Sample records for early human ancestors

  1. Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes.

    PubMed

    Grabowski, Mark; Jungers, William L

    2017-10-12

    Body mass directly affects how an animal relates to its environment and has a wide range of biological implications. However, little is known about the mass of the last common ancestor (LCA) of humans and chimpanzees, hominids (great apes and humans), or hominoids (all apes and humans), which is needed to evaluate numerous paleobiological hypotheses at and prior to the root of our lineage. Here we use phylogenetic comparative methods and data from primates including humans, fossil hominins, and a wide sample of fossil primates including Miocene apes from Africa, Europe, and Asia to test alternative hypotheses of body mass evolution. Our results suggest, contrary to previous suggestions, that the LCA of all hominoids lived in an environment that favored a gibbon-like size, but a series of selective regime shifts, possibly due to resource availability, led to a decrease and then increase in body mass in early hominins from a chimpanzee-sized LCA.The pattern of body size evolution in hominids can provide insight into historical human ecology. Here, Grabowski and Jungers use comparative phylogenetic analysis to reconstruct the likely size of the ancestor of humans and chimpanzees and the evolutionary history of selection on body size in primates.

  2. Diet and the evolution of the earliest human ancestors

    PubMed Central

    Teaford, Mark F.; Ungar, Peter S.

    2000-01-01

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations. PMID:11095758

  3. Transmission between Archaic and Modern Human Ancestors during the Evolution of the Oncogenic Human Papillomavirus 16.

    PubMed

    Pimenoff, Ville N; de Oliveira, Cristina Mendes; Bravo, Ignacio G

    2017-01-01

    Every human suffers through life a number of papillomaviruses (PVs) infections, most of them asymptomatic. A notable exception are persistent infections by Human papillomavirus 16 (HPV16), the most oncogenic infectious agent for humans and responsible for most infection-driven anogenital cancers. Oncogenic potential is not homogeneous among HPV16 lineages, and genetic variation within HPV16 exhibits some geographic structure. However, an in-depth analysis of the HPV16 evolutionary history was still wanting. We have analyzed extant HPV16 diversity and compared the evolutionary and phylogeographical patterns of humans and of HPV16. We show that codivergence with modern humans explains at most 30% of the present viral geographical distribution. The most explanatory scenario suggests that ancestral HPV16 already infected ancestral human populations and that viral lineages co-diverged with the hosts in parallel with the split between archaic Neanderthal-Denisovans and ancestral modern human populations, generating the ancestral HPV16A and HPV16BCD viral lineages, respectively. We propose that after out-of-Africa migration of modern human ancestors, sexual transmission between human populations introduced HPV16A into modern human ancestor populations. We hypothesize that differential coevolution of HPV16 lineages with different but closely related ancestral human populations and subsequent host-switch events in parallel with introgression of archaic alleles into the genomes of modern human ancestors may be largely responsible for the present-day differential prevalence and association with cancers for HPV16 variants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Ancient gene flow from early modern humans into Eastern Neanderthals.

    PubMed

    Kuhlwilm, Martin; Gronau, Ilan; Hubisz, Melissa J; de Filippo, Cesare; Prado-Martinez, Javier; Kircher, Martin; Fu, Qiaomei; Burbano, Hernán A; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Rudan, Pavao; Brajkovic, Dejana; Kucan, Željko; Gušic, Ivan; Marques-Bonet, Tomas; Andrés, Aida M; Viola, Bence; Pääbo, Svante; Meyer, Matthias; Siepel, Adam; Castellano, Sergi

    2016-02-25

    It has been shown that Neanderthals contributed genetically to modern humans outside Africa 47,000-65,000 years ago. Here we analyse the genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia together with the sequences of chromosome 21 of two Neanderthals from Spain and Croatia. We find that a population that diverged early from other modern humans in Africa contributed genetically to the ancestors of Neanderthals from the Altai Mountains roughly 100,000 years ago. By contrast, we do not detect such a genetic contribution in the Denisovan or the two European Neanderthals. We conclude that in addition to later interbreeding events, the ancestors of Neanderthals from the Altai Mountains and early modern humans met and interbred, possibly in the Near East, many thousands of years earlier than previously thought.

  5. The universal ancestor

    NASA Technical Reports Server (NTRS)

    Woese, C.

    1998-01-01

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when "genetic temperatures" were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell "crystallized," i.e., became refractory to lateral gene transfer, at different stages of "cooling," with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.

  6. The vertebral formula of the last common ancestor of African apes and humans.

    PubMed

    McCollum, Melanie A; Rosenman, Burt A; Suwa, Gen; Meindl, Richard S; Lovejoy, C Owen

    2010-03-15

    The modal number of lumbar vertebrae in modern humans is five. It varies between three and four in extant African apes (mean=3.5). Because both chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) possess the same distributions of thoracic, lumbar, and sacral vertebrae, it has been assumed from parsimony that the last common ancestor (LCA) of African apes and humans possessed a similarly short lower back. This "short-backed LCA" scenario has recently been viewed favorably in an analysis of the intra- and interspecific variation in axial formulas observed among African apes and humans (Pilbeam, 2004. J Exp Zool 302B:241-267). However, the number of bonobo (Pan paniscus) specimens in that study was small (N=17). Here we reconsider vertebral type and number in the LCA in light of an expanded P. paniscus sample as well as evidence provided by the human fossil record. The precaudal (pre-coccygeal) axial column of bonobos differs from those of chimpanzees and gorillas in displaying one additional vertebra as well as significantly different combinations of sacral, lumbar, and thoracic vertebrae. These findings, along with the six-segmented lumbar column of early Australopithecus and early Homo, suggest that the LCA possessed a long axial column and long lumbar spine and that reduction in the lumbar column occurred independently in humans and in each ape clade, and continued after separation of the two species of Pan as well. Such an explanation is strongly congruent with additional details of lumbar column reduction and lower back stabilization in African apes.

  7. Ancient gene flow from early modern humans into Eastern Neanderthals

    PubMed Central

    Kuhlwilm, Martin; Gronau, Ilan; Hubisz, Melissa J.; de Filippo, Cesare; Prado-Martinez, Javier; Kircher, Martin; Fu, Qiaomei; Burbano, Hernán A.; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Rudan, Pavao; Brajkovic, Dejana; Kucan, Željko; Gušic, Ivan; Marques-Bonet, Tomas; Andrés, Aida M.; Viola, Bence; Pääbo, Svante; Meyer, Matthias; Siepel, Adam; Castellano, Sergi

    2016-01-01

    It has been shown that Neanderthals contributed genetically to modern humans outside Africa 47,000–65,000 years ago. Here, we analyze the genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia together with the sequences of chromosome 21 of two Neanderthals from Spain and Croatia. We find that a population that diverged early from other modern humans in Africa contributed genetically to the ancestors of Neanderthals from the Altai Mountains roughly 100,000 years ago. By contrast, we do not detect such a genetic contribution in the Denisovan or the two European Neanderthals. We conclude that in addition to later interbreeding events, the ancestors of Neanderthals from the Altai Mountains and of modern humans met and interbred, possibly in the Near East, many thousands of years earlier than previously reported. PMID:26886800

  8. Ontogeny of the maxilla in Neanderthals and their ancestors

    PubMed Central

    Lacruz, Rodrigo S.; Bromage, Timothy G.; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-01-01

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived. PMID:26639346

  9. Ontogeny of the maxilla in Neanderthals and their ancestors.

    PubMed

    Lacruz, Rodrigo S; Bromage, Timothy G; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-12-07

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived.

  10. Independent evolution of knuckle-walking in African apes shows that humans did not evolve from a knuckle-walking ancestor.

    PubMed

    Kivell, Tracy L; Schmitt, Daniel

    2009-08-25

    Despite decades of debate, it remains unclear whether human bipedalism evolved from a terrestrial knuckle-walking ancestor or from a more generalized, arboreal ape ancestor. Proponents of the knuckle-walking hypothesis focused on the wrist and hand to find morphological evidence of this behavior in the human fossil record. These studies, however, have not examined variation or development of purported knuckle-walking features in apes or other primates, data that are critical to resolution of this long-standing debate. Here we present novel data on the frequency and development of putative knuckle-walking features of the wrist in apes and monkeys. We use these data to test the hypothesis that all knuckle-walking apes share similar anatomical features and that these features can be used to reliably infer locomotor behavior in our extinct ancestors. Contrary to previous expectations, features long-assumed to indicate knuckle-walking behavior are not found in all African apes, show different developmental patterns across species, and are found in nonknuckle-walking primates as well. However, variation among African ape wrist morphology can be clearly explained if we accept the likely independent evolution of 2 fundamentally different biomechanical modes of knuckle-walking: an extended wrist posture in an arboreal environment (Pan) versus a neutral, columnar hand posture in a terrestrial environment (Gorilla). The presence of purported knuckle-walking features in the hominin wrist can thus be viewed as evidence of arboreality, not terrestriality, and provide evidence that human bipedalism evolved from a more arboreal ancestor occupying the ecological niche common to all living apes.

  11. Origin of Clothing Lice Indicates Early Clothing Use by Anatomically Modern Humans in Africa

    PubMed Central

    Toups, Melissa A.; Kitchen, Andrew; Light, Jessica E.; Reed, David L.

    2011-01-01

    Clothing use is an important modern behavior that contributed to the successful expansion of humans into higher latitudes and cold climates. Previous research suggests that clothing use originated anywhere between 40,000 and 3 Ma, though there is little direct archaeological, fossil, or genetic evidence to support more specific estimates. Since clothing lice evolved from head louse ancestors once humans adopted clothing, dating the emergence of clothing lice may provide more specific estimates of the origin of clothing use. Here, we use a Bayesian coalescent modeling approach to estimate that clothing lice diverged from head louse ancestors at least by 83,000 and possibly as early as 170,000 years ago. Our analysis suggests that the use of clothing likely originated with anatomically modern humans in Africa and reinforces a broad trend of modern human developments in Africa during the Middle to Late Pleistocene. PMID:20823373

  12. The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo

    PubMed Central

    Tocheri, Matthew W; Orr, Caley M; Jacofsky, Marc C; Marzke, Mary W

    2008-01-01

    Molecular evidence indicates that the last common ancestor of the genus Pan and the hominin clade existed between 8 and 4 million years ago (Ma). The current fossil record indicates the Pan-Homo last common ancestor existed at least 5 Ma and most likely between 6 and 7 Ma. Together, the molecular and fossil evidence has important consequences for interpreting the evolutionary history of the hand within the tribe Hominini (hominins). Firstly, parsimony supports the hypothesis that the hand of the last common ancestor most likely resembled that of an extant great ape overall (Pan, Gorilla, and Pongo), and that of an African ape in particular. Second, it provides a context for interpreting the derived changes to the hand that have evolved in various hominins. For example, the Australopithecus afarensis hand is likely derived in comparison with that of the Pan–Homo last common ancestor in having shorter fingers relative to thumb length and more proximo-distally oriented joints between its capitate, second metacarpal, and trapezium. This evidence suggests that these derived features evolved prior to the intensification of stone tool-related hominin behaviors beginning around 2.5 Ma. However, a majority of primitive features most likely present in the Pan-Homo last common ancestor are retained in the hands of Australopithecus, Paranthropus/early Homo, and Homo floresiensis. This evidence suggests that further derived changes to the hands of other hominins such as modern humans and Neandertals did not evolve until after 2.5 Ma and possibly even later than 1.5 Ma, which is currently the earliest evidence of Acheulian technology. The derived hands of modern humans and Neandertals may indicate a morphological commitment to tool-related manipulative behaviors beyond that observed in other hominins, including those (e.g. H. floresiensis) which may be descended from earlier tool-making species. PMID:18380869

  13. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans

    PubMed Central

    Gómez-Robles, Aida; Bermúdez de Castro, José María; Arsuaga, Juan-Luis; Carbonell, Eudald; Polly, P. David

    2013-01-01

    A central problem in paleoanthropology is the identity of the last common ancestor of Neanderthals and modern humans ([N-MH]LCA). Recently developed analytical techniques now allow this problem to be addressed using a probabilistic morphological framework. This study provides a quantitative reconstruction of the expected dental morphology of the [N-MH]LCA and an assessment of whether known fossil species are compatible with this ancestral position. We show that no known fossil species is a suitable candidate for being the [N-MH]LCA and that all late Early and Middle Pleistocene taxa from Europe have Neanderthal dental affinities, pointing to the existence of a European clade originated around 1 Ma. These results are incongruent with younger molecular divergence estimates and suggest at least one of the following must be true: (i) European fossils and the [N-MH]LCA selectively retained primitive dental traits; (ii) molecular estimates of the divergence between Neanderthals and modern humans are underestimated; or (iii) phenotypic divergence and speciation between both species were decoupled such that phenotypic differentiation, at least in dental morphology, predated speciation. PMID:24145426

  14. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    PubMed

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  15. The facial skeleton of the chimpanzee-human last common ancestor

    PubMed Central

    Cobb, Samuel N

    2008-01-01

    This review uses the current morphological evidence to evaluate the facial morphology of the hypothetical last common ancestor (LCA) of the chimpanzee/bonobo (panin) and human (hominin) lineages. Some of the problems involved in reconstructing ancestral morphologies so close to the formation of a lineage are discussed. These include the prevalence of homoplasy and poor phylogenetic resolution due to a lack of defining derived features. Consequently the list of hypothetical features expected in the face of the LCA is very limited beyond its hypothesized similarity to extant Pan. It is not possible to determine with any confidence whether the facial morphology of any of the current candidate LCA taxa (Ardipithecus kadabba, Ardipithecus ramidus, Orrorin tugenensis and Sahelanthropus tchadensis) is representative of the LCA, or a stem hominin, or a stem panin or, in some cases, a hominid predating the emergence of the hominin lineage. The major evolutionary trends in the hominin lineage subsequent to the LCA are discussed in relation to the dental arcade and dentition, subnasal morphology and the size, position and prognathism of the facial skeleton. PMID:18380866

  16. Identification of key ancestors of modern germplasm in a breeding program of maize.

    PubMed

    Technow, F; Schrag, T A; Schipprack, W; Melchinger, A E

    2014-12-01

    Probabilities of gene origin computed from the genomic kinships matrix can accurately identify key ancestors of modern germplasms Identifying the key ancestors of modern plant breeding populations can provide valuable insights into the history of a breeding program and provide reference genomes for next generation whole genome sequencing. In an animal breeding context, a method was developed that employs probabilities of gene origin, computed from the pedigree-based additive kinship matrix, for identifying key ancestors. Because reliable and complete pedigree information is often not available in plant breeding, we replaced the additive kinship matrix with the genomic kinship matrix. As a proof-of-concept, we applied this approach to simulated data sets with known ancestries. The relative contribution of the ancestral lines to later generations could be determined with high accuracy, with and without selection. Our method was subsequently used for identifying the key ancestors of the modern Dent germplasm of the public maize breeding program of the University of Hohenheim. We found that the modern germplasm can be traced back to six or seven key ancestors, with one or two of them having a disproportionately large contribution. These results largely corroborated conjectures based on early records of the breeding program. We conclude that probabilities of gene origin computed from the genomic kinships matrix can be used for identifying key ancestors in breeding programs and estimating the proportion of genes contributed by them.

  17. Evolution of human brain functions: the functional structure of human consciousness.

    PubMed

    Cloninger, C Robert

    2009-11-01

    The functional structure of self-aware consciousness in human beings is described based on the evolution of human brain functions. Prior work on heritable temperament and character traits is extended to account for the quantum-like and holographic properties (i.e. parts elicit wholes) of self-aware consciousness. Cladistic analysis is used to identify the succession of ancestors leading to human beings. The functional capacities that emerge along this lineage of ancestors are described. The ecological context in which each cladogenesis occurred is described to illustrate the shifting balance of evolution as a complex adaptive system. Comparative neuroanatomy is reviewed to identify the brain structures and networks that emerged coincident with the emergent brain functions. Individual differences in human temperament traits were well developed in the common ancestor shared by reptiles and humans. Neocortical development in mammals proceeded in five major transitions: from early reptiles to early mammals, early primates, simians, early Homo, and modern Homo sapiens. These transitions provide the foundation for human self-awareness related to sexuality, materiality, emotionality, intellectuality, and spirituality, respectively. The functional structure of human self-aware consciousness is concerned with the regulation of five planes of being: sexuality, materiality, emotionality, intellectuality, and spirituality. Each plane elaborates neocortical functions organized around one of the five special senses. The interactions among these five planes gives rise to a 5 x 5 matrix of subplanes, which are functions that coarsely describe the focus of neocortical regulation. Each of these 25 neocortical functions regulates each of five basic motives or drives that can be measured as temperaments or basic emotions related to fear, anger, disgust, surprise, and happiness/sadness. The resulting 5 x 5 x 5 matrix of human characteristics provides a general and testable model of the

  18. Hairless mutation: a driving force of humanization from a human–ape common ancestor by enforcing upright walking while holding a baby with both hands

    PubMed Central

    Sutou, Shizuyo

    2012-01-01

    Three major characteristics distinguish humans from other primates: bipedality, practical nakedness, and the family as a social unit. A hairless mutation introduced into the chimpanzee/human last common ancestor (CLCA) 6 million years ago (Mya) diverged hairless human and hairy chimpanzee lineages. All primates except humans can carry their babies without using their hands. A hairless mother would be forced to stand and walk upright. Her activities would be markedly limited. The male partner would have to collect food and carry it to her by hand to keep her and their baby from starving; irresponsible and selfish males could not have left their offspring. The mother would have sexually accepted her partner at any time as a reward for food. Sexual relations irrespective of estrus cycles might have strengthened the pair bond. Molecular and paleontological dating indicates that CLCA existed 6 Mya, and early hominin fossils show that they were bipeds, indicating that humanization from CLCA occurred rapidly. A single mutation in animals with scalp hair is known to induce hairless phenotype (ectodermal dysplasia). Bipedalism and hairlessness are disadvantageous traits; only those who could survive trials and tribulations in cooperation with family members must have been able to evolve as humans. PMID:22404045

  19. Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors

    PubMed Central

    Maag, Daniel; Erb, Matthias; Bernal, Julio S.; Wolfender, Jean-Luc; Turlings, Ted C. J.; Glauser, Gaétan

    2015-01-01

    As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate

  20. The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins

    PubMed Central

    Pairett, Autum N.; Pankey, M. Sabrina; Serb, Jeanne M.; Speiser, Daniel I.; Swafford, Andrew J.

    2016-01-01

    Abstract The opsin gene family encodes key proteins animals use to sense light and has expanded dramatically as it originated early in animal evolution. Understanding the origins of opsin diversity can offer clues to how separate lineages of animals have repurposed different opsin paralogs for different light-detecting functions. However, the more we look for opsins outside of eyes and from additional animal phyla, the more opsins we uncover, suggesting we still do not know the true extent of opsin diversity, nor the ancestry of opsin diversity in animals. To estimate the number of opsin paralogs present in both the last common ancestor of the Nephrozoa (bilaterians excluding Xenoacoelomorpha), and the ancestor of Cnidaria + Bilateria, we reconstructed a reconciled opsin phylogeny using sequences from 14 animal phyla, especially the traditionally poorly-sampled echinoderms and molluscs. Our analysis strongly supports a repertoire of at least nine opsin paralogs in the bilaterian ancestor and at least four opsin paralogs in the last common ancestor of Cnidaria + Bilateria. Thus, the kernels of extant opsin diversity arose much earlier in animal history than previously known. Further, opsins likely duplicated and were lost many times, with different lineages of animals maintaining different repertoires of opsin paralogs. This phylogenetic information can inform hypotheses about the functions of different opsin paralogs and can be used to understand how and when opsins were incorporated into complex traits like eyes and extraocular sensors. PMID:28172965

  1. Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor.

    PubMed

    Refrégier, Guislaine; Abadia, Edgar; Matsumoto, Tomoshige; Ano, Hiromi; Takashima, Tetsuya; Tsuyuguchi, Izuo; Aktas, Elif; Cömert, Füsun; Gomgnimbou, Michel Kireopori; Panaiotov, Stefan; Phelan, Jody; Coll, Francesc; McNerney, Ruth; Pain, Arnab; Clark, Taane G; Sola, Christophe

    2016-11-01

    Two geographically distant M. tuberculosis sublineages, Tur from Turkey and T3-Osaka from Japan, exhibit partially identical genotypic signatures (identical 12-loci MIRU-VNTR profiles, distinct spoligotyping patterns). We investigated T3-Osaka and Tur sublineages characteristics and potential genetic relatedness, first using MIRU-VNTR locus analysis on 21 and 25 samples of each sublineage respectively, and second comparing Whole Genome Sequences of 8 new samples to public data from 45 samples uncovering human tuberculosis diversity. We then tried to date their Most Recent Common Ancestor (MRCA) using three calibrations of SNP accumulation rate (long-term=0.03SNP/genome/year, derived from a tuberculosis ancestor of around 70,000years old; intermediate=0.2SNP/genome/year derived from a Peruvian mummy; short-term=0.5SNP/genome/year). To disentangle between these scenarios, we confronted the corresponding divergence times with major human history events and knowledge on human genetic divergence. We identified relatively high intrasublineage diversity for both T3-Osaka and Tur. We definitively proved their monophyly; the corresponding super-sublineage (referred to as "T3-Osa-Tur") shares a common ancestor with T3-Ethiopia and Ural sublineages but is only remotely related to other Euro-American sublineages such as X, LAM, Haarlem and S. The evolutionary scenario based on long-term evolution rate being valid until T3-Osa-Tur MRCA was not supported by Japanese fossil data. The evolutionary scenario relying on short-term evolution rate since T3-Osa-Tur MRCA was contradicted by human history and potential traces of past epidemics. T3-Osaka and Tur sublineages were found likely to have diverged between 800y and 2000years ago, potentially at the time of Mongol Empire. Altogether, this study definitively proves a strong genetic link between Turkish and Japanese tuberculosis. It provides a first hypothesis for calibrating TB Euro-American lineage molecular clock; additional

  2. The existence and abundance of ghost ancestors in biparental populations.

    PubMed

    Gravel, Simon; Steel, Mike

    2015-05-01

    In a randomly-mating biparental population of size N there are, with high probability, individuals who are genealogical ancestors of every extant individual within approximately log2(N) generations into the past. We use this result of J. Chang to prove a curious corollary under standard models of recombination: there exist, with high probability, individuals within a constant multiple of log2(N) generations into the past who are simultaneously (i) genealogical ancestors of each of the individuals at the present, and (ii) genetic ancestors to none of the individuals at the present. Such ancestral individuals-ancestors of everyone today that left no genetic trace-represent 'ghost' ancestors in a strong sense. In this short note, we use simple analytical argument and simulations to estimate how many such individuals exist in finite Wright-Fisher populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms

    PubMed Central

    2012-01-01

    Background The entire evolutionary history of life can be studied using myriad sequences generated by genomic research. This includes the appearance of the first cells and of superkingdoms Archaea, Bacteria, and Eukarya. However, the use of molecular sequence information for deep phylogenetic analyses is limited by mutational saturation, differential evolutionary rates, lack of sequence site independence, and other biological and technical constraints. In contrast, protein structures are evolutionary modules that are highly conserved and diverse enough to enable deep historical exploration. Results Here we build phylogenies that describe the evolution of proteins and proteomes. These phylogenetic trees are derived from a genomic census of protein domains defined at the fold family (FF) level of structural classification. Phylogenomic trees of FF structures were reconstructed from genomic abundance levels of 2,397 FFs in 420 proteomes of free-living organisms. These trees defined timelines of domain appearance, with time spanning from the origin of proteins to the present. Timelines are divided into five different evolutionary phases according to patterns of sharing of FFs among superkingdoms: (1) a primordial protein world, (2) reductive evolution and the rise of Archaea, (3) the rise of Bacteria from the common ancestor of Bacteria and Eukarya and early development of the three superkingdoms, (4) the rise of Eukarya and widespread organismal diversification, and (5) eukaryal diversification. The relative ancestry of the FFs shows that reductive evolution by domain loss is dominant in the first three phases and is responsible for both the diversification of life from a universal cellular ancestor and the appearance of superkingdoms. On the other hand, domain gains are predominant in the last two phases and are responsible for organismal diversification, especially in Bacteria and Eukarya. Conclusions The evolution of functions that are associated with corresponding

  4. Proposed Ancestors of Phage Nucleic Acid Packaging Motors (and Cells)

    PubMed Central

    Serwer, Philip

    2011-01-01

    I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells) include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1) initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2) are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke. PMID:21994778

  5. Dewey Called Them Utopians, I Call Them Ancestors

    ERIC Educational Resources Information Center

    Kulago, Hollie A.

    2018-01-01

    In this article, I will describe how the Utopians whom John Dewey once referenced are possibly the ancestors of Indigenous peoples, in this case, ancestors of the Diné. I will describe a Diné philosophy of education through the Kinaaldá ceremony which was the first ceremony created by the Holy People of the Diné to ensure the survival of the…

  6. Phylogenetic rooting using minimal ancestor deviation.

    PubMed

    Tria, Fernando Domingues Kümmel; Landan, Giddy; Dagan, Tal

    2017-06-19

    Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.

  7. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  8. Family myth, the symbolic realm and the ancestors.

    PubMed

    Rytovaara, Marica

    2012-11-01

    This paper takes the shape of a diptych. The first part explores the ancestors as embodied ghosts, internal objects or as mediated through ancestral heritage, as these aspects intertwine in a Möbius strip. The second part looks at ancestral heritage and the different ways in which 'family myth' appears in a Jungian context and in Systemic Psychotherapy (family therapy). Both share an interface through the current paradigm shifts towards mutual reflexivity in patient and therapist and a focus on the interpersonal space. The ancestors give substance to the eternal riddle: 'from whence do we come, who are we and where do we go', which connects past, present and future. Our ancestors are part of our minds, perhaps in the way Damasio (2010) postulates that ancestral experiences mediated through culture shape our brains. The leitmotiv of individuation through mimesis (sameness) and alterity (difference) runs through both parts. © 2012, The Society of Analytical Psychology.

  9. Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?

    PubMed

    Nielsen, Claus

    2013-08-16

    Two theories for the origin of animal life cycles with planktotrophic larvae are now discussed seriously: The terminal addition theory proposes a holopelagic, planktotrophic gastraea as the ancestor of the eumetazoans with addition of benthic adult stages and retention of the planktotrophic stages as larvae, i.e. the ancestral life cycles were indirect. The intercalation theory now proposes a benthic, deposit-feeding gastraea as the bilaterian ancestor with a direct development, and with planktotrophic larvae evolving independently in numerous lineages through specializations of juveniles. Information from the fossil record, from mapping of developmental types onto known phylogenies, from occurrence of apical organs, and from genetics gives no direct information about the ancestral eumetazoan life cycle; however, there are plenty of examples of evolution from an indirect development to direct development, and no unequivocal example of evolution in the opposite direction. Analyses of scenarios for the two types of evolution are highly informative. The evolution of the indirect spiralian life cycle with a trochophora larva from a planktotrophic gastraea is explained by the trochophora theory as a continuous series of ancestors, where each evolutionary step had an adaptational advantage. The loss of ciliated larvae in the ecdysozoans is associated with the loss of outer ciliated epithelia. A scenario for the intercalation theory shows the origin of the planktotrophic larvae of the spiralians through a series of specializations of the general ciliation of the juvenile. The early steps associated with the enhancement of swimming seem probable, but the following steps which should lead to the complicated downstream-collecting ciliary system are without any advantage, or even seem disadvantageous, until the whole structure is functional. None of the theories account for the origin of the ancestral deuterostome (ambulacrarian) life cycle. All the available information is

  10. Windmills: Ancestors of the wind power generation

    NASA Astrophysics Data System (ADS)

    Rossi, Cesare; Russo, Flavio; Savino, Sergio

    2017-09-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented. This survey is a part of several studies conducted by the authors on technology in the ancient world. The windmills are the first motor, other than human muscles, and are the ancestors of the modern wind turbines. Some authors' virtual reconstructions of old windmills are also presented. The paper shows that the operating principle of many modern machines had already been conceived in the ancient times by using a technology that was more advanced than expected, but with two main differences, as follows: Similar tasks were accomplished by using much less energy; and the environmental impact was nil or very low. Modern designers should sometimes consider simplicity rather than the use of a large amount of energy.

  11. Ancestor reverence and mental health in South Africa.

    PubMed

    Berg, Astrid

    2003-06-01

    The great majority of South Africa's people consult traditional healers. The deeper meaning of much traditional healing centres on ancestor reverence. This belief system and its accompanying rituals may positively influence the mental health of the individual and the community. Among traditional Xhosa-speaking peoples, the relationship with the ancestors is given expression in life cycle rituals that have much in common with Western psychotherapeutic principles and practices. The common thread that underpins many rituals is that of making links via concrete, literal means. Examples include the participation of the community in the healing of the individual; the linking of body and mind through dancing and drumming. Dreams form an essential connection between conscious life and the unconscious. Understanding the psychological depth of these practices is important so that a respectful relationship between Western-trained professionals and traditional healers can develop. Analytical psychology, with its notion of the collective unconscious has a particular contribution to make to cross-cultural understanding. The ancestors may be understood as archetypal representations of the collective unconscious.

  12. Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor

    PubMed Central

    Crompton, R H; Vereecke, E E; Thorpe, S K S

    2008-01-01

    Based on our knowledge of locomotor biomechanics and ecology we predict the locomotion and posture of the last common ancestors of (a) great and lesser apes and their close fossil relatives (hominoids); (b) chimpanzees, bonobos and modern humans (hominines); and (c) modern humans and their fossil relatives (hominins). We evaluate our propositions against the fossil record in the context of a broader review of evolution of the locomotor system from the earliest hominoids of modern aspect (crown hominoids) to early modern Homo sapiens. While some early East African stem hominoids were pronograde, it appears that the adaptations which best characterize the crown hominoids are orthogrady and an ability to abduct the arm above the shoulder – rather than, as is often thought, manual suspension sensu stricto. At 7–9 Ma (not much earlier than the likely 4–8 Ma divergence date for panins and hominins, see Bradley, 2008) there were crown hominoids in southern Europe which were adapted to moving in an orthograde posture, supported primarily on the hindlimb, in an arboreal, and possibly for Oreopithecus, a terrestrial context. By 7 Ma, Sahelanthropus provides evidence of a Central African hominin, panin or possibly gorilline adapted to orthogrady, and both orthogrady and habitually highly extended postures of the hip are evident in the arboreal East African protohominin Orrorin at 6 Ma. If the traditional idea that hominins passed through a terrestrial ‘knuckle-walking’ phase is correct, not only does it have to be explained how a quadrupedal gait typified by flexed postures of the hindlimb could have preadapted the body for the hominin acquisition of straight-legged erect bipedality, but we would have to accept a transition from stem-hominoid pronogrady to crown hominoid orthogrady, back again to pronogrady in the African apes and then back to orthogrady in hominins. Hand-assisted arboreal bipedality, which is part of a continuum of orthograde behaviours, is used by

  13. Punctuated Emergences of Genetic and Phenotypic Innovations in Eumetazoan, Bilaterian, Euteleostome, and Hominidae Ancestors

    PubMed Central

    Wenger, Yvan; Galliot, Brigitte

    2013-01-01

    Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eukaryotes, we find that 33% human proteins have an ortholog in nonmetazoan species. This premetazoan proteome associates with 43% of all annotated human biological processes. Subsequently, four major waves of innovations can be inferred in the last common ancestors of eumetazoans, bilaterians, euteleostomi (bony vertebrates), and hominidae, largely specific to each epoch, whereas early branching deuterostome and chordate phyla show very few innovations. Interestingly, groups of proteins that act together in their modern human functions often originated concomitantly, although the corresponding human phenotypes frequently emerged later. For example, the three cnidarians Acropora, Nematostella, and Hydra express a highly similar protein inventory, and their protein innovations can be affiliated either to traits shared by all eumetazoans (gut differentiation, neurogenesis); or to bilaterian traits present in only some cnidarians (eyes, striated muscle); or to traits not identified yet in this phylum (mesodermal layer, endocrine glands). The variable correspondence between phenotypes predicted from protein enrichments and observed phenotypes suggests that a parallel mechanism repeatedly produce similar phenotypes, thanks to novel regulatory events that independently tie preexisting conserved genetic modules. PMID:24065732

  14. Vertebral numbers and human evolution.

    PubMed

    Williams, Scott A; Middleton, Emily R; Villamil, Catalina I; Shattuck, Milena R

    2016-01-01

    Ever since Tyson (1699), anatomists have noted and compared differences in the regional numbers of vertebrae among humans and other hominoids. Subsequent workers interpreted these differences in phylogenetic, functional, and behavioral frameworks and speculated on the history of vertebral numbers during human evolution. Even in a modern phylogenetic framework and with greatly expanded sample sizes of hominoid species, researchers' conclusions vary drastically, positing that hominins evolved from either a "long-backed" (numerically long lumbar column) or a "short-backed" (numerically short lumbar column) ancestor. We show that these disparate interpretations are due in part to the use of different criteria for what defines a lumbar vertebra, but argue that, regardless of which lumbar definition is used, hominins are similar to their great ape relatives in possessing a short trunk, a rare occurrence in mammals and one that defines the clade Hominoidea. Furthermore, we address the recent claim that the early hominin thoracolumbar configuration is not distinct from that of modern humans and conclude that early hominins show evidence of "cranial shifting," which might explain the anomalous morphology of several early hominin fossils. Finally, we evaluate the competing hypotheses on numbers of vertebrae and argue that the current data support a hominin ancestor with an African ape-like short trunk and lower back. © 2016 Wiley Periodicals, Inc.

  15. Mobile elements reveal small population size in the ancient ancestors of Homo sapiens.

    PubMed

    Huff, Chad D; Xing, Jinchuan; Rogers, Alan R; Witherspoon, David; Jorde, Lynn B

    2010-02-02

    The genealogies of different genetic loci vary in depth. The deeper the genealogy, the greater the chance that it will include a rare event, such as the insertion of a mobile element. Therefore, the genealogy of a region that contains a mobile element is on average older than that of the rest of the genome. In a simple demographic model, the expected time to most recent common ancestor (TMRCA) is doubled if a rare insertion is present. We test this expectation by examining single nucleotide polymorphisms around polymorphic Alu insertions from two completely sequenced human genomes. The estimated TMRCA for regions containing a polymorphic insertion is two times larger than the genomic average (P < <10(-30)), as predicted. Because genealogies that contain polymorphic mobile elements are old, they are shaped largely by the forces of ancient population history and are insensitive to recent demographic events, such as bottlenecks and expansions. Remarkably, the information in just two human DNA sequences provides substantial information about ancient human population size. By comparing the likelihood of various demographic models, we estimate that the effective population size of human ancestors living before 1.2 million years ago was 18,500, and we can reject all models where the ancient effective population size was larger than 26,000. This result implies an unusually small population for a species spread across the entire Old World, particularly in light of the effective population sizes of chimpanzees (21,000) and gorillas (25,000), which each inhabit only one part of a single continent.

  16. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds.

    PubMed

    Skoglund, Pontus; Ersmark, Erik; Palkopoulou, Eleftheria; Dalén, Love

    2015-06-01

    The origin of domestic dogs is poorly understood [1-15], with suggested evidence of dog-like features in fossils that predate the Last Glacial Maximum [6, 9, 10, 14, 16] conflicting with genetic estimates of a more recent divergence between dogs and worldwide wolf populations [13, 15, 17-19]. Here, we present a draft genome sequence from a 35,000-year-old wolf from the Taimyr Peninsula in northern Siberia. We find that this individual belonged to a population that diverged from the common ancestor of present-day wolves and dogs very close in time to the appearance of the domestic dog lineage. We use the directly dated ancient wolf genome to recalibrate the molecular timescale of wolves and dogs and find that the mutation rate is substantially slower than assumed by most previous studies, suggesting that the ancestors of dogs were separated from present-day wolves before the Last Glacial Maximum. We also find evidence of introgression from the archaic Taimyr wolf lineage into present-day dog breeds from northeast Siberia and Greenland, contributing between 1.4% and 27.3% of their ancestry. This demonstrates that the ancestry of present-day dogs is derived from multiple regional wolf populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The First Modern Human Dispersals across Africa

    PubMed Central

    Rito, Teresa; Richards, Martin B.; Fernandes, Verónica; Alshamali, Farida; Cerny, Viktor

    2013-01-01

    The emergence of more refined chronologies for climate change and archaeology in prehistoric Africa, and for the evolution of human mitochondrial DNA (mtDNA), now make it feasible to test more sophisticated models of early modern human dispersals suggested by mtDNA distributions. Here we have generated 42 novel whole-mtDNA genomes belonging to haplogroup L0, the most divergent clade in the maternal line of descent, and analysed them alongside the growing database of African lineages belonging to L0’s sister clade, L1’6. We propose that the last common ancestor of modern human mtDNAs (carried by “mitochondrial Eve”) possibly arose in central Africa ~180 ka, at a time of low population size. By ~130 ka two distinct groups of anatomically modern humans co-existed in Africa: broadly, the ancestors of many modern-day Khoe and San populations in the south and a second central/eastern African group that includes the ancestors of most extant worldwide populations. Early modern human dispersals correlate with climate changes, particularly the tropical African “megadroughts” of MIS 5 (marine isotope stage 5, 135–75 ka) which paradoxically may have facilitated expansions in central and eastern Africa, ultimately triggering the dispersal out of Africa of people carrying haplogroup L3 ~60 ka. Two south to east migrations are discernible within haplogroup LO. One, between 120 and 75 ka, represents the first unambiguous long-range modern human dispersal detected by mtDNA and might have allowed the dispersal of several markers of modernity. A second one, within the last 20 ka signalled by L0d, may have been responsible for the spread of southern click-consonant languages to eastern Africa, contrary to the view that these eastern examples constitute relicts of an ancient, much wider distribution. PMID:24236171

  18. The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes.

    PubMed

    Lovejoy, C Owen; Suwa, Gen; Simpson, Scott W; Matternes, Jay H; White, Tim D

    2009-10-02

    Genomic comparisons have established the chimpanzee and bonobo as our closest living relatives. However, the intricacies of gene regulation and expression caution against the use of these extant apes in deducing the anatomical structure of the last common ancestor that we shared with them. Evidence for this structure must therefore be sought from the fossil record. Until now, that record has provided few relevant data because available fossils were too recent or too incomplete. Evidence from Ardipithecus ramidus now suggests that the last common ancestor lacked the hand, foot, pelvic, vertebral, and limb structures and proportions specialized for suspension, vertical climbing, and knuckle-walking among extant African apes. If this hypothesis is correct, each extant African ape genus must have independently acquired these specializations from more generalized ancestors who still practiced careful arboreal climbing and bridging. African apes and hominids acquired advanced orthogrady in parallel. Hominoid spinal invagination is an embryogenetic mechanism that reoriented the shoulder girdle more laterally. It was unaccompanied by substantial lumbar spine abbreviation, an adaptation restricted to vertical climbing and/or suspension. The specialized locomotor anatomies and behaviors of chimpanzees and gorillas therefore constitute poor models for the origin and evolution of human bipedality.

  19. Continuity or discontinuity in the European Early Pleistocene human settlement: the Atapuerca evidence

    NASA Astrophysics Data System (ADS)

    Bermúdez de Castro, José María; Martinón-Torres, María; Blasco, Ruth; Rosell, Jordi; Carbonell, Eudald

    2013-09-01

    The nature, timing, pattern, favourable circumstances and impediments of the human occupation of the European continent during the Early Pleistocene are hot topics in Quaternary studies. In particular, the problem of the (dis) continuity of the settlement of Europe in this period is an important matter of discussion, which has been approached in the last decade from different points of view. The Gran Dolina (TD) and Sima del Elefante (TE) cave sites in the Sierra de Atapuerca, (Spain) include large and quasi-continuous stratigraphic sequences that stretch back from at least 1.2 million years ago (Ma) to the Matuyama/Brunhes boundary. The archaeological and paleontological record from these sites can help to test different hypotheses about the character of the human settlement in this region and period. Furthermore, the TD6 level has yielded a large collection of human fossil remains attributed to Homo antecessor. According to different geochronological methods, as well as to paleomagnetic and biostratigraphical analyses, these hominins belong to an age range of 0.96-0.80 Ma. Unfortunately, the finding in 2007 of some human fossil remains in the TE9 level, dated to about 1.22 Ma, was not enough to conclude whether H. antecessor had deep roots in the European Early Pleistocene. A set of derived features of H. antecessor shared with both the Neanderthal lineage and modern humans suggests that this species is related, and not far, from the most recent common ancestor (MRCA) of Homo neanderthalensis and Homo sapiens. If we assume that there was a lineal biological relationship between the TE9 and TD6 hominins, we should reconsider many of the conclusions achieved in previous paleontological and genetic studies. In addition, we would be obliged to build a highly complicated paleogeographical scenario for the origin of the MRCA. Although continuity in the settlement of Europe during the entire late Early Pleistocene is not discarded (e.g. in refuge areas), it seems that

  20. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes

    PubMed Central

    Csuros, Miklos; Rogozin, Igor B.; Koonin, Eugene V.

    2011-01-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing. PMID:21935348

  1. The distribution and most recent common ancestor of the 17q21 inversion in humans.

    PubMed

    Donnelly, Michael P; Paschou, Peristera; Grigorenko, Elena; Gurwitz, David; Mehdi, Syed Qasim; Kajuna, Sylvester L B; Barta, Csaba; Kungulilo, Selemani; Karoma, N J; Lu, Ru-Band; Zhukova, Olga V; Kim, Jong-Jin; Comas, David; Siniscalco, Marcello; New, Maria; Li, Peining; Li, Hui; Manolopoulos, Vangelis G; Speed, William C; Rajeevan, Haseena; Pakstis, Andrew J; Kidd, Judith R; Kidd, Kenneth K

    2010-02-12

    The polymorphic inversion on 17q21, sometimes called the microtubular associated protein tau (MAPT) inversion, is an approximately 900 kb inversion found primarily in Europeans and Southwest Asians. We have identified 21 SNPs that act as markers of the inverted, i.e., H2, haplotype. The inversion is found at the highest frequencies in Southwest Asia and Southern Europe (frequencies of approximately 30%); elsewhere in Europe, frequencies vary from < 5%, in Finns, to 28%, in Orcadians. The H2 inversion haplotype also occurs at low frequencies in Africa, Central Asia, East Asia, and the Americas, though the East Asian and Amerindian alleles may be due to recent gene flow from Europe. Molecular evolution analyses indicate that the H2 haplotype originally arose in Africa or Southwest Asia. Though the H2 inversion has many fixed differences across the approximately 900 kb, short tandem repeat polymorphism data indicate a very recent date for the most recent common ancestor, with dates ranging from 13,600 to 108,400 years, depending on assumptions and estimation methods. This estimate range is much more recent than the 3 million year age estimated by Stefansson et al. in 2005. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. The Five Ancestors--Book 1: Tiger

    ERIC Educational Resources Information Center

    Stone, Jeff

    2004-01-01

    Losing a job is an awfully low point--until it turns into the opportunity to pursue writing full time, and a book like "The Five Ancestors: Tiger" results. Jeff Stone looks back to his own experience as a young reader and taps that experience to help frame his own writing. An intriguing snapshot of his new book follows.

  3. Outgroup, alignment and modelling improvements indicate that two TNFSF13-like genes existed in the vertebrate ancestor.

    PubMed

    Redmond, Anthony K; Pettinello, Rita; Dooley, Helen

    2017-03-01

    The molecular machinery required for lymphocyte development and differentiation appears to have emerged concomitantly with distinct B- and T-like lymphocyte subsets in the ancestor of all vertebrates. The TNFSF superfamily (TNFSF) members BAFF (TNFSF13/Blys) and APRIL (TNFSF13) are key regulators of B cell development survival, and activation in mammals, but the temporal emergence of these molecules, and their precise relationship to the newly identified TNFSF gene BALM (BAFF and APRIL-like molecule), have not yet been elucidated. Here, to resolve the early evolutionary history of this family, we improved outgroup sampling and alignment quality, and applied better fitting substitution models compared to past studies. Our analyses reveal that BALM is a definitive TNFSF13 family member, which split from BAFF in the gnathostome (jawed vertebrate) ancestor. Most importantly, however, we show that both the APRIL and BAFF lineages existed in the ancestors of all extant vertebrates. This implies that APRIL has been lost, or is yet to be found, in cyclostomes (jawless vertebrates). Our results suggest that lineage-specific gene duplication and loss events have caused lymphocyte regulation, despite shared origins, to become secondarily distinct between gnathostomes and cyclostomes. Finally, the structure of lamprey BAFF-like, and its phylogenetic placement as sister to BAFF and BALM, but not the more slowly evolving APRIL, indicates that the primordial lymphocyte regulator was more APRIL-like than BAFF-like.

  4. Apparatus Named after Our Academic Ancestors, III

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  5. How much does the amphioxus genome represent the ancestor of chordates?

    PubMed

    Louis, Alexandra; Roest Crollius, Hugues; Robinson-Rechavi, Marc

    2012-03-01

    One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.

  6. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    NASA Astrophysics Data System (ADS)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  7. Deciding Termination for Ancestor Match- Bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2005-01-01

    Termination of a string rewriting system can be characterized by termination on suitable recursively defined languages. This kind of termination criteria has been criticized for its lack of automation. In an earlier paper we have shown how to construct an automated termination criterion if the recursion is aligned with the rewrite relation. We have demonstrated the technique with Dershowitz's forward closure criterion. In this paper we show that a different approach is suitable when the recursion is aligned with the inverse of the rewrite relation. We apply this idea to Kurth's ancestor graphs and obtain ancestor match-bounded string rewriting systems. Termination is shown to be decidable for this class. The resulting method improves upon those based on match-boundedness or inverse match-boundedness.

  8. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria

    PubMed Central

    Cardona, Tanai; Murray, James W.; Rutherford, A. William

    2015-01-01

    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. PMID:25657330

  9. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor

    NASA Astrophysics Data System (ADS)

    Cantine, Marjorie D.; Fournier, Gregory P.

    2018-03-01

    Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.

  10. Genomic evidence for large, long-lived ancestors to placental mammals.

    PubMed

    Romiguier, J; Ranwez, V; Douzery, E J P; Galtier, N

    2013-01-01

    It is widely assumed that our mammalian ancestors, which lived in the Cretaceous era, were tiny animals that survived massive asteroid impacts in shelters and evolved into modern forms after dinosaurs went extinct, 65 Ma. The small size of most Mesozoic mammalian fossils essentially supports this view. Paleontology, however, is not conclusive regarding the ancestry of extant mammals, because Cretaceous and Paleocene fossils are not easily linked to modern lineages. Here, we use full-genome data to estimate the longevity and body mass of early placental mammals. Analyzing 36 fully sequenced mammalian genomes, we reconstruct two aspects of the ancestral genome dynamics, namely GC-content evolution and nonsynonymous over synonymous rate ratio. Linking these molecular evolutionary processes to life-history traits in modern species, we estimate that early placental mammals had a life span above 25 years and a body mass above 1 kg. This is similar to current primates, cetartiodactyls, or carnivores, but markedly different from mice or shrews, challenging the dominant view about mammalian origin and evolution. Our results imply that long-lived mammals existed in the Cretaceous era and were the most successful in evolution, opening new perspectives about the conditions for survival to the Cretaceous-Tertiary crisis.

  11. The last common bilaterian ancestor

    NASA Technical Reports Server (NTRS)

    Erwin, Douglas H.; Davidson, Eric H.

    2002-01-01

    Many regulatory genes appear to be utilized in at least superficially similar ways in the development of particular body parts in Drosophila and in chordates. These similarities have been widely interpreted as functional homologies, producing the conventional view of the last common protostome-deuterostome ancestor (PDA) as a complex organism that possessed some of the same body parts as modern bilaterians. Here we discuss an alternative view, in which the last common PDA had a less complex body plan than is frequently conceived. This reconstruction alters expectations for Neoproterozoic fossil remains that could illustrate the pathways of bilaterian evolution.

  12. Skeletal variation among early Holocene North American humans: implications for origins and diversity in the Americas.

    PubMed

    Auerbach, Benjamin M

    2012-12-01

    The movement of humans into the Americas remains a major topic of debate among scientific disciplines. Central to this discussion is ascertaining the timing and migratory routes of the earliest colonizers, in addition to understanding their ancestry. Molecular studies have recently argued that the colonizing population was isolated from other Asian populations for an extended period before proceeding to colonize the Americas. This research has suggested that Beringia was the location of this "incubation," though archaeological and skeletal data have not yet supported this hypothesis. This study employs the remains of the five most complete North American male early Holocene skeletons to examine patterns of human morphology at the earliest observable time period. Stature, body mass, body breadth, and limb proportions are examined in the context of male skeletal samples representing the range of morphological variation in North America in the last two millennia of the Holocene. These are also compared with a global sample. Results indicate that early Holocene males have variable postcranial morphologies, but all share the common trait of wide bodies. This trait, which is retained in more recent indigenous North American groups, is associated with adaptations to cold climates. Peoples from the Americas exhibit wider bodies than other populations sampled globally. This pattern suggests the common ancestral population of all of these indigenous American groups had reduced morphological variation in this trait. Furthermore, this provides support for a single, possibly high latitude location for the genetic isolation of ancestors of the human colonizers of the Americas. Copyright © 2012 Wiley Periodicals, Inc.

  13. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria.

    PubMed

    Cardona, Tanai; Murray, James W; Rutherford, A William

    2015-05-01

    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. The common ancestor of archaea and eukarya was not an archaeon.

    PubMed

    Forterre, Patrick

    2013-01-01

    It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the "prokaryotic" phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.

  15. The Common Ancestor of Archaea and Eukarya Was Not an Archaeon

    PubMed Central

    Forterre, Patrick

    2013-01-01

    It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the “prokaryotic” phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other. PMID:24348094

  16. Extensive intron gain in the ancestor of placental mammals

    PubMed Central

    2011-01-01

    Background Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of de novo intron gain in domesticated genes from an analysis of their exon/intron structures. Results A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of de novo introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals. Conclusions This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The

  17. Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors

    PubMed Central

    Sellers, William I; Cain, Gemma M; Wang, Weijie; Crompton, Robin H

    2005-01-01

    This paper uses techniques from evolutionary robotics to predict the most energy-efficient upright walking gait for the early human relative Australopithecus afarensis, based on the proportions of the 3.2 million year old AL 288-1 ‘Lucy’ skeleton, and matches predictions against the nearly contemporaneous (3.5–3.6 million year old) Laetoli fossil footprint trails. The technique creates gaits de novo and uses genetic algorithm optimization to search for the most efficient patterns of simulated muscular contraction at a variety of speeds. The model was first verified by predicting gaits for living human subjects, and comparing costs, stride lengths and speeds to experimentally determined values for the same subjects. Subsequent simulations for A. afarensis yield estimates of the range of walking speeds from 0.6 to 1.3 m s−1 at a cost of 7.0 J kg−1 m−1 for the lowest speeds, falling to 5.8 J kg−1 m−1 at 1.0 m s−1, and rising to 6.2 J kg−1 m−1 at the maximum speed achieved. Speeds previously estimated for the makers of the Laetoli footprint trails (0.56 or 0.64 m s−1 for Trail 1, 0.72 or 0.75 m s−1 for Trail 2/3) may have been underestimated, substantially so for Trail 2/3, with true values in excess of 0.7 and 1.0 m s−1, respectively. The predictions conflict with suggestions that A. afarensis used a ‘shuffling’ gait, indicating rather that the species was a fully competent biped. PMID:16849203

  18. Mexican papita viroid: putative ancestor of crop viroids.

    PubMed Central

    Martínez-Soriano, J P; Galindo-Alonso, J; Maroon, C J; Yucel, I; Smith, D R; Diener, T O

    1996-01-01

    The potato spindle tuber disease was first observed early in the 20th century in the northeastern United States and shown, in 1971, to be incited by a viroid, potato spindle tuber viroid (PSTVd). No wild-plant PSTVd reservoirs have been identified; thus, the initial source of PSTVd infecting potatoes has remained a mystery. Several variants of a novel viroid, designated Mexican papita viroid (MPVd), have now been isolated from Solanum cardiophyllum Lindl. (papita güera, cimantli) plants growing wild in the Mexican state of Aguascalientes. MPVd's nucleotide sequence is most closely related to those of the tomato planta macho viroid (TPMVd) and PSTVd. From TPMVd, MPVd may be distinguished on the basis of biological properties, such as replication and symptom formation in certain differential hosts. Phylogenetic and ecological data indicate that MPVd and certain viroids now affecting crop plants, such as TPMVd, PSTVd, and possibly others, have a common ancestor. We hypothesize that commercial potatoes grown in the United States have become viroid-infected by chance transfer of MPVd or a similar viroid from endemically infected wild solanaceous plants imported from Mexico as germplasm, conceivably from plants known to have been introduced from Mexico to the United States late in the 19th century in efforts to identify genetic resistance to the potato late blight fungus, Phytophthora infestans. Images Fig. 1 PMID:8790341

  19. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants.

    PubMed

    Hetherington, Alexander J; Dolan, Liam

    2018-02-05

    There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system-rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri , Aglaophyton majus , Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  20. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants

    PubMed Central

    2018-01-01

    There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system—rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri, Aglaophyton majus, Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’. PMID:29254968

  1. Algal ancestor of land plants was preadapted for symbiosis.

    PubMed

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.

  2. Fossils, feet and the evolution of human bipedal locomotion

    PubMed Central

    Harcourt-Smith, W E H; Aiello, L C

    2004-01-01

    We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases

  3. The evolution of human warfare.

    PubMed

    Pitman, George R

    2011-01-01

    Here we propose a new theory for the origins and evolution of human warfare as a complex social phenomenon involving several behavioral traits, including aggression, risk taking, male bonding, ingroup altruism, outgroup xenophobia, dominance and subordination, and territoriality, all of which are encoded in the human genome. Among the family of great apes only chimpanzees and humans engage in war; consequently, warfare emerged in their immediate common ancestor that lived in patrilocal groups who fought one another for females. The reasons for warfare changed when the common ancestor females began to immigrate into the groups of their choice, and again, during the agricultural revolution.

  4. In search of the last common ancestor: new findings on wild chimpanzees

    PubMed Central

    McGrew, W. C.

    2010-01-01

    Modelling the behaviour of extinct hominins is essential in order to devise useful hypotheses of our species' evolutionary origins for testing in the palaeontological and archaeological records. One approach is to model the last common ancestor (LCA) of living apes and humans, based on current ethological and ecological knowledge of our closest living relations. Such referential modelling is based on rigorous, ongoing field studies of the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). This paper reviews recent findings from nature, focusing on those with direct implications for hominin evolution, e.g. apes, using elementary technology to access basic resources such as food and water, or sheltering in caves or bathing as thermoregulatory adaptations. I give preference to studies that directly address key issues, such as whether stone artefacts are detectible before the Oldowan, based on the percussive technology of hammer and anvil use by living apes. Detailed comparative studies of chimpanzees living in varied habitats, from rainforest to savannah, reveal that some behavioural patterns are universal (e.g. shelter construction), while others show marked (e.g. extractive foraging) or nuanced (e.g. courtship) cross-populational variation. These findings allow us to distinguish between retained, primitive traits of the LCA versus derived ones in the human lineage. PMID:20855301

  5. An Aboriginal Australian genome reveals separate human dispersals into Asia.

    PubMed

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic; De La Vega, Francisco M; Tridico, Silvana; Metspalu, Ene; Nielsen, Kasper; Ávila-Arcos, María C; Moreno-Mayar, J Víctor; Muller, Craig; Dortch, Joe; Gilbert, M Thomas P; Lund, Ole; Wesolowska, Agata; Karmin, Monika; Weinert, Lucy A; Wang, Bo; Li, Jun; Tai, Shuaishuai; Xiao, Fei; Hanihara, Tsunehiko; van Driem, George; Jha, Aashish R; Ricaut, François-Xavier; de Knijff, Peter; Migliano, Andrea B; Gallego Romero, Irene; Kristiansen, Karsten; Lambert, David M; Brunak, Søren; Forster, Peter; Brinkmann, Bernd; Nehlich, Olaf; Bunce, Michael; Richards, Michael; Gupta, Ramneek; Bustamante, Carlos D; Krogh, Anders; Foley, Robert A; Lahr, Marta M; Balloux, Francois; Sicheritz-Pontén, Thomas; Villems, Richard; Nielsen, Rasmus; Wang, Jun; Willerslev, Eske

    2011-10-07

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.

  6. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor

    PubMed Central

    Garg, Sriram G.; Martin, William F.

    2016-01-01

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host’s genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which—by virtue of mitochondria—metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host’s vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny—sex—in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep

  7. Early arrival and climatically-linked geographic expansion of New World monkeys from tiny African ancestors.

    PubMed

    Silvestro, Daniele; Tejedor, Marcelo F; Serrano-Serrano, Martha L; Loiseau, Oriane; Rossier, Victor; Rolland, Jonathan; Zizka, Alexander; Höhna, Sebastian; Antonelli, Alexandre; Salamin, Nicolas

    2018-06-20

    New World monkeys (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Here we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5-10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small - weighing 0.4 kg - and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of New World monkeys and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends.

  8. Estimating Time to the Common Ancestor for a Beneficial Allele

    PubMed Central

    Smith, Joel; Coop, Graham; Stephens, Matthew; Novembre, John

    2018-01-01

    Abstract The haplotypes of a beneficial allele carry information about its history that can shed light on its age and the putative cause for its increase in frequency. Specifically, the signature of an allele’s age is contained in the pattern of variation that mutation and recombination impose on its haplotypic background. We provide a method to exploit this pattern and infer the time to the common ancestor of a positively selected allele following a rapid increase in frequency. We do so using a hidden Markov model which leverages the length distribution of the shared ancestral haplotype, the accumulation of derived mutations on the ancestral background, and the surrounding background haplotype diversity. Using simulations, we demonstrate how the inclusion of information from both mutation and recombination events increases accuracy relative to approaches that only consider a single type of event. We also show the behavior of the estimator in cases where data do not conform to model assumptions, and provide some diagnostics for assessing and improving inference. Using the method, we analyze population-specific patterns in the 1000 Genomes Project data to estimate the timing of adaptation for several variants which show evidence of recent selection and functional relevance to diet, skin pigmentation, and morphology in humans. PMID:29361025

  9. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

    PubMed Central

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E.; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic; De La Vega, Francisco M.; Tridico, Silvana; Metspalu, Ene; Nielsen, Kasper; Ávila-Arcos, María C.; Moreno-Mayar, J. Víctor; Muller, Craig; Dortch, Joe; Gilbert, M. Thomas P.; Lund, Ole; Wesolowska, Agata; Karmin, Monika; Weinert, Lucy A.; Wang, Bo; Li, Jun; Tai, Shuaishuai; Xiao, Fei; Hanihara, Tsunehiko; van Driem, George; Jha, Aashish R.; Ricaut, François-Xavier; de Knijff, Peter; Migliano, Andrea B; Romero, Irene Gallego; Kristiansen, Karsten; Lambert, David M.; Brunak, Søren; Forster, Peter; Brinkmann, Bernd; Nehlich, Olaf; Bunce, Michael; Richards, Michael; Gupta, Ramneek; Bustamante, Carlos D.; Krogh, Anders; Foley, Robert A.; Lahr, Marta M.; Balloux, Francois; Sicheritz-Pontén, Thomas; Villems, Richard; Nielsen, Rasmus; Wang, Jun; Willerslev, Eske

    2013-01-01

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa. PMID:21940856

  10. Correction to: A sophisticated, differentiated Golgi in the ancestor of eukaryotes.

    PubMed

    Barlow, Lael D; Nývltová, Eva; Aguilar, Maria; Tachezy, Jan; Dacks, Joel B

    2018-03-28

    Upon publication of the original article, Barlow et al. [1], the authors noticed that Fig. 4b contained an inaccuracy when additional data is taken into account. We inferred a loss of GRASP in the common ancestor of cryptophytes and archaeplastids, based on the absence of identified homologues in the data from taxa that we analyzed, which include Cyanidioschyzon merolae as the single representative of red algae.

  11. The mitochondrial ancestor of bonobos and the origin of their major haplogroups.

    PubMed

    Takemoto, Hiroyuki; Kawamoto, Yoshi; Higuchi, Shoko; Makinose, Emiko; Hart, John A; Hart, Térese B; Sakamaki, Tetsuya; Tokuyama, Nahoko; Reinartz, Gay E; Guislain, Patrick; Dupain, Jef; Cobden, Amy K; Mulavwa, Mbangi N; Yangozene, Kumugo; Darroze, Serge; Devos, Céline; Furuichi, Takeshi

    2017-01-01

    We report here where the most recent common ancestor (MRCA) of bonobos (Pan paniscus) ranged and how they dispersed throughout their current habitat. Mitochondrial DNA (mtDNA) molecular dating to analyze the time to MRCA (TMRCA) and the major mtDNA haplogroups of wild bonobos were performed using new estimations of divergence time of bonobos from other Pan species to investigate the dispersal routes of bonobos over the forest area of the Congo River's left bank. The TMRCA of bonobos was estimated to be 0.64 or 0.95 million years ago (Ma). Six major haplogroups had very old origins of 0.38 Ma or older. The reconstruction of the ancestral area revealed the mitochondrial ancestor of the bonobo populations ranged in the eastern area of the current bonobos' habitat. The haplogroups may have been formed from either the riparian forests along the Congo River or the center of the southern Congo Basin. Fragmentation of the forest refugia during the cooler periods may have greatly affected the formation of the genetic structure of bonobo populations.

  12. The mitochondrial ancestor of bonobos and the origin of their major haplogroups

    PubMed Central

    Takemoto, Hiroyuki; Kawamoto, Yoshi; Higuchi, Shoko; Makinose, Emiko; Furuichi, Takeshi

    2017-01-01

    We report here where the most recent common ancestor (MRCA) of bonobos (Pan paniscus) ranged and how they dispersed throughout their current habitat. Mitochondrial DNA (mtDNA) molecular dating to analyze the time to MRCA (TMRCA) and the major mtDNA haplogroups of wild bonobos were performed using new estimations of divergence time of bonobos from other Pan species to investigate the dispersal routes of bonobos over the forest area of the Congo River’s left bank. The TMRCA of bonobos was estimated to be 0.64 or 0.95 million years ago (Ma). Six major haplogroups had very old origins of 0.38 Ma or older. The reconstruction of the ancestral area revealed the mitochondrial ancestor of the bonobo populations ranged in the eastern area of the current bonobos’ habitat. The haplogroups may have been formed from either the riparian forests along the Congo River or the center of the southern Congo Basin. Fragmentation of the forest refugia during the cooler periods may have greatly affected the formation of the genetic structure of bonobo populations. PMID:28467422

  13. Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor.

    PubMed

    DuBuc, Timothy Q; Ryan, Joseph F; Shinzato, Chuya; Satoh, Nori; Martindale, Mark Q

    2012-12-01

    The key developmental role of the Hox cluster of genes was established prior to the last common ancestor of protostomes and deuterostomes and the subsequent evolution of this cluster has played a major role in the morphological diversity exhibited in extant bilaterians. Despite 20 years of research into cnidarian Hox genes, the nature of the cnidarian-bilaterian ancestral Hox cluster remains unclear. In an attempt to further elucidate this critical phylogenetic node, we have characterized the Hox cluster of the recently sequenced Acropora digitifera genome. The A. digitifera genome contains two anterior Hox genes (PG1 and PG2) linked to an Eve homeobox gene and an Anthox1A gene, which is thought to be either a posterior or posterior/central Hox gene. These data show that the Hox cluster of the cnidarian-bilaterian ancestor was more extensive than previously thought. The results are congruent with the existence of an ancient set of constraints on the Hox cluster and reinforce the importance of incorporating a wide range of animal species to reconstruct critical ancestral nodes.

  14. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  15. Population Dynamics of Early Human Migration in Britain

    PubMed Central

    Vahia, Mayank N.; Ladiwala, Uma; Mahathe, Pavan; Mathur, Deepak

    2016-01-01

    Background Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction. Method and Results We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples’ movement over ~2000 years before the present era. Conclusions We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available. PMID:27148959

  16. Strong gender differences in reproductive success variance, and the times to the most recent common ancestors.

    PubMed

    Favre, Maroussia; Sornette, Didier

    2012-10-07

    The Time to the Most Recent Common Ancestor (TMRCA) based on human mitochondrial DNA (mtDNA) is estimated to be twice that based on the non-recombining part of the Y chromosome (NRY). These TMRCAs have special demographic implications because mtDNA is transmitted only from mother to child, while NRY is passed along from father to son. Therefore, the former locus reflects female history, and the latter, male history. To investigate what caused the two-to-one female-male TMRCA ratio r(F/M)=T(F)/T(M) in humans, we develop a forward-looking agent-based model (ABM) with overlapping generations. Our ABM simulates agents with individual life cycles, including life events such as reaching maturity or menopause. We implemented two main mating systems: polygynandry and polygyny with different degrees in between. In each mating system, the male population can be either homogeneous or heterogeneous. In the latter case, some males are 'alphas' and others are 'betas', which reflects the extent to which they are favored by female mates. A heterogeneous male population implies a competition among males with the purpose of signaling as alpha males. The introduction of a heterogeneous male population is found to reduce by a factor 2 the probability of finding equal female and male TMRCAs and shifts the distribution of r(F/M) to higher values. In order to account for the empirical observation of the factor 2, a high level of heterogeneity in the male population is needed: less than half the males can be alphas and betas can have at most half the fitness of alphas for the TMRCA ratio to depart significantly from 1. In addition, we find that, in the modes that maximize the probability of having 1.5ancestors. We also tested the effect of sex-biased migration and sex-specific death rates and found that these are unlikely to explain alone the sex-biased TMRCA ratio observed in humans. Our results support the view

  17. Analyzing the Rate at Which Languages Lose the Influence of a Common Ancestor

    ERIC Educational Resources Information Center

    Rafferty, Anna N.; Griffiths, Thomas L.; Klein, Dan

    2014-01-01

    Analyzing the rate at which languages change can clarify whether similarities across languages are solely the result of cognitive biases or might be partially due to descent from a common ancestor. To demonstrate this approach, we use a simple model of language evolution to mathematically determine how long it should take for the distribution over…

  18. On ancestors of dog breeds with focus on Weimaraner hunting dogs.

    PubMed

    Kropatsch, R; Streitberger, K; Schulte-Middelmann, T; Dekomien, G; Epplen, J T

    2011-02-01

    Paternally inherited Y chromosomal markers and maternally inherited mitochondrial (mt) DNA sequences were investigated in 27 dog breeds (Canis familiaris), of which the Weimaraner hunting dog was studied in greater detail. Altogether, nine potentially polymorphic markers of the Y chromosome were examined as well as parts of the canine mt genome (1947 base pairs) in 111 male dogs and four wolves for comparison. Twenty Y chromosomal and fifty-nine mitochondrial DNA (mtDNA) haplotypes were identified in the canine breeds and wolves. In 34 Weimaraners, four distinct Y chromosomal haplotypes were observed as well as three mtDNA types thus reflecting at least four male and three female ancestors for the current population in Germany. Tracing patri- and matrilineages, several entries in the Weimaraner stud book cannot be reconciled with the male-only, Y chromosomal neither the female-only, mt inheritance patterns, respectively. The investigated breeds represent 9 of 10 groups defined by the Fédération Cynologique Internationale (FCI). The level of Y chromosomal and especially mtDNA diversity was immense considering the relatively small number of individuals investigated per breed. Unique haplotypes were found only in a few breeds and the wolf. Other haplotypes were shared among several breeds, also across different FCI groups, suggesting that these canine breeds had common male and female ancestors. © 2010 Blackwell Verlag GmbH.

  19. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  20. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  1. Inventing Homo gardarensis: prestige, pressure, and human evolution in interwar Scandinavia.

    PubMed

    Kjaergaard, Peter C

    2014-06-01

    In the 1920s there were still very few fossil human remains to support an evolutionary explanation of human origins. Nonetheless, evolution as an explanatory framework was widely accepted. This led to a search for ancestors in several continents with fierce international competition. With so little fossil evidence available and the idea of a Missing Link as a crucial piece of evidence in human evolution still intact, many actors participated in the scientific race to identify the human ancestor. The curious case of Homo gardarensis serves as an example of how personal ambitions and national pride were deeply interconnected as scientific concerns were sometimes slighted in interwar palaeoanthropology.

  2. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    PubMed

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  3. In pursuit of our ancestors' hand laterality.

    PubMed

    Bargalló, Amèlia; Mosquera, Marina; Lozano, Sergi

    2017-10-01

    The aim of this paper is to apply a previously published method (Bargalló and Mosquera, 2014) to the archaeological record, allowing us to identify the hand laterality of our ancestors and determine when and how this feature, which is exhibited most strongly in humans, appeared in our evolutionary history. The method focuses on identifying handedness by looking at the technical features of the flakes produced by a single knapper, and discovering how many flakes are required to ascertain their hand preference. This method can potentially be applied to the majority of archaeological sites, since flakes are the most abundant stone tools, and stone tools are the most widespread and widely-preserved remains from prehistory. For our study, we selected two Spanish sites: Gran Dolina-TD10.1 (Atapuerca) and Abric Romaní (Barcelona), which were occupied by pre-Neanderthal and Neanderthal populations, respectively. Our analyses indicate that a minimum number of eight flakes produced by the same knapper is required to ascertain their hand preference. Even though this figure is relatively low, it is quite difficult to obtain from many archaeological sites. In addition, there is no single technical feature that provides information about handedness, instead there is a combination of eight technical features, localised on the striking platforms and ventral surfaces. The raw material is not relevant where good quality rocks are used, in this case quartzite and flint, since most of them retain the technical features required for the analysis. Expertise is not an issue either, since the technical features analysed here only correlate with handedness (Bargalló and Mosquera, 2014). Our results allow us to tentatively identify one right-handed knapper among the pre-Neanderthals of level TD10.1 at Gran Dolina (Atapuerca), while four of the five Neanderthals analysed from Abric Romaní were right-handed. The hand preference of the fifth knapper from that location (AR5) remains unclear

  4. Tempo and mode in human evolution.

    PubMed Central

    McHenry, H M

    1994-01-01

    The quickening pace of paleontological discovery is matched by rapid developments in geochronology. These new data show that the pattern of morphological change in the hominid lineage was mosaic. Adaptations essential to bipedalism appeared early, but some locomotor features changed much later. Relative to the highly derived postcrania of the earliest hominids, the craniodental complex was quite primitive (i.e., like the reconstructed last common ancestor with the African great apes). The pattern of craniodental change among successively younger species of Hominidae implies extensive parallel evolution between at least two lineages in features related to mastication. Relative brain size increased slightly among successively younger species of Australopithecus, expanded significantly with the appearance of Homo, but within early Homo remained at about half the size of Homo sapiens for almost a million years. Many apparent trends in human evolution may actually be due to the accumulation of relatively rapid shifts in successive species. PMID:8041697

  5. Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei

    DOE PAGES

    Yang, Dongqing; Pomraning, Kyle; Kopchinskiy, Alexey; ...

    2015-08-13

    The filamentous fungus Trichoderma parareesei is the asexually reproducing ancestor of Trichoderma reesei, the holomorphic industrial producer of cellulase and hemicellulase. Here, we present the genome sequence of the T. parareesei type strain CBS 125925, which contains genes for 9,318 proteins.

  6. Hunter-Gatherers and the Origins of Religion.

    PubMed

    Peoples, Hervey C; Duda, Pavel; Marlowe, Frank W

    2016-09-01

    Recent studies of the evolution of religion have revealed the cognitive underpinnings of belief in supernatural agents, the role of ritual in promoting cooperation, and the contribution of morally punishing high gods to the growth and stabilization of human society. The universality of religion across human society points to a deep evolutionary past. However, specific traits of nascent religiosity, and the sequence in which they emerged, have remained unknown. Here we reconstruct the evolution of religious beliefs and behaviors in early modern humans using a global sample of hunter-gatherers and seven traits describing hunter-gatherer religiosity: animism, belief in an afterlife, shamanism, ancestor worship, high gods, and worship of ancestors or high gods who are active in human affairs. We reconstruct ancestral character states using a time-calibrated supertree based on published phylogenetic trees and linguistic classification and then test for correlated evolution between the characters and for the direction of cultural change. Results indicate that the oldest trait of religion, present in the most recent common ancestor of present-day hunter-gatherers, was animism, in agreement with long-standing beliefs about the fundamental role of this trait. Belief in an afterlife emerged, followed by shamanism and ancestor worship. Ancestor spirits or high gods who are active in human affairs were absent in early humans, suggesting a deep history for the egalitarian nature of hunter-gatherer societies. There is a significant positive relationship between most characters investigated, but the trait "high gods" stands apart, suggesting that belief in a single creator deity can emerge in a society regardless of other aspects of its religion.

  7. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia

    PubMed Central

    Duarte, Cidália; Maurício, João; Pettitt, Paul B.; Souto, Pedro; Trinkaus, Erik; van der Plicht, Hans; Zilhão, João

    1999-01-01

    The discovery of an early Upper Paleolithic human burial at the Abrigo do Lagar Velho, Portugal, has provided evidence of early modern humans from southern Iberia. The remains, the largely complete skeleton of a ≈4-year-old child buried with pierced shell and red ochre, is dated to ca. 24,500 years B.P. The cranium, mandible, dentition, and postcrania present a mosaic of European early modern human and Neandertal features. The temporal bone has an intermediate-sized juxtamastoid eminence. The mandibular mentum osseum and the dental size and proportions, supported by mandibular ramal features, radial tuberosity orientation, and diaphyseal curvature, as well as the pubic proportions align the skeleton with early modern humans. Body proportions, reflected in femorotibial lengths and diaphyseal robusticity plus tibial condylar displacement, as well as mandibular symphyseal retreat and thoracohumeral muscle insertions, align the skeleton with the Neandertals. This morphological mosaic indicates admixture between regional Neandertals and early modern humans dispersing into southern Iberia. It establishes the complexities of the Late Pleistocene emergence of modern humans and refutes strict replacement models of modern human origins. PMID:10377462

  8. Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.

    PubMed Central

    Benslimane, A A; Dron, M; Hartmann, C; Rode, A

    1986-01-01

    Several monomers (177 bp) of a tandemly arranged repetitive nuclear DNA sequence of Brassica oleracea have been cloned and sequenced. They share up to 95% homology between one another and up to 80% with other satellite DNA sequences of Cruciferae, suggesting a common ancestor. Both strands of these monomers show more than 50% homology with many tRNA genes; the best homologies have been obtained with Lys and His yeast mitochondrial tRNA genes (respectively 64% and 60%). These results suggest that small tandemly repeated DNA sequences of plants may have evolved from a tRNA gene ancestor. These tandem repeats have probably arisen via a process involving reverse transcription of polymerase III RNA intermediates, as is the case for interspersed DNA sequences of mammalians. A model is proposed to explain the formation of such small tandemly repeated DNA sequences. Images PMID:3774553

  9. The human and fire connection

    Treesearch

    Theresa B. Jain

    2014-01-01

    We refer to fire as a natural disturbance, but unlike other disturbances such as forest insects and diseases, fire has had an intimate relationship with humans. Fire facilitated human evolution over two million years ago when our ancestors began to use fire to cook. Fire empowered our furbearers to adapt to cold climates, allowing humans to disperse and settle into...

  10. The environmental context of human evolutionary history in Eurasia and Africa

    PubMed Central

    Elton, Sarah

    2008-01-01

    This review has three main aims: (1) to make specific predictions about the habitat of the hypothetical last common ancestor of the chimpanzee/bonobo–human clade; (2) to outline the major trends in environments between 8–6 Ma and the late Pleistocene; and (3) to pinpoint when, and in some cases where, human ancestors evolved to cope with the wide range of habitats they presently tolerate. Several lines of evidence indicate that arboreal environments, particularly woodlands, were important habitats for late Miocene hominids and hominins, and therefore possibly for the last common ancestor of the chimpanzee/bonobo–human clade. However, as there is no clear candidate for this last common ancestor, and because the sampling of fossils and past environments is inevitably patchy, this prediction remains a working hypothesis at best. Nonetheless, as a primate, it is expected that the last common ancestor was ecologically dependent on trees in some form. Understanding past environments is important, as palaeoenvironmental reconstructions provide the context for human morphological and behavioural evolution. Indeed, the impact of climate on the evolutionary history of our species has long been debated. Since the mid-Miocene, the Earth has been experiencing a general cooling trend accompanied by aridification, which intensified during the later Pliocene and Pleistocene. Numerous climatic fluctuations, as well as local, regional and continental geography that influenced weather patterns and vegetation, created hominin environments that were dynamic in space and time. Behavioural flexibility and cultural complexity were crucial aspects of hominin expansion into diverse environments during the Pleistocene, but the ability to exploit varied and varying habitats was established much earlier in human evolutionary history. The development of increasingly complex tool technology facilitated re-expansion into tropical forests. These environments are difficult for obligate bipeds

  11. The environmental context of human evolutionary history in Eurasia and Africa.

    PubMed

    Elton, Sarah

    2008-04-01

    This review has three main aims: (1) to make specific predictions about the habitat of the hypothetical last common ancestor of the chimpanzee/bonobo-human clade; (2) to outline the major trends in environments between 8-6 Ma and the late Pleistocene; and (3) to pinpoint when, and in some cases where, human ancestors evolved to cope with the wide range of habitats they presently tolerate. Several lines of evidence indicate that arboreal environments, particularly woodlands, were important habitats for late Miocene hominids and hominins, and therefore possibly for the last common ancestor of the chimpanzee/bonobo-human clade. However, as there is no clear candidate for this last common ancestor, and because the sampling of fossils and past environments is inevitably patchy, this prediction remains a working hypothesis at best. Nonetheless, as a primate, it is expected that the last common ancestor was ecologically dependent on trees in some form. Understanding past environments is important, as palaeoenvironmental reconstructions provide the context for human morphological and behavioural evolution. Indeed, the impact of climate on the evolutionary history of our species has long been debated. Since the mid-Miocene, the Earth has been experiencing a general cooling trend accompanied by aridification, which intensified during the later Pliocene and Pleistocene. Numerous climatic fluctuations, as well as local, regional and continental geography that influenced weather patterns and vegetation, created hominin environments that were dynamic in space and time. Behavioural flexibility and cultural complexity were crucial aspects of hominin expansion into diverse environments during the Pleistocene, but the ability to exploit varied and varying habitats was established much earlier in human evolutionary history. The development of increasingly complex tool technology facilitated re-expansion into tropical forests. These environments are difficult for obligate bipeds to

  12. Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants.

    PubMed Central

    Savard, L; Li, P; Strauss, S H; Chase, M W; Michaud, M; Bousquet, J

    1994-01-01

    We have estimated the time for the last common ancestor of extant seed plants by using molecular clocks constructed from the sequences of the chloroplastic gene coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the nuclear gene coding for the small subunit of rRNA (Rrn18). Phylogenetic analyses of nucleotide sequences indicated that the earliest divergence of extant seed plants is likely represented by a split between conifer-cycad and angiosperm lineages. Relative-rate tests were used to assess homogeneity of substitution rates among lineages, and annual angiosperms were found to evolve at a faster rate than other taxa for rbcL and, thus, these sequences were excluded from construction of molecular clocks. Five distinct molecular clocks were calibrated using substitution rates for the two genes and four divergence times based on fossil and published molecular clock estimates. The five estimated times for the last common ancestor of extant seed plants were in agreement with one another, with an average of 285 million years and a range of 275-290 million years. This implies a substantially more recent ancestor of all extant seed plants than suggested by some theories of plant evolution. PMID:8197201

  13. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico

    PubMed Central

    Piperno, Dolores R.; Ranere, Anthony J.; Holst, Irene; Iriarte, Jose; Dickau, Ruth

    2009-01-01

    Questions that still surround the origin and early dispersals of maize (Zea mays L.) result in large part from the absence of information on its early history from the Balsas River Valley of tropical southwestern Mexico, where its wild ancestor is native. We report starch grain and phytolith data from the Xihuatoxtla shelter, located in the Central Balsas Valley, that indicate that maize was present by 8,700 calendrical years ago (cal. B.P.). Phytolith data also indicate an early preceramic presence of a domesticated species of squash, possibly Cucurbita argyrosperma. The starch and phytolith data also allow an evaluation of current hypotheses about how early maize was used, and provide evidence as to the tempo and timing of human selection pressure on 2 major domestication genes in Zea and Cucurbita. Our data confirm an early Holocene chronology for maize domestication that has been previously indicated by archaeological and paleoecological phytolith, starch grain, and pollen data from south of Mexico, and reshift the focus back to an origin in the seasonal tropical forest rather than in the semiarid highlands. PMID:19307570

  14. Sympathetic activation during early pregnancy in humans

    PubMed Central

    Jarvis, Sara S; Shibata, Shigeki; Bivens, Tiffany B; Okada, Yoshiyuki; Casey, Brian M; Levine, Benjamin D; Fu, Qi

    2012-01-01

    Sympathetic activity has been reported to increase in normotensive pregnant women, and to be even greater in women with gestational hypertension and preeclampsia at term. Whether sympathetic overactivity develops early during pregnancy, remaining high throughout gestation, or whether it only occurs at term providing the substrate for hypertensive disorders is unknown. We tested the hypothesis that sympathetic activation occurs early during pregnancy in humans. Eleven healthy women (29 ± 3 (SD) years) without prior hypertensive pregnancies were tested during the mid-luteal phase (PRE) and early pregnancy (EARLY; 6.2 ± 1.2 weeks of gestation). Muscle sympathetic nerve activity (MSNA) and haemodynamics were measured supine, at 30 deg and 60 deg upright tilt for 5 min each. Blood samples were drawn for catecholamines, direct renin, and aldosterone. MSNA was significantly greater during EARLY than PRE (supine: 25 ± 8 vs. 14 ± 8 bursts min−1, 60 deg tilt: 49 ± 14 vs. 40 ± 10 bursts min−1; main effect, P < 0.05). Resting diastolic pressure trended lower (P = 0.09), heart rate was similar, total peripheral resistance decreased (2172 ± 364 vs. 2543 ± 352 dyne s cm−5; P < 0.05), sympathetic vascular transduction was blunted (0.10 ± 0.05 vs. 0.36 ± 0.47 units a.u.−1 min−1; P < 0.01), and both renin (supine: 27.9 ± 6.2 vs. 14.2 ± 8.7 pg ml−1, P < 0.01) and aldosterone (supine: 16.7 ± 14.1 vs. 7.7 ± 6.8 ng ml−1, P = 0.05) were higher during EARLY than PRE. These results suggest that sympathetic activation is a common characteristic of early pregnancy in humans despite reduced diastolic pressure and total peripheral resistance. These observations challenge conventional thinking about blood pressure regulation during pregnancy, showing marked sympathetic activation occurring within the first few weeks of conception, and may provide the substrate for pregnancy induced cardiovascular complications. PMID:22687610

  15. Lost human capital from early-onset chronic depression.

    PubMed

    Berndt, E R; Koran, L M; Finkelstein, S N; Gelenberg, A J; Kornstein, S G; Miller, I M; Thase, M E; Trapp, G A; Keller, M B

    2000-06-01

    Chronic depression starts at an early age for many individuals and could affect their accumulation of "human capital" (i.e., education, higher amounts of which can broaden occupational choice and increase earnings potential). The authors examined the impact, by gender, of early- (before age 22) versus late-onset major depressive disorder on educational attainment. They also determined whether the efficacy and sustainability of antidepressant treatments and psychosocial outcomes vary by age at onset and quantified the impact of early- versus late-onset, as well as never-occurring, major depressive disorder on expected lifetime earnings. The authors used logistic and multivariate regression methods to analyze data from a three-phase, multicenter, double-blind, randomized trial that compared sertraline and imipramine treatment of 531 patients with chronic depression aged 30 years and older. These data were integrated with U.S. Census Bureau data on 1995 earnings by age, educational attainment, and gender. Early-onset major depressive disorder adversely affected the educational attainment of women but not of men. No significant difference in treatment responsiveness by age at onset was observed after 12 weeks of acute treatment or, for subjects rated as having responded, after 76 weeks of maintenance treatment. A randomly selected 21-year-old woman with early-onset major depressive disorder in 1995 could expect future annual earnings that were 12%-18% lower than those of a randomly selected 21-year-old woman whose onset of major depressive disorder occurred after age 21 or not at all. Early-onset major depressive disorder causes substantial human capital loss, particularly for women. Detection and effective treatment of early-onset major depressive disorder may have substantial economic benefits.

  16. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments

    PubMed Central

    Vargas, Sergio; Larsen, Morten; Elemans, Coen PH; Canfield, Donald E

    2018-01-01

    Animals have a carefully orchestrated relationship with oxygen. When exposed to low environmental oxygen concentrations, and during periods of increased energy expenditure, animals maintain cellular oxygen homeostasis by enhancing internal oxygen delivery, and by enabling the anaerobic production of ATP. These low-oxygen responses are thought to be controlled universally across animals by the hypoxia-inducible factor (HIF). We find, however, that sponge and ctenophore genomes lack key components of the HIF pathway. Since sponges and ctenophores are likely sister to all remaining animal phyla, the last common ancestor of extant animals likely lacked the HIF pathway as well. Laboratory experiments show that the marine sponge Tethya wilhelma maintains normal transcription under oxygen levels down to 0.25% of modern atmospheric saturation, the lowest levels we investigated, consistent with the predicted absence of HIF or any other HIF-like pathway. Thus, the last common ancestor of all living animals could have metabolized aerobically under very low environmental oxygen concentrations. PMID:29402379

  17. Origins and early development of human body knowledge.

    PubMed

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  18. Three-dimensional analysis of the early development of the dentition

    PubMed Central

    Peterkova, R; Hovorakova, M; Peterka, M; Lesot, H

    2014-01-01

    Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration. PMID:24495023

  19. The evolution of the complex sensory and motor systems of the human brain.

    PubMed

    Kaas, Jon H

    2008-03-18

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size.

  20. The evolution of the complex sensory and motor systems of the human brain

    PubMed Central

    Kaas, Jon H.

    2008-01-01

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20–25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size. PMID:18331903

  1. Centromere retention and loss during the descent of maize from a tetraploid ancestor.

    PubMed

    Wang, Hao; Bennetzen, Jeffrey L

    2012-12-18

    Although centromere function is highly conserved in eukaryotes, centromere sequences are highly variable. Only a few centromeres have been sequenced in higher eukaryotes because of their repetitive nature, thus hindering study of their structure and evolution. Conserved single-copy sequences in pericentromeres (CSCPs) of sorghum and maize were found to be diagnostic characteristics of adjacent centromeres. By analyzing comparative map data and CSCP sequences of sorghum, maize, and rice, the major evolutionary events related to centromere dynamics were discovered for the maize lineage after its divergence from a common ancestor with sorghum. (i) Remnants of ancient CSCP regions were found for the 10 lost ancestral centromeres, indicating that two ancient homeologous chromosome pairs did not contribute any centromeres to the current maize genome, whereas two other pairs contributed both of their centromeres. (ii) Five cases of long-distance, intrachromosome movement of CSCPs were detected in the retained centromeres, with inversion the major process involved. (iii) The 12 major chromosomal rearrangements that led to maize chromosome number reduction from 20 to 10 were uncovered. (iv) In addition to whole chromosome insertion near (but not always into) other centromeres, translocation and fusion were found to be important mechanisms underlying grass chromosome number reduction. (v) Comparison of chromosome structures confirms the polyploid event that led to the tetraploid ancestor of modern maize.

  2. Buds of the tree: the highway to the last universal common ancestor

    NASA Astrophysics Data System (ADS)

    de Farias, Savio Torres; Prosdocimi, Francisco

    2017-04-01

    The last universal common ancestor (LUCA) has been considered as the branching point on which Bacteria, Archaea and Eukaryotes have diverged. However, the increased information relating to viruses' genomes and the perception that many virus genes do not have homologs in other organisms opened a new discussion. Based on these facts, there has emerged the idea of an early LUCA that should be moved further into the past to include viruses, implicating that life should have originated before the appearance of cellular life forms. Another point of view from advocates of the RNA-world suggests that the origin of life happened a long time before organisms were capable of organizing themselves into cellular entities. Relevant data about the origin of ribosomes indicate that the catalytic unit of the large ribosomal subunit is what should actually be considered as the turning point that separated chemistry from biology. Other researchers seem to think that a tRNA was probably some sort of a strange attractor on which life has originated. Here we propose a theoretical synthesis that tries to provide a crosstalk among the theories and define important points on which the origin of life could have been originated and made more complex, taking into account gradualist assumptions. Thus, discussions involving the origin of biological activities in the RNA-world might lead into a world of progenotes on which viruses have been taken part until the appearance of the very first cells. Along this route of complexification, we identified some key points on which researchers may consider life as an emerging principle.

  3. ANDROGENETICS AND TRIPLOIDS FROM AN INTERACTING PARTHENOGENETIC HYBRID AND ITS ANCESTORS IN STICK INSECTS.

    PubMed

    Tinti, Fausto; Scali, Valerio

    1996-06-01

    Populations of unisexual organisms are often assumed to be genetically invariant (clones) and destined to a short existence on an evolutionary timescale. Unisexual organisms are most often obligate parthenogens and, by definition, ought to be completely isolated reproductively from related bisexual organisms. The assumption of complete reproductive isolation between amphimictic ancestors and thelytokous hybrids is common to most hypotheses on the evolution of sex and its adaptive significance. Stick insects of the genus Bacillus however provide evidence for reproductive interactions between allodiploid parthenogens and their ancestors, because pure species progeny (androgenetics) and triploid descendants are produced. These findings demonstrate that, through androgenesis, offspring of parthenogenetic hybrid females can contribute specimens of both sexes to the fathering species when fertilized by syntopic ancestral males and the parthenogenetic egg of strictly clonal females, when fertilized, allows a third genome to be added to the allodiploid chromosome set. These triploid genomes promote further genetic diversification and evolution of the unisexual populations through the formation of new clones by recombination during the changed maturation mode of allotriploid eggs. All this argues for much more complex breeding systems and evolutionary pathways than are usually assumed for hybrid unisexual organisms. © 1996 The Society for the Study of Evolution.

  4. Genetic evidence and the modern human origins debate.

    PubMed

    Relethford, J H

    2008-06-01

    A continued debate in anthropology concerns the evolutionary origin of 'anatomically modern humans' (Homo sapiens sapiens). Different models have been proposed to examine the related questions of (1) where and when anatomically modern humans first appeared and (2) the genetic and evolutionary relationship between modern humans and earlier human populations. Genetic data have been increasingly used to address these questions. Genetic data on living human populations have been used to reconstruct the evolutionary history of the human species by considering how global patterns of human variation could be produced given different evolutionary scenarios. Of particular interest are gene trees that reconstruct the time and place of the most recent common ancestor of humanity for a given haplotype and the analysis of regional differences in genetic diversity. Ancient DNA has also allowed a direct assessment of genetic variation in European Neandertals. Together with the fossil record, genetic data provide insight into the origin of modern humans. The evidence points to an African origin of modern humans dating back to 200,000 years followed by later expansions of moderns out of Africa across the Old World. What is less clear is what happened when these early modern humans met preexisting 'archaic human' populations outside of Africa. At present, it is difficult to distinguish between a model of total genetic replacement and a model that includes some degree of genetic mixture.

  5. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  6. The cult of amphioxus in German Darwinism; or, our gelatinous ancestors in Naples' blue and balmy bay.

    PubMed

    Hopwood, Nick

    2015-01-01

    Biologists having rediscovered amphioxus, also known as the lancelet or Branchiostoma, it is time to reassess its place in early Darwinist debates over vertebrate origins. While the advent of the ascidian-amphioxus theory and challenges from various competitors have been, documented, this article offers a richer account of the public appeal of amphioxus as a primitive ancestor. The focus is on how the 'German Darwin' Ernst Haeckel persuaded general magazine and newspaper readers to revere this "flesh of our flesh and blood of our blood", and especially on Das neue Laienbrevier des Haeckelismus (The new lay breviary of Haeckelism) by Moritz Reymond with cartoons by Fritz Steub. From the late 1870s these successful little books of verse introduced the Neapolitan discoveries that made the animal's name and satirized Haeckel's rise as high priest of its cult. One song is reproduced and translated here, with a contemporary "imitation" by the Canadian palaeontologist Edward John Chapman, and extracts from others. Predating the American "It's a long way from amphioxus" by decades, these rhymes dramatize neglected 'species politics' of Darwinism and highlight the roles of humour in negotiating evolution.

  7. ["The first stages of the human egg" by Auguste d'Eternod published one hundred years ago in the Comptes Rendus de l'Association des Anatomistes].

    PubMed

    Catala, M

    2014-06-01

    The development of the embryo and foetus fascinates, but its study in humans is difficult because of both technical and ethical problems. Auguste d'Eternod, Swiss embryologist, published in 1913 an article entitled "The early stages of the human egg" in the Comptes Rendus de l'Association des Anatomistes, the ancestor of the journal Morphologie. This work is focused not only on the early stages of development: fertilization, cleavage of the egg, blastocyst formation, gastrulation, but also on the extra-embryonic processes characteristic of mammals. On the occasion of the centenary of the publication of this work, I propose a critical review by placing the data published in the literature and historical context of the time. Finally, I try to extract from these observations the concepts that are still used today by embryologists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Cassava genome from a wild ancestor to cultivated varieties

    PubMed Central

    Wang, Wenquan; Feng, Binxiao; Xiao, Jingfa; Xia, Zhiqiang; Zhou, Xincheng; Li, Pinghua; Zhang, Weixiong; Wang, Ying; Møller, Birger Lindberg; Zhang, Peng; Luo, Ming-Cheng; Xiao, Gong; Liu, Jingxing; Yang, Jun; Chen, Songbi; Rabinowicz, Pablo D.; Chen, Xin; Zhang, Hong-Bin; Ceballos, Henan; Lou, Qunfeng; Zou, Meiling; Carvalho, Luiz J.C.B.; Zeng, Changying; Xia, Jing; Sun, Shixiang; Fu, Yuhua; Wang, Haiyan; Lu, Cheng; Ruan, Mengbin; Zhou, Shuigeng; Wu, Zhicheng; Liu, Hui; Kannangara, Rubini Maya; Jørgensen, Kirsten; Neale, Rebecca Louise; Bonde, Maya; Heinz, Nanna; Zhu, Wenli; Wang, Shujuan; Zhang, Yang; Pan, Kun; Wen, Mingfu; Ma, Ping-An; Li, Zhengxu; Hu, Meizhen; Liao, Wenbin; Hu, Wenbin; Zhang, Shengkui; Pei, Jinli; Guo, Anping; Guo, Jianchun; Zhang, Jiaming; Zhang, Zhengwen; Ye, Jianqiu; Ou, Wenjun; Ma, Yaqin; Liu, Xinyue; Tallon, Luke J.; Galens, Kevin; Ott, Sandra; Huang, Jie; Xue, Jingjing; An, Feifei; Yao, Qingqun; Lu, Xiaojing; Fregene, Martin; López-Lavalle, L. Augusto Becerra; Wu, Jiajie; You, Frank M.; Chen, Meili; Hu, Songnian; Wu, Guojiang; Zhong, Silin; Ling, Peng; Chen, Yeyuan; Wang, Qinghuang; Liu, Guodao; Liu, Bin; Li, Kaimian; Peng, Ming

    2014-01-01

    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology. PMID:25300236

  9. Human genetics: measuring the raw material of evolution.

    PubMed

    Armour, John A L

    2009-09-15

    By direct sequencing of two Y chromosomes inherited from the same paternal ancestor, a landmark study has derived a good direct estimate for the rate of base substitution mutations on the human Y chromosome.

  10. Studies in Historical Replication in Psychology VII: The Relative Utility of "Ancestor Analysis" from Scientific and Educational Vantages

    ERIC Educational Resources Information Center

    Ranney, Michael Andrew

    2008-01-01

    This article discusses, from various vantages, Ryan Tweney's (this issue) pedagogical technique of employing historical replications of psychological experiments with graduate students in psychology. A "prima facie" perspective suggests great promise for this sort of academic "ancestor analysis," particularly given the enthusiasm and skill…

  11. Most recent common ancestor probability distributions in gene genealogies under selection.

    PubMed

    Slade, P F

    2000-12-01

    A computational study is made of the conditional probability distribution for the allelic type of the most recent common ancestor in genealogies of samples of n genes drawn from a population under selection, given the initial sample configuration. Comparisons with the corresponding unconditional cases are presented. Such unconditional distributions differ from samples drawn from the unique stationary distribution of population allelic frequencies, known as Wright's formula, and are quantified. Biallelic haploid and diploid models are considered. A simplified structure for the ancestral selection graph of S. M. Krone and C. Neuhauser (1997, Theor. Popul. Biol. 51, 210-237) is enhanced further, reducing the effective branching rate in the graph. This improves efficiency of such a nonneutral analogue of the coalescent for use with computational likelihood-inference techniques.

  12. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  13. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy.

    PubMed

    Cooke, Gerard M

    2014-01-01

    The first trimester of human fetal life, a period of extremely rapid development of physiological systems, represents the most rapid growth phase in human life. Interference in the establishment of organ systems may result in abnormal development that may be manifest immediately or programmed for later abnormal function. Exposure to environmental chemicals may be affecting development at these early stages, and yet there is limited knowledge of the quantities and identities of the chemicals to which the fetus is exposed during early pregnancy. Clearly, opportunities for assessing fetal chemical exposure directly are extremely limited. Hence, this review describes indirect means of assessing fetal exposure in early pregnancy to chemicals that are considered disrupters of development. Consideration is given to such matrices as maternal hair, fingernails, urine, saliva, sweat, breast milk, amniotic fluid and blood, and fetal matrices such as cord blood, cord tissue, meconium, placenta, and fetal liver. More than 150 articles that presented data from chemical analysis of human maternal and fetal tissues and fluids were reviewed. Priority was given to articles where chemical analysis was conducted in more than one matrix. Where correlations between maternal and fetal matrices were determined, these articles were included and are highlighted, as these may provide the basis for future investigations of early fetal exposure. The determination of fetal chemical exposure, at the time of rapid human growth and development, will greatly assist regulatory agencies in risk assessments and establishment of advisories for risk management concerning environmental chemicals.

  14. Young Children's Enactments of Human Rights in Early Childhood Education

    ERIC Educational Resources Information Center

    Quennerstedt, Ann

    2016-01-01

    This paper explores ways in which human rights become part of and affect young children's everyday practices in early childhood education and, more particularly, how very young children enact human rights in the preschool setting. The study is conducted in a Swedish preschool through observations of the everyday practices of a group of children…

  15. Human-like, population-level specialization in the manufacture of pandanus tools by New Caledonian crows Corvus moneduloides.

    PubMed Central

    Hunt, G R

    2000-01-01

    The main way of gaining insight into the behaviour and neurological faculties of our early ancestors is to study artefactual evidence for the making and use of tools, but this places severe constraints on what knowledge can be obtained. New Caledonian crows, however, offer a potential analogous model system for learning about these difficult-to-establish aspects of prehistoric humans. I found new evidence of human-like specialization in crows' manufacture of hook tools from pandanus leaves: functional lateralization or 'handedness' and the shaping of these tools to a rule system. These population-level features are unprecedented in the tool behaviour of free-living non-humans and provide the first demonstration that a population bias for handedness in tool-making and the shaping of tools to rule systems are not concomitant with symbolic thought and language. It is unknown how crows obtain their tool behaviour. Nevertheless, at the least they can be studied in order to learn about the neuropsychology associated with early specialized and/or advanced population features in tool-making such as hook use, handedness and the shaping of tools to rule systems. PMID:10722223

  16. Water, plants, and early human habitats in eastern Africa

    PubMed Central

    Magill, Clayton R.; Ashley, Gail M.; Freeman, Katherine H.

    2013-01-01

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa—Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water–lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C4-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm·y−1 and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change. PMID:23267102

  17. Water, plants, and early human habitats in eastern Africa.

    PubMed

    Magill, Clayton R; Ashley, Gail M; Freeman, Katherine H

    2013-01-22

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa--Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water-lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C(4)-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm · y(-1) and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change.

  18. Early stress and human behavioral development: emerging evolutionary perspectives.

    PubMed

    Del Giudice, M

    2014-08-01

    Stress experienced early in life exerts a powerful, lasting influence on development. Converging empirical findings show that stressful experiences become deeply embedded in the child's neurobiology, with an astonishing range of long-term effects on cognition, emotion, and behavior. In contrast with the prevailing view that such effects are the maladaptive outcomes of 'toxic' stress, adaptive models regard them as manifestations of evolved developmental plasticity. In this paper, I offer a brief introduction to adaptive models of early stress and human behavioral development, with emphasis on recent theoretical contributions and emerging concepts in the field. I begin by contrasting dysregulation models of early stress with their adaptive counterparts; I then introduce life history theory as a unifying framework, and review recent work on predictive adaptive responses (PARs) in human life history development. In particular, I discuss the distinction between forecasting the future state of the environment (external prediction) and forecasting the future state of the organism (internal prediction). Next, I present the adaptive calibration model, an integrative model of individual differences in stress responsivity based on life history concepts. I conclude by examining how maternal-fetal conflict may shape the physiology of prenatal stress and its adaptive and maladaptive effects on postnatal development. In total, I aim to show how theoretical work from evolutionary biology is reshaping the way we think about the role of stress in human development, and provide researchers with an up-to-date conceptual map of this fascinating and rapidly evolving field.

  19. PARTIAL REPRODUCTIVE ISOLATION OF A RECENTLY DERIVED RESIDENT-FRESHWATER POPULATION OF THREESPINE STICKLEBACK (GASTEROSTEUS ACULEATUS) FROM ITS PUTATIVE ANADROMOUS ANCESTOR

    PubMed Central

    Furin, Christoff G.; Von Hippel, Frank A.; Bell, Michael A.

    2012-01-01

    We used no-choice mating trials to test for assortative mating between a newly derived resident-freshwater population (8 – 22 generations since founding) of threespine stickleback (Gasterosteus aculeatus) in Loberg Lake, Alaska and its putative anadromous ancestor as well as a morphologically convergent but distantly related resident-freshwater population. Partial reproductive isolation has evolved between the Loberg Lake population and its ancestor within a remarkably short time period. However, Loberg stickleback readily mate with morphologically similar, but distantly related resident-freshwater stickleback. Partial pre-mating isolation is asymmetrical; anadromous females and smaller, resident-freshwater males from Loberg Lake readily mate, but the anadromous males and smaller Loberg females do not. Our results indicate that pre-mating isolation can begin to evolve in allopatry within a few generations after isolation as a correlated effect of evolution of reduced body size. PMID:23025615

  20. "Unwilling" versus "Unable": Capuchin Monkeys' ("Cebus Apella") Understanding of Human Intentional Action

    ERIC Educational Resources Information Center

    Phillips, Webb; Barnes, Jennifer L.; Mahajan, Neha; Yamaguchi, Mariko; Santos, Laurie R.

    2009-01-01

    A sensitivity to the intentions behind human action is a crucial developmental achievement in infants. Is this intention reading ability a unique and relatively recent product of human evolution and culture, or does this capacity instead have roots in our non-human primate ancestors? Recent work by Call and colleagues (2004) lends credence to the…

  1. A natural history of the human mind: tracing evolutionary changes in brain and cognition

    PubMed Central

    Sherwood, Chet C; Subiaul, Francys; Zawidzki, Tadeusz W

    2008-01-01

    Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300–400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species’ cognitive and linguistic abilities. PMID:18380864

  2. Gestural and symbolic development among apes and humans: support for a multimodal theory of language evolution.

    PubMed

    Gillespie-Lynch, Kristen; Greenfield, Patricia M; Lyn, Heidi; Savage-Rumbaugh, Sue

    2014-01-01

    What are the implications of similarities and differences in the gestural and symbolic development of apes and humans?This focused review uses as a starting point our recent study that provided evidence that gesture supported the symbolic development of a chimpanzee, a bonobo, and a human child reared in language-enriched environments at comparable stages of communicative development. These three species constitute a complete clade, species possessing a common immediate ancestor. Communicative behaviors observed among all species in a clade are likely to have been present in the common ancestor. Similarities in the form and function of many gestures produced by the chimpanzee, bonobo, and human child suggest that shared non-verbal skills may underlie shared symbolic capacities. Indeed, an ontogenetic sequence from gesture to symbol was present across the clade but more pronounced in child than ape. Multimodal expressions of communicative intent (e.g., vocalization plus persistence or eye-contact) were normative for the child, but less common for the apes. These findings suggest that increasing multimodal expression of communicative intent may have supported the emergence of language among the ancestors of humans. Therefore, this focused review includes new studies, since our 2013 article, that support a multimodal theory of language evolution.

  3. Gestural and symbolic development among apes and humans: support for a multimodal theory of language evolution

    PubMed Central

    Gillespie-Lynch, Kristen; Greenfield, Patricia M.; Lyn, Heidi; Savage-Rumbaugh, Sue

    2014-01-01

    What are the implications of similarities and differences in the gestural and symbolic development of apes and humans?This focused review uses as a starting point our recent study that provided evidence that gesture supported the symbolic development of a chimpanzee, a bonobo, and a human child reared in language-enriched environments at comparable stages of communicative development. These three species constitute a complete clade, species possessing a common immediate ancestor. Communicative behaviors observed among all species in a clade are likely to have been present in the common ancestor. Similarities in the form and function of many gestures produced by the chimpanzee, bonobo, and human child suggest that shared non-verbal skills may underlie shared symbolic capacities. Indeed, an ontogenetic sequence from gesture to symbol was present across the clade but more pronounced in child than ape. Multimodal expressions of communicative intent (e.g., vocalization plus persistence or eye-contact) were normative for the child, but less common for the apes. These findings suggest that increasing multimodal expression of communicative intent may have supported the emergence of language among the ancestors of humans. Therefore, this focused review includes new studies, since our 2013 article, that support a multimodal theory of language evolution. PMID:25400607

  4. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    PubMed Central

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  5. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario

    PubMed Central

    Gunz, Philipp; Bookstein, Fred L.; Mitteroecker, Philipp; Stadlmayr, Andrea; Seidler, Horst; Weber, Gerhard W.

    2009-01-01

    The interpretation of genetic evidence regarding modern human origins depends, among other things, on assessments of the structure and the variation of ancient populations. Because we lack genetic data from the time when the first anatomically modern humans appeared, between 200,000 and 60,000 years ago, instead we exploit the phenotype of neurocranial geometry to compare the variation in early modern human fossils with that in other groups of fossil Homo and recent modern humans. Variation is assessed as the mean-squared Procrustes distance from the group average shape in a representation based on several hundred neurocranial landmarks and semilandmarks. We find that the early modern group has more shape variation than any other group in our sample, which covers 1.8 million years, and that they are morphologically similar to recent modern humans of diverse geographically dispersed populations but not to archaic groups. Of the currently competing models of modern human origins, some are inconsistent with these findings. Rather than a single out-of-Africa dispersal scenario, we suggest that early modern humans were already divided into different populations in Pleistocene Africa, after which there followed a complex migration pattern. Our conclusions bear implications for the inference of ancient human demography from genetic models and emphasize the importance of focusing research on those early modern humans, in particular, in Africa. PMID:19307568

  6. Early development of synchrony in cortical activations in the human.

    PubMed

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor.

    PubMed

    Janes, D E; Chapus, C; Gondo, Y; Clayton, D F; Sinha, S; Blatti, C A; Organ, C L; Fujita, M K; Balakrishnan, C N; Edwards, S V

    2011-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.

  8. Reptiles and Mammals Have Differentially Retained Long Conserved Noncoding Sequences from the Amniote Ancestor

    PubMed Central

    Janes, D.E.; Chapus, C.; Gondo, Y.; Clayton, D.F.; Sinha, S.; Blatti, C.A.; Organ, C.L.; Fujita, M.K.; Balakrishnan, C.N.; Edwards, S.V.

    2010-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation. PMID:21183607

  9. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    PubMed

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  10. Ancestral Ca2+ Signaling Machinery in Early Animal and Fungal Evolution

    PubMed Central

    Cai, Xinjiang; Clapham, David E.

    2012-01-01

    Animals and fungi diverged from a common unicellular ancestor of Opisthokonta, yet they exhibit significant differences in their components of Ca2+ signaling pathways. Many Ca2+ signaling molecules appear to be either animal-specific or fungal-specific, which is generally believed to result from lineage-specific adaptations to distinct physiological requirements. Here, by analyzing the genomic data from several close relatives of animals and fungi, we demonstrate that many components of animal and fungal Ca2+ signaling machineries are present in the apusozoan protist Thecamonas trahens, which belongs to the putative unicellular sister group to Opisthokonta. We also identify the conserved portion of Ca2+ signaling molecules in early evolution of animals and fungi following their divergence. Furthermore, our results reveal the lineage-specific expansion of Ca2+ channels and transporters in the unicellular ancestors of animals and in basal fungi. These findings provide novel insights into the evolution and regulation of Ca2+ signaling critical for animal and fungal biology. PMID:21680871

  11. Honey, Hadza, hunter-gatherers, and human evolution.

    PubMed

    Marlowe, Frank W; Berbesque, J Colette; Wood, Brian; Crittenden, Alyssa; Porter, Claire; Mabulla, Audax

    2014-06-01

    Honey is the most energy dense food in nature. It is therefore not surprising that, where it exists, honey is an important food for almost all hunter-gatherers. Here we describe and analyze widespread honey collecting among foragers and show that where it is absent, in arctic and subarctic habitats, honey bees are also rare to absent. Second, we focus on one hunter-gatherer society, the Hadza of Tanzania. Hadza men and women both rank honey as their favorite food. Hadza acquire seven types of honey. Hadza women usually acquire honey that is close to the ground while men often climb tall baobab trees to raid the largest bee hives with stinging bees. Honey accounts for a substantial proportion of the kilocalories in the Hadza diet, especially that of Hadza men. Cross-cultural forager data reveal that in most hunter-gatherers, men acquire more honey than women but often, as with the Hadza, women do acquire some. Virtually all warm-climate foragers consume honey. Our closest living relatives, the great apes, take honey when they can. We suggest that honey has been part of the diet of our ancestors dating back to at least the earliest hominins. The earliest hominins, however, would have surely been less capable of acquiring as much honey as more recent, fully modern human hunter-gatherers. We discuss reasons for thinking our early ancestors would have acquired less honey than foragers ethnographically described, yet still significantly more than our great ape relatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Early human symbolic behavior in the Late Pleistocene of Wallacea

    PubMed Central

    Brumm, Adam; Hakim, Budianto; Ramli, Muhammad; Sumantri, Iwan; Burhan, Basran; Saiful, Andi Muhammad; Siagian, Linda; Suryatman; Sardi, Ratno; Jusdi, Andi; Abdullah; Mubarak, Andi Pampang; Hasliana; Hasrianti; Oktaviana, Adhi Agus; Adhityatama, Shinatria; van den Bergh, Gerrit D.; Aubert, Maxime; Zhao, Jian-xin; Huntley, Jillian; Li, Bo; Roberts, Richard G.; Saptomo, E. Wahyu; Perston, Yinika; Grün, Rainer

    2017-01-01

    Wallacea, the zone of oceanic islands separating the continental regions of Southeast Asia and Australia, has yielded sparse evidence for the symbolic culture of early modern humans. Here we report evidence for symbolic activity 30,000–22,000 y ago at Leang Bulu Bettue, a cave and rock-shelter site on the Wallacean island of Sulawesi. We describe hitherto undocumented practices of personal ornamentation and portable art, alongside evidence for pigment processing and use in deposits that are the same age as dated rock art in the surrounding karst region. Previously, assemblages of multiple and diverse types of Pleistocene “symbolic” artifacts were entirely unknown from this region. The Leang Bulu Bettue assemblage provides insight into the complexity and diversification of modern human culture during a key period in the global dispersal of our species. It also shows that early inhabitants of Sulawesi fashioned ornaments from body parts of endemic animals, suggesting modern humans integrated exotic faunas and other novel resources into their symbolic world as they colonized the biogeographically unique regions southeast of continental Eurasia. PMID:28373568

  13. Early human symbolic behavior in the Late Pleistocene of Wallacea.

    PubMed

    Brumm, Adam; Langley, Michelle C; Moore, Mark W; Hakim, Budianto; Ramli, Muhammad; Sumantri, Iwan; Burhan, Basran; Saiful, Andi Muhammad; Siagian, Linda; Suryatman; Sardi, Ratno; Jusdi, Andi; Abdullah; Mubarak, Andi Pampang; Hasliana; Hasrianti; Oktaviana, Adhi Agus; Adhityatama, Shinatria; van den Bergh, Gerrit D; Aubert, Maxime; Zhao, Jian-Xin; Huntley, Jillian; Li, Bo; Roberts, Richard G; Saptomo, E Wahyu; Perston, Yinika; Grün, Rainer

    2017-04-18

    Wallacea, the zone of oceanic islands separating the continental regions of Southeast Asia and Australia, has yielded sparse evidence for the symbolic culture of early modern humans. Here we report evidence for symbolic activity 30,000-22,000 y ago at Leang Bulu Bettue, a cave and rock-shelter site on the Wallacean island of Sulawesi. We describe hitherto undocumented practices of personal ornamentation and portable art, alongside evidence for pigment processing and use in deposits that are the same age as dated rock art in the surrounding karst region. Previously, assemblages of multiple and diverse types of Pleistocene "symbolic" artifacts were entirely unknown from this region. The Leang Bulu Bettue assemblage provides insight into the complexity and diversification of modern human culture during a key period in the global dispersal of our species. It also shows that early inhabitants of Sulawesi fashioned ornaments from body parts of endemic animals, suggesting modern humans integrated exotic faunas and other novel resources into their symbolic world as they colonized the biogeographically unique regions southeast of continental Eurasia.

  14. Ecosystem variability and early human habitats in eastern Africa.

    PubMed

    Magill, Clayton R; Ashley, Gail M; Freeman, Katherine H

    2013-01-22

    The role of savannas during the course of early human evolution has been debated for nearly a century, in part because of difficulties in characterizing local ecosystems from fossil and sediment records. Here, we present high-resolution lipid biomarker and isotopic signatures for organic matter preserved in lake sediments at Olduvai Gorge during a key juncture in human evolution about 2.0 Ma--the emergence and dispersal of Homo erectus (sensu lato). Using published data for modern plants and soils, we construct a framework for ecological interpretations of stable carbon-isotope compositions (expressed as δ(13)C values) of lipid biomarkers from ancient plants. Within this framework, δ(13)C values for sedimentary leaf lipids and total organic carbon from Olduvai Gorge indicate recurrent ecosystem variations, where open C(4) grasslands abruptly transitioned to closed C(3) forests within several hundreds to thousands of years. Carbon-isotopic signatures correlate most strongly with Earth's orbital geometry (precession), and tropical sea-surface temperatures are significant secondary predictors in partial regression analyses. The scale and pace of repeated ecosystem variations at Olduvai Gorge contrast with long-held views of directional or stepwise aridification and grassland expansion in eastern Africa during the early Pleistocene and provide a local perspective on environmental hypotheses of human evolution.

  15. Ecosystem variability and early human habitats in eastern Africa

    PubMed Central

    Magill, Clayton R.; Ashley, Gail M.; Freeman, Katherine H.

    2013-01-01

    The role of savannas during the course of early human evolution has been debated for nearly a century, in part because of difficulties in characterizing local ecosystems from fossil and sediment records. Here, we present high-resolution lipid biomarker and isotopic signatures for organic matter preserved in lake sediments at Olduvai Gorge during a key juncture in human evolution about 2.0 Ma—the emergence and dispersal of Homo erectus (sensu lato). Using published data for modern plants and soils, we construct a framework for ecological interpretations of stable carbon-isotope compositions (expressed as δ13C values) of lipid biomarkers from ancient plants. Within this framework, δ13C values for sedimentary leaf lipids and total organic carbon from Olduvai Gorge indicate recurrent ecosystem variations, where open C4 grasslands abruptly transitioned to closed C3 forests within several hundreds to thousands of years. Carbon-isotopic signatures correlate most strongly with Earth’s orbital geometry (precession), and tropical sea-surface temperatures are significant secondary predictors in partial regression analyses. The scale and pace of repeated ecosystem variations at Olduvai Gorge contrast with long-held views of directional or stepwise aridification and grassland expansion in eastern Africa during the early Pleistocene and provide a local perspective on environmental hypotheses of human evolution. PMID:23267092

  16. The origin of life and the last universal common ancestor: do we need a change of perspective?

    PubMed

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2009-09-01

    A complete tree with roots, trunk and crown remains an appropriate model to represent all steps of life's development, from the emergence of a unique genetic code up to the last universal common ancestor and its further radiation. Catalytic closure of a mixture of prebiotic polymers is a heuristic alternative to the RNA world. Conjectures about emergence of life in an infinite multiverse should not confuse probability with possibility.

  17. Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection

    PubMed Central

    Hobolth, Asger; Dutheil, Julien Y.; Hawks, John; Schierup, Mikkel H.; Mailund, Thomas

    2011-01-01

    We search the complete orangutan genome for regions where humans are more closely related to orangutans than to chimpanzees due to incomplete lineage sorting (ILS) in the ancestor of human and chimpanzees. The search uses our recently developed coalescent hidden Markov model (HMM) framework. We find ILS present in ∼1% of the genome, and that the ancestral species of human and chimpanzees never experienced a severe population bottleneck. The existence of ILS is validated with simulations, site pattern analysis, and analysis of rare genomic events. The existence of ILS allows us to disentangle the time of isolation of humans and orangutans (the speciation time) from the genetic divergence time, and we find speciation to be as recent as 9–13 million years ago (Mya; contingent on the calibration point). The analyses provide further support for a recent speciation of human and chimpanzee at ∼4 Mya and a diverse ancestor of human and chimpanzee with an effective population size of about 50,000 individuals. Posterior decoding infers ILS for each nucleotide in the genome, and we use this to deduce patterns of selection in the ancestral species. We demonstrate the effect of background selection in the common ancestor of humans and chimpanzees. In agreement with predictions from population genetics, ILS was found to be reduced in exons and gene-dense regions when we control for confounding factors such as GC content and recombination rate. Finally, we find the broad-scale recombination rate to be conserved through the complete ape phylogeny. PMID:21270173

  18. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae.

    PubMed

    Barker, Michael S; Li, Zheng; Kidder, Thomas I; Reardon, Chris R; Lai, Zhao; Oliveira, Luiz O; Scascitelli, Moira; Rieseberg, Loren H

    2016-07-01

    Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature. We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy. We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia. Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels. © 2016 Botanical Society of America.

  19. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Cheng, Joyce; Springer, Mark S.

    2011-01-01

    Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation. PMID:20861053

  20. Embryological Features of Tofieldia glutinosa and Their Bearing on the Early Diversification of Monocotyledonous Plants

    PubMed Central

    Holloway, Samuel J.; Friedman, William E.

    2008-01-01

    Background and Aims Although much is known about the vegetative traits associated with early monocot evolution, less is known about the reproductive features of early monocotyledonous lineages. A study was made of the embryology of Tofieldia glutinosa, a member of an early divergent monocot clade (Tofieldiaceae), and aspects of its development were compared with the development of other early divergent monocots in order to gain insight into defining reproductive features of early monocots. Methods Field-collected developing gynoecial tissues of Tofieldia glutinosa were prepared for histological examination. Over 600 ovules were sectioned and studied using brightfield, differential interference contrast, and fluorescence microscopy. High-resolution digital imaging was used to document important stages of megasporogenesis, megagametogenesis and early endosperm development. Key Results Development of the female gametophyte in T. glutinosa is of a modified Polygonum-type. At maturity the female gametophyte is seven-celled and 11-nucleate with a standard three-celled egg apparatus, a binucleate central cell (where ultimately, the two polar nuclei will fuse into a diploid secondary nucleus) and three binucleate antipodal cells. The antipodal nuclei persist past fertilization, and the process of double fertilization appears to yield a diploid zygote and triploid primary endosperm cell, as is characteristic of plants with Polygonum-type female gametophytes. Endosperm development is helobial, and free-nuclear growth initially proceeds at equal rates in both the micropylar and chalazal endosperm chambers. Conclusions The analysis suggests that the shared common ancestor of monocots possessed persistent and proliferating antipodals similar to those found in T. glutinosa and other early-divergent monocots (e.g. Acorus and members of the Araceae). Helobial endosperm among monocots evolved once in the common ancestor of all monocots excluding Acorus. Thus, the analysis further

  1. Cadmium contamination of early human milk.

    PubMed

    Sikorski, R; Paszkowski, T; Radomański, T; Szkoda, J

    1989-01-01

    The concentration of cadmium was measured by flame atomic absorption spectrometry in colostrum samples obtained from 110 women on the 4th postpartum day. Detectable amounts of cadmium were found in 95% of the examined samples and the geometric mean of the determined values was 0.002 mg/kg. In 3 cases (2.7%, the examined neonates received via mother's milk an amount of cadmium exceeding the maximum daily intake level for this metal. Maternal age, parity and place of residence did not affect the determined cadmium levels of milk. Cadmium content in the early human milk of current smokers did not differ significantly from that of nonsmoking mothers.

  2. The early spread and epidemic ignition of HIV-1 in human populations

    PubMed Central

    Faria, Nuno R.; Rambaut, Andrew; Suchard, Marc A.; Baele, Guy; Bedford, Trevor; Ward, Melissa J.; Tatem, Andrew J.; Sousa, João D.; Arinaminpathy, Nimalan; Pépin, Jacques; Posada, David; Peeters, Martine; Pybus, Oliver G.; Lemey, Philippe

    2014-01-01

    Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations. PMID:25278604

  3. Early cave art and ancient DNA record the origin of European bison

    PubMed Central

    Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M.; Llamas, Bastien; Mitchell, Kieren J.; Ho, Simon Y. W.; Kosintsev, Pavel; Lee, Michael S. Y.; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E.; Doronichev, Vladimir B.; Douka, Katerina; Fordham, Damien A.; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V.; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D.; Taylor, Jeremy F.; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan

    2016-01-01

    The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya). PMID:27754477

  4. Early evolution of radial glial cells in Bilateria

    PubMed Central

    Karl, Anett; Beckers, Patrick; Kaul-Strehlow, Sabrina; Ulbricht, Elke; Kourtesis, Ioannis; Kuhrt, Heidrun; Hausen, Harald; Reichenbach, Andreas; Bleidorn, Christoph

    2017-01-01

    Bilaterians usually possess a central nervous system, composed of neurons and supportive cells called glial cells. Whereas neuronal cells are highly comparable in all these animals, glial cells apparently differ, and in deuterostomes, radial glial cells are found. These particular secretory glial cells may represent the archetype of all (macro) glial cells and have not been reported from protostomes so far. This has caused controversial discussions of whether glial cells represent a homologous bilaterian characteristic or whether they (and thus, centralized nervous systems) evolved convergently in the two main clades of bilaterians. By using histology, transmission electron microscopy, immunolabelling and whole-mount in situ hybridization, we show here that protostomes also possess radial glia-like cells, which are very likely to be homologous to those of deuterostomes. Moreover, our antibody staining indicates that the secretory character of radial glial cells is maintained throughout their various evolutionary adaptations. This implies an early evolution of radial glial cells in the last common ancestor of Protostomia and Deuterostomia. Furthermore, it suggests that an intraepidermal nervous system—composed of sensory cells, neurons and radial glial cells—was probably the plesiomorphic condition in the bilaterian ancestor. PMID:28724733

  5. Welcome to the Twilight Zone: a forgotten early phase of human evolutionary studies.

    PubMed

    Delisle, Richard G

    2012-06-01

    The field of paleoanthropology arose out of a strange and unacknowledged early phase of development prior to about the 1930s. It is often assumed that a key pillar of the discipline, the unity of humankind--the notion that humans are clearly separated phylogenetically (genealogically) from other non-human primates--was widely accepted from the inception of paleoanthropology around 1860. However, a final consensus on this fundamental question only appeared later on in the 20th century. This paper will focus on two key areas of disagreement, which reveal the unsettled state of this question during this early period: the question of uncertainty with respect to the number, identity and boundary of primate species (including humans) which prevailed in the 18th, 19th and early 20th centuries; and the matter of uncertainty with respect to the nature of the phylogenetic relationships among the various human populations and the other primate species which prevailed between 1864 and 1931. Consideration of these matters reveals that the modern research structure that paleoanthropologists take for granted today is much more recent than believed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The human early-life exposome (HELIX): project rationale and design.

    PubMed

    Vrijheid, Martine; Slama, Rémy; Robinson, Oliver; Chatzi, Leda; Coen, Muireann; van den Hazel, Peter; Thomsen, Cathrine; Wright, John; Athersuch, Toby J; Avellana, Narcis; Basagaña, Xavier; Brochot, Celine; Bucchini, Luca; Bustamante, Mariona; Carracedo, Angel; Casas, Maribel; Estivill, Xavier; Fairley, Lesley; van Gent, Diana; Gonzalez, Juan R; Granum, Berit; Gražulevičienė, Regina; Gutzkow, Kristine B; Julvez, Jordi; Keun, Hector C; Kogevinas, Manolis; McEachan, Rosemary R C; Meltzer, Helle Margrete; Sabidó, Eduard; Schwarze, Per E; Siroux, Valérie; Sunyer, Jordi; Want, Elizabeth J; Zeman, Florence; Nieuwenhuijsen, Mark J

    2014-06-01

    Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure-health effect relationships. The "exposome" concept encompasses the totality of exposures from conception onward, complementing the genome. The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the "early-life exposome." Here we describe the general design of the project. In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother-child pairs, and biomarkers will be measured in a subset of 1,200 mother-child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure-response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome.

  7. Early Modern Humans and Morphological Variation in Southeast Asia: Fossil Evidence from Tam Pa Ling, Laos

    PubMed Central

    Demeter, Fabrice; Shackelford, Laura; Westaway, Kira; Duringer, Philippe; Bacon, Anne-Marie; Ponche, Jean-Luc; Wu, Xiujie; Sayavongkhamdy, Thongsa; Zhao, Jian-Xin; Barnes, Lani; Boyon, Marc; Sichanthongtip, Phonephanh; Sénégas, Frank; Karpoff, Anne-Marie; Patole-Edoumba, Elise; Coppens, Yves; Braga, José

    2015-01-01

    Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling‘s cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3. PMID:25849125

  8. A Universal Trend among Proteomes Indicates an Oily Last Common Ancestor

    PubMed Central

    Mannige, Ranjan V.; Brooks, Charles L.; Shakhnovich, Eugene I.

    2012-01-01

    Despite progresses in ancestral protein sequence reconstruction, much needs to be unraveled about the nature of the putative last common ancestral proteome that served as the prototype of all extant lifeforms. Here, we present data that indicate a steady decline (oil escape) in proteome hydrophobicity over species evolvedness (node number) evident in 272 diverse proteomes, which indicates a highly hydrophobic (oily) last common ancestor (LCA). This trend, obtained from simple considerations (free from sequence reconstruction methods), was corroborated by regression studies within homologous and orthologous protein clusters as well as phylogenetic estimates of the ancestral oil content. While indicating an inherent irreversibility in molecular evolution, oil escape also serves as a rare and universal reaction-coordinate for evolution (reinforcing Darwin's principle of Common Descent), and may prove important in matters such as (i) explaining the emergence of intrinsically disordered proteins, (ii) developing composition- and speciation-based “global” molecular clocks, and (iii) improving the statistical methods for ancestral sequence reconstruction. PMID:23300421

  9. Late Pleistocene climate drivers of early human migration.

    PubMed

    Timmermann, Axel; Friedrich, Tobias

    2016-10-06

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  10. Late Pleistocene climate drivers of early human migration

    NASA Astrophysics Data System (ADS)

    Timmermann, Axel; Friedrich, Tobias

    2016-10-01

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  11. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.

    PubMed

    Hsiang, Allison Y; Field, Daniel J; Webster, Timothy H; Behlke, Adam D B; Davis, Matthew B; Racicot, Rachel A; Gauthier, Jacques A

    2015-05-20

    The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K

  12. Early androgen exposure and human gender development.

    PubMed

    Hines, Melissa; Constantinescu, Mihaela; Spencer, Debra

    2015-01-01

    During early development, testosterone plays an important role in sexual differentiation of the mammalian brain and has enduring influences on behavior. Testosterone exerts these influences at times when the testes are active, as evidenced by higher concentrations of testosterone in developing male than in developing female animals. This article critically reviews the available evidence regarding influences of testosterone on human gender-related development. In humans, testosterone is elevated in males from about weeks 8 to 24 of gestation and then again during early postnatal development. Individuals exposed to atypical concentrations of testosterone or other androgenic hormones prenatally, for example, because of genetic conditions or because their mothers were prescribed hormones during pregnancy, have been consistently found to show increased male-typical juvenile play behavior, alterations in sexual orientation and gender identity (the sense of self as male or female), and increased tendencies to engage in physically aggressive behavior. Studies of other behavioral outcomes following dramatic androgen abnormality prenatally are either too small in their numbers or too inconsistent in their results, to provide similarly conclusive evidence. Studies relating normal variability in testosterone prenatally to subsequent gender-related behavior have produced largely inconsistent results or have yet to be independently replicated. For studies of prenatal exposures in typically developing individuals, testosterone has been measured in single samples of maternal blood or amniotic fluid. These techniques may not be sufficiently powerful to consistently detect influences of testosterone on behavior, particularly in the relatively small samples that have generally been studied. The postnatal surge in testosterone in male infants, sometimes called mini-puberty, may provide a more accessible opportunity for measuring early androgen exposure during typical development. This

  13. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution.

    PubMed

    Zihlman, Adrienne L; Bolter, Debra R

    2015-06-16

    The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition.

  14. Development of a Human Neurovascular Unit Organotypic Systems Model of Early Brain Development

    EPA Science Inventory

    The inability to model human brain and blood-brain barrier development in vitro poses a major challenge in studies of how chemicals impact early neurogenic periods. During human development, disruption of thyroid hormone (TH) signaling is related to adverse morphological effects ...

  15. Early-season avian deaths from West Nile virus as warnings of human infection

    USGS Publications Warehouse

    Guptill, S.C.; Julian, K.G.; Campbell, G.L.; Price, S.D.; Marfin, A.A.

    2003-01-01

    An analysis of 2001 and 2002 West Nile virus (WNV) surveillance data shows that counties that report WNV-infected dead birds early in the transmission season are more likely to report subsequent WNV disease cases in humans than are counties that do not report early WNV-infected dead birds.

  16. Monitoring of human populations for early markers of cadmium toxicity: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Bruce A.

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure.more » Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system

  17. Monitoring of human populations for early markers of cadmium toxicity: a review.

    PubMed

    Fowler, Bruce A

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure. Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in

  18. Early and Late Damages in Chromosome 3 of Human Lymphocytes After Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Mangala, Lingegowda; Zhang, Ye; Kahdim, Munira; Wilson, Bobby; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    Tumor formation in humans or animals is a multi-step process. An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. GI is defined as elevated or persistent genetic damages occurring many generations after the cells are exposed. While early studies have demonstrated radiation-induced GI in several cell types as detected in endpoints such as mutation, apoptosis and damages in chromosomes, the dependence of GI on the quality of radiation remains uncertain. To investigate GI in human lymphocytes induced by both low- and high-LET radiation, we initially exposed white blood cells collected from healthy subjects to gamma rays in vitro, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis post irradiation and at several intervals during the culture period. Among a number of biological endpoints planned for the project, the multi-color banding fluorescent in situ hybridization (mBAND) allows identification of inversions that were expected to be stable. We present here early and late chromosome aberrations detected with mBAND in chromosome 3 after gamma exposure. Comparison of chromosome damages in between human lymphocytes and human epithelial cells is also discussed

  19. A Re-Appraisal of the Early Andean Human Remains from Lauricocha in Peru

    PubMed Central

    Kuzminsky, Susan; Rohland, Nadin; Santos, Fabrício R.; Kaulicke, Peter; Valverde, Guido; Richards, Stephen M.; Nordenfelt, Susanne; Seidenberg, Verena; Mallick, Swapan; Cooper, Alan; Reich, David; Haak, Wolfgang

    2015-01-01

    The discovery of human remains from the Lauricocha cave in the Central Andean highlands in the 1960’s provided the first direct evidence for human presence in the high altitude Andes. The skeletons found at this site were ascribed to the Early to Middle Holocene and represented the oldest known population of Western South America, and thus were used in several studies addressing the early population history of the continent. However, later excavations at Lauricocha led to doubts regarding the antiquity of the site. Here, we provide new dating, craniometric, and genetic evidence for this iconic site. We obtained new radiocarbon dates, generated complete mitochondrial genomes and nuclear SNP data from five individuals, and re-analyzed the human remains of Lauricocha to revise the initial morphological and craniometric analysis conducted in the 1960’s. We show that Lauricocha was indeed occupied in the Early to Middle Holocene but the temporal spread of dates we obtained from the human remains show that they do not qualify as a single contemporaneous population. However, the genetic results from five of the individuals fall within the spectrum of genetic diversity observed in pre-Columbian and modern Native Central American populations. PMID:26061688

  20. Early primate evolution in Afro-Arabia.

    PubMed

    Seiffert, Erik R

    2012-11-01

    The peculiar mammalian fauna that inhabited Afro-Arabia during the Paleogene first came to the attention of the scientific community in the early part of the twentieth century, when Andrews1 and Schlosser2 published their landmark descriptions of fossil mammals from the Fayum Depression in northern Egypt. Their studies revealed a highly endemic assemblage of land mammals that included the first known Paleogene records of hyraxes, proboscideans, and anthropoid primates, but which lacked ancestors of many iconic mammalian lineages that are found in Africa today, such as rhinos, zebras, bovids, giraffes, and cats. Over the course of the last century, the Afro-Arabian Paleogene has yielded fossil remains of several other endemic mammalian lineages,3 as well as a diversity of prosimian primates,4 but we are only just beginning to understand how the continent's faunal composition came to be, through ancient processes such as the movement of tectonic plates, changes in climate and sea level, and early phylogenetic splits among the major groups of placental mammals. These processes, in turn, made possible chance dispersal events that were critical in determining the competitive landscape--and, indeed, the survival--of our earliest anthropoid ancestors. Newly discovered fossils indicate that the persistence and later diversification of Anthropoidea was not an inevitable result of the clade's competitive isolation or adaptive superiority, as has often been assumed, but rather was as much due to the combined influences of serendipitous geographic conditions, global cooling, and competition with a group of distantly related extinct strepsirrhines with anthropoid-like adaptations known as adapiforms. Many of the important details of this story would not be known, and could never have been predicted, without the fossil evidence that has recently been unearthed by field paleontologists. Copyright © 2012 Wiley Periodicals, Inc.

  1. How institutions shaped the last major evolutionary transition to large-scale human societies

    PubMed Central

    Powers, Simon T.; van Schaik, Carel P.; Lehmann, Laurent

    2016-01-01

    What drove the transition from small-scale human societies centred on kinship and personal exchange, to large-scale societies comprising cooperation and division of labour among untold numbers of unrelated individuals? We propose that the unique human capacity to negotiate institutional rules that coordinate social actions was a key driver of this transition. By creating institutions, humans have been able to move from the default ‘Hobbesian’ rules of the ‘game of life’, determined by physical/environmental constraints, into self-created rules of social organization where cooperation can be individually advantageous even in large groups of unrelated individuals. Examples include rules of food sharing in hunter–gatherers, rules for the usage of irrigation systems in agriculturalists, property rights and systems for sharing reputation between mediaeval traders. Successful institutions create rules of interaction that are self-enforcing, providing direct benefits both to individuals that follow them, and to individuals that sanction rule breakers. Forming institutions requires shared intentionality, language and other cognitive abilities largely absent in other primates. We explain how cooperative breeding likely selected for these abilities early in the Homo lineage. This allowed anatomically modern humans to create institutions that transformed the self-reliance of our primate ancestors into the division of labour of large-scale human social organization. PMID:26729937

  2. High early life mortality in free-ranging dogs is largely influenced by humans

    PubMed Central

    Paul, Manabi; Sen Majumder, Sreejani; Sau, Shubhra; Nandi, Anjan K.; Bhadra, Anindita

    2016-01-01

    Free-ranging dogs are a ubiquitous part of human habitations in many developing countries, leading a life of scavengers dependent on human wastes for survival. The effective management of free-ranging dogs calls for understanding of their population dynamics. Life expectancy at birth and early life mortality are important factors that shape life-histories of mammals. We carried out a five year-long census based study in seven locations of West Bengal, India, to understand the pattern of population growth and factors affecting early life mortality in free-ranging dogs. We observed high rates of mortality, with only ~19% of the 364 pups from 95 observed litters surviving till the reproductive age; 63% of total mortality being human influenced. While living near people increases resource availability for dogs, it also has deep adverse impacts on their population growth, making the dog-human relationship on streets highly complex. PMID:26804633

  3. Four queries concerning the metaphysics of early human embryogenesis.

    PubMed

    Howsepian, A A

    2008-04-01

    In this essay, I attempt to provide answers to the following four queries concerning the metaphysics of early human embryogenesis. (1) Following its first cellular fission, is it coherent to claim that one and only one of two "blastomeric" twins of a human zygote is identical with that zygote? (2) Following the fusion of two human pre-embryos, is it coherent to claim that one and only one pre-fusion pre-embryo is identical with that postfusion pre-embryo? (3) Does a live human being come into existence only when its brain comes into existence? (4) At implantation, does a pre-embryo become a mere part of its mother? I argue that either if things have quidditative properties or if criterialism is false, then queries (1) and (2) can be answered in the affirmative; that in light of recent developments in theories of human death and in light of a more "functional" theory of brains, query (3) can be answered in the negative; and that plausible mereological principles require a negative answer to query (4).

  4. Phylogenetic analysis and victim contact tracing of rabies virus from humans and dogs in Bali, Indonesia.

    PubMed

    Mahardika, G N K; Dibia, N; Budayanti, N S; Susilawathi, N M; Subrata, K; Darwinata, A E; Wignall, F S; Richt, J A; Valdivia-Granda, W A; Sudewi, A A R

    2014-06-01

    The emergence of human and animal rabies in Bali since November 2008 has attracted local, national and international interest. The potential origin and time of introduction of rabies virus to Bali is described. The nucleoprotein (N) gene of rabies virus from dog brain and human clinical specimens was sequenced using an automated DNA sequencer. Phylogenetic inference with Bayesian Markov Chain Monte Carlo (MCMC) analysis using the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) v. 1.7.5 software confirmed that the outbreak of rabies in Bali was caused by an Indonesian lineage virus following a single introduction. The ancestor of Bali viruses was the descendant of a virus from Kalimantan. Contact tracing showed that the event most likely occurred in early 2008. The introduction of rabies into a large unvaccinated dog population in Bali clearly demonstrates the risk of disease transmission for government agencies and should lead to an increased preparedness and efforts for sustained risk reduction to prevent such events from occurring in future.

  5. Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata.

    PubMed

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2015-01-01

    Ancestor-descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR-the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea-Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Ancestor of land plants acquired the DNA-3-methyladenine glycosylase (MAG) gene from bacteria through horizontal gene transfer.

    PubMed

    Fang, Huimin; Huangfu, Liexiang; Chen, Rujia; Li, Pengcheng; Xu, Shuhui; Zhang, Enying; Cao, Wei; Liu, Li; Yao, Youli; Liang, Guohua; Xu, Chenwu; Zhou, Yong; Yang, Zefeng

    2017-08-24

    The origin and evolution of land plants was an important event in the history of life and initiated the establishment of modern terrestrial ecosystems. From water to terrestrial environments, plants needed to overcome the enhanced ultraviolet (UV) radiation and many other DNA-damaging agents. Evolving new genes with the function of DNA repair is critical for the origin and radiation of land plants. In bacteria, the DNA-3-methyladenine glycosylase (MAG) recognizes of a variety of base lesions and initiates the process of the base excision repair for damaged DNA. The homologs of MAG gene are present in all major lineages of streptophytes, and both the phylogenic and sequence similarity analyses revealed that green plant MAG gene originated through an ancient horizontal gene transfer (HGT) event from bacteria. Experimental evidence demonstrated that the expression of the maize ZmMAG gene was induced by UV and zeocin, both of which are known as DNA-damaging agents. Further investigation revealed that Streptophyta MAG genes had undergone positive selection during the initial evolutionary period in the ancestor of land plants. Our findings demonstrated that the ancient HGT of MAG to the ancestor of land plants probably played an important role in preadaptation to DNA-damaging agents in terrestrial environments.

  7. Early Complementopathy after Multiple Injuries in Humans

    PubMed Central

    Burk, Anne-Maud; Martin, Myriam; Flierl, Michael A.; Rittirsch, Daniel; Helm, Matthias; Lampl, Lorenz; Bruckner, Uwe; Stahl, Gregory L.; Blom, Anna M.; Perl, Mario; Gebhard, Florian; Huber-Lang, Markus

    2012-01-01

    After severe tissue injury, innate immunity mounts a robust systemic inflammatory response. However, little is known about the immediate impact of multiple trauma on early complement function in humans. In the present study we hypothesized that multiple trauma results in immediate activation, consumption and dysfunction of the complement cascade and that the resulting severe “complementopathy” may be associated with morbidity and mortality. Therefore a prospective multicenter study with 25 healthy volunteers and 40 polytrauma patients (mean injury severity score [ISS] = 30.3 ± 2.9) was performed. After polytrauma serum was collected as early as possible at the scene, upon admission to the emergency room and 4, 12, 24, 120 and 240 hours post trauma and analysed for the complement profile. Complement hemolytic activity (CH-50) was massively reduced within the first 24 h after injury, recovered only 5 days after trauma and discriminated between lethal and non-lethal 28-day outcome. Serum levels of the complement activation products C3a and C5a were significantly elevated throughout the entire observation period and correlated with the severity of traumatic brain injury and survival. The soluble terminal complement complex SC5b-9 and mannose-binding lectin (MBL) showed a biphasic response after trauma. Key fluid phase inhibitors of complement, such as C4b-binding protein (C4BP) and factor I, were significantly diminished early after trauma. The present data indicate an almost synchronically rapid activation and dysfunction of complement suggesting a trauma-induced “complementopathy” early after injury. These events may participate to the impairment of the innate immune response observed after severe trauma. PMID:22258234

  8. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes

    PubMed Central

    Suh, Alexander; Witt, Christopher C.; Menger, Juliana; Sadanandan, Keren R.; Podsiadlowski, Lars; Gerth, Michael; Weigert, Anne; McGuire, Jimmy A.; Mudge, Joann; Edwards, Scott V.; Rheindt, Frank E.

    2016-01-01

    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83–99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25–22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20–17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity. PMID:27097561

  9. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors.

    PubMed

    Cau, Andrea

    2017-01-01

    Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus , Equinoxiodus, Lavocatodus and Neoceratodus , but reject those to Ceratodus and Ferganoceratodus . The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also

  10. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy.

    PubMed

    Baharom, Faezzah; Thomas, Oliver S; Lepzien, Rico; Mellman, Ira; Chalouni, Cécile; Smed-Sörensen, Anna

    2017-01-01

    Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.

  11. Starch grains on human teeth reveal early broad crop diet in northern Peru

    PubMed Central

    Piperno, Dolores R.; Dillehay, Tom D.

    2008-01-01

    Previous research indicates that the Ñanchoc Valley in northern Peru was an important locus of early and middle Holocene human settlement, and that between 9200 and 5500 14C yr B.P. the valley inhabitants adopted major crop plants such as squash (Cucurbita moschata), peanuts (Arachis sp.), and cotton (Gossypium barbadense). We report here an examination of starch grains preserved in the calculus of human teeth from these sites that provides direct evidence for the early consumption of cultivated squash and peanuts along with two other major food plants not previously detected. Starch from the seeds of Phaseolus and Inga feuillei, the flesh of Cucurbita moschata fruits, and the nuts of Arachis was routinely present on numerous teeth that date to between 8210 and 6970 14C yr B.P. Early plant diets appear to have been diverse and stable through time and were rich in cultivated foods typical of later Andean agriculture. Our data provide early archaeological evidence for Phaseolus beans and I. feuillei, an important tree crop, and indicate that effective food production systems that contributed significant dietary inputs were present in the Ñanchoc region by 8000 14C yr B.P. Starch grain studies of dental remains document plants and edible parts of them not normally preserved in archaeological records and can assume primary roles as direct indicators of ancient human diets and agriculture. PMID:19066222

  12. European early modern humans and the fate of the Neandertals

    PubMed Central

    Trinkaus, Erik

    2007-01-01

    A consideration of the morphological aspects of the earliest modern humans in Europe (more than ≈33,000 B.P.) and the subsequent Gravettian human remains indicates that they possess an anatomical pattern congruent with the autapomorphic (derived) morphology of the earliest (Middle Paleolithic) African modern humans. However, they exhibit a variable suite of features that are either distinctive Neandertal traits and/or plesiomorphic (ancestral) aspects that had been lost among the African Middle Paleolithic modern humans. These features include aspects of neurocranial shape, basicranial external morphology, mandibular ramal and symphyseal form, dental morphology and size, and anteroposterior dental proportions, as well as aspects of the clavicles, scapulae, metacarpals, and appendicular proportions. The ubiquitous and variable presence of these morphological features in the European earlier modern human samples can only be parsimoniously explained as a product of modest levels of assimilation of Neandertals into early modern human populations as the latter dispersed across Europe. This interpretation is in agreement with current analyses of recent and past human molecular data. PMID:17452632

  13. Early childhood development in Rwanda: a policy analysis of the human rights legal framework.

    PubMed

    Binagwaho, Agnes; Scott, Kirstin W; Harward, Sardis H

    2016-01-12

    Early childhood development (ECD) is a critical period that continues to impact human health and productivity throughout the lifetime. Failing to provide policies and programs that support optimal developmental attainment when such services are financially and logistically feasible can result in negative population health, education and economic consequences that might otherwise be avoided. Rwanda, with its commitment to rights-based policy and program planning, serves as a case study for examination of the national, regional, and global human rights legal frameworks that inform ECD service delivery. In this essay, we summarize key causes and consequences of the loss of early developmental potential and how this relates to the human rights legal framework in Rwanda. We contend that sub-optimal early developmental attainment constitutes a violation of individuals' rights to health, education, and economic prosperity. These rights are widely recognized in global, regional and national human rights instruments, and are guaranteed by Rwanda's constitution. Recent policy implementation by several Rwandan ministries has increased access to health and social services that promote achievement of full developmental potential. These ECD-centric activities are characterized by an integrated approach to strengthening the services provided by several public sectors. Combining population level activities with those at the local level, led by local community health workers and women's councils, can bolster community education and ensure uptake of ECD services. Realization of the human rights to health, education, and economic prosperity requires and benefits from attention to the period of ECD, as early childhood has the potential to be an opportunity for expedient intervention or the first case of human rights neglect in a lifetime of rights violations. Efforts to improve ECD services and outcomes at the population level require multisector collaboration at the highest echelons

  14. Functional and Structural Characterization of FAU Gene/Protein from Marine Sponge Suberites domuncula

    PubMed Central

    Perina, Dragutin; Korolija, Marina; Popović Hadžija, Marijana; Grbeša, Ivana; Belužić, Robert; Imešek, Mirna; Morrow, Christine; Marjanović, Melanija Posavec; Bakran-Petricioli, Tatjana; Mikoč, Andreja; Ćetković, Helena

    2015-01-01

    Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (FAU) gene is down-regulated in human prostate, breast and ovarian cancers. Moreover, its dysregulation is associated with poor prognosis in breast cancer. Sponges (Porifera) are animals without tissues which branched off first from the common ancestor of all metazoans. A large majority of genes implicated in human cancers have their homologues in the sponge genome. Our study suggests that FAU gene from the sponge Suberites domuncula reflects characteristics of the FAU gene from the metazoan ancestor, which have changed only slightly during the course of animal evolution. We found pro-apoptotic activity of sponge FAU protein. The same as its human homologue, sponge FAU increases apoptosis in human HEK293T cells. This indicates that the biological functions of FAU, usually associated with “higher” metazoans, particularly in cancer etiology, possess a biochemical background established early in metazoan evolution. The ancestor of all animals possibly possessed FAU protein with the structure and function similar to evolutionarily more recent versions of the protein, even before the appearance of true tissues and the origin of tumors and metastasis. It provides an opportunity to use pre-bilaterian animals as a simpler model for studying complex interactions in human cancerogenesis. PMID:26198235

  15. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution

    PubMed Central

    Zihlman, Adrienne L.; Bolter, Debra R.

    2015-01-01

    The human body has been shaped by natural selection during the past 4–5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition. PMID:26034269

  16. Early development of physical aggression and early risk factors for chronic physical aggression in humans.

    PubMed

    Tremblay, Richard E

    2014-01-01

    This chapter describes the state of knowledge on the development of physical aggression from early childhood to adulthood, the long term outcomes of chronic physical aggression during childhood and the risk factors for chronic physical aggression. Unraveling the development of physical aggression is important to understand when and why humans start using physical aggression, to understand why some humans suffer from chronic physical aggression and to understand how to prevent the development of this disorder which causes much distress to the aggressors and their victims. The study of the developmental origins of aggression also sheds light on the reasons why situational prevention of aggression is important at all ages and in all cultures.

  17. Earliest evidence of modern human life history in North African early Homo sapiens.

    PubMed

    Smith, Tanya M; Tafforeau, Paul; Reid, Donald J; Grün, Rainer; Eggins, Stephen; Boutakiout, Mohamed; Hublin, Jean-Jacques

    2007-04-10

    Recent developmental studies demonstrate that early fossil hominins possessed shorter growth periods than living humans, implying disparate life histories. Analyses of incremental features in teeth provide an accurate means of assessing the age at death of developing dentitions, facilitating direct comparisons with fossil and modern humans. It is currently unknown when and where the prolonged modern human developmental condition originated. Here, an application of x-ray synchrotron microtomography reveals that an early Homo sapiens juvenile from Morocco dated at 160,000 years before present displays an equivalent degree of tooth development to modern European children at the same age. Crown formation times in the juvenile's macrodont dentition are higher than modern human mean values, whereas root development is accelerated relative to modern humans but is less than living apes and some fossil hominins. The juvenile from Jebel Irhoud is currently the oldest-known member of Homo with a developmental pattern (degree of eruption, developmental stage, and crown formation time) that is more similar to modern H. sapiens than to earlier members of Homo. This study also underscores the continuing importance of North Africa for understanding the origins of human anatomical and behavioral modernity. Corresponding biological and cultural changes may have appeared relatively late in the course of human evolution.

  18. Cell-based interventions for neurologic conditions: ethical challenges for early human trials.

    PubMed

    Mathews, D J H; Sugarman, J; Bok, H; Blass, D M; Coyle, J T; Duggan, P; Finkel, J; Greely, H T; Hillis, A; Hoke, A; Johnson, R; Johnston, M; Kahn, J; Kerr, D; Kurtzberg, J; Liao, S M; McDonald, J W; McKhann, G; Nelson, K B; Rao, M; Regenberg, A; Siegel, A W; Smith, K; Solter, D; Song, H; Vescovi, A; Young, W; Gearhart, J D; Faden, R

    2008-07-22

    Attempts to translate basic stem cell research into treatments for neurologic diseases and injury are well under way. With a clinical trial for one such treatment approved and in progress in the United States, and additional proposals under review, we must begin to address the ethical issues raised by such early forays into human clinical trials for cell-based interventions for neurologic conditions. An interdisciplinary working group composed of experts in neuroscience, cell biology, bioethics, law, and transplantation, along with leading disease researchers, was convened twice over 2 years to identify and deliberate on the scientific and ethical issues raised by the transition from preclinical to clinical research of cell-based interventions for neurologic conditions. While the relevant ethical issues are in many respects standard challenges of human subjects research, they are heightened in complexity by the novelty of the science, the focus on the CNS, and the political climate in which the science is proceeding. Distinctive challenges confronting US scientists, administrators, institutional review boards, stem cell research oversight committees, and others who will need to make decisions about work involving stem cells and their derivatives and evaluate the ethics of early human trials include evaluating the risks, safety, and benefits of these trials, determining and evaluating cell line provenance, and determining inclusion criteria, informed consent, and the ethics of conducting early human trials in the public spotlight. Further study and deliberation by stakeholders is required to move toward professional and institutional policies and practices governing this research.

  19. Inferring human population size and separation history from multiple genome sequences.

    PubMed

    Schiffels, Stephan; Durbin, Richard

    2014-08-01

    The availability of complete human genome sequences from populations across the world has given rise to new population genetic inference methods that explicitly model ancestral relationships under recombination and mutation. So far, application of these methods to evolutionary history more recent than 20,000-30,000 years ago and to population separations has been limited. Here we present a new method that overcomes these shortcomings. The multiple sequentially Markovian coalescent (MSMC) analyzes the observed pattern of mutations in multiple individuals, focusing on the first coalescence between any two individuals. Results from applying MSMC to genome sequences from nine populations across the world suggest that the genetic separation of non-African ancestors from African Yoruban ancestors started long before 50,000 years ago and give information about human population history as recent as 2,000 years ago, including the bottleneck in the peopling of the Americas and separations within Africa, East Asia and Europe.

  20. Classification of human pathogen bacteria for early screening using electronic nose

    NASA Astrophysics Data System (ADS)

    Zulkifli, Syahida Amani; Mohamad, Che Wan Syarifah Robiah; Abdullah, Abu Hassan

    2017-10-01

    This paper present human pathogen bacteria for early screening using electronic nose. Electronic nose (E-nose) known as gas sensor array is a device that analyze the odor measurement give the fast response and less time consuming for clinical diagnosis. Many bacterial pathogens could lead to life threatening infections. Accurate and rapid diagnosis is crucial for the successful management of these infections disease. The conventional method need more time to detect the growth of bacterial. Alternatively, the bacteria are Pseudomonas aeruginosa and Shigella cultured on different media agar can be detected and classifies according to the volatile compound in shorter time using electronic nose (E-nose). Then, the data from electronic nose (E-nose) is processed using statistical method which is principal component analysis (PCA). The study shows the capability of electronic nose (E-nose) for early screening for bacterial infection in human stomach.

  1. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    PubMed Central

    2011-01-01

    Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton. PMID:21787419

  2. Early modern human lithic technology from Jerimalai, East Timor.

    PubMed

    Marwick, Ben; Clarkson, Chris; O'Connor, Sue; Collins, Sophie

    2016-12-01

    Jerimalai is a rock shelter in East Timor with cultural remains dated to 42,000 years ago, making it one of the oldest known sites of modern human activity in island Southeast Asia. It has special global significance for its record of early pelagic fishing and ancient shell fish hooks. It is also of regional significance for its early occupation and comparatively large assemblage of Pleistocene stone artefacts. Three major findings arise from our study of the stone artefacts. First, there is little change in lithic technology over the 42,000 year sequence, with the most noticeable change being the addition of new artefact types and raw materials in the mid-Holocene. Second, the assemblage is dominated by small chert cores and implements rather than pebble tools and choppers, a pattern we argue pattern, we argue, that is common in island SE Asian sites as opposed to mainland SE Asian sites. Third, the Jerimalai assemblage bears a striking resemblance to the assemblage from Liang Bua, argued by the Liang Bua excavation team to be associated with Homo floresiensis. We argue that the near proximity of these two islands along the Indonesian island chain (c.100 km apart), the long antiquity of modern human occupation in the region (as documented at Jerimalai), and the strong resemblance of distinctive flake stone technologies seen at both sites, raises the intriguing possibility that both the Liang Bua and Jerimalai assemblages were created by modern humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Discontinuity of Human Presence at Atapuerca during the Early Middle Pleistocene: A Matter of Ecological Competition?

    PubMed Central

    Rodríguez-Gómez, Guillermo; Mateos, Ana; Martín-González, Jesús Angel; Blasco, Ruth; Rosell, Jordi; Rodríguez, Jesús

    2014-01-01

    Increasing evidence suggests that the European human settlement is older than 1.2 Ma. However, there is a fierce debate about the continuity or discontinuity of the early human settlement of Europe. In particular, evidence of human presence in the interval 0.7−0.5 Ma is scarce in comparison with evidence for the previous and later periods. Here, we present a case study in which the environmental conditions at Sierra de Atapuerca in the early Middle Pleistocene, a period without evidence of human presence, are compared with the conditions in the previous period, for which a relatively intense human occupation is documented. With this objective in mind, the available resources for a human population and the intensity of competition between secondary consumers during the two periods are compared using a mathematical model. The Gran Dolina site TD8 level, dated to 0.7−0.6 Ma, is taken as representative of the period during which Atapuerca was apparently not occupied by humans. Conditions at TD8 are compared with those of the previous period, represented by the TD6-2 level, which has yielded abundant evidence of intense human occupation. The results show that survival opportunities for a hypothetical human population were lower at TD8 than they were at TD6-2. Increased resource competition between secondary consumers arises as a possible explanation for the absence of human occupation at Atapuerca in the early Middle Pleistocene. PMID:25054305

  4. Discontinuity of human presence at Atapuerca during the early Middle Pleistocene: a matter of ecological competition?

    PubMed

    Rodríguez-Gómez, Guillermo; Mateos, Ana; Martín-González, Jesús Angel; Blasco, Ruth; Rosell, Jordi; Rodríguez, Jesús

    2014-01-01

    Increasing evidence suggests that the European human settlement is older than 1.2 Ma. However, there is a fierce debate about the continuity or discontinuity of the early human settlement of Europe. In particular, evidence of human presence in the interval 0.7-0.5 Ma is scarce in comparison with evidence for the previous and later periods. Here, we present a case study in which the environmental conditions at Sierra de Atapuerca in the early Middle Pleistocene, a period without evidence of human presence, are compared with the conditions in the previous period, for which a relatively intense human occupation is documented. With this objective in mind, the available resources for a human population and the intensity of competition between secondary consumers during the two periods are compared using a mathematical model. The Gran Dolina site TD8 level, dated to 0.7-0.6 Ma, is taken as representative of the period during which Atapuerca was apparently not occupied by humans. Conditions at TD8 are compared with those of the previous period, represented by the TD6-2 level, which has yielded abundant evidence of intense human occupation. The results show that survival opportunities for a hypothetical human population were lower at TD8 than they were at TD6-2. Increased resource competition between secondary consumers arises as a possible explanation for the absence of human occupation at Atapuerca in the early Middle Pleistocene.

  5. Experimental vitrification of human compacted morulae and early blastocysts using fine diameter plastic micropipettes.

    PubMed

    Cremades, N; Sousa, M; Silva, J; Viana, P; Sousa, S; Oliveira, C; Teixeira da Silva, J; Barros, A

    2004-02-01

    Vitrification of human blastocysts has been successfully applied using grids, straws and cryoloops. We assessed the survival rate of human compacted morulae and early blastocysts vitrified in pipette tips with a smaller inner diameter and solution volume than the previously described open pulled straw (OPS) method. Excess day 5 human embryos (n = 63) were experimentally vitrified in vessels. Embryos were incubated at 37 degrees C with sperm preparation medium (SPM) for 1 min, SPM + 7.5% ethylene glycol (EG)/dimethylsulphoxide (DMSO) for 3 min, and SPM + 16.5% EG + 16.5% DMSO + 0.67 mol/l sucrose for 25 s. They were then aspirated (0.5 microl) into a plastic micropipette tip (0.36 mm inner diameter), exposed to liquid nitrogen (LN(2)) vapour for 2 min before being placed into a pre-cooled cryotube, which was then closed and plunged into LN(2). Embryos were warmed and diluted using 0.33 mol/l and 0.2 mol/l sucrose. The survival rate for compacted morulae was 73% (22/30) and 82% (27/33) for early blastocysts. The survival rates of human compacted morulae and early blastocysts after vitrification with this simple technique are similar to those reported in the literature achieved by slow cooling and other vitrification protocols.

  6. Sexual size dimorphism, canine dimorphism, and male-male competition in primates: where do humans fit in?

    PubMed

    Plavcan, J Michael

    2012-03-01

    Sexual size dimorphism is generally associated with sexual selection via agonistic male competition in nonhuman primates. These primate models play an important role in understanding the origins and evolution of human behavior. Human size dimorphism is often hypothesized to be associated with high rates of male violence and polygyny. This raises the question of whether human dimorphism and patterns of male violence are inherited from a common ancestor with chimpanzees or are uniquely derived. Here I review patterns of, and causal models for, dimorphism in humans and other primates. While dimorphism in primates is associated with agonistic male mate competition, a variety of factors can affect male and female size, and thereby dimorphism. The causes of human sexual size dimorphism are uncertain, and could involve several non-mutually-exclusive mechanisms, such as mate competition, resource competition, intergroup violence, and female choice. A phylogenetic reconstruction of the evolution of dimorphism, including fossil hominins, indicates that the modern human condition is derived. This suggests that at least some behavioral similarities with Pan associated with dimorphism may have arisen independently, and not directly from a common ancestor.

  7. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology

    PubMed Central

    Ward, Carol V.; Tocheri, Matthew W.; Plavcan, J. Michael; Brown, Francis H.; Manthi, Fredrick Kyalo

    2014-01-01

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato. PMID:24344276

  8. Reconstruction of the sialylation pathway in the ancestor of eukaryotes.

    PubMed

    Petit, Daniel; Teppa, Elin; Cenci, Ugo; Ball, Steven; Harduin-Lepers, Anne

    2018-02-13

    The biosynthesis of sialylated molecules of crucial relevance for eukaryotic cell life is achieved by sialyltransferases (ST) of the CAZy family GT29. These enzymes are widespread in the Deuterostoma lineages and more rarely described in Protostoma, Viridiplantae and various protist lineages raising the question of their presence in the Last eukaryotes Common Ancestor (LECA). If so, it is expected that the main enzymes associated with sialic acids metabolism are also present in protists. We conducted phylogenomic and protein sequence analyses to gain insights into the origin and ancient evolution of ST and sialic acid pathway in eukaryotes, Bacteria and Archaea. Our study uncovered the unreported occurrence of bacterial GT29 ST and evidenced the existence of 2 ST groups in the LECA, likely originating from the endosymbiotic event that generated mitochondria. Furthermore, distribution of the major actors of the sialic acid pathway in the different eukaryotic phyla indicated that these were already present in the LECA, which could also access to this essential monosaccharide either endogenously or via a sialin/sialidase uptake mechanism involving vesicles. This pathway was lost in several basal eukaryotic lineages including Archaeplastida despite the presence of two different ST groups likely assigned to other functions.

  9. Levantine cranium from Manot Cave (Israel) foreshadows the first European modern humans.

    PubMed

    Hershkovitz, Israel; Marder, Ofer; Ayalon, Avner; Bar-Matthews, Miryam; Yasur, Gal; Boaretto, Elisabetta; Caracuta, Valentina; Alex, Bridget; Frumkin, Amos; Goder-Goldberger, Mae; Gunz, Philipp; Holloway, Ralph L; Latimer, Bruce; Lavi, Ron; Matthews, Alan; Slon, Viviane; Mayer, Daniella Bar-Yosef; Berna, Francesco; Bar-Oz, Guy; Yeshurun, Reuven; May, Hila; Hans, Mark G; Weber, Gerhard W; Barzilai, Omry

    2015-04-09

    A key event in human evolution is the expansion of modern humans of African origin across Eurasia between 60 and 40 thousand years (kyr) before present (bp), replacing all other forms of hominins. Owing to the scarcity of human fossils from this period, these ancestors of all present-day non-African modern populations remain largely enigmatic. Here we describe a partial calvaria, recently discovered at Manot Cave (Western Galilee, Israel) and dated to 54.7 ± 5.5 kyr bp (arithmetic mean ± 2 standard deviations) by uranium-thorium dating, that sheds light on this crucial event. The overall shape and discrete morphological features of the Manot 1 calvaria demonstrate that this partial skull is unequivocally modern. It is similar in shape to recent African skulls as well as to European skulls from the Upper Palaeolithic period, but different from most other early anatomically modern humans in the Levant. This suggests that the Manot people could be closely related to the first modern humans who later successfully colonized Europe. Thus, the anatomical features used to support the 'assimilation model' in Europe might not have been inherited from European Neanderthals, but rather from earlier Levantine populations. Moreover, at present, Manot 1 is the only modern human specimen to provide evidence that during the Middle to Upper Palaeolithic interface, both modern humans and Neanderthals contemporaneously inhabited the southern Levant, close in time to the likely interbreeding event with Neanderthals.

  10. A late Pleistocene human presence at Huaca Prieta, Peru, and early Pacific Coastal adaptations

    NASA Astrophysics Data System (ADS)

    Dillehay, Tom D.; Bonavia, Duccio; Goodbred, Steve L.; Pino, Mario; Vásquez, Victor; Tham, Teresa Rosales

    2012-05-01

    Archaeological excavations in deep pre-mound levels at Huaca Prieta in northern Peru have yielded new evidence of late Pleistocene cultural deposits that shed insights into the early human occupation of the Pacific coast of South America. Radiocarbon dates place this occupation between ~ 14,200 and 13,300 cal yr BP. The cultural evidence shares certain basic technological and subsistence traits, including maritime resources and simple flake tools, with previously discovered late Pleistocene sites along the Pacific coast of Peru and Chile. The results help to expand our knowledge of early maritime societies and human adaption to changing coastal environments.

  11. An early history of human breast cancer: West meets East.

    PubMed

    Yan, Shou-He

    2013-09-01

    Cancer has been increasingly recognized as a global issue. This is especially true in countries like China, where cancer incidence has increased likely because of changes in environment and lifestyle. However, cancer is not a modern disease; early cases have been recorded in ancient medical books in the West and in China. Here, we provide a brief history of cancer, focusing on cancer of the breast, and review the etymology of ai, the Chinese character for cancer. Notable findings from both Western and Chinese traditional medicine are presented to give an overview of the most important, early contributors to our evolving understanding of human breast cancer. We also discuss the earliest historical documents to record patients with breast cancer.

  12. Implications of Nubian-Like Core Reduction Systems in Southern Africa for the Identification of Early Modern Human Dispersals

    PubMed Central

    Phillips, Natasha

    2015-01-01

    Lithic technologies have been used to trace dispersals of early human populations within and beyond Africa. Convergence in lithic systems has the potential to confound such interpretations, implying connections between unrelated groups. Due to their reductive nature, stone artefacts are unusually prone to this chance appearance of similar forms in unrelated populations. Here we present data from the South African Middle Stone Age sites Uitpanskraal 7 and Mertenhof suggesting that Nubian core reduction systems associated with Late Pleistocene populations in North Africa and potentially with early human migrations out of Africa in MIS 5 also occur in southern Africa during early MIS 3 and with no clear connection to the North African occurrence. The timing and spatial distribution of their appearance in southern and northern Africa implies technological convergence, rather than diffusion or dispersal. While lithic technologies can be a critical guide to human population flux, their utility in tracing early human dispersals at large spatial and temporal scales with stone artefact types remains questionable. PMID:26125972

  13. High adult mortality among Hiwi hunter-gatherers: implications for human evolution.

    PubMed

    Hill, Kim; Hurtado, A M; Walker, R S

    2007-04-01

    Extant apes experience early sexual maturity and short life spans relative to modern humans. Both of these traits and others are linked by life-history theory to mortality rates experienced at different ages by our hominin ancestors. However, currently there is a great deal of debate concerning hominin mortality profiles at different periods of evolutionary history. Observed rates and causes of mortality in modern hunter-gatherers may provide information about Upper Paleolithic mortality that can be compared to indirect evidence from the fossil record, yet little is published about causes and rates of mortality in foraging societies around the world. To our knowledge, interview-based life tables for recent hunter-gatherers are published for only four societies (Ache, Agta, Hadza, and Ju/'hoansi). Here, we present mortality data for a fifth group, the Hiwi hunter-gatherers of Venezuela. The results show comparatively high death rates among the Hiwi and highlight differences in mortality rates among hunter-gatherer societies. The high levels of conspecific violence and adult mortality in the Hiwi may better represent Paleolithic human demographics than do the lower, disease-based death rates reported in the most frequently cited forager studies.

  14. Facilitated early cortical processing of nude human bodies.

    PubMed

    Alho, Jussi; Salminen, Nelli; Sams, Mikko; Hietanen, Jari K; Nummenmaa, Lauri

    2015-07-01

    Functional brain imaging has identified specialized neural systems supporting human body perception. Responses to nude vs. clothed bodies within this system are amplified. However, it remains unresolved whether nude and clothed bodies are processed by same cerebral networks or whether processing of nude bodies recruits additional affective and arousal processing areas. We recorded simultaneous MEG and EEG while participants viewed photographs of clothed and nude bodies. Global field power revealed a peak ∼145ms after stimulus onset to both clothed and nude bodies, and ∼205ms exclusively to nude bodies. Nude-body-sensitive responses were centered first (100-200ms) in the extrastriate and fusiform body areas, and subsequently (200-300ms) in affective-motivational areas including insula and anterior cingulate cortex. We conclude that visibility of sexual features facilitates early cortical processing of human bodies, the purpose of which is presumably to trigger sexual behavior and ultimately ensure reproduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations.

    PubMed

    Faria, Nuno R; Rambaut, Andrew; Suchard, Marc A; Baele, Guy; Bedford, Trevor; Ward, Melissa J; Tatem, Andrew J; Sousa, João D; Arinaminpathy, Nimalan; Pépin, Jacques; Posada, David; Peeters, Martine; Pybus, Oliver G; Lemey, Philippe

    2014-10-03

    Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations. Copyright © 2014, American Association for the Advancement of Science.

  16. How hardwired is human behavior?

    PubMed

    Nicholson, N

    1998-01-01

    Time and time again managers have tried to eliminate hierarchies, politics, and interorganizational rivalry--but to no avail. Why? Evolutionary psychologists would say that they are working against nature--emotional and behavioral "hardwiring" that is the legacy of our Stone Age ancestors. In this evolutionary psychology primer for executives, Nigel Nicholson explores many of the Science's central tenets. Of course, evolutionary psychology is still an emerging discipline, and its strong connection with the theory of natural selection has sparked significant controversy. But, as Nicholson suggests, evolutionary psychology is now well established enough that its insights into human instinct will prove illuminating to anyone seeking to understand why people act the way they do in organizational settings. Take gossip. According to evolutionary psychology, our Stone Age ancestors needed this skill to survive the socially unpredictable conditions of the Savannah Plain. Thus, over time, the propensity to gossip became part of our mental programming. Executives trying to eradicate gossip at work might as well try to change their employees' musical tastes. Better to put one's energy into making sure the "rumor mill" avoids dishonesty or unkindness as much as possible. Evolutionary psychology also explores the dynamics of the human group. Clans on the Savannah Plain, for example, appear to have had no more than 150 members. The message for managers? People will likely be most effective in small organizational units. As every executive knows, it pays to be an insightful student of human nature. Evolutionary psychology adds another important chapter to consider.

  17. The complete genome sequence of a Neandertal from the Altai Mountains

    PubMed Central

    Prüfer, Kay; Racimo, Fernando; Patterson, Nick; Jay, Flora; Sankararaman, Sriram; Sawyer, Susanna; Heinze, Anja; Renaud, Gabriel; Sudmant, Peter H.; de Filippo, Cesare; Li, Heng; Mallick, Swapan; Dannemann, Michael; Fu, Qiaomei; Kircher, Martin; Kuhlwilm, Martin; Lachmann, Michael; Meyer, Matthias; Ongyerth, Matthias; Siebauer, Michael; Theunert, Christoph; Tandon, Arti; Moorjani, Priya; Pickrell, Joseph; Mullikin, James C.; Vohr, Samuel H.; Green, Richard E.; Hellmann, Ines; Johnson, Philip L. F.; Blanche, Hélène; Cann, Howard; Kitzman, Jacob O.; Shendure, Jay; Eichler, Evan E.; Lein, Ed S.; Bakken, Trygve E.; Golovanova, Liubov V.; Doronichev, Vladimir B.; Shunkov, Michael V.; Derevianko, Anatoli P.; Viola, Bence; Slatkin, Montgomery; Reich, David; Kelso, Janet; Pääbo, Svante

    2014-01-01

    We present a high-quality genome sequence of a Neandertal woman from Siberia. We show that her parents were related at the level of half siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neandertal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neandertals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high quality Neandertal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neandertals and Denisovans. PMID:24352235

  18. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  19. Country Report: Introduction of a New Education Inclusion Reform--Republic of Uzbekistan

    ERIC Educational Resources Information Center

    Nazarova, E. N.; Rahmanova, V. S.

    2011-01-01

    The republic of Uzbekistan has an ancient history yet almost half of its population consists of children and teenagers. Ancestors have left remarkable samples of widely known human work in the fields of literature, art, and education. Over centuries, the people of Uzbekistan have been developing education based on principles of early development,…

  20. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico

    PubMed Central

    Ranere, Anthony J.; Piperno, Dolores R.; Holst, Irene; Dickau, Ruth; Iriarte, José

    2009-01-01

    Molecular evidence indicates that the wild ancestor of maize is presently native to the seasonally dry tropical forest of the Central Balsas watershed in southwestern Mexico. We report here on archaeological investigations in a region of the Central Balsas located near the Iguala Valley in Guerrero state that show for the first time a long sequence of human occupation and plant exploitation reaching back to the early Holocene. One of the sites excavated, the Xihuatoxtla Shelter, contains well-stratified deposits and a stone tool assemblage of bifacially flaked points, simple flake tools, and numerous handstones and milling stone bases radiocarbon dated to at least 8700 calendrical years B.P. As reported in a companion paper (Piperno DR, et al., in this issue of PNAS), starch grain and phytolith residues from the ground and chipped stone tools, plus phytoliths from directly associated sediments, provide evidence for maize (Zea mays L.) and domesticated squash (Cucurbita spp.) in contexts contemporaneous with and stratigraphically below the 8700 calendrical years B.P. date. The radiocarbon determinations, stratigraphic integrity of Xihuatoxtla's deposits, and characteristics of the stone tool assemblages associated with the maize and squash remains all indicate that these plants were early Holocene domesticates. Early agriculture in this region of Mexico appears to have involved small groups of cultivators who were shifting their settlements seasonally and engaging in a variety of subsistence pursuits. PMID:19307573

  1. Experimental Insights into the Cognitive Significance of Early Stone Tools

    PubMed Central

    Perston, Yinika

    2016-01-01

    Stone-flaking technology is the most enduring evidence for the evolving cognitive abilities of our early ancestors. Flake-making was mastered by African hominins ~3.3 ma, followed by the appearance of handaxes ~1.75 ma and complex stone reduction strategies by ~1.6 ma. Handaxes are stones flaked on two opposed faces (‘bifacially’), creating a robust, sharp-edged tool, and complex reduction strategies are reflected in strategic prior flaking to prepare or ‘predetermine’ the nature of a later flake removal that served as a tool blank. These technologies are interpreted as major milestones in hominin evolution that reflect the development of higher-order cognitive abilities, and the presence and nature of these technologies are used to track movements of early hominin species or ‘cultures’ in the archaeological record. However, the warranting argument that certain variations in stone tool morphologies are caused by differences in cognitive abilities relies on analogy with technical replications by skilled modern stoneworkers, and this raises the possibility that researchers are projecting modern approaches to technical problems onto our non-modern hominin ancestors. Here we present the results of novel experiments that randomise flake removal and disrupt the modern stoneworker’s inclination to use higher-order reasoning to guide the stone reduction process. Although our protocols prevented goal-directed replication of stone tool types, the experimental assemblage is morphologically standardised and includes handaxe-like ‘protobifaces’ and cores with apparently ‘predetermined’ flake removals. This shows that the geometrical constraints of fracture mechanics can give rise to what appear to be highly-designed stoneworking products and techniques when multiple flakes are removed randomly from a stone core. PMID:27392022

  2. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhixiao; University of Chinese Academy of Science, Beijing 100049; Tang, Yuzhao

    Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early daysmore » (Day 1–3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events. - Highlights: • Molecular events occur in the early adipogenic differentiation stage of hMSCs are studied by SR-FTIR. • SR-FTIR data suggest that lipids may play an important role in hMSCs determination. • As potential biomarkers, lipids peaks can identify the state of cell in early differentiation stage at single-cell level.« less

  3. The Lin28/Let-7 System in Early Human Embryonic Tissue and Ectopic Pregnancy

    PubMed Central

    Steffani, Liliana; Martínez, Sebastián; Monterde, Mercedes; Ferri, Blanca; Núñez, Maria Jose; AinhoaRomero-Espinós; Zamora, Omar; Gurrea, Marta; Sangiao-Alvarellos, Susana; Vega, Olivia; Simón, Carlos; Pellicer, Antonio; Tena-Sempere, Manuel

    2014-01-01

    Our objective was to determine the expression of the elements of the Lin28/Let-7 system, and related microRNAs (miRNAs), in early stages of human placentation and ectopic pregnancy, as a means to assess the potential role of this molecular hub in the pathogenesis of ectopic gestation. Seventeen patients suffering from tubal ectopic pregnancy (cases) and forty-three women with normal on-going gestation that desired voluntary termination of pregnancy (VTOP; controls) were recruited for the study. Embryonic tissues were subjected to RNA extraction and quantitative PCR analyses for LIN28B, Let-7a, miR-132, miR-145 and mir-323-3p were performed. Our results demonstrate that the expression of LIN28B mRNA was barely detectable in embryonic tissue from early stages of gestation and sharply increased thereafter to plateau between gestational weeks 7–9. In contrast, expression levels of Let-7, mir-132 and mir-145 were high in embryonic tissue from early gestations (≤6-weeks) and abruptly declined thereafter, especially for Let-7. Opposite trends were detected for mir-323-3p. Embryonic expression of LIN28B mRNA was higher in early stages (≤6-weeks) of ectopic pregnancy than in normal gestation. In contrast, Let-7a expression was significantly lower in early ectopic pregnancies, while miR-132 and miR-145 levels were not altered. Expression of mir-323-3p was also suppressed in ectopic embryonic tissue. We are the first to document reciprocal changes in the expression profiles of the gene encoding the RNA-binding protein, LIN28B, and the related miRNAs, Let-7a, mir-132 and mir-145, in early stages of human placentation. This finding suggests the potential involvement of LIN28B/Let-7 (de)regulated pathways in the pathophysiology of ectopic pregnancy in humans. PMID:24498170

  4. 3D quantitative analysis of early decomposition changes of the human face.

    PubMed

    Caplova, Zuzana; Gibelli, Daniele Maria; Poppa, Pasquale; Cummaudo, Marco; Obertova, Zuzana; Sforza, Chiarella; Cattaneo, Cristina

    2018-03-01

    Decomposition of the human body and human face is influenced, among other things, by environmental conditions. The early decomposition changes that modify the appearance of the face may hamper the recognition and identification of the deceased. Quantitative assessment of those changes may provide important information for forensic identification. This report presents a pilot 3D quantitative approach of tracking early decomposition changes of a single cadaver in controlled environmental conditions by summarizing the change with weekly morphological descriptions. The root mean square (RMS) value was used to evaluate the changes of the face after death. The results showed a high correlation (r = 0.863) between the measured RMS and the time since death. RMS values of each scan are presented, as well as the average weekly RMS values. The quantification of decomposition changes could improve the accuracy of antemortem facial approximation and potentially could allow the direct comparisons of antemortem and postmortem 3D scans.

  5. Effects of early human handling on the pain sensitivity of young lambs.

    PubMed

    Guesgen, Mirjam J; Beausoleil, Ngaio J; Stewart, Mairi

    2013-01-01

    Pain sensitivity of lambs changes over the first weeks of life. However, the effects of early treatments such as human handling on pain sensitivity are unknown for this species. This study investigated the effects of regular early gentle human handling on the pain sensitivity of lambs, indicated by their behavioural responses to tail docking. Prospective part-blinded experimental study. Twenty-nine singleton Coopworth lambs (females n=14, males n=15). Starting at one day of age, lambs were either handled twice daily for 2 weeks (Handled), were kept in the presence of lambs who were being handled but were not handled themselves (Presence), or were exposed to a human only during routine feeding and care (Control). At 3 weeks of age, all lambs were tail docked using rubber rings. Changes in behaviour due to docking were calculated and change data were analyzed using two-way anova with treatment and test pen as main factors. All lambs showed significant increases in the frequency and duration of behaviours indicative of pain, including 'abnormal' behaviours, and decreases in the frequency and duration of 'normal' behaviours after docking. Handled lambs showed a smaller increase in the time spent lying abnormally after docking than did Control lambs (mean transformed change in proportion of 30 minutes spent±SE: Control 0.55±0.04; Handled 0.38±0.03; Presence 0.48±0.03; C versus H t=3.45, p=0.007). These results provide some evidence that handling early in life may reduce subsequent pain sensitivity in lambs. While the behavioural effects of handling on pain behaviour were subtle, the results suggest, at the very least, that early handling does not increase pain sensitivity in lambs and suggests there is still flexibility postnatally in the pain processing system of a precocial species. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  6. Archives and the Boundaries of Early Modern Science.

    PubMed

    Popper, Nicholas

    2016-03-01

    This contribution argues that the study of early modern archives suggests a new agenda for historians of early modern science. While in recent years historians of science have begun to direct increased attention toward the collections amassed by figures and institutions traditionally portrayed as proto-scientific, archives proliferated across early modern Europe, emerging as powerful tools for creating knowledge in politics, history, and law as well as natural philosophy, botany, and more. The essay investigates the methods of production, collection, organization, and manipulation used by English statesmen and Crown officers such as Keeper of the State Papers Thomas Wilson and Secretary of State Joseph Williamson to govern their disorderly collections. Their methods, it is shown, were shared with contemporaries seeking to generate and manage other troves of evidence and in fact reflect a complex ecosystem of imitation and exchange across fields of inquiry. These commonalities suggest that historians of science should look beyond the ancestors of modern scientific disciplines to examine how practices of producing knowledge emerged and migrated throughout cultures of learning in Europe and beyond. Creating such a map of knowledge production and exchange, the essay concludes, would provide a renewed and expansive ambition for the field.

  7. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  8. The Divergence of Neandertal and Modern Human Y Chromosomes

    PubMed Central

    Mendez, Fernando L.; Poznik, G. David; Castellano, Sergi; Bustamante, Carlos D.

    2016-01-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes—including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447–806 kya). This is ∼2.1 (95% CI: 1.7–2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  9. The Divergence of Neandertal and Modern Human Y Chromosomes.

    PubMed

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-07

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception.

    PubMed

    Kang, Kyeongjin; Pulver, Stefan R; Panzano, Vincent C; Chang, Elaine C; Griffith, Leslie C; Theobald, Douglas L; Garrity, Paul A

    2010-03-25

    Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, such as allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke). Diverse animals, from insects to humans, find reactive electrophiles aversive, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that Drosophila TRPA1 (Transient receptor potential A1), the Drosophila melanogaster orthologue of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologues are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate that invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose that human pain perception relies on an ancient chemical sensor conserved across approximately 500 million years of animal evolution.

  11. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner

    PubMed Central

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2008-01-01

    Background Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. Results LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. Conclusion Life

  12. The Evolution of Human Uniqueness.

    PubMed

    Boyd, Robert

    2017-01-09

    The human species is an outlier in the natural world. Two million years ago our ancestors were a slightly odd apes. Now we occupy the largest ecological and geographical range of any species, have larger biomass, and process more energy. Usually, this transformation is explained in terms of cognitive ability-people are just smarter than all the rest. In this paper I argue that culture, our ability to learn from each other, and cooperation, our ability to make common cause with large groups of unrelated individuals are the real roots of human uniqueness, and sketch an evolutionary account of how these crucial abilities co-evolved with each other and with other features of our life histories.

  13. Sponge non-metastatic Group I Nme gene/protein - structure and function is conserved from sponges to humans

    PubMed Central

    2011-01-01

    Background Nucleoside diphosphate kinases NDPK are evolutionarily conserved enzymes present in Bacteria, Archaea and Eukarya, with human Nme1 the most studied representative of the family and the first identified metastasis suppressor. Sponges (Porifera) are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestor's genomic features. Recent studies show that sponges have a wide repertoire of genes many of which are involved in diseases in more complex metazoans. The original function of those genes and the way it has evolved in the animal lineage is largely unknown. Here we report new results on the metastasis suppressor gene/protein homolog from the marine sponge Suberites domuncula, NmeGp1Sd. The purpose of this study was to investigate the properties of the sponge Group I Nme gene and protein, and compare it to its human homolog in order to elucidate the evolution of the structure and function of Nme. Results We found that sponge genes coding for Group I Nme protein are intron-rich. Furthermore, we discovered that the sponge NmeGp1Sd protein has a similar level of kinase activity as its human homolog Nme1, does not cleave negatively supercoiled DNA and shows nonspecific DNA-binding activity. The sponge NmeGp1Sd forms a hexamer, like human Nme1, and all other eukaryotic Nme proteins. NmeGp1Sd interacts with human Nme1 in human cells and exhibits the same subcellular localization. Stable clones expressing sponge NmeGp1Sd inhibited the migratory potential of CAL 27 cells, as already reported for human Nme1, which suggests that Nme's function in migratory processes was engaged long before the composition of true tissues. Conclusions This study suggests that the ancestor of all animals possessed a NmeGp1 protein with properties and functions similar to evolutionarily recent versions of the protein, even before the appearance of true tissues

  14. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  15. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  16. Early Human Evolution in the Western Palaearctic: Ecological Scenarios

    NASA Astrophysics Data System (ADS)

    Carrión, José S.; Rose, James; Stringer, Chris

    2011-06-01

    This review presents the themes of a special issue dealing with environmental scenarios of human evolution during the Early Pleistocene (2.6-0.78 Ma; MIS 103-MIS 19) and early Middle Pleistocene (0.78-0.47 Ma; MIS 19-base of MIS 12) within the western Palaearctic. This period is one of dramatic changes in the climates and the distribution of Palaearctic biota. These changes have played their role in generating adaptive and phyletic patterns within the human ancestry, involving several species such as Homo habilis, "Homo georgicus", Homo erectus, Homo antecessor and Homo heidelbergensis. In the archaeological record, these species include the Oldowan (Mode 1) and Acheulian (Mode 2) lithic technologies. Taphonomic considerations of palaeoecological research in hominin-bearing sites are provided and evaluated. Syntheses are provided for north Africa, western Asia, the Mediterranean Basin, Britain, and continental Europe. Palaeoenvironmental reconstructions based on multidisciplinary data are given for Ain Boucherit, Ain Hanech and El-Kherba in Algeria, Dmanisi in Georgia, Atapuerca, Cueva Negra, and the Orce Basin in Spain, Monte Poggiolo and Pirro Nord in Italy, Pont-de-Lavaud in France, and Mauer in Germany. The state of the art with the Out of Africa 1 dispersal model is reviewed. A source-sink dynamics model for Palaeolithic Europe is described to explain the morphological disparity of H. heidelbergensis (we will sometimes use the informal name "Heidelbergs") and early Neanderthals. Other aspects debated here are the selective value of habitat mosaics including reconstructions based on mammal and avian databases, and the role of geological instability combined with topographic complexity. This review is completed by addressing the question of whether the appearance of evolutionary trends within hominins is concentrated in regions of highest worldwide biological diversity (biodiversity hotspots). It is concluded that the keys for the activation of evolutionary

  17. Early adolescent childbearing in low- and middle-income countries: associations with income inequity, human development and gender equality.

    PubMed

    Decker, Michele R; Kalamar, Amanda; Tunçalp, Özge; Hindin, Michelle J

    2017-03-01

    Reducing unwanted adolescent childbearing is a global priority. Little is known about how national-level economic and human development indicators relate to early adolescent childbearing. This ecological study evaluates associations of Gross Domestic Product (GDP), GINI index, Human Development Index (HDI) and Gender-related Development Index (GDI; i.e. the HDI adjusted for gender disparities) with early adolescent childbearing in 27 low- and middle-income countries (LMICs) across three time periods. Among women ages 18–24, prevalence estimates for early birth (<16 years) were calculated by nation, and weighted linear regressions evaluated associations between national indicators and early childbearing. To examine temporal trends, analyses were stratified by year groupings. Early adolescent childbearing declined over time, with the greatest change observed in Bangladesh (31.49% in 1996/7 to 19.69% in 2011). In adjusted models, GDI was negatively associated with early childbearing, i.e. early childbearing prevalence decreased as GDI increased. In the most recent time period, relative to the lowest GDI group, the average prevalence of early childbearing was significantly lower in the middle (-12.40, P < 0.00) and upper (-10.96, P = 0.03) tertiles after adjustment for the other indicators. These other indicators showed no consistent association with early childbearing. As national-level GDI increased, early adolescent childbearing declined. The GDI, which reflects human development adjusted for gender disparities in educational and economic prospects, was more consistently related to early adolescent childbearing than the absolute development prospects as given by the HDI. While creating gender equality is an important goal in and of itself, the findings emphasize the potential for improved national-level gender equitable development as a means to improve adolescents’ sexual and reproductive health.

  18. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses

    PubMed Central

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A.; Maines, Taronna R.

    2016-01-01

    ABSTRACT A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. IMPORTANCE Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary

  19. Early humans' egalitarian politics: runaway synergistic competition under an adapted veil of ignorance.

    PubMed

    Harvey, Marc

    2014-09-01

    This paper proposes a model of human uniqueness based on an unusual distinction between two contrasted kinds of political competition and political status: (1) antagonistic competition, in quest of dominance (antagonistic status), a zero-sum, self-limiting game whose stake--who takes what, when, how--summarizes a classical definition of politics (Lasswell 1936), and (2) synergistic competition, in quest of merit (synergistic status), a positive-sum, self-reinforcing game whose stake becomes "who brings what to a team's common good." In this view, Rawls's (1971) famous virtual "veil of ignorance" mainly conceals politics' antagonistic stakes so as to devise the principles of a just, egalitarian society, yet without providing any means to enforce these ideals (Sen 2009). Instead, this paper proposes that human uniqueness flourished under a real "adapted veil of ignorance" concealing the steady inflation of synergistic politics which resulted from early humans' sturdy egalitarianism. This proposition divides into four parts: (1) early humans first stumbled on a purely cultural means to enforce a unique kind of within-team antagonistic equality--dyadic balanced deterrence thanks to handheld weapons (Chapais 2008); (2) this cultural innovation is thus closely tied to humans' darkest side, but it also launched the cumulative evolution of humans' brightest qualities--egalitarian team synergy and solidarity, together with the associated synergistic intelligence, culture, and communications; (3) runaway synergistic competition for differential merit among antagonistically equal obligate teammates is the single politically selective mechanism behind the cumulative evolution of all these brighter qualities, but numerous factors to be clarified here conceal this mighty evolutionary driver; (4) this veil of ignorance persists today, which explains why humans' unique prosocial capacities are still not clearly understood by science. The purpose of this paper is to start lifting

  20. Genetic Differences Between Great Apes and Humans: Implications for Human Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varki, Ajit

    2004-03-17

    When considering protein sequences, humans are 99-100% identical to chimpanzees and bonobos, our closest evolutionary relatives. The evolution of humans (and the unique features of our species) from a common ancestor with these great apes involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of the differences. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly in relationship tomore » a family of cell surface molecules called sialic acids. These differences have implications for the human condition, ranging from susceptibility or resistance to microbial pathogens; effects on endogenous receptors in the immune system; potential effects on placental signaling; the expression of oncofetal antigens in cancers; consequences of dietary intake of animal foods; and the development of the mammalian brain. This talk will provide an overview of these and other genetic differences between humans and great apes, with attention to differences potentially relevant to the evolution of humans.« less

  1. A More-than-Social Movement: The Post-Human Condition of Quality in the Early Years

    ERIC Educational Resources Information Center

    Arndt, Sonja; Tesar, Marek

    2016-01-01

    This article explores quality in early childhood education by de-elevating the importance of the human subject and experience, and heightening instead a focus on and tensions with the post-human. The argument traces the intricate web of "qualities" woven throughout entanglements of subjects, objects and things that constitute what is…

  2. Identification and Characterization of a Novel Alpaca Respiratory Coronavirus Most Closely Related to the Human Coronavirus 229E

    PubMed Central

    Crossley, Beate M.; Mock, Richard E.; Callison, Scott A.; Hietala, Sharon K.

    2012-01-01

    In 2007, a novel coronavirus associated with an acute respiratory disease in alpacas (Alpaca Coronavirus, ACoV) was isolated. Full-length genomic sequencing of the ACoV demonstrated the genome to be consistent with other Alphacoronaviruses. A putative additional open-reading frame was identified between the nucleocapsid gene and 3'UTR. The ACoV was genetically most similar to the common human coronavirus (HCoV) 229E with 92.2% nucleotide identity over the entire genome. A comparison of spike gene sequences from ACoV and from HCoV-229E isolates recovered over a span of five decades showed the ACoV to be most similar to viruses isolated in the 1960’s to early 1980’s. The true origin of the ACoV is unknown, however a common ancestor between the ACoV and HCoV-229E appears to have existed prior to the 1960’s, suggesting virus transmission, either as a zoonosis or anthroponosis, has occurred between alpacas and humans. PMID:23235471

  3. Early Mesozoic Coexistence of Amniotes and Hepadnaviridae

    PubMed Central

    Suh, Alexander; Weber, Claudia C.; Kehlmaier, Christian; Braun, Edward L.; Green, Richard E.; Fritz, Uwe; Ray, David A.; Ellegren, Hans

    2014-01-01

    Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts. PMID:25501991

  4. Stable isotope evidence for an amphibious phase in early proboscidean evolution.

    PubMed

    Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L

    2008-04-15

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.

  5. The quantum defect: Early history and recent developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, A.R.; Inokuti, M.

    1997-03-01

    The notion of the quantum defect is important in atomic and molecular spectroscopy and also in unifying spectroscopy with collision theory. In the latter context, the quantum defect may be viewed as an ancestor of the phase shift. However, the origin of the term {open_quotes}quantum defect{close_quotes} does not seem to be explained in standard textbooks. It occurred in a 1921 paper by Schr{umlt o}dinger, preceding quantum mechanics, yet giving the correct meaning as an index of the short-range interactions with the core of an atom. We present the early history of the quantum-defect idea, and sketch its recent developments. {copyright}more » {ital 1997 American Association of Physics Teachers.}« less

  6. Update of the human parvovirus B19 biology.

    PubMed

    Servant-Delmas, A; Morinet, F

    2016-02-01

    Since its discovery, the human parvovirus B19 (B19V) has been associated with many clinical situations in addition to the prototype clinical manifestations, i.e. erythema infectiosum and erythroblastopenia crisis. The clinical significance of the viral B19V DNA persistence in sera after acute infection remains largely unknown. Such data may constitute a new clinical entity and is discussed in this manuscript. In 2002, despite the genetic diversity among B19V viruses has been reported to be very low, the description of markedly distinct sequences showed a new organization into three genotypes. The most recent common ancestor for B19V genotypes was estimated at early 1800s. B19V replication is enhanced by hypoxia and this might to explain the high viral load detected by quantitative PCR in the sera of infected patients. The minimum infectious dose necessary to transmit B19V infection by the transfusion of labile blood products remains unclear. At the opposite, the US Food and Drug Administration proposed a limit of 10(4)IU/mL of viral DNA in plasma pools used for the production of plasma derivatives. Recently, a new human parvovirus (PARV4) has been discovered. The consequences on blood transfusion of this blood-borne agent and its pathogenicity are still unknown. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Early-life adversity-induced long-term epigenetic programming associated with early onset of chronic physical aggression: Studies in humans and animals.

    PubMed

    Chistiakov, Dimitry A; Chekhonin, Vladimir P

    2017-06-05

    To examine whether chronic physical aggression (CPA) in adulthood can be epigenetically programmed early in life due to exposure to early-life adversity. Literature search of public databases such as PubMed/MEDLINE and Scopus. Children/adolescents susceptible for CPA and exposed to early-life abuse fail to efficiently cope with stress that in turn results in the development of CPA later in life. This phenomenon was observed in humans and animal models of aggression. The susceptibility to aggression is a complex trait that is regulated by the interaction between environmental and genetic factors. Epigenetic mechanisms mediate this interaction. Subjects exposed to stress early in life exhibited long-term epigenetic programming that can influence their behaviour in adulthood. This programming affects expression of many genes not only in the brain but also in other systems such as neuroendocrine and immune. The propensity to adult CPA behaviour in subjects experienced to early-life adversity is mediated by epigenetic programming that involves long-term systemic epigenetic alterations in a whole genome.

  8. Question 7: Comparative Genomics and Early Cell Evolution: A Cautionary Methodological Note

    NASA Astrophysics Data System (ADS)

    Islas, Sara; Hernández-Morales, Ricardo; Lazcano, Antonio

    2007-10-01

    Inventories of the gene content of the last common ancestor (LCA), i.e., the cenancestor, include sequences that may have undergone horizontal transfer events, as well as sequences that have originated in different pre-cenancestral epochs. However, the universal distribution of highly conserved genes involved in RNA metabolism provide insights into early stages of cell evolution during which RNA played a much more conspicuous biological role, and is consistent with the hypothesis that extant living systems were preceded by an RNA/protein world. Insights into the traits of primitive entities from which the LCA evolved may be derived from the analysis of paralogous gene families, including those formed by sequences that resulted from internal elongation events. Three major types of paralogous gene families can be recognized. The importance of this grouping for understanding the traits of early cells is discussed.

  9. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro.

    PubMed

    Wang, Tian-ren; Yan, Li-ying; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhu, Xiao-hui; Gao, Jiang-man; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Qiao, Jie

    2014-03-01

    What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings

  10. Plant foods and the dietary ecology of Neanderthals and early modern humans.

    PubMed

    Henry, Amanda G; Brooks, Alison S; Piperno, Dolores R

    2014-04-01

    One of the most important challenges in anthropology is understanding the disappearance of Neanderthals. Previous research suggests that Neanderthals had a narrower diet than early modern humans, in part because they lacked various social and technological advances that lead to greater dietary variety, such as a sexual division of labor and the use of complex projectile weapons. The wider diet of early modern humans would have provided more calories and nutrients, increasing fertility, decreasing mortality and supporting large population sizes, allowing them to out-compete Neanderthals. However, this model for Neanderthal dietary behavior is based on analysis of animal remains, stable isotopes, and other methods that provide evidence only of animal food in the diet. This model does not take into account the potential role of plant food. Here we present results from the first broad comparison of plant foods in the diets of Neanderthals and early modern humans from several populations in Europe, the Near East, and Africa. Our data comes from the analysis of plant microremains (starch grains and phytoliths) in dental calculus and on stone tools. Our results suggest that both species consumed a similarly wide array of plant foods, including foods that are often considered low-ranked, like underground storage organs and grass seeds. Plants were consumed across the entire range of individuals and sites we examined, and none of the expected predictors of variation (species, geographic region, or associated stone tool technology) had a strong influence on the number of plant species consumed. Our data suggest that Neanderthal dietary ecology was more complex than previously thought. This implies that the relationship between Neanderthal technology, social behavior, and food acquisition strategies must be better explored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Three-dimensionally preserved minute larva of a great-appendage arthropod from the early Cambrian Chengjiang biota

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Melzer, Roland R.; Haug, Joachim T.; Haug, Carolin; Briggs, Derek E. G.; Hörnig, Marie K.; He, Yu-yang; Hou, Xian-guang

    2016-05-01

    A three-dimensionally preserved 2-mm-long larva of the arthropod Leanchoilia illecebrosa from the 520-million-year-old early Cambrian Chengjiang biota of China represents the first evidence, to our knowledge, of such an early developmental stage in a short-great-appendage (SGA) arthropod. The larva possesses a pair of three-fingered great appendages, a hypostome, and four pairs of well-developed biramous appendages. More posteriorly, a series of rudimentary limb Anlagen revealed by X-ray microcomputed tomography shows a gradient of decreasing differentiation toward the rear. This, and postembryonic segment addition at the putative growth zone, are features of late-stage metanauplii of eucrustaceans. L. illecebrosa and other SGA arthropods, however, are considered representative of early chelicerates or part of the stem lineage of all euarthropods. The larva of an early Cambrian SGA arthropod with a small number of anterior segments and their respective appendages suggests that posthatching segment addition occurred in the ancestor of Euarthropoda.

  12. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    PubMed

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  13. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    PubMed Central

    Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  14. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses.

    PubMed

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2016-12-15

    A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage

  15. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria.

    PubMed

    Otto, Thomas D; Gilabert, Aude; Crellen, Thomas; Böhme, Ulrike; Arnathau, Céline; Sanders, Mandy; Oyola, Samuel O; Okouga, Alain Prince; Boundenga, Larson; Willaume, Eric; Ngoubangoye, Barthélémy; Moukodoum, Nancy Diamella; Paupy, Christophe; Durand, Patrick; Rougeron, Virginie; Ollomo, Benjamin; Renaud, François; Newbold, Chris; Berriman, Matthew; Prugnolle, Franck

    2018-06-01

    Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking copy number and structural variations were observed within gene families and one, stevor, shows a host-specific sequence pattern. The complete genome sequence of the closest ancestor of P. falciparum enables us to estimate the timing of the beginning of speciation to be 40,000-60,000 years ago followed by a population bottleneck around 4,000-6,000 years ago. Our data allow us also to search in detail for the features of P. falciparum that made it the only member of the Laverania able to infect and spread in humans.

  16. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans.

    PubMed

    Hutchison, William; Fusillo, Raffaella; Pyle, David M; Mather, Tamsin A; Blundy, Jon D; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E; Brooker, Richard A; Barfod, Dan N; Calvert, Andrew T

    2016-10-18

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km 3 ) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  17. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    PubMed Central

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.

    2016-01-01

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations. PMID:27754479

  18. Early-Stage Aggregation of Human Islet Amyloid Polypeptide

    NASA Astrophysics Data System (ADS)

    Guo, Ashley; de Pablo, Juan

    Human islet amyloid polypeptide (hIAPP, or human amylin) is implicated in the development of type II diabetes. hIAPP is known to aggregate into amyloid fibrils; however, it is prefibrillar oligomeric species, rather than mature fibrils, that are proposed to be cytotoxic. In order to better understand the role of hIAPP aggregation in the onset of disease, as well as to design effective diagnostics and therapeutics, it is crucial to understand the mechanism of early-stage hIAPP aggregation. In this work, we use atomistic molecular dynamics simulations combined with multiple advanced sampling techniques to examine the formation of the hIAPP dimer and trimer. Metadynamics calculations reveal a free energy landscape for the hIAPP dimer, which suggest multiple possible transition pathways. We employ finite temperature string method calculations to identify favorable pathways for dimer and trimer formation, along with relevant free energy barriers and intermediate structures. Results provide valuable insights into the mechanisms and energetics of hIAPP aggregation. In addition, this work demonstrates that the finite temperature string method is an effective tool in the study of protein aggregation. Funded by National Institute of Standards and Technology.

  19. Reconstructed Ancestral Myo-Inositol-3-Phosphate Synthases Indicate That Ancestors of the Thermococcales and Thermotoga Species Were More Thermophilic than Their Descendants

    PubMed Central

    Butzin, Nicholas C.; Lapierre, Pascal; Green, Anna G.; Swithers, Kristen S.; Gogarten, J. Peter; Noll, Kenneth M.

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants. PMID:24391933

  20. Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities.

    PubMed

    Larsson, Matz

    2014-01-01

    It has been suggested that the basic building blocks of music mimic sounds of moving humans, and because the brain was primed to exploit such sounds, they eventually became incorporated in human culture. However, that raises further questions. Why do genetically close, culturally well-developed apes lack musical abilities? Did our switch to bipedalism influence the origins of music? Four hypotheses are raised: (1) Human locomotion and ventilation can mask critical sounds in the environment. (2) Synchronization of locomotion reduces that problem. (3) Predictable sounds of locomotion may stimulate the evolution of synchronized behavior. (4) Bipedal gait and the associated sounds of locomotion influenced the evolution of human rhythmic abilities. Theoretical models and research data suggest that noise of locomotion and ventilation may mask critical auditory information. People often synchronize steps subconsciously. Human locomotion is likely to produce more predictable sounds than those of non-human primates. Predictable locomotion sounds may have improved our capacity of entrainment to external rhythms and to feel the beat in music. A sense of rhythm could aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another. Synchronization of group movement may improve perception by providing periods of relative silence and by facilitating auditory processing. The adaptive value of such skills to early ancestors may have been keener detection of prey or stalkers and enhanced communication. Bipedal walking may have influenced the development of entrainment in humans and thereby the evolution of rhythmic abilities.

  1. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics.

    PubMed

    Arbib, Michael A

    2005-04-01

    The article analyzes the neural and functional grounding of language skills as well as their emergence in hominid evolution, hypothesizing stages leading from abilities known to exist in monkeys and apes and presumed to exist in our hominid ancestors right through to modern spoken and signed languages. The starting point is the observation that both premotor area F5 in monkeys and Broca's area in humans contain a "mirror system" active for both execution and observation of manual actions, and that F5 and Broca's area are homologous brain regions. This grounded the mirror system hypothesis of Rizzolatti and Arbib (1998) which offers the mirror system for grasping as a key neural "missing link" between the abilities of our nonhuman ancestors of 20 million years ago and modern human language, with manual gestures rather than a system for vocal communication providing the initial seed for this evolutionary process. The present article, however, goes "beyond the mirror" to offer hypotheses on evolutionary changes within and outside the mirror systems which may have occurred to equip Homo sapiens with a language-ready brain. Crucial to the early stages of this progression is the mirror system for grasping and its extension to permit imitation. Imitation is seen as evolving via a so-called simple system such as that found in chimpanzees (which allows imitation of complex "object-oriented" sequences but only as the result of extensive practice) to a so-called complex system found in humans (which allows rapid imitation even of complex sequences, under appropriate conditions) which supports pantomime. This is hypothesized to have provided the substrate for the development of protosign, a combinatorially open repertoire of manual gestures, which then provides the scaffolding for the emergence of protospeech (which thus owes little to nonhuman vocalizations), with protosign and protospeech then developing in an expanding spiral. It is argued that these stages involve

  2. A new fossil species supports an early origin for toothed whale echolocation.

    PubMed

    Geisler, Jonathan H; Colbert, Matthew W; Carew, James L

    2014-04-17

    Odontocetes (toothed whales, dolphins and porpoises) hunt and navigate through dark and turbid aquatic environments using echolocation; a key adaptation that relies on the same principles as sonar. Among echolocating vertebrates, odontocetes are unique in producing high-frequency vocalizations at the phonic lips, a constriction in the nasal passages just beneath the blowhole, and then using air sinuses and the melon to modulate their transmission. All extant odontocetes seem to echolocate; however, exactly when and how this complex behaviour--and its underlying anatomy--evolved is largely unknown. Here we report an odontocete fossil, Oligocene in age (approximately 28 Myr ago), from South Carolina (Cotylocara macei, gen. et sp. nov.) that has several features suggestive of echolocation: a dense, thick and downturned rostrum; air sac fossae; cranial asymmetry; and exceptionally broad maxillae. Our phylogenetic analysis places Cotylocara in a basal clade of odontocetes, leading us to infer that a rudimentary form of echolocation evolved in the early Oligocene, shortly after odontocetes diverged from the ancestors of filter-feeding whales (mysticetes). This was followed by enlargement of the facial muscles that modulate echolocation calls, which in turn led to marked, convergent changes in skull shape in the ancestors of Cotylocara, and in the lineage leading to extant odontocetes.

  3. Variable postpartum responsiveness among humans and other primates with "cooperative breeding": A comparative and evolutionary perspective.

    PubMed

    Hrdy, Sarah B

    2016-01-01

    This article is part of a Special Issue "Parental Care".Until recently, evolutionists reconstructing mother-infant bonding among human ancestors relied on nonhuman primate models characterized by exclusively maternal care, overlooking the highly variable responsiveness exhibited by mothers in species with obligate reliance on allomaternal care and provisioning. It is now increasingly recognized that apes as large-brained, slow maturing, and nutritionally dependent for so long as early humans were, could not have evolved unless "alloparents" (group members other than genetic parents), in addition to parents, had helped mothers to care for and provision offspring, a rearing system known as "cooperative breeding." Here I review situation-dependent maternal responses ranging from highly possessive to permissive, temporarily distancing, rejecting, or infanticidal, documented for a small subset of cooperatively breeding primates. As in many mammals, primate maternal responsiveness is influenced by physical condition, endocrinological priming, prior experience and local environments (especially related to security). But mothers among primates who evolved as cooperative breeders also appear unusually sensitive to cues of social support. In addition to more "sapient" or rational decision-making, humankind's deep history of cooperative breeding must be considered when trying to understand the extremely variable responsiveness of human mothers. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Genetic Differences Between Humans and Great Apes -- Implications for the Evolution of Humans

    NASA Astrophysics Data System (ADS)

    Varki, Ajit

    2004-06-01

    At the level of individual protein sequences, humans are 97-100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

  5. Human Diversity and the Genealogy of Languages: Noah as the Founding Ancestor of the Chinese

    ERIC Educational Resources Information Center

    Hutton, Christopher

    2008-01-01

    The characteristics which were held to define the Chinese language within the Western intellectual tradition placed it for a time at the centre in discussions of the genealogy of mankind. The dominant premodern paradigm for the explanation of human linguistic diversity was Biblical exegesis, as discussed and elaborated within the framework of…

  6. The (Bio)Politicization of Neuroscience in Australian Early Years Policies: Fostering Brain-Resources "as" Human Capital

    ERIC Educational Resources Information Center

    Millei, Zsuzsa; Joronen, Mikko

    2016-01-01

    At the present, human capital theory (HCT) and neuroscience reasoning are dominant frameworks in early childhood education and care (ECEC) worldwide. Popular since the 1960s, HCT has provided an economic understanding of human beings and offered strategies to manage the population with the promise of bringing improvements to nations. Neuroscience…

  7. Chimpanzee vocal signaling points to a multimodal origin of human language.

    PubMed

    Taglialatela, Jared P; Russell, Jamie L; Schaeffer, Jennifer A; Hopkins, William D

    2011-04-20

    The evolutionary origin of human language and its neurobiological foundations has long been the object of intense scientific debate. Although a number of theories have been proposed, one particularly contentious model suggests that human language evolved from a manual gestural communication system in a common ape-human ancestor. Consistent with a gestural origins theory are data indicating that chimpanzees intentionally and referentially communicate via manual gestures, and the production of manual gestures, in conjunction with vocalizations, activates the chimpanzee Broca's area homologue--a region in the human brain that is critical for the planning and execution of language. However, it is not known if this activity observed in the chimpanzee Broca's area is the result of the chimpanzees producing manual communicative gestures, communicative sounds, or both. This information is critical for evaluating the theory that human language evolved from a strictly manual gestural system. To this end, we used positron emission tomography (PET) to examine the neural metabolic activity in the chimpanzee brain. We collected PET data in 4 subjects, all of whom produced manual communicative gestures. However, 2 of these subjects also produced so-called attention-getting vocalizations directed towards a human experimenter. Interestingly, only the two subjects that produced these attention-getting sounds showed greater mean metabolic activity in the Broca's area homologue as compared to a baseline scan. The two subjects that did not produce attention-getting sounds did not. These data contradict an exclusive "gestural origins" theory for they suggest that it is vocal signaling that selectively activates the Broca's area homologue in chimpanzees. In other words, the activity observed in the Broca's area homologue reflects the production of vocal signals by the chimpanzees, suggesting that this critical human language region was involved in vocal signaling in the common ancestor

  8. Early indices of deviance detection in humans and animal models.

    PubMed

    Grimm, Sabine; Escera, Carles; Nelken, Israel

    2016-04-01

    Detecting unexpected stimuli in the environment is a critical function of the auditory system. Responses to unexpected "deviant" sounds are enhanced compared to responses to expected stimuli. At the human scalp, deviance detection is reflected in the mismatch negativity (MMN) and in an enhancement of the middle-latency response (MLR). Single neurons often respond more strongly to a stimulus when rare than when common, a phenomenon termed stimulus-specific adaptation (SSA). Here we compare stimulus-specific adaptation with scalp-recorded deviance-related responses. We conclude that early markers of deviance detection in the time range of the MLR could be a direct correlate of cortical SSA. Both occur at an early level of cortical activation, both are robust findings with low-probability stimuli, and both show properties of genuine deviance detection. Their causal relation with the later scalp-recorded MMN is a key question in this field. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors.

    PubMed

    Fleischer, Robert C; James, Helen F; Olson, Storrs L

    2008-12-23

    The Hawaiian "honeyeaters," five endemic species of recently extinct, nectar-feeding songbirds in the genera Moho and Chaetoptila, looked and acted like Australasian honeyeaters (Meliphagidae), and no taxonomist since their discovery on James Cook's third voyage has classified them as anything else. We obtained DNA sequences from museum specimens of Moho and Chaetoptila collected in Hawaii 115-158 years ago. Phylogenetic analysis of these sequences supports monophyly of the two Hawaiian genera but, surprisingly, reveals that neither taxon is a meliphagid honeyeater, nor even in the same part of the songbird radiation as meliphagids. Instead, the Hawaiian species are divergent members of a passeridan group that includes deceptively dissimilar families of songbirds (Holarctic waxwings, neotropical silky flycatchers, and palm chats). Here we designate them as a new family, the Mohoidae. A nuclear-DNA rate calibration suggests that mohoids diverged from their closest living ancestor 14-17 mya, coincident with the estimated earliest arrival in Hawaii of a bird-pollinated plant lineage. Convergent evolution, the evolution of similar traits in distantly related taxa because of common selective pressures, is illustrated well by nectar-feeding birds, but the morphological, behavioral, and ecological similarity of the mohoids to the Australasian honeyeaters makes them a particularly striking example of the phenomenon.

  10. Ardipithecus ramidus and the paleobiology of early hominids.

    PubMed

    White, Tim D; Asfaw, Berhane; Beyene, Yonas; Haile-Selassie, Yohannes; Lovejoy, C Owen; Suwa, Gen; WoldeGabriel, Giday

    2009-10-02

    Hominid fossils predating the emergence of Australopithecus have been sparse and fragmentary. The evolution of our lineage after the last common ancestor we shared with chimpanzees has therefore remained unclear. Ardipithecus ramidus, recovered in ecologically and temporally resolved contexts in Ethiopia's Afar Rift, now illuminates earlier hominid paleobiology and aspects of extant African ape evolution. More than 110 specimens recovered from 4.4-million-year-old sediments include a partial skeleton with much of the skull, hands, feet, limbs, and pelvis. This hominid combined arboreal palmigrade clambering and careful climbing with a form of terrestrial bipedality more primitive than that of Australopithecus. Ar. ramidus had a reduced canine/premolar complex and a little-derived cranial morphology and consumed a predominantly C3 plant-based diet (plants using the C3 photosynthetic pathway). Its ecological habitat appears to have been largely woodland-focused. Ar. ramidus lacks any characters typical of suspension, vertical climbing, or knuckle-walking. Ar. ramidus indicates that despite the genetic similarities of living humans and chimpanzees, the ancestor we last shared probably differed substantially from any extant African ape. Hominids and extant African apes have each become highly specialized through very different evolutionary pathways. This evidence also illuminates the origins of orthogrady, bipedality, ecology, diet, and social behavior in earliest Hominidae and helps to define the basal hominid adaptation, thereby accentuating the derived nature of Australopithecus.

  11. Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts.

    PubMed

    Lee, S C; Lee, E T; Kingsley, R M; Wang, Y; Russell, D; Klein, R; Warn, A

    2001-04-01

    To investigate whether a computer vision system is comparable with humans in detecting early retinal lesions of diabetic retinopathy using color fundus photographs. A computer system has been developed using image processing and pattern recognition techniques to detect early lesions of diabetic retinopathy (hemorrhages and microaneurysms, hard exudates, and cotton-wool spots). Color fundus photographs obtained from American Indians in Oklahoma were used in developing and testing the system. A set of 369 color fundus slides were used to train the computer system using 3 diagnostic categories: lesions present, questionable, or absent (Y/Q/N). A different set of 428 slides were used to test and evaluate the system, and its diagnostic results were compared with those of 2 human experts-the grader at the University of Wisconsin Fundus Photograph Reading Center (Madison) and a general ophthalmologist. The experiments included comparisons using 3 (Y/Q/N) and 2 diagnostic categories (Y/N) (questionable cases excluded in the latter). In the training phase, the agreement rates, sensitivity, and specificity in detecting the 3 lesions between the retinal specialist and the computer system were all above 90%. The kappa statistics were high (0.75-0.97), indicating excellent agreement between the specialist and the computer system. In the testing phase, the results obtained between the computer system and human experts were consistent with those of the training phase, and they were comparable with those between the human experts. The performance of the computer vision system in diagnosing early retinal lesions was comparable with that of human experts. Therefore, this mobile, electronically easily accessible, and noninvasive computer system, could become a mass screening tool and a clinical aid in diagnosing early lesions of diabetic retinopathy.

  12. Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence

    PubMed Central

    MARZKE, MARY W.; MARZKE, R. F.

    2000-01-01

    The discovery of fossil hand bones from an early human ancestor at Olduvai Gorge in 1960, at the same level as primitive stone tools, generated a debate about the role of tools in the evolution of the human hand that has raged to the present day. Could the Olduvai hand have made the tools? Did the human hand evolve as an adaptation to tool making and tool use? The debate has been fueled by anatomical studies comparing living and fossil human and nonhuman primate hands, and by experimental observations. These have assessed the relative abilities of apes and humans to manufacture the Oldowan tools, but consensus has been hampered by disagreements about how to translate experimental data from living species into quantitative models for predicting the performance of fossil hands. Such models are now beginning to take shape as new techniques are applied to the capture, management and analysis of data on kinetic and kinematic variables ranging from hand joint structure, muscle mechanics, and the distribution and density of bone to joint movements and muscle recruitment during manipulative behaviour. The systematic comparative studies are highlighting a functional complex of features in the human hand facilitating a distinctive repertoire of grips that are apparently more effective for stone tool making than grips characterising various nonhuman primate species. The new techniques are identifying skeletal variables whose form may provide clues to the potential of fossil hominid hands for one-handed firm precision grips and fine precision manoeuvering movements, both of which are essential for habitual and effective tool making and tool use. PMID:10999274

  13. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  14. Stable isotope evidence for an amphibious phase in early proboscidean evolution

    PubMed Central

    Liu, Alexander G. S. C.; Seiffert, Erik R.; Simons, Elwyn L.

    2008-01-01

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring δ18O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low δ18O values and low δ18O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. δ13C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C3 terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors. PMID:18413605

  15. Early Detection of Human Epileptic Seizures Based on Intracortical Local Field Potentials

    PubMed Central

    Park, Yun S.; Hochberg, Leigh R.; Eskandar, Emad N.; Cash, Sydney S.; Truccolo, Wilson

    2014-01-01

    The unpredictability of re-occurring seizures dramatically impacts the quality of life and autonomy of people with epilepsy. Reliable early seizure detection could open new therapeutic possibilities and thus substantially improve quality of life and autonomy. Though many seizure detection studies have shown the potential of scalp electroencephalogram (EEG) and intracranial EEG (iEEG) signals, reliable early detection of human seizures remains elusive in practice. Here, we examined the use of intracortical local field potentials (LFPs) recorded from 4×4-mm2 96-microelectrode arrays (MEA) for early detection of human epileptic seizures. We adopted a framework consisting of (1) sampling of intracortical LFPs; (2) denoising of LFPs with the Kalman filter; (3) spectral power estimation in specific frequency bands using 1-sec moving time windows; (4) extraction of statistical features, such as the mean, variance, and Fano factor (calculated across channels) of the power in each frequency band; and (5) cost-sensitive support vector machine (SVM) classification of ictal and interictal samples. We tested the framework in one-participant dataset, including 4 seizures and corresponding interictal recordings preceding each seizure. The participant was a 52-year-old woman suffering from complex partial seizures. LFPs were recorded from an MEA implanted in the participant’s left middle temporal gyrus. In this participant, spectral power in 0.3–10 Hz, 20–55 Hz, and 125–250 Hz changed significantly between ictal and interictal epochs. The examined seizure detection framework provided an event-wise sensitivity of 100% (4/4) and only one 20-sec-long false positive event in interictal recordings (likely an undetected subclinical event under further visual inspection), and a detection latency of 4.35 ± 2.21 sec (mean ± std) with respect to iEEG-identified seizure onsets. These preliminary results indicate that intracortical MEA recordings may provide key signals to quickly

  16. The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation

    PubMed Central

    Gruss, Laura Tobias; Schmitt, Daniel

    2015-01-01

    The fossil record of the human pelvis reveals the selective priorities acting on hominin anatomy at different points in our evolutionary history, during which mechanical requirements for locomotion, childbirth and thermoregulation often conflicted. In our earliest upright ancestors, fundamental alterations of the pelvis compared with non-human primates facilitated bipedal walking. Further changes early in hominin evolution produced a platypelloid birth canal in a pelvis that was wide overall, with flaring ilia. This pelvic form was maintained over 3–4 Myr with only moderate changes in response to greater habitat diversity, changes in locomotor behaviour and increases in brain size. It was not until Homo sapiens evolved in Africa and the Middle East 200 000 years ago that the narrow anatomically modern pelvis with a more circular birth canal emerged. This major change appears to reflect selective pressures for further increases in neonatal brain size and for a narrow body shape associated with heat dissipation in warm environments. The advent of the modern birth canal, the shape and alignment of which require fetal rotation during birth, allowed the earliest members of our species to deal obstetrically with increases in encephalization while maintaining a narrow body to meet thermoregulatory demands and enhance locomotor performance. PMID:25602067

  17. Signatures of Climatic Change In Human Mitochondrial Dna From Europe

    NASA Astrophysics Data System (ADS)

    Richards, M. B.; Macaulay, V. A.; Torroni, A.; Bandelt, H.-J.

    Founder analysis is an approach to analysing non-recombining DNA sequence data, such as variation in the mitochondrial DNA (mtDNA), which aims at identifying and dating migrations into new territory. We applied the approach to about 4,000 human mtDNA sequences from Europe and the Near East, in order to estimate the proportion of modern lineages whose ancestors arrived at various times during the continent's past. We found that the major signal dates to about 15,000 years ago, at the time of rewarming following the Last Glacial Maximum (LGM). There is little or no archaeological evidence for immigration into Europe at this time, and the record indicates that at least parts of southern Europe remained populated during the LGM. Therefore, we interpret this signal as the trace of a bottleneck at the time of the LGM, as a result of the retreat from northern Europe during the peak of the glaciation, followed by a re-expansion from one or more refugial zones. Immigration episodes then figure at the beginning of the Early Upper Palaeolithic, during the Middle Upper Palaeolithic, and with the Neolithic. The impact of the latter on the composition of the European mtDNA pool was evidently rather minor. This result implies that climate is likely to have been a major force shaping human demographic history in Europe.

  18. UVA phototransduction drives early melanin synthesis in human melanocytes.

    PubMed

    Wicks, Nadine L; Chan, Jason W; Najera, Julia A; Ciriello, Jonathan M; Oancea, Elena

    2011-11-22

    Exposure of human skin to solar ultraviolet radiation (UVR), a powerful carcinogen [1] comprising ~95% ultraviolet A (UVA) and ~5% ultraviolet B (UVB) at the Earth's surface, promotes melanin synthesis in epidermal melanocytes [2, 3], which protects skin from DNA damage [4, 5]. UVB causes DNA lesions [6] that lead to transcriptional activation of melanin-producing enzymes, resulting in delayed skin pigmentation within days [7]. In contrast, UVA causes primarily oxidative damage [8] and leads to immediate pigment darkening (IPD) within minutes, via an unknown mechanism [9, 10]. No receptor protein directly mediating phototransduction in skin has been identified. Here we demonstrate that exposure of primary human epidermal melanocytes (HEMs) to UVA causes calcium mobilization and early melanin synthesis. Calcium responses were abolished by treatment with G protein or phospholipase C (PLC) inhibitors or by depletion of intracellular calcium stores. We show that the visual photopigment rhodopsin [11] is expressed in HEMs and contributes to UVR phototransduction. Upon UVR exposure, significant melanin production was measured within one hour; cellular melanin continued to increase in a retinal- and calcium-dependent manner up to 5-fold after 24 hr. Our findings identify a novel UVA-sensitive signaling pathway in melanocytes that leads to calcium mobilization and melanin synthesis and may underlie the mechanism of IPD in human skin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Early Motherhood and Harsh Parenting: The Role of Human, Social, and Cultural Capital

    ERIC Educational Resources Information Center

    Lee, Yookyong

    2009-01-01

    Objective: This study examined the role of maternal human, social, and cultural capital in the relationship between early motherhood and harsh parenting behavior. Methods: This study used data from the Fragile Families and Child Wellbeing (FFCW) Study. Harsh parenting behaviors by mothers who were 19 years or younger at birth of the focal child (n…

  20. WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells

    PubMed Central

    Alshawaf, Abdullah J.; Antonic, Ana; Skafidas, Efstratios

    2017-01-01

    Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker, TBR2, and also glial marker, S100β. In contrast, inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers, PAX6 and EAAT1, respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation. PMID:28690640

  1. Before the Emergence of Homo sapiens: Overview on the Early-to-Middle Pleistocene Fossil Record (with a Proposal about Homo heidelbergensis at the subspecific level)

    PubMed Central

    Manzi, Giorgio

    2011-01-01

    The origin of H. sapiens has deep roots, which include two crucial nodes: (1) the emergence and diffusion of the last common ancestor of later Homo (in the Early Pleistocene) and (2) the tempo and mode of the appearance of distinct evolutionary lineages (in the Middle Pleistocene). The window between 1,000 and 500 thousand years before present appears of crucial importance, including the generation of a new and more encephalised kind of humanity, referred to by many authors as H. heidelbergensis. This species greatly diversified during the Middle Pleistocene up to the formation of new variants (i.e., incipient species) that, eventually, led to the allopatric speciation of H. neanderthalensis and H. sapiens. The special case furnished by the calvarium found near Ceprano (Italy), dated to 430–385 ka, offers the opportunity to investigate this matter from an original perspective. It is proposed to separate the hypodigm of a single, widespread, and polymorphic human taxon of the Middle Pleistocene into distinct subspecies (i.e., incipient species). The ancestral one should be H. heidelbergensis, including specimens such as Ceprano and the mandible from Mauer. PMID:21716742

  2. New insights into human primordial germ cells and early embryonic development from single-cell analysis.

    PubMed

    Otte, Jörg; Wruck, Wasco; Adjaye, James

    2017-08-01

    Human preimplantation developmental studies are difficult to accomplish due to associated ethical and moral issues. Preimplantation cells are rare and exist only in transient cell states. From a single cell, it is very challenging to analyse the origination of the heterogeneity and complexity inherent to the human body. However, recent advances in single-cell technology and data analysis have provided new insights into the process of early human development and germ cell specification. In this Review, we examine the latest single-cell datasets of human preimplantation embryos and germ cell development, compare them to bulk cell analyses, and interpret their biological implications. © 2017 Federation of European Biochemical Societies.

  3. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors

    PubMed Central

    Qin, Xin-Cheng; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Gao, Dong-Ya; He, Jin-Rong; Wang, Jian-Bo; Li, Ci-Xiu; Kang, Yan-Jun; Yu, Bin; Zhou, Dun-Jin; Xu, Jianguo; Plyusnin, Alexander; Holmes, Edward C.; Zhang, Yong-Zhen

    2014-01-01

    Although segmented and unsegmented RNA viruses are commonplace, the evolutionary links between these two very different forms of genome organization are unclear. We report the discovery and characterization of a tick-borne virus—Jingmen tick virus (JMTV)—that reveals an unexpected connection between segmented and unsegmented RNA viruses. The JMTV genome comprises four segments, two of which are related to the nonstructural protein genes of the genus Flavivirus (family Flaviviridae), whereas the remaining segments are unique to this virus, have no known homologs, and contain a number of features indicative of structural protein genes. Remarkably, homology searching revealed that sequences related to JMTV were present in the cDNA library from Toxocara canis (dog roundworm; Nematoda), and that shared strong sequence and structural resemblances. Epidemiological studies showed that JMTV is distributed in tick populations across China, especially Rhipicephalus and Haemaphysalis spp., and experiences frequent host-switching and genomic reassortment. To our knowledge, JMTV is the first example of a segmented RNA virus with a genome derived in part from unsegmented viral ancestors. PMID:24753611

  4. Buoyancy differences among two deepwater ciscoes from the Great Lakes and their putative ancestor

    USGS Publications Warehouse

    Krause, A.E.; Eshenroder, R.L.; Begnoche, L.J.

    2002-01-01

    We analyzed buoyancy in two deepwater ciscoes, Coregonus hoyi and C. kiyi, and in C. artedi, their putative ancestor, and also analyzed how variations in fish weight, water content, and lipid content affected buoyancy. Buoyancy was significantly different among the three species (p < 0.0001). Estimates of percent buoyancy (neutral buoyancy = 0.0%) were: kiyi, 3.8%; hoyi, 4.7%; and artedi, 5.7%. Buoyancy did not change with fish weight alone (p = 0.38). Fish weight was negatively related to water content for all three species (p = 0.037). Lipid content was not significantly different between hoyi and kiyi, but artedi had significantly fewer lipids than hoyi and kiyi (p < 0.10). When artedi was removed from the analysis, fish weight and lipids accounted for 48% of the variation in buoyancy (p = 0.003), fatter hoyi were less dense than leaner hoyi, but fatter and leaner kiyi were no different in density. Our findings provide additional evidence that buoyancy regulation was a speciating mechanism in deepwater ciscoes and that kiyi is more specialized than hoyi for diel-vertical migration in deep water.

  5. Early Human Testing Initiative Phase 1 Regenerative Life Support Systems

    NASA Image and Video Library

    1995-08-08

    Early Human Testing (EHT) Initiative Phase 1 Regenerative Life Support Systems Laboratory (RLSSL). Nigel Packham activities in the Variable Pressure Growth Chamber which he lived inside for 15 days. A crowd of well-wishers outside the test chamber, at the console are John Lewis, Ed Mohr and Marybeth Edeen (15577). Packham exiting the chamber (15578-81). Packham is the focus of television cameras and reporters (15582-3). Don Henninger interviewed by reporters (15584). Packham is presented with a jacket after his stay in the chamber (15585). Packham inside the wheat growth chamber checking the condition of the plants (15586-7, 15597). Packham exercising on a recumbant bicycle (15588, 15592). Packham, through the window into the growth chamber, displays a handful of wheat plants to console monitor Dan Barta (15589-90). Group portrait of the team conducting the Early Human Testing Initiative Phase 1 Regenerative Life Support Systems test and include, front row, from left: Jeff Dominick and Don Overton and back row, from left, unidentified member, Marybeth Edeen, Nigel Packham, John Lewis, Ed Mohr, Dan Barta and Tim Monk (15591). Harry Halford prepares to send a package through the airlock to Packham (15593). Packham displays a handful of wheat plants (15594). Packham fixes himself a bowl of cereal (15595) and retrieves a carton of milk from the refrigerator (15596). Packham retrieves a package from the airlock (15598). Packham packs up trash in plastic bag (15599-600) and sends it back through the airlock (15601). Packham gets a cup of water (15602) and heats it in the microwave (15603).

  6. Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis.

    PubMed

    Chisholm, Rebecca H; Trauer, James M; Curnoe, Darren; Tanaka, Mark M

    2016-08-09

    Tuberculosis (TB) is caused by the Mycobacterium tuberculosis complex (MTBC), a wildly successful group of organisms and the leading cause of death resulting from a single bacterial pathogen worldwide. It is generally accepted that MTBC established itself in human populations in Africa and that animal-infecting strains diverged from human strains. However, the precise causal factors of TB emergence remain unknown. Here, we propose that the advent of controlled fire use in early humans created the ideal conditions for the emergence of TB as a transmissible disease. This hypothesis is supported by mathematical modeling together with a synthesis of evidence from epidemiology, evolutionary genetics, and paleoanthropology.

  7. Primary Cortical Folding in the Human Newborn: An Early Marker of Later Functional Development

    ERIC Educational Resources Information Center

    Dubois, J.; Benders, M.; Borradori-Tolsa, C.; Cachia, A.; Lazeyras, F.; Leuchter, R. Ha-Vinh; Sizonenko, S. V.; Warfield, S. K.; Mangin, J. F.; Huppi, P. S.

    2008-01-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be…

  8. Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development

    PubMed Central

    Galan, Amparo; Diaz-Gimeno, Patricia; Poo, Maria Eugenia; Valbuena, Diana; Sanchez, Eva; Ruiz, Veronica; Dopazo, Joaquin; Montaner, David; Conesa, Ana; Simon, Carlos

    2013-01-01

    The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions. PMID:23614026

  9. Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data

    PubMed Central

    Qiu, Jia-jun; Ren, Zhao-rui; Yan, Jing-bin

    2016-01-01

    Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage–specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development. PMID:27542205

  10. The Early Development of Human Mirror Mechanisms: Evidence from Electromyographic Recordings at 3 and 6 Months

    ERIC Educational Resources Information Center

    Turati, Chiara; Natale, Elena; Bolognini, Nadia; Senna, Irene; Picozzi, Marta; Longhi, Elena; Cassia, Viola Macchi

    2013-01-01

    In primates and adult humans direct understanding of others' action is provided by mirror mechanisms matching action observation and action execution (e.g. Casile, Caggiano & Ferrari, 2011). Despite the growing body of evidence detailing the existence of these mechanisms in the adult human brain, their origins and early development are…

  11. The evolution of human and ape hand proportions.

    PubMed

    Almécija, Sergio; Smaers, Jeroen B; Jungers, William L

    2015-07-14

    Human hands are distinguished from apes by possessing longer thumbs relative to fingers. However, this simple ape-human dichotomy fails to provide an adequate framework for testing competing hypotheses of human evolution and for reconstructing the morphology of the last common ancestor (LCA) of humans and chimpanzees. We inspect human and ape hand-length proportions using phylogenetically informed morphometric analyses and test alternative models of evolution along the anthropoid tree of life, including fossils like the plesiomorphic ape Proconsul heseloni and the hominins Ardipithecus ramidus and Australopithecus sediba. Our results reveal high levels of hand disparity among modern hominoids, which are explained by different evolutionary processes: autapomorphic evolution in hylobatids (extreme digital and thumb elongation), convergent adaptation between chimpanzees and orangutans (digital elongation) and comparatively little change in gorillas and hominins. The human (and australopith) high thumb-to-digits ratio required little change since the LCA, and was acquired convergently with other highly dexterous anthropoids.

  12. The evolution of human and ape hand proportions

    PubMed Central

    Almécija, Sergio; Smaers, Jeroen B.; Jungers, William L.

    2015-01-01

    Human hands are distinguished from apes by possessing longer thumbs relative to fingers. However, this simple ape-human dichotomy fails to provide an adequate framework for testing competing hypotheses of human evolution and for reconstructing the morphology of the last common ancestor (LCA) of humans and chimpanzees. We inspect human and ape hand-length proportions using phylogenetically informed morphometric analyses and test alternative models of evolution along the anthropoid tree of life, including fossils like the plesiomorphic ape Proconsul heseloni and the hominins Ardipithecus ramidus and Australopithecus sediba. Our results reveal high levels of hand disparity among modern hominoids, which are explained by different evolutionary processes: autapomorphic evolution in hylobatids (extreme digital and thumb elongation), convergent adaptation between chimpanzees and orangutans (digital elongation) and comparatively little change in gorillas and hominins. The human (and australopith) high thumb-to-digits ratio required little change since the LCA, and was acquired convergently with other highly dexterous anthropoids. PMID:26171589

  13. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2005-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  14. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2006-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  15. Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo.

    PubMed

    Wildman, Derek E; Uddin, Monica; Liu, Guozhen; Grossman, Lawrence I; Goodman, Morris

    2003-06-10

    What do functionally important DNA sites, those scrutinized and shaped by natural selection, tell us about the place of humans in evolution? Here we compare approximately 90 kb of coding DNA nucleotide sequence from 97 human genes to their sequenced chimpanzee counterparts and to available sequenced gorilla, orangutan, and Old World monkey counterparts, and, on a more limited basis, to mouse. The nonsynonymous changes (functionally important), like synonymous changes (functionally much less important), show chimpanzees and humans to be most closely related, sharing 99.4% identity at nonsynonymous sites and 98.4% at synonymous sites. On a time scale, the coding DNA divergencies separate the human-chimpanzee clade from the gorilla clade at between 6 and 7 million years ago and place the most recent common ancestor of humans and chimpanzees at between 5 and 6 million years ago. The evolutionary rate of coding DNA in the catarrhine clade (Old World monkey and ape, including human) is much slower than in the lineage to mouse. Among the genes examined, 30 show evidence of positive selection during descent of catarrhines. Nonsynonymous substitutions by themselves, in this subset of positively selected genes, group humans and chimpanzees closest to each other and have chimpanzees diverge about as much from the common human-chimpanzee ancestor as humans do. This functional DNA evidence supports two previously offered taxonomic proposals: family Hominidae should include all extant apes; and genus Homo should include three extant species and two subgenera, Homo (Homo) sapiens (humankind), Homo (Pan) troglodytes (common chimpanzee), and Homo (Pan) paniscus (bonobo chimpanzee).

  16. The role of load-carrying in the evolution of modern body proportions.

    PubMed

    Wang, W-J; Crompton, R H

    2004-05-01

    The first unquestionably bipedal early human ancestors, the species Australopithecus afarensis, were markedly different to ourselves in body proportions, having a long trunk and short legs. Some have argued that 'chimpanzee-like' features such as these suggest a 'bent-hip, bent-knee' (BHBK) posture would have been adopted during gait. Computer modelling studies, however, indicate that this early human ancestor could have walked in a reasonably efficient upright posture, whereas BHBK posture would have nearly doubled the mechanical energy cost of locomotion, as it does the physiological cost of locomotion in ourselves. More modern body proportions first appear at around 1.8-1.5 Ma, with Homo ergaster (early African Homo erectus), represented by the Nariokotome skeleton KNM-WT 15000, in which the legs were considerably longer in relation to the trunk than they are in human adults, although this skeleton represents an adolescent. Several authors have suggested that this morphology would have allowed faster, more endurant walking. But during the same period, the archaeological record indicates a sharp rise in distances over which stone tools or raw materials are transported. Is this coincidental, or can load-carrying also be implicated in selection for a more modern morphology? Computer simulations of loaded walking, verified against kinetic data for humans, show that BHBK gait is even more ineffective while load-carrying. However, walking erect, the Nariokotome individual could have carried loads of 10-15% body mass for less cost, relative to body size, than AL 288-1 walking erect but unloaded. In fact, to the extent that our sample of humans is typical, KNM-WT 15000 would have had better mechanical effectiveness in bearing light loads on the back than modern human adults. Thus, selection for effectiveness in load-carrying, as well as in endurant walking, is indeed likely to have been implicated in the evolution of modern body proportions.

  17. Analysis of early thrombus dynamics in a humanized mouse laser injury model.

    PubMed

    Wang, Weiwei; Lindsey, John P; Chen, Jianchun; Diacovo, Thomas G; King, Michael R

    2014-01-01

    Platelet aggregation and thrombus formation at the site of injury is a dynamic process that involves the continuous addition of new platelets as well as thrombus rupture. In the early stages of hemostasis (within minutes after vessel injury) this process can be visualized by transfusing fluorescently labeled human platelets and observing their deposition and detachment. These two counterbalancing events help the developing thrombus reach a steady-state morphology, where it is large enough to cover the injured vessel surface but not too large to form a severe thrombotic occlusion. In this study, the spatial and temporal aspects of early stage thrombus dynamics which result from laser-induced injury on arterioles of cremaster muscle in the humanized mouse were visualized using fluorescent microscopy. It was found that rolling platelets show preference for the upstream region while tethering/detaching platelets were primarily found downstream. It was also determined that the platelet deposition rate is relatively steady, whereas the effective thrombus coverage area does not increase at a constant rate. By introducing a new method to graphically represent the real time in vivo physiological shear stress environment, we conclude that the thrombus continuously changes shape by regional growth and decay, and neither dominates in the high shear stress region.

  18. Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view

    PubMed Central

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E.

    2014-01-01

    The basic principles of Ca2+ regulation emerged early in prokaryotes. Ca2+ signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca2+ concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca2+ signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca2+ exchangers and four-domain voltage-gated Ca2+ channels. Newly identified evolutionary evidence suggests that the distinct Ca2+ signaling machineries in animals, plants and fungi likely originated from an ancient Ca2+ signaling machinery prior to early eukaryotic radiation. PMID:25498309

  19. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.

    PubMed

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E

    2015-03-01

    The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A Gradualist Scenario for Language Evolution: Precise Linguistic Reconstruction of Early Human (and Neandertal) Grammars

    PubMed Central

    Progovac, Ljiljana

    2016-01-01

    In making an argument for the antiquity of language, based on comparative evidence, Dediu and Levinson (2013) express hope that some combinations of structural features will prove so conservative that they will allow deep linguistic reconstruction. I propose that the earliest stages of syntax/grammar as reconstructed in Progovac (2015a), based on a theoretical and data-driven linguistic analysis, provide just such a conservative platform, which would have been commanded also by Neandertals and the common ancestor. I provide a fragment of this proto-grammar, which includes flat verb-noun compounds used for naming and insult (e.g., rattle-snake, cry-baby, scatter-brain), and paratactic (loose) combinations of such flat structures (e.g., Come one, come all; You seek, you find). This flat, binary, paratactic platform is found in all languages, and can be shown to serve as foundation for any further structure building. However, given the degree and nature of variation across languages in elaborating syntax beyond this proto-stage, I propose that hierarchical syntax did not emerge once and uniformly in all its complexity, but rather multiple times, either within Africa, or after dispersion from Africa. If so, then, under the uniregional hypothesis, our common ancestor with Neandertals, H. heidelbergensis, could not have commanded hierarchical syntax, but “only” the proto-grammar. Linguistic reconstructions of this kind are necessary for formulating precise and testable hypotheses regarding language evolution. In addition to the hominin timeline, this reconstruction can also engage, and negotiate between, the fields of neuroscience and genetics, as I illustrate with one specific scenario involving FOXP2 gene. PMID:27877146

  1. Evolutionary History of Helicobacter pylori Sequences Reflect Past Human Migrations in Southeast Asia

    PubMed Central

    Breurec, Sebastien; Guillard, Bertrand; Hem, Sopheak; Brisse, Sylvain; Dieye, Fatou Bintou; Huerre, Michel; Oung, Chakravuth; Raymond, Josette; Sreng Tan, Tek; Thiberge, Jean-Michel; Vong, Sirenda; Monchy, Didier; Linz, Bodo

    2011-01-01

    The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia. PMID:21818291

  2. Evolutionary history of Helicobacter pylori sequences reflect past human migrations in Southeast Asia.

    PubMed

    Breurec, Sebastien; Guillard, Bertrand; Hem, Sopheak; Brisse, Sylvain; Dieye, Fatou Bintou; Huerre, Michel; Oung, Chakravuth; Raymond, Josette; Tan, Tek Sreng; Thiberge, Jean-Michel; Vong, Sirenda; Monchy, Didier; Linz, Bodo

    2011-01-01

    The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia.

  3. Comment: Characterization of Two Historic Smallpox Specimens from a Czech Museum.

    PubMed

    Porter, Ashleigh F; Duggan, Ana T; Poinar, Hendrik N; Holmes, Edward C

    2017-09-28

    The complete genome sequences of two strains of variola virus (VARV) sampled from human smallpox specimens present in the Czech National Museum, Prague, were recently determined, with one of the sequences estimated to date to the mid-19th century. Using molecular clock methods, the authors of this study go on to infer that the currently available strains of VARV share an older common ancestor, at around 1350 AD, than some recent estimates based on other archival human samples. Herein, we show that the two Czech strains exhibit anomalous branch lengths given their proposed age, and by assuming a constant rate of evolutionary change across the rest of the VARV phylogeny estimate that their true age in fact lies between 1918 and 1937. We therefore suggest that the age of the common ancestor of currently available VARV genomes most likely dates to late 16th and early 17th centuries and not ~1350 AD.

  4. Comment: Characterization of Two Historic Smallpox Specimens from a Czech Museum

    PubMed Central

    Porter, Ashleigh F.; Duggan, Ana T.

    2017-01-01

    The complete genome sequences of two strains of variola virus (VARV) sampled from human smallpox specimens present in the Czech National Museum, Prague, were recently determined, with one of the sequences estimated to date to the mid-19th century. Using molecular clock methods, the authors of this study go on to infer that the currently available strains of VARV share an older common ancestor, at around 1350 AD, than some recent estimates based on other archival human samples. Herein, we show that the two Czech strains exhibit anomalous branch lengths given their proposed age, and by assuming a constant rate of evolutionary change across the rest of the VARV phylogeny estimate that their true age in fact lies between 1918 and 1937. We therefore suggest that the age of the common ancestor of currently available VARV genomes most likely dates to late 16th and early 17th centuries and not ~1350 AD. PMID:28956829

  5. Early brain development toward shaping of human mind: an integrative psychoneurodevelopmental model in prenatal and perinatal medicine.

    PubMed

    Hruby, Radovan; Maas, Lili M; Fedor-Freybergh, P G

    2013-01-01

    The article introduces an integrative psychoneurodevelopmental model of complex human brain and mind development based on the latest findings in prenatal and perinatal medicine in terms of integrative neuroscience. The human brain development is extraordinarily complex set of events and could be influenced by a lot of factors. It is supported by new insights into the early neuro-ontogenic processes with the help of structural 3D magnetic resonance imaging or diffusion tensor imaging of fetal human brain. Various factors and targets for neural development including birth weight variability, fetal and early-life programming, fetal neurobehavioral states and fetal behavioral responses to various stimuli and others are discussed. Molecular biology reveals increasing sets of genes families as well as transcription and neurotropic factors together with critical epigenetic mechanisms to be deeply employed in the crucial neurodevelopmental events. Another field of critical importance is psychoimmuno-neuroendocrinology. Various effects of glucocorticoids as well as other hormones, prenatal stress and fetal HPA axis modulation are thought to be of special importance for brain development. The early postnatal period is characterized by the next intense shaping of complex competences, induced mainly by the very unique mother - newborn´s interactions and bonding. All these mechanisms serve to shape individual human mind with complex abilities and neurobehavioral strategies. Continuous research elucidating these special competences of human fetus and newborn/child supports integrative neuroscientific approach to involve various scientific disciplines for the next progress in human brain and mind research, and opens new scientific challenges and philosophic attitudes. New findings and approaches in this field could establish new methods in science, in primary prevention and treatment strategies, and markedly contribute to the development of modern integrative and personalized

  6. Plio-Pleistocene vegetation response on orbitally forced climatic cycles in Southern Europe - implications for early human environments

    NASA Astrophysics Data System (ADS)

    Bruch, Angela; Bertini, Adele

    2013-04-01

    The pace and causes of the early human colonization, in one or several migratory waves from Africa in new environments of the Eurasian continent during the Early Pleistocene, are still a matter of debate. However, climate change is considered a major driving factor of hominin evolution and dispersal patterns. In fact directly or indirectly by its severe influence on vegetation, physiography of landscape, and animal distribution, climate modulates the availability of resources. Plant fossils usually are rare or even absent at hominin sites. Thus, direct evidence on local vegetation and environment is generally missing. Independent from such localities, pollen profiles from the Mediterranean realm show the response of regional vegetation on global climate changes and cyclicity, with distinct spatial and temporal differences. Furthermore, plant fossils provide proxies for climate quantification that can be compared to the global signal, and add data to understanding the regional differentiation of Mediterranean environments. In this presentation we will discuss various palaeobotanical data from Southern Europe to assess Early Pleistocene climate and vegetation in time and space as part of the environment during the first expansions of early humans out of Africa.

  7. Early parental care is important for hippocampal maturation: evidence from brain morphology in humans.

    PubMed

    Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J

    2010-01-01

    The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.

  8. Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors.

    PubMed

    Kimber, S J; Sneddon, S F; Bloor, D J; El-Bareg, A M; Hawkhead, J A; Metcalfe, A D; Houghton, F D; Leese, H J; Rutherford, A; Lieberman, B A; Brison, D R

    2008-05-01

    Little is understood about the regulation of gene expression in human preimplantation embryos. We set out to examine the expression in human preimplantation embryos of a number of genes known to be critical for early development of the murine embryo. The expression profile of these genes was analysed throughout preimplantation development and in response to growth factor (GF) stimulation. Developmental expression of a number of genes was similar to that seen in murine embryos (OCT3B/4, CDX2, NANOG). However, GATA6 is expressed throughout preimplantation development in the human. Embryos were cultured in IGF-I, leukaemia inhibitory factor (LIF) or heparin-binding EGF-like growth factor (HBEGF), all of which are known to stimulate the development of human embryos. Our data show that culture in HBEGF and LIF appears to facilitate human embryo expression of a number of genes: ERBB4 (LIF) and LIFR and DSC2 (HBEGF) while in the presence of HBEGF no blastocysts expressed EOMES and when cultured with LIF only two out of nine blastocysts expressed TBN. These data improve our knowledge of the similarities between human and murine embryos and the influence of GFs on human embryo gene expression. Results from this study will improve the understanding of cell fate decisions in early human embryos, which has important implications for both IVF treatment and the derivation of human embryonic stem cells.

  9. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research

    PubMed Central

    Pembrey, Marcus; Saffery, Richard; Bygren, Lars Olov

    2014-01-01

    Mammalian experiments provide clear evidence of male line transgenerational effects on health and development from paternal or ancestral early-life exposures such as diet or stress. The few human observational studies to date suggest (male line) transgenerational effects exist that cannot easily be attributed to cultural and/or genetic inheritance. Here we summarise relevant studies, drawing attention to exposure sensitive periods in early life and sex differences in transmission and offspring outcomes. Thus, variation, or changes, in the parental/ancestral environment may influence phenotypic variation for better or worse in the next generation(s), and so contribute to common, non-communicable disease risk including sex differences. We argue that life-course epidemiology should be reframed to include exposures from previous generations, keeping an open mind as to the mechanisms that transmit this information to offspring. Finally, we discuss animal experiments, including the role of epigenetic inheritance and non-coding RNAs, in terms of what lessons can be learnt for designing and interpreting human studies. This review was developed initially as a position paper by the multidisciplinary Network in Epigenetic Epidemiology to encourage transgenerational research in human cohorts. PMID:25062846

  10. Genomic structure of the native inhabitants of Peninsular Malaysia and North Borneo suggests complex human population history in Southeast Asia.

    PubMed

    Yew, Chee-Wei; Lu, Dongsheng; Deng, Lian; Wong, Lai-Ping; Ong, Rick Twee-Hee; Lu, Yan; Wang, Xiaoji; Yunus, Yushimah; Aghakhanian, Farhang; Mokhtar, Siti Shuhada; Hoque, Mohammad Zahirul; Voo, Christopher Lok-Yung; Abdul Rahman, Thuhairah; Bhak, Jong; Phipps, Maude E; Xu, Shuhua; Teo, Yik-Ying; Kumar, Subbiah Vijay; Hoh, Boon-Peng

    2018-02-01

    Southeast Asia (SEA) is enriched with a complex history of peopling. Malaysia, which is located at the crossroads of SEA, has been recognized as one of the hubs for early human migration. To unravel the genomic complexity of the native inhabitants of Malaysia, we sequenced 12 samples from 3 indigenous populations from Peninsular Malaysia and 4 native populations from North Borneo to a high coverage of 28-37×. We showed that the Negritos from Peninsular Malaysia shared a common ancestor with the East Asians, but exhibited some level of gene flow from South Asia, while the North Borneo populations exhibited closer genetic affinity towards East Asians than the Malays. The analysis of time of divergence suggested that ancestors of Negrito were the earliest settlers in the Malay Peninsula, whom first separated from the Papuans ~ 50-33 thousand years ago (kya), followed by East Asian (~ 40-15 kya), while the divergence time frame between North Borneo and East Asia populations predates the Austronesian expansion period implies a possible pre-Neolithic colonization. Substantial Neanderthal ancestry was confirmed in our genomes, as was observed in other East Asians. However, no significant difference was observed, in terms of the proportion of Denisovan gene flow into these native inhabitants from Malaysia. Judging from the similar amount of introgression in the Southeast Asians and East Asians, our findings suggest that the Denisovan gene flow may have occurred before the divergence of these populations and that the shared similarities are likely an ancestral component.

  11. The evolution of air resonance power efficiency in the violin and its ancestors

    PubMed Central

    Nia, Hadi T.; Jain, Ankita D.; Liu, Yuming; Alam, Mohammad-Reza; Barnas, Roman; Makris, Nicholas C.

    2015-01-01

    The fact that acoustic radiation from a violin at air-cavity resonance is monopolar and can be determined by pure volume change is used to help explain related aspects of violin design evolution. By determining the acoustic conductance of arbitrarily shaped sound holes, it is found that air flow at the perimeter rather than the broader sound-hole area dominates acoustic conductance, and coupling between compressible air within the violin and its elastic structure lowers the Helmholtz resonance frequency from that found for a corresponding rigid instrument by roughly a semitone. As a result of the former, it is found that as sound-hole geometry of the violin's ancestors slowly evolved over centuries from simple circles to complex f-holes, the ratio of inefficient, acoustically inactive to total sound-hole area was decimated, roughly doubling air-resonance power efficiency. F-hole length then slowly increased by roughly 30% across two centuries in the renowned workshops of Amati, Stradivari and Guarneri, favouring instruments with higher air-resonance power, through a corresponding power increase of roughly 60%. By evolution-rate analysis, these changes are found to be consistent with mutations arising within the range of accidental replication fluctuations from craftsmanship limitations with subsequent selection favouring instruments with higher air-resonance power. PMID:25792964

  12. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses.

    PubMed

    Fang, Shisong; Bai, Tian; Yang, Lei; Wang, Xin; Peng, Bo; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Zhu, Wenfei; Wang, Dayan; Cheng, Jinquan; Shu, Yuelong

    2016-08-03

    Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance.

  13. Exercise, APOE genotype, and the evolution of the human lifespan

    PubMed Central

    Raichlen, David A.; Alexander, Gene E.

    2014-01-01

    Humans have exceptionally long lifespans compared with other mammals. However, our longevity evolved when our ancestors had two copies of the apolipoprotein E (APOE) ε4 allele, a genotype that leads to a high risk of Alzheimer’s disease (AD), cardiovascular disease, and increased mortality. How did human aging evolve within this genetic constraint? Drawing from neuroscience, anthropology, and brain-imaging research, we propose the hypothesis that the evolution of increased physical activity approximately 2 million years ago served to reduce the amyloid plaque and vascular burden of APOE ε4, relaxing genetic constraints on aging. This multidisciplinary approach links human evolution with health and provides a complementary perspective on aging and neurodegenerative disease that may help identify key mechanisms and targets for intervention. PMID:24690272

  14. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment

    PubMed Central

    Nigst, Philip R.; Haesaerts, Paul; Damblon, Freddy; Frank-Fellner, Christa; Mallol, Carolina; Viola, Bence; Götzinger, Michael; Niven, Laura; Trnka, Gerhard; Hublin, Jean-Jacques

    2014-01-01

    The first settlement of Europe by modern humans is thought to have occurred between 50,000 and 40,000 calendar years ago (cal B.P.). In Europe, modern human remains of this time period are scarce and often are not associated with archaeology or originate from old excavations with no contextual information. Hence, the behavior of the first modern humans in Europe is still unknown. Aurignacian assemblages—demonstrably made by modern humans—are commonly used as proxies for the presence of fully behaviorally and anatomically modern humans. The site of Willendorf II (Austria) is well known for its Early Upper Paleolithic horizons, which are among the oldest in Europe. However, their age and attribution to the Aurignacian remain an issue of debate. Here, we show that archaeological horizon 3 (AH 3) consists of faunal remains and Early Aurignacian lithic artifacts. By using stratigraphic, paleoenvironmental, and chronological data, AH 3 is ascribed to the onset of Greenland Interstadial 11, around 43,500 cal B.P., and thus is older than any other Aurignacian assemblage. Furthermore, the AH 3 assemblage overlaps with the latest directly radiocarbon-dated Neanderthal remains, suggesting that Neanderthal and modern human presence overlapped in Europe for some millennia, possibly at rather close geographical range. Most importantly, for the first time to our knowledge, we have a high-resolution environmental context for an Early Aurignacian site in Central Europe, demonstrating an early appearance of behaviorally modern humans in a medium-cold steppe-type environment with some boreal trees along valleys around 43,500 cal B.P. PMID:25246543

  15. History of Human Parasitology

    PubMed Central

    Cox, F. E. G.

    2002-01-01

    Humans are hosts to nearly 300 species of parasitic worms and over 70 species of protozoa, some derived from our primate ancestors and some acquired from the animals we have domesticated or come in contact with during our relatively short history on Earth. Our knowledge of parasitic infections extends into antiquity, and descriptions of parasites and parasitic infections are found in the earliest writings and have been confirmed by the finding of parasites in archaeological material. The systematic study of parasites began with the rejection of the theory of spontaneous generation and the promulgation of the germ theory. Thereafter, the history of human parasitology proceeded along two lines, the discovery of a parasite and its subsequent association with disease and the recognition of a disease and the subsequent discovery that it was caused by a parasite. This review is concerned with the major helminth and protozoan infections of humans: ascariasis, trichinosis, strongyloidiasis, dracunculiasis, lymphatic filariasis, loasis, onchocerciasis, schistosomiasis, cestodiasis, paragonimiasis, clonorchiasis, opisthorchiasis, amoebiasis, giardiasis, African trypanosomiasis, South American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, cryptosporidiosis, cyclosporiasis, and microsporidiosis. PMID:12364371

  16. History of human parasitology.

    PubMed

    Cox, F E G

    2002-10-01

    Humans are hosts to nearly 300 species of parasitic worms and over 70 species of protozoa, some derived from our primate ancestors and some acquired from the animals we have domesticated or come in contact with during our relatively short history on Earth. Our knowledge of parasitic infections extends into antiquity, and descriptions of parasites and parasitic infections are found in the earliest writings and have been confirmed by the finding of parasites in archaeological material. The systematic study of parasites began with the rejection of the theory of spontaneous generation and the promulgation of the germ theory. Thereafter, the history of human parasitology proceeded along two lines, the discovery of a parasite and its subsequent association with disease and the recognition of a disease and the subsequent discovery that it was caused by a parasite. This review is concerned with the major helminth and protozoan infections of humans: ascariasis, trichinosis, strongyloidiasis, dracunculiasis, lymphatic filariasis, loasis, onchocerciasis, schistosomiasis, cestodiasis, paragonimiasis, clonorchiasis, opisthorchiasis, amoebiasis, giardiasis, African trypanosomiasis, South American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, cryptosporidiosis, cyclosporiasis, and microsporidiosis.

  17. Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants

    PubMed Central

    Chang, Ying; Wang, Sishuo; Sekimoto, Satoshi; Aerts, Andrea L.; Choi, Cindy; Clum, Alicia; LaButti, Kurt M.; Lindquist, Erika A.; Yee Ngan, Chew; Ohm, Robin A.; Salamov, Asaf A.; Grigoriev, Igor V.; Spatafora, Joseph W.; Berbee, Mary L.

    2015-01-01

    As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant–fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and zygomycota II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional and sequence similarity, Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodya provide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya. PMID:25977457

  18. Using the neanderthal and denisova genetic data to understand the common MAPT 17q21 inversion in modern humans.

    PubMed

    Setó-Salvia, Núria; Sánchez-Quinto, Federico; Carbonell, Eudald; Lorenzo, Carlos; Comas, David; Clarimón, Jordi

    2012-12-01

    The polymorphic inversion on 17q21, that includes the MAPT gene, represents a unique locus in the human genome characterized by a large region with strong linkage disequilibrium. Two distinct haplotypes, H1 and H2, exist in modern humans, and H1 has been unequivocally related to several neurodegenerative disorders. Recent data indicate that recurrent inversions of this genomic region have occurred through primate evolution, with the H2 haplotype being the ancestral state. Neandertals harbored the H1 haplotype; however, until now, no data were available for the Denisova hominin. Neandertals and Denisovans are sister groups that share a common ancestor with modern humans. We analyzed the MAPT sequence and assessed the differences between modern humans, Neandertals, Denisovans, and great apes. Our analysis indicated that the Denisova hominin carried the H1 haplotype, and the Neandertal and Denisova common ancestor probably shared the same subhaplotype (H1j). We also found 68 intronic variants within the MAPT gene, 23 exclusive to Denisova hominin, 6 limited to Neandertals, and 24 exclusive to present-day humans. Our results reinforce previous data; this suggests that the 17q21 inversion arose within the modern human lineage. The data also indicate that archaic hominins that coexisted in Eurasia probably shared the same MAPT subhaplotype, and this can be found in almost 2% of chromosomes from European ancestry. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.

  19. Early variability in the conceptualisation of "sustainable development and human factors".

    PubMed

    Thatcher, Andrew

    2012-01-01

    The sub-discipline of "sustainable development and human factors" is relatively new, first being used in 2006 with a Technical Committee of the IEA being established only in 2009 and a similar special interest group on "green ergonomics" at the Institute of Ergonomics and Human Factors being established in 2010. In general though, the definitions and practice of "sustainable development" is highly contentious and ambiguous across a range of disciplines. This paper examines the diversity of definitions and approaches to sustainable development and human factors in the early papers in this sub-discipline. An examination of 45 chapters and papers (from 2008 to 2011) reveals a surprising consistency in the definitions used for sustainable development but also a large proportion of the papers where no definitions are given at all. The majority of papers were, however, biased towards an economic capital and social capital emphasis, which is to be expected of work traditionally in the ergonomics paradigm. Further, most papers were theoretical in nature demonstrating a great opportunity for empirical work. The variability in definitions is discussed in relation to the future challenges facing the growth of this emergent sub-discipline and opportunities for further theoretical and empirical work.

  20. Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: Enlarging genus Homo

    PubMed Central

    Wildman, Derek E.; Uddin, Monica; Liu, Guozhen; Grossman, Lawrence I.; Goodman, Morris

    2003-01-01

    What do functionally important DNA sites, those scrutinized and shaped by natural selection, tell us about the place of humans in evolution? Here we compare ≈90 kb of coding DNA nucleotide sequence from 97 human genes to their sequenced chimpanzee counterparts and to available sequenced gorilla, orangutan, and Old World monkey counterparts, and, on a more limited basis, to mouse. The nonsynonymous changes (functionally important), like synonymous changes (functionally much less important), show chimpanzees and humans to be most closely related, sharing 99.4% identity at nonsynonymous sites and 98.4% at synonymous sites. On a time scale, the coding DNA divergencies separate the human–chimpanzee clade from the gorilla clade at between 6 and 7 million years ago and place the most recent common ancestor of humans and chimpanzees at between 5 and 6 million years ago. The evolutionary rate of coding DNA in the catarrhine clade (Old World monkey and ape, including human) is much slower than in the lineage to mouse. Among the genes examined, 30 show evidence of positive selection during descent of catarrhines. Nonsynonymous substitutions by themselves, in this subset of positively selected genes, group humans and chimpanzees closest to each other and have chimpanzees diverge about as much from the common human–chimpanzee ancestor as humans do. This functional DNA evidence supports two previously offered taxonomic proposals: family Hominidae should include all extant apes; and genus Homo should include three extant species and two subgenera, Homo (Homo) sapiens (humankind), Homo (Pan) troglodytes (common chimpanzee), and Homo (Pan) paniscus (bonobo chimpanzee). PMID:12766228

  1. Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban

    2008-01-01

    The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.

  2. Early-life experiences and the development of adult diseases with a focus on mental illness: The Human Birth Theory.

    PubMed

    Maccari, Stefania; Polese, Daniela; Reynaert, Marie-Line; Amici, Tiziana; Morley-Fletcher, Sara; Fagioli, Francesca

    2017-02-07

    In mammals, early adverse experiences, including mother-pup interactions, shape the response of an individual to chronic stress or to stress-related diseases during adult life. This has led to the elaboration of the theory of the developmental origins of health and disease, in particular adult diseases such as cardiovascular and metabolic disorders. In addition, in humans, as stated by Massimo Fagioli's Human Birth Theory, birth is healthy and equal for all individuals, so that mental illness develop exclusively in the postnatal period because of the quality of the relationship in the first year of life. Thus, this review focuses on the importance of programming during the early developmental period on the manifestation of adult diseases in both animal models and humans. Considering the obvious differences between animals and humans we cannot systematically move from animal models to humans. Consequently, in the first part of this review, we will discuss how animal models can be used to dissect the influence of adverse events occurring during the prenatal and postnatal periods on the developmental trajectories of the offspring, and in the second part, we will discuss the role of postnatal critical periods on the development of mental diseases in humans. Epigenetic mechanisms that cause reversible modifications in gene expression, driving the development of a pathological phenotype in response to a negative early postnatal environment, may lie at the core of this programming, thereby providing potential new therapeutic targets. The concept of the Human Birth Theory leads to a comprehension of the mental illness as a pathology of the human relationship immediately after birth and during the first year of life. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Early Upper Paleolithic in Eastern Europe and implications for the dispersal of modern humans.

    PubMed

    Anikovich, M V; Sinitsyn, A A; Hoffecker, John F; Holliday, Vance T; Popov, V V; Lisitsyn, S N; Forman, Steven L; Levkovskaya, G M; Pospelova, G A; Kuz'mina, I E; Burova, N D; Goldberg, Paul; Macphail, Richard I; Giaccio, Biagio; Praslov, N D

    2007-01-12

    Radiocarbon and optically stimulated luminescence dating and magnetic stratigraphy indicate Upper Paleolithic occupation-probably representing modern humans-at archaeological sites on the Don River in Russia 45,000 to 42,000 years ago. The oldest levels at Kostenki underlie a volcanic ash horizon identified as the Campanian Ignimbrite Y5 tephra that is dated elsewhere to about 40,000 years ago. The occupation layers contain bone and ivory artifacts, including possible figurative art, and fossil shells imported more than 500 kilometers. Thus, modern humans appeared on the central plain of Eastern Europe as early as anywhere else in northern Eurasia.

  4. The evolution of early vertebrate photoreceptors.

    PubMed

    Collin, Shaun P; Davies, Wayne L; Hart, Nathan S; Hunt, David M

    2009-10-12

    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.

  5. Glycoconjugate distribution in early human notochord and axial mesenchyme.

    PubMed

    Götz, W; Quondamatteo, F

    2001-02-01

    Glycosylation patterns of cells and tissues give insights into spatially and temporally regulated developmental processes and can be detected histochemically using plant lectins with specific affinities for sugar moieties. The early development of the vertebral column in man is a process which has never been investigated by lectin histochemistry. Therefore, we studied binding of several lectins (AIA, Con A, GSA II, LFA, LTA, PNA, RCA I, SBA, SNA, WGA) in formaldehyde-fixed sections of the axial mesenchyme of 5 human embryos in Carnegie stages 12-15. During these developmental stages, an unsegmented mesenchyme covers the notochord. Staining patterns did not show striking temporal variations except for SBA which stained the cranial axial mesenchyme only in the early stage 12 embryo and for PNA, of which the staining intensity in the mesenchyme decreased with age. The notochord appeared as a highly glycosylated tissue. Carbohydrates detected may correspond to adhesion molecules or to secreted substances like proteoglycans or proteins which could play an inductive role, for example, for the neural tube. The axial perinotochordal unsegmented mesenchyme showed strong PNA binding. Therefore, its function as a PNA-positive "barrier" tissue is discussed. The endoderm of the primitive gut showed a lectin-binding pattern that was similar to that of the notochord, which may correlate with interactions between these tissues during earlier developmental stages.

  6. Randomized Controlled Trial on Effect of Intermittent Early Versus Late Kangaroo Mother Care on Human Milk Feeding in Low-Birth-Weight Neonates.

    PubMed

    Jayaraman, Dhaarani; Mukhopadhyay, Kanya; Bhalla, Anil Kumar; Dhaliwal, Lakhbir Kaur

    2017-08-01

    Breastfeeding at discharge among sick low-birth-weight (LBW) infants is low despite counseling and intervention like kangaroo mother care (KMC). Research aim: The aim was to study the effects of early initiation of KMC on exclusive human milk feeding, growth, mortality, and morbidities in LBW neonates compared with late initiation of KMC during the hospital stay and postdischarge. A randomized controlled trial was conducted in level 2 and 3 areas of a tertiary care neonatal unit over 15 months. Inborn neonates weighing 1 to 1.8 kg and hemodynamically stable were randomized to receive either early KMC, initiated within the first 4 days of life, or late KMC (off respiratory support and intravenous fluids). Follow-up was until 1 month postdischarge. Outcomes were proportion of infants achieving exclusive human milk feeding and direct breastfeeding, growth, mortality and morbidities during hospital stay, and postdischarge feeding and KMC practices until 1 month. The early KMC group ( n = 80) achieved significantly higher exclusive human milk feeding (86% vs. 45%, p < .001) and direct breastfeeding (49% vs. 30%, p = .021) in hospital and almost exclusive human milk feeding (73% vs. 36%, p < .001) until 1 month postdischarge than the late KMC group ( n = 80). The incidence of apnea (11.9% vs. 20%, p = .027) and recurrent apnea requiring ventilation (8.8% vs. 15%, p = .02) were significantly reduced in the early KMC group. There was no significant difference in mortality, morbidities, and growth during the hospital stay and postdischarge. Early KMC significantly increased exclusive human milk feeding and direct breastfeeding in LBW infants.

  7. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis.

    PubMed

    Kataoka, Hiroyuki; Saito, Keita; Kato, Hisato; Masuda, Kazufumi

    2013-06-01

    Early disease diagnosis is crucial for human healthcare and successful therapy. Since any changes in homeostatic balance can alter human emanations, the components of breath exhalations and skin emissions may be diagnostic biomarkers for various diseases and metabolic disorders. Since hundreds of endogenous and exogenous volatile organic compounds (VOCs) are released from the human body, analysis of these VOCs may be a noninvasive, painless, and easy diagnostic tool. Sampling and preconcentration by sorbent tubes/traps and solid-phase microextraction, in combination with GC or GC-MS, are usually used to analyze VOCs. In addition, GC-MS-olfactometry is useful for simultaneous analysis of odorants and odor quality. Direct MS techniques are also useful for the online real-time detection of VOCs. This review focuses on recent developments in sampling and analysis of volatile biomarkers in human odors and/or emanations, and discusses future use of VOC analysis.

  8. Metabolic Modeling of the Last Universal Common Ancestor

    NASA Astrophysics Data System (ADS)

    Broddrick, J. T.; Yurkovich, J. T.; Palsson, B. O.

    2017-07-01

    The origin and diversity of life on earth are intimately linked to metabolic processes. Using recent assessments of early metabolic capabilities, we construct a metabolic model of a primordial organism that could be representative of the LUCA.

  9. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells*

    PubMed Central

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M.; Garcia, Benjamin A.

    2016-01-01

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. PMID:27226594

  10. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.

    PubMed

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M; Garcia, Benjamin A

    2016-07-15

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation

    PubMed Central

    Rodin, Andrei S; Szathmáry, Eörs; Rodin, Sergei N

    2009-01-01

    Background The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of "complementary" amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this "primary preference" from isofunctional ribozymes. Conclusion Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme

  12. Early Detection of Human Focal Seizures Based on Cortical Multiunit Activity

    PubMed Central

    Park, Yun S.; Hochberg, Leigh R.; Eskandar, Emad N.; Cash, Sydney S.; Truccolo, Wilson

    2014-01-01

    Approximately 50 million people in the world suffer from epileptic seizures. Reliable early seizure detection could bring significantly beneficial therapeutic alternatives. In recent decades, most approaches have relied on scalp EEG and intracranial EEG signals, but practical early detection for closed-loop seizure control remains challenging. In this study, we present preliminary analyses of an early detection approach based on intracortical neuronal multiunit activity (MUA) recorded from a 96-microelectrode array (MEA). The approach consists of (1) MUA detection from broadband field potentials recorded at 30 kHz by the MEA; (2) MUA feature extraction; (3) cost-sensitive support vector machine classification of ictal and interictal samples; and (4) Kalman-filtering postprocessing. MUA was here defined as the number of threshold crossing (spike counts) applied to the 300 Hz – 6 kHz bandpass filtered local field potentials in 0.1 sec time windows. MUA features explored in this study included the mean, variance, and Fano-factor, computed across the MEA channels. In addition, we used the leading eigenvalues of MUA spatial and temporal correlation matrices computed in 1-sec moving time windows. We assessed the seizure detection approach on out-of-sample data from one-participant recordings with six seizure events and 4.73-hour interictal data. The proposed MUA-based detection approach yielded a 100% sensitivity (6/6) and no false positives, and a latency of 4.17 ± 2.27 sec (mean ± SD) with respect to ECoG-identified seizure onsets. These preliminary results indicate intracortical MUA may be a useful signal for early detection of human epileptic seizures. PMID:25571313

  13. Calcium-activated potassium channels as potential early markers of human cervical cancer

    PubMed Central

    Ramírez, Ana; Vera, Eunice; Gamboa-Domínguez, Armando; Lambert, Paul; Gariglio, Patricio; Camacho, Javier

    2018-01-01

    Cervical cancer is a major cause of cancer-associated mortality in women in developing countries. Thus, novel early markers are required. Ion channels have gained great interest as tumor markers, including cervical cancer. The calcium-activated potassium channel KCNMA1 (subunit α-1 from subfamily M) has been associated with different malignancies, including tumors such as breast and ovarian cancer that are influenced by hormones. The KCNMA1 channel blocker iberiotoxin decreases the proliferation of HeLa cervical cancer cells. Nevertheless, KCNMA1 channel expression during cervical carcinogenesis remains elusive. Therefore, KCNMA1 expression was studied in cervical cancer development. FVB transgenic mice expressing the E7-oncogene of high-risk human papilloma virus, and non-transgenic mice were treated with estradiol-releasing pellets during 3 or 6 months to induce cervical lesions. Twenty-four human cervical biopsies from non-cancerous, low- or high-grade intraepithelial lesions, or cervical cancer were also studied. mRNA and protein expression was assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively. Cervical dysplasia and carcinoma were observed only in the transgenic mice treated with estradiol for 3 and 6 months, respectively. Estradiol treatment increased KCNMA1 mRNA and protein expression in all groups; however, the highest levels were observed in the transgenic mice with carcinoma. KCNMA1 protein expression in the squamous cells of the transformation zone was observed only in the transgenic mice with cervical dysplasia or cancer. Human biopsies from non-cancerous cervix did not display KCNMA1 protein expression; in contrast, the majority of the tissues with cervical lesions (16/18) displayed KCNMA1 protein expression. The lowest channel immunostaining intensity was observed in biopsies from low-grade dysplasia and the strongest in the carcinoma tissues. These results suggest KCNMA1 channels as

  14. The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation.

    PubMed

    Gruss, Laura Tobias; Schmitt, Daniel

    2015-03-05

    The fossil record of the human pelvis reveals the selective priorities acting on hominin anatomy at different points in our evolutionary history, during which mechanical requirements for locomotion, childbirth and thermoregulation often conflicted. In our earliest upright ancestors, fundamental alterations of the pelvis compared with non-human primates facilitated bipedal walking. Further changes early in hominin evolution produced a platypelloid birth canal in a pelvis that was wide overall, with flaring ilia. This pelvic form was maintained over 3-4 Myr with only moderate changes in response to greater habitat diversity, changes in locomotor behaviour and increases in brain size. It was not until Homo sapiens evolved in Africa and the Middle East 200 000 years ago that the narrow anatomically modern pelvis with a more circular birth canal emerged. This major change appears to reflect selective pressures for further increases in neonatal brain size and for a narrow body shape associated with heat dissipation in warm environments. The advent of the modern birth canal, the shape and alignment of which require fetal rotation during birth, allowed the earliest members of our species to deal obstetrically with increases in encephalization while maintaining a narrow body to meet thermoregulatory demands and enhance locomotor performance. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. The Date of Interbreeding between Neandertals and Modern Humans

    PubMed Central

    Sankararaman, Sriram; Patterson, Nick; Li, Heng; Pääbo, Svante; Reich, David

    2012-01-01

    Comparisons of DNA sequences between Neandertals and present-day humans have shown that Neandertals share more genetic variants with non-Africans than with Africans. This could be due to interbreeding between Neandertals and modern humans when the two groups met subsequent to the emergence of modern humans outside Africa. However, it could also be due to population structure that antedates the origin of Neandertal ancestors in Africa. We measure the extent of linkage disequilibrium (LD) in the genomes of present-day Europeans and find that the last gene flow from Neandertals (or their relatives) into Europeans likely occurred 37,000–86,000 years before the present (BP), and most likely 47,000–65,000 years ago. This supports the recent interbreeding hypothesis and suggests that interbreeding may have occurred when modern humans carrying Upper Paleolithic technologies encountered Neandertals as they expanded out of Africa. PMID:23055938

  16. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    PubMed

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  17. Anti-Human Immunodeficiency Virus Antibodies in the Cerebrospinal Fluid: Evidence of Early Treatment Impact on Central Nervous System Reservoir?

    PubMed Central

    Burbelo, Peter D; Price, Richard W; Hagberg, Lars; Hatano, Hiroyu; Spudich, Serena; Deeks, Steven G; Gisslén, Magnus

    2018-01-01

    Abstract Background Despite effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) likely persists in the central nervous system (CNS) in treated individuals. We examined anti-HIV antibodies in cerebrospinal fluid (CSF) and blood as markers of persistence. Methods Human immunodeficiency virus antibodies were measured in paired CSF and serum before and after long-term treatment of chronic (n = 10) and early infection (n = 12), along with untreated early infection (n = 10). Results Treatment of chronic infection resulted in small reductions of anti-HIV antibodies in CSF and serum despite >10 years of suppressive ART. In untreated early infection, anti-HIV antibodies emerged in blood by day 30, whereas CSF antibodies reached similar levels 2 weeks later. Compared with long-term treatment of chronic infection, early ART initiation reduced CSF antibodies by 43-fold (P > .0001) and blood antibodies by 7-fold (P = .0003). Two individuals receiving pre-exposure prophylaxis and then ART early after infection failed to develop antibodies in CSF or blood, whereas CSF antibodies were markedly reduced in the Berlin patient. Conclusions To the extent that differential CSF and blood antibodies indicate HIV persistence, these data suggest a relative delay in establishment of the CNS compared with the systemic HIV reservoir that provides an opportunity for early treatment to have a greater impact on the magnitude of long-term CNS infection. PMID:29401308

  18. Anti-Human Immunodeficiency Virus Antibodies in the Cerebrospinal Fluid: Evidence of Early Treatment Impact on Central Nervous System Reservoir?

    PubMed

    Burbelo, Peter D; Price, Richard W; Hagberg, Lars; Hatano, Hiroyu; Spudich, Serena; Deeks, Steven G; Gisslén, Magnus

    2018-03-13

    Despite effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) likely persists in the central nervous system (CNS) in treated individuals. We examined anti-HIV antibodies in cerebrospinal fluid (CSF) and blood as markers of persistence. Human immunodeficiency virus antibodies were measured in paired CSF and serum before and after long-term treatment of chronic (n = 10) and early infection (n = 12), along with untreated early infection (n = 10). Treatment of chronic infection resulted in small reductions of anti-HIV antibodies in CSF and serum despite >10 years of suppressive ART. In untreated early infection, anti-HIV antibodies emerged in blood by day 30, whereas CSF antibodies reached similar levels 2 weeks later. Compared with long-term treatment of chronic infection, early ART initiation reduced CSF antibodies by 43-fold (P > .0001) and blood antibodies by 7-fold (P = .0003). Two individuals receiving pre-exposure prophylaxis and then ART early after infection failed to develop antibodies in CSF or blood, whereas CSF antibodies were markedly reduced in the Berlin patient. To the extent that differential CSF and blood antibodies indicate HIV persistence, these data suggest a relative delay in establishment of the CNS compared with the systemic HIV reservoir that provides an opportunity for early treatment to have a greater impact on the magnitude of long-term CNS infection.

  19. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    PubMed

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.

  20. Human evolution: taxonomy and paleobiology.

    PubMed

    Wood, B; Richmond, B G

    2000-07-01

    This review begins by setting out the context and the scope of human evolution. Several classes of evidence, morphological, molecular, and genetic, support a particularly close relationship between modern humans and the species within the genus Pan, the chimpanzee. Thus human evolution is the study of the lineage, or clade, comprising species more closely related to modern humans than to chimpanzees. Its stem species is the so-called 'common hominin ancestor', and its only extant member is Homo sapiens. This clade contains all the species more closely-related to modern humans than to any other living primate. Until recently, these species were all subsumed into a family, Hominidae, but this group is now more usually recognised as a tribe, the Hominini. The rest of the review sets out the formal nomenclature, history of discovery, and information about the characteristic morphology, and its behavioural implications, of the species presently included in the human clade. The taxa are considered within their assigned genera, beginning with the most primitive and finishing with Homo. Within genera, species are presented in order of geological age. The entries conclude with a list of the more important items of fossil evidence, and a summary of relevant taxonomic issues.

  1. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    PubMed

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. The Cytophaga hutchinsonii ChTPSP: First characterized bifunctional TPS-TPP protein as putative ancestor of all eukaryotic trehalose biosynthesis proteins.

    PubMed

    Avonce, Nelson; Wuyts, Jan; Verschooten, Katrien; Vandesteene, Lies; Van Dijck, Patrick

    2010-02-01

    The most widely distributed pathway to synthesize trehalose in nature consists of two consecutive enzymatic reactions with a trehalose-6-P (T6P)-synthase (TPS) enzyme, producing the intermediate T6P, and a T6P-phosphatase (TPP) enzyme, which dephosphorylates T6P to produce trehalose and inorganic phosphate. In plants, these enzymes are called Class I and Class II proteins, respectively, with some Class I proteins being active enzymes. The Class II proteins possess both TPS and TPP consensus regions but appear to have lost enzymatic activity during evolution. Plants also contain an extra group of enzymes of small protein size, of which some members have been characterized as functional TPPs. These Class III proteins have less sequence similarity with the Class I and Class II proteins. Here, we characterize for the first time, by using biochemical analysis and yeast growth complementation assays, the existence of a natural TPS-TPP bifunctional enzyme found in the bacterial species Cytophaga hutchinsonii. Through phylogenetic analysis, we show that prokaryotic genes such as ChTPSP might be the ancestor of the eukaryotic trehalose biosynthesis genes. Second, we show that plants have recruited during evolution, possibly by horizontal transfer from bacteria such as Rhodoferax ferrireducens, a new type of small protein, encoding TPP activity, which have been named Class III proteins. RfTPP has very high TPP activity upon expression in yeast. Finally, we demonstrate that TPS gene duplication, the recruitment of the Class III enzymes, and recruitment of an N-terminal regulatory element, which regulates the Class I enzyme activity in higher plants, were initiated very early in eukaryan evolution as the three classes of trehalose biosynthesis genes are already present in the alga Ostreococcus tauri.

  3. Early events in xenograft development from the human embryonic stem cell line HS181--resemblance with an initial multiple epiblast formation.

    PubMed

    Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars

    2011-01-01

    Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.

  4. Human cytomegalovirus and Herpes Simplex type I virus can engage RNA polymerase I for transcription of immediate early genes

    PubMed Central

    Kostopoulou, Ourania N.; Wilhelmi, Vanessa; Raiss, Sina; Ananthaseshan, Sharan; Lindström, Mikael S.; Bartek, Jiri; Söderberg-Naucler, Cecilia

    2017-01-01

    Human cytomegalovirus (HCMV) utilizes RNA polymerase II to transcribe viral genes and produce viral mRNAs. It can specifically target the nucleolus to facilitate viral transcription and translation. As RNA polymerase I (Pol I)-mediated transcription is active in the nucleolus, we investigated the role of Pol I, along with relative contributions of the human Pol II and Pol III, to early phases of viral transcription in HCMV infected cells, compared with Herpes Simplex Virus-1 (HSV-1) and Murine cytomegalovirus (MCMV). Inhibition of Pol I with siRNA or the Pol I inhibitors CX-5461 or Actinomycin D (5nM) resulted in significantly decreased IE and pp65 mRNA and protein levels in human fibroblasts at early times post infection. This initially delayed replication was compensated for later during the replication process, at which stage it didn’t significantly affect virus production. Pol I inhibition also reduced HSV-1 ICP0 and gB transcripts, suggesting that some herpesviruses engage Pol I for their early transcription. In contrast, inhibition of Pol I failed to affect MCMV transcription. Collectively, our results contribute to better understanding of the functional interplay between RNA Pol I-mediated nucleolar events and the Herpes viruses, particularly HCMV whose pathogenic impact ranges from congenital malformations and potentially deadly infections among immunosuppressed patients, up to HCMV’s emerging oncomodulatory role in human tumors. PMID:29228551

  5. Human Development, Early Childhood Care and Education and Family Welfare. Compendium of Researches, Volume III.

    ERIC Educational Resources Information Center

    Saraswathi, T. S., Ed.; And Others

    This volume encompasses 44 research studies that were conducted mainly by graduate students in the Department of Human Development and Family Studies, M.S. University of Baroda, India. The studies are organized in six broad categories: (1) child care in tribal, rural and urban poor, and institutional settings; (2) early childhood care and…

  6. Preference for language in early infancy: the human language bias is not speech specific.

    PubMed

    Krentz, Ursula C; Corina, David P

    2008-01-01

    Fundamental to infants' acquisition of their native language is an inherent interest in the language spoken around them over non-linguistic environmental sounds. The following studies explored whether the bias for linguistic signals in hearing infants is specific to speech, or reflects a general bias for all human language, spoken and signed. Results indicate that 6-month-old infants prefer an unfamiliar, visual-gestural language (American Sign Language) over non-linguistic pantomime, but 10-month-olds do not. These data provide evidence against a speech-specific bias in early infancy and provide insights into those properties of human languages that may underlie this language-general attentional bias.

  7. [On the road to a new humanity: the reception of psychoanalysis in the early Kinderladen movement].

    PubMed

    Kauders, Anthony D

    2014-01-01

    In the late 1960s a group of students in West Germany founded the so-called Kinderläden (day care centers) in order to experiment with new forms of early childhood education. Members of the early Kinderladen movement in particular pursued a radically utopian approach that, they hoped, would engender new human beings. With the aid of psychoanalytic writings, especially those of Wilhelm Reich, they sought to create subjects that would overcome repressive bourgeois norms and live out their sexuality freely. This reliance on Reich entailed a new interpretation of the "base", as psychoanalytic drive theory supplanted Marxist theory. As such, the early Kinderladen ac- tivists regarded the "basis" of society in biological, psychological, and pedagogic rather than economic terms.

  8. Early embryo mortality in natural human reproduction: What the data say

    PubMed Central

    Jarvis, Gavin E.

    2017-01-01

    How many human embryos die between fertilisation and birth under natural conditions? It is widely accepted that natural human embryo mortality is high, particularly during the first weeks after fertilisation, with total prenatal losses of 70% and higher frequently claimed. However, the first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period, and establishing the fate of embryos before this is challenging. Calculations are additionally hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are used to justify quantitative claims regarding embryo loss: (i) a hypothesis published by Roberts & Lowe in The Lancet  is widely cited but has no practical quantitative value; (ii) life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii) studies that measure human chorionic gonadotrophin (hCG) reveal losses in the second week of development and beyond, but not before; and (iv) the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig’s data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data concluded that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, natural human embryo mortality is lower than often claimed and widely accepted. Estimates for total prenatal mortality of 70% or higher are exaggerated and not supported by the available data. PMID:28580126

  9. From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors

    PubMed Central

    Lindner, Alberto; Cairns, Stephen D.; Cunningham, Clifford W.

    2008-01-01

    Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors. PMID:18560569

  10. Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques.

    PubMed

    Hessell, Ann J; Jaworski, J Pablo; Epson, Erin; Matsuda, Kenta; Pandey, Shilpi; Kahl, Christoph; Reed, Jason; Sutton, William F; Hammond, Katherine B; Cheever, Tracy A; Barnette, Philip T; Legasse, Alfred W; Planer, Shannon; Stanton, Jeffrey J; Pegu, Amarendra; Chen, Xuejun; Wang, Keyun; Siess, Don; Burke, David; Park, Byung S; Axthelm, Michael K; Lewis, Anne; Hirsch, Vanessa M; Graham, Barney S; Mascola, John R; Sacha, Jonah B; Haigwood, Nancy L

    2016-04-01

    Prevention of mother-to-child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested HIV-1-specific human neutralizing monoclonal antibodies (NmAbs) as a post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with the simian-human immunodeficiency virus SHIVSF162P3. On days 1, 4, 7 and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h after antibody administration. Replicating virus was found in multiple tissues by day 1 in animals that were not treated. All NmAb-treated macaques were free of virus in blood and tissues at 6 months after exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged after CD8(+) T cell depletion. These results suggest that early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs.

  11. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    PubMed

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  12. New Archaeological Evidence for an Early Human Presence at Monte Verde, Chile.

    PubMed

    Dillehay, Tom D; Ocampo, Carlos; Saavedra, José; Sawakuchi, Andre Oliveira; Vega, Rodrigo M; Pino, Mario; Collins, Michael B; Scott Cummings, Linda; Arregui, Iván; Villagran, Ximena S; Hartmann, Gelvam A; Mella, Mauricio; González, Andrea; Dix, George

    2015-01-01

    Questions surrounding the chronology, place, and character of the initial human colonization of the Americas are a long-standing focus of debate. Interdisciplinary debate continues over the timing of entry, the rapidity and direction of dispersion, the variety of human responses to diverse habitats, the criteria for evaluating the validity of early sites, and the differences and similarities between colonization in North and South America. Despite recent advances in our understanding of these issues, archaeology still faces challenges in defining interdisciplinary research problems, assessing the reliability of the data, and applying new interpretative models. As the debates and challenges continue, new studies take place and previous research reexamined. Here we discuss recent exploratory excavation at and interdisciplinary data from the Monte Verde area in Chile to further our understanding of the first peopling of the Americas. New evidence of stone artifacts, faunal remains, and burned areas suggests discrete horizons of ephemeral human activity in a sandur plain setting radiocarbon and luminescence dated between at least ~18,500 and 14,500 cal BP. Based on multiple lines of evidence, including sedimentary proxies and artifact analysis, we present the probable anthropogenic origins and wider implications of this evidence. In a non-glacial cold climate environment of the south-central Andes, which is challenging for human occupation and for the preservation of hunter-gatherer sites, these horizons provide insight into an earlier context of late Pleistocene human behavior in northern Patagonia.

  13. New Archaeological Evidence for an Early Human Presence at Monte Verde, Chile

    PubMed Central

    Dillehay, Tom D.; Ocampo, Carlos; Saavedra, José; Sawakuchi, Andre Oliveira; Vega, Rodrigo M.; Pino, Mario; Collins, Michael B.; Scott Cummings, Linda; Arregui, Iván; Villagran, Ximena S.; Hartmann, Gelvam A.; Mella, Mauricio; González, Andrea; Dix, George

    2015-01-01

    Questions surrounding the chronology, place, and character of the initial human colonization of the Americas are a long-standing focus of debate. Interdisciplinary debate continues over the timing of entry, the rapidity and direction of dispersion, the variety of human responses to diverse habitats, the criteria for evaluating the validity of early sites, and the differences and similarities between colonization in North and South America. Despite recent advances in our understanding of these issues, archaeology still faces challenges in defining interdisciplinary research problems, assessing the reliability of the data, and applying new interpretative models. As the debates and challenges continue, new studies take place and previous research reexamined. Here we discuss recent exploratory excavation at and interdisciplinary data from the Monte Verde area in Chile to further our understanding of the first peopling of the Americas. New evidence of stone artifacts, faunal remains, and burned areas suggests discrete horizons of ephemeral human activity in a sandur plain setting radiocarbon and luminescence dated between at least ~18,500 and 14,500 cal BP. Based on multiple lines of evidence, including sedimentary proxies and artifact analysis, we present the probable anthropogenic origins and wider implications of this evidence. In a non-glacial cold climate environment of the south-central Andes, which is challenging for human occupation and for the preservation of hunter-gatherer sites, these horizons provide insight into an earlier context of late Pleistocene human behavior in northern Patagonia. PMID:26580202

  14. Human identity and the evolution of societies.

    PubMed

    Moffett, Mark W

    2013-09-01

    Human societies are examined as distinct and coherent groups. This trait is most parsimoniously considered a deeply rooted part of our ancestry rather than a recent cultural invention. Our species is the only vertebrate with society memberships of significantly more than 200. We accomplish this by using society-specific labels to identify members, in what I call an anonymous society. I propose that the human brain has evolved to permit not only the close relationships described by the social brain hypothesis, but also, at little mental cost, the anonymous societies within which such alliances are built. The human compulsion to discover or invent labels to "mark" group memberships may originally have been expressed in hominins as vocally learned greetings only slightly different in function from chimpanzee pant hoots (now known to be society-specific). The weight of evidence suggests that at some point, conceivably early in the hominin line, the distinct groups composed of several bands that were typical of our ancestors came to be distinguished by their members on the basis of multiple labels that were socially acquired in this way, the earliest of which would leave no trace in the archaeological record. Often overlooked as research subjects, these sizable fission-fusion communities, in recent egalitarian hunter-gatherers sometimes 2,000 strong, should consistently be accorded the status of societies, in the same sense that this word is used to describe tribes, chiefdoms, and other cultures arising later in our history. The capacity of hunter-gatherer societies to grow sufficiently populous that not all members necessarily recognize one another would make the transition to larger agricultural societies straightforward. Humans differ from chimpanzees in that societal labels are essential to the maintenance of societies and the processes giving birth to new ones. I propose that anonymous societies of all kinds can expand only so far as their labels can remain

  15. New thinking: the evolution of human cognition

    PubMed Central

    Heyes, Cecilia

    2012-01-01

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier ‘Evolutionary Psychology’. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene–culture co-evolution. These have produced domain-general developmental processes with extraordinary power—power that makes human cognition, and human lives, unique. PMID:22734052

  16. New thinking: the evolution of human cognition.

    PubMed

    Heyes, Cecilia

    2012-08-05

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier 'Evolutionary Psychology'. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene-culture co-evolution. These have produced domain-general developmental processes with extraordinary power-power that makes human cognition, and human lives, unique.

  17. Molecular Epidemiology of Helicobacter pylori Infection in Nepal: Specific Ancestor Root

    PubMed Central

    Miftahussurur, Muhammad; Sharma, Rabi Prakash; Shrestha, Pradeep Krishna; Suzuki, Rumiko; Uchida, Tomohisa; Yamaoka, Yoshio

    2015-01-01

    Prevalence of Helicobacter pylori infection in Nepal, a low-risk country for gastric cancer, is debatable. To our knowledge, no studies have examined H. pylori virulence factors in Nepal. We determined the prevalence of H. pylori infection by using three different tests, and the genotypes of virulence factors were determined by PCR followed by sequencing. Multilocus sequence typing was used to analyze the population structure of the Nepalese strains. The prevalence of H. pylori infection in dyspeptic patients was 38.4% (56/146), and was significantly related with source of drinking water. In total, 51 strains were isolated and all were cagA-positive. Western-type-cagA (94.1%), cagA pre-EPIYA type with no deletion (92.2%), vacA s1a (74.5%), and m1c (54.9%) were the predominant genotypes. Antral mucosal atrophy levels were significantly higher in patients infected with vacA s1 than in those infected with s2 genotypes (P = 0.03). Several Nepalese strains were H. pylori recombinants with genetic features of South Asian and East Asian genotypes. These included all East-Asian-type-cagA strains, with significantly lesser activity and inflammation in the corpus than the strains of the specific South Asian genotype (P = 0.03 and P = 0.005, respectively). Although the population structure confirmed that most Nepalese strains belonged to the hpAsia2 population, some strains shared hpEurope- and Nepalese-specific components. Nepalese patients infected with strains belonging to hpEurope showed higher inflammation in the antrum than strains from the Nepalese specific population (P = 0.05). These results support that ancestor roots of Kathmandu`s people not only connected with India alone. PMID:26226153

  18. Electromechanical properties of human osteoarthritic and asymptomatic articular cartilage are sensitive and early detectors of degeneration.

    PubMed

    Hadjab, I; Sim, S; Karhula, S S; Kauppinen, S; Garon, M; Quenneville, E; Lavigne, P; Lehenkari, P P; Saarakkala, S; Buschmann, M D

    2018-03-01

    To evaluate cross-correlations of ex vivo electromechanical properties with cartilage and subchondral bone plate thickness, as well as their sensitivity and specificity regarding early cartilage degeneration in human tibial plateau. Six pairs of tibial plateaus were assessed ex vivo using an electromechanical probe (Arthro-BST) which measures a quantitative parameter (QP) reflecting articular cartilage compression-induced streaming potentials. Cartilage thickness was then measured with an automated thickness mapping technique using Mach-1 multiaxial mechanical tester. Subsequently, a visual assessment was performed by an experienced orthopedic surgeon using the International Cartilage Repair Society (ICRS) grading system. Each tibial plateau was finally evaluated with μCT scanner to determine the subchondral-bone plate thickness over the entire surface. Cross-correlations between assessments decreased with increasing degeneration level. Moreover, electromechanical QP and subchondral-bone plate thickness increased strongly with ICRS grade (ρ = 0.86 and ρ = 0.54 respectively), while cartilage thickness slightly increased (ρ = 0.27). Sensitivity and specificity analysis revealed that the electromechanical QP is the most performant to distinguish between different early degeneration stages, followed by subchondral-bone plate thickness and then cartilage thickness. Lastly, effect sizes of cartilage and subchondral-bone properties were established to evaluate whether cartilage or bone showed the most noticeable changes between normal (ICRS 0) and each early degenerative stage. Thus, the effect sizes of cartilage electromechanical QP were almost twice those of the subchondral-bone plate thickness, indicating greater sensitivity of electromechanical measurements to detect early osteoarthritis. The potential of electromechanical properties for the diagnosis of early human cartilage degeneration was highlighted and supported by cartilage thickness and

  19. The origin and evolution of Homo sapiens

    PubMed Central

    Stringer, Chris

    2016-01-01

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approximately 400–700 ka, which is at least 200 000 years earlier than the species origin indicated from the fossils already mentioned. Thus, it is likely that the African fossil record will document early members of the sapiens lineage showing only some of the derived features of late members of the lineage. On that basis, I argue that human fossils such as those from Jebel Irhoud, Florisbad, Eliye Springs and Omo Kibish 2 do represent early members of the species, but variation across the African later middle Pleistocene/early Middle Stone Age fossils shows that there was not a simple linear progression towards later sapiens morphology, and there was chronological overlap between different ‘archaic’ and ‘modern’ morphs. Even in the late Pleistocene within and outside Africa, we find H. sapiens specimens which are clearly outside the range of Holocene members of the species, showing the complexity of recent human evolution. The impact on species recognition of late Pleistocene gene flow between the lineages of modern humans, Neanderthals and Denisovans is also discussed, and finally, I reconsider the nature of the middle Pleistocene ancestor of these lineages, based on recent morphological and genetic data. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298468

  20. The origin and evolution of Homo sapiens.

    PubMed

    Stringer, Chris

    2016-07-05

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approximately 400-700 ka, which is at least 200 000 years earlier than the species origin indicated from the fossils already mentioned. Thus, it is likely that the African fossil record will document early members of the sapiens lineage showing only some of the derived features of late members of the lineage. On that basis, I argue that human fossils such as those from Jebel Irhoud, Florisbad, Eliye Springs and Omo Kibish 2 do represent early members of the species, but variation across the African later middle Pleistocene/early Middle Stone Age fossils shows that there was not a simple linear progression towards later sapiens morphology, and there was chronological overlap between different 'archaic' and 'modern' morphs. Even in the late Pleistocene within and outside Africa, we find H. sapiens specimens which are clearly outside the range of Holocene members of the species, showing the complexity of recent human evolution. The impact on species recognition of late Pleistocene gene flow between the lineages of modern humans, Neanderthals and Denisovans is also discussed, and finally, I reconsider the nature of the middle Pleistocene ancestor of these lineages, based on recent morphological and genetic data.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  1. Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese.

    PubMed

    Li, Jiawei; Zeng, Wen; Zhang, Ye; Ko, Albert Min-Shan; Li, Chunxiang; Zhu, Hong; Fu, Qiaomei; Zhou, Hui

    2017-12-04

    Ancient Di-Qiang people once resided in the Ganqing region of China, adjacent to the Central Plain area from where Han Chinese originated. While gene flow between the Di-Qiang and Han Chinese has been proposed, there is no evidence to support this view. Here we analyzed the human remains from an early Di-Qiang site (Mogou site dated ~4000 years old) and compared them to other ancient DNA across China, including an early Han-related site (Hengbei site dated ~3000 years old) to establish the underlying genetic relationship between the Di-Qiang and ancestors of Han Chinese. We found Mogou mtDNA haplogroups were highly diverse, comprising 14 haplogroups: A, B, C, D (D*, D4, D5), F, G, M7, M8, M10, M13, M25, N*, N9a, and Z. In contrast, Mogou males were all Y-DNA haplogroup O3a2/P201; specifically one male was further assigned to O3a2c1a/M117 using targeted unique regions on the non-recombining region of the Y-chromosome. We compared Mogou to 7 other ancient and 38 modern Chinese groups, in a total of 1793 individuals, and found that Mogou shared close genetic distances with Taojiazhai (a more recent Di-Qiang population), Hengbei, and Northern Han. We modeled their interactions using Approximate Bayesian Computation, and support was given to a potential admixture of ~13-18% between the Mogou and Northern Han around 3300-3800 years ago. Mogou harbors the earliest genetically identifiable Di-Qiang, ancestral to the Taojiazhai, and up to ~33% paternal and ~70% of its maternal haplogroups could be found in present-day Northern Han Chinese.

  2. Apparatus Named After Our Academic Ancestors — II

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-01-01

    In my previous article on apparatus named after physicists and physics teachers, I discussed five relatively common pieces of apparatus from the 1875-1910 era. Now I will go back to the 18th and early-19th centuries to discuss eponymous2 apparatus that we are still using in lecture demonstrations.

  3. Pregnancy at early age is associated with a reduction of progesterone-responsive cells and epithelial Wnt signaling in human breast tissue.

    PubMed

    Muenst, Simone; Mechera, Robert; Däster, Silvio; Piscuoglio, Salvatore; Ng, Charlotte K Y; Meier-Abt, Fabienne; Weber, Walter P; Soysal, Savas D

    2017-04-04

    Pregnancy at early age is the most significant modifiable factor which consistently decreases lifetime breast cancer risk. However, the underlying mechanisms haven't been conclusively identified. Studies in mice suggest a reduction in progesterone-receptor (PR) sensitive epithelial cells as well as a downregulation of the Wnt signaling pathway as being one of the main mechanisms for the protective effect of early pregnancy. The aim of our study was to validate these findings in humans. We collected benign breast tissue of 125 women who had been stratified according to age at first pregnancy and the occurrence of subsequent breast cancer, and performed immunohistochemistry for PR, Wnt4 and the Wnt-target Versican. The number of PR positive epithelial cells was significantly lower in the group of women with early pregnancy and no subsequent breast cancer compared to the group of nulliparous women with subsequent invasive breast cancer (p = 0.0135). In women with early pregnancy, expression of Versican and Wnt4 was significantly lower compared to nulliparous women (p = 0.0036 and p = 0.0241 respectively), and Versican expression was also significant lower compared to women with late pregnancy (p < 0.0001). Our results confirm prior observations in mice and suggest a role of downregulation of epithelial Wnt signaling in the protective effect of early pregnancy in humans. This results in a decreased proliferation of stem/progenitor cells; therefore, the Wnt signaling pathway may represent a potential target for breast cancer prevention in humans.

  4. Dynamic Locomotor Capabilities Revealed by Early Dinosaur Trackmakers from Southern Africa

    PubMed Central

    Wilson, Jeffrey A.; Marsicano, Claudia A.; Smith, Roger M. H.

    2009-01-01

    Background A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. Methodology/Principal Findings The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31°), and plantigrade and digitigrade foot posture. Conclusions/Significance The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect ‘real time’ responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors. PMID:19806213

  5. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    PubMed

    Wilson, Jeffrey A; Marsicano, Claudia A; Smith, Roger M H

    2009-10-06

    A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees ), and plantigrade and digitigrade foot posture. The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  6. Early light deprivation effects on human cone-driven retinal function.

    PubMed

    Esposito Veneruso, Paolo; Ziccardi, Lucia; Magli, Giulia; Parisi, Vincenzo; Falsini, Benedetto; Magli, Adriano

    2017-03-01

    To assess whether the early light deprivation induced by congenital cataract may influence the cone-driven retinal function in humans. Forty-one patients affected by congenital cataract (CC) who had undergone uncomplicated cataract extraction surgery and intraocular lens implant, and 14 healthy subjects (HS) were enrolled. All patients underwent complete ophthalmological and orthoptic evaluations and best-corrected visual acuity (BCVA) measurement; light-adapted full-field electroretinograms (ERG) and photopic negative responses (PhNR) were recorded to obtain a reliable measurement of the outer/inner retinal function and of the retinal ganglion cells' function respectively. Mean values of light-adapted ERG a- and b-wave and PhNR amplitude of CC eyes were significantly reduced and photopic ERG b-wave implicit time mean values were significantly delayed when compared to HS ones. When studying photopic ERG mean amplitudes at 5 ms, significant differences were found when comparing CC and control eyes. In CC eyes, statistically significant correlations were found between a- and b- wave amplitudes and PhNR amplitudes. No significant correlations were found between ERG parameters and BCVA, as well as between the age of CC patients at surgery and the time elapsed from lens extraction. No significant differences were found when functional parameters of bilateral and unilateral congenital cataract (uCC) eyes were compared, however uCC eyes showed significant differences when compared with contralateral healthy eyes. We found a significant impairment of cone-driven retinal responses in patients with a history of congenital cataract. These changes might result from the long-lasting effects of early light deprivation on the cone retinal pathways. Our findings support the relevance of retinal involvement in deficits induced by early light deprivation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Astronomical Theory of Early Human Migration (Milutin Milankovic Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Timmermann, Axel; Friedrich, Tobias

    2017-04-01

    Our climate system varies on a wide range of timescales, from seasons to several millions of years. A large part of this variability is internally generated as a result of instabilities of the coupled atmosphere-ocean-ice-carbon cycle system. Other modes of variability, such as glacial cycles, are caused by astronomical forcings with periods of 20, 40, 100 thousand years. These so-called Milankovitch Cycles are associated with earth's axis wobble, axis obliquity and shifts in the eccentricity of earth's orbit around the sun, respectively. When these cycles conspire, they can cause the climate system to plunge into an ice-age. This happened last time 110,000 years ago, when Northern Hemisphere summer radiation decreased substantially and ice-sheets started to form as a result. Around 100,000 years ago northern Hemisphere summer moved again closer to the sun and Homo sapiens started to leave Africa across vegetated corridors in Northeastern Africa and the Arabian Peninsula. This first migration wave must have been relatively weak, but it left unequivocal traces in the fossil and archaeological record. Why Homo sapiens embarked on its grand journey across our planet during glacial climate conditions has been subject of an intense debate in various scientific communities. Moreover, the archaeological records of an early exodus around 100 thousand years ago seem to be at odds with paleo-genetic evidences, that place the first dispersal out of Africa around 70-60 thousand years ago. To elucidate what role climate and environmental conditions played in the dispersal of Anatomically Modern Humans out of Africa, we have developed and applied one of the first integrated climate/human migration computer models. The model simulates ice-ages, abrupt climate change, the "peopling" of our planet and captures the arrival time of Homo sapiens in the Levant, Arabian Peninsula, Southern China and Australia in close agreement with paleo climate reconstructions, fossil and

  8. Siblings in Kars, Turkey, with Uner Tan syndrome (quadrupedal locomotion, severe mental retardation, and no speech): a novel theory for the evolution of human bipedalism.

    PubMed

    Tan, Uner

    2015-02-01

    To investigate siblings from Kars (n  =  2), Turkey, with diagonal-sequence quadrupedal locomotion (QL), severe mental retardation, and no speech (Uner Tan syndrome, UTS), in relation to the evolutionary emergence of human bipedal locomotion (BL). Video recordings were made to assess gaits. Brain MRI scanning was performed to visualize the cerebro-cerebellar malformations. Genome-wide association analyses were performed in venous blood samples. One of the two men with UTS showed early-onset QL and late-onset BL without infantile hypotonia, the other consistent QL with infantile hypotonia. No homozygosity was found in the genetic analysis. The family lived under extremely poor socioeconomic conditions. Low socioeconomic status may be a triggering factor for the epigenetic emergence of UTS. The neural networks responsible for the ancestral diagonal-sequence QL, evolutionarily preserved since about 400 MYA, may be selected during locomotor development, under the influence of self-organizing processes during pre- and postnatal periods. The diagonal-sequence QL induced ipsilateral limb interference in UTS cases as in nonhuman primates. To overcome this condition, our ancestors would prefer the attractor BL. This novel theory for the evolution of human bipedalism was evaluated in light of dynamical systems theory.

  9. Gene Expression Analyses of the Spatio-Temporal Relationships of Human Medulloblastoma Subgroups during Early Human Neurogenesis

    PubMed Central

    Hooper, Cornelia M.; Hawes, Susan M.; Kees, Ursula R.; Gottardo, Nicholas G.; Dallas, Peter B.

    2014-01-01

    Medulloblastoma is the most common form of malignant paediatric brain tumour and is the leading cause of childhood cancer related mortality. The four molecular subgroups of medulloblastoma that have been identified – WNT, SHH, Group 3 and Group 4 - have molecular and topographical characteristics suggestive of different cells of origin. Definitive identification of the cell(s) of origin of the medulloblastoma subgroups, particularly the poorer prognosis Group 3 and Group 4 medulloblastoma, is critical to understand the pathogenesis of the disease, and ultimately for the development of more effective treatment options. To address this issue, the gene expression profiles of normal human neural tissues and cell types representing a broad neuro-developmental continuum, were compared to those of two independent cohorts of primary human medulloblastoma specimens. Clustering, co-expression network, and gene expression analyses revealed that WNT and SHH medulloblastoma may be derived from distinct neural stem cell populations during early embryonic development, while the transcriptional profiles of Group 3 and Group 4 medulloblastoma resemble cerebellar granule neuron precursors at weeks 10–15 and 20–30 of embryogenesis, respectively. Our data indicate that Group 3 medulloblastoma may arise through abnormal neuronal differentiation, whereas deregulation of synaptic pruning-associated apoptosis may be driving Group 4 tumorigenesis. Overall, these data provide significant new insight into the spatio-temporal relationships and molecular pathogenesis of the human medulloblastoma subgroups, and provide an important framework for the development of more refined model systems, and ultimately improved therapeutic strategies. PMID:25412507

  10. Gene expression analyses of the spatio-temporal relationships of human medulloblastoma subgroups during early human neurogenesis.

    PubMed

    Hooper, Cornelia M; Hawes, Susan M; Kees, Ursula R; Gottardo, Nicholas G; Dallas, Peter B

    2014-01-01

    Medulloblastoma is the most common form of malignant paediatric brain tumour and is the leading cause of childhood cancer related mortality. The four molecular subgroups of medulloblastoma that have been identified - WNT, SHH, Group 3 and Group 4 - have molecular and topographical characteristics suggestive of different cells of origin. Definitive identification of the cell(s) of origin of the medulloblastoma subgroups, particularly the poorer prognosis Group 3 and Group 4 medulloblastoma, is critical to understand the pathogenesis of the disease, and ultimately for the development of more effective treatment options. To address this issue, the gene expression profiles of normal human neural tissues and cell types representing a broad neuro-developmental continuum, were compared to those of two independent cohorts of primary human medulloblastoma specimens. Clustering, co-expression network, and gene expression analyses revealed that WNT and SHH medulloblastoma may be derived from distinct neural stem cell populations during early embryonic development, while the transcriptional profiles of Group 3 and Group 4 medulloblastoma resemble cerebellar granule neuron precursors at weeks 10-15 and 20-30 of embryogenesis, respectively. Our data indicate that Group 3 medulloblastoma may arise through abnormal neuronal differentiation, whereas deregulation of synaptic pruning-associated apoptosis may be driving Group 4 tumorigenesis. Overall, these data provide significant new insight into the spatio-temporal relationships and molecular pathogenesis of the human medulloblastoma subgroups, and provide an important framework for the development of more refined model systems, and ultimately improved therapeutic strategies.

  11. The derived FOXP2 variant of modern humans was shared with Neandertals.

    PubMed

    Krause, Johannes; Lalueza-Fox, Carles; Orlando, Ludovic; Enard, Wolfgang; Green, Richard E; Burbano, Hernán A; Hublin, Jean-Jacques; Hänni, Catherine; Fortea, Javier; de la Rasilla, Marco; Bertranpetit, Jaume; Rosas, Antonio; Pääbo, Svante

    2007-11-06

    Although many animals communicate vocally, no extant creature rivals modern humans in language ability. Therefore, knowing when and under what evolutionary pressures our capacity for language evolved is of great interest. Here, we find that our closest extinct relatives, the Neandertals, share with modern humans two evolutionary changes in FOXP2, a gene that has been implicated in the development of speech and language. We furthermore find that in Neandertals, these changes lie on the common modern human haplotype, which previously was shown to have been subject to a selective sweep. These results suggest that these genetic changes and the selective sweep predate the common ancestor (which existed about 300,000-400,000 years ago) of modern human and Neandertal populations. This is in contrast to more recent age estimates of the selective sweep based on extant human diversity data. Thus, these results illustrate the usefulness of retrieving direct genetic information from ancient remains for understanding recent human evolution.

  12. Identification of MS4A3 as a reliable marker for early myeloid differentiation in human hematopoiesis.

    PubMed

    Ishibashi, Tomohiko; Yokota, Takafumi; Satoh, Yusuke; Ichii, Michiko; Sudo, Takao; Doi, Yukiko; Ueda, Tomoaki; Nagate, Yasuhiro; Hamanaka, Yuri; Tanimura, Akira; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2018-01-15

    Information of myeloid lineage-related antigen on hematopoietic stem/progenitor cells (HSPCs) is important to clarify the mechanisms regulating hematopoiesis, as well as for the diagnosis and treatment of myeloid malignancies. We previously reported that special AT-rich sequence binding protein 1 (SATB1), a global chromatin organizer, promotes lymphoid differentiation from HSPCs. To search a novel cell surface molecule discriminating early myeloid and lymphoid differentiation, we performed microarray analyses comparing SATB1-overexpressed HSPCs with mock-transduced HSPCs. The results drew our attention to membrane-spanning 4-domains, subfamily A, member 3 (Ms4a3) as the most downregulated molecule in HSPCs with forced overexpression of SATB1. Ms4a3 expression was undetectable in hematopoietic stem cells, but showed a concomitant increase with progressive myeloid differentiation, whereas not only lymphoid but also megakaryocytic-erythrocytic progenitors were entirely devoid of Ms4a3 expression. Further analysis revealed that a subset of CD34 + CD38 + CD33 + progenitor population in human adult bone marrow expressed MS4A3, and those MS4A3 + progenitors only produced granulocyte/macrophage colonies, losing erythroid colony- and mixed colony-forming capacity. These results suggest that cell surface expression of MS4A3 is useful to distinguish granulocyte/macrophage lineage-committed progenitors from other lineage-related ones in early human hematopoiesis. In conclusion, MS4A3 is useful to monitor early stage of myeloid differentiation in human hematopoiesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards

    PubMed Central

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L.; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S.; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P.; Rohling, Eelco J.; Satow, Chris; Smith, Victoria C.; Stringer, Chris B.; Tomlinson, Emma L.; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Borić, Dušan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C.; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C.

    2012-01-01

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters. PMID:22826222

  14. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards.

    PubMed

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P; Rohling, Eelco J; Satow, Chris; Smith, Victoria C; Stringer, Chris B; Tomlinson, Emma L; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Boric, Dusan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C

    2012-08-21

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters.

  15. The role of load-carrying in the evolution of modern body proportions

    PubMed Central

    Wang, W -J; Crompton, R H

    2004-01-01

    The first unquestionably bipedal early human ancestors, the species Australopithecus afarensis, were markedly different to ourselves in body proportions, having a long trunk and short legs. Some have argued that ′chimpanzee-like′ features such as these suggest a ‘bent-hip, bent-knee’ (BHBK) posture would have been adopted during gait. Computer modelling studies, however, indicate that this early human ancestor could have walked in a reasonably efficient upright posture, whereas BHBK posture would have nearly doubled the mechanical energy cost of locomotion, as it does the physiological cost of locomotion in ourselves. More modern body proportions first appear at around 1.8–1.5 Ma, with Homo ergaster (early African Homo erectus), represented by the Nariokotome skeleton KNM-WT 15000, in which the legs were considerably longer in relation to the trunk than they are in human adults, although this skeleton represents an adolescent. Several authors have suggested that this morphology would have allowed faster, more endurant walking. But during the same period, the archaeological record indicates a sharp rise in distances over which stone tools or raw materials are transported. Is this coincidental, or can load-carrying also be implicated in selection for a more modern morphology? Computer simulations of loaded walking, verified against kinetic data for humans, show that BHBK gait is even more ineffective while load-carrying. However, walking erect, the Nariokotome individual could have carried loads of 10–15% body mass for less cost, relative to body size, than AL 288-1 walking erect but unloaded. In fact, to the extent that our sample of humans is typical, KNM-WT 15000 would have had better mechanical effectiveness in bearing light loads on the back than modern human adults. Thus, selection for effectiveness in load-carrying, as well as in endurant walking, is indeed likely to have been implicated in the evolution of modern body proportions. PMID:15198704

  16. Preclinical Evaluation of a Decision Support Medical Monitoring System for Early Detection of Potential Hemodynamic Decompensation During Blood Loss in Humans

    DTIC Science & Technology

    2013-09-01

    Hemodynamic Decompensation During Blood Loss in Humans PRINCIPAL INVESTIGATOR: Michael J. Joyner, M.D. CONTRACTING ORGANIZATION: Mayo Clinic...Medical Monitoring System for Early Detection of Potential Hemodynamic Decompensation During Blood Loss in Humans 5c. PROGRAM ELEMENT NUMBER 6...loss and hemorrhage in humans. The aim Is to be able to detect subtle changes in hemodynamic variables that provide prodromal clues to Impending

  17. Clan Genomics and the Complex Architecture of Human Disease

    PubMed Central

    Belmont, John W.; Boerwinkle, Eric

    2013-01-01

    Human diseases are caused by alleles that encompass the full range of variant types, from single-nucleotide changes to copy-number variants, and these variations span a broad frequency spectrum, from the very rare to the common. The picture emerging from analysis of whole-genome sequences, the 1000 Genomes Project pilot studies, and targeted genomic sequencing derived from very large sample sizes reveals an abundance of rare and private variants. One implication of this realization is that recent mutation may have a greater influence on disease susceptibility or protection than is conferred by variations that arose in distant ancestors. PMID:21962505

  18. Genetic diversity of the haemagglutinin (HA) of human influenza a (H1N1) virus in montenegro: Focus on its origin and evolution.

    PubMed

    Mugosa, Boban; Vujosevic, Danijela; Ciccozzi, Massimo; Valli, Maria Beatrice; Capobianchi, Maria Rosaria; Lo Presti, Alessandra; Cella, Eleonora; Giovanetti, Marta; Lai, Alessia; Angeletti, Silvia; Scarpa, Fabio; Terzić, Dragica; Vratnica, Zoran

    2016-11-01

    In 2009 an influenza A epidemic caused by a swine origin H1N1strain, unusual in human hosts, has been described. The present research is aimed to perform the first phylogenetic investigation on the influenza virus A (H1N1) strains circulating in Montenegro, from December 1, 2009, when the first case of death due to H1N1 was confirmed, and the epidemic began causing a total of four fatalities. The phylogenetic analysis of the strains circulating showed the absence of a pure Montenegrin cluster, suggesting the occurrence of multiple re-introductions in that population from different areas till as far as the early 2010. The time to most recent common ancestor (TMRCA) for the complete dataset has been dated in early 2008, pre-dating the first Montenegrin identification of H1N1 infection. These data suggest that virus was spreading undetected, may be as a consequence of unidentified infections in returning travelers. Anyhow, the estimated TMRCA of Montenegrin strains is fully consistent to that found in different areas. Compatibly with the time coverage of the study period here analyzed, molecular dynamic of Montenegrin strains follows similar trend as in other countries. J. Med. Virol. 88:1905-1913, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Early human use of anadromous salmon in North America at 11,500 y ago.

    PubMed

    Halffman, Carrin M; Potter, Ben A; McKinney, Holly J; Finney, Bruce P; Rodrigues, Antonia T; Yang, Dongya Y; Kemp, Brian M

    2015-10-06

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America.

  20. Early human use of anadromous salmon in North America at 11,500 y ago

    PubMed Central

    Halffman, Carrin M.; Potter, Ben A.; McKinney, Holly J.; Finney, Bruce P.; Rodrigues, Antonia T.; Yang, Dongya Y.; Kemp, Brian M.

    2015-01-01

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America. PMID:26392548

  1. A complete human pelvis from the Middle Pleistocene of Spain.

    PubMed

    Arsuaga, J L; Lorenzo, C; Carretero, J M; Gracia, A; Martínez, I; García, N; Bermúdez de Castro, J M; Carbonell, E

    1999-05-20

    The Middle Pleistocene site of Sima de los Huesos in Sierra de Atapuerca, Spain, has yielded around 2,500 fossils from at least 33 different hominid individuals. These have been dated at more than 200,000 years ago and have been classified as ancestors of Neanderthals. An almost complete human male pelvis (labelled Pelvis 1) has been found, which we associate with two fragmentary femora. Pelvis 1 is robust and very broad with a very long superior pubic ramus, marked iliac flare, and a long femoral neck. This pattern is probably the primitive condition from which modern humans departed. A modern human newborn would pass through the birth canal of Pelvis 1 and this would be even larger in a female individual. We estimate the body mass of this individual at 95 kg or more. Using the cranial capacities of three specimens from Sima de los Huesos, the encephalization quotients are substantially smaller than in Neanderthals and modern humans.

  2. Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts

    PubMed Central

    Thaler, Lore; Arnott, Stephen R.; Goodale, Melvyn A.

    2011-01-01

    Background A small number of blind people are adept at echolocating silent objects simply by producing mouth clicks and listening to the returning echoes. Yet the neural architecture underlying this type of aid-free human echolocation has not been investigated. To tackle this question, we recruited echolocation experts, one early- and one late-blind, and measured functional brain activity in each of them while they listened to their own echolocation sounds. Results When we compared brain activity for sounds that contained both clicks and the returning echoes with brain activity for control sounds that did not contain the echoes, but were otherwise acoustically matched, we found activity in calcarine cortex in both individuals. Importantly, for the same comparison, we did not observe a difference in activity in auditory cortex. In the early-blind, but not the late-blind participant, we also found that the calcarine activity was greater for echoes reflected from surfaces located in contralateral space. Finally, in both individuals, we found activation in middle temporal and nearby cortical regions when they listened to echoes reflected from moving targets. Conclusions These findings suggest that processing of click-echoes recruits brain regions typically devoted to vision rather than audition in both early and late blind echolocation experts. PMID:21633496

  3. Evolutionary anthropology and genes: investigating the genetics of human evolution from excavated skeletal remains.

    PubMed

    Anastasiou, Evilena; Mitchell, Piers D

    2013-10-01

    The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Elevated pretransplantation soluble CD30 is associated with decreased early allograft function after human lung transplantation.

    PubMed

    Shah, Ashish S; Leffell, M Sue; Lucas, Donna; Zachary, Andrea A

    2009-02-01

    Early allograft function after lung transplantation is variable. Clinical criteria have limited predictive value for early graft function. Recipient immunologic state before LTx may affect early lung function. We investigated the association between pretransplantation soluble CD30 (sCD30), a marker of Th2-type T-cell activation, and early clinical parameters of allograft function. Between September 2002 and January 2007, a total of 80 transplantations were performed at Johns Hopkins Hospital. Of the patients, 43 had a pretransplantation sCD30 level determined. Pre- and postoperative patient variables were collected, and patients were stratified into two groups: sCD30 <20 (low sCD30) and >20 (high sCD30). High sCD30 (n = 26) and low sCD30 (n = 17) groups were similar in age, gender, and ischemia time. In the high sCD30 group, a higher percentage of patients had pulmonary fibrosis and a lower percentage had emphysema. Oxygenation at 48 hours was significantly worse in the high sCD30 group as compared with the low sCD30 (p = 0.003). Moreover, prolonged intubation and 90-day mortality were greater in the high sCD30 group. This represents the first report of the use of sCD30 as a marker for early allograft function in human lung transplanation. Increased pretransplantation recipient sCD30 appears to be associated with decreased early post-transplantation gas exchange, prolonged intubation, and early mortality.

  5. Culture and art: Importance of art practice, not aesthetics, to early human culture.

    PubMed

    Zaidel, Dahlia W

    2018-01-01

    Art is expressed in multiple formats in today's human cultures. Physical traces of stone tools and other archaeological landmarks suggest early nonart cultural behavior and symbolic cognition in the early Homo sapiens (HS) who emerged ~300,000-200,000 years ago in Africa. Fundamental to art expression is the neural underpinning for symbolic cognition, and material art is considered its prime example. However, prior to producing material art, HS could have exploited symbolically through art-rooted biological neural pathways for social purpose, namely, those controlling interpersonal motoric coordination and sound codependence. Aesthetics would not have been the primary purpose; arguments for group dance and rhythmical musical sounds are offered here. In addition, triggers for symbolic body painting are discussed. These cultural art formats could well have preceded material art and would have enhanced unity, inclusiveness, and cooperative behavior, contributing significantly to already existing nonart cultural practices. © 2018 Elsevier B.V. All rights reserved.

  6. Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain.

    PubMed

    Arsuaga, Juan Luis; Carretero, José-Miguel; Lorenzo, Carlos; Gómez-Olivencia, Asier; Pablos, Adrián; Rodríguez, Laura; García-González, Rebeca; Bonmatí, Alejandro; Quam, Rolf M; Pantoja-Pérez, Ana; Martínez, Ignacio; Aranburu, Arantza; Gracia-Téllez, Ana; Poza-Rey, Eva; Sala, Nohemi; García, Nuria; Alcázar de Velasco, Almudena; Cuenca-Bescós, Gloria; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-09-15

    Current knowledge of the evolution of the postcranial skeleton in the genus Homo is hampered by a geographically and chronologically scattered fossil record. Here we present a complete characterization of the postcranium of the middle Pleistocene paleodeme from the Sima de los Huesos (SH) and its paleobiological implications. The SH hominins show the following: (i) wide bodies, a plesiomorphic character in the genus Homo inherited from their early hominin ancestors; (ii) statures that can be found in modern human middle-latitude populations that first appeared 1.6-1.5 Mya; and (iii) large femoral heads in some individuals, a trait that first appeared during the middle Pleistocene in Africa and Europe. The intrapopulational size variation in SH shows that the level of dimorphism was similar to modern humans (MH), but the SH hominins were less encephalized than Neandertals. SH shares many postcranial anatomical features with Neandertals. Although most of these features appear to be either plesiomorphic retentions or are of uncertain phylogenetic polarity, a few represent Neandertal apomorphies. Nevertheless, the full suite of Neandertal-derived features is not yet present in the SH population. The postcranial evidence is consistent with the hypothesis based on the cranial morphology that the SH hominins are a sister group to the later Neandertals. Comparison of the SH postcranial skeleton to other hominins suggests that the evolution of the postcranium occurred in a mosaic mode, both at a general and at a detailed level.

  7. Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain

    PubMed Central

    Arsuaga, Juan Luis; Carretero, José-Miguel; Lorenzo, Carlos; Gómez-Olivencia, Asier; Pablos, Adrián; Rodríguez, Laura; García-González, Rebeca; Bonmatí, Alejandro; Quam, Rolf M.; Pantoja-Pérez, Ana; Martínez, Ignacio; Aranburu, Arantza; Gracia-Téllez, Ana; Poza-Rey, Eva; Sala, Nohemi; García, Nuria; Alcázar de Velasco, Almudena; Cuenca-Bescós, Gloria; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-01-01

    Current knowledge of the evolution of the postcranial skeleton in the genus Homo is hampered by a geographically and chronologically scattered fossil record. Here we present a complete characterization of the postcranium of the middle Pleistocene paleodeme from the Sima de los Huesos (SH) and its paleobiological implications. The SH hominins show the following: (i) wide bodies, a plesiomorphic character in the genus Homo inherited from their early hominin ancestors; (ii) statures that can be found in modern human middle-latitude populations that first appeared 1.6–1.5 Mya; and (iii) large femoral heads in some individuals, a trait that first appeared during the middle Pleistocene in Africa and Europe. The intrapopulational size variation in SH shows that the level of dimorphism was similar to modern humans (MH), but the SH hominins were less encephalized than Neandertals. SH shares many postcranial anatomical features with Neandertals. Although most of these features appear to be either plesiomorphic retentions or are of uncertain phylogenetic polarity, a few represent Neandertal apomorphies. Nevertheless, the full suite of Neandertal-derived features is not yet present in the SH population. The postcranial evidence is consistent with the hypothesis based on the cranial morphology that the SH hominins are a sister group to the later Neandertals. Comparison of the SH postcranial skeleton to other hominins suggests that the evolution of the postcranium occurred in a mosaic mode, both at a general and at a detailed level. PMID:26324920

  8. Metabolic effects of growth factors and polycyclic aromatic hydrocarbons on cultured human placental cells of early and late gestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyda, H.J.

    1991-03-01

    The metabolic effects of epidermal growth factor (EGF), insulin, insulin-like growth factor-I (IGF-I), and IGF-II were determined on human placental cells in monolayer culture obtained from early gestation (less than 20 weeks) and late gestation (38-42 weeks). Parameters studied were uptake of aminoisobutyric acid (AIB), uptake of 3-O-methylglucose and (3H)thymidine incorporation into cell protein. Since benzo(alpha)pyrene (BP) inhibits EGF binding and autophosphorylation in cultured human placental cells, particularly in early gestation, we also studied the effect of benzo(alpha)pyrene and other polycyclic aromatic hydrocarbons (PAHs) on EGF-mediated AIB uptake. The metabolic effects of EGF, insulin, and the IGFs in cultured humanmore » placental cells varied with gestational age and the growth factor studied. All three classes of growth factors stimulated AIB uptake in both early and late gestation at concentrations from 10-100 micrograms/L, well within a physiological range. However, insulin stimulation of AIB uptake was maximal at a high concentration in both early and late gestation cells, suggesting an action via type 1 IGF receptors rather than via insulin receptors. EGF stimulated 3-O-methylglucose uptake only in term placental cells. No significant stimulation of (3H)thymidine incorporation by any of the growth factors tested was seen with either early or late gestation cells. The effect of PAHs on AIB uptake by cultured placental cells was variable. BP alone stimulated AIB uptake by both very early and late gestation cells and enhanced EGF-stimulated AIB uptake. alpha-naphthoflavone alone inhibited AIB uptake at all gestational ages and inhibited EGF-stimulated AIB uptake. beta-Naphthoflavone and 3-methylcholanthrene minimally inhibited AIB uptake by early gestation cells and did not modify EGF-stimulated uptake at any gestational period.« less

  9. Studies in Historical Replication in Psychology VII: The Relative Utility of ``Ancestor Analysis'' from Scientific and Educational Vantages

    NASA Astrophysics Data System (ADS)

    Ranney, Michael Andrew

    2008-05-01

    This article discusses, from various vantages, Ryan Tweney’s (this issue) pedagogical technique of employing historical replications of psychological experiments with graduate students in psychology. A prima facie perspective suggests great promise for this sort of academic “ancestor analysis,” particularly given the enthusiasm and skill represented in the activities that culminated in the replicators’ articles. It is suggested that such activities might be enhanced by requiring a contextualization that makes contact with more modern psychological research—particularly regarding expositions of the replications. From a scientific/cognitive methods perspective, the original experimenters’ inexplicit, ambiguous, descriptions provide both challenges and opportunities for students seeking to improve their understandings of their field. Three practical questions are posed herein regarding the general utility of this—or any—proposed instructional intervention. Ultimately, determining and integrating the diverse objectives that essential stakeholders have in graduate psychological training represent critical prerequisites in comprehensively assessing the relative advantages of such historical replications with respect to alternative experiences.

  10. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    PubMed

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  11. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica

    PubMed Central

    Barreda, Viviana D.; Palazzesi, Luis; Tellería, Maria C.; Olivero, Eduardo B.; Raine, J. Ian; Forest, Félix

    2015-01-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76–66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60–50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general. PMID:26261324

  12. Fake news and post-truth pronouncements in general and in early human development.

    PubMed

    Grech, Victor

    2017-12-01

    Fake news and post-truth pronouncements are increasingly common, and are unfortunately also progressively being applied to the sciences, including the medical sciences. This editorial briefly reviews this unsavoury trend and highlights recent debunking of fake truths in early human development. Science is arguably the last metanarrative with any significant cachet in the postmodern period. We, as scientists, must strive to ensure that our work is transparent and of the highest possible standard so as to continue to uphold science's integrity and probity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Auditory capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain.

    PubMed

    Martínez, I; Rosa, M; Arsuaga, J-L; Jarabo, P; Quam, R; Lorenzo, C; Gracia, A; Carretero, J-M; Bermúdez de Castro, J-M; Carbonell, E

    2004-07-06

    Human hearing differs from that of chimpanzees and most other anthropoids in maintaining a relatively high sensitivity from 2 kHz up to 4 kHz, a region that contains relevant acoustic information in spoken language. Knowledge of the auditory capacities in human fossil ancestors could greatly enhance the understanding of when this human pattern emerged during the course of our evolutionary history. Here we use a comprehensive physical model to analyze the influence of skeletal structures on the acoustic filtering of the outer and middle ears in five fossil human specimens from the Middle Pleistocene site of the Sima de los Huesos in the Sierra de Atapuerca of Spain. Our results show that the skeletal anatomy in these hominids is compatible with a human-like pattern of sound power transmission through the outer and middle ear at frequencies up to 5 kHz, suggesting that they already had auditory capacities similar to those of living humans in this frequency range.

  14. Auditory capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain

    PubMed Central

    Martínez, I.; Rosa, M.; Arsuaga, J.-L.; Jarabo, P.; Quam, R.; Lorenzo, C.; Gracia, A.; Carretero, J.-M.; de Castro, J.-M. Bermúdez; Carbonell, E.

    2004-01-01

    Human hearing differs from that of chimpanzees and most other anthropoids in maintaining a relatively high sensitivity from 2 kHz up to 4 kHz, a region that contains relevant acoustic information in spoken language. Knowledge of the auditory capacities in human fossil ancestors could greatly enhance the understanding of when this human pattern emerged during the course of our evolutionary history. Here we use a comprehensive physical model to analyze the influence of skeletal structures on the acoustic filtering of the outer and middle ears in five fossil human specimens from the Middle Pleistocene site of the Sima de los Huesos in the Sierra de Atapuerca of Spain. Our results show that the skeletal anatomy in these hominids is compatible with a human-like pattern of sound power transmission through the outer and middle ear at frequencies up to 5 kHz, suggesting that they already had auditory capacities similar to those of living humans in this frequency range. PMID:15213327

  15. The late Early Pleistocene human dental remains from Uadi Aalad and Mulhuli-Amo (Buia), Eritrean Danakil: macromorphology and microstructure.

    PubMed

    Zanolli, Clément; Bondioli, Luca; Coppa, Alfredo; Dean, Christopher M; Bayle, Priscilla; Candilio, Francesca; Capuani, Silvia; Dreossi, Diego; Fiore, Ivana; Frayer, David W; Libsekal, Yosief; Mancini, Lucia; Rook, Lorenzo; Medin Tekle, Tsegai; Tuniz, Claudio; Macchiarelli, Roberto

    2014-09-01

    Fieldwork performed during the last 15 years in various Early Pleistocene East African sites has significantly enlarged the fossil record of Homo erectus sensu lato (s.l.). Additional evidence comes from the Danakil Depression of Eritrea, where over 200 late Early to early Middle Pleistocene sites have been identified within a ∼1000 m-thick sedimentary succession outcropping in the Dandiero Rift Basin, near Buia. Along with an adult cranium (UA 31), which displays a blend of H. erectus-like and derived morpho-architectural features and three pelvic remains, two isolated permanent incisors (UA 222 and UA 369) have also been recovered from the 1 Ma (millions of years ago) Homo-bearing outcrop of Uadi Aalad. Since 2010, our surveys have expanded to the nearby (4.7 km) site of Mulhuli-Amo (MA). This is a fossiliferous area that has been preliminarily surveyed because of its exceptional concentration of Acheulean stone tools. So far, the site has yielded 10 human remains, including the unworn crown of a lower permanent molar (MA 93). Using diverse analytical tools (including high resolution μCT and μMRI), we analysed the external and internal macromorphology and microstructure of the three specimens, and whenever possible compared the results with similar evidence from early Homo, H. erectus s.l., H. antecessor, H. heidelbergensis (from North Africa), Neanderthals and modern humans. We also assessed the UA 369 lower incisor from Uadi Aalad for root completion timing and showed that it compares well with data for root apex closure in modern human populations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Correction to: Stem Cells from Human Exfoliated Deciduous Teeth Modulate Early Astrocyte Response after Spinal Cord Contusion.

    PubMed

    Nicola, Fabrício; Marques, Marília Rossato; Odorcyk, Felipe; Petenuzzo, Letícia; Aristimunha, Dirceu; Vizuete, Adriana; Sanches, Eduardo Farias; Pereira, Daniela Pavulack; Maurmann, Natasha; Gonçalves, Carlos-Alberto; Pranke, Patricia; Netto, Carlos Alexandre

    2018-06-16

    The authors hereby declare that the Figure 4 in page eight of the paper "Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion" authored by Fabrício Nicola and colleagues (DOI: 10.1007/s12035-018-1127-4) was mistakenly included.

  17. Precision-cut rat, mouse, and human intestinal slices as novel models for the early-onset of intestinal fibrosis.

    PubMed

    Pham, Bao Tung; van Haaften, Wouter Tobias; Oosterhuis, Dorenda; Nieken, Judith; de Graaf, Inge Anne Maria; Olinga, Peter

    2015-04-01

    Intestinal fibrosis (IF) is a major complication of inflammatory bowel disease. IF research is limited by the lack of relevant in vitro and in vivo models. We evaluated precision-cut intestinal slices (PCIS) prepared from human, rat, and mouse intestine as ex vivo models mimicking the early-onset of (human) IF. Precision-cut intestinal slices prepared from human (h), rat (r), and mouse (m) jejunum, were incubated up to 72 h, the viability of PCIS was assessed by ATP content and morphology, and the gene expression of several fibrosis markers was determined. The viability of rPCIS decreased after 24 h of incubation, whereas mPCIS and hPCIS were viable up to 72 h of culturing. Furthermore, during this period, gene expression of heat shock protein 47 and plasminogen activator inhibitor 1 increased in all PCIS in addition to augmented expression of synaptophysin in hPCIS, fibronectin (Fn2) and TGF-β1 in rPCIS, and Fn2 and connective tissue growth factor (Ctgf) in mPCIS. Addition of TGF-β1 to rPCIS or mPCIS induced the gene expression of the fibrosis markers Pro-collagen1a1, Fn2, and Ctgf in both species. However, none of the fibrosis markers was further elevated in hPCIS. We successfully developed a novel ex vivo model that can mimic the early-onset of fibrosis in the intestine using human, rat, and mouse PCIS. Furthermore, in rat and mouse PCIS, TGF-β1 was able to even further increase the gene expression of fibrosis markers. This indicates that PCIS can be used as a model for the early-onset of IF. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    PubMed

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  19. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes

    PubMed Central

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-01-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined ‘ohnologs’ after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases. PMID:26181593

  20. Differential expression of the major immediate early gene of human cytomegalovirus.

    PubMed

    Tsutsui, Y; Nogami-Satake, T

    1990-01-01

    We prepared a murine monoclonal antibody reactive to a human cytomegalovirus (HCMV)-induced nuclear protein with an Mr of 68,000. Expression of the 68K protein was compared with the major immediate early (IE) 72K protein in various cell types after infection with HCMV or microinjection of plasmid DNA containing the major IE gene. The 68K nuclear protein was detected 2 to 3 h after appearance of the 72K protein in human embryonal lung (HEL) cells infected with HCMV. The 68K protein was distributed throughout the cytoplasm in the late phase of infection, while the 72K protein remained chiefly in the nucleus. The 68K protein was barely detected in the cells under IE conditions by immunoprecipitation, but, together with the 72K protein, it was expressed after microinjection of cloned DNA, containing only the major IE region (region 1), into the nuclei of HEL cells. The 72K protein was expressed in nuclei 2 h after microinjection, whereas the 68K protein was detected 4 to 5 h after the injection. The 68K protein was expressed after microinjection in non-permissive rodent fibroblasts or non-permissive transformed human cells in which these proteins were not expressed after viral infection. Immunoprecipitations after chase-labelling from IE conditions or after partial digestions suggested that the 68K protein is neither a degradation nor a modification product of the major IE 72K protein.

  1. Improving human activity recognition and its application in early stroke diagnosis.

    PubMed

    Villar, José R; González, Silvia; Sedano, Javier; Chira, Camelia; Trejo-Gabriel-Galan, Jose M

    2015-06-01

    The development of efficient stroke-detection methods is of significant importance in today's society due to the effects and impact of stroke on health and economy worldwide. This study focuses on Human Activity Recognition (HAR), which is a key component in developing an early stroke-diagnosis tool. An overview of the proposed global approach able to discriminate normal resting from stroke-related paralysis is detailed. The main contributions include an extension of the Genetic Fuzzy Finite State Machine (GFFSM) method and a new hybrid feature selection (FS) algorithm involving Principal Component Analysis (PCA) and a voting scheme putting the cross-validation results together. Experimental results show that the proposed approach is a well-performing HAR tool that can be successfully embedded in devices.

  2. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome–deuterostome bilaterian ancestor

    PubMed Central

    2016-01-01

    Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca2+/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome–deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains. PMID:26598732

  3. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation.

    PubMed

    Wang, Xiyin; Guo, Hui; Wang, Jinpeng; Lei, Tianyu; Liu, Tao; Wang, Zhenyi; Li, Yuxian; Lee, Tae-Ho; Li, Jingping; Tang, Haibao; Jin, Dianchuan; Paterson, Andrew H

    2016-02-01

    The 'apparently' simple genomes of many angiosperms mask complex evolutionary histories. The reference genome sequence for cotton (Gossypium spp.) revealed a ploidy change of a complexity unprecedented to date, indeed that could not be distinguished as to its exact dosage. Herein, by developing several comparative, computational and statistical approaches, we revealed a 5× multiplication in the cotton lineage of an ancestral genome common to cotton and cacao, and proposed evolutionary models to show how such a decaploid ancestor formed. The c. 70% gene loss necessary to bring the ancestral decaploid to its current gene count appears to fit an approximate geometrical model; that is, although many genes may be lost by single-gene deletion events, some may be lost in groups of consecutive genes. Gene loss following cotton decaploidy has largely just reduced gene copy numbers of some homologous groups. We designed a novel approach to deconvolute layers of chromosome homology, providing definitive information on gene orthology and paralogy across broad evolutionary distances, both of fundamental value and serving as an important platform to support further studies in and beyond cotton and genomics communities. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  4. Negative and positive regulation by a short segment in the 5'-flanking region of the human cytomegalovirus major immediate-early gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, J.A.; Reynolds-Kohler, C.; Smith, B.A.

    1987-11-01

    To analyze the significance of inducible DNase I-hypersensitive sites occurring in the 5'-flanking sequence of the major immediate-early gene of human cytomegalovirus (HCMV), various deleted portions of the HCMV immediate-early promoter regulatory region were attached to the chloramphenicol acetyltransferase (CAT) gene and assayed for activity in transiently transfected undifferentiated and differentiated human teratocarcinoma cells, Tera-2. Assays of progressive deletions in the promoter regulatory region indicated that removal of a 395-base-pair portion of this element (nucleotides -750 to -1145) containing two inducible DNase I sites which correlate with gene expression resulted in a 7.5-fold increase in CAT activity in undifferentiated cells.more » However, in permissive differentiated Tera-2, human foreskin fibroblast, and HeLa cells, removal of this regulatory region resulted in decreased activity. In addition, attachment of this HCMV upstream element to a homologous or heterologous promoter increased activity three-to fivefold in permissive cells. Therefore, a cis regulatory element exists 5' to the enhancer of the major immediate-early gene of HCMV. This element negatively modulates expression in nonpermissive cells but positively influences expression in permissive cells.« less

  5. A karyometric note on nucleoli in human early granulocytic precursors.

    PubMed

    Smetana, K; Mikulenková, D; Jirásková, I; Klamová, H

    2006-01-01

    The diameter of nucleoli was measured in human bone marrow early granulocytic precursors after visualization by a simple cytochemical method for demonstration of RNA. Such method facilitated to clearly see nucleolar bodies without perinucleolar chromatin, including those of micronucleoli. The bone marrow of patients suffering from chronic myeloid leukaemia (untreated with cytostatics) provided a satisfactory number of both myeloblasts and promyelocytes for nucleolar measurements because of prevailing granulopoiesis. The direct nucleolar measurement was carried out on digitized and processed images on the screen at magnification 4,300x. It seems to be likely that the nucleolar size is directly related to the number of nucleoli per cell. The largest nucleoli were present in both myeloblasts and promyelocytes that possessed a single nucleolus. In contrast, the nucleolar diameter was significantly smaller in cells with multiple nucleoli. However, in cells with small multiple nucleoli, one of them was always larger and dominant with a large number of AgNORs. Such large nucleoli are possibly visible in specimens stained with panoptic procedures or methods staining nuclear chromatin or DNA. It should also be mentioned that both myeloblasts and promyelocytes mostly possessed two nucleoli with the mean diameter close to 1.5 microm. The incidence of early granulocytic precursors classified according to the nucleolar number and size strongly suggested that the various nucleolar number and nucleolar size in these cells might be related to the different stage of the cell cycle and might also explain their heterogeneity.

  6. The phylogenetic roots of human lethal violence.

    PubMed

    Gómez, José María; Verdú, Miguel; González-Megías, Adela; Méndez, Marcos

    2016-10-13

    The psychological, sociological and evolutionary roots of conspecific violence in humans are still debated, despite attracting the attention of intellectuals for over two millennia. Here we propose a conceptual approach towards understanding these roots based on the assumption that aggression in mammals, including humans, has a significant phylogenetic component. By compiling sources of mortality from a comprehensive sample of mammals, we assessed the percentage of deaths due to conspecifics and, using phylogenetic comparative tools, predicted this value for humans. The proportion of human deaths phylogenetically predicted to be caused by interpersonal violence stood at 2%. This value was similar to the one phylogenetically inferred for the evolutionary ancestor of primates and apes, indicating that a certain level of lethal violence arises owing to our position within the phylogeny of mammals. It was also similar to the percentage seen in prehistoric bands and tribes, indicating that we were as lethally violent then as common mammalian evolutionary history would predict. However, the level of lethal violence has changed through human history and can be associated with changes in the socio-political organization of human populations. Our study provides a detailed phylogenetic and historical context against which to compare levels of lethal violence observed throughout our history.

  7. Human-climate interaction during the Early Upper Paleolithic: testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian.

    PubMed

    Banks, William E; d'Errico, Francesco; Zilhão, João

    2013-01-01

    The Aurignacian technocomplex comprises a succession of culturally distinct phases. Between its first two subdivisions, the Proto-Aurignacian and the Early Aurignacian, we see a shift from single to separate reduction sequences for blade and bladelet production, the appearance of split-based antler points, and a number of other changes in stone tool typology and technology as well as in symbolic material culture. Bayesian modeling of available (14)C determinations, conducted within the framework of this study, indicates that these material culture changes are coincident with abrupt and marked climatic changes. The Proto-Aurignacian occurs during an interval (ca. 41.5-39.9 k cal BP) of relative climatic amelioration, Greenland Interstadials (GI) 10 and 9, punctuated by a short cold stadial. The Early Aurignacian (ca. 39.8-37.9 k cal BP) predominantly falls within the climatic phase known as Heinrich Stadial (HS) 4, and its end overlaps with the beginning of GI 8, the former being predominantly characterized by cold and dry conditions across the European continent. We use eco-cultural niche modeling to quantitatively evaluate whether these shifts in material culture are correlated with environmental variability and, if so, whether the ecological niches exploited by human populations shifted accordingly. We employ genetic algorithm (GARP) and maximum entropy (Maxent) techniques to estimate the ecological niches exploited by humans (i.e., eco-cultural niches) during these two phases of the Aurignacian. Partial receiver operating characteristic analyses are used to evaluate niche variability between the two phases. Results indicate that the changes in material culture between the Proto-Aurignacian and the Early Aurignacian are associated with an expansion of the ecological niche. These shifts in both the eco-cultural niche and material culture are interpreted to represent an adaptive response to the relative deterioration of environmental conditions at the onset of HS4

  8. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos.

    PubMed

    Harvey, Thomas H P; Butterfield, Nicholas J

    2017-01-30

    Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.

  9. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria

    PubMed Central

    Di Rienzi, Sara C; Sharon, Itai; Wrighton, Kelly C; Koren, Omry; Hug, Laura A; Thomas, Brian C; Goodrich, Julia K; Bell, Jordana T; Spector, Timothy D; Banfield, Jillian F; Ley, Ruth E

    2013-01-01

    Cyanobacteria were responsible for the oxygenation of the ancient atmosphere; however, the evolution of this phylum is enigmatic, as relatives have not been characterized. Here we use whole genome reconstruction of human fecal and subsurface aquifer metagenomic samples to obtain complete genomes for members of a new candidate phylum sibling to Cyanobacteria, for which we propose the designation ‘Melainabacteria’. Metabolic analysis suggests that the ancestors to both lineages were non-photosynthetic, anaerobic, motile, and obligately fermentative. Cyanobacterial light sensing may have been facilitated by regulators present in the ancestor of these lineages. The subsurface organism has the capacity for nitrogen fixation using a nitrogenase distinct from that in Cyanobacteria, suggesting nitrogen fixation evolved separately in the two lineages. We hypothesize that Cyanobacteria split from Melainabacteria prior or due to the acquisition of oxygenic photosynthesis. Melainabacteria remained in anoxic zones and differentiated by niche adaptation, including for symbiosis in the mammalian gut. DOI: http://dx.doi.org/10.7554/eLife.01102.001 PMID:24137540

  10. Intracranial baroreflex yielding an early cushing response in human.

    PubMed

    Schmidt, E A; Czosnyka, Z; Momjian, S; Czosnyka, M; Bech, R A; Pickard, J D

    2005-01-01

    The Cushing response is a pre-terminal sympatho-adrenal systemic response to very high ICP. Animal studies have demonstrated that a moderate rise of ICP yields a reversible pressure-mediated systemic response. Infusion studies are routine procedures to investigate, by infusing CSF space with saline, the cerebrospinal fluid (CSF) biophysics in patients suspected of hydrocephalus. Our study aims at assessing systemic and cerebral haemodynamic changes during moderate rise of ICP in human. Infusion studies were performed in 34 patients. This is a routine test perform in patients presenting with symptoms of NPH during their pre-shunting assessment. Arterial blood pressure (ABP) and cerebral blood flow velocity (FV) were non-invasively monitored with photoplethysmography and transcranial Doppler. The rise in ICP (8.2 +/- 5.1 mmHg to 25 +/- 8.3 mmHg) was followed by a significant rise in ABP (106.6 +/- 29.7 mmHg to 115.2 +/- 30.1 mmHg), drop in CPP (98.3 +/- 29 mmHg to 90.2 +/- 30.7 mmHg) and decrease in FV (55.6 +/- 17 cm/s to 51.1 +/- 16.3 cm/s). Increasing ICP did not alter heart rate (70.4 +/- 10.4/min to 70.3 +/- 9.1/min) but augmented the heart rate variance (0.046 +/- 0.058 to 0.067 +/- 0.075/min). In a population suspected of hydrocephalus, our study demonstrated that a moderate rise of ICP yields a reversible pressure-mediated systemic response, demonstrating an early Cushing response in human and a putative intracranial baroreflex.

  11. Evidence for the evolution of tenascin and fibronectin early in the chordate lineage.

    PubMed

    Tucker, Richard P; Chiquet-Ehrismann, Ruth

    2009-02-01

    Fibronectin and tenascin are extracellular matrix glycoproteins that play important roles in cell adhesion and motility. In a previous study we provided evidence that tenascin first appeared early in the chordate lineage. As tenascin has been proposed to act, in part, through modulation of cell-fibronectin interactions, we sought here to identify fibronectin genes in non-vertebrate chordates and other invertebrates to determine if tenascin and fibronectin evolved separately or together, and to identify phylogenetically conserved features of both proteins. We found that the genome of the urochordate Ciona savignyi contains both a tenascin gene and a gene encoding a fibronectin-like protein with fibronectin type 1, 2 and 3 repeats. The genome of the cephalochordate Branchiostoma floridae (amphioxus) also has a tenascin gene. However, we could not identify a fibronectin-like gene in B. floridae, nor could we identify fibronectin or tenascin genes in echinoderms, protostomes or cnidarians. If urochordates are more closely related to vertebrates, tenascin may have evolved before fibronectin in an ancestor common to tunicates and amphioxus. Alternatively, tenascin and fibronectin may have evolved in an ancestor common to B. floridae and C. savignyi and the fibronectin gene was subsequently lost in the cephalochordate lineage. The fibronectin-like gene from C. savignyi does not encode the RGD motif for integrin binding found in all vertebrate fibronectins, and it lacks most of the fibronectin type 1 domains believed to be critical for fibrillogenesis. In contrast, the tenascin gene in B. floridae encodes multiple RGD motifs, suggesting that integrin binding is fundamental to tenascin function.

  12. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Conley, Catharine

    yet been developed. Looking ahead, it is recognized that these planetary protection policies will apply to both governmental and non-governmental entities for the more than 100 countries that are signatories to the Outer SpaceTreaty. Fortunately, planetary protection controls for human missions are supportive of many other important mission needs, such as maximizing closed-loop and recycling capabilities to minimize mass required, minimizing exposure of humans to planetary materials for multiple health reasons, and minimizing contamination of planetary samples and environments during exploration and science activities. Currently, there is progress on a number of fronts in translating the basic COSPAR PP Principles and Implementation Guidelines into information that links with early engineering and process considerations. For example, an IAA Study Group on Planetary Protection and Human Missions is engaging robotic and human mission developers and scientists in exploring detailed technical, engineering and operational approaches by which planetary protection objectives can be accomplished for human missions in synergism with robotic exploration and in view of other constraints. This on-going study aims to highlight important information for the early stages of planning, and identify key research and technology development (R&TD) areas for further consideration and work. Such R&TD challenges provide opportunities for individuals, institutions and agencies of emerging countries to be involved in international exploration efforts. In January 2014, the study group presented an Interim Report to the IAA Heads of Agencies Summit in Washington DC. Subsequently, the group has continued to work on expanding the initial technical recommendations and findings, focusing especially on information useful to mission architects and designers as they integrate PP considerations in their varied plans-- scientific, commercial and otherwise. Already the findings and recommendations

  13. Early childhood development: impact of national human development, family poverty, parenting practices and access to early childhood education.

    PubMed

    Tran, T D; Luchters, S; Fisher, J

    2017-05-01

    This study was to describe and quantify the relationships among family poverty, parents' caregiving practices, access to education and the development of children living in low- and middle-income countries (LAMIC). We conducted a secondary analysis of data collected in UNICEF's Multiple Indicator Cluster Surveys (MICS). Early childhood development was assessed in four domains: language-cognitive, physical, socio-emotional and approaches to learning. Countries were classified into three groups on the basis of the Human Development Index (HDI). Overall, data from 97 731 children aged 36 to 59 months from 35 LAMIC were included in the after analyses. The mean child development scale score was 4.93 out of a maximum score of 10 (95%CI 4.90 to 4.97) in low-HDI countries and 7.08 (95%CI 7.05 to 7.12) in high-HDI countries. Family poverty was associated with lower child development scores in all countries. The total indirect effect of family poverty on child development score via attending early childhood education, care for the child at home and use of harsh punishments at home was -0.13 SD (77.8% of the total effect) in low-HDI countries, -0.09 SD (23.8% of the total effect) in medium-HDI countries and -0.02 SD (6.9% of the total effect) in high-HDI countries. Children in the most disadvantaged position in their societies and children living in low-HDI countries are at the greatest risk of failing to reach their developmental potential. Optimizing care for child development at home is essential to reduce the adverse effects of poverty on children's early development and subsequent life. © 2016 John Wiley & Sons Ltd.

  14. Evolution, human-microbe interactions, and life history plasticity.

    PubMed

    Rook, Graham; Bäckhed, Fredrik; Levin, Bruce R; McFall-Ngai, Margaret J; McLean, Angela R

    2017-07-29

    A bacterium was once a component of the ancestor of all eukaryotic cells, and much of the human genome originated in microorganisms. Today, all vertebrates harbour large communities of microorganisms (microbiota), particularly in the gut, and at least 20% of the small molecules in human blood are products of the microbiota. Changing human lifestyles and medical practices are disturbing the content and diversity of the microbiota, while simultaneously reducing our exposures to the so-called old infections and to organisms from the natural environment with which human beings co-evolved. Meanwhile, population growth is increasing the exposure of human beings to novel pathogens, particularly the crowd infections that were not part of our evolutionary history. Thus some microbes have co-evolved with human beings and play crucial roles in our physiology and metabolism, whereas others are entirely intrusive. Human metabolism is therefore a tug-of-war between managing beneficial microbes, excluding detrimental ones, and channelling as much energy as is available into other essential functions (eg, growth, maintenance, reproduction). This tug-of-war shapes the passage of each individual through life history decision nodes (eg, how fast to grow, when to mature, and how long to live). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Culture and the evolution of human cooperation

    PubMed Central

    Boyd, Robert; Richerson, Peter J.

    2009-01-01

    The scale of human cooperation is an evolutionary puzzle. All of the available evidence suggests that the societies of our Pliocene ancestors were like those of other social primates, and this means that human psychology has changed in ways that support larger, more cooperative societies that characterize modern humans. In this paper, we argue that cultural adaptation is a key factor in these changes. Over the last million years or so, people evolved the ability to learn from each other, creating the possibility of cumulative, cultural evolution. Rapid cultural adaptation also leads to persistent differences between local social groups, and then competition between groups leads to the spread of behaviours that enhance their competitive ability. Then, in such culturally evolved cooperative social environments, natural selection within groups favoured genes that gave rise to new, more pro-social motives. Moral systems enforced by systems of sanctions and rewards increased the reproductive success of individuals who functioned well in such environments, and this in turn led to the evolution of other regarding motives like empathy and social emotions like shame. PMID:19805434

  16. Optimizing the early phase development of new analgesics by human pain biomarkers.

    PubMed

    Arendt-Nielsen, Lars; Hoeck, Hans Christian

    2011-11-01

    Human pain biomarkers are based on standardized acute activation of pain pathways/mechanisms and quantitative assessment of the evoked responses. This approach can be applied to healthy volunteers, to pain patients, and before and after pharmacological interventions to help understanding and profile the mode of action (proof-of-concept) of new and existing analgesic compounds. Standardized stimuli of different modalities can be applied to different tissues (multimodal and multi-tissue) for profiling analgesic compounds with respect to modulation of pain transduction, transmission, specific mechanisms and processing. This approach substantiates which specific compounds may work in particular clinical pain conditions. Human pain biomarkers can be translational and may bridge animal findings in clinical pain conditions, which in turn can provide new possibilities for designing more successful clinical trials. Biomarker based proof-of-concept drug studies in either volunteers or selected patient populations provide inexpensive, fast and reliable mechanism-based information about dose-efficacy relationships. This is important information in the early drug development phase and for designing large expensive clinical trials.

  17. Types of neural cells in the spinal ganglia of human embryos and early fetuses.

    PubMed

    Olszewska, B; Woźniak, W; Gardner, E; O'Rahilly, R

    1979-01-01

    Spinal ganglial of human embryos and fetuses ranging in C.-R. length from 15 to 74 mm and in age from 6 1/2 to 11 postovulatory weeks were studied by light and electron microscopy. A sequence of events in differentiation and maturation enabled five types of cells to be distinguished: 1. apolar, undifferentiated neuroblasts are the main cells at 6 1/2 to 7 1/2 weeks; 2. early bipolar neuroblasts (strictly speaking, types 2 to 5 are immature neurons) predominate at the end of the embryonic period proper (8 postovulatory weeks); 3. intermediate bipolar neuroblasts are characteristic of the early fetal period; 4. late bipolar neuroblasts, in which two proceses arise separately from one pole of the cell, appear at about 10 postovulatory weeks; 5. unipolar neuroblasts are found within another week and, by that time, cells of types 1 and 2 are no longer present.

  18. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    PubMed

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed

  19. EFFECT OF ARSENICALS ON THE EXPRESSION OF CELL CYCLE PROTEINS AND EARLY SIGNALING EVENTS IN PRIMARY HUMAN KERATINOCYTES.

    EPA Science Inventory

    Effect of Arsenicals on the Expression of Cell Cycle Proteins and Early Signaling Events in Primary Human Keratinocytes.

    Mudipalli, A, Owen R. D. and R. J. Preston, Environmental Carcinogenesis Division, USEPA, RTP, NC 27711.

    Environmental exposure to arsenic is a m...

  20. The origin and early evolution of dinosaurs.

    PubMed

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  1. Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died Out Ancestor of Genotype IV

    PubMed Central

    Maminiaina, Olivier F.; Gil, Patricia; Briand, François-Xavier; Albina, Emmanuel; Keita, Djénéba; Andriamanivo, Harentsoaniaina Rasamoelina; Chevalier, Véronique; Lancelot, Renaud; Martinez, Dominique; Rakotondravao, R.; Rajaonarison, Jean-Joseph; Koko, M.; Andriantsimahavandy, Abel A.; Jestin, Véronique; Servan de Almeida, Renata

    2010-01-01

    In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed. PMID:21085573

  2. Newcastle disease virus in Madagascar: identification of an original genotype possibly deriving from a died out ancestor of genotype IV.

    PubMed

    Maminiaina, Olivier F; Gil, Patricia; Briand, François-Xavier; Albina, Emmanuel; Keita, Djénéba; Andriamanivo, Harentsoaniaina Rasamoelina; Chevalier, Véronique; Lancelot, Renaud; Martinez, Dominique; Rakotondravao, R; Rajaonarison, Jean-Joseph; Koko, M; Andriantsimahavandy, Abel A; Jestin, Véronique; Servan de Almeida, Renata

    2010-11-15

    In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed.

  3. Higher content of C18:1 trans fatty acids in early human milk fat of Roma breast-feeding women.

    PubMed

    Marhol, P; Dlouhý, P; Rambousková, J; Pokorný, R; Wiererová, O; Hrncírová, D; Procházka, B; Andel, M

    2007-01-01

    The purpose of our study was to determine the content of trans fatty acids in early human breast milk as an indicator of dietary exposure in a sample of Roma breast-feeding women and in a sample of women from the general Czech population. We collected samples of early human milk from 43 Prague women from the general population and 21 Roma women. After lipid extraction, the fatty acids were converted into methyl esters (FAMEs). Finally, gas chromatography with flame ionization detector (GC-FID) analysis on a CP-Sil 88 column was used to determine C18:1 trans monoenic fatty acid levels and total trans isomers fatty acid levels in human milk. A significantly higher content of C18:1 trans fatty acid isomers was detected in human milk fat from Roma mothers than in women of the general population (2.73 vs. 2.09%, p < 0.05). Both groups monitored did not differ in the representation of total fatty acid trans isomers. Differences in the frequency of consumption of certain TFA sources (butter, fried crisps) were established. The study proved a higher fatty acid trans isomers content in Roma breast-feeding mothers in the Czech Republic, and this is probably related to their bad eating habits. (c) 2007 S. Karger AG, Basel.

  4. Early manifestation of arm-leg coordination during stepping on a surface in human neonates.

    PubMed

    La Scaleia, Valentina; Ivanenko, Y; Fabiano, A; Sylos-Labini, F; Cappellini, G; Picone, S; Paolillo, P; Di Paolo, A; Lacquaniti, F

    2018-04-01

    The accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk. Human adults normally swing their arms and a quadrupedal limb coordination persists during bipedal walking despite a strong corticospinal control of the upper extremities that allows to uncouple this connection during voluntary activities. Here we investigated arm-leg coordination during stepping responses on a surface in human neonates. In eight neonates, we found the overt presence of alternating arm-leg oscillations, the arms moving up and down in alternation with ipsilateral lower limb movements. These neonates moved the diagonal limbs together, and the peak of the arm-to-trunk angle (i.e., maximum vertical excursion of the arm) occurred around the end of the ipsilateral stance phase, as it occurs during typical adult walking. Although episodes of arm-leg coordination were sporadic in our sample of neonates, their presence provides significant evidence for a neural coupling between the upper and lower limbs during early ontogenesis of locomotion in humans.

  5. Are reproductive and somatic senescence coupled in humans? Late, but not early, reproduction correlated with longevity in historical Sami women

    PubMed Central

    Helle, Samuli; Lummaa, Virpi; Jokela, Jukka

    2005-01-01

    Evolutionary theory of senescence emphasizes the importance of intense selection on early reproduction owing to the declining force of natural selection with age that constrains lifespan. In humans, recent studies have, however, suggested that late-life mortality might be more closely related to late rather than early reproduction, although the role of late reproduction on fitness remains unclear. We examined the association between early and late reproduction with longevity in historical post-reproductive Sami women. We also estimated the strength of natural selection on early and late reproduction using path analysis, and the effect of reproductive timing on offspring survival to adulthood and maternal risk of dying at childbirth. We found that natural selection favoured both earlier start and later cessation of reproduction, and higher total fe cundity. Maternal age at childbirth was not related to offspring or maternal survival. Interestingly, females who produced their last offspring at advanced age also lived longest, while age at first reproduction and total fecundity were unrelated to female longevity. Our results thus suggest that reproductive and somatic senescence may have been coupled in these human populations, and that selection could have favoured late reproduction. We discuss alternative hypotheses for the mechanisms which might have promoted the association between late reproduction and longevity. PMID:15875567

  6. The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Campisano, C.; Arrowsmith, R.; Asrat, A.; Behrensmeyer, A. K.; Deino, A.; Feibel, C.; Hill, A.; Johnson, R.; Kingston, J.; Lamb, H.; Lowenstein, T.; Noren, A.; Olago, D.; Owen, R. B.; Potts, R.; Reed, K.; Renaut, R.; Schäbitz, F.; Tiercelin, J.-J.; Trauth, M. H.; Wynn, J.; Ivory, S.; Brady, K.; O'Grady, R.; Rodysill, J.; Githiri, J.; Russell, J.; Foerster, V.; Dommain, R.; Rucina, S.; Deocampo, D.; Russell, J.; Billingsley, A.; Beck, C.; Dorenbeck, G.; Dullo, L.; Feary, D.; Garello, D.; Gromig, R.; Johnson, T.; Junginger, A.; Karanja, M.; Kimburi, E.; Mbuthia, A.; McCartney, T.; McNulty, E.; Muiruri, V.; Nambiro, E.; Negash, E. W.; Njagi, D.; Wilson, J. N.; Rabideaux, N.; Raub, T.; Sier, M. J.; Smith, P.; Urban, J.; Warren, M.; Yadeta, M.; Yost, C.; Zinaye, B.

    2016-02-01

    The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.

  7. Angiogenin Expression during Early Human Placental Development; Association with Blood Vessel Formation

    PubMed Central

    Pavlov, Nadine; Guibourdenche, Jean; Degrelle, Séverine A.; Evain-Brion, Danièle

    2014-01-01

    The placenta is a transient organ essential for fetal development. During human placental development, chorionic villi grow in coordination with a large capillary network resulting from both vasculogenesis and angiogenesis. Angiogenin is one of the most potent inducers of neovascularisation in experimental models in vivo. We and others have previously mapped angiogenin expression in the human term placenta. Here, we explored angiogenin involvement in early human placental development. We studied, angiogenin expression by in situ hybridisation and/or by RT-PCR in tissues and primary cultured trophoblastic cells and angiogenin cellular distribution by coimmunolabelling with cell markers: CD31 (PECAM-1), vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), Tie-2, von Willebrand factor, CD34, erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Extravillous and villous cytotrophoblasts, isolated and differentiated in vitro, expressed and secreted angiogenin. Angiogenin was detected in villous trophoblastic layers, and structured and nascent fetal vessels. In decidua, it was expressed by glandular epithelial cells, vascular cells and macrophages. The observed pattern of angiogenin expression is compatible with a role in blood vessel formation and in cross-talk between trophoblasts and endothelial cells. In view of angiogenin properties, we suggest that angiogenin may participate in placental vasculogenesis and organogenesis. PMID:25093183

  8. Origin of Bacteriochlorophyll a and the Early Diversification of Photosynthesis.

    PubMed

    Cardona, Tanai

    2016-01-01

    Photosynthesis originated in the domain Bacteria billions of years ago; however, the identity of the last common ancestor to all phototrophic bacteria remains undetermined and speculative. Here I present the evolution of BchF or 3-vinyl-bacteriochlorophyll hydratase, an enzyme exclusively found in bacteria capable of synthetizing bacteriochlorophyll a. I show that BchF exists in two forms originating from an early divergence, one found in the phylum Chlorobi, including its paralogue BchV, and a second form that was ancestral to the enzyme found in the remaining anoxygenic phototrophic bacteria. The phylogeny of BchF is consistent with bacteriochlorophyll a evolving in an ancestral phototrophic bacterium that lived before the radiation event that gave rise to the phylum Chloroflexi, Chlorobi, Acidobacteria, Proteobacteria, and Gemmatimonadetes, but only after the divergence of Type I and Type II reaction centers. Consequently, it is suggested that the lack of phototrophy in many groups of extant bacteria is a derived trait.

  9. Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation.

    PubMed

    Fuchs, Christiane; Rosner, Margit; Dolznig, Helmut; Mikula, Mario; Kramer, Nina; Hengstschläger, Markus

    2012-03-01

    Embryoid bodies (EBs) are three-dimensional multicellular aggregates allowing the in vitro investigation of stem-cell differentiation processes mimicking early embryogenesis. Human amniotic fluid stem (AFS) cells harbor high proliferation potential, do not raise the ethical issues of embryonic stem cells, have a lower risk for tumor development, do not need exogenic induction of pluripotency and are chromosomal stable. Starting from a single human AFS cell, EBs can be formed accompanied by the differentiation into cells of all three embryonic germ layers. Here, we report that siRNA-mediated knockdown of the endogenous tuberous sclerosis complex-2 (TSC2) gene product tuberin or of proline-rich Akt substrate of 40 kDa (PRAS40), the two major negative regulators of mammalian target of rapamycin (mTOR), leads to massive apoptotic cell death during EB development of human AFS cells without affecting the endodermal, mesodermal and ectodermal cell differentiation spectrum. Co-knockdown of endogenous mTOR demonstrated these effects to be mTOR-dependent. Our findings prove this enzyme cascade to be an essential anti-apoptotic gatekeeper of stem-cell differentiation during EB formation. These data allow new insights into the regulation of early stem-cell maintenance and differentiation and identify a new role of the tumor suppressor tuberin and the oncogenic protein PRAS40 with the relevance for a more detailed understanding of the pathogenesis of diseases associated with altered activities of these gene products.

  10. Evolution and human sexuality.

    PubMed

    Gray, Peter B

    2013-12-01

    The aim of this review is to put core features of human sexuality in an evolutionary light. Toward that end, I address five topics concerning the evolution of human sexuality. First, I address theoretical foundations, including recent critiques and developments. While much traces back to Darwin and his view of sexual selection, more recent work helps refine the theoretical bases to sex differences and life history allocations to mating effort. Second, I consider central models attempting to specify the phylogenetic details regarding how hominin sexuality might have changed, with most of those models honing in on transitions from a possible chimpanzee-like ancestor to the slightly polygynous and long-term bonded sociosexual partnerships observed among most recently studied hunter-gatherers. Third, I address recent genetic and physiological data contributing to a refined understanding of human sexuality. As examples, the availability of rapidly increasing genomic information aids comparative approaches to discern signals of selection in sexuality-related phenotypes, and neuroendocrine studies of human responses to sexual stimuli provide insight into homologous and derived mechanisms. Fourth, I consider some of the most recent, large, and rigorous studies of human sexuality. These provide insights into sexual behavior across other national samples and on the Internet. Fifth, I discuss the relevance of a life course perspective to understanding the evolution of human sexuality. Most research on the evolution of human sexuality focuses on young adults. Yet humans are sexual beings from gestation to death, albeit in different ways across the life course, and in ways that can be theoretically couched within life history theory. Copyright © 2013 Wiley Periodicals, Inc.

  11. The Mitochondrial Genome of Chara vulgaris: Insights into the Mitochondrial DNA Architecture of the Last Common Ancestor of Green Algae and Land PlantsW⃞

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2003-01-01

    Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria. PMID:12897260

  12. New hominid fossils from Woranso-Mille (Central Afar, Ethiopia) and taxonomy of early Australopithecus.

    PubMed

    Haile-Selassie, Yohannes; Saylor, Beverly Z; Deino, Alan; Alene, Mulugeta; Latimer, Bruce M

    2010-03-01

    The phylogenetic relationship between Australopithecus anamensis and Australopithecus afarensis has been hypothesized as ancestor-descendant. However, the weakest part of this hypothesis has been the absence of fossil samples between 3.6 and 3.9 million years ago. Here we describe new fossil specimens from the Woranso-Mille site in Ethiopia that are directly relevant to this issue. They derive from sediments chronometrically dated to 3.57-3.8 million years ago. The new fossil specimens are largely isolated teeth, partial mandibles, and maxillae, and some postcranial fragments. However, they shed some light on the relationships between Au. anamensis and Au. afarensis. The dental morphology shows closer affinity with Au. anamensis from Allia Bay/Kanapoi (Kenya) and Asa Issie (Ethiopia) than with Au. afarensis from Hadar (Ethiopia). However, they are intermediate in dental and mandibular morphology between Au. anamensis and the older Au. afarensis material from Laetoli. The new fossils lend strong support to the hypothesized ancestor-descendant relationship between these two early Australopithecus species. The Woranso-Mille hominids cannot be unequivocally assigned to either taxon due to their dental morphological intermediacy. This could be an indication that the Kanapoi, Allia Bay, and Asa Issie Au. anamensis is the primitive form of Au. afarensis at Hadar with the Laetoli and Woranso-Mille populations sampling a mosaic of morphological features from both ends. It is particularly difficult to draw a line between Au. anamensis and Au. afarensis in light of the new discoveries from Woranso-Mille. The morphology provides no evidence that Au. afarensis and Au. anamensis represent distinct taxa.

  13. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

    PubMed

    Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H

    2016-04-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.

  14. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves.

    PubMed

    Lowe, Dianne; Ebi, Kristie L; Forsberg, Bertil

    2011-12-01

    With climate change, there has been an increase in the frequency, intensity and duration of heatwave events. In response to the devastating mortality and morbidity of recent heatwave events, many countries have introduced heatwave early warning systems (HEWS). HEWS are designed to reduce the avoidable human health consequences of heatwaves through timely notification of prevention measures to vulnerable populations. To identify the key characteristics of HEWS in European countries to help inform modification of current, and development of, new systems and plans. We searched the internet to identify HEWS policy or government documents for 33 European countries and requested information from relevant organizations. We translated the HEWS documents and extracted details on the trigger indicators, thresholds for action, notification strategies, message intermediaries, communication and dissemination strategies, prevention strategies recommended and specified target audiences. Twelve European countries have HEWS. Although there are many similarities among the HEWS, there also are differences in key characteristics that could inform improvements in heatwave early warning plans.

  15. An Organismal CNV Mutator Phenotype Restricted to Early Human Development.

    PubMed

    Liu, Pengfei; Yuan, Bo; Carvalho, Claudia M B; Wuster, Arthur; Walter, Klaudia; Zhang, Ling; Gambin, Tomasz; Chong, Zechen; Campbell, Ian M; Coban Akdemir, Zeynep; Gelowani, Violet; Writzl, Karin; Bacino, Carlos A; Lindsay, Sarah J; Withers, Marjorie; Gonzaga-Jauregui, Claudia; Wiszniewska, Joanna; Scull, Jennifer; Stankiewicz, Paweł; Jhangiani, Shalini N; Muzny, Donna M; Zhang, Feng; Chen, Ken; Gibbs, Richard A; Rautenstrauss, Bernd; Cheung, Sau Wai; Smith, Janice; Breman, Amy; Shaw, Chad A; Patel, Ankita; Hurles, Matthew E; Lupski, James R

    2017-02-23

    De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. On the nature and evolution of the neural bases of human language

    NASA Technical Reports Server (NTRS)

    Lieberman, Philip

    2002-01-01

    the brains of human beings and other species provides insight into the evolution of the brain bases of human language. The neural substrate that regulated motor control in the common ancestor of apes and humans most likely was modified to enhance cognitive and linguistic ability. Speech communication played a central role in this process. However, the process that ultimately resulted in the human brain may have started when our earliest hominid ancestors began to walk.

  17. Early experience with human papillomavirus vaccine introduction in the United States, Canada and Australia.

    PubMed

    Shefer, Abigail; Markowitz, Lauri; Deeks, Shelley; Tam, Theresa; Irwin, Kathleen; Garland, Suzanne M; Schuchat, Anne

    2008-08-19

    Successful incorporation of a new vaccine into a nation's vaccination program requires addressing a number of issues, including: 1) establishing national recommendations; 2) assuring education of and acceptance by the public and medical community; 3) establishing and maintaining an appropriate infrastructure for vaccine delivery; 4) financing the vaccine and the program, in addition to political will. This article reviews the early experience with implementation of human papillomavirus (HPV) vaccination programs. It focuses on the United States of America and Canada and provides a brief report on Australia, where introduction is underway.

  18. Human Dispersal Out of Africa: A Lasting Debate

    PubMed Central

    López, Saioa; van Dorp, Lucy; Hellenthal, Garrett

    2015-01-01

    Unraveling the first migrations of anatomically modern humans out of Africa has invoked great interest among researchers from a wide range of disciplines. Available fossil, archeological, and climatic data offer many hypotheses, and as such genetics, with the advent of genome-wide genotyping and sequencing techniques and an increase in the availability of ancient samples, offers another important tool for testing theories relating to our own history. In this review, we report the ongoing debates regarding how and when our ancestors left Africa, how many waves of dispersal there were and what geographical routes were taken. We explore the validity of each, using current genetic literature coupled with some of the key archeological findings. PMID:27127403

  19. Linking brains and brawn: exercise and the evolution of human neurobiology.

    PubMed

    Raichlen, David A; Polk, John D

    2013-01-07

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.

  20. Inputs in the Production of Early Childhood Human Capital: Evidence from Head Start. NBER Working Paper No. 20639

    ERIC Educational Resources Information Center

    Walters, Christopher

    2014-01-01

    Studies of small-scale "model" early-childhood programs show that high-quality preschool can have transformative effects on human capital and economic outcomes. Evidence on the Head Start program is more mixed. Inputs and practices vary widely across Head Start centers, however, and little is known about variation in effectiveness within…

  1. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    PubMed Central

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  2. Application of Carnegie stages of development to unify human and baboon ultrasound findings early in pregnancy.

    PubMed

    Santolaya-Forgas, Joaquin; De Leon-Luis, Juan; Friel, Lara A; Wolf, Roman

    2007-09-01

    The objective of this study was to determine if very early ultrasonographic measurements obtained from human and baboon are comparable. For this purpose, the gestational, amniotic and yolk sacs, embryonic crown rump length (CRL) and heart rate were measured ultrasonographically between 35 and 47 days from the mean day of a three-day mating period in baboons (n=18) and between 42 to 58 days from fertilization as calculated from the CRL measurements in human pregnancies (n=82). Ultrasonographic measurements from both species were then plotted in the same graph using Carnegie stages of embryonic development as the independent variable to allow for visual comparisons. Mean gestational age at ultrasonographic studies was significantly different for humans and baboons (50.4 vs. 41 days, respectively; p>0.01). Significant correlations (p>0.01) were noted between ultrasonographic measurements and Carnegie stages of development in both humans and baboons. Only the gestational and the yolk sacs were significantly smaller in baboons than in humans (p>0.05). The findings that embryonic CRL, extra-embryonic space and heart rate are very similar between the 17th and 23rd Carnegie developmental stages make the baboon a promising surrogate of human pregnancy for investigations using celocentesis.

  3. Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve

    PubMed Central

    Dutta, Sara; Mincholé, Ana; Zacur, Ernesto; Quinn, T. Alexander; Taggart, Peter; Rodriguez, Blanca

    2016-01-01

    Aims Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolarization reserve remain unclear. The goal of this paper is to unravel multiscale mechanisms underlying the modulation of arrhythmic risk by potassium current (IKr) block in human ventricles with acute regional ischemia. Methods and results A human ventricular biophysically-detailed model, with acute regional ischemia is constructed by integrating experimental knowledge on the electrophysiological ionic alterations caused by coronary occlusion. Arrhythmic risk is evaluated by determining the vulnerable window (VW) for reentry following ectopy at the ischemic border zone. Macro-reentry around the ischemic region is the main reentrant mechanism in the ischemic human ventricle with increased repolarization reserve due to the ATP-sensitive potassium current (IK(ATP)) activation. Prolongation of refractoriness by 4% caused by 30% IKr reduction counteracts the establishment of macro-reentry and reduces the VW for reentry (by 23.5%). However, a further decrease in repolarization reserve (50% IKr reduction) is less anti-arrhythmic despite further prolongation of refractoriness. This is due to the establishment of transmural reentry enabled by electrotonically-triggered EADs in the ischemic border zone. EADs are produced by L-type calcium current (ICaL) reactivation due to prolonged low amplitude electrotonic current injected during the repolarization phase. Conclusions Electrotonically-triggered EADs are identified as a potential mechanism facilitating intramural reentry in a regionally-ischemic human ventricles model with reduced repolarization reserve. PMID:26850675

  4. Re-evaluating the Glacial Vegetation of the Southern Levant and Early Signs of Human Impact on the Environment

    NASA Astrophysics Data System (ADS)

    Miebach, A.; Chen, C.; Litt, T.

    2017-12-01

    Assessing paleoenvironmental conditions is crucial to understand the history of modern humans. The southern Levant functioned as a corridor for human migration processes such as the colonization of Europe and the spread of agriculture. Despite its important role in human history, the Levantine paleoenvironment is still insufficiently investigated. In particular, current reconstructions of the paleovegetation are grounded on poor data bases. Here, we revise former hypotheses about the paleovegetation of the southern Levant during the last glacial based on new palynological results from the Sea of Galilee and the Dead Sea. We further evaluate early signs of anthropogenic influences in the Dead Sea catchment by combining evidence of pollen, micro-charcoal, and spores. The palynological results suggest that drought-adapted herbs, dwarf shrubs, and grasses prevailed in the southern Levant during the last glacial. In contrast to the Holocene, there was no belt of continuous and dense Mediterranean vegetation surrounding the Sea of Galilee during MIS 2. Mediterranean elements such as deciduous oaks only occurred in limited amounts and were probably patchily distributed in the whole study area. The vegetation and moisture gradient was not as strong as today. Since the Lateglacial, the Dead Sea region witnessed several rapid environmental changes. Phases with considerably reduced woodland density, increased fire activity, and enhanced catchment erosion occurred. Although climatic triggers were possible, there is a strong indication of anthropogenic influences due to overall increasing human activities in the region. The study gains new insights into environmental responses of the southern Levant to climate variations in the past. It also contributes towards our understanding of human-environmental interactions during the early Holocene.

  5. Network analysis of the hominin origin of Herpes Simplex virus 2 from fossil data

    PubMed Central

    Underdown, Simon J.; Kumar, Krishna

    2017-01-01

    Abstract Herpes simplex virus 2 (HSV2) is a human herpesvirus found worldwide that causes genital lesions and more rarely causes encephalitis. This pathogen is most common in Africa, and particularly in central and east Africa, an area of particular significance for the evolution of modern humans. Unlike HSV1, HSV2 has not simply co-speciated with humans from their last common ancestor with primates. HSV2 jumped the species barrier between 1.4 and 3 MYA, most likely through intermediate but unknown hominin species. In this article, we use probability-based network analysis to determine the most probable transmission path between intermediate hosts of HSV2, from the ancestors of chimpanzees to the ancestors of modern humans, using paleo-environmental data on the distribution of African tropical rainforest over the last 3 million years and data on the age and distribution of fossil species of hominin present in Africa between 1.4 and 3 MYA. Our model identifies Paranthropus boisei as the most likely intermediate host of HSV2, while Homo habilis may also have played a role in the initial transmission of HSV2 from the ancestors of chimpanzees to P.boisei. PMID:28979799

  6. Network analysis of the hominin origin of Herpes Simplex virus 2 from fossil data.

    PubMed

    Underdown, Simon J; Kumar, Krishna; Houldcroft, Charlotte

    2017-07-01

    Herpes simplex virus 2 (HSV2) is a human herpesvirus found worldwide that causes genital lesions and more rarely causes encephalitis. This pathogen is most common in Africa, and particularly in central and east Africa, an area of particular significance for the evolution of modern humans. Unlike HSV1, HSV2 has not simply co-speciated with humans from their last common ancestor with primates. HSV2 jumped the species barrier between 1.4 and 3 MYA, most likely through intermediate but unknown hominin species. In this article, we use probability-based network analysis to determine the most probable transmission path between intermediate hosts of HSV2, from the ancestors of chimpanzees to the ancestors of modern humans, using paleo-environmental data on the distribution of African tropical rainforest over the last 3 million years and data on the age and distribution of fossil species of hominin present in Africa between 1.4 and 3 MYA. Our model identifies Paranthropus boisei as the most likely intermediate host of HSV2, while Homo habilis may also have played a role in the initial transmission of HSV2 from the ancestors of chimpanzees to P.boisei .

  7. Early Human Occupation on the Northeast Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Rhode, D.; Madsen, D.; Brantingham, P.; Perrault, C.

    2010-12-01

    The Tibetan Plateau presents great challenges for human occupation: low oxygen, high ultraviolet radiation, harsh seasonal climate, low overall biological productivity. How and when early humans were able to cope physiologically, genetically, and behaviorally with these extremes is important for understanding the history of human adaptive flexibility. Our investigations of prehistoric human settlement on the northeast Tibetan Plateau focus on (a) establishing well-dated evidence for occupation of altitudes >3000 m, (b) the environmental context of high altitude adaptation, and (c) relations of hunting and pastoralism to lower-altitude agrarian systems. We observe two major prehistoric settlement patterns in the Qinghai Lake area. The earliest, ~15,000-7500 yr old, consists of small isolated firehearths with sparse associated stone tools and wild mammal remains (1). Numerous hearths often occur in the same localities, indicating repeated short-duration occupations by small hunting parties. A second pattern, ~9000-4000 yr old, was established during the Holocene climatic optimum. These sites represent prolonged seasonal residential occupation, containing dark anthropogenic midden, hearth and pit constructions, abundant stone tools, occasional ceramics, and abundant diverse faunal remains (including medium-large mammals but lacking domestic sheep/yak)(2). These Plateau-margin base camps allowed greater intensity of use of the high Plateau. Residential occupation was strongly influenced by nearby lower-altitude farming communities; development of the socioeconomic landscape along the Yellow River likely played at least as great a role in Plateau occupation patterns as did Holocene environmental changes. Holocene vegetation changes in the NE Tibetan Plateau have been attributed to climate (3) or anthropogenic modification (4). Our results document changes in shrub/tree presence from ~12,000-4000 BP, similar to pollen records, that likely reflect climate rather than

  8. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting proterozoic paleobiology and biogeochemical processes in light of trait evolution.

    PubMed

    Blank, Carrine E

    2013-12-01

    Phylogenetic analyses were performed on concatenated data sets of 31 genes and 11,789 unambiguously alignable characters from 37 cyanobacterial and 35 chloroplast genomes. The plastid lineage emerged somewhat early in the cyanobacterial tree, at a time when Cyanobacteria were likely unicellular and restricted to freshwater ecosystems. Using relaxed molecular clocks and 22 age constraints spanning cyanobacterial and eukaryote nodes, the common ancestor to the photosynthetic eukaryotes was predicted to have also inhabited freshwater environments around the time that oxygen appeared in the atmosphere (2.0-2.3 Ga). Early diversifications within each of the three major plastid clades were also inferred to have occurred in freshwater environments, through the late Paleoproterozoic and into the middle Mesoproterozoic. The colonization of marine environments by photosynthetic eukaryotes may not have occurred until after the middle Mesoproterozoic (1.2-1.5 Ga). The evolutionary hypotheses proposed here predict that early photosynthetic eukaryotes may have never experienced the widespread anoxia or euxinia suggested to have characterized marine environments in the Paleoproterozoic to early Mesoproterozoic. It also proposes that earliest acritarchs (1.5-1.7 Ga) may have been produced by freshwater taxa. This study highlights how the early evolution of habitat preference in photosynthetic eukaryotes, along with Cyanobacteria, could have contributed to changing biogeochemical conditions on the early Earth. © 2013 Phycological Society of America.

  9. Shining evolutionary light on human sleep and sleep disorders

    PubMed Central

    Nunn, Charles L.; Samson, David R.; Krystal, Andrew D.

    2016-01-01

    Sleep is essential to cognitive function and health in humans, yet the ultimate reasons for sleep—i.e. ‘why’ sleep evolved—remain mysterious. We integrate findings from human sleep studies, the ethnographic record, and the ecology and evolution of mammalian sleep to better understand sleep along the human lineage and in the modern world. Compared to other primates, sleep in great apes has undergone substantial evolutionary change, with all great apes building a sleeping platform or ‘nest’. Further evolutionary change characterizes human sleep, with humans having the shortest sleep duration, yet the highest proportion of rapid eye movement sleep among primates. These changes likely reflect that our ancestors experienced fitness benefits from being active for a greater portion of the 24-h cycle than other primates, potentially related to advantages arising from learning, socializing and defending against predators and hostile conspecifics. Perspectives from evolutionary medicine have implications for understanding sleep disorders; we consider these perspectives in the context of insomnia, narcolepsy, seasonal affective disorder, circadian rhythm disorders and sleep apnea. We also identify how human sleep today differs from sleep through most of human evolution, and the implications of these changes for global health and health disparities. More generally, our review highlights the importance of phylogenetic comparisons in understanding human health, including well-known links between sleep, cognitive performance and health in humans. PMID:27470330

  10. The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons

    PubMed Central

    Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.

    2016-01-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095

  11. [Evaluation on stability of internal controls in human cardiac muscle by real-time RT-PCR during early postmortem interval].

    PubMed

    Zhang, Ping; Ma, Kai-Jun; Zhang, Heng; Wang, Hui-Jun; Shen, Yi-Wen; Chen, Long

    2012-04-01

    To explore the stability of internal controls in human cardiac muscle by real-time RT-PCR during early postmortem interval (PMI) in order to find the most stable marker. Ten individuals with similar environmental conditions (the average store temperature: 25 degrees C) and different PMI ranging from 4.3 to 22.3 h were selected. Total RNA was extracted from each sample and six commonly internal controls were used including beta-actin, GAPDH, B2M, U6, 18S rRNA and HSA-miR-1, and the expression was detected in cardiac muscle by real-time RT-PCR. The expression stability of internal controls was evaluated using genormPLUS software during early PMI. The internal control with the most stability was selected. The relationship between the most stable marker and its expression level affected by some other parameters such as age, gender and cause of death was also analyzed. The U6 showed the most stable expression during early PMI in cardiac muscle, and its expression level was not affected by those parameters including age, gender and cause of death (P > 0.05). U6 may be a valuable internal control for the study of relationship between PMI determination and degradation of nucleic acid in human cardiac muscle by real-time RT-PCR.

  12. Early versus Delayed Human Milk Fortification in Very Low Birth Weight Infants-A Randomized Controlled Trial.

    PubMed

    Shah, Sanket D; Dereddy, Narendra; Jones, Tamekia L; Dhanireddy, Ramasubbareddy; Talati, Ajay J

    2016-07-01

    To compare the effect of initiating human milk fortification at 2 different feeding volumes on feeding intolerance and the time to reach full feeding volume. Very low birth weight infants (n = 100) were prospectively randomized to early fortification (EF) (beginning at a feeding volume of 20 mL/kg/d) or delayed fortification (at a feeding volume of 100 mL/kg/d). We employed a standardized feeding protocol and parenteral nutrition guidelines for the nutritional management of all study infants. The median days to reach full feeding volumes were equivalent in the 2 groups (20 vs 20, P = .45). No significant difference was observed in the total number of episodes of feeding intolerance (58 vs 57). Two cases of necrotizing enterocolitis (Bell stage ≥2) and deaths occurred in each group. Median daily protein intake (g/kg/d) was higher in EF group in week 1 (3.3 [3.2, 3.5] vs 3.1 [2.9, 3.3], P < .001), week 2 (3.6 [3.5, 3.8] vs 3.2 [2.9, 3.4], P < .001), and week 3 (3.7 [3.4, 3.9] vs 3.5 [2.8, 3.8], P = .006). Cumulative protein intake (g/kg) in the first 4 weeks of life was higher in EF group (98.6 [93.8, 104] vs 89.6 [84.2, 96.4], P < .001). Very early human milk fortification may improve early protein intake in very low birth weight infants without increasing frequencies of adverse events. ClinicalTrials.gov: NCT01988792. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Reconstruction and evolutionary history of eutherian chromosomes

    PubMed Central

    Kim, Jaebum; Auvil, Loretta; Capitanu, Boris; Larkin, Denis M.; Ma, Jian; Lewin, Harris A.

    2017-01-01

    Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over ∼105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first ∼60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases. PMID:28630326

  14. Fire, Lava Flows, and Human Evolution

    NASA Astrophysics Data System (ADS)

    Medler, M. J.

    2015-12-01

    Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.

  15. Tolerance to early human milk feeding is not compromised by indomethacin in preterm infants with persistent ductus arteriosus.

    PubMed

    Bellander, M; Ley, D; Polberger, S; Hellström-Westas, L

    2003-09-01

    Early human milk feeding is beneficial for gut and brain development. Persistent ductus arteriosus (PDA) and indomethacin may compromise enteral function in preterm infants. For many years enteral milk feedings have continued in preterm infants receiving indomethacin for PDA. The aim of this study was to investigate whether this strategy is efficient in terms of risks and tolerance to early enteral feeding. This retrospective study included 64 inborn infants of <29 wk gestational age (GA), 32 infants who received indomethacin for symptomatic PDA (case infants) and 32 matched controls. Case infants had a mean (SD) GA of 26.3 wk (1.3) and body weight 839 g (203) versus controls GA 26.4 wk (1.2) and body weight 896 g (213) (p = 0.82 and 0.27, respectively). Case infants had higher respiratory morbidity; 90.6% versus 50% of controls needed mechanical ventilation (p = 0.000). Case infants received human milk from a median (range) age of 4.0 h (1.5-27.5), and controls from 5.3 h (2.0-38.0) (p = 0.092). The first dose of indomethacin was given at a mean age of 1.7 d (1.0). There were no differences between the two groups in feeding volumes or gastric residuals on days 1 to 7. Mean (SD) feeding volume on day 7 was 64 ml/kg (31) in case infants and 76 ml/kg (30) in controls (p = 0.23). Four infants developed necrotizing enterocolitis: two case infants and two controls (p = 1.00). Early enteral feeding with human milk, starting within the first hours of life, seems to be as well tolerated in preterm infants treated with indomethacin for PDA as in their matched controls.

  16. Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm.

    PubMed

    Chen, B; Teng, Jiawen; Liu, Hongwei; Pan, X; Zhou, Y; Huang, Shu; Lai, Mowen; Bian, Guohui; Mao, Bin; Sun, Wencui; Zhou, Qiongxiu; Yang, Shengyong; Nakahata, Tatsutoshi; Ma, Feng

    2017-08-01

    RUNX1 is absolutely required for definitive hematopoiesis, but the function of RUNX1b/c, two isoforms of human RUNX1, is unclear. We established inducible RUNX1b/c-overexpressing human embryonic stem cell (hESC) lines, in which RUNX1b/c overexpression prevented the emergence of CD34+ cells from early stage, thereby drastically reducing the production of hematopoietic stem/progenitor cells. Simultaneously, the expression of hematopoiesis-related factors was downregulated. However, such blockage effect disappeared from day 6 in hESC/AGM-S3 cell co-cultures, proving that the blockage occurred before the generation of hemogenic endothelial cells. This blockage was partially rescued by RepSox, an inhibitor of the transforming growth factor (TGF)-β signaling pathway, indicating a close relationship between RUNX1b/c and TGF-β pathway. Our results suggest a unique inhibitory function of RUNX1b/c in the development of early hematopoiesis and may aid further understanding of its biological function in normal and diseased models. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  17. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josse, Rozenn; Dumont, Julie; Fautrel, Alain

    Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cellmore » cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered

  18. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  19. Natural History of Human Respiratory Syncytial Virus Inferred from Phylogenetic Analysis of the Attachment (G) Glycoprotein with a 60-Nucleotide Duplication

    PubMed Central

    Trento, Alfonsina; Viegas, Mariana; Galiano, Mónica; Videla, Cristina; Carballal, Guadalupe; Mistchenko, Alicia S.; Melero, José A.

    2006-01-01

    A total of 47 clinical samples were identified during an active surveillance program of respiratory infections in Buenos Aires (BA) (1999 to 2004) that contained sequences of human respiratory syncytial virus (HRSV) with a 60-nucleotide duplication in the attachment (G) protein gene. This duplication was analogous to that previously described for other three viruses also isolated in Buenos Aires in 1999 (A. Trento et al., J. Gen. Virol. 84:3115-3120, 2003). Phylogenetic analysis indicated that BA sequences with that duplication shared a common ancestor (dated about 1998) with other HRSV G sequences reported worldwide after 1999. The duplicated nucleotide sequence was an exact copy of the preceding 60 nucleotides in early viruses, but both copies of the duplicated segment accumulated nucleotide substitutions in more recent viruses at a rate apparently higher than in other regions of the G protein gene. The evolution of the viruses with the duplicated G segment apparently followed the overall evolutionary pattern previously described for HRSV, and this genotype has replaced other prevailing antigenic group B genotypes in Buenos Aires and other places. Thus, the duplicated segment represents a natural tag that can be used to track the dissemination and evolution of HRSV in an unprecedented setting. We have taken advantage of this situation to reexamine the molecular epidemiology of HRSV and to explore the natural history of this important human pathogen. PMID:16378999

  20. Immune thrombocytopenic purpura might be an early hematologic manifestation of undiagnosed human immunodeficiency virus infection.

    PubMed

    Lai, Shih-Wei; Lin, Hsien-Feng; Lin, Cheng-Li; Liao, Kuan-Fu

    2017-03-01

    Little research focuses on the association between immune thrombocytopenic purpura and human immunodeficiency virus infection in Taiwan. This study investigated whether immune thrombocytopenic purpura might be an early hematologic manifestation of undiagnosed human immunodeficiency virus infection in Taiwan. We conducted a retrospective population-based cohort study using data of individuals enrolled in Taiwan National Health Insurance Program. There were 5472 subjects aged 1-84 years with a new diagnosis of immune thrombocytopenic purpura as the purpura group since 1998-2010 and 21,887 sex-matched and age-matched, randomly selected subjects without immune thrombocytopenic purpura as the non-purpura group. The incidence of human immunodeficiency virus infection at the end of 2011 was measured in both groups. We used the multivariable Cox proportional hazards regression model to measure the hazard ratio and 95 % confidence interval (CI) for the association between immune thrombocytopenic purpura and human immunodeficiency virus infection. The overall incidence of human immunodeficiency virus infection was 6.47-fold higher in the purpura group than that in the non-purpura group (3.78 vs. 0.58 per 10,000 person-years, 95 % CI 5.83-7.18). After controlling for potential confounding factors, the adjusted HR of human immunodeficiency virus infection was 6.3 (95 % CI 2.58-15.4) for the purpura group, as compared with the non-purpura group. We conclude that individuals with immune thrombocytopenic purpura are 6.47-fold more likely to have human immunodeficiency virus infection than those without immune thrombocytopenic purpura. We suggest not all patients, but only those who have risk factors for human immunodeficiency virus infection should receive testing for undiagnosed human immunodeficiency virus infection when they develop immune thrombocytopenic purpura.

  1. Eye coding mechanisms in early human face event-related potentials.

    PubMed

    Rousselet, Guillaume A; Ince, Robin A A; van Rijsbergen, Nicola J; Schyns, Philippe G

    2014-11-10

    In humans, the N170 event-related potential (ERP) is an integrated measure of cortical activity that varies in amplitude and latency across trials. Researchers often conjecture that N170 variations reflect cortical mechanisms of stimulus coding for recognition. Here, to settle the conjecture and understand cortical information processing mechanisms, we unraveled the coding function of N170 latency and amplitude variations in possibly the simplest socially important natural visual task: face detection. On each experimental trial, 16 observers saw face and noise pictures sparsely sampled with small Gaussian apertures. Reverse-correlation methods coupled with information theory revealed that the presence of the eye specifically covaries with behavioral and neural measurements: the left eye strongly modulates reaction times and lateral electrodes represent mainly the presence of the contralateral eye during the rising part of the N170, with maximum sensitivity before the N170 peak. Furthermore, single-trial N170 latencies code more about the presence of the contralateral eye than N170 amplitudes and early latencies are associated with faster reaction times. The absence of these effects in control images that did not contain a face refutes alternative accounts based on retinal biases or allocation of attention to the eye location on the face. We conclude that the rising part of the N170, roughly 120-170 ms post-stimulus, is a critical time-window in human face processing mechanisms, reflecting predominantly, in a face detection task, the encoding of a single feature: the contralateral eye. © 2014 ARVO.

  2. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life.

    PubMed

    Arnoldt, Hinrich; Strogatz, Steven H; Timme, Marc

    2015-01-01

    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.

  3. Early serum human chorionic gonadotropin (hCG) trends after medication abortion.

    PubMed

    Pocius, Katherine D; Maurer, Rie; Fortin, Jennifer; Goldberg, Alisa B; Bartz, Deborah

    2015-06-01

    Despite increased reliance on human chorionic gonadotropin (hCG) for early pregnancy monitoring, there is limited information about hCG trends soon after medication abortion. The purpose of this study was to determine if there is a predictable decline in serum hCG values shortly after medication abortion. This is a retrospective study of women with early intrauterine pregnancies who underwent medication abortion with mifepristone and misoprostol and had a serum hCG level on Day 1 (day of mifepristone) and a repeat value on Day 2 to 6. The percent hCG decline was calculated from baseline to repeat measure, with repeat values from the same patient accounted for through repeated measure analysis of variance. Eighty-eight women with a mean gestational age of 5.5 weeks and median baseline hCG of 5220 IU met study criteria over a 3-year period. The mean decline (±SD) in hCG from the Day 1 baseline value was 56.9%±29.5% on Day 3, 73.5%±38.6% on Day 4, 86.1%±8.8% on Day 5, and 92.9%±3.4% on Day 6. Eighty-two women (93% of the cohort) had a complete abortion without further intervention. The least square means hCG decline among these women was 57.6% [95% confidence interval (CI): 50.3-64.9%] on Day 3, 78.9% (95% CI: 75.0-82.8%) on Day 4 and 86.2% (95% CI: 81.3-91.1%) on Day 5. There is a rapid decline in serum hCG within the first few days after early medication abortion. Further research is needed to delineate how soon after medication abortion this decline may be specific enough to confirm abortion completion. This study provides the largest cohort of patients followed with serial hCG values in the first few days after medication abortion. Our findings demonstrate the trend in hCG decline in this population, which may be predictable by Day 5. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Human radiation studies: Remembering the early years. Oral history of Julie Langham Grilly, February 3, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    Julie Langham Grilly was interviewed by representatives of the US DOE Office of Human Radiation Experiments (OHRE) being the widow of Dr. Wright Langham, an investigator of principal interest of the committee. Her extensive experience with research at LANL was also of interest to the committee. Following a brief biographical sketch, Ms. Grilly relates her early postwar experience and her knowledge of Wright Langham`s involvement in animal research at Los Alamos, radiolanthanum tests on monkeys, Eniwetok tissue examinations, research on tritium uptake in humans, plutonium injections, tritium injections, EDTA, and etc. In addition to illuminating her former husband as amore » researcher and as an individual, she also relates her remembrances of Louis Hempelman, Enrico Fermi, Oppenheimer, Edward Teller, and many others.« less

  5. KDR (VEGFR2) identifies a conserved human and murine hepatic progenitor and instructs early liver development

    PubMed Central

    Goldman, Orit; Han, Songyan; Sourrisseau, Marion; Dziedzic, Noelle; Hamou, Wissam; Corneo, Barbara; D’Souza, Sunita; Sato, Thomas; Kotton, Darrell N.; Bissig, Karl-Dimiter; Kalir, Tamara; Jacobs, Adam; Evans, Todd; Evans, Matthew J.; Gouon-Evans, Valerie

    2013-01-01

    SUMMARY Understanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like (hepatic) cells from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR, but when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells, and to support non-cell-autonomously the functional maturation of co-cultured KDR- hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts and subsequently adult hepatocytes and cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors, and a functional receptor instructing early liver development. PMID:23746980

  6. Endangered Species Hold Clues to Human Evolution

    PubMed Central

    Bejerano, Gill; Salama, Sofie R.; Haussler, David

    2010-01-01

    We report that 18 conserved, and by extension functional, elements in the human genome are the result of retroposon insertions that are evolving under purifying selection in mammals. We show evidence that 1 of the 18 elements regulates the expression of ASXL3 during development by encoding an alternatively spliced exon that causes nonsense-mediated decay of the transcript. The retroposon that gave rise to these functional elements was quickly inactivated in the mammalian ancestor, and all traces of it have been lost due to neutral decay. However, the tuatara has maintained a near-ancestral version of this retroposon in its extant genome, which allows us to connect the 18 human elements to the evolutionary events that created them. We propose that conservation efforts over more than 100 years may not have only prevented the tuatara from going extinct but could have preserved our ability to understand the evolutionary history of functional elements in the human genome. Through simulations, we argue that species with historically low population sizes are more likely to harbor ancient mobile elements for long periods of time and in near-ancestral states, making these species indispensable in understanding the evolutionary origin of functional elements in the human genome. PMID:20332163

  7. Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements

    PubMed Central

    Wallmeier, Ludwig; Wiegrebe, Lutz

    2014-01-01

    Many blind people rely on echoes from self-produced sounds to assess their environment. It has been shown that human subjects can use echolocation for directional localization and orientation in a room, but echo-acoustic distance perception - e.g. to determine one's position in a room - has received little scientific attention, and systematic studies on the influence of additional early reflections and exploratory head movements are lacking. This study investigates echo-acoustic distance discrimination in virtual echo-acoustic space, using the impulse responses of a real corridor. Six blindfolded sighted subjects and a blind echolocation expert had to discriminate between two positions in the virtual corridor, which differed by their distance to the front wall, but not to the lateral walls. To solve this task, participants evaluated echoes that were generated in real time from self-produced vocalizations. Across experimental conditions, we systematically varied the restrictions for head rotations, the subjects' orientation in virtual space and the reference position. Three key results were observed. First, all participants successfully solved the task with discrimination thresholds below 1 m for all reference distances (0.75–4 m). Performance was best for the smallest reference distance of 0.75 m, with thresholds around 20 cm. Second, distance discrimination performance was relatively robust against additional early reflections, compared to other echolocation tasks like directional localization. Third, free head rotations during echolocation can improve distance discrimination performance in complex environmental settings. However, head movements do not necessarily provide a benefit over static echolocation from an optimal single orientation. These results show that accurate distance discrimination through echolocation is possible over a wide range of reference distances and environmental conditions. This is an important functional benefit of human echolocation

  8. The influence of early embryo traits on human embryonic stem cell derivation efficiency.

    PubMed

    O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra

    2011-05-01

    Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.

  9. Treatment with human immunoglobulin G improves the early disease course in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Zschüntzsch, Jana; Zhang, Yaxin; Klinker, Florian; Makosch, Gregor; Klinge, Lars; Malzahn, Dörthe; Brinkmeier, Heinrich; Liebetanz, David; Schmidt, Jens

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a severe hereditary myopathy. Standard treatment by glucocorticosteroids is limited because of numerous side effects. The aim of this study was to test immunomodulation by human immunoglobulin G (IgG) as treatment in the experimental mouse model (mdx) of DMD. 2 g/kg human IgG compared to human albumin was injected intraperitoneally in mdx mice at the age of 3 and 7 weeks. Advanced voluntary wheel running parameters were recorded continuously. At the age of 11 weeks, animals were killed so that blood, diaphragm, and lower limb muscles could be removed for quantitative PCR, histological analysis and ex vivo muscle contraction tests. IgG compared to albumin significantly improved the voluntary running performance and reduced muscle fatigability in an ex vivo muscle contraction test. Upon IgG treatment, serum creatine kinase values were diminished and mRNA expression levels of relevant inflammatory markers were reduced in the diaphragm and limb muscles. Macrophage infiltration and myopathic damage were significantly ameliorated in the quadriceps muscle. Collectively, this study demonstrates that, in the early disease course of mdx mice, human IgG improves the running performance and diminishes myopathic damage and inflammation in the muscle. Therefore, IgG may be a promising approach for treatment of DMD. Two monthly intraperitoneal injections of human immunoglobulin G (IgG) improved the early 11-week disease phase of mdx mice. Voluntary running was improved and serum levels of creatine kinase were diminished. In the skeletal muscle, myopathic damage was ameliorated and key inflammatory markers such as mRNA expression of SPP1 and infiltration by macrophages were reduced. The study suggests that IgG could be explored as a potential treatment option for Duchenne muscular dystrophy and that pre-clinical long-term studies should be helpful. © 2015 International Society for Neurochemistry.

  10. Heatwave Early Warning Systems and Adaptation Advice to Reduce Human Health Consequences of Heatwaves

    PubMed Central

    Lowe, Dianne; Ebi, Kristie L.; Forsberg, Bertil

    2011-01-01

    Introduction: With climate change, there has been an increase in the frequency, intensity and duration of heatwave events. In response to the devastating mortality and morbidity of recent heatwave events, many countries have introduced heatwave early warning systems (HEWS). HEWS are designed to reduce the avoidable human health consequences of heatwaves through timely notification of prevention measures to vulnerable populations. Objective: To identify the key characteristics of HEWS in European countries to help inform modification of current, and development of, new systems and plans. Methods: We searched the internet to identify HEWS policy or government documents for 33 European countries and requested information from relevant organizations. We translated the HEWS documents and extracted details on the trigger indicators, thresholds for action, notification strategies, message intermediaries, communication and dissemination strategies, prevention strategies recommended and specified target audiences. Findings and Conclusions: Twelve European countries have HEWS. Although there are many similarities among the HEWS, there also are differences in key characteristics that could inform improvements in heatwave early warning plans. PMID:22408593

  11. Regulation of early human growth: impact on long-term health.

    PubMed

    Koletzko, Berthold; Chourdakis, Michael; Grote, Veit; Hellmuth, Christian; Prell, Christine; Rzehak, Peter; Uhl, Olaf; Weber, Martina

    2014-01-01

    Growth and development are central characteristics of childhood. Deviations from normal growth can indicate serious health challenges. The adverse impact of early growth faltering and malnutrition on later health has long been known. In contrast, the impact of rapid early weight and body fat gain on programming of later disease risk have only recently received increased attention. Numerous observational studies related diet in early childhood and rapid early growth to the risk of later obesity and associated disorders. Causality was confirmed in a large, double-blind randomised trial testing the 'Early Protein Hypothesis'. In this trial we found that attenuation of protein supply in infancy normalized early growth and markedly reduced obesity prevalence in early school age. These results indicate the need to describe and analyse growth patterns and their regulation through diet in more detail and to characterize the underlying metabolic and epigenetic mechanisms, given the potential major relevance for public health and policy. Better understanding of growth patterns and their regulation could have major benefits for the promotion of public health, consumer-orientated nutrition recommendations, and the development of improved food products for specific target populations. © 2014 S. Karger AG, Basel.

  12. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations.

    PubMed

    Mallick, Swapan; Li, Heng; Lipson, Mark; Mathieson, Iain; Gymrek, Melissa; Racimo, Fernando; Zhao, Mengyao; Chennagiri, Niru; Nordenfelt, Susanne; Tandon, Arti; Skoglund, Pontus; Lazaridis, Iosif; Sankararaman, Sriram; Fu, Qiaomei; Rohland, Nadin; Renaud, Gabriel; Erlich, Yaniv; Willems, Thomas; Gallo, Carla; Spence, Jeffrey P; Song, Yun S; Poletti, Giovanni; Balloux, Francois; van Driem, George; de Knijff, Peter; Romero, Irene Gallego; Jha, Aashish R; Behar, Doron M; Bravi, Claudio M; Capelli, Cristian; Hervig, Tor; Moreno-Estrada, Andres; Posukh, Olga L; Balanovska, Elena; Balanovsky, Oleg; Karachanak-Yankova, Sena; Sahakyan, Hovhannes; Toncheva, Draga; Yepiskoposyan, Levon; Tyler-Smith, Chris; Xue, Yali; Abdullah, M Syafiq; Ruiz-Linares, Andres; Beall, Cynthia M; Di Rienzo, Anna; Jeong, Choongwon; Starikovskaya, Elena B; Metspalu, Ene; Parik, Jüri; Villems, Richard; Henn, Brenna M; Hodoglugil, Ugur; Mahley, Robert; Sajantila, Antti; Stamatoyannopoulos, George; Wee, Joseph T S; Khusainova, Rita; Khusnutdinova, Elza; Litvinov, Sergey; Ayodo, George; Comas, David; Hammer, Michael F; Kivisild, Toomas; Klitz, William; Winkler, Cheryl A; Labuda, Damian; Bamshad, Michael; Jorde, Lynn B; Tishkoff, Sarah A; Watkins, W Scott; Metspalu, Mait; Dryomov, Stanislav; Sukernik, Rem; Singh, Lalji; Thangaraj, Kumarasamy; Pääbo, Svante; Kelso, Janet; Patterson, Nick; Reich, David

    2016-10-13

    Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

  13. International Human Rights to Early Intervention for Infants and Young Children with Disabilities: Tools for Global Advocacy

    PubMed Central

    Brown, Sharan E.; Guralnick, Michael J.

    2015-01-01

    With almost universal ratification of the Convention on the Rights of the Child and the growing number of States Parties that have signed or ratified the Convention on the Rights of Persons with Disabilities, the majority of countries in the world have now committed to implementing the human rights articulated in these treaties. In this article we first provide an overview of both Conventions, highlight the articles in the treaties that are relevant to early intervention for infants and young children with disabilities, and describe the specific duties required of States Parties to ensure compliance including international cooperation. Second, a series of early intervention action principles are put forward that can help States Parties translate the underlying values of the Conventions into practice. PMID:26213446

  14. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis

    PubMed Central

    Bos, Kirsten I.; Harkins, Kelly M.; Herbig, Alexander; Coscolla, Mireia; Weber, Nico; Comas, Iñaki; Forrest, Stephen A.; Bryant, Josephine M.; Harris, Simon R.; Schuenemann, Verena J.; Campbell, Tessa J.; Majander, Kerrtu; Wilbur, Alicia K.; Guichon, Ricardo A.; Wolfe Steadman, Dawnie L.; Cook, Della Collins; Niemann, Stefan; Behr, Marcel A.; Zumarraga, Martin; Bastida, Ricardo; Huson, Daniel; Nieselt, Kay; Young, Douglas; Parkhill, Julian; Buikstra, Jane E.; Gagneux, Sebastien; Stone, Anne C.; Krause, Johannes

    2015-01-01

    Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact1. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World2. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch3, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean. PMID:25141181

  15. Efficient isolation of human metapneumovirus using MNT-1, a human malignant melanoma cell line with early and distinct cytopathic effects.

    PubMed

    Sato, Ko; Watanabe, Oshi; Ohmiya, Suguru; Chiba, Fumiko; Suzuki, Akira; Okamoto, Michiko; Younghuang, Jiang; Hata, Akihiro; Nonaka, Hiroyuki; Kitaoka, Setsuko; Nagai, Yukio; Kawamura, Kazuhisa; Hayashi, Masahiro; Kumaki, Satoru; Suzuki, Tamio; Kawakami, Kazuyoshi; Nishimura, Hidekazu

    2017-11-01

    Isolation of human metapneumovirus (HMPV) from clinical specimens is currently inefficient because of the lack of a cell culture system in which a distinct cytopathic effect (CPE) occurs. The cell lines LLC-MK2, Vero and Vero E6 are used for isolation of HMPV; however, the CPE in these cell lines is subtle and usually requires a long observation period and sometimes blind passages. Thus, a cell line in which an early and distinct CPE occurs following HMPV inoculation is highly desired by clinical virology laboratories. In this study, it was demonstrated that, in the human malignant melanoma cell line MNT-1, obvious syncytium formation occurs shortly after inoculation with HMPV-positive clinical specimens. In addition, the growth and efficiency of isolation of HMPV were greater using MNT-1 than using any other conventional cell line. Addition of this cell line to our routine viral isolation system for clinical specimens markedly enhanced isolation frequency, allowing isolation-based surveillance. MNT-1 has the potential to facilitate clinical and epidemiological studies of HMPV. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  16. IL-2 Enhances Gut Homing Potential of Human Naive Regulatory T Cells Early in Life.

    PubMed

    Hsu, Peter S; Lai, Catherine L; Hu, Mingjing; Santner-Nanan, Brigitte; Dahlstrom, Jane E; Lee, Cheng Hiang; Ajmal, Ayesha; Bullman, Amanda; Arbuckle, Susan; Al Saedi, Ahmed; Gacis, Lou; Nambiar, Reta; Williams, Andrew; Wong, Melanie; Campbell, Dianne E; Nanan, Ralph

    2018-06-15

    Recent evidence suggests early environmental factors are important for gut immune tolerance. Although the role of regulatory T (Treg) cells for gut immune homeostasis is well established, the development and tissue homing characteristics of Treg cells in children have not been studied in detail. In this article, we studied the development and homing characteristics of human peripheral blood Treg cell subsets and potential mechanisms inducing homing molecule expression in healthy children. We found contrasting patterns of circulating Treg cell gut and skin tropism, with abundant β7 integrin + Treg cells at birth and increasing cutaneous lymphocyte Ag (CLA + ) Treg cells later in life. β7 integrin + Treg cells were predominantly naive, suggesting acquisition of Treg cell gut tropism early in development. In vitro, IL-7 enhanced gut homing but reduced skin homing molecule expression in conventional T cells, whereas IL-2 induced a similar effect only in Treg cells. This effect was more pronounced in cord compared with adult blood. Our results suggest that early in life, naive Treg cells may be driven for gut tropism by their increased sensitivity to IL-2-induced β7 integrin upregulation, implicating a potential role of IL-2 in gut immune tolerance during this critical period of development. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. The evolution of laughter in great apes and humans

    PubMed Central

    Owren, Michael J; Zimmermann, Elke

    2010-01-01

    It has long been claimed that human emotional expressions, such as laughter, have evolved from nonhuman displays. The aim of the current study was to test this prediction by conducting acoustic and phylogenetic analyses based on the acoustics of tickle-induced vocalizations of orangutans, gorillas, chimpanzees, bonobos and humans. Results revealed both important similarities and differences among the various species’ vocalizations, with the phylogenetic tree reconstructed based on these acoustic data matching the well-established genetic relationships of great apes and humans. These outcomes provide evidence of a common phylogenetic origin of tickle-induced vocalizations in these taxa, which can therefore be termed “laughter” across all five species. Results are consistent with the claims of phylogenetic continuity of emotional expressions. Together with observations made on the use of laughter in great apes and humans, findings of this study further indicate that there were two main periods of selection-driven evolutionary change in laughter within the Hominidae, to a smaller degree, among the great apes and, most distinctively, after the separation of hominins from the last common ancestor with chimpanzees and bonobos. PMID:20585520

  18. [Early human transplants: 60th anniversary of the first successful kidney transplants].

    PubMed

    Gentili, Marc E

    2015-11-01

    First kidney transplant attempts begin with the 20th century: improving vascular sutures, understanding the phenomena of rejection or tolerance, then progress in HLA groups enable early success in the second half of the century. Definition of brain death, use of corticosteroids, radiotherapy and prime immunosuppressors promote the development of transplants. Discover of cyclosporine in the 1980s, and legislative developments augur a new era. Many advances are arising: use of stem cells from the donor, enhancement of Maastricht 3 donor or living donation. Finally organ transplantation remains an immense human adventure, but also scientific and ethic. Copyright © 2015 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  19. Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in newborn macaques

    PubMed Central

    Hessell, Ann J.; Jaworski, J. Pablo; Epson, Erin; Matsuda, Kenta; Pandey, Shilpi; Kahl, Christoph; Reed, Jason; Sutton, William F.; Hammond, Katherine B.; Cheever, Tracy A.; Barnette, Philip T.; Legasse, Alfred W.; Planer, Shannon; Stanton, Jeffrey J.; Pegu, Amarendra; Chen, Xuejun; Wang, Keyun; Siess, Don; Burke, David; Park, Byung S.; Axthelm, Michael K.; Lewis, Anne; Hirsch, Vanessa M.; Graham, Barney S.; Mascola, John R.; Sacha, Jonah B.; Haigwood, Nancy L.

    2016-01-01

    Prevention of mother to child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested anti-HIV-1 human neutralizing monoclonal antibodies (NmAb) as post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with SHIVSF162P3. On days 1, 4, 7, and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h following administration. Replicating virus was found in multiple tissues by day 1 in animals without treatment. All NmAb-treated macaques were free of virus in blood and tissues at 6 months post-exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged following CD8+ T cell depletion. These results suggest early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs. PMID:26998834

  20. Early-Middle Pleistocene environmental changes and human evolution in the Italian peninsula

    NASA Astrophysics Data System (ADS)

    Manzi, Giorgio; Magri, Donatella; Palombo, Maria Rita

    2011-06-01

    This paper is aimed to elucidate the ecological scenario in Italy in the Early to Middle Pleistocene, when species of the genus Homo are known to spread across Europe in two distinct waves: earlier than 1.2 Ma and at about 600 ka, respectively. This topic represents both (1) a fundamental aspect for a better understanding of the factors that allowed humans to colonize the middle latitudes of Eurasia, and (2) a reasonable frontier for current Quaternary palaeobiology, thanks to increasing knowledge of regional and local patterns. As for Italy, a combination of palaeobotanical and palaeontological data sets shows on the one hand a general complexity in both space and time, and on the other hand changes of considerable importance within and among the biological communities. These changes had a major importance during the worldwide change in the Earth climatic system known as "Middle Pleistocene Revolution", which according to our data culminates with crucial effects of the extreme conditions of MIS 16. Subsequently, during great part of the Middle Pleistocene, the peculiar features of the Italian territory may have favoured isolation and a local persistence of plant populations and possibly mammal taxa, humans included, as for instance suggested by the corrected chronology of the Ceprano calvarium.

  1. Revalidation of the genus Chiloguembelitria Hofker: Implications for the evolution of early Danian planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Arenillas, Ignacio; Arz, José A.; Gilabert, Vicente

    2017-10-01

    Guembelitria is the only planktonic foraminiferal genus whose survival from the mass extinction event of the Cretaceous/Paleogene (K/Pg) boundary has been clearly proven. The evolution of Guembelitria after the K/Pg boundary led to the appearance of two guembelitriid lineages in the early Danian: one biserial, represented by Woodringina and culminating in Chiloguembelina, and the other trochospiral, represented by Trochoguembelitria and culminating in Globoconusa. We have re-examined the genus Chiloguembelitria, another guembelitriid descended from Guembelitria and whose taxonomic validity had been questioned, it being considered a junior synonym of the latter. Nevertheless, Chiloguembelitria differs from Guembelitria mainly in the wall texture (pustulate to rugose vs. pore-mounded) and the position of the aperture (umbilical-extraumbilical to extraumbilical vs. umbilical). Chiloguembelitria shares its wall texture with Trochoguembelitria and some of the earliest specimens of Woodringina, suggesting that it played an important role in the evolution of early Danian guembelitriids, as it seems to be the most immediate ancestor of both trochospiral and biserial lineages. Morphological and morphostatistical analyses of Chiloguembelitria discriminate at least five species: Chg. danica, Chg. irregularis, and three new species: Chg. hofkeri, Chg. trilobata and Chg. biseriata.

  2. Primary cortical folding in the human newborn: an early marker of later functional development.

    PubMed

    Dubois, J; Benders, M; Borradori-Tolsa, C; Cachia, A; Lazeyras, F; Ha-Vinh Leuchter, R; Sizonenko, S V; Warfield, S K; Mangin, J F; Hüppi, P S

    2008-08-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long before the appearance of functional symptoms. So far, the precise mechanisms responsible for such alteration in the convolution pattern during intra-uterine or post-natal development are still poorly understood. Here we compared anatomical and functional brain development in vivo among 45 premature newborns who experienced different intra-uterine environments: 22 normal singletons, 12 twins and 11 newborns with intrauterine growth restriction (IUGR). Using magnetic resonance imaging (MRI) and dedicated post-processing tools, we investigated early disturbances in cortical formation at birth, over the developmental period critical for the emergence of convolutions (26-36 weeks of gestational age), and defined early 'endophenotypes' of sulcal development. We demonstrated that twins have a delayed but harmonious maturation, with reduced surface and sulcation index compared to singletons, whereas the gyrification of IUGR newborns is discordant to the normal developmental trajectory, with a more pronounced reduction of surface in relation to the sulcation index compared to normal newborns. Furthermore, we showed that these structural measurements of the brain at birth are predictors of infants' outcome at term equivalent age, for MRI-based cerebral volumes and neurobehavioural development evaluated with the assessment of preterm infant's behaviour (APIB).

  3. Role of Cardiac Myocytes Heart Fatty Acid Binding Protein Depletion (H-FABP) in Early Myocardial Infarction in Human Heart (Autopsy Study).

    PubMed

    Shabaiek, Amany; Ismael, Nour El-Hoda; Elsheikh, Samar; Amin, Hebat Allah

    2016-03-15

    Many immunohistochemical markers have been used in the postmortem detection of early myocardial infarction. In the present study we examined the role of Heart-type fatty acid binding protein (H-FABP), in the detection of early myocardial infarction. We obtained samples from 40 human autopsy hearts with/without histopathological signs of ischemia. All cases of definite and probable myocardial infarction showed a well-defined area of H-FABP depletion. All of the control cases showed strong H-FABP expression, except two markedly autolysed myocardial samples that showed affected antigenicity. Thus, we suggest H-FABP as being one of the valuable tools facing the problem of postmortem detection of early myocardial infarction/ischemia, but not in autolysis.

  4. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.

    PubMed

    Shaw, Greg L; Whitaker, Hayley; Corcoran, Marie; Dunning, Mark J; Luxton, Hayley; Kay, Jonathan; Massie, Charlie E; Miller, Jodi L; Lamb, Alastair D; Ross-Adams, Helen; Russell, Roslin; Nelson, Adam W; Eldridge, Matthew D; Lynch, Andrew G; Ramos-Montoya, Antonio; Mills, Ian G; Taylor, Angela E; Arlt, Wiebke; Shah, Nimish; Warren, Anne Y; Neal, David E

    2016-08-01

    The androgen receptor (AR) is the dominant growth factor in prostate cancer (PCa). Therefore, understanding how ARs regulate the human transcriptome is of paramount importance. The early effects of castration on human PCa have not previously been studied 27 patients medically castrated with degarelix 7 d before radical prostatectomy. We used mass spectrometry, immunohistochemistry, and gene expression array (validated by reverse transcription-polymerase chain reaction) to compare resected tumour with matched, controlled, untreated PCa tissue. All patients had levels of serum androgen, with reduced levels of intraprostatic androgen at prostatectomy. We observed differential expression of known androgen-regulated genes (TMPRSS2, KLK3, CAMKK2, FKBP5). We identified 749 genes downregulated and 908 genes upregulated following castration. AR regulation of α-methylacyl-CoA racemase expression and three other genes (FAM129A, RAB27A, and KIAA0101) was confirmed. Upregulation of oestrogen receptor 1 (ESR1) expression was observed in malignant epithelia and was associated with differential expression of ESR1-regulated genes and correlated with proliferation (Ki-67 expression). This first-in-man study defines the rapid gene expression changes taking place in prostate cancer (PCa) following castration. Expression levels of the genes that the androgen receptor regulates are predictive of treatment outcome. Upregulation of oestrogen receptor 1 is a mechanism by which PCa cells may survive despite castration. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  5. Measurement of the human esophageal cancer in an early stage with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Ishigaki, Mika; Taketani, Akinori; Andriana, Bibin B.; Ishihara, Ryu; Sato, Hidetoshi

    2014-02-01

    The esophageal cancer has a tendency to transfer to another part of the body and the surgical operation itself sometimes gives high risk in vital function because many delicate organs exist near the esophagus. So the esophageal cancer is a disease with a high mortality. So, in order to lead a higher survival rate five years after the cancer's treatment, the investigation of the diagnosis methods or techniques of the cancer in an early stage and support the therapy are required. In this study, we performed the ex vivo experiments to obtain the Raman spectra from normal and early-stage tumor (stage-0) human esophageal sample by using Raman spectroscopy. The Raman spectra are collected by the homemade Raman spectrometer with the wavelength of 785 nm and Raman probe with 600-um-diameter. The principal component analysis (PCA) is performed after collection of spectra to recognize which materials changed in normal part and cancerous pert. After that, the linear discriminant analysis (LDA) is performed to predict the tissue type. The result of PCA indicates that the tumor tissue is associated with a decrease in tryptophan concentration. Furthermore, we can predict the tissue type with 80% accuracy by LDA which model is made by tryptophan bands.

  6. Human Dose-Response Data for Francisella tularensis and a Dose- and Time-Dependent Mathematical Model of Early-Phase Fever Associated with Tularemia After Inhalation Exposure.

    PubMed

    McClellan, Gene; Coleman, Margaret; Crary, David; Thurman, Alec; Thran, Brandolyn

    2018-04-25

    Military health risk assessors, medical planners, operational planners, and defense system developers require knowledge of human responses to doses of biothreat agents to support force health protection and chemical, biological, radiological, nuclear (CBRN) defense missions. This article reviews extensive data from 118 human volunteers administered aerosols of the bacterial agent Francisella tularensis, strain Schu S4, which causes tularemia. The data set includes incidence of early-phase febrile illness following administration of well-characterized inhaled doses of F. tularensis. Supplemental data on human body temperature profiles over time available from de-identified case reports is also presented. A unified, logically consistent model of early-phase febrile illness is described as a lognormal dose-response function for febrile illness linked with a stochastic time profile of fever. Three parameters are estimated from the human data to describe the time profile: incubation period or onset time for fever; rise time of fever; and near-maximum body temperature. Inhaled dose-dependence and variability are characterized for each of the three parameters. These parameters enable a stochastic model for the response of an exposed population through incorporation of individual-by-individual variability by drawing random samples from the statistical distributions of these three parameters for each individual. This model provides risk assessors and medical decisionmakers reliable representations of the predicted health impacts of early-phase febrile illness for as long as one week after aerosol exposures of human populations to F. tularensis. © 2018 Society for Risk Analysis.

  7. Shining evolutionary light on human sleep and sleep disorders.

    PubMed

    Nunn, Charles L; Samson, David R; Krystal, Andrew D

    2016-01-01

    Sleep is essential to cognitive function and health in humans, yet the ultimate reasons for sleep-i.e. 'why' sleep evolved-remain mysterious. We integrate findings from human sleep studies, the ethnographic record, and the ecology and evolution of mammalian sleep to better understand sleep along the human lineage and in the modern world. Compared to other primates, sleep in great apes has undergone substantial evolutionary change, with all great apes building a sleeping platform or 'nest'. Further evolutionary change characterizes human sleep, with humans having the shortest sleep duration, yet the highest proportion of rapid eye movement sleep among primates. These changes likely reflect that our ancestors experienced fitness benefits from being active for a greater portion of the 24-h cycle than other primates, potentially related to advantages arising from learning, socializing and defending against predators and hostile conspecifics. Perspectives from evolutionary medicine have implications for understanding sleep disorders; we consider these perspectives in the context of insomnia, narcolepsy, seasonal affective disorder, circadian rhythm disorders and sleep apnea. We also identify how human sleep today differs from sleep through most of human evolution, and the implications of these changes for global health and health disparities. More generally, our review highlights the importance of phylogenetic comparisons in understanding human health, including well-known links between sleep, cognitive performance and health in humans. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  8. Paleohydrology of China Lake basin and the context of early human occupation in the northwestern Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Rosenthal, Jeffrey S.; Meyer, Jack; Palacios-Fest, Manuel R.; Young, D. Craig; Ugan, Andrew; Byrd, Brian F.; Gobalet, Ken; Giacomo, Jason

    2017-07-01

    Considerable prior research has focused on the interconnected pluvial basins of Owens Lake and Searles Lake, resulting in a long record of paleohydrological change in the lower Owens River system. However, the published record is poorly resolved or contradictory for the period encompassing the terminal Pleistocene (22,000 to 11,600 cal BP) and early Holocene (11,600-8200 cal BP). This has resulted in conflicting interpretations about the timing of lacustrine high stands within the intermediate basin of China Lake, which harbors one of the most extensive records of early human occupation in the western Great Basin and California. Here, we report a broad range of radiocarbon-dated paleoenvironmental evidence, including lacustrine deposits and shoreline features, tufa outcrops, and mollusk, ostracode, and fish bone assemblages, as well as spring and other groundwater-related deposits (a.k.a. "black mats") from throughout China Lake basin, its outlet, and inflow drainages. Based on 98 radiocarbon dates, we develop independent evidence for five significant lake-level oscillations between 18,000 and 13,000 cal BP, and document the persistence of groundwater-fed wetlands from the beginning of the Younger Dryas through the early Holocene (12,900-8200 cal BP); including the transition from ground-water fed lake to freshwater marsh between about 13,000 and 12,600 cal BP. Results of this study support and refine existing evidence that shows rapid, high-amplitude oscillations in the water balance of the Owens River system during the terminal Pleistocene, and suggest widespread human use of China Lake basin began during the Younger Dryas.

  9. Moral uncertainty in bioethical argumentation: a new understanding of the pro-life view on early human embryos.

    PubMed

    Żuradzki, Tomasz

    2014-12-01

    In this article, I present a new interpretation of the pro-life view on the status of early human embryos. In my understanding, this position is based not on presumptions about the ontological status of embryos and their developmental capabilities but on the specific criteria of rational decisions under uncertainty and on a cautious response to the ambiguous status of embryos. This view, which uses the decision theory model of moral reasoning, promises to reconcile the uncertainty about the ontological status of embryos with the certainty about normative obligations. I will demonstrate that my interpretation of the pro-life view, although seeming to be stronger than the standard one, has limited scope and cannot be used to limit destructive research on human embryos.

  10. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda

    PubMed Central

    Ou, Qiang; Shu, Degan; Mayer, Georg

    2012-01-01

    Cambrian lobopodians are important for understanding the evolution of arthropods, but despite their soft-bodied preservation, the organization of the cephalic region remains obscure. Here we describe new material of the early Cambrian lobopodian Onychodictyon ferox from southern China, which reveals hitherto unknown head structures. These include a proboscis with a terminal mouth, an anterior arcuate sclerite, a pair of ocellus-like eyes and branched, antenniform appendages associated with this ocular segment. These findings, combined with a comparison with other lobopodians, suggest that the head of the last common ancestor of fossil lobopodians and extant panarthropods comprized a single ocular segment with a proboscis and terminal mouth. The lack of specialized mouthparts in O. ferox and the involvement of non-homologous mouthparts in onychophorans, tardigrades and arthropods argue against a common origin of definitive mouth openings among panarthropods, whereas the embryonic stomodaeum might well be homologous at least in Onychophora and Arthropoda. PMID:23232391

  11. Teleoperation support for early human planetary missions.

    PubMed

    Genta, Giancarlo; Perino, Maria Antonietta

    2005-12-01

    A renewed interest in human exploration is flourishing among all the major spacefaring nations. In fact, in the complex scene of planned future space activities, the development of a Moon base and the human exploration of Mars might have the potential to renew the enthusiasm in expanding the human presence beyond the boundaries of Earth. Various initiatives have been undertaken to define scenarios and identify the required infrastructures and related technology innovations. The typical proposed approach follows a multistep strategy, starting with a series of precursor robotic missions to acquire further knowledge of the planet and to select the best potential landing sites, and evolving toward more demanding missions for the development of a surface infrastructure necessary to sustain human presence. The technologies involved in such a demanding enterprise range from typical space technologies, like transportation and propulsion, automation and robotics, rendezvous and docking, entry/reentry, aero-braking, navigation, and deep space communications, to human-specific issues like physiology, psychology, behavioral aspects, and nutritional science for long-duration exposure, that go beyond the traditional boundaries of space activities. Among the required elements to support planetary exploration, both for the precursor robotic missions and to sustain human exploration, rovers and trucks play a key role. A robust level of autonomy will need to be secured to perform preplanned operations, particularly for the surface infrastructure development, and a teleoperated support, either from Earth or from a local base, will enhance the in situ field exploration capability.

  12. Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses

    PubMed Central

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration. PMID:24146922

  13. Early human speciation, brain expansion and dispersal influenced by African climate pulses.

    PubMed

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

  14. The hominins: a very conservative tribe? Last common ancestors, plasticity and ecomorphology in Hominidae. Or, What's in a name?

    PubMed

    Crompton, Robin Huw

    2016-04-01

    In the early 20th century the dominant paradigm for the ecological context of the origins of human bipedalism was arboreal suspension. In the 1960s, however, with recognition of the close genetic relationship of humans, chimpanzees and bonobos, and with the first field studies of mountain gorillas and common chimpanzees, it was assumed that locomotion similar to that of common chimpanzees and mountain gorillas, which appeared to be dominated by terrestrial knuckle-walking, must have given rise to human bipedality. This paradigm has been popular, if not universally dominant, until very recently. However, evidence that neither the knuckle-walking or vertical climbing of these apes is mechanically similar to human bipedalism, as well as the hand-assisted bipedality and orthograde clambering of orang-utans, has cast doubt on this paradigm. It now appears that the dominance of terrestrial knuckle-walking in mountain gorillas is an artefact seen only in the extremes of their range, and that both mountain and lowland gorillas have a generalized orthogrady similar to that seen in orang-utans. These data, together with evidence for continued arboreal competence in humans, mesh well with an increasing weight of fossil evidence suggesting that a mix of orang-utan and gorilla-like arboreal locomotion and upright terrestrial bipedalism characterized most australopiths. The late split date of the panins, corresponding to dates for separation of Homo and Australopithecus, leads to the speculation that competition with chimpanzees, as appears to exist today with gorillas, may have driven ecological changes in hominins and perhaps cladogenesis. However, selection for ecological plasticity and morphological conservatism is a core characteristic of Hominidae as a whole, including Hominini. © 2015 Anatomical Society.

  15. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.

    PubMed

    Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan

    2013-11-02

    Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the

  16. Speleothem evidence for the greening of the Sahara and its implications for the early human dispersal out of sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    El-Shenawy, Mohammed I.; Kim, Sang-Tae; Schwarcz, Henry P.; Asmerom, Yemane; Polyak, Victor J.

    2018-05-01

    Although there is a consensus that there were wet periods (greening events) in the Sahara in the past, the spatial extent and the timing of these greening events are still in dispute, yet critical to our understanding of the early human dispersal out of Africa. Our U-series dates of speleothems from the Northeastern Sahara (Wadi Sannur cave, Egypt) reveal that the periods of speleothem growth were brief and restricted to the interglacial Marine Isotope Stages MIS 5.5, MIS 7.3, and the early MIS 9 with a remarkable absence of the Holocene deposition of speleothems. These growth periods of Wadi Sannur cave speleothems correspond to periods of high rainfall and spread of vegetation (green Sahara). Distinct low δ18O values of speleothems indicate a distal moisture source that we interpret to be the Atlantic Ocean. These two lines of evidence from the Wadi Sannur speleothems thus suggest that maximal northward shifts in the West African monsoon system occurred during the growth periods of the speleothems, leading to greening of the Sahara, facilitating human migration into Eurasia. The periods of speleothem growth at Wadi Sannur cave are contemporaneous with important archeological events: (1) the earliest occurrence of the Middle Stone Age assemblages and Homo sapiens in North Africa (Jebel Irhoud), suggesting wide spread of greening conditions over the East-West transect of the Sahara, (2) the sharp technological break between the Acheulo-Yabrudian and the Mousterian industries, and (3) the arrival of Homo sapiens in Levant, indicating a key role of the Sahara route in early human dispersal out of Africa.

  17. Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors ▿ †

    PubMed Central

    Bonsignori, Mattia; Hwang, Kwan-Ki; Chen, Xi; Tsao, Chun-Yen; Morris, Lynn; Gray, Elin; Marshall, Dawn J.; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Sinangil, Faruk; Pancera, Marie; Yongping, Yang; Zhang, Baoshan; Zhu, Jiang; Kwong, Peter D.; O'Dell, Sijy; Mascola, John R.; Wu, Lan; Nabel, Gary J.; Phogat, Sanjay; Seaman, Michael S.; Whitesides, John F.; Moody, M. Anthony; Kelsoe, Garnett; Yang, Xinzhen; Sodroski, Joseph; Shaw, George M.; Montefiori, David C.; Kepler, Thomas B.; Tomaras, Georgia D.; Alam, S. Munir; Liao, Hua-Xin; Haynes, Barton F.

    2011-01-01

    V2/V3 conformational epitope antibodies that broadly neutralize HIV-1 (PG9 and PG16) have been recently described. Since an elicitation of previously known broadly neutralizing antibodies has proven elusive, the induction of antibodies with such specificity is an important goal for HIV-1 vaccine development. A critical question is which immunogens and vaccine formulations might be used to trigger and drive the development of memory B cell precursors with V2/V3 conformational epitope specificity. In this paper we identified a clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer and inferred their common reverted unmutated ancestor (RUA) antibodies. While conformational epitope antibodies rarely bind recombinant Env monomers, a screen of 32 recombinant envelopes for binding to the CH01 to CH04 antibodies showed monoclonal antibody (MAb) binding to the E.A244 gp120 Env and to chronic Env AE.CM243; MAbs CH01 and CH02 also bound to transmitted/founder Env B.9021. CH01 to CH04 neutralized 38% to 49% of a panel of 91 HIV-1 tier 2 pseudoviruses, while the RUAs neutralized only 16% of HIV-1 isolates. Although the reverted unmutated ancestors showed restricted neutralizing activity, they retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. Thus, E.A244, B.9021, and AE.CM243 Envs are three potential immunogen candidates for studies aimed at defining strategies to induce V2/V3 conformational epitope-specific antibodies. PMID:21795340

  18. Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla

    PubMed Central

    Ryan, Joseph F; Baxevanis, Andreas D

    2007-01-01

    The subkingdom Bilateria encompasses the overwhelming majority of animals, including all but four early-branching phyla: Porifera, Ctenophora, Placozoa, and Cnidaria. On average, these early-branching phyla have fewer cell types, tissues, and organs, and are considered to be significantly less specialized along their primary body axis. As such, they present an attractive outgroup from which to investigate how evolutionary changes in the genetic toolkit may have contributed to the emergence of the complex animal body plans of the Bilateria. This review offers an up-to-date glimpse of genome-scale comparisons between bilaterians and these early-diverging taxa. Specifically, we examine these data in the context of how they may explain the evolutionary development of primary body axes and axial symmetry across the Metazoa. Next, we re-evaluate the validity and evolutionary genomic relevance of the zootype hypothesis, which defines an animal by a specific spatial pattern of gene expression. Finally, we extend the hypothesis that Wnt genes may be the earliest primary body axis patterning mechanism by suggesting that Hox genes were co-opted into this patterning network prior to the last common ancestor of cnidarians and bilaterians. Reviewed by Pierre Pontarotti, Gáspár Jékely, and L Aravind. For the full reviews, please go to the Reviewers' comments section. PMID:18078518

  19. Percussive technology in human evolution: an introduction to a comparative approach in fossil and living primates.

    PubMed

    de la Torre, Ignacio; Hirata, Satoshi

    2015-11-19

    Percussive technology is part of the behavioural suite of several fossil and living primates. Stone Age ancestors used lithic artefacts in pounding activities, which could have been most important in the earliest stages of stone working. This has relevant evolutionary implications, as other primates such as chimpanzees and some monkeys use stone hammer-and-anvil combinations to crack hard-shelled foodstuffs. Parallels between primate percussive technologies and early archaeological sites need to be further explored in order to assess the emergence of technological behaviour in our evolutionary line, and firmly establish bridges between Primatology and Archaeology. What are the anatomical, cognitive and ecological constraints of percussive technology? How common are percussive activities in the Stone Age and among living primates? What is their functional significance? How similar are archaeological percussive tools and those made by non-human primates? This issue of Phil. Trans. addresses some of these questions by presenting case studies with a wide chronological, geographical and disciplinary coverage. The studies presented here cover studies of Brazilian capuchins, captive chimpanzees and chimpanzees in the wild, research on the use of percussive technology among modern humans and recent hunter-gatherers in Australia, the Near East and Europe, and archaeological examples of this behaviour from a million years ago to the Holocene. In summary, the breadth and depth of research compiled here should make this issue of Philosophical Transactions of the Royal Society B, a landmark step forward towards a better understanding of percussive technology, a unique behaviour shared by some modern and fossil primates. © 2015 The Author(s).

  20. A glimpse into the early origins of medieval anatomy through the oldest conserved human dissection (Western Europe, 13(th) c. A.D.).

    PubMed

    Charlier, Philippe; Huynh-Charlier, Isabelle; Poupon, Joël; Lancelot, Eloïse; Campos, Paula F; Favier, Dominique; Jeannel, Gaël-François; Bonati, Maurizio Rippa; de la Grandmaison, Geoffroy Lorin; Hervé, Christian

    2014-05-12

    Medieval autopsy practice is very poorly known in Western Europe, due to a lack of both descriptive medico-surgical texts and conserved dissected human remains. This period is currently considered the dark ages according to a common belief of systematic opposition of Christian religious authorities to the opening of human cadavers. The identification in a private collection of an autopsied human individual dated from the 13(th) century A.D. is an opportunity for better knowledge of such practice in this chrono-cultural context, i.e. the early origins of occidental dissections. A complete forensic anthropological procedure was carried out, completed by radiological and elemental analyses. The complete procedure of this body opening and internal organs exploration is explained, and compared with historical data about forensic and anatomical autopsies from this period. During the analysis, a red substance filling all arterial cavities, made of mercury sulfide (cinnabar) mixed with vegetal oil (oleic and palmitic acids) was identified; it was presumably used to highlight vascularization by coloring in red such vessels, and help in the preservation of the body. Of particular interest for the description of early medical and anatomical knowledge, this "human preparation" is the oldest known yet, and is particularly important for the fields of history of medicine, surgery and anatomical practice.

  1. Humanizing Aggregated Data: Developing Personas to Prioritize User Needs for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Burkett, E. R.; Jayanty, N. K.; Sellnow, D. D.; Given, D. D.; DeGroot, R. M.

    2016-12-01

    Methods that use storytelling to gather and synthesize data from people can be advantageous in understanding user needs and designing successful communication products. Using a multidisciplinary approach, we research and prioritize user needs for the ShakeAlert Earthquake Early Warning system (http://pubs.usgs.gov/fs/2014/3083/), drawing on best practices from social and behavioral science, risk communication, and human-centered design. We apply quantitative and qualitative human data collection methods including user surveys, interviews, journey maps, personas, and scenarios. Human-centered design methods leverage storytelling (a) in the acquisition of qualitative behavioral data (e.g. with journey mapping), (b) through goal-driven behaviors and needs that are synthesized into a persona as a composite model of the data, and (c) within context scenarios (the story plot or projected circumstances) in which the persona is placed in context to inform the design of relevant and usable products or services. ShakeAlert, operated by the USGS and partners, has transitioned into a production prototype phase in which users are permitted to begin testing pilot implementations to take protective actions in response to an earthquake alert. While a subset of responses will be automated (e.g., opening fire house doors), other applications of the technology will alert individuals by broadcast, public address, or mobile device notifications and require self-protective behavioral decisions (e.g., "Drop, Cover, and Hold On"). To better understand ShakeAlert user decisions and needs, we use human-centered design methods to synthesize aggregated behavioral data into "personas," which model the common behavioral patterns that can be used to guide plans for the ShakeAlert interface, messaging, and training. We present user data, methods, and resulting personas that will inform decisions moving forward to shape ShakeAlert messaging and training that will be most usable by alert recipients.

  2. The proteomic complexity and rise of the primordial ancestor of diversified life

    PubMed Central

    2011-01-01

    Background The last universal common ancestor represents the primordial cellular organism from which diversified life was derived. This urancestor accumulated genetic information before the rise of organismal lineages and is considered to be either a simple 'progenote' organism with a rudimentary translational apparatus or a more complex 'cenancestor' with almost all essential biological processes. Recent comparative genomic studies support the latter model and propose that the urancestor was similar to modern organisms in terms of gene content. However, most of these studies were based on molecular sequences, which are fast evolving and of limited value for deep evolutionary explorations. Results Here we engage in a phylogenomic study of protein domain structure in the proteomes of 420 free-living fully sequenced organisms. Domains were defined at the highly conserved fold superfamily (FSF) level of structural classification and an iterative phylogenomic approach was used to reconstruct max_set and min_set FSF repertoires as upper and lower bounds of the urancestral proteome. While the functional make up of the urancestral sets was complex, they represent only 5-11% of the 1,420 FSFs of extant proteomes and their make up and reuse was at least 5 and 3 times smaller than proteomes of free-living organisms, repectively. Trees of proteomes reconstructed directly from FSFs or from molecular functions, which included the max_set and min_set as articial taxa, showed that urancestors were always placed at their base and rooted the tree of life in Archaea. Finally, a molecular clock of FSFs suggests the min_set reflects urancestral genetic make up more reliably and confirms diversified life emerged about 2.9 billion years ago during the start of planet oxygenation. Conclusions The minimum urancestral FSF set reveals the urancestor had advanced metabolic capabilities, was especially rich in nucleotide metabolism enzymes, had pathways for the biosynthesis of membrane sn1

  3. Cellular homeoproteins, SATB1 and CDP, bind to the unique region between the human cytomegalovirus UL127 and major immediate-early genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Jialing; Klase, Zachary; Gao Xiaoqi

    An AT-rich region of the human cytomegalovirus (CMV) genome between the UL127 open reading frame and the major immediate-early (MIE) enhancer is referred to as the unique region (UR). It has been shown that the UR represses activation of transcription from the UL127 promoter and functions as a boundary between the divergent UL127 and MIE genes during human CMV infection [Angulo, A., Kerry, D., Huang, H., Borst, E.M., Razinsky, A., Wu, J., Hobom, U., Messerle, M., Ghazal, P., 2000. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J.more » Virol. 74 (6), 2826-2839; Lundquist, C.A., Meier, J.L., Stinski, M.F., 1999. A strong negative transcriptional regulatory region between the human cytomegalovirus UL127 gene and the major immediate-early enhancer. J. Virol. 73 (11), 9039-9052]. A putative forkhead box-like (FOX-like) site, AAATCAATATT, was identified in the UR and found to play a key role in repression of the UL127 promoter in recombinant virus-infected cells [Lashmit, P.E., Lundquist, C.A., Meier, J.L., Stinski, M.F., 2004. Cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J. Virol. 78 (10), 5113-5123]. However, the cellular factors which associate with the UR and FOX-like region remain to be determined. We reported previously that pancreatic-duodenal homeobox factor-1 (PDX1) bound to a 45-bp element located within the UR [Chao, S.H., Harada, J.N., Hyndman, F., Gao, X., Nelson, C.G., Chanda, S.K., Caldwell, J.S., 2004. PDX1, a Cellular Homeoprotein, Binds to and Regulates the Activity of Human Cytomegalovirus Immediate Early Promoter. J. Biol. Chem. 279 (16), 16111-16120]. Here we demonstrate that two additional cellular homeoproteins, special AT-rich sequence binding protein 1 (SATB1) and CCAAT displacement protein (CDP), bind to the human CMV UR in vitro and in vivo. Furthermore, CDP is identified as a FOX-like binding

  4. Spectroscopic imaging of the pilocarpine model of human epilepsy suggests that early NAA reduction predicts epilepsy.

    PubMed

    Gomes, W A; Lado, F A; de Lanerolle, N C; Takahashi, K; Pan, C; Hetherington, H P

    2007-08-01

    Reduced hippocampal N-acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important implications for the use of MR spectroscopic imaging (MRSI) in the early identification of patients at risk for TLE. To determine whether NAA is diminished during the latent period, we obtained high-resolution (1)H spectroscopic imaging during the latent period of the rat pilocarpine model of human TLE. We used actively detuneable surface reception and volume transmission coils to enhance sensitivity and a semiautomated voxel shifting method to accurately position voxels within the hippocampi. During the latent period, 2 and 7 d following pilocarpine treatment, hippocampal NAA was significantly reduced by 27.5 +/- 6.9% (P < 0.001) and 17.3 +/- 6.9% (P < 0.001) at 2 and 7 d, respectively. Quantitative estimates of neuronal loss at 7 d (2.3 +/- 7.7% reduction; P = 0.58, not significant) demonstrate that the NAA deficit is not due to neuron loss and therefore likely represents metabolic impairment of hippocampal neurons during the latent phase. Therefore, spectroscopic imaging provides an early marker for metabolic dysfunction in this model of TLE.

  5. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

    PubMed Central

    Mallick, Swapan; Li, Heng; Lipson, Mark; Mathieson, Iain; Gymrek, Melissa; Racimo, Fernando; Zhao, Mengyao; Chennagiri, Niru; Nordenfelt, Susanne; Tandon, Arti; Skoglund, Pontus; Lazaridis, Iosif; Sankararaman, Sriram; Fu, Qiaomei; Rohland, Nadin; Renaud, Gabriel; Erlich, Yaniv; Willems, Thomas; Gallo, Carla; Spence, Jeffrey P.; Song, Yun S.; Poletti, Giovanni; Balloux, Francois; van Driem, George; de Knijff, Peter; Romero, Irene Gallego; Jha, Aashish R.; Behar, Doron M.; Bravi, Claudio M.; Capelli, Cristian; Hervig, Tor; Moreno-Estrada, Andres; Posukh, Olga L.; Balanovska, Elena; Balanovsky, Oleg; Karachanak-Yankova, Sena; Sahakyan, Hovhannes; Toncheva, Draga; Yepiskoposyan, Levon; Tyler-Smith, Chris; Xue, Yali; Abdullah, M. Syafiq; Ruiz-Linares, Andres; Beall, Cynthia M.; Di Rienzo, Anna; Jeong, Choongwon; Starikovskaya, Elena B.; Metspalu, Ene; Parik, Jüri; Villems, Richard; Henn, Brenna M.; Hodoglugil, Ugur; Mahley, Robert; Sajantila, Antti; Stamatoyannopoulos, George; Wee, Joseph T. S.; Khusainova, Rita; Khusnutdinova, Elza; Litvinov, Sergey; Ayodo, George; Comas, David; Hammer, Michael; Kivisild, Toomas; Klitz, William; Winkler, Cheryl; Labuda, Damian; Bamshad, Michael; Jorde, Lynn B.; Tishkoff, Sarah A.; Watkins, W. Scott; Metspalu, Mait; Dryomov, Stanislav; Sukernik, Rem; Singh, Lalji; Thangaraj, Kumarasamy; Pääbo, Svante; Kelso, Janet; Patterson, Nick; Reich, David

    2016-01-01

    We report the Simons Genome Diversity Project (SGDP) dataset: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioral modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that in other non-Africans. PMID:27654912

  6. AI And Early Vision - Part II

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1989-08-01

    A quarter of a century ago I introduced two paradigms into psychology which in the intervening years have had a direct impact on the psychobiology of early vision and an indirect one on artificial intelligence (AI or machine vision). The first, the computer-generated random-dot stereogram (RDS) paradigm (Julesz, 1960) at its very inception posed a strategic question both for AI and neurophysiology. The finding that stereoscopic depth perception (stereopsis) is possible without the many enigmatic cues of monocular form recognition - as assumed previously - demonstrated that stereopsis with its basic problem of finding matches between corresponding random aggregates of dots in the left and right visual fields became ripe for modeling. Indeed, the binocular matching problem of stereopsis opened up an entire field of study, eventually leading to the computational models of David Marr (1982) and his coworkers. The fusion of RDS had an even greater impact on neurophysiologists - including Hubel and Wiesel (1962) - who realized that stereopsis must occur at an early stage, and can be studied easier than form perception. This insight recently culminated in the studies by Gian Poggio (1984) who found binocular-disparity - tuned neurons in the input stage to the visual cortex (layer IVB in V1) in the monkey that were selectively triggered by dynamic RDS. Thus the first paradigm led to a strategic insight: that with stereoscopic vision there is no camouflage, and as such was advantageous for our primate ancestors to evolve the cortical machinery of stereoscopic vision to capture camouflaged prey (insects) at a standstill. Amazingly, although stereopsis evolved relatively late in primates, it captured the very input stages of the visual cortex. (For a detailed review, see Julesz, 1986a)

  7. Early BrdU-responsive genes constitute a novel class of senescence-associated genes in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minagawa, Sachi; Nakabayashi, Kazuhiko; Fujii, Michihiko

    2005-04-01

    We identified genes that immediately respond to 5-bromodeoxyuridine (BrdU) in SUSM-1, an immortal fibroblastic line, with DNA microarray and Northern blot analysis. At least 29 genes were found to alter gene expression greater than twice more or less than controls within 36 h after addition of BrdU. They took several different expression patterns upon addition of BrdU, and the majority showed a significant alteration within 12 h. When compared among SUSM-1, HeLa, and TIG-7 normal human fibroblasts, 19 genes behaved similarly upon addition of BrdU. In addition, 14 genes, 9 of which are novel as regards senescence, behaved similarly inmore » senescent TIG-7 cells. The genes do not seem to have a role in proliferation or cell cycle progression. These results suggest that the early BrdU-responsive genes represent early signs of cellular senescence and can be its new biomarkers.« less

  8. Early Childhood Education Curricula: Human Rights and Citizenship in Early Childhood Education

    ERIC Educational Resources Information Center

    Sounoglou, Marina; Michalopoulou, Aikaterini

    2017-01-01

    This study examines the human rights and the notion of citizenship under the prism of pedagogical science. The methodology that was followed was the experimental method. In a sample of 100 children-experimental group and control group held an intervention program with deepening axes of human rights and the concept of citizenship. The analysis of…

  9. Aldo-Keto Reductases as Early Biomarkers of Hepatocellular Carcinoma: A Comparison Between Animal Models and Human HCC.

    PubMed

    Torres-Mena, Julia Esperanza; Salazar-Villegas, Karla Noemí; Sánchez-Rodríguez, Ricardo; López-Gabiño, Belém; Del Pozo-Yauner, Luis; Arellanes-Robledo, Jaime; Villa-Treviño, Saúl; Gutiérrez-Nava, María Angélica; Pérez-Carreón, Julio Isael

    2018-04-01

    The intrinsic heterogeneity of hepatocellular carcinoma (HCC) represents a great challenge for its molecular classification and for detecting predictive biomarkers. Aldo-keto reductase (Akr) family members have shown differential expression in human HCC, while AKR1B10 overexpression is considered a biomarker; AKR7A3 expression is frequently reduced in HCC. To investigate the time-course expression of Akr members in the experimental hepatocarcinogenesis. Using DNA-microarray data, we analyzed the time-course gene expression profile from nodules to tumors (4-17 months) of 17 Akr members induced by the resistant hepatocyte carcinogenesis model in the rat. The expression of six members (Akr1c19, Akr1b10, Akr7a3, Akr1b1, Akr1cl1, and Akr1b8) was increased, comparable to that of Ggt and Gstp1, two well-known liver cancer markers. In particular, Akr7a3 and Akr1b10 expression also showed a time-dependent increment at mRNA and protein levels in a second hepatocarcinogenesis model induced with diethylnitrosamine. We confirmed that aldo-keto reductases 7A3 and 1B10 were co-expressed in nine biopsies of human HCC, independently from the presence of glypican-3 and cytokeratin-19, two well-known HCC biomarkers. Because it has been suggested that expression of Akr members is regulated through NRF2 activity at the antioxidant response element (ARE) sequences, we searched and identified at least two ARE sites in Akr1b1, Akr1b10, and Akr7a3 from rat and human gene sequences. Moreover, we observed higher NRF2 nuclear translocation in tumors as compared with non-tumor tissues. Our results demonstrate that Akr7a3 mRNA and protein levels are consistently co-expressed along with Akr1b10, in both experimental liver carcinogenesis and some human HCC samples. These results highlight the presence of AKR7A3 and AKR1B10 from early stages of the experimental HCC and introduce them as a potential application for early diagnosis, staging, and prognosis in human cancer.

  10. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History

    PubMed Central

    Tao, Ying; Shi, Mang; Chommanard, Christina; Queen, Krista; Zhang, Jing; Markotter, Wanda; Kuzmin, Ivan V.; Holmes, Edward C.

    2017-01-01

    ABSTRACT Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in Triaenops bats and 229E-like viruses circulating in Hipposideros bats, with the breakpoint located near 5′ and 3′ ends of the spike (S) protein gene. In addition, two further interspecies recombination events involving the S gene were identified, suggesting that this region may represent a recombination “hot spot” in CoV genomes. Finally, using a combination of phylogenetic and distance-based approaches, we showed that the genetic diversity of bat CoVs is primarily structured by host species and subsequently by geographic distances. IMPORTANCE Understanding the driving forces of cross-species virus transmission is central to understanding the nature of disease emergence. Previous studies have demonstrated that bats are the ultimate reservoir hosts for a number of coronaviruses (CoVs), including ancestors of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human CoV 229E (HCoV-229E). However, the evolutionary pathways of bat CoVs remain elusive. We provide evidence for natural recombination between distantly related African bat coronaviruses associated with Triaenops afer and Hipposideros sp. bats that resulted in a NL63-like virus, an ancestor of the human pathogen HCoV-NL63. These results suggest that interspecies recombination may play an important role in CoV evolution and the emergence of novel CoVs with zoonotic potential. PMID:28077633

  11. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  12. Early-life reproduction is associated with increased mortality risk but enhanced lifetime fitness in pre-industrial humans

    PubMed Central

    Hayward, Adam D.; Nenko, Ilona; Lummaa, Virpi

    2015-01-01

    The physiology of reproductive senescence in women is well understood, but the drivers of variation in senescence rates are less so. Evolutionary theory predicts that early-life investment in reproduction should be favoured by selection at the cost of reduced survival and faster reproductive senescence. We tested this hypothesis using data collected from preindustrial Finnish church records. Reproductive success increased up to age 25 and was relatively stable until a decline from age 41. Women with higher early-life fecundity (ELF; producing more children before age 25) subsequently had higher mortality risk, but high ELF was not associated with accelerated senescence in annual breeding success. However, women with higher ELF experienced faster senescence in offspring survival. Despite these apparent costs, ELF was under positive selection: individuals with higher ELF had higher lifetime reproductive success. These results are consistent with previous observations in both humans and wild vertebrates that more births and earlier onset of reproduction are associated with reduced survival, and with evolutionary theory predicting trade-offs between early reproduction and later-life survival. The results are particularly significant given recent increases in maternal ages in many societies and the potential consequences for offspring health and fitness. PMID:25740893

  13. The revolution that wasn't: a new interpretation of the origin of modern human behavior.

    PubMed

    Mcbrearty, S; Brooks, A S

    2000-11-01

    Proponents of the model known as the "human revolution" claim that modern human behaviors arose suddenly, and nearly simultaneously, throughout the Old World ca. 40-50 ka. This fundamental behavioral shift is purported to signal a cognitive advance, a possible reorganization of the brain, and the origin of language. Because the earliest modern human fossils, Homo sapiens sensu stricto, are found in Africa and the adjacent region of the Levant at >100 ka, the "human revolution" model creates a time lag between the appearance of anatomical modernity and perceived behavioral modernity, and creates the impression that the earliest modern Africans were behaviorally primitive. This view of events stems from a profound Eurocentric bias and a failure to appreciate the depth and breadth of the African archaeological record. In fact, many of the components of the "human revolution" claimed to appear at 40-50 ka are found in the African Middle Stone Age tens of thousands of years earlier. These features include blade and microlithic technology, bone tools, increased geographic range, specialized hunting, the use of aquatic resources, long distance trade, systematic processing and use of pigment, and art and decoration. These items do not occur suddenly together as predicted by the "human revolution" model, but at sites that are widely separated in space and time. This suggests a gradual assembling of the package of modern human behaviors in Africa, and its later export to other regions of the Old World. The African Middle and early Late Pleistocene hominid fossil record is fairly continuous and in it can be recognized a number of probably distinct species that provide plausible ancestors for H. sapiens. The appearance of Middle Stone Age technology and the first signs of modern behavior coincide with the appearance of fossils that have been attributed to H. helmei, suggesting the behavior of H. helmei is distinct from that of earlier hominid species and quite similar to that

  14. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health.

    PubMed

    Holick, Michael F

    2016-03-01

    Humans evolved in sunlight and had depended on sunlight for its life giving properties that was appreciated by our early ancestors. However, for more than 40 years the lay press and various medical and dermatology associations have denounced sun exposure because of its association with increased risk for skin cancer. The goal of this review is to put into perspective the many health benefits that have been associated with exposure to sunlight, ultraviolet A (UVA) ultraviolet B (UVB), visible and infrared radiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. (−)-Epigallocatechin Gallate Targets Notch to Attenuate the Inflammatory Response in the Immediate Early Stage in Human Macrophages

    PubMed Central

    Wang, Tengfei; Xiang, Zemin; Wang, Ya; Li, Xi; Fang, Chongye; Song, Shuang; Li, Chunlei; Yu, Haishuang; Wang, Han; Yan, Liang; Hao, Shumei; Wang, Xuanjun; Sheng, Jun

    2017-01-01

    Inflammation plays important roles at different stages of diabetes mellitus, tumorigenesis, and cardiovascular diseases. (−)-Epigallocatechin gallate (EGCG) can attenuate inflammatory responses effectively. However, the immediate early mechanism of EGCG in inflammation remains unclear. Here, we showed that EGCG attenuated the inflammatory response in the immediate early stage of EGCG treatment by shutting off Notch signaling and that the effect did not involve the 67-kDa laminin receptor, the common receptor for EGCG. EGCG eliminated mature Notch from the cell membrane and the nuclear Notch intercellular domain, the active form of Notch, within 2 min by rapid degradation via the proteasome pathway. Transcription of the Notch target gene was downregulated simultaneously. Knockdown of Notch 1/2 expression by RNA interference impaired the downregulation of the inflammatory response elicited by EGCG. Further study showed that EGCG inhibited lipopolysaccharide-induced inflammation and turned off Notch signaling in human primary macrophages. Taken together, our results show that EGCG targets Notch to regulate the inflammatory response in the immediate early stage. PMID:28443100

  16. Early Learning and Educational Technology Policy Brief

    ERIC Educational Resources Information Center

    Lee, Joan

    2016-01-01

    Recognizing the growth of technology use in early learning settings, the U.S. Department of Education and U.S. Department of Health and Human Services collaborated in the development of the "Early Learning and Educational Technology Policy Brief" to promote developmentally appropriate use of technology in homes and early learning…

  17. Vertex- and atlas-based comparisons in measures of cortical thickness, gyrification and white matter volume between humans and chimpanzees.

    PubMed

    Hopkins, William D; Li, Xiang; Crow, Tim; Roberts, Neil

    2017-01-01

    What changes in cortical organisation characterise global and localised variation between humans and chimpanzees remains a topic of considerable interest in evolutionary neuroscience. Here, we examined regional variation in cortical thickness, gyrification and white matter in samples of human and chimpanzee brains. Both species were MRI scanned on the same platform using identical procedures. The images were processed and segmented by FSL and FreeSurfer and the relative changes in cortical thickness, gyrification and white matter across the entire cortex were compared between species. In general, relative to chimpanzees, humans had significantly greater gyrification and significantly thinner cortex, particularly in the frontal lobe. Human brains also had disproportionately higher white matter volumes in the frontal lobe, particularly in prefrontal regions. Collectively, the findings suggest that after the split from the common ancestor, white matter expansion and subsequently increasing gyrification occurred in the frontal lobe possibly due to increased selection for human cognitive and motor specialisations.

  18. Early hominin auditory ossicles from South Africa

    PubMed Central

    Quam, Rolf M.; de Ruiter, Darryl J.; Masali, Melchiorre; Arsuaga, Juan-Luis; Martínez, Ignacio; Moggi-Cecchi, Jacopo

    2013-01-01

    The middle ear ossicles are only rarely preserved in fossil hominins. Here, we report the discovery of a complete ossicular chain (malleus, incus, and stapes) of Paranthropus robustus as well as additional ear ossicles from Australopithecus africanus. The malleus in both early hominin taxa is clearly human-like in the proportions of the manubrium and corpus, whereas the incus and stapes resemble African and Asian great apes more closely. A deep phylogenetic origin is proposed for the derived malleus morphology, and this may represent one of the earliest human-like features to appear in the fossil record. The anatomical differences found in the early hominin incus and stapes, along with other aspects of the outer, middle, and inner ear, are consistent with the suggestion of different auditory capacities in these early hominin taxa compared with modern humans. PMID:23671079

  19. Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain).

    PubMed

    Martínez, I; Arsuaga, J L; Quam, R; Carretero, J M; Gracia, A; Rodríguez, L

    2008-01-01

    This study describes and compares two hyoid bones from the middle Pleistocene site of the Sima de los Huesos in the Sierra de Atapuerca (Spain). The Atapuerca SH hyoids are humanlike in both their morphology and dimensions, and they clearly differ from the hyoid bones of chimpanzees and Australopithecus afarensis. Their comparison with the Neandertal specimens Kebara 2 and SDR-034 makes it possible to begin to approach the question of temporal variation and sexual dimorphism in this bone in fossil humans. The results presented here show that the degree of metric and anatomical variation in the fossil sample was similar in magnitude and kind to living humans. Modern hyoid morphology was present by at least 530 kya and appears to represent a shared derived feature of the modern human and Neandertal evolutionary lineages inherited from their last common ancestor.

  20. The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro.

    PubMed

    Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan

    2011-08-01

    The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.