ka BP. Evidence for Mono Lake and Laschamp geomagnetic excursions is found in two long cores. Several large eruptions during Middle and Late Pleistocene (Ulmener Maar - 11,000 varve years BP, Laacher See - 12,900 varve years BP, Mosenberg volcanoes/Meerfelder Maar 41-45 cal ka BP, Dümpel Maar 116 ka BP, Glees Maar - 151 ka BP) produced distinct ash-layers crucial for inter-core and inter-site correlations. The oldest investigated maar of the Eifel is 40Ar/39Ar dated to the time older than 520 ka BP.

  19. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis

    2016-04-01

    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold

  20. Elucidating the Holocene Relative Sea-Level History of the US Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Engelhart, S. E.; Anderson, C.; Hill, D.; Horton, B. P.; Peltier, W. R.; van de Plassche, O.; Shennan, I.; Thieler, E. R.; Tornqvist, T. E.

    2007-12-01

    There is an urgent need for a re-assessment of the quality of Holocene relative sea-level (RSL) observations from the Atlantic and Gulf coasts of the United States. Holocene RSL data provide an essential benchmark to compare against other records of RSL change in the last 100-150 years. Only high quality sea-level data reveal spatial and temporal variations in crustal movements since the Last Glacial Maximum and provide a vital constraint upon dynamical models of the Glacial Isostatic Adjustment (GIA) process. We require an accurate model of the GIA process to inform the global data set currently being produced on the time dependence of the gravitational field of the planet by the Gravity Recovery and Climate Experiment (GRACE). We have compiled database of 1400 possible sea-level index points for the Atlantic coast of the United States. These unvalidated data contain much scatter due to concepts inherent in their original interpretation. They rarely allow for other factors such as sediment compaction and tidal range variation. Following validation, results from Delaware and North Carolina show a rapid rise in RSL from the early to mid Holocene, with no evidence of sea- level above present. They also differ somewhat from GIA model predictions. Rates of RSL change during the late Holocene divide into three broad zones: (1) Maine to Boston, MA ~ RSL rise of less than 1 mm yr-1; (2) Cape Cod, MA to Maryland ~ RSL rise between 1 and 3 mm yr-1; and (3) North Carolina to South Carolina ~ RSL rise less than 1 mm yr-1. Comparison with tide-gauge records demonstrate an increase of at least 1 mm yr-1 at all sites since AD 1900.

  1. Oxygen isotope records of Holocene climate variability in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Steinman, Byron A.; Pompeani, David P.; Abbott, Mark B.; Ortiz, Joseph D.; Stansell, Nathan D.; Finkenbinder, Matthew S.; Mihindukulasooriya, Lorita N.; Hillman, Aubrey L.

    2016-06-01

    Oxygen isotope (δ18O) measurements of authigenic carbonate from Cleland Lake (southeastern British Columbia), Paradise Lake (central British Columbia), and Lime Lake (eastern Washington) provide a ∼9000 year Holocene record of precipitation-evaporation balance variations in the Pacific Northwest. Both Cleland Lake and Paradise Lake are small, surficially closed-basin systems with no active inflows or outflows. Lime Lake is surficially open with a seasonally active overflow. Water isotope values from Cleland and Paradise plot along the local evaporation line, indicating that precipitation-evaporation balance is a strong influence on lake hydrology. In contrast, Lime Lake water isotope values plot on the local meteoric water line, signifying minimal influence by evaporation. To infer past hydrologic balance variations at a high temporal resolution, we sampled the Cleland, Paradise, and Lime Lake sediment cores at 1-60 mm intervals (∼3-33 years per sample on average) and measured the isotopic composition of fine-grained (<63 μm) authigenic CaCO3 in each sample. Negative δ18O values, which indicate wetter conditions in closed-basin lakes, occur in Cleland Lake sediment from 7600 to 2200 years before present (yr BP), and are followed by more positive δ18O values, which suggest drier conditions, after 2200 yr BP. Highly negative δ18O values in the Cleland Lake record centered on ∼2400 yr BP suggest that lake levels were high (and that the lake may have been overflowing) at this time as a result of a substantially wetter climate. Similarly, Paradise Lake sediment δ18O values are relatively low from 7600 to 4000 yr BP and increase from ∼4000 to 3000 yr BP and from ∼2000 yr BP to present, indicating that climate became drier from the middle through the late Holocene. The δ18O record from Lime Lake, which principally reflects changes in the isotopic composition of precipitation, exhibits less variability than the closed-basin lake records and follows a

  2. A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene.

    PubMed

    Ramisch, Arne; Lockot, Gregori; Haberzettl, Torsten; Hartmann, Kai; Kuhn, Gerhard; Lehmkuhl, Frank; Schimpf, Stefan; Schulte, Philipp; Stauch, Georg; Wang, Rong; Wünnemann, Bernd; Yan, Dada; Zhang, Yongzhan; Diekmann, Bernhard

    2016-05-13

    Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [~36°N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions.

  3. The biogeophysical climatic impacts of anthropogenic land use change during the Holocene

    NASA Astrophysics Data System (ADS)

    Smith, M. Clare; Singarayer, Joy S.; Valdes, Paul J.; Kaplan, Jed O.; Branch, Nicholas P.

    2016-04-01

    The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June-July-August (JJA) season and throughout the entire annual cycle by 2-3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature

  4. Ocean as the main driver of Antarctic ice sheet retreat during the Holocene

    NASA Astrophysics Data System (ADS)

    Crosta, Xavier; Crespin, Julien; Swingedouw, Didier; Marti, Olivier; Masson-Delmotte, Valérie; Etourneau, Johan; Goosse, Hugues; Braconnot, Pascale; Yam, Ruth; Brailovski, Irena; Shemesh, Aldo

    2018-07-01

    Ocean-driven basal melting has been shown to be the main ablation process responsible for the recession of many Antarctic ice shelves and marine-terminating glaciers over the last decades. However, much less is known about the drivers of ice shelf melt prior to the short instrumental era. Based on diatom oxygen isotope (δ18Odiatom; a proxy for glacial ice discharge in solid or liquid form) records from western Antarctic Peninsula (West Antarctica) and Adélie Land (East Antarctica), higher ocean temperatures were suggested to have been the main driver of enhanced ice melt during the Early-to-Mid Holocene while atmosphere temperatures were proposed to have been the main driver during the Late Holocene. Here, we present a new Holocene δ18Odiatom record from Prydz Bay, East Antarctica, also suggesting an increase in glacial ice discharge since 4500 years before present ( 4.5 kyr BP) as previously observed in Antarctic Peninsula and Adélie Land. Similar results from three different regions around Antarctica thus suggest common driving mechanisms. Combining marine and ice core records along with new transient accelerated simulations from the IPSL-CM5A-LR climate model, we rule out changes in air temperatures during the last 4.5 kyr as the main driver of enhanced glacial ice discharge. Conversely, our simulations evidence the potential for significant warmer subsurface waters in the Southern Ocean during the last 6 kyr in response to enhanced summer insolation south of 60°S and enhanced upwelling of Circumpolar Deep Water towards the Antarctic shelf. We conclude that ice front and basal melting may have played a dominant role in glacial discharge during the Late Holocene.

  5. Carbonate-evaporite cycles in the Miocene to Holocene of Abu Dhabi, United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittle, G.L.; Alsharhan, A.S.; Takezaki, H.

    1995-08-01

    The coastal sabkhas of the United Arab Emirates provide a Holocene analog for the study of evaporite formation. Carbonate-evaporite sequences are common throughout geologic history and, in the Arabian Gulf region in particular, create the reservoir-seal relationship of some of the most prolific hydrocarbon reservoirs in the world. Detailed core description, thin section study and geochemical analysis of Miocene to Holocene cores from the sabkha of Abu Dhabi have been performed in order to characterize modern sabkha diagenetic patterns. Two primary lithologies, dolomite and anhydrite were identified and subdivided into lithofacies. Based on these lithofacies, deposition is interpreted to havemore » occurred in shallow open marine, lagoonal, tidal channel, tidal/algal flats and supratidal sabkha settings. The primary diagenetic effects are dolomitization, anhydritc formation and leaching. As anhydrite precipitated (in the form of gypsum), the Mg:Ca ratio increased to the point where rapid dolomitization of original limestone occurred. Leaching was pervasive, as subaerial exposure led to the formation of moldic porosity in dolomitized packstones and grainstones. Dolomitic cements in these pores, and leached zones in some of these crystals suggests that leaching continued after dolomitization. By comparing the Holocene sabkha sediments to ancient ones, insight may be gained into the extent of dolomilization both with depth and distance for in the high water mark, the zonation of the stratigraphy from upper supratidal to shallow shelf, the preservation potential of algal mats after burial, the compaction effects after shallow burial, and other diagenetic alterations.« less

  6. Onset and Multiple Fluctuations of Holocene Glaciation in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Bowerman, N. D.; Clark, D. H.

    2004-12-01

    Multiple sediment cores from two paternoster tarns (First and Second lakes) in North Fork Big Pine Creek, Sierra Nevada, preserve the most detailed and complete record of Holocene glaciation yet recovered in the range; they indicate that the glacier was absent during the early Holocene, reformed in the late Holocene, and experienced several expansions and contractions, culminating with the Matthes maximum during the last ˜200 years. The lakes are fed by outwash from the Palisade Glacier, the largest ( ˜1.3 km2) and presumably longest-lived glacier in the Sierra Nevada, and capture essentially all of the rock flour produced by the glacier. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. Thus, the lakes have received continuous sedimentation since the retreat of the Tioga glacier ( ˜15,000 yr B.P.), and therefore capture rock flour related to all subsequent advances. First and Second lakes occupy relatively deep bedrock basins at 3036 m and 3066 m asl., respectively. Third Lake, a shallow (<3 m deep), moraine-dammed lake that lies directly above Second Lake, is the only lake between the Palisade Glacier and the lower lakes. As such, it captures the coarsest (sand/gravel bedload) outwash, but abundant suspended sediment (silt/clay) continues to the lower lakes. We cored the lakes using both Reasoner and Livingston corers, to sediment depths of up to ˜5 m. The deepest cores bottomed in coarse, inorganic sand and silt that we interpret as outwash or slopewash related to Tioga deglaciation. Magnetic susceptibility (MS) analyses of the sediment cores indicate that both lakes record multiple late-Holocene peaks in MS, with the most recent peak being the largest. They also retain outwash near the base related to the more extensive Recess Peak advance. MS peaks in Sierran lakes typically indicate greater abundances of clastic (vs. organic) sediment. The peaks in our cores thus imply 4-5 periods of

  7. Holocene vegetation history from fossil rodent middens near Arequipa, Peru

    USGS Publications Warehouse

    Holmgren, C.A.; Betancourt, J.L.; Rylander, K.A.; Roque, J.; Tovar, O.; Zeballos, H.; Linares, E.; Quade, Jay

    2001-01-01

    Rodent (Abrocoma, Lagidium, Phyllotis) middens collected from 2350 to 2750 m elevation near Arequipa, Peru (16??S), provide an ???9600-yr vegetation history of the northern Atacama Desert, based on identification of >50 species of plant macrofossils. These midden floras show considerable stability throughout the Holocene, with slightly more mesophytic plant assemblages in the middle Holocene. Unlike the southwestern United States, rodent middens of mid-Holocene age are common. In the Arequipa area, the midden record does not reflect any effects of a mid-Holocene mega drought proposed from the extreme lowstand (100 m below modern levels, >6000 to 3500 yr B.P.) of Lake Titicaca, only 200 km east of Arequipa. This is perhaps not surprising, given other evidence for wetter summers on the Pacific slope of the Andes during the middle Holocene as well as the poor correlation of summer rainfall among modern weather stations in the central AndesAtacama Desert. The apparent difference in paleoclimatic reconstructions suggests that it is premature to relate changes observed during the Holocene to changes in El Nin??o Southern Oscillation modes. ?? 2001 University of Washington.

  8. Multiproxy records of Holocene climate and glacier variability from sediment cores in the Cordillera Vilcabamba of southern Peru

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A. D.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.; Tapia, P. M.

    2012-12-01

    Sediments contained in glacier-fed lakes and bogs provide continuous high-resolution records of glacial activity, and preserve multiproxy evidence of Holocene climate change. Tropical glacier fluctuations offer critical insight on regional paleoclimatic trends and controls, however, continuous sediment records of past tropical climates are limited. Recent cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba of southern Peru (13°20'S latitude) reveal a glacial culmination during the early Holocene and a less extensive glaciation coincident with the Little Ice Age of the Northern Hemisphere. Here we supplement the existing 10Be moraine chronology with the first continuous records of multiproxy climate data in this mountain range from sediment cores recovered from bogs in direct stratigraphic contact with 10Be-dated moraines. Radiocarbon-dated sedimentological changes in a 2-meter long bog core reveal that the Holocene is characterized by alternating inorganic and organic-rich laminae, suggesting high-frequency climatic variability. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Preliminary analyses of the bog core reveal approximately 70 diatom taxa that indicate both rheophilic and lentic environments. Initial results show a general decrease in magnetic susceptibility and clastic flux throughout the early to mid-Holocene, which suggests an interval of deglaciation. An episode of high clastic flux from 3.8 to 2.0 ka may reflect a late Holocene glacial readvance. Volcanic glass fragments and an anomalous peak in magnetic susceptibility may correspond to the historical 1600 AD eruption of Huaynaputina. Ten new bog and lake sediment cores were collected during the 2012 field expedition and analytical measurements are underway. Ongoing efforts are focused on analyzing diatom assemblage data, developing

  9. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape

    NASA Astrophysics Data System (ADS)

    Hájek, Michal; Dudová, Lydie; Hájková, Petra; Roleček, Jan; Moutelíková, Jitka; Jamrichová, Eva; Horsák, Michal

    2016-02-01

    The south-western part of the White Carpathians (Czech Republic, Slovakia) is known for its exceptional grassland diversity and occurrence of many species with disjunct distribution patterns, including isolated populations of continental forest-steppe species. The north-eastern part of the mountain range lacks many of these species and has clearly lower maxima of grassland species richness. While climatic and edaphic conditions of both regions largely overlap, their specific environmental history has been hypothesized to explain the exceptional richness in the south-western part. We explored an entire-Holocene record (9650 BC onwards), the first one from the north-eastern part, to find out whether differences in history may explain regional patterns of species rarity and richness. We analysed pollen, macrofossils and molluscs and dated the sequence with 13 radiocarbon dates. We further reconstructed past human activities using available archaeological evidence. Based on this analysis, the Early-Holocene landscape was reconstructed as semi-open with broad-leaved trees (elm and lime) appearing already around 9500 BC. Lime reached a relative abundance of as much as 60% around 8700 BC. All analysed proxies support the existence of dense lime-dominated woodland during the forest optimum starting after climate moistening around 6800 BC, some 2200 years before the first signs of slight forest opening in the Late Neolithic. During the Bronze and Iron Ages, human pressure increased, which led to a decrease in lime and an increase in oak, hornbeam, grasses and grassland snails; nevertheless, forests still dominated the landscape and beech spread when human impact temporarily decreased. Colonisation after AD 1350 created the modern grassland-rich landscape. All available evidence confirmed an early post-Glacial expansion of broad-leaved trees, supporting the hypothesis on their glacial refugia in the Carpathians, as well as presence of closed-canopy forest well before the

  10. Holocene thinning of the Greenland ice sheet.

    PubMed

    Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M

    2009-09-17

    On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.

  11. A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd

    2015-09-01

    Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, δ13Ccalcite, δ18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing δ18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  12. Recent evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following holocene climatic warming

    Treesearch

    F. Thomas Ledig; Virginia Jacob-Cervantes; Paul D. Hodgskiss

    1997-01-01

    Fragmentation and reduction in population size are expected to reduce genetic diversity. However, examples from natural populations of forest trees are scarce. The range of Chihuahua spruce retreated northward and fragmented coincident with the warming climate that marked the early Holocene. The isolated populations vary from 15 to 2441 trees, which provided an...

  13. Holocene environmental change of the northern Caribbean inferred from the sediments of a flooded sinkhole, Cayo Coco, Cuba

    NASA Astrophysics Data System (ADS)

    Peros, M. C.; Agosta G'meiner, A. M.; Collins, S.

    2016-12-01

    We present new data on the Holocene environments of the northern Caribbean inferred from the sediments of a flooded sinkhole (Cenote Jennifer) on the island of Cayo Coco in north-central Cuba. Cenote Jennifer is located several meters above sea level and has an average depth of 13 meters. Water chemistry measurements indicate that the water in the sinkhole is highly stratified with a halocline at about 8 meters depth and an anoxic base. A series of sediment cores collected at the center of the sinkhole were analyzed for fossil pollen, microcharcoal, dinoflagellate cysts, elemental geochemistry (by high-resolution XRF core-scanning), and grain size and were dated by Pb-210 and AMS radiocarbon techniques (using well-preserved macrofossils of leaves, bark, and twigs). The results show that sediments first began to accumulate in Cenote Jennifer approximately 9000 years ago and continued until the present. The elemental geochemistry results record increases in elements such as Br, Cl, Ni, and Cu during the 8.2 kyr event which may reflect enhanced deep-ocean upwelling at this time. The fossil pollen data record a succession in vegetation that included cattail marsh, thorny coastal scrubland, dry evergreen forest, and secondary forest communities over the course of the Holocene. Changes in vegetation were driven mostly by relative sea level rise in the early Holocene but climate change was more important by the middle to late Holocene. Hundreds of mm- to cm-scale laminations are also present in the core, many of which represent past hurricane strikes. The microcharcoal and pollen evidence also suggests that prehistoric humans may have settled the area and practiced agriculture as early as 2800 cal yr BP. The findings from Cenote Jennifer highlight the utility of flooded sinkholes as paleoenvironmental archives in tropical kart regions and provide important new data on the hydroclimatology of the northern Caribbean.

  14. Climate and marine biogeochemistry during the Holocene from transient model simulations

    NASA Astrophysics Data System (ADS)

    Segschneider, Joachim; Schneider, Birgit; Khon, Vyacheslav

    2018-06-01

    Climate and marine biogeochemistry changes over the Holocene are investigated based on transient global climate and biogeochemistry model simulations over the last 9500 years. The simulations are forced by accelerated and non-accelerated orbital parameters, respectively, and atmospheric pCO2, CH4, and N2O. The analysis focusses on key climatic parameters of relevance to the marine biogeochemistry, and on the physical and biogeochemical processes that drive atmosphere-ocean carbon fluxes and changes in the oxygen minimum zones (OMZs). The simulated global mean ocean temperature is characterized by a mid-Holocene cooling and a late Holocene warming, a common feature among Holocene climate simulations which, however, contradicts a proxy-derived mid-Holocene climate optimum. As the most significant result, and only in the non-accelerated simulation, we find a substantial increase in volume of the OMZ in the eastern equatorial Pacific (EEP) continuing into the late Holocene. The concurrent increase in apparent oxygen utilization (AOU) and age of the water mass within the EEP OMZ can be attributed to a weakening of the deep northward inflow into the Pacific. This results in a large-scale mid-to-late Holocene increase in AOU in most of the Pacific and hence the source regions of the EEP OMZ waters. The simulated expansion of the EEP OMZ raises the question of whether the deoxygenation that has been observed over the last 5 decades could be a - perhaps accelerated - continuation of an orbitally driven decline in oxygen. Changes in global mean biological production and export of detritus remain of the order of 10 %, with generally lower values in the mid-Holocene. The simulated atmosphere-ocean CO2 flux would result in atmospheric pCO2 changes of similar magnitudes to those observed for the Holocene, but with different timing. More technically, as the increase in EEP OMZ volume can only be simulated with the non-accelerated model simulation, non-accelerated model

  15. Holocene sea level, a semi-empirical contemplation

    NASA Astrophysics Data System (ADS)

    Bittermann, Klaus; Kemp, Andrew; Vermeer, Martin; Rahmstorf, Stefan

    2017-04-01

    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60 m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the 'Holocene Optimum'. From there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with a semi-empirical sea-level model. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., Pollard, D., & Tarasov, L. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews

  16. Late Holocene Climate Change Inferred From Varved Proglacial Lake Sediments on Northeastern Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Thomas, E. K.; Briner, J. P.; Axford, Y.

    2007-12-01

    The Arctic has a disproportionately large response to changes in radiative forcing of climate, and glaciers and arctic lacustrine ecosystems respond sensitively to these changes. Lacustrine ecosystems throughout the Arctic are undergoing rapid regime shifts, including dramatically increased primary productivity and changing aquatic floral and faunal assemblages. Our work on organic lake sediments from northeast Baffin Island shows a large increase in primary productivity, changes in insect (Chironomidae) assemblages including the disappearance of cold stenotherms, and a rise in chironomid-inferred summer water temperatures of at least 1.5°C over the past 50 years, reaching temperatures that were unprecedented in the past 5000 years. Here, we pursue the use of varve thickness, an abiotic temperature proxy, to expand our understanding of late Holocene temperature changes on northeast Baffin Island. We obtained a 14C- and 239+240Pu-dated surface core/percussion core pair from a proglacial lake. Together these cores span > 8000 years and the sediments are varved, as verified by the 239+240Pu analysis, for at least the past 700 years. Magnetic susceptibility was high during the early Holocene, decreased to near-zero values during the mid-Holocene and increased during the past 2500 years to reach the highest values seen in the record around 1000 years ago. Loss-on- ignition had an opposite trend, with the highest values in the mid-Holocene. Sedimentation rate was constant during most of the Holocene (0.03 cm yr -1) and increased during the past 1000 years to 0.05 cm yr -1. These parameters indicate that following the absence of an active glacier during the middle Holocene, glacier activity initiated ~2500 years ago and reached peak activity over the last 1000 years. Our ongoing work to obtain a varve-thickness record for at least the last 700 years, and its calibration to a nearby weather station, will be presented.

  17. The silence of the layers: Archaeological site visibility in the Pleistocene-Holocene transition at the Ebro Basin

    NASA Astrophysics Data System (ADS)

    Alday, Alfonso; Domingo, Rafael; Sebastián, María; Soto, Adriana; Aranbarri, Josu; González-Sampériz, Penélope; Sampietro-Vattuone, María Marta; Utrilla, Pilar; Montes, Lourdes; Peña-Monné, José Luis

    2018-03-01

    The Ebro Basin constitutes one of the most representative territories in SW Europe for the study of prehistoric societies during the Pleistocene-Holocene transition. The correlation of palaeoenvironmental and geomorphological proxies obtained from sedimentary records with chronologically well-constrained reference archaeological sites has allowed defining this time frame precisely, such that three main pilot areas haven been broadly depicted: the Alavese region, the Pre-Pyrenees and the Bajo Aragón. Overall, the human imprint in the Ebro Basin was rare during the Upper Palaeolithic, but more visible from the Upper Magdalenian (14500-13500 cal BP) to Neolithic times (up to 5500 cal BP). Local environmental resources were continuously managed by the prehistoric communities in the different areas of study. In fact, the Ebro Basin acted during those millennia as a whole, developing the same cultural trends, industrial techniques and settlement patterns in parallel throughout the territory. However, some gaps exist in the 14C frequency curve (SCDPD curve). This is partially related to prehistoric sites in particular lithologies and geological structures that could have partly been lost by erosional processes, especially during the Early Holocene. In addition, this gap also parallels the reconstructed climate trend for the Pre-Pyrenean and the Bajo Aragón areas, which are defined by high frequencies of xerophilous flora until ca. 9500 cal BP, suggesting that continental climate features could have hampered the presence of well-established human communities in inland regions. The interdisciplinary research (archaeology, geomorphology and palaeoclimatology) discussed in this paper offers clues to understand the existence of fills and gaps in the archaeological record of the Ebro Basin, and can be applied in other territories with similar geographic and climate patterns.

  18. Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Bekeschus, Benjamin; Handorf, Dörthe; Liu, Xingqi; Dallmeyer, Anne; Herzschuh, Ulrike

    2017-08-01

    The concept of a Global Monsoon (GM) has been proposed based on modern precipitation observations, but its application over a wide range of temporal scales is still under debate. Here, we present a synthesis of 268 continental paleo-moisture records collected from monsoonal systems in the Eastern Hemisphere, including the East Asian Monsoon (EAsM), the Indian Monsoon (IM), the East African Monsoon (EAfM), and the Australian Monsoon (AuM) covering the last 18,000 years. The overall pattern of late Glacial to Holocene moisture change is consistent with those inferred from ice cores and marine records. With respect to the last 10,000 years (10 ka), i.e. a period that has high spatial coverage, a Fuzzy c-Means clustering analysis of the moisture index records together with ;Xie-Beni; index reveals four clusters of our data set. The paleoclimatic meaning of each cluster is interpreted considering the temporal evolution and spatial distribution patterns. The major trend in the tropical AuM, EAfM, and IM regions is a gradual decrease in moisture conditions since the early Holocene. Moisture changes in the EAsM regions show maximum index values between 8 and 6 ka. However, records located in nearby subtropical areas, i.e. in regions not influenced by the intertropical convergence zone, show an opposite trend compared to the tropical monsoon regions (AuM, EAfM and IM), i.e. a gradual increase. Analyses of modern meteorological data reveal the same spatial patterns as in the paleoclimate records such that, in times of overall monsoon strengthening, lower precipitation rates are observed in the nearby subtropical areas. We explain this pattern as the effect of a strong monsoon circulation suppressing air uplift in nearby subtropical areas, and hence hindering precipitation. By analogy to the modern system, this would mean that during the early Holocene strong monsoon period, the intensified ascending airflows within the monsoon domains led to relatively weaker ascending or

  19. Human responses to Middle Holocene climate change on California's Channel Islands

    NASA Astrophysics Data System (ADS)

    Kennett, Douglas J.; Kennett, James P.; Erlandson, Jon M.; Cannariato, Kevin G.

    2007-02-01

    High-resolution archaeological and paleoenvironmental records from California's Channel Islands provide a unique opportunity to examine potential relationships between climatically induced environmental changes and prehistoric human behavioral responses. Available climate records in western North America (7-3.8 ka) indicate a severe dry interval between 6.3 and 4.8 ka embedded within a generally warm and dry Middle Holocene. Very dry conditions in western North America between 6.3 and 4.8 ka correlate with cold to moderate sea-surface temperatures (SST) along the southern California Coast evident in Ocean Drilling Program (ODP) Core 893A/B (Santa Barbara Basin). An episode of inferred high marine productivity between 6.3 and 5.8 ka corresponds with the coldest estimated SSTs of the Middle Holocene, otherwise marked by warm/low productivity marine conditions (7.5-3.8 ka). The impact of this severe aridity on humans was different between the northern and southern Channel Islands, apparently related to degree of island isolation, size and productivity of islands relative to population, fresh water availability, and on-going social relationships between island and continental populations. Northern Channel Islanders seem to have been largely unaffected by this severe arid phase. In contrast, cultural changes on the southern Channel Islands were likely influenced by the climatically induced environmental changes. We suggest that productive marine conditions coupled with a dry terrestrial climate between 6.3 and 5.8 ka stimulated early village development and intensified fishing on the more remote southern islands. Contact with people on the adjacent southern California Coast increased during this time with increased participation in a down-the-line trade network extending into the western Great Basin and central Oregon. Genetic similarities between Middle Holocene burial populations on the southern Channel Islands and modern California Uto-Aztecan populations suggest

  20. Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region

    USGS Publications Warehouse

    Takesue, R.K.; VanGeen, A.

    2004-01-01

    This study explores the potential of intertidal Protothaca staminea shells as high-resolution geochemical archives of environmental change in a coastal upwelling region. Mg/Ca and Sr/Ca ratios were analyzed by excimer laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) at sub-weekly temporal resolution in shells growing ???1 mm per month. Growth patterns of a modern P. staminea shell from Humboldt Bay, California, collected in December 1999 made it possible to infer a lifespan from 1993 to 1998. Growth hiatuses in the shell may have excluded records of extreme events. Mg/Ca ratios appeared to be partly controlled by water temperature; the correlation coefficient between temperature and Mg/Ca was r = 0.71 in one of four growth increments. Significant year-to-year differences in the sensitivity of Mg/Ca to temperature in P. staminea could not be explained, however. Sr/Ca ratios appeared to be more closely related to shell growth rate. Oxygen isotopes, measured at 2-week temporal resolution in the same shell, did not show a clear relation to local temperature in summer, possibly because temperatures were higher and less variable at the King Salmon mudflat, where the shell was collected, than in the main channel of Humboldt Bay, where water properties were monitored. Negative shell ??13C values (<-0.5???) marked spring and summer coastal upwelling events. The Mg contents of P. staminea midden shells dated to ???3 ka and ???9 ka were significantly lower than in the modern shell. This may have resulted from degradation of a Mg-rich shell organic matrix and precluded quantitative interpretation of the older high-resolution records. Elevated ??13C values in the ???3 ka shell suggested that the individual grew in highly productive or stratified environment, such as a shallow coastal embayment or lagoon. Copyright ?? 2004 Elsevier Ltd.

  1. Palaeoenvironmental implications of a Holocene sequence of lacustrine-peat sediments from the desert-loess transitional zone in Northern China

    NASA Astrophysics Data System (ADS)

    Jia, Feifei; Lu, Ruijie; Liu, Xiaokang; Zhao, Chao; Lv, Zhiqiang; Gao, Shangyu

    2018-05-01

    A high-resolution lacustrine-peat record from the desert-loess transitional zone in Northern China was obtained to reconstruct Holocene environmental change in the region. AMS 14C dates are used to provide a chronology. The results indicate that the site was a desert environment before 12.2 cal kyr BP, and was then occupied by a paleolake which started to shrink, with a wetland occurring from 6.2 to 3.0 cal kyr BP. Subsequently, the site became a seasonally water-filled depression. Based on the lithology and measurements of grain size and total organic carbon content, the climate changed from arid to humid at 12.2 cal kyr BP, and became more humid after 8.3 cal kyr BP. From 6.2 to 3.0 cal kyr BP, precipitation decreased but the climate remained at an optimum. After 3.0 cal kyr BP, the climate was dry overall but with several humid intervals. A comparison of paleoclimatic records from lacustrine and aeolian deposits from the region reveals a discrepancy about the nature of the early Holocene climate, and we conclude that this is because lacustrine sediments responded more sensitively to precipitation than aeolian deposits when the temperature was low. The environmental evolution of the region was synchronous with changes in the Asian summer monsoon (ASM), but temperature also played a key role in the early Holocene.

  2. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    USGS Publications Warehouse

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  3. Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model

    NASA Astrophysics Data System (ADS)

    Matthews-Bird, Frazer; Brooks, Stephen J.; Holden, Philip B.; Montoya, Encarni; Gosling, William D.

    2016-06-01

    Presented here is the first chironomid calibration data set for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes), and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0-17° S and 64-78° W. The study sites cover a mean annual temperature (MAT) gradient of 25 °C. In total, 55 chironomid taxa were identified in the 59 calibration data set lakes. When used as a single explanatory variable, MAT explains 12.9 % of the variance (λ1/λ2 = 1.431). Two inference models were developed using weighted averaging (WA) and Bayesian methods. The best-performing model using conventional statistical methods was a WA (inverse) model (R2jack = 0.890; RMSEPjack = 2.404 °C, RMSEP - root mean squared error of prediction; mean biasjack = -0.017 °C; max biasjack = 4.665 °C). The Bayesian method produced a model with R2jack = 0.909, RMSEPjack = 2.373 °C, mean biasjack = 0.598 °C, and max biasjack = 3.158 °C. Both models were used to infer past temperatures from a ca. 3000-year record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern-day conditions but showed significant departures at certain intervals (ca. 1600 cal yr BP; ca. 3000-2500 cal yr BP). Both methods (WA and Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable and often underestimated Holocene temperatures (by ca. -7 ± 2.5 °C relative to the modern period). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (ca. -3 ± 3.4 °C). The error associated with both reconstructions is consistent with a constant temperature of 20 °C for the past 3000 years. We would caution, however, against an over-interpretation at this stage. The reconstruction can only

  4. BISON ANTIQUUS OCCURRENCE AND PLEISTOCENE-HOLOCENE STRATIGRAPHY, CANADA DEL BUEY, PAJARITO PLATEAU, NEW MEXICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RENEAU, STEVEN L.; DRAKOS, PAUL G.; MORGAN, GARY S.

    2007-02-12

    A Bison. (probable Bison antiguus) distal humerus fragment was found within a Pleistocene colluvial deposit on a hillslope above Canada del Buey near White Rock, New Mexico. The Bison fossil is preserved within a buried soil with an inferred age of ca. 50-100 ka, based on soil properties and on stratigraphic position below a deposit of ca. 50-60 ka EI Cajete pumice. This represents the second oldest dated Bison in New Mexico, and one of the few occurrences of this genus in the northern mountains of the state. It is also only the second record of a Pleistocene vertebrate frommore » Los Alamos County, and is a rare occurrence of a pre-25 ka Bison fossil in good stratigraphic context. Hillslopes in the study area are underlain by a sequence of truncated Pleistocene and Holocene soils that are inferred to represent colluvial deposition and soil formation followed by erosion in the mid Pleistocene (buried soil 'b3'), the late Pleistocene (buried soil 'b2'), and the mid-to-late Holocene (buried soil 'b1'). The surface soil is developed in depOSits that overlie 600-800 year-old Ancestral Puebloan sites. Colluvium is dominated by relatively fine-grained (fine to very fine sand) slopewash colluvium deposited by overland flow, but also includes rocky colluvium on hillslopes below mesas. The fine-grained colluvium is likely derived mainly from reworking of eolian deposits. Episodic colluvial deposition appears to, at least in part, accompany and follow episodic eolian events, with intervening periods dominated by erosion and the development of truncated soils.« less

  5. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record

    USGS Publications Warehouse

    Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn

    2015-01-01

    Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate variability, however, is poorly constrained owing to considerable variability among the different records. To help address this, we present a new speleothem (NBJ) reconstruction from a central Texas cave that comprises the highest resolution proxy record to date, spanning the mid to late Holocene. NBJ trace-element concentrations indicate variable moisture conditions with no clear temporal trend. There is a decoupling between NBJ growth rate, trace-element concentrations, and δ18O values, which indicate that (i) the often direct relation between speleothem growth rate and moisture availability is likely complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and (ii) speleothem δ18O variations likely reflect changes in moisture source (i.e., proportion of Pacific-vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount.

  6. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record

    NASA Astrophysics Data System (ADS)

    Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn

    2015-11-01

    Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate variability, however, is poorly constrained owing to considerable variability among the different records. To help address this, we present a new speleothem (NBJ) reconstruction from a central Texas cave that comprises the highest resolution proxy record to date, spanning the mid to late Holocene. NBJ trace-element concentrations indicate variable moisture conditions with no clear temporal trend. There is a decoupling between NBJ growth rate, trace-element concentrations, and δ18O values, which indicate that (i) the often direct relation between speleothem growth rate and moisture availability is likely complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and (ii) speleothem δ18O variations likely reflect changes in moisture source (i.e., proportion of Pacific-vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount.

  7. A Holocene history of dune-mediated landscape change along the southeastern shore of Lake Superior

    USGS Publications Warehouse

    Loope, Walter L.; Fisher, Timothy G.; Jol, Harry M.; Anderton, John B.; Blewett, William L.

    2004-01-01

    Causal links that connect Holocene high stands of Lake Superior with dune building, stream damming and diversion and reservoir impoundment and infilling are inferred from a multidisciplinary investigation of a small watershed along the SE shore of Lake Superior. Radiocarbon ages of wood fragments from in-place stumps and soil O horizons, recovered from the bottom of 300-ha Grand Sable Lake, suggest that the near-shore inland lake was formed during multiple episodes of late Holocene dune damming of ancestral Sable Creek. Forest drownings at ~3000, 1530, and 300 cal. years BP are highly correlated with local soil burial events that occurred during high stands of Lake Superior. During these and earlier events, Sable Creek was diverted onto eastward-graded late Pleistocene meltwater terraces. Ground penetrating radar (GPR) reveals the early Holocene valley of Sable Creek (now filled) and its constituent sedimentary structures. Near-planar paleosols, identified with GPR, suggest two repeating modes of landscape evolution mediated by levels of Lake Superior. High lake stands drove stream damming, reservoir impoundment, and eolian infilling of impoundments. Falling Lake Superior levels brought decreased sand supply to dune dams and lowered stream base level. These latter factors promoted stream piracy, breaching of dune dams, and aerial exposure and forestation of infilled lakebeds. The bathymetry of Grand Sable Lake suggests that its shoreline configuration and depth varied in response to events of dune damming and subsequent dam breaching. The interrelated late Holocene events apparent in this study area suggest that variations in lake level have imposed complex hydrologic and geomorphic signatures on upper Great Lakes coasts.

  8. Holocene surface-rupturing earthquakes along the Yadong Cross Structure (Himalaya)

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Roth, T.; Jean-Francois, R.; Cattin, R.

    2017-12-01

    The Himalayan Arc accommodates 2 cm/yr of shortening from the India-Eurasia collision, mostly along the Main Himalayan Thust. Perpendicularly to the main structures, regional cross structures formed by en échelon grabens and half-grabens mark Quaternary extension from central Tibet to the Himalayas. The Yadong-Gulu Rift system is the most striking one with a total length of 500 km. Its southernmost segment -the 100-km-long Yadong half-graben- entrenches through the Himalayas and forms a 500-to-1500-m-deep asymmetric basin. The average basin surface elevation of 4500 m contrasts with high reliefs of the Jomolhari range that reach 7326 m. They are separated by the N15 Yadong normal fault (also called Jomolhari Fault System, JFS) that forms spectacular triangular facets and affects glacial landforms. Though observed as early as the 1980s, offset moraines were never studied in detail in terms of measured displacement or age determination. Recent efforts from paleoclimate studies yielded a high-resolution framework to identify the various stages of Holocene glacial advances and associated moraine formation. These landforms display specific geomorphometric features recognized regionally (ELA, rugosity, crest freshness) that allow correlating across the various glacial valleys within the Yadong Rift and across similar settings in western Bhutan and eastern Nepal. This serves as a robust basis to place our moraine sequence within the Holocene paleoclimatic record and propose formation ages. By combining satellite images from Sentinel-2 (10 m, visible and NIR), Pléiades (0.5 m, visible) and a Pléiades-derived tri-stereo photogrammetric DEM (1 m), we map the fault trace and affected landforms in details and extract topographic profiles to measure vertical offsets. Paleoclimatic age constraints yield age-vs-displacement measurements along the whole 100-km-long JFS and define a chronology of Holocene deformation events. Within the limits of our observations, we conclude

  9. Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States

    USGS Publications Warehouse

    Schmidt, K.M.; Menges, C.M.; ,

    2003-01-01

    Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.

  10. Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur

    2018-06-01

    Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.

  11. South America Monsoon variability on millennial to multi-centennial time scale during the Holocene in central eastern Brazil

    NASA Astrophysics Data System (ADS)

    Strikis, N. M.; Cruz, F. W.; Cheng, H.; Karmann, I.; Vuille, M.; Edwards, R.; Wang, X.; Paula, M. S.; Novello, V. F.; Auler, A.

    2011-12-01

    A paleoprecipitation reconstruction based on high resolution and well-dated speleothem oxygen isotope records shows that the monsoon precipitation over central eastern Brazil underwent to strong variations on millennial to multi-centennial time-scales during the Holocene. This new record indicates that abrupt events of increase in monsoon precipitation are correlated to Bond events 6, 5 and 4 and also with 8.2 ky event during the early and mid-Holocene, with a mean amplitude of 1.5 % (PDB). The pacing and structure of such events are general consistent with variations in solar activity suggested by atmospheric Δ14 C records. In the late-Holocene, abrupt events of increase in monsoon precipitation peaking at 3.2, 2.7 and 2.3 ky B.P. are approximately synchronous with periods of low solar minima. In this regard, the most prominent event occurred during the late Holocene occurred at ~2.7 ky B.P. In addition, these positive anomalies of the precipitation recorded in central eastern Brazil are also in good agreement with variations in Titicaca lake level. The good correspondence between the speleothem and marine records imply that the variations in the north Atlantic sea surface temperature is the main forcing for abrupt millennial to multi-centennial precipitations variation within the region under influence of South American Monsoon.

  12. Isotopic chemical weathering behaviour of Pb derived from a high-Alpine Holocene lake-sediment record

    NASA Astrophysics Data System (ADS)

    Gutjahr, Marcus; Süfke, Finn; Gilli, Adrian; Anselmetti, Flavio; Glur, Lukas; Eisenhauer, Anton

    2017-04-01

    Several studies assessing the chemical weathering systematics of Pb isotopes provided evidence for the incongruent release of Pb from source rocks during early stages of chemical weathering, resulting in runoff compositions more radiogenic (higher) than the bulk source-rock composition [e.g. 1]. Deep NW Atlantic seawater Pb isotope records covering the last glacial-interglacial transition further support these findings. Clear excursions towards highly radiogenic Pb isotopic input in the deep NW Atlantic seen during the early Holocene, hence after the large-scale retreat of the Laurentide Ice Sheet in North America, are interpreted to be controlled by preferential release of radiogenic Pb from U- and Th-rich mineral phases during early stages of chemical weathering that are less resistant to chemical dissolution than other rock-forming mineral phases [2-4]. To date, however, no terrestrial Pb isotope record exists that could corroborate the evidence from deep marine sites for efficient late deglacial weathering and washout of radiogenic Pb. We present a high-resolution adsorbed Pb isotope record from a sediment core retrieved from Alpine Lake Grimsel (1908 m.a.s.l.) in Switzerland, consisting of 117 Pb compositions over the past 10 kyr. This high-Alpine study area is ideally located for incipient and prolonged chemical weathering studies. The method used to extract the adsorbed lake Pb isotope signal is identical to previous marine approaches targeting the authigenic Fe-Mn oxyhydroxides fraction within the lake sediments [5, 6]. The Pb isotope compositions are further accompanied by various elemental ratios derived from the same samples that equally trace climatic boundary conditions in the Grimsel Lake area. The Pb isotopic composition recorded in Lake Grimsel is remarkably constant throughout the majority of the Holocene until ˜2.5 ka BP, despite variable sediment composition and -age, and isotopically relatively close to the signature of the granitic source rock

  13. Late Holocene glacial history of Petermann Fjord, Northwest Greenland: Non-destructive CT, XRF, and magnetic results from OD1507 sediment cores

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.; Cheseby, M.; Albert, S. W.; Wiest, J.

    2016-12-01

    An international and interdisciplinary expedition to Nares Strait and Petermann Fjord, Northwest Greenland, onboard the Swedish Icebreaker Oden July-September 2015 (OD1507) sought to understand the Holocene history of the Petermann glacial system among other research objectives. Petermann Glacier, which terminates as a floating ice-tongue in Petermann Fjord, is thought to be especially sensitive to ice-ocean interactions. While limited historical observations dating back to 1876 suggest the Petermann Ice Tongue extends about 70-90 km from the grounding-line, large calving events in 2010 and 2012 reduced the ice-tongue extent to about 45 km from the grounding-line. A suite of 14 marine sediment cores recovered a range of glacio-marine facies that form an along fjord (15-80 km from the grounding-line) and an across fjord depth (473-1041 meters water depth) transect. CT scans clearly identify four primary fjord facies, including bioturbated, IRD-rich, laminated and mud with stratified graded sand layers. The latter of these occurs near the modern grounding-line. Additionally, a new MATLAB routine is used to quantify clasts >2 mm in size from the CT scans. XRF sediment geochemical changes mirror magnetic mineral concentrations and are driven by varying contribution of Ca-rich and Ca-poor sources, which we interpret as a reflection of the mixing of the local carbonate rocks and crystalline basement excavated by the ice sheet. Initial paleomagnetic results isolate a strong and stable characteristic remanent magnetization which show remarkable similarity to paleosecular variation (PSV) recorded in nearby mid-late Holocene varved lakes on Ellesmere Island. This non-destructive dataset provides robust correlations, indicating a coherent and dynamic record of changes in the Petermann glacial system during the late Holocene, including evidence for a significant grounding-line retreat followed by the growth and relative paleo-extent of the modern Petermann Ice Tongue.

  14. Mid-Holocene to Present Climate Transition in Tropical South America

    NASA Astrophysics Data System (ADS)

    Turcq, B.; Cordeiro, R.; Sifeddine, A.; Braconnot, P.; Dias, P. S.; Costa, R.; Jorgetti, T.

    2008-12-01

    The classical illustration of Holocene climate changes in tropical South America is the huge rising of Titicaca lake level from 4400 to 4000 cal BP. Because the Amazon basin is the source of Andean rainfalls we have explored Amazonian data of climate changes during the Holocene to better understand the cause of this abrupt transition. Amazonian data confirm the existence of mid-Holocene dryness: (1) lacustrine level studies show a lower precipitation/evaporation budget than present, with the lowest lake levels between 8500 and 6800 cal BP; (2) although the dominant Holocene vegetation has always been the rainforest in the heart of Amazonia, this forest expanded towards the northwestern and southwestern regions from 6800 to 1550 cal BP, moreover, pioneer elements of the rainforest developed during the mid-Holocene and the best example is those of Cecropia, between 9000 and 5000 cal BP. (3) soil d13C indicates a forest expansion over savannas areas in Roraima (north), Mato Grosso and Rondonia (southwest), during the Holocene. (4) the mid-Holocene (8000- 4000 cal BP) is characterized by repeated occurrences of forest fires, marked by the presence of charcoals in soils and lacustrine sediments. However these different records are not characterized by abrupt transitions at the end of the Middle Holocene in Amazonia. In the Andean records there is a clear north-south shift in the timing of the transition. Analysis of coupled Ocean Atmosphere Model simulations suggest that convection in Amazon basin is directly controlled by insolation leading to an almost linear response of local climate to the global forcing. Differently, in the eastern and south-western regions where the rain is brought by the South American Monsoon, the climate transition appears more abrupt. It may be because the involved climate mechanisms are more complex and depend on Ocean/Atmosphere/Vegetation coupled process (ITCZ position, ZCAS formation, etc.). Tectonic movements or threshold links to

  15. Migrating Seals on Shifting Sands: Testing Alternate Hypotheses for Holocene Ecological and Cultural Change on the California Coast

    NASA Astrophysics Data System (ADS)

    Koch, P. L.; Newsome, S. D.; Gifford-Gonzalez, D.

    2001-12-01

    The coast of California presented Holocene humans with a diverse set of ecosystems and geomorphic features, from large islands off a semi-desert mainland in the south, to a mix of sandy and rocky beaches abutting grassland and oak forest in central California, to a rocky coast hugged by dense coniferous forest in the north. Theories explaining trends in human resource use, settlement patterns, and demography are equally diverse, but can be categorized as 1) driven by diffusion of technological innovations from outside the region, 2) driven by population growth leading to more intensive extraction of resources, or 3) driven by climatic factors that affect the resource base. With respect to climatic shifts, attention has focused on a possible regime shift ca. 5500 BP, following peak Holocene warming, and on evidence for massive droughts and a drop in marine productivity ca. 1000 BP. While evidence for a coincidence between climatic, cultural, and ecological change is present, albeit complex, in southern California, similar data are largely lacking from central and northern California. We are using isotopic and archaeofaunal analysis to test ideas for ecological and cultural change in central California. Three features of the archaeological record are relevant. First, overall use of marine resources by coastal communities declined after 1000 BP. Second, northern fur seals, which are common in earlier sites, drop in abundance relative to remaining marine animals. We have previously established that Holocene humans in central California were hunting gregariously-breeding northern fur seals from mainland rookeries. These seals breed exclusively on offshore islands today, typically at high latitudes. Their restriction to these isolated sites today may be a response to human overexploitation of their mainland rookeries prehistorically. Finally, collection of oxygen and carbon isotope data from mussels at the archaeological sites, while still in a preliminary phase, has

  16. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    USGS Publications Warehouse

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ???2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  17. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    NASA Astrophysics Data System (ADS)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  18. Late Pleistocene - Holocene surface processes and landscape evolution in the central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Boxleitner, Max; Musso, Alessandra; Waroszewski, Jarosław; Malkiewicz, Małgorzata; Maisch, Max; Dahms, Dennis; Brandová, Dagmar; Christl, Marcus; de Castro Portes, Raquel; Egli, Markus

    2017-10-01

    The European Alps are a geomorphologically active region and experience a number of gravity-driven hillslope processes. Soil and landscape formation in the Alps has consequently undergone several minor and major traceable changes of developmental trajectories during the Holocene. Soil development is hypothesised to be often non-linear with time and characterised by stages of progressive and regressive evolution caused by upbuilding (formation, profile deepening) and erosion (profile shallowing). Several cold and warm climate phases are identified during the Holocene but it is largely unknown which effects these might have had on slope processes. By using datable moraines (10Be) and mires (14C), we have constructed a temporal framework for these processes. Using the geochemical imprint of mires in the Alpine setting of the Göschener-valley of the Central Swiss Alps, we reconstructed general (mostly erosional) landscape processes for the last ca. 10 ka. As this is the type locality for the Göschener cold phase, we assumed that this phase (Göschener cold phase I and II 1.5 and 2.5 ka BP) should have left easily recognizable traits. After deglaciation (11-12 ka BP), soil evolution was progressive. Beginning around 8 ka BP, we detect a distinct increase in erosion here, together with a vegetation change (towards tundra vegetation) and the highest measured rates of carbon sequestration. Other phases of high geomorphic activity were recognised ca. 5-6 ka BP, 4 ka BP and, to a lesser extent, 1-3 ka ago. The cold phase at 5-6 ka BP corresponds to a less distinct change in vegetation and lessened erosion. Human impact is increasingly obvious since about 2.4 ka BP which overlaps with the Göschener cold phase. Nonetheless, erosion processes were not extraordinarily high during this period and a climate effect cannot be distinguished. We detect evidence of increasing human disturbance (regressive soil evolution) for about the last 1 ka. We also detect an increase in dust

  19. Holocene vertical tectonic movements of the Taipei Basin, northern Taiwan and its implications

    NASA Astrophysics Data System (ADS)

    Chen, B.; Hsieh, M.; Lai, T.; Liew, P.

    2007-12-01

    Many geological data of the Taipei Basin, although, have been published by various studies in past decades, however, vertical tectonic movement rate of the Basin was not well understood so far. This study, therefore, used radiocarbon dates, obtained from fifteen boreholes in the Basin, to calculate the Holocene vertical tectonic movement rate. In addition to the derived tectonic movement rate, this study also discussed the causes of the tectonic patterns of the Taipei Basin. The Taipei Basin, located in the northern Taiwan, was a half graben subsided and extended along the western boundary, the Shangiao Normal Fault, of the Basin. The Holocene vertical tectonic movement rate of the Basin were calculated based on 94 radiocarbon dates in fifteen boreholes, the elevations of the radiocarbon dating samples, and the eustatic sea-level curve of the past 15 ka. The results showed the rate in the western part of the Basin, was -2.2 -- -0.9 mm/yr (negative value indicates subsiding, and positive value indicates uplifting). In the central part of the Basin, the rate was ca. -1 -- 1 mm/yr while in the eastern part of the Basin, the rate was 0.1 -- 1.6 mm/yr. Along the Shiangiao Fault, the rate of the hanging-wall was ca. -1.6 -- -0.4 mm/yr and the rate of the footwall was ca. 0 mm/yr. According to the results of this study, the present territory of the Taipei Basin was not actually consistent with the tectonic subsiding region. The vertical tectonic movement pattern demonstrated subsidence in the western part and uplift in the eastern part of the Taipei Basin. The subsidence of the western part was controlled by the extension of the Shangiao Faul. The uplift of the eastern part might be ascribed to the roll-over of the Fault. Another possibility is that the uplift of the east was controlled by the same behavior as the Western Foothills.Consequently, the deposition of the eastern part of the Basin, wass mainly related to the accommodations due to sea-level rise but not

  20. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M.

    2008-06-01

    A high-resolution sedimentary charcoal record from Lago dell'Accesa in southern Tuscany reveals numerous changes in fire regime over the last 11.6 kyr cal. BP and provides one of the longest gap-free series from Italy and the Mediterranean region. Charcoal analyses are coupled with gamma density measurements, organic-content analyses, and pollen counts to provide data about sedimentation and vegetation history. A comparison between fire frequency and lake-level reconstructions from the same site is used to address the centennial variability of fire regimes and its linkage to hydrological processes. Our data reveal strong relationships among climate, fire, vegetation, and land-use and attest to the paramount importance of fire in Mediterranean ecosystems. The mean fire interval (MFI) for the entire Holocene was estimated to be 150 yr, with a minimum around 80 yr and a maximum around 450 yr. Between 11.6 and 3.6 kyr cal. BP, up to eight high-frequency fire phases lasting 300-500 yr generally occurred during shifts towards low lake-level stands (ca 11,300, 10,700, 9500, 8700, 7600, 6200, 5300, 3400, 1800 and 1350 cal. yr BP). Therefore, we assume that most of these shifts were triggered by drier climatic conditions and especially a dry summer season that promoted ignition and biomass burning. At the beginning of the Holocene, high climate seasonality favoured fire expansion in this region, as in many other ecosystems of the northern and southern hemispheres. Human impact affected fire regimes and especially fire frequencies since the Neolithic (ca 8000-4000 cal. yr BP). Burning as a consequence of anthropogenic activities became more frequent after the onset of the Bronze Age (ca 3800-3600 cal. yr BP) and appear to be synchronous with the development of settlements in the region, slash-and-burn agriculture, animal husbandry, and mineral exploitation. The anthropogenic phases with maximum fire activity corresponded to greater sensitivity of the vegetation and triggered

  1. Variable uplift rate through time: Holocene coral reef and neotectonics of Lutao, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Chuan-Chou; Wu, Chung-Che; Dai, Chang-Feng; Gong, Shou-Yeh

    2018-05-01

    Significant discrepancies have existed regarding rate and timing of the uplift of Lutao (Green Island), located at the border of the ongoing collision between the Eurasia continental plate and the Philippine Sea Plate. To document its neotectonic history, two cores were drilled into Holocene coral reefs exposed at the southeastern coast of Lutao. Twelve pristine fossil corals, nine taken from cores and three on the surface, were 230Th dated. The results show that the coral reefs started to develop at 8,736 ± 56 yr BP (before 1950 CE) with uplift rate varying from 3.6 mm/yr during 8.7-6.0 kyr BP to 1.2 mm/yr in the past six thousand years. Our study strongly suggests that the uplift rate can vary significantly on millennial time scale. Caution should be used when extrapolating uplift rate estimates based on Mid-late Holocene corals to early times for tectonic active locations, such as Lutao.

  2. Indications of human activity from amino acid and amino sugar analyses on Holocene sediments from lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Wiesner, M.; Prasad, S.; Basavaiah, N.; Stebich, M.; Anoop, A.; Riedel, N.; Brauer, A.

    2012-04-01

    The DFG funded HIMPAC (Himalaya: Modern and Past Climates) programme aims to reconstruct Holocene Indian Monsoon climate using a multi-proxy and multi-archive approach. First investigations made on sediments from a ca. 10 m long core covering the whole Holocene taken from the lake Lonar in central India's state Maharashtra, Buldhana District, serve to identify changes in sedimentation, lake chemistry, local vegetation and regional to supra-regional climate patterns. Lake Lonar occupies the floor of an impact crater that formed on the ~ 65 Ma old basalt flows of the Deccan Traps. It covers an area of ca. 1 km2 and is situated in India's core monsoon area. The modern lake has a maximum depth of about 5 m, is highly alkaline, and hyposaline, grouped in the Na-Cl-CO3 subtype of saline lakes. No out-flowing stream is present and only three small streams feed the lake, resulting in a lake level highly sensitive to precipitation and evaporation. The lake is eutrophic and stratified throughout most of the year with sub- to anoxic waters below 2 m depth. In this study the core sediments were analysed for their total amino acid (AA) and amino sugar (AS) content, the amino acid bound C and N percentage of organic C and total N in the sediment and the distribution of individual amino acids. The results roughly show three zones within the core separated by distinct changes in their AA content and distribution. (i) The bottom part of the core from ca. 12000 cal a BP to 11400 cal a BP with very low AA and AS percentage indicating high lithogenic contribution, most probably related to dry conditions. (ii) From 11400 cal a BP to 1200 cal a BP the sediments show moderate AA and AS percentages and low values for the ratios of proteinogenic AAs to their non-proteinogenic degradation products (e.g. ASP/β-ALA; GLU/γ-ABA). (iii) The top part of the core (< 1200 cal a BP) is characterised by an intense increase in total AA and AS, AA-C/Corg and AA-N/Ntotas well as in the ratio of

  3. Pleistocene to Holocene contrasts in organic matter production and preservation on the California continental margin

    USGS Publications Warehouse

    Dean, W.E.; Gardner, J.V.

    1998-01-01

    Organic matter in sediments from cores collected from the upper continental slope (200-2700 m) off California and southern Oregon shows marked differences in concentration and marine character between the last glacial interval (ca. 24-10 ka) and either Holocene time or last interstadial (oxygen isotope stage 3, ca. 60-24 ka). In general, sediments deposited during Holocene time and stage 3 contain higher amounts of marine organic matter than those deposited during the last glacial interval, and this contrast is greatest in cores collected off southern California. The most profound differences in stage 3 sediments are between predominantly bioturbated sediments and occasional interbeds of laminated sediments. The sediments are from cores collected within the present oxygen minimum zone on the upper continental slope from as far north as the Oregon-California border to as far south as Point Conception. These upper Pleistocene laminated sediments contain more abundant hydrogen-rich (type II) marine algal organic matter than even surface sediments that have large amounts of nonrefractory organic matter. The stable carbon-isotopic composition of the organic matter does not change with time between bioturbated and laminated sediments, indicating that the greater abundance of type II organic matter in the laminated sediments is not due to a change in source but rather represents a greater degree of production and preservation of marine organic matter. The presence of abundant, well-preserved organic matter supports the theory that the oxygen minimum zone in the northeastern Pacific Ocean was more intense, and possibly anoxic, during late Pleistocene time as a result of increased coastal upwelling that enhanced algal productivity.

  4. Holocene evolution of Apalachicola Bay, Florida

    USGS Publications Warehouse

    Osterman, L.E.; Twichell, D.C.; Poore, R.Z.

    2009-01-01

    A program of geophysical mapping and vibracoring was conducted to better understand the geologic evolution of Apalachicola Bay. Analyses of the geophysical data and sediment cores along with age control provided by 34 AMS 14C dates on marine shells and wood reveal the following history. As sea level rose in the early Holocene, fluvial deposits filled the Apalachicola River paleochannel, which extended southward under the central part of the bay and seaward across the continental shelf. Sediments to either side of the paleochannel contain abundant wood fragments, with dates documenting that those areas were forested at 8,000 14C years b.p. As sea level continued to rise, spits formed of headland prodelta deposits. Between ???6,400 and ???2,500 14C years b.p., an Apalachicola prodelta prograded and receded several times across the inner shelf that underlies the western part of the bay. An eastern deltaic lobe was active for a shorter time, between ???5,800 and 5,100 14C years b.p. Estuarine benthic foraminiferal assemblages occurred in the western bay as early as 6,400 14C years b.p., and indicate that there was some physical barrier to open-ocean circulation and shelf species established by that time. It is considered that shoals formed in the region of the present barrier islands as the rising sea flooded an interstream divide. Estuarine conditions were established very early in the post-glacial flooding of the bay. ?? 2009 US Government.

  5. Holocene precipitation in the coastal temperate rainforest complex of southern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Fitton, R. J.; Schoups, G.; Allen, G. B.; Wahl, K. A.; Hebda, R. J.

    2006-11-01

    Pollen data from 69 surface samples from Vancouver Island, Canada, were used to develop a ratio index of precipitation, Douglas fir-western hemlock index (DWHI). DWHI ratios were combined with interpolated estimates of mean annual precipitation to develop pollen-based precipitation transfer functions. The optimal regression model, with a predictive range of 960-2600 mm, was applied to 10 Holocene lake sediment records distributed across a ˜150 km long coastal-inland precipitation gradient. Predicted precipitation was spatially modelled in a geographic information system to examine the spatio-temporal history of precipitation from this representative portion of the coastal temperate rainforest (CTR) complex of western North America. The reconstructions show widespread early Holocene dry conditions coupled with a steep east-west precipitation gradient. Thereafter, the modern precipitation gradient established 7000 years ago, illustrating that the CTR complex has experienced marked short-distance east-west changes in precipitation in the past. Changes in the abundance of arboreal and non-arboreal vegetation, as well as fire disturbance, are often concomitant with changes in Holocene precipitation. Given the precipitation and vegetation history of the region, conservation initiatives should focus on the moist outer coastal zone since it appears to have the greatest amount of resilience to perturbations in precipitation, whereas monitoring programs for signs of climate change should be initiated in central and eastern areas as they appear sensitive to changes in the moisture regime.

  6. Duodenal Ca2+ absorption is not stimulated by calcitriol during early postnatal development of pigs.

    PubMed

    Schroeder, B; Dahl, M R; Breves, G

    1998-08-01

    The role of calcitriol in stimulating intestinal active Ca2+ absorption during postnatal life was studied in newborn, suckling, and weaned control (Con) piglets and piglets suffering from inherited calcitriol deficiency (Def piglets). In addition, a group of Def piglets was treated with vitamin D3 (Def-D3 piglets), which normalized plasma calcitriol levels. Regardless of age, duodenal calbindin-D9k concentrations ranged between 1,839 and 2,846 microg/g mucosa in Con piglets, between 821 and 1,219 microg/g mucosa in Def piglets, and between 2,960 and 3,692 microg/g mucosa in Def-D3 animals. In weaned animals, active Ca2+ absorption as calculated from in vitro 45Ca2+ flux rate measurements in Ussing chambers could be related to calbindin-D9k levels. Thus active Ca2+ absorption was completely absent in Def animals but was reconstituted in Def-D3 animals. In contrast, in newborn Def piglets active Ca2+ absorption functioned normally despite the low plasma calcitriol and mucosal calbindin-D9k levels and could not be affected by treatment with vitamin D3. Similar results were obtained from suckling Def piglets. The microtubule-disrupting agent colchicine caused significant inhibition of transepithelial net Ca2+ absorption in duodenal epithelia from newborn piglets without exerting an effect in suckling and weaned animals. Colchicine had no effect on Ca2+ uptake across the brush border membrane of mucosal enterocytes or on glucose-dependent electrogenic net ion flux rates in duodenal preparations from newborn Con piglets. In conclusion, our findings reveal intestinal active Ca2+ absorption during early postnatal life of pigs that involves calcitriol-independent mechanisms and that may include intact microtubule actions.

  7. Timing and paleoclimatic significance of Holocene glacier fluctuations in the Cordillera Vilcabamba of southern Peru

    NASA Astrophysics Data System (ADS)

    Licciardi, J. M.; Taggart, J. R.; Schaefer, J. M.; Lund, D. C.

    2009-12-01

    Past fluctuations in climatically sensitive tropical glaciers provide important insight into regional paleoclimatic trends and forcings, but well-dated chronologies are scarce, particularly during the Holocene. We have established precise cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba (13°20’S latitude), located in the outer tropics of southern Peru. Results indicate the dominance of two major glacial culminations and associated climatic shifts in the Vilcabamba, including an early Holocene glacial interval and a somewhat less extensive glaciation late in the ‘Little Ice Age’ (LIA) period. Lichenometric measurements on the youngest moraines support the 10Be ages, but uncertainties in the lichen ages arise from the lack of a local lichen growth curve. The Peruvian glacier chronologies differ from a recently-developed New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region. For the latest Holocene, our leading hypothesis is that climate forcings involving southward migration of the Atlantic Intertropical Convergence Zone can explain concurrent glaciations in tropical South America and northern high latitudes, but the influence of other climate drivers such as the El Niño/Southern Oscillation may have also played a role. Estimated differences between equilibrium-line altitudes (ELAs) on modern glaciers and those inferred for expanded latest Holocene glaciers reveal an ELA rise of 165-200 m since the LIA, suggesting that temperatures 1.1-1.3°C cooler than present could have sustained glaciers at their LIA maximum positions if temperature was the only control, and thus providing an upper bound on temperature depression during the LIA. However, further work is required to constrain the likely role of precipitation changes. These new Peruvian glacier chronologies and ELA reconstructions complement ice core and

  8. Holocene Demographic Changes and the Emergence of Complex Societies in Prehistoric Australia.

    PubMed

    Williams, Alan N; Ulm, Sean; Turney, Chris S M; Rohde, David; White, Gentry

    2015-01-01

    A continental-scale model of Holocene Australian hunter-gatherer demography and mobility is generated using radiocarbon data and geospatial techniques. Results show a delayed expansion and settlement of much of Australia following the termination of the late Pleistocene until after 9,000 years ago (or 9ka). The onset of the Holocene climatic optimum (9-6ka) coincides with rapid expansion, growth and establishment of regional populations across ~75% of Australia, including much of the arid zone. This diffusion from isolated Pleistocene refugia provides a mechanism for the synchronous spread of pan-continental archaeological and linguistic attributes at this time (e.g. Pama-Nyungan language, Panaramitee art style, backed artefacts). We argue longer patch residence times were possible at the end of the optimum, resulting in a shift to more sedentary lifestyles and establishment of low-level food production in some parts of the continent. The onset of El Niño - Southern Oscillation (ENSO; 4.5-2ka) restricted low-level food production, and resulted in population fragmentation, abandonment of marginal areas, and reduction in ranging territory of ~26%. Importantly, climate amelioration brought about by more pervasive La Niña conditions (post-2ka), resulted in an intensification of the mobility strategies and technological innovations that were developed in the early- to mid-Holocene. These changes resulted in population expansion and utilization of the entire continent. We propose that it was under these demographically packed conditions that the complex social and religious societies observed at colonial contact were formed.

  9. Inside the "African cattle complex": animal burials in the holocene central Sahara.

    PubMed

    di Lernia, Savino; Tafuri, Mary Anne; Gallinaro, Marina; Alhaique, Francesca; Balasse, Marie; Cavorsi, Lucia; Fullagar, Paul D; Mercuri, Anna Maria; Monaco, Andrea; Perego, Alessandro; Zerboni, Andrea

    2013-01-01

    Cattle pastoralism is an important trait of African cultures. Ethnographic studies describe the central role played by domestic cattle within many societies, highlighting its social and ideological value well beyond its mere function as 'walking larder'. Historical depth of this African legacy has been repeatedly assessed in an archaeological perspective, mostly emphasizing a continental vision. Nevertheless, in-depth site-specific studies, with a few exceptions, are lacking. Despite the long tradition of a multi-disciplinary approach to the analysis of pastoral systems in Africa, rarely do early and middle Holocene archaeological contexts feature in the same area the combination of settlement, ceremonial and rock art features so as to be multi-dimensionally explored: the Messak plateau in the Libyan central Sahara represents an outstanding exception. Known for its rich Pleistocene occupation and abundant Holocene rock art, the region, through our research, has also shown to preserve the material evidence of a complex ritual dated to the Middle Pastoral (6080-5120 BP or 5200-3800 BC). This was centred on the frequent deposition in stone monuments of disarticulated animal remains, mostly cattle. Animal burials are known also from other African contexts, but regional extent of the phenomenon, state of preservation of monuments, and associated rock art make the Messak case unique. GIS analysis, excavation data, radiocarbon dating, zooarchaeological and isotopic (Sr, C, O) analyses of animal remains, and botanical information are used to explore this highly formalized ritual and the lifeways of a pastoral community in the Holocene Sahara.

  10. Holocene Demographic Changes and the Emergence of Complex Societies in Prehistoric Australia

    PubMed Central

    Williams, Alan N.; Ulm, Sean; Turney, Chris S. M.; Rohde, David; White, Gentry

    2015-01-01

    A continental-scale model of Holocene Australian hunter-gatherer demography and mobility is generated using radiocarbon data and geospatial techniques. Results show a delayed expansion and settlement of much of Australia following the termination of the late Pleistocene until after 9,000 years ago (or 9ka). The onset of the Holocene climatic optimum (9-6ka) coincides with rapid expansion, growth and establishment of regional populations across ~75% of Australia, including much of the arid zone. This diffusion from isolated Pleistocene refugia provides a mechanism for the synchronous spread of pan-continental archaeological and linguistic attributes at this time (e.g. Pama-Nyungan language, Panaramitee art style, backed artefacts). We argue longer patch residence times were possible at the end of the optimum, resulting in a shift to more sedentary lifestyles and establishment of low-level food production in some parts of the continent. The onset of El Niño - Southern Oscillation (ENSO; 4.5-2ka) restricted low-level food production, and resulted in population fragmentation, abandonment of marginal areas, and reduction in ranging territory of ~26%. Importantly, climate amelioration brought about by more pervasive La Niña conditions (post-2ka), resulted in an intensification of the mobility strategies and technological innovations that were developed in the early- to mid-Holocene. These changes resulted in population expansion and utilization of the entire continent. We propose that it was under these demographically packed conditions that the complex social and religious societies observed at colonial contact were formed. PMID:26083101

  11. Late Pleistocene and Holocene mammal extinctions on continental Africa

    NASA Astrophysics Data System (ADS)

    Faith, J. Tyler

    2014-01-01

    Understanding the cause of late Quaternary mammal extinctions is the subject of intense debate spanning the fields of archeology and paleontology. In the global context, the losses on continental Africa have received little attention and are poorly understood. This study aims to inspire new discussion of African extinctions through a review of the extinct species and the chronology and possible causes of those extinctions. There are at least 24 large mammal (> 5 kg) species known to have disappeared from continental Africa during the late Pleistocene or Holocene, indicating a much greater taxonomic breadth than previously recognized. Among the better sampled taxa, these losses are restricted to the terminal Pleistocene and early Holocene, between 13,000 and 6000 yrs ago. The African extinctions preferentially affected species that are grazers or prefer grasslands. Where good terrestrial paleoenvironmental records are present, extinctions are associated with changes in the availability, productivity, or structure of grassland habitats, suggesting that environmental changes played a decisive role in the losses. In the broader evolutionary context, these extinctions represent recent examples of selective taxonomic winnowing characterized by the loss of grassland specialists and the establishment of large mammal communities composed of more ecologically flexible taxa over the last million years. There is little reason to believe that humans played an important role in African extinctions.

  12. Sulfur Geochemistry of a Lacustrine Record from Taiwan Reveals Enhanced Marine Aerosol Input during the Early Holocene

    PubMed Central

    Ding, Xiaodong; Li, Dawei; Zheng, Liwei; Bao, Hongyan; Chen, Huei-Fen; Kao, Shuh-Ji

    2016-01-01

    Lacustrine record of marine aerosol input has rarely been documented. Here, we present the sulfur geochemistry during the last deglaciation and early Holocene of a sediment core retrieved from the Dongyuan Lake in southern Taiwan. An unusually high sulfur peak accompanying pyrite presence is observed at 10.5 ka BP. Such high sulfur content in lacustrine record is unusual. The δ34S of sulfur varied from +9.5 to + 17.1‰ with two significant positive shifts at 10.5 and 9.4 ka BP. The sources of sulfur and potential processes involving the sulfur isotope variation including bacterial sulfate reduction, volcanic emissions, in-catchment sulfide oxidation and marine aerosol input are discussed. Enhanced marine aerosol input is the most likely explanation for such sulfur peaks and δ34S shifts. The positive δ34S shifts appeared concurrently with the maximum landslide events over Taiwan resulted from enhanced typhoon activities. The synchronicity among records suggests that increased typhoon activities promoted sea spray, and consequently enhanced the marine aerosol input with 34S-enriched sulfate. Our sulfur geochemistry data revealed sea spray history and marine influence onto terrestrial environment at coastal regions. Wider coverage of spatial-temporal lacustrine sulfur geochemistry record is needed to validate the applicability of sulfur proxy in paleoenvironmental research. PMID:27941864

  13. Catastrophic event recorded among Holocene eolianites (Sidi Salem Formation, SE Tunisia)

    NASA Astrophysics Data System (ADS)

    Frébourg, Gregory; Hasler, Claude-Alain; Davaud, Eric

    2010-03-01

    A high-energy deposit cuts through the early Holocene eolianites of the Sidi Salem Formation which forms a ridge along the southeastern coast of Tunisia. The sedimentary structures as well as the paleo-altitude and paleo-location of the outcrop state for a subaqueous deposition by an unusually large catastrophic event. Regarding its age and the related uncertainties, it could be either an exceptional storm, or a landslide or impact triggered tsunami. The mega-tsunami of the 8000 BP collapse of the Valle del Bove valley (Etna Volcano) could be this event, for its matching age and calculated run-up height.

  14. Diatom-inferred Holocene record of moisture variability in Lower Bear Lake, San Bernardino Mountains, California, USA

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Kirby, M. E.

    2014-12-01

    Although Holocene diatom records from southern California lakes have been difficult to obtain, diatoms have been found in Lower Bear Lake (LBL) sediments, providing a 9200-year hydroclimatological record for the San Bernardino Mountains. Based on several physical and chemical properties as well as gastropod and ostracod assemblages. Kirby et al. (2012, QSR,46:57-65) inferred nine decadal to multi-centennial pluvial episodes (five major (PE-V to PE-I), four minor (PE-IIIa-c, PE-IIa) in sediment core BBLVC05-1 (34o15'20" N, 116o55'20" W; 4.5 m long). Here, we consider the implications of this new diatom data. The diatom record shows a gradual increase in salinity during the Holocene, corroborating the inference of decreasing lake size made by Kirby et al. (2012). The longest pluvial (PE-V; 9170?-8250 cal yr BP), is dominated by small fragilaroid taxa, indicating fresh, slightly alkaline waters. An increase in halophilic taxa at ~8700 cal yr BP suggests a several-decades-long drier interval within the pluvial. PE-IV (7000-6400 cal yr BP) is dominated by benthic taxa, including relatively high numbers of epiphytic taxa, indicating an increase in aquatic macrophytes. The abundance of Aulacoseira in PE-IV and PE-III (3350-3000 cal yr BP) suggests increased turbulence due to increased storminess. PE-III and PE-II (850-700 cal yr BP) contain greater abundances of benthic (epiphytic) and halophilic species, although the latter never dominate the assemblage. PE-I (500-476 cal yr BP) was not sampled. Aerophilic taxa comprise up to 3% of the assemblage during pluvial events suggesting increased erosion during those periods and the presence of symbiotic species throughout the record indicates nitrogen-depleted waters. The diatom data generally support the occurrence of multiple pluvials over the Holocene with the most sustained occurring in the early Holocene. Furthermore, the diatom data suggest LBL likely diminished in size through the Holocene becoming more saline in the

  15. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    USGS Publications Warehouse

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  16. Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA

    USGS Publications Warehouse

    Bacon, S.N.; Burke, R.M.; Pezzopane, S.K.; Jayko, A.S.

    2006-01-01

    Stratigraphic investigations of fluvio-deltaic and lacustrine sediments exposed in stream cuts, quarry walls, and deep trenches east of the Sierra Nevada in Owens Valley near Lone Pine, California have enabled the reconstruction of pluvial Owens Lake level oscillations. Age control for these sediments is from 22 radiocarbon (14C) dates and the identification and stratigraphic correlation of a tephra, which when plotted as a function of age versus altitude, define numerous oscillations in the level of pluvial Owens Lake during the latest Pleistocene and early Holocene. We have constructed a lake-level altitude curve for the time interval ???27,000 cal yr BP to present that is based on the integration of this new stratigraphic analysis with published surface stratigraphic data and subsurface core data. Pluvial Owens Lake regressed from its latest Pleistocene highstands from ???27,000 to ???15,300 cal yr BP, as recorded by ???15 m of down cutting of the sill from the altitudes of ???1160 to 1145 m. By ???11,600 cal yr BP, the lake had dropped ???45 m from the 1145 m sill. This lowstand was followed by an early Holocene transgression that attained a highstand near 1135 m before dropping to 1120 m at 7860-7650 cal yr BP that had not been recognized in earlier studies. The lake then lowered another ???30 m to shallow and near desiccation levels between ???6850 and 4300 cal yr BP. Fluvial cut-and-fill relations north of Lone Pine and well-preserved shoreline features at ???1108 m indicate a minor lake-level rise after 4300 cal yr BP, followed by alkaline and shallow conditions during the latest Holocene. The new latest Quaternary lake-level record of pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra Nevada and will assist regional paleoclimatic models for the western Basin and Range. ?? 2005 Elsevier Ltd. All rights reserved.

  17. El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Leduc, G.; Sachs, J. P.

    2014-12-01

    The El Niño-Southern Oscillation (ENSO) represents the largest perturbation to the climate system on an inter-annual time scale, but its evolution since the end of the last ice age remains debated due to the lack of unambiguous ENSO records lasting longer than a few centuries. Changes in the concentration and hydrogen isotope ratio of lipids produced by the green alga Botryococcus braunii, which blooms during El Niño rains in the Galápagos Islands, indicate that the early Holocene (9200-5600 yr BP) was characterized by alternating extremes in the intensity and/or frequency of El Niño events that lasted a century or more. Our data from the core of the ENSO region thus calls into question earlier studies that reported a lack of El Niño activity in the early Holocene. In agreement with other proxy evidence from the tropical Pacific, the mid-Holocene (5600-3500 yr BP) was a time of consistently weak El Niño activity, as were the Early Middle Ages (~1000-1500 yr BP). El Niño activity was moderate to high during the remainder of the last 3500 years. Periods of strong or frequent El Niño tended to occur during peaks in solar activity and during extended droughts in the United States Great Plains linked to La Niña. These changing modes of ENSO activity at millennial and multi-centennial timescales may have been caused by variations in the seasonal receipts of solar radiation associated with the precession of the equinoxes and/or changes in solar activity, respectively.

  18. A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.

    2013-12-01

    insolation during the Holocene. The western GrIS margin retreated significantly and Bregne ice cap likely disappeared during the warm early to middle Holocene. 10Be ages (10.7 ka) outboard of the late Holocene moraines at Bregne ice cap compared to those outside of the LIA moraines near Kangerlussuaq (6.8 ka) differ by ~4 kyr. This disparity in ages may have been caused by a large late Holocene advance in eastern Greenland, or perhaps the western GrIS margin retreated farther inland during the middle Holocene. Decreasing Northern Hemisphere summer insolation during the late Holocene, combined with a strong, cold East Greenland Current near Scoresby Sund may have influenced a significant ice cap advance. The temporal pattern of the responses of the eastern and western ice margins to Holocene climate changes may be indicative of how the GrIS will respond to future changes.

  19. Revisiting Holocene Tephra Deposits in the Western Canadian Prairie Provinces

    NASA Astrophysics Data System (ADS)

    Jensen, B. J. L.; Beaudoin, A. B.

    2016-12-01

    Visible tephra deposits in Alberta and Saskatchewan have long played an important role in prescribing age control to archaeological and geological sections. The Mazama ash (ca. 7.6 cal yr BP) is generally the most prominent unit and considered a key stratigraphic marker for sedimentary and archaeological sites across this region. In addition to Mazama, Glacier Peak G (ca. 13.5 ka) and Bridge River (ca. 2.5 ka) are present, with at least one, and potentially two, Mount St. Helens set Y tephra (MSH Y; ca. 3.8-3.6 ka). However, although these tephra are important stratigraphic markers, there exist many uncertainties about the records in this region. In archaeological studies, tephra have often been identified simply on the basis of field criteria, such as colour, thickness, texture and stratigraphic position, sometimes supplemented by light microscopy. Published geochemical data was mostly collected before 1986, with little from this region appearing in recent years. In the case of MSH Y, there have been suggestions that there may be two units present, mainly based on 30 year old bulk radiocarbon dates. Using samples archived at the Royal Alberta Museum, supplemented by newly collected material, we present new major-element geochemical analyses and a re-assessment of radiocarbon dates on tephra from archaeological and sedimentary sites across the region. We confirm the presence of Mazama at most sites, extend the distribution map for visible deposits of Bridge River and question the presence of two MSH set Y tephra. We confirm the identification of the most extensive MSH tephra as MSH Yn and use Bayesian methods to provide the first re-assessment of the age of this tephra in over 25 years; a unit that represents the largest Holocene eruption from Mount St. Helens and what is likely a widely distributed cryptotephra unit.

  20. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records

    NASA Astrophysics Data System (ADS)

    Liu, Jianbao; Chen, Jianhui; Zhang, Xiaojian; Chen, Fahu

    2016-04-01

    Monsoon precipitation over China exhibits large spatial differences. It has been found that a significantly enhanced East Asian summer monsoon (EASM) is characterized by increased rainfall in northern China and by reduced rainfall in southern China, and this relationship occurs on different time scales during the Holocene. This study presents results from a diverse range of proxy paleoclimatic records from northern China where precipitation variability is traditionally considered as an EASM proxy. Our aim is to evaluate the evolution of the EASM during the Holocene and to compare it with all of the published stalagmite δ18O records from the Asian Monsoon region in order to explore the potential mechanism(s) controlling the Chinese stalagmite δ18O. We found that the intensity of the EASM during the Holocene recorded by the traditional EASM proxy of moisture (or precipitation) records from northern China are significantly different from the Chinese stalagmite δ18O records. The EASM maximum occurred during the mid-Holocene, challenging the prevailing view of an early Holocene EASM maximum mainly inferred from stalagmite δ18O records in eastern China. In addition, all of the well-dated Holocene stalagmite δ18O records, covering a broad geographical region, exhibit a remarkably similar trend of variation and are statistically well-correlated on different time scales, thus indicating a common signal. However, in contrast with the clear consistency in the δ18O values in all of the cave records, both instrumental and paleoclimatic records exhibit significant spatial variations in rainfall on decadal-to- centennial time scales over eastern China. In addition, both paleoclimatic records and modeling results suggest that Holocene East Asian summer monsoon precipitation reached a maximum at different periods in different regions of China. Thus the stalagmite δ18O records from the EASM region should not be regarded as a reliable indicator of the strength of the East

  1. Late Holocene climate change in the western Mediterranean: centennial-scale vegetation and North Atlantic Oscillation variability

    NASA Astrophysics Data System (ADS)

    Ramos Román, M. J.; Jimenez-Moreno, G.; Anderson, R. S.; García-Alix, A.; Toney, J. L.; Jiménez-Espejo, F. J. J.; Carrión, J. S.

    2015-12-01

    Sediments from alpine peat bogs and lakes from the Sierra Nevada in southeastern Spain (western Mediterranean area) have been very informative in terms of how vegetation and wetland environments were impacted by past climate change. Recently, many studies try to find out the relationship between solar activity, atmosphere and ocean dynamics and changes in the terrestrial environments. The Mediterranean is a very sensitive area with respect to atmospheric dynamics due to (1) its location, right in the boundary between subtropical and temperate climate systems and (2) the North Atlantic Oscillation (NAO) is one of the main mechanism that influence present climate in this area. Here we present a multi-proxy high-resolution study from Borreguil de la Caldera (BdlC), a peat bog that records the last ca. 4500 cal yr BP of vegetation, fire, human impact and climate history from the Sierra Nevada. The pollen, charcoal and non-pollen palynomorphs (NPPs) reconstruction in the BdlC-01 record evidence relative humidity changes in the last millennia interrupting the late Holocene aridification trend. This study shows a relative arid period between ca. 4000 and 3100 cal yr BP; the Iberian Roman humid period (ca. 2600 to 1600 cal yr BP); a relative arid period during the Dark Ages (from ca. AD 500 to AD 900) and Medieval Climate Anomaly (from ca. AD 900 to ca. AD 1300) and predominantly wetter conditions corresponding with The Little Ice Age period (from ca. AD 1300 to AD 1850). This climate variability could be explained by centennial scale changes in the NAO and solar activity.

  2. Holocene fluctuations of Quelccaya Ice Cap, Peru based on lacustrine and surficial geologic archives

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.

    2013-12-01

    ., 2009). Clastic sedimentation may reflect the glacier thermal regime. Relic plants now being uncovered by the receding QIC (Thompson et al., 2006, 2013) suggest advance of cold-based ice that did not produce significant meltwater or rock flour. Striations, also present on the landscape, indicate warm-based ice conditions, which would produce meltwater and rock flour. We suggest that these striations were likely produced during ice cap retreat. A small QIC during early and middle Holocene time and large QIC during late Holocene time is similar to the Holocene extents of many Northern Hemisphere glaciers and apparently follows the pattern of Northern Hemisphere summer insolation.

  3. The Wasatch fault zone, utah—segmentation and history of Holocene earthquakes

    NASA Astrophysics Data System (ADS)

    Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.

    the WFZ during the past 1500 years. We have found no evidence that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not ruptured in the past 3600 years—a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-rupturing earthquakes in the region suggests that earthquakes having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)—each associated with tens of kilometers of surface rupture and several meters of normal dip slip—have occurred about every four centuries during the Holocene and should be expected in the future.

  4. Holocene depositional history of a large glaciated estuary, Penobscot Bay, Maine

    USGS Publications Warehouse

    Knebel, H.J.

    1986-01-01

    Data from seismic-reflection profiles, sidescan sonar images, and sediment samples reveal the Holocene depositional history of the large (1100 km2) glaciated Penobscot Bay estuary of coastal Maine. Previous work has shown that the late Wisconsinan ice sheet retreated from the three main passages of the bay between 12,700 and 13,500 years ago and was accompanied by a marine transgression during which ice and sea were in contact. Isostatic recovery of the crust caused the bay to emerge during the immediate postglacial period, and relative sea level fell to at least -40 m sometime between 9000 and 11,500 years ago. During lowered sea level, the ancestral Penobscot River flowed across the subaerially exposed head of the bay and debouched into Middle Passage. Organic-matter-rich mud from the river was deposited rapidly in remnant, glacially scoured depressions in the lower reaches of Middle and West Passages behind a shallow (???20 m water depth) bedrock sill across the bay mouth. East Passage was isolated from the rest of the bay system and received only small amounts of locally derived fine-grained sediments. During the Holocene transgression that accompanied the eustatic rise of sea level, the locus of sedimentation shifted to the head of the bay. Here, heterogeneous fluvial deposits filled the ancestral valley of the Penobscot River as base level rose, and the migrating surf zone created a gently dipping erosional unconformity, marked by a thin (<2 m) lag deposit of coarse sand and gravel. As sea level continued to rise, a thin (???9 m) layer of acoustically transparent muddy sediments accumulated over a shallow platform in the eastern half of the bay head. Graded sediments within this stratum began to accumulate early in the transgression, and they record both the decrease in energy conditions and the waning influence of the Penobscot River at the head of the bay. In contrast, relatively thick (up to 25 m) silty clays accumulated within a subbottom trough in the

  5. Holocene Changes in Land Cover and Greenhouse-gas Concentrations: Rethinking Natural vs Anthropogenic Causation

    NASA Astrophysics Data System (ADS)

    Roberts, C.

    2008-12-01

    The Holocene has witnessed a switch from a nature-dominated to a human-dominated Earth system. Although globally-significant human impacts (wildfire, megafaunal extinctions) occurred during the late Pleistocene, it was the advent of agriculture that led to the progressive transformation of land cover, and which distinguishes the Holocene from previous interglacial periods. A wide array of data provide clear evidence of local-to-regional human disturbance from ~5 ka BP, in some cases earlier. There is more uncertainty about when the anthropogenic "footprint" became detectable at a global scale, and there has consequently been debate about how much of the pre-industrial increase in atmospheric greenhouse gas concentrations is attributable to human causation, linked to processes such as deforestation (CO2) and wet rice cultivation (CH4). Although there has been recent progress in developing quantitative methods for translating pollen data into palaeo-land cover, such as the REVEALS model of Sugita (Holocene 2007) coupled to GIS, this has yet to be widely applied to existing data bases, and most pollen-based land-use reconstructions remain qualitative or semi-quantitative. Lake trophic status, sediment flux / soil erosion, and microcharcoal records of biomass burning provide alternative proxies that integrate regional-scale landscape disturbance. These proxy data along with documentary sources imply that globally-significant changes in land cover occurred prior to ~250 BP which must have altered atmospheric greenhouse gas concentrations by this time. The polarised debate for and against early anthropogenic impact on global carbon cycling mirrors our industrial-era division between nature and society, both conceptually (e.g. Cartesian dualism) and on the ground (e.g. demarcating land between monoculture agriculture and wilderness). However, for the period before ~1750 AD, this likely represents a false dichotomy, because pre-industrial societies more often formed part

  6. The late Wisconsinan and Holocene record of Walrus (Odobenus rosmarus) from North America: A review with new data from Arctic and Atlantic Canada

    USGS Publications Warehouse

    Dyke, A.S.; Hooper, J.; Harington, C.R.; Savelle, J.M.

    1999-01-01

    The Late Wisconsinan and Holocene record of the Atlantic walrus is known from numerous collections of bones and tusks from Arctic Canada and south to North Carolina, as well as from many archaeological sites in the Arctic and Subarctic. In contrast, the Pacific walrus has no dated Late Wisconsinan or early Holocene record in North America, and it may have been displaced into the northwest Pacific at Last Glacial Maximum (LGM). The Atlantic walrus rapidly exploited newly deglaciated territory, moving northward from its LGM refugium and reaching the Bay of Fundy by 12800 B.P., the Grand Banks by 12500 B.P., southern Labrador by 11500 B.P., and the central Canadian Arctic Archipelago (CAA) by 9700 B.P. Its southern range limit may have retracted to the Bay of Fundy by ca. 7500 B.P. Within the CAA, walrus remains cluster in two main age groups: 9700 to 8500 B.P. and 5000 to 4/3000 B.P. This pattern strongly resembles the distribution of bowhead whale radiocarbon ages from the same area, which suggests a common control by sea-ice conditions. Walrus remains occur in Indian culture archaeological sites as old as 7500 B.P. and, in some cases (Namu, British Columbia, and Mackinac Island, Michigan), they evidently represent long-distance human transport. They are much more common in Paleoeskimo and Neoeskimo culture sites. However, they occur in very low abundances, and generally as debitage, in sites older than Dorset (2500 B.P.). The walrus, therefore, may not have been hunted by early Paleoeskimos. Beginning with Early Dorset, walrus remains occur in definite diet-related contexts. Middle Dorset (2300 to 1500 B.P.) and late Thule (<400 B.P.) sites are missing from the High Arctic, and there may be a similar gap in the middle Pre-Dorset (3400 to 2600 B.P.). Sea-ice conditions at these times may have adversely affected availability of walrus and other marine mammal resources. Walrus is a prominent faunal element in Middle Dorset sites on the Labrador coast; this is

  7. Constraining the time of extinction of the South American fox Dusicyon avus (Carnivora, Canidae) during the late Holocene.

    NASA Astrophysics Data System (ADS)

    Prevosti, Francisco; Santiago, Fernando; Prates, Luciano; Salemme, Mónica; Martin, Fabiana

    2010-05-01

    The mass extinction at the end of the Pleistocene affected South America during the Late Pleistocene and the Early Holocene, when megamammals and large mammals disappeared. Several carnivores became extinct, like the sabretooth Smilodon, the short face bear (Arctotherium) and some large canids (i.e. Protocyon, Canis dirus). After this mass event virtually no carnivores became extinct in South America. The only exception is the fox Dusicyon avus, a middle sized canid (estimated body mass between 10-15 kg) with a more carnivore diet than the living South American foxes (i.e. Lycalopex culpaeus). The last record of the species comes from middle-late Holocene archaeological sites in the Pampean Region (Argentina) and Patagonia (Argentina and Chile). During the Late Pleistocene D. avus had a wide distribution, that covered part of Uruguay, Argentina (Buenos Aires province) and the southernmost Chile. Albeit some remains from late Holocene sites have been published, these remains lack of isotopic dates that could (allow?) constraint (to determine) the date of extinction of this fox. In this contribution we present several new records from the Pampean Region and Patagonia, and several taxon dates. The new records indicate that D. avus disappeared in the late Holocene at least ≈ 3000 years BP in the island of Tierra del Fuego (Patagonia) and ≈ 1600 BP in the continent. Since at this time humans were occupying most of the Pampas and Patagonia a revision of the causes behind the extinction of this fox is required.

  8. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform

    NASA Astrophysics Data System (ADS)

    Jiang, Ganqing; Wang, Xinqiang; Shi, Xiaoying; Xiao, Shuhai; Zhang, Shihong; Dong, Jin

    2012-02-01

    The early Cambrian (ca. 542-520 Ma) strata in South China record two prominent negative carbonate carbon isotope (δ13Ccarb) excursions of early Nemakit-Daldynian (N-D) and early Tommotian ages. Across each of these excursions, carbonate and organic carbon isotopes (δ13Ccarb and δ13Corg) are strongly decoupled. Regional correlation across a shelf-to-basin transect shows lateral heterogeneity of δ13Corg during the early-middle N-D but more homogenized δ13Corg values across the basin during the late N-D and Tommotian. The temporal and lateral variations in δ13Corg suggest that decoupled δ13Ccarb and δ13Corg across the N-D δ13Ccarb excursion were possibly caused by diagenetic alteration of organic matter and/or amplification of detrital organic carbon isotope signature in low-TOC carbonates. In contrast, decoupled δ13Ccarb and δ13Corg of the upper N-D and Tommotian were likely resulted from chemoautotrophic-methanotrophic biomass contribution to TOC in organic-rich black shale and carbonates. The decoupled δ13Ccarb-δ13Corg pattern from the lower N-D strata (ca. 542 Ma) shows striking similarities with those from the basal (ca. 635 Ma) and upper (ca. 551 Ma) Doushantuo Formation. In all three cases, decoupled δ13Ccarb-δ13Corg are seen in organic-poor carbonates (TOC ≤ 0.1‰) and coupled δ13Ccarb-δ13Corg occur in organic-rich black shale and carbonates at the end of the negative δ13Ccarb excursion. These similarities suggest that the shift from decoupled to coupled δ13Ccarb-δ13Corg has no causal link with the terminal oxidation of a large oceanic DOC reservoir. Given the pervasive anoxia/euxinia in Ediacaran-early Cambrian oceans, local DOC-rich environments may have been common, but a large oceanic DOC reservoir capable of buffering the δ13C of marine organic matter requires independent evidence.

  9. Combined terrestrial and marine biomarker records from an Icelandic fjord: insights into Holocene climate drivers and marine/ terrestrial responses

    NASA Astrophysics Data System (ADS)

    Moossen, H. M.; Seki, O.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.

    2012-12-01

    Holocene climate change has affected human cultures throughout at least the last 4000 years (D'Andrea et al., 2011). Today, studying Holocene climate variability is important, both to constrain the influence of climate change on ancient cultures and to place contemporary climate change in a historic context. Organic geochemical biomarkers are an ideal tool to study how climatic changes have affected terrestrial and marine ecosystems, as a host of different biomarker based climate proxies have emerged over recent years. Applying the available biomarker proxies on sediment cores from fjordic environments facilitates the study of how climate has affected terrestrial and marine ecosystems, and how these ecosystems have interacted. Ìsafjardardjúp fjord in Northwest Iceland is an ideal location to study North Atlantic Holocene climate change because the area is very sensitive to changes in the oceanic and atmospheric current systems (Hurrell, 1995; Quillmann et al., 2010). In this study we present high resolution (1 sample/30 calibrated years) terrestrial and marine biomarker records from a 38 m sediment core from Ìsafjardardjúp fjord covering the Holocene. We reconstruct sea surface temperature variations using the alkenone derived UK'37 proxy. Air temperature changes are reconstructed using the GDGT derived MBT/CBT palaeothermometer. We use the average chain length (ACL) variability of n-alkanes derived from terrestrial higher plant leaf waxes to reconstruct changing precipitation regimes. The relationship between ACL and precipitation is confirmed by comparing it with the δD signature of the C29 n-alkane and soil pH changes inferred by the CBT proxy. The combined sea surface and air temperature and precipitation records indicate that different climate changing drivers were dominant at different stages of the Holocene. Sea surface temperatures were strongly influenced by the melting of the remaining glaciers from the last glacial maximum throughout the early

  10. Reconstruction of Holocene Climate Variability within the Central Mediterranean Using Lake Sediments from the Akrotiri Peninsula, Crete

    NASA Astrophysics Data System (ADS)

    Magill, C. R.; Rosenmeier, M. F.; Cavallari, B. J.; Curtis, J. H.; Weiss, H.

    2005-12-01

    Middle and late Holocene geochemical records from the Limnes depression, a small sinkhole located within the Akrotiri Peninsula, Crete, document centennial and millennial-scale climate variability within the central Mediterranean region. The oldest sediments of the basin consist largely of fibrous plant macrofossils and organic matter and likely indicate lake filling and expansion of wetland vegetation beginning ~5700 radiocarbon years before present (14C-yrs B.P.) (4550 B.C.). The basal peat layers grade into predominantly open water and less shallow lacustrine deposits by 4500 14C-yrs B.P (3200 B.C.). Continuous open water sedimentation within the Limnes core is interrupted by a number of distinct lag deposits and peaty deposits centered at 3700, 1600, and 350 14C-yrs B.P (2100 B.C., 500 A.D., and 1500 A.D.) indicating periods of significantly lowered lake level or perhaps lake desiccation. These ages coincide roughly with oxygen isotope (δ18O) minima measured in biogenic carbonates (ostracod shells) and support the inference for low lake stage. Trace element (Ca, Mg, and Sr) concentrations in ostracod shells from the Limnes core parallel the oxygen isotope record, suggesting that the data reflect basin hydrology rather than changes in the isotopic composition of rainfall. Furthermore, covariance in both δ18O and Mg concentrations eliminate temperature as a control on the oxygen isotope record. Sediments from the basin also contain aragonite remains of the green alga Chara and isotope analysis of the calcite may record additional paleoenvironmental information. The paleoclimate history inferred from the Limnes record correlates temporally (albeit tenuously) to previous paleoenvironmental data that document abrupt onset of arid conditions in the eastern Mediterranean and western Asia ca. 2200 B.C. Moreover, stratigraphic and geochemical evidence of low lake level (drying) within the Limnes basin at 2100 B.C. may correspond to the termination of the Early Minoan

  11. Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA

    USGS Publications Warehouse

    Dean, W.; Rosenbaum, J.; Skipp, G.; Colman, S.; Forester, R.; Liu, A.; Simmons, K.; Bischoff, J.

    2006-01-01

    Bear Lake (Utah-Idaho, USA) has been producing large quantities of carbonate minerals of varying mineralogy for the past 17,000 years. The history of sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, percent organic carbon, percent CaCO3, X-ray diffraction mineralogy, HCl-leach inorganic geochemistry, and magnetic properties on samples from three piston cores. Historically, the Bear River, the main source of water for Great Salt Lake, did not enter Bear Lake until it was artificially diverted into the lake at the beginning of the 20th century. However, during the last glacial interval, the Bear River did enter Bear Lake depositing red, calcareous, silty clay. About 18,000 years ago, the Bear River became disconnected from Bear Lake. A combination of warmer water, increased evaporation, and increased organic productivity triggered the precipitation of calcium carbonate, first as calcite. As the salinity of the lake increased due to evaporation, aragonite began to precipitate about 11,000 years ago. Aragonite is the dominant mineral that accumulated in bottom sediments of the lake during the Holocene, comprising an average of about 70 wt.% of the sediments. Aragonite formation in a large, cold, oligotrophic, high latitude lake is highly unusual. Lacustrine aragonite usually is found in small, saline lakes in which the salinity varies considerably over time. However, Bear Lake contains endemic ostracodes and fish, which indicate that the chemistry of the lake has remained fairly constant for a long time. Stable isotope data from Holocene aragonite show that the salinity of Bear Lake increased throughout the Holocene, but never reached highly evolved values of ??18O in spite of an evaporation-dominated water balance. Bear Lake hydrology combined with evaporation created an unusual situation that produced large amounts of aragonite, but no evaporite minerals.

  12. Anthropogenic and geomorphic controls on peatland dynamics in contrasting floodplain environments during the Holocene and its impact on carbon storage

    NASA Astrophysics Data System (ADS)

    Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Peatlands are an important store of carbon in terrestrial environments, and scientific interest in peatlands has increased strongly in the light of the recent global climatic changes. Much attention has been paid to peatland dynamics in extensive arctic and boreal wetlands or to blanket peat in temperate regions. Nevertheless, long-term dynamics of peat in alluvial wetlands in temperate regions remains largely underresearched. In this study, data from three contrasting environments were used to provide more insights in the anthropogenic and geomorphic controls on peatland dynamics. The results show a high variability in alluvial peatland dynamics between the different study sites. In the central Belgian Loess Belt, alluvial peatlands developed during the early Holocene but gradually disappeared from the Mid-Holocene onwards due to the gradual intensification of agricultural activities in the catchment and consequent higher sedimentation rates in the floodplain system. The end of peat growth is shown to be diachronous at catchment scale, ranging between 6500 and 500 cal a BP. The disappearance of the alluvial peatlands has important implications since it potentially reduces the storage of locally produced C. Nevertheless, it was shown that this reduced production of local C but was outbalanced by the burial of hillslope derived C. Also within the sandy catchments of the Belgian Campine region alluvial peatlands initiated in the early Holocene but, here, they abruptly disappeared in the Mid-Holocene before the onset of intense agricultural activities in the catchment. This suggests that for the sandy regions, anthropogenic impact on peatland dynamics is less important compared to natural factors. For these regions, the disappearance of alluvial peatland formation resulted in a sharp decline in alluvial carbon storage as there is no compensation through hillslope derived C input. For the upper Dee catchment in NE Scotland, Holocene carbon floodplain storage varies

  13. High-resolution proxy record of Holocene climate from a loess section in Southwestern Nebraska, USA

    USGS Publications Warehouse

    Miao, X.; Mason, J.A.; Johnson, W.C.; Wang, Hongfang

    2007-01-01

    Plains and La Nin??a-like conditions in the tropical Pacific. The loess color index and eastern tropical Pacific SST display broad similarities through the late Pleistocene and Holocene that are consistent with this teleconnection. On the other hand, drought centered at 3800??years ago is not consistent with the teleconnection, and the end of early Holocene aridity at the Wauneta section, around 6500??years ago, is much earlier than the corresponding rise in SST and increase in El Nin??o frequency in the eastern tropical Pacific. ?? 2006 Elsevier B.V. All rights reserved.

  14. Holocene sea level and climate change in the Black Sea: Multiple marine incursions related to freshwater discharge events

    USGS Publications Warehouse

    Martin, R.E.; Leorri, E.; McLaughlin, P.P.

    2007-01-01

    Repeated marine invasions of the Black Sea during the Holocene have been inferred by many eastern scientists as resulting from episodes of marine inflow from the Mediterranean beneath a brackish outflow from the Black Sea. We support this scenario but a fundamental question remains: What caused the repeated marine invasions? We offer an hypothesis for the repeated marine invasions of the Black Sea based on: (1) the overall similarity of sea-level curves from both tectonically quiescent and active margins of the Black Sea and their similarity to a sequence stratigraphic record from the US mid-Atlantic coast. The similarity of the records from two widely-separated regions suggests their common response to documented Holocene climate ocean-atmosphere reorganizations (coolings); (2) the fact that in the modern Black Sea, freshwater runoff from surrounding rivers dominates over evaporation, so that excess runoff might have temporarily raised Black Sea level (although the Black Sea would have remained brackish). Following the initial invasion of the Black Sea by marine Mediterranean waters (through the Marmara Sea) in the early Holocene, repeated marine incursions were modulated, or perhaps even caused, by freshwater discharge to the Black Sea. Climatic amelioration (warming) following each documented ocean-atmosphere reorganization during the Holocene likely shifted precipitation patterns in the surrounding region and caused mountain glaciers to retreat, increasing freshwater runoff above modern values and temporarily contributing to an increase of Black Sea level. Freshwater-to-brackish water discharges into the Black Sea initially slowed marine inflow but upon mixing of runoff with more marine waters beneath them and their eventual exit through the Bosphorus, marine inflow increased again, accounting for the repeated marine invasions. The magnitude of the hydrologic and sea-level fluctuations became increasingly attenuated through the Holocene, as reflected by Black

  15. 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction

    NASA Astrophysics Data System (ADS)

    Badino, Federica; Ravazzi, Cesare; Vallè, Francesca; Pini, Roberta; Aceti, Amelia; Brunetti, Michele; Champvillair, Elena; Maggi, Valter; Maspero, Francesco; Perego, Renata; Orombelli, Giuseppe

    2018-04-01

    Sedimentary archives at or near the timberline ecotone in Alpine glaciated areas contain records to study Holocene climate change and the interplay between climate, ecosystems, and humans. We focused on records of timberline and glacier oscillations in the Rutor Glacier forefield (Western Italian Alps) in the last 8800 years. Human activity in this area was negligible for most of the Holocene. We adopted an integrative stratigraphic approach including proxies for glacier advance and timberline estimation, sedimentary events, and reconstructed temperatures. Changes in timberline ecotone correlate to climate until the Middle Ages. Pollen-stratigraphic evidence of a primary plant succession highlights a lag beween local deglaciation and the first reliable 14C age. The radiocarbon chronology points to a prolonged phase of glacier contraction between 8.8 and 3.7 ka cal BP. Even later the glacier remained within its LIA limits. Between 8.4 and 4 ka cal BP MAT-inferred TJuly fluctuated near 12.4 °C, ca. 3.1 °C higher than today. During this period, a Pinus cembra forest belt grew at 2600 m asl with an upper limit of tree groves placed 434 ± 310 m above the current open forest limit. This Holocene phase of thermal maximum ended between 3.98 and 3.51 ± 70 ka cal BP and with a substantial rearrangement of forest composition; temperature reconstruction shows a decrease of 1.8 °C. This climate deterioration concluded the Subboreal thermal optimum, mirroring glacial advances widely documented in the Alps. The Rutor Glacier advanced at ca. AD 1093 ± 65, and remained inside the LIA maximum extent. The LIA started since AD 1594, and culminated between AD 1751 and 1864.

  16. Late Glacial-Holocene Pollen-Based Vegetation History from Pass Lake, Prince of Wales Island, Southeastern Alaska

    USGS Publications Warehouse

    Ager, Thomas A.; Rosenbaum, Joseph G.

    2009-01-01

    A radiocarbon-dated history of vegetation development since late Wisconsin deglaciation has been reconstructed from pollen evidence preserved in a sediment core from Pass Lake on Prince of Wales Island, southeastern Alaska. The shallow lake is in the south-central part of the island and occupies a low pass that was filled by glacial ice of local origin during the late Wisconsin glaciation. The oldest pollen assemblages indicate that pine woodland (Pinus contorta) had developed in the area by ~13,715 cal yr B.P. An abrupt decline in the pine population, coinciding with expansion of alder (Alnus) and ferns (mostly Polypodiaceae) began ~12,875 yr B.P., and may have been a response to colder, drier climates during the Younger Dryas climatic interval. Mountain hemlock (Tsuga mertensiana) began to colonize central Prince of Wales Island by ~11,920 yr B.P. and was soon followed by Sitka spruce (Picea sitchensis). Pollen of western hemlock (Tsuga heterophylla) began to appear in Pass Lake sediments soon after 11,200 yr B.P. The abundance of western hemlock pollen in the Pass Lake core during most of the Holocene appears to be the result of wind transport from trees growing at lower altitudes on the island. The late Holocene pollen record from Pass Lake is incomplete because of one or more unconformities, but the available record suggests that a vegetation change occurred during the late Holocene. Increases in pollen percentages of pine, cedar (probably yellow cedar, Chamaecyparis nootkatensis), and heaths (Ericales) suggest an expansion of muskeg vegetation occurred in the area during the late Holocene. This vegetation change may be related to the onset of cooler, wetter climates that began as early as ~3,774 yr B.P. in the region. This vegetation history provides the first radiocarbon-dated Late Glacial-Holocene terrestrial paleoecological framework for Prince of Wales Island. An analysis of magnetic properties of core sediments from Pass Lake suggests that unconformities

  17. Paleoenvironmental Reconstruction of the North Atlantic Current Variations from MIS 3 to Holocene Based on Multiproxy Record from the North-East Scotland Continental Margin.

    NASA Astrophysics Data System (ADS)

    Ovsepyan, Y.; Tikhonova, A.; Novichkova, E.; Gupta, R. M.; Korsun, S.; Matul, A.

    2017-12-01

    In order to reconstruct the history of water mass interaction between the North Atlantic and the Nordic Seas since MIS 3 to the present, the sediment core from the North-East Scotland continental slope was investigated. The site of core AI-3521 (59°30.009 N, 7°20.062 E) from the 1051 m water depth is located beneath the pathway of the North Atlantic current which transports warm and saline Atlantic surface water to the Norwegian Sea. The age model of the sequence is based on stable isotope record of benthic Cassidulina neoteretis and planktic Neogloboquadrina pachyderma sin. and Globigerina bulloides. The Holocene interval of the upper 1.5 m is characterized by high sedimentation rates and the high biodiversity of microfauna. The distribution of ice rafted debris and CaCO3 content; benthic and planktic foraminiferal assemblages; oxygen, carbon and boron isotopes, Mg/Ca ratio were used to reconstruct the regional paleoceanographic conditions (bioproductivity, temperature, salinity) and to compare with the paleoclimatic events in the subpolar North Atlantic in the frame of the global environmental changes during the Late Pleistocene and Holocene. The research was supported by Russian Science Foundation projects 16-47-02009 and 14-50-00095.

  18. Holocene vegetation, fire and climate interactions on the westernmost fringe of the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Morales-Molino, César; García-Antón, Mercedes; Postigo-Mijarra, José M.; Morla, Carlos

    2013-01-01

    A new palaeoecological sequence from the western Iberian Central Range significantly contributes to the knowledge on the Holocene vegetation dynamics in central Iberia. This sequence supports the existence of time-transgressive changes in the vegetation cover during the beginning of the Holocene over these central Iberian mountains, specifically the replacement of boreal birch-pine forests with Mediterranean communities. Anthracological analyses also indicate the replacement of boreal pines (Pinus sylvestris) with Mediterranean ones (Pinus pinaster) during the early Holocene. The observed vegetation changes were generally synchronous with climatic phases previously reconstructed for the western Mediterranean region, and they suggest that the climatic trends were most similar to those recorded in the northern Mediterranean region and central Europe. Several cycles of secondary succession after fire ending with the recovery of mature forest have been identified, which demonstrates that the vegetation of western Iberia was highly resilient to fire disturbance. However, when the recurrence of fire crossed a certain threshold, the original forests were not able to completely recover and shrublands and grasslands became dominant; this occurred approximately 5800-5400 cal yr BP. Afterwards, heathlands established as the dominant vegetation, which were maintained by frequent and severe wildfires most likely associated with human activities in a climatic framework that was less suitable for temperate trees. Finally, our palaeoecological record provides guidelines on how to manage protected areas in Mediterranean mountains of southwestern Europe, especially regarding the conservation and restoration of temperate communities that are threatened there such as birch stands.

  19. Sundaland Peat Carbon Dynamics and Its Contribution to the Holocene Atmospheric CO2 Concentration

    NASA Astrophysics Data System (ADS)

    Abrams, Jesse F.; Hohn, Sönke; Rixen, Tim; Merico, Agostino

    2018-04-01

    The Sunda Shelf is a large submerged extension of the continental shelf of mainland Asia, joining the islands of Borneo, Java, and Sumatra and forming the shallow seabed of the South China Sea. Recent studies identified present-day peatlands in Southeast Asia as a globally important carbon reservoir. However, little is known about Sundaland paleopeatlands and their role in the global carbon cycle since the Last Glacial Maximum. Using a topography-based, sea level-driven model, we estimate the potential spatial extent of peatlands during the late Pleistocene and early Holocene across the low-lying Sundaland plains. We then use the estimated peatland area together with data on carbon accumulation rates to calculate the total peat carbon pool on the Sunda Shelf. Finally, using a global biogeochemical model, we analyze the relative influence of the predicted Sundaland peat dynamics and other carbon change mechanisms, specifically high-latitude forest growth and peat formation, shallow sea carbonate deposition, ocean warming, and combinations of them, on the global carbon cycle of the Holocene. We identify a feedback mechanism between sea level and peatland carbon sequestration in Sundaland that reduced atmospheric CO2 concentration by about 4-5 ppm and increased δ13C by 0.05‰ during the Holocene. We also show that a concurrence of mechanisms that includes Sundaland peat dynamics produces model results that are consistent with proxy records, especially with respect to δ13C.

  20. Identification of Holocene millennial-scale forcing in the North Atlantic area: Ocean/atmosphere contribution

    NASA Astrophysics Data System (ADS)

    Debret, M.; Masson-Delmotte, V.; Christophe, C.; de Vernal, A.; Massei, N.; Eynaud, F.; Nicolle, M.; Frank, N.; Mary, Y.; Magny, M.

    2017-12-01

    Millennial (1500-year) cycles were evidenced decades ago from the advance and retreat of glaciers but many subsequent studies failed to demonstrate the unequivocal character of such oscillation from paleoclimate time series. Hence, the identification of a persistent 1500 year periodicity remains controversial both for the last glacial episode and the Holocene. Applying wavelet analysis to Holocene climate records, we have identified synchronous millennial-scale oscillations which permit to establish a North Atlantic millennial variability index (NAV-Index), maximum at 5330 ± 245, 3560 ± 190, 1810 ± 160 cal years BP and minimum at 4430 ± 250, 2640 ± 225 and 970 ± 200 years before present. This NAV-index was compared with the millennial variability of cosmogenic 10Be isotope, a proxy of solar activity. Differences between the two sets of records suggest that an internal mechanism (Ocean/atmosphere) must be at the origin of the North Atlantic millennial scale variability. Our data document an increased coherence and magnitude of the North Atlantic millennial variability since 6000 cal. years BP, with a frequency of 1780 ± 240 years. During the early Holocene, deglacial meltwater fluxes had strong regional impact and the coupling between subpolar gyre migration and Atlantic meridional oceanic circulation observed since afterward seems to be related to the end of the Laurentide and Inuitian ice sheet meltwater discharge. Hence, we may conclude that the evolution of this millennial oscillation in the future will depend upon the Greenland stability or melting.

  1. A Holocene record of endogenic iron and manganese precipitation and vegetation history in a lake-fen complex in northwestern Minnesota

    USGS Publications Warehouse

    Dean, W.E.; Doner, L.A.

    2012-01-01

    Little Shingobee Lake and Fen are part of the extensive network of lakes and wetlands in the Shingobee River headwaters of northwestern Minnesota, designed to study the interactions between surface and ground waters. Prior to about 11. 2 cal. ka, most of these lakes and wetlands were interconnected to form glacial Lake Willobee, which apparently formed when a debris flow dammed the Shingobee River. Between 11. 2 and 8. 5 cal. ka, the level of Lake Willobee fell as a result of breaching of the dam, transforming the deep lake into the existing lakes and wetlands. Analyses of a 9-m core from Little Shingobee Lake (LSL-B), and lacustrine sediments under 3. 3 m of peat in a 17-m core from Little Shingobee Fen (LSF-10), show that the dominant components are allogenic clastic material, and endogenic CaCO3 and organic matter. In both cores almost all of the iron (Fe) and manganese (Mn) are incorporated in endogenic minerals, presumed to be X-ray amorphous oxyhydroxide minerals, that occur in significant quantities throughout the cores; almost no Fe and Mn are contributed from detrital aluminosilicate minerals. This suggests that, for most of the Holocene, the allogenic watershed contributions to lake chemistry were minor compared to the dissolved mineral load. In addition, prior to 3. 5 cal. ka, pollen zone boundaries coincide with large changes in lake-sediment mineralogy, indicating that both landscape and climate processes were linked to early- and mid-Holocene lake chemistry. The pollen time series, with sequential domination by spruce, pine, sagebrush-oak, birch-oak and, finally, white pine is typical of the region and reflects the changing location of the prairie-forest transition zone over time. These changes in vegetation had some profound effects on the geochemistry of the lake waters. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  2. Holocene environmental and climatic change in the Northern Great Plains as recorded in the geochemistry of sediments in Pickerel Lake, South Dakota

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2000-01-01

    The sediments in Pickerel Lake, northeastern South Dakota, provide a continuous record of climatic and environmental change for the last 12000 yr. Sediments deposited between 12 and 6 ka (radiocarbon) show extreme variations in composition, oxygen and carbon isotopic composition of bulk carbonate, carbon isotopic composition of organic matter, and magnetic susceptibility. These variations reflect changes in sources of moisture, regional vegetation types, precipitation-evaporation balance, ground- and surface-water influx, water residence time, erosion, lake productivity, water level, and water temperature. The total carbonate content of late Pleistocene sediments steadily increased from <20% at the base of the core to as much as 80% in sediments deposited between 11 and 9 ka. By about 8 ka, the total carbonate content of the sediments had declined to about 40% where it remained with little variation for the past 8 kyr, suggesting relatively stable conditions. There are marked increases in values of ??13C and ??18O in bulk carbonate, and ??13C of organic matter, in sediments deposited between 10 and 6 ka as evaporation increased, and the vegetation in the watershed changed from forest to prairie. This shift toward more 18O-enriched carbonate may also reflect a change in source or seasonality of precipitation. During this early Holocene interval the organic carbon (OC) content of the sediments remained relatively low (2-3%), but then increased rapidly to 4.5% between 7 and 6 ka, reflecting the rapid transition to a prairie lake. The OC content fluctuates slightly between 4 and 6% in sediments deposited over the past 6 kyr. Like OC and total carbonate, most variables measured show little variation in the 13 m of sediment deposited over the past 6 kyr, particularly when compared with early Holocene variations. Although the magnetic susceptibility of this upper 13 m of sediment is generally low (<10 SI units), the upper six meters of the section is marked by striking 1

  3. Inside the “African Cattle Complex”: Animal Burials in the Holocene Central Sahara

    PubMed Central

    di Lernia, Savino; Tafuri, Mary Anne; Gallinaro, Marina; Alhaique, Francesca; Balasse, Marie; Cavorsi, Lucia; Fullagar, Paul D.; Mercuri, Anna Maria; Monaco, Andrea; Perego, Alessandro; Zerboni, Andrea

    2013-01-01

    Cattle pastoralism is an important trait of African cultures. Ethnographic studies describe the central role played by domestic cattle within many societies, highlighting its social and ideological value well beyond its mere function as ‘walking larder’. Historical depth of this African legacy has been repeatedly assessed in an archaeological perspective, mostly emphasizing a continental vision. Nevertheless, in-depth site-specific studies, with a few exceptions, are lacking. Despite the long tradition of a multi-disciplinary approach to the analysis of pastoral systems in Africa, rarely do early and middle Holocene archaeological contexts feature in the same area the combination of settlement, ceremonial and rock art features so as to be multi-dimensionally explored: the Messak plateau in the Libyan central Sahara represents an outstanding exception. Known for its rich Pleistocene occupation and abundant Holocene rock art, the region, through our research, has also shown to preserve the material evidence of a complex ritual dated to the Middle Pastoral (6080–5120 BP or 5200–3800 BC). This was centred on the frequent deposition in stone monuments of disarticulated animal remains, mostly cattle. Animal burials are known also from other African contexts, but regional extent of the phenomenon, state of preservation of monuments, and associated rock art make the Messak case unique. GIS analysis, excavation data, radiocarbon dating, zooarchaeological and isotopic (Sr, C, O) analyses of animal remains, and botanical information are used to explore this highly formalized ritual and the lifeways of a pastoral community in the Holocene Sahara. PMID:23437260

  4. Impaired Ca2+ cycling of nonischemic myocytes contributes to sarcomere dysfunction early after myocardial infarction.

    PubMed

    Kronenbitter, Annette; Funk, Florian; Hackert, Katarzyna; Gorreßen, Simone; Glaser, Dennis; Boknik, Peter; Poschmann, Gereon; Stühler, Kai; Isić, Malgorzata; Krüger, Martina; Schmitt, Joachim P

    2018-06-01

    Changes in the nonischemic remote myocardium of the heart contribute to left ventricular dysfunction after ischemia and reperfusion (I/R). Understanding the underlying mechanisms early after I/R is crucial to improve the adaptation of the viable myocardium to increased mechanical demands. Here, we investigated the role of myocyte Ca 2+ handling in the remote myocardium 24 h after 60 min LAD occlusion. Cardiomyocytes isolated from the basal noninfarct-related parts of wild type mouse hearts demonstrated depressed beat-to-beat Ca 2+ handling. The amplitude of the Ca 2+ transients as well as the kinetics of Ca 2+ transport were reduced by up to 25%. These changes were associated with impaired sarcomere contraction. While expression levels of Ca 2+ regulatory proteins were unchanged in remote myocardium compared to the corresponding regions of sham-operated hearts, mobility shift analyses of phosphorylated protein showed 2.9 ± 0.4-fold more unphosphorylated phospholamban (PLN) monomers, the PLN species that inhibits the Ca 2+ ATPase SERCA2a (P ≤ 0.001). Phospho-specific antibodies revealed normal phosphorylation of PLN at T17 in remote myocardium, but markedly reduced phosphorylation at its PKA-dependent phosphorylation site, S16 (P ≤ 0.01). The underlying cause involved enhanced activity of protein phosphatases, particularly PP2A (P ≤ 0.01). In contrast, overall PKA activity was normal. The PLN interactome, as determined by co-immunoprecipitation and mass spectrometry, and the phosphorylation state of PKA targets other than PLN were also unchanged. Isoproterenol enhanced cellular Ca 2+ cycling much stronger in remote myocytes than in healthy controls and improved sarcomere function. We conclude that the reduced phosphorylation state of PLN at S16 impairs myocyte Ca 2+ cycling in the remote myocardium 24 h after I/R and contributes to contractile dysfunction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Late Wisconsin and early holocene glacial history, inner Ross Embayment, Antarctica

    NASA Technical Reports Server (NTRS)

    Denton, George H.; Bockheim, James G.; Wilson, Scott C.; Stuiver, Minze

    1991-01-01

    Lateral drift sheets of outlet glaciers that pass through the Transantarctic Mountains constrain past changes of the huge Ross ice drainage system of the Antarctic Ice Sheet. Drift stratigraphy suggests correlation of Reedy III (Reedy Glacier), Beardmore, Britannia (Hatherton/Darwin Glaciers), Ross Sea (McMurdo Sound), and younger (Terra Nova Bay) drifts; radiocarbon dates place the outer limits of Ross Sea drift in late Wisconsin time at 24,000 to 13,000 yr B.P. Outlet glacier profiles from these drifts constrain late Wisconsin ice sheet surface elevations. Within these constraint, two extreme late Wisconsin reconstructions are given of the Ross ice drainage system. Both show little elevation change of the polar plateau coincident with extensive ice shelf grounding along the inner Ross Embayment. However, in the central Ross Embayment, one reconstruction shows floating shelf ice, where as the other shows a grounded ice sheet. Massive late Wisconsin/Holocene recession of grounded ice from the western Ross Embayment, which was underway at 13,040 yr B.P. and completed by 6600 to 6020 yr B.P., was accompanied by little change in plateau ice levels inland of the Transantarctic Mountains.

  6. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-06

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  7. Modelling river discharge and precipitation from estuarine salinity in the northern Chesapeake Bay: Application to Holocene palaeoclimate

    USGS Publications Warehouse

    Saenger, C.; Cronin, T.; Thunell, R.; Vann, C.

    2006-01-01

    Long-term chronologies of precipitation can provide a baseline against which twentieth-century trends in rainfall can be evaluated in terms of natural variability and anthropogenic influence. However, there are relatively few methods to quantitatively reconstruct palaeoprecipitation and river discharge compared with proxies of other climatic factors, such as temperature. We developed autoregressive and least squares statistical models relating Chesapeake Bay salinity to river discharge and regional precipitation records. Salinity in northern and central parts of the modern Chesapeake Bay is influenced largely by seasonal, interannual and decadal variations in Susquehanna River discharge, which in turn are controlled by regional precipitation patterns. A power regressive discharge model and linear precipitation model exhibit well-defined decadal variations in peak discharge and precipitation. The utility of the models was tested by estimating Holocene palaeoprecipitation and Susquehanna River palaeodischarge, as indicated by isotopically derived palaeosalinity reconstructions from Chesapeake Bay sediment cores. Model results indicate that the early-mid Holocene (7055-5900 yr BP) was drier than the late Holocene (1500 yr BP - present), the 'Mediaeval Warm Period' (MWP) (1200-600 yr BP) was drier than the 'Little Ice Age' (LIA) (500-100 yr BP), and the twentieth century experienced extremes in precipitation possibly associated with changes in ocean-atmosphere teleconnections. ?? 2006 Edward Arnold (Publishers) Ltd.

  8. Climate change and human occupation in the Southern Arabian lowlands during the last deglaciation and the Holocene

    NASA Astrophysics Data System (ADS)

    Lézine, Anne-Marie; Robert, Christian; Cleuziou, Serge; Inizan, Marie-Louise; Braemer, Frank; Saliège, Jean-François; Sylvestre, Florence; Tiercelin, Jean-Jacques; Crassard, Rémy; Méry, Sophie; Charpentier, Vincent; Steimer-Herbet, Tara

    2010-07-01

    Paleohydrological and archaeological evidence from the Southern and South-Eastern Arabian Peninsula reveal strong relations between phases of human settlements and climate change linked to the Indian monsoon system. During the early to mid-Holocene, large fresh-water lakes extended in the lowland deserts of Ramlat as-Sab'atayn (Yemen) and Wahiba Sands (Oman), which were very similar to those occurring in the North, in the Rub' al-Khali (Saudi Arabia), at that time. Many archaeological sites, characterized by scattered stone artefacts, ostrich-eggshells and bones around hearths, are related to this lacustrine phase, which culminated around 10 000-8000 cal yr B.P. in the lowland deserts before the lakes progressively dried up. The last record of fresh-water bodies' extensions date back 7300 cal yr B.P. at Shabwa (Yemen) and 7500 cal yr B.P. at al-Haid (Oman). Then, fresh-water was probably available only from seasonal run-off from adjacent highlands, where paleolakes persisted into the late Holocene. Dry climate conditions in the inland desert of Yemen during the late Holocene coincide with a phase of intensive human inhabitation as testified by development of irrigation in the piedmontane areas, numerous necropolises of built collective burials and houses.

  9. The Early Anthropogenic Hypothesis: Top-Down and Bottom-up Evidence

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.

    2014-12-01

    Two complementary lines of evidence support the early anthropogenic hypothesis. Top-down evidence comes from comparing Holocene greenhouse-gas trends with those during equivalent intervals of previous interglaciations. The increases in CO2 and CH4 during the late Holocene are anomalous compared to the decreasing trends in a stacked average of previous interglaciations, thereby supporting an anthropogenic origin. During interglacial stage 19, the closest Holocene insolation analog, CO2 fell to 245 ppm by the time equivalent to the present, in contrast to the observed pre-industrial rise to 280-285 ppm. The 245-ppm level measured in stage 19 falls at the top of the natural range predicted by the original anthropogenic hypothesis of Ruddiman (2003). Bottom-up evidence comes from a growing list of archeological and other compilations showing major early anthropogenic transformations of Earth's surface. Key examples include: efforts by Dorian Fuller and colleagues mapping the spread of irrigated rice agriculture across southern Asia and its effects on CH4 emissions prior to the industrial era; an additional effort by Fuller showing the spread of methane-emitting domesticated livestock across Asia and Africa (coincident with the spread of fertile crescent livestock across Europe); historical compilations by Jed Kaplan and colleagues documenting very high early per-capita forest clearance in Europe, thus underpinning simulations of extensive pre-industrial clearance and large CO2 emissions; and wide-ranging studies by Erle Ellis and colleagues of early anthropogenic land transformations in China and elsewhere.

  10. Drought drove forest decline and dune building in eastern upper Michigan, USA, as the upper Great Lakes became closed basins

    USGS Publications Warehouse

    Loope, Walter L.; Loope, Henry M.; Goble, Ronald J.; Fisher, Timothy G.; Lytle, David E.; Legg, Robert J.; Wysocki, Douglas A.; Hanson, Paul R.; Young, Aaron R.

    2012-01-01

    Current models of landscape response to Holocene climate change in midcontinent North America largely reconcile Earth orbital and atmospheric climate forcing with pollen-based forest histories on the east and eolian chronologies in Great Plains grasslands on the west. However, thousands of sand dunes spread across 12,000 km2 in eastern upper Michigan (EUM), more than 500 km east of the present forest-prairie ecotone, present a challenge to such models. We use 65 optically stimulated luminescence (OSL) ages on quartz sand deposited in silt caps (n = 8) and dunes (n = 57) to document eolian activity in EUM. Dune building was widespread ca. 10–8 ka, indicating a sharp, sustained decline in forest cover during that period. This decline was roughly coincident with hydrologic closure of the upper Great Lakes, but temporally inconsistent with most pollen-based models that imply canopy closure throughout the Holocene. Early Holocene forest openings are rarely recognized in pollen sums from EUM because faint signatures of non-arboreal pollen are largely obscured by abundant and highly mobile pine pollen. Early Holocene spikes in nonarboreal pollen are recorded in cores from small ponds, but suggest only a modest extent of forest openings. OSL dating of dune emplacement provides a direct, spatially explicit archive of greatly diminished forest cover during a very dry climate in eastern midcontinent North America ca. 10–8 ka.

  11. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2006-11-01

    It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming

  12. Holocene multi-proxy environmental reconstruction from lake Hakluytvatnet, Amsterdamøya Island, Svalbard (79.5°N)

    NASA Astrophysics Data System (ADS)

    Gjerde, Marthe; Bakke, Jostein; D'Andrea, William J.; Balascio, Nicholas L.; Bradley, Raymond S.; Vasskog, Kristian; Ólafsdóttir, Sædis; Røthe, Torgeir O.; Perren, Bianca B.; Hormes, Anne

    2018-03-01

    High resolution proxy records of past climate are sparse in the Arctic due to low organic production that restricts the use of radiocarbon dating and challenging logistics that make data collection difficult. Here, we present a new lake record from lake Hakluytvatnet at Amsterdamøya island (79.5°N), the northwesternmost island on Svalbard. Multi-proxy analyses of lake sediments in combination with geomorphological mapping reveal large environmental shifts that have taken place at Amsterdamøya during the Holocene. A robust chronology has been established for the lake sediment core through 28 AMS radiocarbon ages, and this gives an exceptionally well-constrained age control for a lake at this latitude. The Holocene was a period with large changes in the Hakluytvatnet catchment, and the onset of the Neoglacial (ca. 5 ka) marks the start of modern-day conditions in the catchment. The Neoglacial is characterized by fluctuations in the minerogenic input to the lake as well as internal productivity, and we suggest that these fluctuations are driven by atmospherically forced precipitation changes as well as sea ice extent modulating the amount of moisture that can reach Hakluytvatnet.

  13. The origin and disappearance of the late Pleistocene-early Holocene short-lived coastal wetlands along the Carmel coast, Israel

    NASA Astrophysics Data System (ADS)

    Sivan, Dorit; Greenbaum, Noam; Cohen-Seffer, Ronit; Sisma-Ventura, Guy; Almogi-Labin, Ahuva

    The formation of short-lived backswamps along the Carmel coast of Israel coincides with the rapid global sea-level rise during the late Pleistocene-early Holocene transition. The current study shows that the wetland phenomena originated around 10,000 yr ago and dried up shortly before the local Pre-Pottery Neolithic humans settled on the wetland dark clay sediments 9430 cal yr BP. Palaeontological and stable-isotope data were used in this study to elucidate previously published sedimentological reconstruction obtained from a core drilled into the western trough of the Carmel coastal plain. The water body contained typical brackish calcareous fauna, with variable numerical abundance and low species richness of ostracods and foraminifera. The δ 18O and δ 13C of the ostracod Cyprideis torosa show close similarity to the present Pleistocene coastal aquifer isotopic values. This study therefore concludes that the wetlands were shallow-water bodies fed by groundwater, with no evidence of sea-water mixing. It seems that they developed as the result of high groundwater levels, transportation of sediments landward, and deposition of sand bars at the paleo-river mouths. It is still not fully understood why these wetlands deteriorated abruptly and disappeared within less than 1000 yr.

  14. Holocene Glacier Fluctuations in the Peruvian Andes Indicate Northern Climate Linkages

    NASA Astrophysics Data System (ADS)

    Licciardi, Joseph M.; Schaefer, Joerg M.; Taggart, Jean R.; Lund, David C.

    2009-09-01

    The role of the tropics in triggering, transmitting, and amplifying interhemispheric climate signals remains a key debate in paleoclimatology. Tropical glacier fluctuations provide important insight on regional paleoclimatic trends and forcings, but robust chronologies are scarce. Here, we report precise moraine ages from the Cordillera Vilcabamba (13°20‧S) of southern Peru that indicate prominent glacial events and associated climatic shifts in the outer tropics during the early Holocene and late in the “Little Ice Age” period. Our glacier chronologies differ from the New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region.

  15. Multiproxy reconstruction of tropical Pacific Holocene temperature gradients and water column structure

    NASA Astrophysics Data System (ADS)

    Arbuszewski, J. A.; Oppo, D.; Huang, K.; Dubois, N.; Galy, V.; Mohtadi, M.; Herbert, T.; Rosenthal, Y.; Linsley, B. K.

    2012-12-01

    consider records from organic (sterol abundances) and inorganic proxies (Mg/Ca and δ18O of 3 planktonic foraminiferal species, % G. bulloides) to reconstruct zonal tropical Pacific (sub)surface temperature and stratification gradients over the Holocene. A benefit of using this approach is that it enables us to combine the strengths of each individual proxy to derive more robust records. We will compare our records with published paleoproxy and model studies in the Pacific and Indo-Pacific regions. Armed with this information, we aim to better understand mean state changes in the tropical Pacific over the Holocene. 1 Ropelewski, C. F. & Halpert, M. S. Monthly Weather Review 115, 1606-1626 (1987). 2 Collins, M. et al. Nature Geoscience 3, doi: 10.1038/NGEO1868 (2010). 3 Koutavas, A., Lynch-Steiglitz, J., Marchitto, T. & Sachs, J. Science 297, 226-230 (2002). 4 Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Nature 420, 162-165 (2002). 5 Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M. & Steinitz-Kannan, M. Quaternary Science Reviews 27, 1166-1180 (2008). 6 Makou, M. C., Eglinton, T. I., Oppo, D. W. & Hughen, K. A. Geology 38, 43-46 (2010). 7 Karnauskas, K., Smerdon, J., Seager, R. & Gonzalez-Rouco, J. Journal of Climate, doi: 10.1178/JCLI-D-1111-00421.00421 (2012 (in press)). 8 Clement, A., Seager, R. & Cane, M. Paleoceanography 14, 441-456 (2000).

  16. Chronological constraints on the Holocene glacier dynamics of the Argentière Glacier (Mont Blanc massif, France) based on cosmogenic nuclide dating

    NASA Astrophysics Data System (ADS)

    Protin, Marie; Schimmelpfennig, Irene; Mugnier, Jean-Louis; Ravanel, Ludovic; Deline, Philip; Le Roy, Melaine; Moreau, Luc; Aster Team

    2017-04-01

    While reconstruction of glacier fluctuations during the Holocene provides important information about the glacier response to natural climate change, it is still a challenge to accurately constrain chronologies of past glacier advances and retreats. Moraine deposits and roches moutonnées represent valuable geomorphic markers of advanced glacier extensions, while the currently ongoing glacier melt uncovers proglacial bedrock that can be used as a new archive to investigate the durations when a glacier was in retreated position during the Holocene. Our study focuses on the Mont-Blanc massif (MBM), located in the Western Alps and hosting some of the largest glaciers of Europe. Chronologies of Holocene glacier fluctuations in this area are still sparse, even if recent studies considerably improved the temporal reconstruction of Holocene advances of some glaciers in the MBM and locations near-by (e.g. Le Roy et al., 2015). Here we present preliminary 10Be exposure ages obtained from moraine boulders, roches moutonnées and pro- and subglacial bedrock in the area of the Argentière Glacier, located on the north-western flank of the MBM. The ages of moraine boulders and roche moutonnée surfaces outboard of the investigated moraines suggest that the Early Holocene deglaciation of this area started around 11 ka ago. Also, 10Be measurements of recently deglaciated bedrock surfaces indicate that the glacier was at a position at least as retracted as today for a minimum duration of 7 ka throughout the Holocene. The 10Be measurement of one sample from a surface that is currently still covered by 60 m of ice suggests that the glacier was shorter than today for at least a duration of 3 ka. These first results will soon be completed with in situ 14C measurements, which will allow us to quantify and take into account subglacial erosion rates and thus to more accurately determine the cumulative duration of pro- and subglacial bedrock exposure during the Holocene.

  17. Holocene geologic and climatic history around the Gulf of Alaska

    USGS Publications Warehouse

    Mann, D.H.; Crowell, A.L.; Hamilton, T.D.; Finney, B.P.

    1998-01-01

    Though not as dramatic as during the last Ice Age, pronounced climatic changes occurred in the northeastern Pacific over the last 10,000 years. Summers warmer and drier than today's accompanied a Hypsithermal interval between 9 and 6 ka. Subsequent Neoglaciation was marked by glacier expansion after 5-6 ka and the assembly of modern-type plant communities by 3-4 ka. The Neoglacial interval contained alternating cold and warm intervals, each lasting several hundred years to one millennium, and including both the Medieval Warm Period (ca. AD 900-1350) and the Little Ice Age (ca. AD 1350-1900). Salmon abundance fluctuated during the Little Ice Age in response to local glaciation and probably also to changes in the intensity of the Aleutian Low. Although poorly understood at present, climate fluctuations at all time scales were intimately connected with oceanographic changes in the North Pacific Ocean. The Gulf of Alaska region is tectonically highly active, resulting in a history of frequent geological catastrophes during the Holocene. Twelve to 14 major volcanic eruptions occurred since 12 ka. At intervals of 20-100 years, large earthquakes have raised and lowered sea level instantaneously by meters and generated destructive tsunamis. Sea level has often varied markedly between sites only 50-100 km apart due to tectonism and the isostatic effects of glacier fluctuations.

  18. Modern and late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2012-12-01

    Major advances have occurred in our understanding of modern dolomite formation and penecontemporaneous dolomitization over the past several decades. Manito Lake, located in west-central Saskatchewan, Canada, is a large (65 km2), deep (zmax: 22 m) perennial saline (~ 45 ppt TDS) lake in which modern and late Holocene dolomite coexists with other endogenic and authigenic carbonate precipitates, including aragonite, monohydrocalcite, calcite, and Mg-calcite. Like many other lacustrine dolomites, Manito Lake dolomite is microcrystalline (less than 1 μm to 5 μm), Ca-rich and poor to moderately ordered. It occurs as relatively pure hardgrounds and as a component of nearshore microbialites. It also forms isopachous cements in consolidated siliciclastic shoreline sediments. Manito Lake dolomite is most likely forming by mainly biomediated precipitation at or near the sediment-water interface (i) in pore spaces of coarse siliciclastic sediments (i.e., beachrock), (ii) as fine laminae associated with microbialites, and (iii) as a major component of mudstone hardgrounds and pavements.

  19. Vegetation Response and Landscape Dynamics of Indian Summer Monsoon Variations during Holocene: An Eco-Geomorphological Appraisal of Tropical Evergreen Forest Subfossil Logs

    PubMed Central

    Kumaran, Navnith K. P.; Padmalal, Damodaran; Nair, Madhavan K.; Limaye, Ruta B.; Guleria, Jaswant S.; Srivastava, Rashmi; Shukla, Anumeha

    2014-01-01

    The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672

  20. Mid- to Late Holocene climate development in Central Asia as revealed from multi-proxy analyses of sediments from Lake Son Kol (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Lauterbach, Stefan; Dulski, Peter; Gleixner, Gerd; Hettler-Riedel, Sabine; Mingram, Jens; Plessen, Birgit; Prasad, Sushma; Schwalb, Antje; Schwarz, Anja; Stebich, Martina; Witt, Roman

    2013-04-01

    A mid-Holocene shift from predominantly wet to significantly drier climate conditions, attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, Holocene climate development in the arid regions of mid-latitude Central Asia, located north and northwest of the Tibetan Plateau, is less well-constrained but supposed to have been influenced by a complex interaction between the mid-latitude Westerlies and the ASM. Hence, well-dated and highly resolved palaeoclimate records from Central Asia might provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, several sediment cores were recovered from alpine Lake Son Kol (41° 48'N, 75° 12'E, 3016 m a. s. l.) in the Central Tian Shan of Kyrgyzstan. A radiocarbon-dated sediment sequence of 154.5 cm length, covering approximately the last 6000 years, was investigated by using a multi-proxy approach, including sedimentological, (bio)geochemical, isotopic and micropalaeontological analyses. Preliminary proxy data indicate hydrologically variable but predominantly wet conditions until ca. 5100 cal. a BP, characterized by the deposition of finely laminated organic-carbonatic sediments. In contrast to monsoonal Asia, where a distinct trend towards drier conditions is observed since the mid-Holocene, the hydrologically variable interval at Lake Son Kol was apparently followed by an only short-term dry episode between ca. 5100 and 4200 cal. a BP. This is characterized by a higher δD of the C29 n-alkanes, probably reflecting increased evapotranspiration. Also pollen, diatom and ostracod data point

  1. Holocene Temperature Reconstructions from Arctic Lakes based on Alkenone Paleothermometry and Non-Destructive Scanning Techniques

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Balascio, N. L.; Bradley, R. S.; Bakke, J.; Gjerde, M.; Kaufman, D. S.; Briner, J. P.; von Gunten, L.

    2014-12-01

    Generating continuous, accurate and quantitative Holocene temperature estimates from the Arctic is an ongoing challenge. In many Arctic regions, tree ring-based approaches cannot be used and lake sediments provide the most valuable repositories for extracting paleotemperature information. Advances in lacustrine alkenone paleothermometry now allow for quantitative reconstruction of lake-water temperature based on the UK37 values of sedimentary alkenones. In addition, a recent study demonstrated the efficacy of non-destructive scanning reflectance spectroscopy in the visible range (VIS-RS) for high-resolution quantitative temperature reconstruction from arctic lake sediments1. In this presentation, I will report a new UK37-based temperature reconstruction and a scanning VIS-RS record (using the RABD660;670 index as a measure of sedimentary chlorin content) from Kulusuk Lake in southeastern Greenland (65.6°N, 37.1°W). The UK37 record reveals a ~3°C increase in summer lake water temperatures between ~10ka and ~7ka followed by sustained warmth until ~4ka and a gradual (~3°C) cooling until ~400 yr BP. The strong correlation between UK37 and RABD660;670 measured in the same sediment core provides further evidence that in arctic lakes where temperature regulates primary productivity, and thereby sedimentary chlorin content, these proxies can be combined to develop high-resolution quantitative temperature records. The Holocene temperature history of Kulusuk Lake determined using this approach corresponds to changes in the size of the glaciers adjacent to the lake, as inferred from sediment minerogenic properties measured with scanning XRF. Glaciers retreated during early Holocene warming, likely disappeared during the period of mid-Holocene warmth, and advanced after 4ka. I will also discuss new UK37 and RABD660;670 reconstructions from northwestern Svalbard and the central Brooks Range of Alaska within the framework of published regional temperature reconstructions and

  2. Early Deglaciation of Drangajökull, Vestfirðir, Iceland: Smaller than Present by 9.2 ka

    NASA Astrophysics Data System (ADS)

    Harning, D.; Geirsdottir, A.; Miller, G. H.; Zalzal, K.

    2016-12-01

    The Holocene histories of Iceland's largest ice caps suggest rapid early Holocene deglaciation and disappearance by 9 ka, other than possible small remnants of Vatnajökull. The least documented is Drangajökull, Vestfirðir, NW Iceland, where our team has been working since 2010. A recent study claims Drangajökull behaved differently than the other Iceland ice caps, deglaciating much later, and persisting through the Holocene Thermal Maximum (HTM). We test this postulate through a suite of sediment cores from threshold lakes both proximal and distal to the ice cap's contemporary margin. Distal lakes document rapid early Holocene deglaciation across the southern highland plateau, with the northern margin of the ice cap reaching a size comparable to Drangajökull's contemporary limit by 10.3 ka. A proximal lake to the north records a transient readvance at 9.6 ka, likely in association with meltwater pulses from the disintegrating Laurentide Ice Sheet (LIS). Two other southeastern proximal lakes, whose catchments extend well beneath the modern ice cap, demonstrate that Drangajökull was already smaller than present before 9.2 ka. Supporting evidence for local early Holocene warmth is derived from biological summer temperature proxies in a lake record, with age control (tephra/14C) demonstrating continuous sediment accumulation from 10.3 ka to present. Peak warmth (HTM) inferred from elevated algal productivity occurred between 8.9 and 7.2 ka. The record of terrestrial warmth closely aligns with regional SST and precipitation records that together with lake sediment characteristics provide firm evidence that Drangajökull responded similarly to Iceland's other large ice caps. Drangajökull was smaller than its contemporary margin before 9.2 ka, and likely disappeared entirely during the warmer and drier summers between 9 and 7 ka, reforming in the Late Holocene.

  3. Holocene Sea-Levels from Greenland to Antarctica: A Pole-to-Pole Transect of Sea Level History

    NASA Astrophysics Data System (ADS)

    Horton, Benjamin; Peltier, William; Roy, Keven; Ashe, Erica; Shaw, Tim; Engelhart, Simon; Khan, Nicole; Kopp, Robert; Simkins, Lauren; Vacchi, Matteo; Woodroffe, Sarah

    2017-04-01

    The Holocene is the most recent period during which natural temperature variability predominates and, therefore, provides an important paleo perspective for understanding the climate:sea-level relationship prior to anthropogenic modification of the climate system. But our understanding of Holocene sea level is limited by a lack of a standard protocol that incorporates full consideration of vertical and temporal uncertainty for each sea-level index point. We have compiled a Holocene RSL database of 3000 validated sea-level index points from Greenland, North American Atlantic coast, Caribbean, South American Atlantic coast and Antarctica. The databases were collated using a formalized and consistent methodology to facilitate the development and comparison of regional RSL records. The database also includes information relevant to sediment compaction, and modelling of both modern-day and paleotidal ranges. We develop a spatio-temporal empirical hierarchical model to compare regional RSL histories and estimate rates of change. Holocene RSL history from near-field regions (e.g., Antarctica, Greenland and Canada) reveal a complex pattern of RSL fall from a maximum marine limit due to the net effect of eustatic sea-level rise and glacio-isostatic uplift with rates of RSL fall as great as 70 ± 5 m/ka (East Hudson Bay). Intermediate field regions (e.g., North American mid-Atlantic coast) display variable rates of RSL rise from the cumulative effect of eustatic and isostatic factors. Fast rates of RSL rise (up to 10 ± 4m/ka; New Jersey) are found in the early Holocene in regions near the center of forebulge collapse. Far-field RSL records (South American Atlantic coast) exhibit a mid-Holocene highstand, the timing and magnitude of which varies between 8 and 4 ka and <1 and 6 m, respectively. We compare RSL histories with the predictions from two recent models of the Glacial Isostatic Adjustment (GIA) process, namely the ICE-6GC (VM5a) model of Peltier et al. (2015) and the

  4. Impact of Holocene climate variability on Arctic vegetation

    NASA Astrophysics Data System (ADS)

    Gajewski, K.

    2015-10-01

    This paper summarizes current knowledge about the postglacial history of the vegetation of the Canadian Arctic Archipelago (CAA) and Greenland. Available pollen data were used to understand the initial migration of taxa across the Arctic, how the plant biodiversity responded to Holocene climate variability, and how past climate variability affected primary production of the vegetation. Current evidence suggests that most of the flora arrived in the area during the Holocene from Europe or refugia south or west of the region immediately after local deglaciation, indicating rapid dispersal of propagules to the region from distant sources. There is some evidence of shrub species arriving later in Greenland, but it is not clear if this is dispersal limited or a response to past climates. Subsequent climate variability had little effect on biodiversity across the CAA, with some evidence of local extinctions in areas of Greenland in the late Holocene. The most significant impact of climate changes is on vegetation density and/or plant production.

  5. Miscanti-1: Human occupation during the arid Mid-Holocene event in the high-altitude lakes of the Atacama Desert, South America

    NASA Astrophysics Data System (ADS)

    Núñez, Lautaro; Loyola, Rodrigo; Cartajena, Isabel; López, Patricio; Santander, Boris; Maldonado, Antonio; de Souza, Patricio; Carrasco, Carlos

    2018-02-01

    This paper presents an interdisciplinary study of the Miscanti-1 archaeological site, located in the Holocene terrace deposits accumulated on the eastern margin of Miscanti Lake (4120 m.a.s.l.), northern Chile (23.7° S, 67.7° W). The human response to environmental and climatic variability in the Mid-Holocene (9500-4500 cal yr BP) is discussed through the zooarchaeological, lithic and paleoenvironmental records. We propose that, due to the increased aridity of the period, Miscanti Lake became a brackish paleowetland that attracted discrete groups of hunter-gatherers from lower elevation Andean areas. In contrast with the high frequency of human occupations known for the humid Late Pleistocene and Early Holocene (12600-9500 yr cal BP), the Miscanti-1 site is one of the few occupations recorded in the Atacama Highlands during the Mid-Holocene period. Data analysis suggests logistic and short-term campsite use for hunting the wild camelids that were attracted by the wetlands and fresh water (8100-8300 yr cal BP). In contrast to previous proposals for this period, we propose that access to high altitude environments did not cease, but was made possible by a shift to highly scheduled mobility and a specialized bifacial technology. Finally, the temporal and spatial links of Miscanti-1 are discussed in a regional context.

  6. Holocene Vegetation Changes in Eastern Kamchatka Based on Pollen and Macrofossil Records

    NASA Astrophysics Data System (ADS)

    Dirksen, V.

    2004-12-01

    Little is known about the Quaternary climate and vegetation history of Kamchatka. Only a few previous studies have provided paleoenvironmental information for this area, but these studies have poor age control and are inconsistent To reconstruct paleoclimate and both regional and local vegetation history we are analyzing continuous, high-resolution pollen and macrofossil records from peats on Kamchatka. Thin, well-dated ash layers in these peats provide excellent age control; sections sampled thus far range in age back to 12,000 years. Herein we report results from one example, the Uka peat section (57.8oN 162.2oE; about 10 m a.s.l.). This section is located on a morainal terrace close to a small lake. The basal section is lacustrine clay with a few spores pointing to scarce vegetation under cold conditions, probably latest Pleistocene. This clay is replaced upward by limnic peat, probably early Holocene (pollen zone 1). This zone is characterized by dominance of shrub alder and birch, herbs, and ferns. The highest value (in the whole section) of sage and the absence of tree pollen suggest a treeless landscape and thin vegetation cover under still cold conditions, while increase in local aquatic pollen indicates lake filling and shrinking. In Zone 2 (ca. 8000-4000 BP), mire vegetation shows successive development of eutrophic fen including three pulses of sphagnum followed by sedge peaks. Pollen concentration is very low, probably indicating high deposition rates. A warming trend is suggested by the appearance ca. 5600 BP of tree birch, increasing to the end of zone 2, while alder strongly decreases. The most pronounced changes in both regional and local vegetation are found ca. 3800 BP, when tree birch pollen reaches its highest value and a few long-transported spruce pollen grains appear. The dominant (eutrophic) sedge is suddenly replaced by a more oligotrophic one. Such local components as grasses, shrub birch and willow increase, and total pollen concentration

  7. Holocene geologic slip rate for the Mission Creek strand of the Southern San Andreas Fault, northern Coachella Valley, CA.

    NASA Astrophysics Data System (ADS)

    Munoz, J. J.; Behr, W. M.; Sharp, W. D.; Fryer, R.; Gold, P. O.

    2016-12-01

    Slip on the southern San Andreas fault in the northwestern Coachella Valley in Southern California is partitioned between three strands, the Mission Creek, Garnet Hill, and Banning strands. In the vicinity of the Indio Hills, the NW striking Mission Creek strand extends from the Indio Hills into the San Bernardino Mountains, whereas the Banning and Garnet Hill strands strike WNW and transfer slip into the San Gorgonio Pass region. Together, these three faults accommodate 20 mm/yr of right-lateral motion. Determining which strand accommodates the majority of fault slip and how slip rates on these strands have varied during the Quaternary is critical to seismic hazard assessment for the southern California region. Here we present a new Holocene geologic slip rate from an alluvial fan offset along the Mission Creek strand at the Three Palms site in the Indio Hills. Field mapping and remote sensing using the B4 LiDAR data indicates that the Three Palms fan is offset 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr. This Holocene maximum slip rate overlaps within errors with a previously published late Pleistocene slip rate of 12-22 mm/yr measured at Biskra Palms, a few kilometers to the south. Cosmogenic 10Be surface exposure samples were also collected from the fan surface to bracket the maximum depositional age. These samples have been processed and are currently awaiting AMS measurement.

  8. Paleolandscape Reconstruction of Holocene Fluvial Drainage, Narragansett Bay, Rhode Island.

    NASA Astrophysics Data System (ADS)

    Hearn, C. K.

    2016-12-01

    The Narragansett Bay System (NBS) located in eastern Rhode Island, United States, formed as a drowned river valley that began its most recent inundation at approximately the start of the Holocene Era. The earliest regional evidence for human occupation predates the inundation of the NBS, which would have existed as a network of streams and lakes. An abundance of artifacts recovered from the shoreline of the modern NBS provide a record of continuous habitation throughout the Holocene. A paleolandscape reconstruction of the lower NBS is in development to aid in assessing the archaeological sensitivity of the region regarding ancient Native American sites of cultural significance that are now submerged. The degree of potential preservation for such sites is closely linked to the extent of sediment removal during inundation, which is a function of the wave energy and rate of shoreface advancement. Accurate reconstructions of the paleolandscape are then critical for archaeological assessments. The West Passage (WP) of the NBS, the likely location for an early-Holocene freshwater lake, is bounded to the south by a large sill, which may have forced the basin to drain to the North before joining the East Passage drainage. The advancing shore may likewise have followed this northern route and gradually flooded the WP while maintaining a low-energy wave environment favorable to preservation until late in the inundation process. Dense sub-bottom sonar profiles were analyzed in the WP of the NBS in an attempt to locate paleochannels and test the theory of a northern fluvial drainage pathway prior to inundation. Evidence for the presence or absence of paleochannels through the sill would significantly affect the archaeological preservation potential for the WP. These results will be incorporated with a reconstruction for the entire lower bay and outer coastal shelf as part of large-scale novel effort to merge modern scientific investigations with Native American historical

  9. The Early Miocene Climatic Optimum (18-16 Ma): Stable Isotope and Mg/Ca Records from ODP Leg 189 Site 1168.

    NASA Astrophysics Data System (ADS)

    Syed, S.; Pekar, S.

    2008-12-01

    Ice volume estimates for the late early Miocene (~18-16 Ma) were derived from paired oxygen isotope records and Mg/Ca ratios from ODP Site 1168, which is located on the southwest slope of Tasmania. These records indicate the presence of a dynamic ice sheet in Antarctica, with ice-volume estimates up to present day levels occurring with relatively warm bottom water temperatures during isotope events Mi1b (17.9-17.6 Ma) and Mi2 (16.2 Ma). These records also indicate ice-volume decreased significantly during the Early Miocene Climatic Optimum ~17.2 to 16.4 Ma suggesting a near complete collapse of the East Antarctic Ice Sheet, based on an approximately 1‰ decrease in oxygen isotope value of seawater. Bottom water temperatures (BWT) derived from Mg/Ca ratios indicate temperature varied from ~8°C to 3°C, during the early Miocene, with the warmest BWT's occurring during glacial maxima and lowest occurring during glacial minima. Mg/Ca records from other records also indicate ice-volume increases coinciding with deep sea warming. These records suggest Antarctic glaciation may have been influenced by the moisture input by warm saline deep waters (WSDW) originating from the Indian Ocean/Tethys Sea. These WSDW would become entrained and ultimately upwell near Antarctica, resulting in delivering increased moisture/snowfall and therefore increased ice volume on the Antarctic continent. However, an alternative interpretation of the records could be that temperature estimates derived from Mg/Ca ratios may be over estimating the magnitude of temperature changes, thus resulting in an overestimation of ice-volume changes.

  10. Holocene Geomorphic and Stratigraphic Framework of Archeological Sites Along the Missouri River, Central South Dakota

    DTIC Science & Technology

    1987-03-01

    South Dakota 13 2 Description of the Lower Brule Section MT-i, now submerged by the waters of Lake Sharpe, Lyman County, South Dakota 15 3 Sequence...MT-i, now submerged by the waters of Lake Sharpe, Lyman County, South Dakota Unit # Description Thickness 1 Gray, thinbedded Cretaceous Pierre Shale...14,000 10000 C- 14 YBP WISCONSlNAN HOLOCENE AGE LATE EARLY MIDDLE LATE 10 M.I1. AGGIE BROWN PICK CITY OW MID.UPE MBR MEMBER M EMBER RIVERDALE MEMBER OAHE

  11. Contradictory cooling in a warmer world? the climate of the Mediterranean region during the ';Holocene Thermal Maximum'

    NASA Astrophysics Data System (ADS)

    Davis, B.

    2013-12-01

    Extensive evidence from high latitudes of the Northern Hemisphere indicates that temperatures were warmer than present during the early-mid Holocene, a period known as the Holocene thermal maximum (HTM). The existence of the HTM over lower mid-latitudes and the sub-tropics however is less clear, with pollen-based reconstructions in particular actually indicating a contrary cooling at this time in these regions. This apparent cooling is controversial because it is not shown in climate model simulations, which indicate that the HTM occurred across all extra-tropical latitudes of the Northern Hemisphere. This is also supported by alkenone based SST reconstructions, which also show a much more widespread HTM than indicated by the pollen data. Here this problem is investigated by reviewing the evidence both for, and against, the HTM in the Mediterranean region, which represents one of the most intensively studied regions of sub-tropical climate in the Northern Hemisphere. This evidence includes a large number of both marine and terrestrial records that can be directly compared due to their close proximity around the Mediterranean Sea. The results highlight the potential for bias in both marine and terrestrial climate proxies, but despite many criticisms of the pollen-based record, it is shown that the existence of more extensive temperate vegetation in the early-mid Holocene in the Mediterranean is difficult to explain by anything other than a cooler climate. For instance, vegetation models driven by climate model output show that the warmer climate suggested by the models produces a HTM vegetation even more arid than today. The results have important implications in the interpretation of proxy records, but perhaps most importantly, the potential for climate models to underestimate cooling processes in a warmer world needs further investigation.

  12. A Database and Synthesis of Northern Peatland Soil Properties and Holocene Carbon and Nitrogen Accumulation

    NASA Technical Reports Server (NTRS)

    Loisel, Julie; Yu, Zicheng; Beilman, David W.; Camill, Philip; Alm, Jukka; Amesbury, Matthew J.; Anderson, David; Andersson, Sofia; Bochicchio, Christopher; Barber, Keith; hide

    2014-01-01

    Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45 deg N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 +/- 3% (standard deviation) for Sphagnum peat, 51 +/- 2% for non-Sphagnum peat, and at 49 +/- 2% overall. Dry bulk density averaged 0.12 +/- 0.07 g/cu cm, organic matter bulk density averaged 0.11 +/- 0.05 g/cu cm, and total carbon content in peat averaged 47 +/- 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 +/- 2 (standard error of mean) g C/sq m/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-28 g C/sq m/yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu.

  13. Response of northern hemisphere environmental and atmospheric conditions to climate changes using Greenland aerosol records from the Eemian to the Holocene

    NASA Astrophysics Data System (ADS)

    Fischer, H.

    2017-12-01

    The Northern Hemisphere experienced dramatic climate changes over the last glacial cycle, including vast ice sheet expansion and frequent abrupt climate events. Moreover, high northern latitudes during the last interglacial (Eemian) were warmer than today and may provide guidance for future climate change scenarios. However, little evidence exists regarding the environmental alterations connected to these climate changes. Using aerosol concentration records in decadal resolution from the North Greenland Eemian Ice Drilling (NEEM) over the last 128,000 years we extract quantitative information on environmental changes, including the first comparison of northern hemisphere environmental conditions between the warmer than present Eemian and the early Holocene. Separating source changes from transport effects, we find that changes in the ice concentration greatly overestimate the changes in atmospheric concentrations in the aerosol source region, the latter mirroring changes in aerosol emissions. Glacial times were characterized by a strong reduction in terrestrial biogenic emissions (only 10-20% of the early Holocene value) reflecting the net loss of vegetated area in mid to high latitudes, while rapid climate changes during the glacial had essentially no effect on terrestrial biogenic aerosol emissions. An increase in terrestrial dust emissions of approximately a factor of eight during peak glacial and cold stadial intervals indicates higher aridity and dust storm activity in Asian deserts. Glacial sea salt aerosol emissions increased only moderately (by approximately 50%), likely due to sea ice expansion, while marked stadial/interstadial variations in sea salt concentrations in the ice reflect mainly changes in wet deposition en route. Eemian ice contains lower aerosol concentrations than ice from the early Holocene, due to shortened atmospheric residence time during the warmer Eemian, suggesting that generally 2°C warmer climate in high northern latitudes did not

  14. Holocene coastal development on the Florida peninsula

    USGS Publications Warehouse

    Davis, Richard; Hine, Albert C.; Shinn, Eugene A.

    1992-01-01

    The Florida peninsula contains five distinct coastal sections, each resulting from its own spectrum of coastal processes and sediment availability during a slowly rising, late Holocene sea level. The east coast barrier system is wave-dominated and has a large cuspate foreland (Cape Canaveral) near its middle. The Florida Keys and reef tract represent the only coastal carbonate system in the continental United States. An open-marine mangrove coast characterizes the low-energy, tide-dominated southwest part of the State. The central Gulf barrier system displays a mixed-energy morphology in a microtidal, low-energy setting. The open-coast marsh system of the Big Bend area that is north of the barrier system is also tide dominated, and is developed on a sediment-starved carbonate platform.The oldest preserved coastal Holocene section is the Florida Keys area where, at about 6 to 8 ka, sequences accumulated during the Holocene. Most of the remainder of the peninsular coast is characterized by terrigenous sequences less than 3 ka. The younger sequences accumulated almost exclusively from reworking of older strata without benefit of additional sediment supply from land.

  15. Holocene environmental change along the southern Cape coast of South Africa - Insights from the Eilandvlei sediment record spanning the last 8.9 kyr

    NASA Astrophysics Data System (ADS)

    Wündsch, Michael; Haberzettl, Torsten; Cawthra, Hayley C.; Kirsten, Kelly L.; Quick, Lynne J.; Zabel, Matthias; Frenzel, Peter; Hahn, Annette; Baade, Jussi; Daut, Gerhard; Kasper, Thomas; Meadows, Michael E.; Mäusbacher, Roland

    2018-04-01

    This study investigates Holocene sediments from Eilandvlei, a coastal lake located within the Wilderness embayment at the southern Cape coast of South Africa. The evolution of the present estuarine/coastal lake system is reconstructed based on seismic data as well as a multi-proxy approach on a 30.5 m sediment core spanning the last 8.9 kyr. Geochemical (Ca, TOC/S, Br/TOC) and micropalaeontological data (diatoms, foraminifera) reflect changes in the degree of marine influence at the core site. The embayment likely developed via distinct phases of connectivity to the Indian Ocean caused by sea level changes and dune progradation. Marine conditions prevailed at the core site from 8900 to 4700 cal BP. The rapid sea level rise during the early Holocene caused the inundation of a palaeovalley that most likely had formed at lower sea levels during the Pleistocene. Towards the mid-Holocene the sea level exceeded its present height around 7500 cal BP creating a marine embayment. At 4700 cal BP, the embayment became distinctly more disconnected from the ocean turning into a lagoon system that persisted until 1200 cal BP. Subsequently, the marine influence further decreased and the present estuarine/coastal lake system was established. Grain size and geochemical data (Fe, Si/Al, chemical index of alteration (CIA)) further reflect changes in the deposition of terrigenous sediments at the core site. While the sedimentation of fine-grained (<16 μm), iron-rich and highly weathered material is linked to periods of increased river discharge and rainfall, high amounts of deposited quartz (31-250 μm, high Si/Al) point to relatively dry and/or windy conditions during which increased aeolian transport of dune sands occurred. The proxies indicate reduced river discharge and hence possibly drier climatic conditions than today from 8900 to 7900 cal BP and 6400 to 3000 cal BP. In contrast, the periods between 7900-6400 cal BP and 3000 cal BP-present were likely characterized by high

  16. NW Pacific mid-depth ventilation changes during the Holocene

    NASA Astrophysics Data System (ADS)

    Rella, S.; Uchida, M.

    2010-12-01

    During the last 50 years the oxygen content of North Pacific Intermediate Water primarily originating in the Okhotsk Sea has declined suggesting decreased mid-depth water circulation, likely leading to changes in biological productivity in the NW Pacific realm and a decrease in CO2 drawdown. It is therefore of high interest to elucidate the climate-oceanic interconnections of the present interglacial period (Holocene) in the NW Pacific, in order to predict possible future climate and surface productivity changes associated with a decrease in mid-depth ventilation in this ecologically sensitive region. However, such efforts have been hampered so far by the lack of appropriate sediment cores with fast sedimentation rates during the Holocene. Core CK05-04 that was recovered in 2005 from off Shimokita peninsula, Japan, at ~1000 m depth shows sedimentation rates of ~80 cm/kyr during the Holocene and therefore presents an ideal opportunity to reconstruct for the first time the Holocene ventilation history of the NW Pacific Ocean. We employ Accelerator Mass Spectroscopy (NIES-TERRA, Tsukuba) radiocarbon analysis of co-existing benthic and planktonic foraminifera to conclude on the ventilation age of the mid-depth water using benthic-planktonic radiocarbon age differences. At the conference we would like to present the results.

  17. Geomorphological and cryostratigraphical analyses of the Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans

    NASA Astrophysics Data System (ADS)

    Cable, Stefanie; Christiansen, Hanne H.; Westergaard-Nielsen, Andreas; Kroon, Aart; Elberling, Bo

    2018-02-01

    In High Arctic northern Greenland, future responses to climatic changes are poorly understood on a landscape scale. Here, we present a study of the geomorphology and cryostratigraphy in the Zackenberg Valley in NE Greenland (74°N) containing a geomorphological map and a simplified geocryological map, combined with analyses of 13 permafrost cores and two exposures. Cores from a solifluction sheet, alluvial fans, and an emerged delta were studied with regards to cryostructures, ice and total carbon contents, grain size distribution, and pore water electrical conductivity; and the samples were AMS 14C dated. The near-surface permafrost on slopes and alluvial fans is ice rich, as opposed to the ice-poor epigenetic permafrost in the emerged delta. Ground ice and carbon distribution are closely linked to sediment transport processes, which largely depend on lithology and topography. Holocene alluvial fans on the lowermost hillslopes, covering 12% of the study area, represent paleoenvironmental archives. During the contrasting climates of the Holocene, the alluvial fans continued to aggrade - through the warmer early Holocene Optimum, the colder late Holocene, and the following climate warming - and by 0.45 mm a- 1, on average. This is caused by three factors: sedimentation, ground ice aggradation, and vegetation growth and is reflected by AMS 14C dating and continuously alternating cryostructures. Highly variable sedimentation rates in space and time at the alluvial fans have been detected. This is also reflected by alternating lenticular and microlenticular cryostructures indicating syngenetic permafrost aggradation during sedimentation with suspended and organic-matrix cryostructures indicating quasi-syngenetic permafrost aggradation in response to vegetation growth in periods with reduced or no sedimentation. Over time, this causes organic matter to become buried, indicating that alluvial fans represent effective carbon sinks that have previously been overlooked.

  18. Implications of (reworked) aeolian sediments and paleosols for Holocene environmental change in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Klinge, Michael; Lehmkuhl, Frank; Schulte, Philipp; Hülle, Daniela; Nottebaum, Veit

    2017-09-01

    In the semi-arid to semi-humid regions of western Mongolia four different geomorphological aeolian and fluvial archives were investigated in order to gain environmental information of landscape evolution during the late glacial and the Holocene. These archives, which contain aeolian deposits, fluvial sediments, and paleosols, are situated upon glacial moraines, fluvial terraces, floodplains, or mountain slopes. While radiometric dating provides information about the age of the sediment and paleosols, grain size and element distribution provide information about the sediment source and soil development. Extensive aeolian sediment transport occurred from 17 to 10 ka during the late glacial when climate was cold and dry. Since that period the developing steppe and alpine meadow vegetation served as a dust trap. During the warm and wet early to mid-Holocene sediment transport was reduced under a dense vegetation cover. All paleosols of the investigated archives show late Holocene ages which point to an environmental turning point around 3 ka. Since then, the Neoglacial period started with cooler climate conditions and periglacial processes intensified again. Recognizable glacier advances occurred during the Little Ice Age several centuries ago. Since then, global climate change leads to warmer and more arid conditions. During the late Holocene, a new period of strong geomorphological activity started and huge quantities of aeolian, colluvial and fluvial sediment accumulated. These intensified soil relocation processes cannot be explained exclusively by climate change because there are no explicit indications found in the palynological and lacustrine records of Mongolia. This discrepancy suggests that the additional factor of human impact has to be considered, which amplified the climate signal on the landscape. Simultaneously, when the enhanced geomorphological processes occurred, the prehistoric people changed from hunting and gathering to livestock husbandry. A first

  19. Late Pleistocene-Holocene coastal development of islands off Vietnam

    NASA Astrophysics Data System (ADS)

    Korotky, A. M.; Razjigaeva, N. G.; Ganzey, L. A.; Volkov, V. G.; Grebennikova, T. A.; Bazarova, V. B.; Kovalukh, N. N.

    Relief and deposits of Vietnam shelf islands (Tkhanlam, Kaoptyaotyai, Koto, Kaotkhaotyai, Dongkho, Fongwong, Timatao Re, Che, Mung, Tyam, Kondao, Baikan, Fukuok, Tkhotyu, Tkhom) were studied. In the Late Pleistocene-Holocene these areas were the islands during transgressions, when the continent was submerged. The islands were connected to the continent during regressions. Coastal relief and deposits indicate the mark of Riss-Wurm and some Middle-Late Holocene transgressions and regressions. Transgressions were recorded in 10, 4-6, 3-4, 2.5-3, 1.5-2 m terraces, elevated benches and elevated coral reefs. Deposits of transgressive phases of Middle-Late Holocene with sea level rises from 0.5 to 3 m were dated: 5060-6800, 3357-4100, 2170-2435, 900-1200 years B.P. Regressions were accompanied by intensive eolian activities, downslope processes and erosional downcut of river valleys.

  20. Dolomite dissolution rates and possible Holocene dedolomitization of water-bearing units in the Edwards aquifer, south-central Texas

    USGS Publications Warehouse

    Deike, R.G.

    1990-01-01

    Rates of dolomite dissolution can be used to test the concept, based on geomorphologic evidence, that a major part of the Edwards aquifer could have formed within the Holocene, a timeframe of approximately 10,000 years. During formation of the aquifer in the Edwards limestone (Cretaceous, Albian) of the Balcones fault zone, dolomite dissolution and porosity development were synchronous and the result of mixing-zone dedolomitization. Initiation of the mixing zone in the early Holocene (???11,000 years before present) is suggested by the maximum age of formation of major discharge sites that allowed the influx of meteoric water into brine-filled, dolomitic preaquifer units. Dedolomitization, the dissolution of dolomite and net precipitation of calcite, has left aquifer units that are calcitic, and 40 vol.% interconnected pore space. The mass of dolomite missing is obtained by comparison of stratigraphically equivalent altered and unaltered units. One dissolution rate (1.76 ?? 10-4 mmol dolomite kgH2O-1yr-1) is determined from this mass, 104yr reaction time, and a log-linear function describing the increase in mass discharge (three orders of magnitude) during aquifer formation. The second estimated dissolution rate is obtained from the mass transfer of dolomite to solution calculated from the increase in magnesium in pore fluids selected from the modern aquifer to represent a typical flowpath during aquifer formation. A reaction time of 104yr for this mass transfer yields a rate of 0.56 ?? 10-4 mmol dolomite kgH2O-1yr-1. Both of these rates are comparable to modern rates of dolomite dissolution (0.3 to 4.5 ?? 10-4 mmol dolomite kgH2O-1yr-1) calculated from measured reaction times in the Tertiary Floridan aquifer system in Florida and the Madison aquifer in the Mississippian Madison Limestone of the Northern Great Plains. Similarity of these rates to the estimated paleo-rates of dolomite dissolution supports a 104 yr reaction timeframe. The Holocene reaction time also