Sample records for early human visual

  1. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  2. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    PubMed

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  3. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    PubMed Central

    Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  4. Modification of visual function by early visual experience.

    PubMed

    Blakemore, C

    1976-07-01

    Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.

  5. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  6. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy.

    PubMed

    Baharom, Faezzah; Thomas, Oliver S; Lepzien, Rico; Mellman, Ira; Chalouni, Cécile; Smed-Sörensen, Anna

    2017-01-01

    Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.

  7. Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex.

    PubMed

    Koelewijn, Loes; Rich, Anina N; Muthukumaraswamy, Suresh D; Singh, Krish D

    2013-10-01

    Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Perceptual learning increases the strength of the earliest signals in visual cortex.

    PubMed

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  9. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness.

    PubMed

    Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo

    2003-05-01

    Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.

  10. Late maturation of visual spatial integration in humans

    PubMed Central

    Kovács, Ilona; Kozma, Petra; Fehér, Ákos; Benedek, György

    1999-01-01

    Visual development is thought to be completed at an early age. We suggest that the maturation of the visual brain is not homogeneous: functions with greater need for early availability, such as visuomotor control, mature earlier, and the development of other visual functions may extend well into childhood. We found significant improvement in children between 5 and 14 years in visual spatial integration by using a contour-detection task. The data show that long-range spatial interactions—subserving the integration of orientational information across the visual field—span a shorter spatial range in children than in adults. Performance in the task improves in a cue-specific manner with practice, which indicates the participation of fairly low-level perceptual mechanisms. We interpret our findings in terms of a protracted development of ventral visual-stream function in humans. PMID:10518600

  11. Early Binocular Input Is Critical for Development of Audiovisual but Not Visuotactile Simultaneity Perception.

    PubMed

    Chen, Yi-Chuan; Lewis, Terri L; Shore, David I; Maurer, Daphne

    2017-02-20

    Temporal simultaneity provides an essential cue for integrating multisensory signals into a unified perception. Early visual deprivation, in both animals and humans, leads to abnormal neural responses to audiovisual signals in subcortical and cortical areas [1-5]. Behavioral deficits in integrating complex audiovisual stimuli in humans are also observed [6, 7]. It remains unclear whether early visual deprivation affects visuotactile perception similarly to audiovisual perception and whether the consequences for either pairing differ after monocular versus binocular deprivation [8-11]. Here, we evaluated the impact of early visual deprivation on the perception of simultaneity for audiovisual and visuotactile stimuli in humans. We tested patients born with dense cataracts in one or both eyes that blocked all patterned visual input until the cataractous lenses were removed and the affected eyes fitted with compensatory contact lenses (mean duration of deprivation = 4.4 months; range = 0.3-28.8 months). Both monocularly and binocularly deprived patients demonstrated lower precision in judging audiovisual simultaneity. However, qualitatively different outcomes were observed for the two patient groups: the performance of monocularly deprived patients matched that of young children at immature stages, whereas that of binocularly deprived patients did not match any stage in typical development. Surprisingly, patients performed normally in judging visuotactile simultaneity after either monocular or binocular deprivation. Therefore, early binocular input is necessary to develop normal neural substrates for simultaneity perception of visual and auditory events but not visual and tactile events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  13. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  14. Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli.

    PubMed

    Keil, Andreas; Stolarova, Margarita; Moratti, Stephan; Ray, William J

    2007-06-01

    The ability to react rapidly and efficiently to adverse stimuli is crucial for survival. Neuroscience and behavioral studies have converged to show that visual information associated with aversive content is processed quickly and accurately and is associated with rapid amplification of the neural responses. In particular, unpleasant visual information has repeatedly been shown to evoke increased cortical activity during early visual processing between 60 and 120 ms following the onset of a stimulus. However, the nature of these early responses is not well understood. Using neutral versus unpleasant colored pictures, the current report examines the time course of short-term changes in the human visual cortex when a subject is repeatedly exposed to simple grating stimuli in a classical conditioning paradigm. We analyzed changes in amplitude and synchrony of large-scale oscillatory activity across 2 days of testing, which included baseline measurements, 2 conditioning sessions, and a final extinction session. We found a gradual increase in amplitude and synchrony of very early cortical oscillations in the 20-35 Hz range across conditioning sessions, specifically for conditioned stimuli predicting aversive visual events. This increase for conditioned stimuli affected stimulus-locked cortical oscillations at a latency of around 60-90 ms and disappeared during extinction. Our findings suggest that reorganization of neural connectivity on the level of the visual cortex acts to optimize early perception of specific features indicative of emotional relevance.

  15. Adult Visual Experience Promotes Recovery of Primary Visual Cortex from Long-Term Monocular Deprivation

    ERIC Educational Resources Information Center

    Fischer, Quentin S.; Aleem, Salman; Zhou, Hongyi; Pham, Tony A.

    2007-01-01

    Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance…

  16. Contextual effects on perceived contrast: figure-ground assignment and orientation contrast.

    PubMed

    Self, Matthew W; Mookhoek, Aart; Tjalma, Nienke; Roelfsema, Pieter R

    2015-02-02

    Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual areas increase their firing rate when responding to a figure compared to responding to the background. We hypothesized that similar changes in neural firing would take place in early visual areas of the human visual system, leading to changes in the perception of low-level visual features. In this study, we investigated whether contrast perception is affected by figure-ground assignment using stimuli similar to those in the electrophysiological studies in monkeys. We measured contrast discrimination thresholds and perceived contrast for Gabor probes placed on figures or the background and found that the perceived contrast of the probe was increased when it was placed on a figure. Furthermore, we tested how this effect compared with the well-known effect of orientation contrast on perceived contrast. We found that figure-ground assignment and orientation contrast produced changes in perceived contrast of a similar magnitude, and that they interacted. Our results demonstrate that figure-ground assignment influences perceived contrast, consistent with an effect of figure-ground assignment on activity in early visual areas of the human visual system. © 2015 ARVO.

  17. Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.

    PubMed

    Seymour, Kiley J; Clifford, Colin W G

    2012-05-01

    Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.

  18. Estimation of the Horizon in Photographed Outdoor Scenes by Human and Machine

    PubMed Central

    Herdtweck, Christian; Wallraven, Christian

    2013-01-01

    We present three experiments on horizon estimation. In Experiment 1 we verify the human ability to estimate the horizon in static images from only visual input. Estimates are given without time constraints with emphasis on precision. The resulting estimates are used as baseline to evaluate horizon estimates from early visual processes. Stimuli are presented for only ms and then masked to purge visual short-term memory and enforcing estimates to rely on early processes, only. The high agreement between estimates and the lack of a training effect shows that enough information about viewpoint is extracted in the first few hundred milliseconds to make accurate horizon estimation possible. In Experiment 3 we investigate several strategies to estimate the horizon in the computer and compare human with machine “behavior” for different image manipulations and image scene types. PMID:24349073

  19. Altered white matter in early visual pathways of humans with amblyopia.

    PubMed

    Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin; Pestilli, Franco; Rokers, Bas

    2015-09-01

    Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience

    PubMed Central

    Binda, Paola; Benson, Noah C.; Bridge, Holly; Watkins, Kate E.

    2015-01-01

    Early visual areas have neuronal receptive fields that form a sampling mosaic of visual space, resulting in a series of retinotopic maps in which the same region of space is represented in multiple visual areas. It is not clear to what extent the development and maintenance of this retinotopic organization in humans depend on retinal waves and/or visual experience. We examined the corticocortical receptive field organization of resting-state BOLD data in normally sighted, early blind, and anophthalmic (in which both eyes fail to develop) individuals and found that resting-state correlations between V1 and V2/V3 were retinotopically organized for all subject groups. These results show that the gross retinotopic pattern of resting-state connectivity across V1-V3 requires neither retinal waves nor visual experience to develop and persist into adulthood. SIGNIFICANCE STATEMENT Evidence from resting-state BOLD data suggests that the connections between early visual areas develop and are maintained even in the absence of retinal waves and visual experience. PMID:26354906

  1. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    PubMed

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  2. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    PubMed Central

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  3. The "social" and "interpersonal" body in spatial cognition. The role of agency and interagency.

    PubMed

    Crivelli, Davide; Balconi, Michela

    2015-09-01

    In order to interact effectively, we need to represent our action as produced by human beings. According to direct access theories, the first steps of visual information processing offer us an informed direct grasp of the situation, especially when social and interpersonal components are implicated. Biological system detection may be the gateway of such smart processes and then may influence initial stages of perception fostering adaptive social behaviour. To investigate early neural correlates of human agency detection in ecological situations with more high or low social impact, we compared scenes showing a human versus artificial agent interacting with a human agent. Twenty volunteers participated in the study. They were asked to observe dynamic visual stimuli showing realistic interactions. ERP (event-related potentials) were recorded. Each stimulus depicted an arm executing a gesture addressed to a human agent. Visual features of the arm were manipulated: in half of trials, it was real; in other trials, it was deprived of some details and transformed in a statue-like arm. EEG morphological analysis revealed an early negative deflection peaking at about 155 ms. Peak amplitude data have been statistically analysed by repeated-measures ANOVAs. It was found that the peak was ampler in the left inferior posterior region when the gesturing arm was human. The early negative deflection, N150, which we found to be different between the human and artificial conditions, is presumably associated with human agency detection in high interpersonal context.

  4. Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex

    PubMed Central

    Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272

  5. Resolving human object recognition in space and time

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2014-01-01

    A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044

  6. Visual development of human milk-fed preterm infants provided with extra energy and nutrients after hospital discharge.

    PubMed

    O'Connor, Deborah L; Weishuhn, Karen; Rovet, Joanne; Mirabella, Giuseppe; Jefferies, Ann; Campbell, Douglas M; Asztalos, Elizabeth; Feldman, Mark; Whyte, Hilary; Westall, Carol

    2012-05-01

    Human milk (HM) is the optimal way to nourish preterm low birth weight (LBW) infants after hospital discharge. However, there are few data on which to assess whether HM alone is sufficient to address hospital-acquired nutrition deficits, and no adequately powered studies have examined this question using neurodevelopment as an outcome. The purpose of this work was to determine whether adding extra energy and nutrients to the feedings of predominantly HM-fed LBW infants early after discharge improves their visual development. Visual development was used in this study as a surrogate marker for neurodevelopment. At discharge, 39 predominantly HM-fed LBW infants (750-1800 g, 1288 ± 288 g) were randomized to receive human milk alone (control) or around half of the HM received daily mixed with a multinutrient fortifier (intervention) for 12 weeks. Grating acuity (ie, visual acuity) and contrast sensitivity were assessed using sweep visual-evoked potential tests at 4 and 6 months corrected age. At 4 and 6 months corrected age, intervention infants demonstrated higher grating acuity compared to those in the control group (intervention: 7.8 ± 1.3 and 9.7 ± 1.2 [cycles/degree] vs control 6.9 ± 1.2 and 8.2 ± 1.3, P = .02). Differences in contrast sensitivity did not reach statistical significance (P = .11). Adding a multinutrient fortifier to a portion of the expressed breast milk provided to predominantly HM-fed LBW infants early after discharge improves their early visual development. Whether these subtle differences in visual development apply to other aspects of development or longer term neurodevelopment are worthy of future investigation.

  7. Structural reorganization of the early visual cortex following Braille training in sighted adults.

    PubMed

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin

    2017-12-12

    Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.

  8. More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury.

    PubMed

    Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A

    2017-11-13

    Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI tractography of secondary visual pathways connecting MT with the lateral geniculate nucleus (LGN) and the inferior pulvinar (PI) were analysed. Results revealed an increased PI-MT pathway in the left hemisphere, suggesting that this pulvinar relay could be the neural pathway affording the preserved visual capacity following an early-life lesion of V1. These findings corroborate anatomical evidence from monkeys showing an enhanced PI-MT pathway following an early-life lesion of V1, compared to adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

    PubMed

    Byers, Anna; Serences, John T

    2014-09-01

    Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.

  10. Memory for Complex Visual Objects but Not for Allocentric Locations during the First Year of Life

    ERIC Educational Resources Information Center

    Dupierrix, Eve; Hillairet de Boisferon, Anne; Barbeau, Emmanuel; Pascalis, Olivier

    2015-01-01

    Although human infants demonstrate early competence to retain visual information, memory capacities during infancy remain largely undocumented. In three experiments, we used a Visual Paired Comparison (VPC) task to examine abilities to encode identity (Experiment 1) and spatial properties (Experiments 2a and 2b) of unfamiliar complex visual…

  11. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli

    PubMed Central

    Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.

    2009-01-01

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778

  12. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.

    PubMed

    Störmer, Viola S; McDonald, John J; Hillyard, Steven A

    2009-12-29

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.

  13. Spiders do not evoke greater early posterior negativity in the event-related potential as snakes.

    PubMed

    He, Hongshen; Kubo, Kenta; Kawai, Nobuyuki

    2014-09-10

    It has been long believed that both snakes and spiders are archetypal fear stimuli for humans. Furthermore, snakes have been assumed as stronger threat cues for nonhuman primates. However, it is still unclear whether spiders hold a special status in human perception. The current study explored to what extent spider pictures draw early visual attention [as assessed with early posterior negativity (EPN)] when compared with insects similar to spiders. To measure the EPN, participants watched a random rapid serial presentation of pictures, which consisted of two conditions: spider condition (spider, wasp, bumblebee, beetle) and snake condition (snake, bird). EPN amplitudes revealed no significant difference between spider, wasp, bumblebee, and beetle pictures, whereas EPN amplitudes were significantly larger for snake pictures relative to bird pictures. In addition, EPN amplitudes were significantly larger for snake pictures relative to spider pictures. These results suggest that the early visual attentional capture of animate objects is stronger for snakes, whereas spiders do not appear to hold special early attentional value.

  14. Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex

    PubMed Central

    Jehee, Janneke F.M.; Ling, Sam; Swisher, Jascha D.; van Bergen, Ruben S.; Tong, Frank

    2013-01-01

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information. PMID:23175828

  15. Perceptual learning selectively refines orientation representations in early visual cortex.

    PubMed

    Jehee, Janneke F M; Ling, Sam; Swisher, Jascha D; van Bergen, Ruben S; Tong, Frank

    2012-11-21

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily 1 h training sessions. Training on average led to a twofold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1-V4) using signal detection measures, both before and after training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2-V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information.

  16. Within-Hemifield Competition in Early Visual Areas Limits the Ability to Track Multiple Objects with Attention

    PubMed Central

    Alvarez, George A.; Cavanagh, Patrick

    2014-01-01

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651

  17. Human dimensions of early successional landscapes in the eastern United States

    Treesearch

    Paul H. Gobster

    2001-01-01

    People interactions wit early successional landscapes are varied and diverse. I review 3 key ways thta people perceive, use, and value forest landscapes, emphasizing selected types of early successional landscapes in the eastern United States(U.S.): production and comsumption of timber and nontimber forest products, visual and aesthetic perceptions , and recreational...

  18. Long-Lasting Crossmodal Cortical Reorganization Triggered by Brief Postnatal Visual Deprivation.

    PubMed

    Collignon, Olivier; Dormal, Giulia; de Heering, Adelaide; Lepore, Franco; Lewis, Terri L; Maurer, Daphne

    2015-09-21

    Animal and human studies have demonstrated that transient visual deprivation early in life, even for a very short period, permanently alters the response properties of neurons in the visual cortex and leads to corresponding behavioral visual deficits. While it is acknowledged that early-onset and longstanding blindness leads the occipital cortex to respond to non-visual stimulation, it remains unknown whether a short and transient period of postnatal visual deprivation is sufficient to trigger crossmodal reorganization that persists after years of visual experience. In the present study, we characterized brain responses to auditory stimuli in 11 adults who had been deprived of all patterned vision at birth by congenital cataracts in both eyes until they were treated at 9 to 238 days of age. When compared to controls with typical visual experience, the cataract-reversal group showed enhanced auditory-driven activity in focal visual regions. A combination of dynamic causal modeling with Bayesian model selection indicated that this auditory-driven activity in the occipital cortex was better explained by direct cortico-cortical connections with the primary auditory cortex than by subcortical connections. Thus, a short and transient period of visual deprivation early in life leads to enduring large-scale crossmodal reorganization of the brain circuitry typically dedicated to vision. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action

    PubMed Central

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2016-01-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  20. Binocular visual training to promote recovery from monocular deprivation.

    PubMed

    Murphy, Kathryn M; Roumeliotis, Grayson; Williams, Kate; Beston, Brett R; Jones, David G

    2015-01-08

    Abnormal early visual experience often leads to poor vision, a condition called amblyopia. Two recent approaches to treating amblyopia include binocular therapies and intensive visual training. These reflect the emerging view that amblyopia is a binocular deficit caused by increased neural noise and poor signal-in-noise integration. Most perceptual learning studies have used monocular training; however, a recent study has shown that binocular training is effective for improving acuity in adult human amblyopes. We used an animal model of amblyopia, based on monocular deprivation, to compare the effect of binocular training either during or after the critical period for ocular dominance plasticity (early binocular training vs. late binocular training). We used a high-contrast, orientation-in-noise stimulus to drive the visual cortex because neurophysiological findings suggest that binocular training may allow the nondeprived eye to teach the deprived eye's circuits to function. We found that both early and late binocular training promoted good visual recovery. Surprisingly, we found that monocular deprivation caused a permanent deficit in the vision of both eyes, which became evident only as a sleeper effect following many weeks of visual training. © 2015 ARVO.

  1. The selectivity of responses to red-green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study.

    PubMed

    Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F

    2015-12-01

    There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.

    PubMed

    van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T

    2012-01-04

    The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.

  3. The evolution of the complex sensory and motor systems of the human brain.

    PubMed

    Kaas, Jon H

    2008-03-18

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size.

  4. Visual event-related potentials to biological motion stimuli in autism spectrum disorders

    PubMed Central

    Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan

    2014-01-01

    Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808

  5. Flexible Coding of Visual Working Memory Representations during Distraction.

    PubMed

    Lorenc, Elizabeth S; Sreenivasan, Kartik K; Nee, Derek E; Vandenbroucke, Annelinde R E; D'Esposito, Mark

    2018-06-06

    Visual working memory (VWM) recruits a broad network of brain regions, including prefrontal, parietal, and visual cortices. Recent evidence supports a "sensory recruitment" model of VWM, whereby precise visual details are maintained in the same stimulus-selective regions responsible for perception. A key question in evaluating the sensory recruitment model is how VWM representations persist through distracting visual input, given that the early visual areas that putatively represent VWM content are susceptible to interference from visual stimulation.To address this question, we used a functional magnetic resonance imaging inverted encoding model approach to quantitatively assess the effect of distractors on VWM representations in early visual cortex and the intraparietal sulcus (IPS), another region previously implicated in the storage of VWM information. This approach allowed us to reconstruct VWM representations for orientation, both before and after visual interference, and to examine whether oriented distractors systematically biased these representations. In our human participants (both male and female), we found that orientation information was maintained simultaneously in early visual areas and IPS in anticipation of possible distraction, and these representations persisted in the absence of distraction. Importantly, early visual representations were susceptible to interference; VWM orientations reconstructed from visual cortex were significantly biased toward distractors, corresponding to a small attractive bias in behavior. In contrast, IPS representations did not show such a bias. These results provide quantitative insight into the effect of interference on VWM representations, and they suggest a dynamic tradeoff between visual and parietal regions that allows flexible adaptation to task demands in service of VWM. SIGNIFICANCE STATEMENT Despite considerable evidence that stimulus-selective visual regions maintain precise visual information in working memory, it remains unclear how these representations persist through subsequent input. Here, we used quantitative model-based fMRI analyses to reconstruct the contents of working memory and examine the effects of distracting input. Although representations in the early visual areas were systematically biased by distractors, those in the intraparietal sulcus appeared distractor-resistant. In contrast, early visual representations were most reliable in the absence of distraction. These results demonstrate the dynamic, adaptive nature of visual working memory processes, and provide quantitative insight into the ways in which representations can be affected by interference. Further, they suggest that current models of working memory should be revised to incorporate this flexibility. Copyright © 2018 the authors 0270-6474/18/385267-10$15.00/0.

  6. Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention.

    PubMed

    Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick

    2014-08-27

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.

  7. Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions.

    PubMed

    Contini, Erika W; Wardle, Susan G; Carlson, Thomas A

    2017-10-01

    Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. "Visual" Cortex Responds to Spoken Language in Blind Children.

    PubMed

    Bedny, Marina; Richardson, Hilary; Saxe, Rebecca

    2015-08-19

    Plasticity in the visual cortex of blind individuals provides a rare window into the mechanisms of cortical specialization. In the absence of visual input, occipital ("visual") brain regions respond to sound and spoken language. Here, we examined the time course and developmental mechanism of this plasticity in blind children. Nineteen blind and 40 sighted children and adolescents (4-17 years old) listened to stories and two auditory control conditions (unfamiliar foreign speech, and music). We find that "visual" cortices of young blind (but not sighted) children respond to sound. Responses to nonlanguage sounds increased between the ages of 4 and 17. By contrast, occipital responses to spoken language were maximal by age 4 and were not related to Braille learning. These findings suggest that occipital plasticity for spoken language is independent of plasticity for Braille and for sound. We conclude that in the absence of visual input, spoken language colonizes the visual system during brain development. Our findings suggest that early in life, human cortex has a remarkably broad computational capacity. The same cortical tissue can take on visual perception and language functions. Studies of plasticity provide key insights into how experience shapes the human brain. The "visual" cortex of adults who are blind from birth responds to touch, sound, and spoken language. To date, all existing studies have been conducted with adults, so little is known about the developmental trajectory of plasticity. We used fMRI to study the emergence of "visual" cortex responses to sound and spoken language in blind children and adolescents. We find that "visual" cortex responses to sound increase between 4 and 17 years of age. By contrast, responses to spoken language are present by 4 years of age and are not related to Braille-learning. These findings suggest that, early in development, human cortex can take on a strikingly wide range of functions. Copyright © 2015 the authors 0270-6474/15/3511674-08$15.00/0.

  9. Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches

    PubMed Central

    Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine

    2014-01-01

    Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268

  10. Acuity-independent effects of visual deprivation on human visual cortex

    PubMed Central

    Hou, Chuan; Pettet, Mark W.; Norcia, Anthony M.

    2014-01-01

    Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To shed new light on how these two different forms of visual deprivation affect the development of visual cortex, we used event-related potentials (ERPs) to study the temporal evolution of visual responses in patients who had experienced either strabismus or anisometropia early in life. To make a specific statement about the locus of deprivation effects, we took advantage of a stimulation paradigm in which we could measure deprivation effects that arise either before or after a configuration-specific response to illusory contours (ICs). Extraction of ICs is known to first occur in extrastriate visual areas. Our ERP measurements indicate that deprivation via strabismus affects both the early part of the evoked response that occurs before ICs are formed as well as the later IC-selective response. Importantly, these effects are found in the normal-acuity nonamblyopic eyes of strabismic amblyopes and in both eyes of strabismic patients without amblyopia. The nonamblyopic eyes of anisometropic amblyopes, by contrast, are normal. Our results indicate that beyond the well-known effects of strabismus on the development of normal binocularity, it also affects the early stages of monocular feature processing in an acuity-independent fashion. PMID:25024230

  11. Masking disrupts reentrant processing in human visual cortex.

    PubMed

    Fahrenfort, J J; Scholte, H S; Lamme, V A F

    2007-09-01

    In masking, a stimulus is rendered invisible through the presentation of a second stimulus shortly after the first. Over the years, authors have typically explained masking by postulating some early disruption process. In these feedforward-type explanations, the mask somehow "catches up" with the target stimulus, disrupting its processing either through lateral or interchannel inhibition. However, studies from recent years indicate that visual perception--and most notably visual awareness itself--may depend strongly on cortico-cortical feedback connections from higher to lower visual areas. This has led some researchers to propose that masking derives its effectiveness from selectively interrupting these reentrant processes. In this experiment, we used electroencephalogram measurements to determine what happens in the human visual cortex during detection of a texture-defined square under nonmasked (seen) and masked (unseen) conditions. Electro-encephalogram derivatives that are typically associated with reentrant processing turn out to be absent in the masked condition. Moreover, extrastriate visual areas are still activated early on by both seen and unseen stimuli, as shown by scalp surface Laplacian current source-density maps. This conclusively shows that feedforward processing is preserved, even when subject performance is at chance as determined by objective measures. From these results, we conclude that masking derives its effectiveness, at least partly, from disrupting reentrant processing, thereby interfering with the neural mechanisms of figure-ground segmentation and visual awareness itself.

  12. Odour discrimination and identification are improved in early blindness.

    PubMed

    Cuevas, Isabel; Plaza, Paula; Rombaux, Philippe; De Volder, Anne G; Renier, Laurent

    2009-12-01

    Previous studies showed that early blind humans develop superior abilities in the use of their remaining senses, hypothetically due to a functional reorganization of the deprived visual brain areas. While auditory and tactile functions have been investigated for long, little is known about the effects of early visual deprivation on olfactory processing. However, blind humans make an extensive use of olfactory information in their daily life. Here we investigated olfactory discrimination and identification abilities in early blind subjects and age-matched sighted controls. Three levels of cuing were used in the identification task, i.e., free-identification (no cue), categorization (semantic cues) and multiple choice (semantic and phonological cues). Early blind subjects significantly outperformed the controls in odour discrimination, free-identification and categorization. In addition, the larger group difference was observed in the free-identification as compared to the categorization and the multiple choice conditions. This indicated that a better access to the semantic information from odour perception accounted for part of the improved olfactory performances in odour identification in the blind. We concluded that early blind subjects have both improved perceptual abilities and a better access to the information stored in semantic memory than sighted subjects.

  13. Feature-selective attention enhances color signals in early visual areas of the human brain.

    PubMed

    Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A

    2006-09-19

    We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.

  14. Establishing the fundamentals for an elephant early warning and monitoring system.

    PubMed

    Zeppelzauer, Matthias; Stoeger, Angela S

    2015-09-04

    The decline of habitat for elephants due to expanding human activity is a serious conservation problem. This has continuously escalated the human-elephant conflict in Africa and Asia. Elephants make extensive use of powerful infrasonic calls (rumbles) that travel distances of up to several kilometers. This makes elephants well-suited for acoustic monitoring because it enables detecting elephants even if they are out of sight. In sight, their distinct visual appearance makes them a good candidate for visual monitoring. We provide an integrated overview of our interdisciplinary project that established the scientific fundamentals for a future early warning and monitoring system for humans who regularly experience serious conflict with elephants. We first draw the big picture of an early warning and monitoring system, then review the developed solutions for automatic acoustic and visual detection, discuss specific challenges and present open future work necessary to build a robust and reliable early warning and monitoring system that is able to operate in situ. We present a method for the automated detection of elephant rumbles that is robust to the diverse noise sources present in situ. We evaluated the method on an extensive set of audio data recorded under natural field conditions. Results show that the proposed method outperforms existing approaches and accurately detects elephant rumbles. Our visual detection method shows that tracking elephants in wildlife videos (of different sizes and postures) is feasible and particularly robust at near distances. From our project results we draw a number of conclusions that are discussed and summarized. We clearly identified the most critical challenges and necessary improvements of the proposed detection methods and conclude that our findings have the potential to form the basis for a future automated early warning system for elephants. We discuss challenges that need to be solved and summarize open topics in the context of a future early warning and monitoring system. We conclude that a long-term evaluation of the presented methods in situ using real-time prototypes is the most important next step to transfer the developed methods into practical implementation.

  15. Timing of target discrimination in human frontal eye fields.

    PubMed

    O'Shea, Jacinta; Muggleton, Neil G; Cowey, Alan; Walsh, Vincent

    2004-01-01

    Frontal eye field (FEF) neurons discharge in response to behaviorally relevant stimuli that are potential targets for saccades. Distinct visual and motor processes have been dissociated in the FEF of macaque monkeys, but little is known about the visual processing capacity of FEF in humans. We used double-pulse transcranial magnetic stimulation [(d)TMS] to investigate the timing of target discrimination during visual conjunction search. We applied dual TMS pulses separated by 40 msec over the right FEF and vertex. These were applied in five timing conditions to sample separate time windows within the first 200 msec of visual processing. (d)TMS impaired search performance, reflected in reduced d' scores. This effect was limited to a time window between 40 and 80 msec after search array onset. These parameters correspond with single-cell activity in FEF that predicts monkeys' behavioral reports on hit, miss, false alarm, and correct rejection trials. Our findings demonstrate a crucial early role for human FEF in visual target discrimination that is independent of saccade programming.

  16. Perception of biological motion from size-invariant body representations.

    PubMed

    Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E

    2015-01-01

    The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.

  17. Absence of visual experience modifies the neural basis of numerical thinking.

    PubMed

    Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina

    2016-10-04

    In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 - 12 = x vs. 7 - 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these "visual" regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness.

  18. The evolution of the complex sensory and motor systems of the human brain

    PubMed Central

    Kaas, Jon H.

    2008-01-01

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20–25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size. PMID:18331903

  19. The multisensory function of the human primary visual cortex.

    PubMed

    Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J

    2016-03-01

    It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Integrating visualization and interaction research to improve scientific workflows.

    PubMed

    Keefe, Daniel F

    2010-01-01

    Scientific-visualization research is, nearly by necessity, interdisciplinary. In addition to their collaborators in application domains (for example, cell biology), researchers regularly build on close ties with disciplines related to visualization, such as graphics, human-computer interaction, and cognitive science. One of these ties is the connection between visualization and interaction research. This isn't a new direction for scientific visualization (see the "Early Connections" sidebar). However, momentum recently seems to be increasing toward integrating visualization research (for example, effective visual presentation of data) with interaction research (for example, innovative interactive techniques that facilitate manipulating and exploring data). We see evidence of this trend in several places, including the visualization literature and conferences.

  1. Neural Pathways Conveying Novisual Information to the Visual Cortex

    PubMed Central

    2013-01-01

    The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed. PMID:23840972

  2. Decoding information about dynamically occluded objects in visual cortex

    PubMed Central

    Erlikhman, Gennady; Caplovitz, Gideon P.

    2016-01-01

    During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987

  3. Rapid Simultaneous Enhancement of Visual Sensitivity and Perceived Contrast during Saccade Preparation

    PubMed Central

    Rolfs, Martin; Carrasco, Marisa

    2012-01-01

    Humans and other animals with foveate vision make saccadic eye movements to prioritize the visual analysis of behaviorally relevant information. Even before movement onset, visual processing is selectively enhanced at the target of a saccade, presumably gated by brain areas controlling eye movements. Here we assess concurrent changes in visual performance and perceived contrast before saccades, and show that saccade preparation enhances perception rapidly, altering early visual processing in a manner akin to increasing the physical contrast of the visual input. Observers compared orientation and contrast of a test stimulus, appearing briefly before a saccade, to a standard stimulus, presented previously during a fixation period. We found simultaneous progressive enhancement in both orientation discrimination performance and perceived contrast as time approached saccade onset. These effects were robust as early as 60 ms after the eye movement was cued, much faster than the voluntary deployment of covert attention (without eye movements), which takes ~300 ms. Our results link the dynamics of saccade preparation, visual performance, and subjective experience and show that upcoming eye movements alter visual processing by increasing the signal strength. PMID:23035086

  4. Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway.

    PubMed

    Mohsenzadeh, Yalda; Qin, Sheng; Cichy, Radoslaw M; Pantazis, Dimitrios

    2018-06-21

    Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions. © 2018, Mohsenzadeh et al.

  5. Eye movement-invariant representations in the human visual system.

    PubMed

    Nishimoto, Shinji; Huth, Alexander G; Bilenko, Natalia Y; Gallant, Jack L

    2017-01-01

    During natural vision, humans make frequent eye movements but perceive a stable visual world. It is therefore likely that the human visual system contains representations of the visual world that are invariant to eye movements. Here we present an experiment designed to identify visual areas that might contain eye-movement-invariant representations. We used functional MRI to record brain activity from four human subjects who watched natural movies. In one condition subjects were required to fixate steadily, and in the other they were allowed to freely make voluntary eye movements. The movies used in each condition were identical. We reasoned that the brain activity recorded in a visual area that is invariant to eye movement should be similar under fixation and free viewing conditions. In contrast, activity in a visual area that is sensitive to eye movement should differ between fixation and free viewing. We therefore measured the similarity of brain activity across repeated presentations of the same movie within the fixation condition, and separately between the fixation and free viewing conditions. The ratio of these measures was used to determine which brain areas are most likely to contain eye movement-invariant representations. We found that voxels located in early visual areas are strongly affected by eye movements, while voxels in ventral temporal areas are only weakly affected by eye movements. These results suggest that the ventral temporal visual areas contain a stable representation of the visual world that is invariant to eye movements made during natural vision.

  6. Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging.

    PubMed

    Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F

    2008-11-01

    In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.

  7. Visual Aversive Learning Compromises Sensory Discrimination.

    PubMed

    Shalev, Lee; Paz, Rony; Avidan, Galia

    2018-03-14

    Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural activations in the anterior cingulate cortex, insula, and amygdala during aversive learning, compared with neutral learning. Importantly, similar findings were also evident in the early visual cortex during trials with aversive/neutral context, but with identical visual information. The demonstration of this phenomenon in the visual modality is important, as it provides support to the notion that aversive learning can influence perception via a central mechanism, independent of input modality. Given the dominance of the visual system in human perception, our findings hold relevance to daily life, as well as imply a potential etiology for anxiety disorders. Copyright © 2018 the authors 0270-6474/18/382766-14$15.00/0.

  8. The Representation of Color across the Human Visual Cortex: Distinguishing Chromatic Signals Contributing to Object Form Versus Surface Color.

    PubMed

    Seymour, K J; Williams, M A; Rich, A N

    2016-05-01

    Many theories of visual object perception assume the visual system initially extracts borders between objects and their background and then "fills in" color to the resulting object surfaces. We investigated the transformation of chromatic signals across the human ventral visual stream, with particular interest in distinguishing representations of object surface color from representations of chromatic signals reflecting the retinal input. We used fMRI to measure brain activity while participants viewed figure-ground stimuli that differed either in the position or in the color contrast polarity of the foreground object (the figure). Multivariate pattern analysis revealed that classifiers were able to decode information about which color was presented at a particular retinal location from early visual areas, whereas regions further along the ventral stream exhibited biases for representing color as part of an object's surface, irrespective of its position on the retina. Additional analyses showed that although activity in V2 contained strong chromatic contrast information to support the early parsing of objects within a visual scene, activity in this area also signaled information about object surface color. These findings are consistent with the view that mechanisms underlying scene segmentation and the binding of color to object surfaces converge in V2. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Visual defects in a mouse model of fetal alcohol spectrum disorder.

    PubMed

    Lantz, Crystal L; Pulimood, Nisha S; Rodrigues-Junior, Wandilson S; Chen, Ching-Kang; Manhaes, Alex C; Kalatsky, Valery A; Medina, Alexandre Esteves

    2014-01-01

    Alcohol consumption during pregnancy can lead to a multitude of neurological problems in offspring, varying from subtle behavioral changes to severe mental retardation. These alterations are collectively referred to as Fetal Alcohol Spectrum Disorders (FASD). Early alcohol exposure can strongly affect the visual system and children with FASD can exhibit an amblyopia-like pattern of visual acuity deficits even in the absence of optical and oculomotor disruption. Here, we test whether early alcohol exposure can lead to a disruption in visual acuity, using a model of FASD to mimic alcohol consumption in the last months of human gestation. To accomplish this, mice were exposed to ethanol (5 g/kg i.p.) or saline on postnatal days (P) 5, 7, and 9. Two to three weeks later we recorded visually evoked potentials to assess spatial frequency detection and contrast sensitivity, conducted electroretinography (ERG) to further assess visual function and imaged retinotopy using optical imaging of intrinsic signals. We observed that animals exposed to ethanol displayed spatial frequency acuity curves similar to controls. However, ethanol-treated animals showed a significant deficit in contrast sensitivity. Moreover, ERGs revealed a market decrease in both a- and b-waves amplitudes, and optical imaging suggest that both elevation and azimuth maps in ethanol-treated animals have a 10-20° greater map tilt compared to saline-treated controls. Overall, our findings suggest that binge alcohol drinking restricted to the last months of gestation in humans can lead to marked deficits in visual function.

  10. Functional Characterization and Differential Coactivation Patterns of Two Cytoarchitectonic Visual Areas on the Human Posterior Fusiform Gyrus

    PubMed Central

    Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902

  11. Functional selectivity for face processing in the temporal voice area of early deaf individuals

    PubMed Central

    van Ackeren, Markus J.; Rabini, Giuseppe; Zonca, Joshua; Foa, Valentina; Baruffaldi, Francesca; Rezk, Mohamed; Pavani, Francesco; Rossion, Bruno; Collignon, Olivier

    2017-01-01

    Brain systems supporting face and voice processing both contribute to the extraction of important information for social interaction (e.g., person identity). How does the brain reorganize when one of these channels is absent? Here, we explore this question by combining behavioral and multimodal neuroimaging measures (magneto-encephalography and functional imaging) in a group of early deaf humans. We show enhanced selective neural response for faces and for individual face coding in a specific region of the auditory cortex that is typically specialized for voice perception in hearing individuals. In this region, selectivity to face signals emerges early in the visual processing hierarchy, shortly after typical face-selective responses in the ventral visual pathway. Functional and effective connectivity analyses suggest reorganization in long-range connections from early visual areas to the face-selective temporal area in individuals with early and profound deafness. Altogether, these observations demonstrate that regions that typically specialize for voice processing in the hearing brain preferentially reorganize for face processing in born-deaf people. Our results support the idea that cross-modal plasticity in the case of early sensory deprivation relates to the original functional specialization of the reorganized brain regions. PMID:28652333

  12. Induced and evoked neural correlates of orientation selectivity in human visual cortex.

    PubMed

    Koelewijn, Loes; Dumont, Julie R; Muthukumaraswamy, Suresh D; Rich, Anina N; Singh, Krish D

    2011-02-14

    Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Are visual peripheries forever young?

    PubMed

    Burnat, Kalina

    2015-01-01

    The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.

  14. Insights into intermediate phases of human intestinal fluids visualized by atomic force microscopy and cryo-transmission electron microscopy ex vivo.

    PubMed

    Müllertz, Anette; Fatouros, Dimitrios G; Smith, James R; Vertzoni, Maria; Reppas, Christos

    2012-02-06

    The current work aims to study at the ultrastructural level the morphological development of colloidal intermediate phases of human intestinal fluids (HIFs) produced during lipid digestion. HIFs were aspirated near the ligament of Treitz early (30 min), Aspirate(early), and 1 h, Aspirate(1h)(ave,comp), after the administration of a heterogeneous liquid meal into the antrum. The composition of the sample aspirated 1 h after meal administration was similar to the average lumenal composition 1 h after meal administration (Aspirate(1h)(ave,comp)). The colloidal structures of individual aspirates and supernatants of aspirates after ultracentrifugation (micellar phase) were characterized by means of atomic force microscopy (AFM) and cryogenic transmission electron microscopy (Cryo-TEM). AFM revealed domain-like structures in Aspirate(early) and both vesicles and large aggregates Aspirate(1h)(ave,comp). Rough surfaces and domains varying in size were frequently present in the micellar phase of both Aspirate(early) and Aspirate(1h)(ave,comp). Cryo-TEM revealed an abundance of spherical micelles and occasionally presented worm-like micelles coexisting with faceted and less defined vesicles in Aspirate(early) and Aspirate(1h)(ave,comp). In Aspirate(1h)(ave,comp) oil droplets were visualized with bilayers closely located to their surface suggesting lipolytic product phases accumulated on the surface of the oil droplet. In the micellar phase of Aspirate(early), Cryo-TEM revealed the presence of spherical micelles, small vesicles, membrane fragments, oil droplets and plate-like structures. In the micellar phase of Aspirate(1h)(ave,comp) the only difference was the absence of oil droplets. Visualization studies previously performed with biorelevant media revealed structural features with many similarities as presented in the current investigation. The impression of the complexity and diversion of these phases has been reinforced with the excessive variation of structural features visualized ex vivo in the current study offering insights at the ultrastuctural level of intermediate phases which impact drug solubilization.

  15. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    PubMed

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Unravelling the development of the visual cortex: implications for plasticity and repair

    PubMed Central

    Bourne, James A

    2010-01-01

    The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain. PMID:20722872

  17. Are neural correlates of visual consciousness retinotopic?

    PubMed

    ffytche, Dominic H; Pins, Delphine

    2003-11-14

    Some visual neurons code what we see, their defining characteristic being a response profile which mirrors conscious percepts rather than veridical sensory attributes. One issue yet to be resolved is whether, within a given cortical area, conscious visual perception relates to diffuse activity across the entire population of such cells or focal activity within the sub-population mapping the location of the perceived stimulus. Here we investigate the issue in the human brain with fMRI, using a threshold stimulation technique to dissociate perceptual from non-perceptual activity. Our results point to a retinotopic organisation of perceptual activity in early visual areas, with independent perceptual activations for different regions of visual space.

  18. Early screening of an infant's visual system

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.; Jorge, Jorge M.

    1999-06-01

    It is of utmost importance to the development of the child's visual system that she perceives clear focused retinal images. Furthermore if the refractive problems are not corrected in due time amblyopia may occur--myopia and hyperopia can only cause important problems in the future when they are significantly large, however for the astigmatism (rather frequent in infants) and anisometropia the problems tend to be more stringent. The early evaluation of the visual status of human infants is thus of critical importance. Photorefraction is a convenient technique for this kind of subjects. Essentially a light beam is delivered into the eyes. It is refracted by the ocular media, strikes the retina, focusing or not, reflects off and is collected by a camera. The photorefraction setup we established using new technological breakthroughs on the fields of imaging devices, digital image processing and fiber optics, allows a fast noninvasive evaluation of children visual status (refractive errors, accommodation, strabismus, ...). Results of the visual screening of a group of risk' child descents of blinds or amblyopes will be presented.

  19. Contextual modulation of primary visual cortex by auditory signals.

    PubMed

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  20. Contextual modulation of primary visual cortex by auditory signals

    PubMed Central

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  1. Bilateral Theta-Burst TMS to Influence Global Gestalt Perception

    PubMed Central

    Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto

    2012-01-01

    While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects – a deficit termed simultanagnosia – greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres. PMID:23110106

  2. Bilateral theta-burst TMS to influence global gestalt perception.

    PubMed

    Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto

    2012-01-01

    While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects - a deficit termed simultanagnosia - greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres.

  3. Serial grouping of 2D-image regions with object-based attention in humans.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-06-13

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas.

  4. Modulation of early cortical processing during divided attention to non-contiguous locations

    PubMed Central

    Frey, Hans-Peter; Schmid, Anita M.; Murphy, Jeremy W.; Molholm, Sophie; Lalor, Edmund C.; Foxe, John J.

    2015-01-01

    We often face the challenge of simultaneously attending to multiple non-contiguous regions of space. There is ongoing debate as to how spatial attention is divided under these situations. While for several years the predominant view was that humans could divide the attentional spotlight, several recent studies argue in favor of a unitary spotlight that rhythmically samples relevant locations. Here, this issue was addressed using high-density electrophysiology in concert with the multifocal m-sequence technique to examine visual evoked responses to multiple simultaneous streams of stimulation. Concurrently, we assayed the topographic distribution of alpha-band oscillatory mechanisms, a measure of attentional suppression. Participants performed a difficult detection task that required simultaneous attention to two stimuli in contiguous (undivided) or non-contiguous parts of space. In the undivided condition, the classical pattern of attentional modulation was observed, with increased amplitude of the early visual evoked response and increased alpha amplitude ipsilateral to the attended hemifield. For the divided condition, early visual responses to attended stimuli were also enhanced and the observed multifocal topographic distribution of alpha suppression was in line with the divided attention hypothesis. These results support the existence of divided attentional spotlights, providing evidence that the corresponding modulation occurs during initial sensory processing timeframes in hierarchically early visual regions and that suppressive mechanisms of visual attention selectively target distracter locations during divided spatial attention. PMID:24606564

  5. Emotional and movement-related body postures modulate visual processing

    PubMed Central

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E.; Avenanti, Alessio

    2015-01-01

    Human body postures convey useful information for understanding others’ emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213

  6. Therapeutic Cell-Cycle-Decoy Efficacy of a Telomerase-Dependent Adenovirus in an Orthotopic Model of Chemotherapy-Resistant Human Stomach Carcinomatosis Peritonitis Visualized With FUCCI Imaging.

    PubMed

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-11-01

    We have established an orthotopic nude-mouse model of gastric cancer carcinomatosis peritonitis, a recalcitrant disease in human patients. Human MKN45 poorly-differentiated human gastric cancer cells developed carcinomatosis peritonitis upon orthotopic transplantation in nude mice. The MKN45 cells expressed the fluorescent ubiquitination-based cell cycle indicator (FUCCI) that color codes the phases of the cell cycle. The intra-peritoneal tumors and ascites contained mostly quiescent G 1 /G o cancer cells visualized as red by FUCCI imaging. Cisplatinum (CDDP) treatment did not reduce bloody ascites, and larger tumors formed in the peritoneal cavity after CDDP treatment in an early-stage carcinomatosis peritonitis orthotopic mouse model. Paclitaxel-treated mice had reduced ascites, but also had large tumor masses in the peritonium after treatment with cancer cells mostly in G 0 /G 1 , visualized by FUCCI red. In contrast, OBP-301 telomerase-dependent adenovirus-treated mice had no ascites and only small tumor nodules consisting of cancer cells mostly in S/G 2 phases in the early-stage carcinomatosis peritonitis model, visualized by FUCCI green. Furthermore, OBP-301 significantly reduced the size of tumors (P < 0.01) and ascites even in a late-stage carcinomatosis peritonitis model. These results suggest that quiescent peritoneally-disseminated gastric cancer cells are resistant to conventional chemotherapy, but OBP-301 significantly reduced the weight of the tumors and increased survival, suggesting clinical potential. J. Cell. Biochem. 118: 3635-3642, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience suggests that higher-order cognition may be involved in VPL. If so, real-time strategy (RTS) video-game experience may facilitate VPL as a result of heavy involvement of cognitive skills. Here, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and investigated the underlying neural mechanisms. VGPs showed better performance in the early phase of training on the texture discrimination task and greater level of neuronal activity in cognitive areas and structural connectivity between visual and cognitive areas than NVGPs. These results support the hypothesis that VPL can occur beyond the visual cortex. Copyright © 2015 the authors 0270-6474/15/3510485-08$15.00/0.

  8. Perceptual asymmetry in texture perception.

    PubMed

    Williams, D; Julesz, B

    1992-07-15

    A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.

  9. Absence of visual experience modifies the neural basis of numerical thinking

    PubMed Central

    Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina

    2016-01-01

    In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 − 12 = x vs. 7 − 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these “visual” regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness. PMID:27638209

  10. Attention Priority Map of Face Images in Human Early Visual Cortex.

    PubMed

    Mo, Ce; He, Dongjun; Fang, Fang

    2018-01-03

    Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images. Copyright © 2018 the authors 0270-6474/18/380149-09$15.00/0.

  11. Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning

    PubMed Central

    Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka

    2012-01-01

    Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849

  12. Asymmetrical Interhemispheric Connections Develop in Cat Visual Cortex after Early Unilateral Convergent Strabismus: Anatomy, Physiology, and Mechanisms

    PubMed Central

    Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal

    2011-01-01

    In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883

  13. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    USDA-ARS?s Scientific Manuscript database

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  14. Task-dependent enhancement of facial expression and identity representations in human cortex.

    PubMed

    Dobs, Katharina; Schultz, Johannes; Bülthoff, Isabelle; Gardner, Justin L

    2018-05-15

    What cortical mechanisms allow humans to easily discern the expression or identity of a face? Subjects detected changes in expression or identity of a stream of dynamic faces while we measured BOLD responses from topographically and functionally defined areas throughout the visual hierarchy. Responses in dorsal areas increased during the expression task, whereas responses in ventral areas increased during the identity task, consistent with previous studies. Similar to ventral areas, early visual areas showed increased activity during the identity task. If visual responses are weighted by perceptual mechanisms according to their magnitude, these increased responses would lead to improved attentional selection of the task-appropriate facial aspect. Alternatively, increased responses could be a signature of a sensitivity enhancement mechanism that improves representations of the attended facial aspect. Consistent with the latter sensitivity enhancement mechanism, attending to expression led to enhanced decoding of exemplars of expression both in early visual and dorsal areas relative to attending identity. Similarly, decoding identity exemplars when attending to identity was improved in dorsal and ventral areas. We conclude that attending to expression or identity of dynamic faces is associated with increased selectivity in representations consistent with sensitivity enhancement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. The Anatomical and Functional Organization of the Human Visual Pulvinar

    PubMed Central

    Pinsk, Mark A.; Kastner, Sabine

    2015-01-01

    The pulvinar is the largest nucleus in the primate thalamus and contains extensive, reciprocal connections with visual cortex. Although the anatomical and functional organization of the pulvinar has been extensively studied in old and new world monkeys, little is known about the organization of the human pulvinar. Using high-resolution functional magnetic resonance imaging at 3 T, we identified two visual field maps within the ventral pulvinar, referred to as vPul1 and vPul2. Both maps contain an inversion of contralateral visual space with the upper visual field represented ventrally and the lower visual field represented dorsally. vPul1 and vPul2 border each other at the vertical meridian and share a representation of foveal space with iso-eccentricity lines extending across areal borders. Additional, coarse representations of contralateral visual space were identified within ventral medial and dorsal lateral portions of the pulvinar. Connectivity analyses on functional and diffusion imaging data revealed a strong distinction in thalamocortical connectivity between the dorsal and ventral pulvinar. The two maps in the ventral pulvinar were most strongly connected with early and extrastriate visual areas. Given the shared eccentricity representation and similarity in cortical connectivity, we propose that these two maps form a distinct visual field map cluster and perform related functions. The dorsal pulvinar was most strongly connected with parietal and frontal areas. The functional and anatomical organization observed within the human pulvinar was similar to the organization of the pulvinar in other primate species. SIGNIFICANCE STATEMENT The anatomical organization and basic response properties of the visual pulvinar have been extensively studied in nonhuman primates. Yet, relatively little is known about the functional and anatomical organization of the human pulvinar. Using neuroimaging, we found multiple representations of visual space within the ventral human pulvinar and extensive topographically organized connectivity with visual cortex. This organization is similar to other nonhuman primates and provides additional support that the general organization of the pulvinar is consistent across the primate phylogenetic tree. These results suggest that the human pulvinar, like other primates, is well positioned to regulate corticocortical communication. PMID:26156987

  16. Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics

    PubMed Central

    Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun

    2013-01-01

    When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304

  17. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    PubMed

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. The effect of early visual deprivation on the neural bases of multisensory processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2015-06-01

    Developmental vision is deemed to be necessary for the maturation of multisensory cortical circuits. Thus far, this has only been investigated in animal studies, which have shown that congenital visual deprivation markedly reduces the capability of neurons to integrate cross-modal inputs. The present study investigated the effect of transient congenital visual deprivation on the neural mechanisms of multisensory processing in humans. We used functional magnetic resonance imaging to compare responses of visual and auditory cortical areas to visual, auditory and audio-visual stimulation in cataract-reversal patients and normally sighted controls. The results showed that cataract-reversal patients, unlike normally sighted controls, did not exhibit multisensory integration in auditory areas. Furthermore, cataract-reversal patients, but not normally sighted controls, exhibited lower visual cortical processing within visual cortex during audio-visual stimulation than during visual stimulation. These results indicate that congenital visual deprivation affects the capability of cortical areas to integrate cross-modal inputs in humans, possibly because visual processing is suppressed during cross-modal stimulation. Arguably, the lack of vision in the first months after birth may result in a reorganization of visual cortex, including the suppression of noisy visual input from the deprived retina in order to reduce interference during auditory processing. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Modulation of early cortical processing during divided attention to non-contiguous locations.

    PubMed

    Frey, Hans-Peter; Schmid, Anita M; Murphy, Jeremy W; Molholm, Sophie; Lalor, Edmund C; Foxe, John J

    2014-05-01

    We often face the challenge of simultaneously attending to multiple non-contiguous regions of space. There is ongoing debate as to how spatial attention is divided under these situations. Whereas, for several years, the predominant view was that humans could divide the attentional spotlight, several recent studies argue in favor of a unitary spotlight that rhythmically samples relevant locations. Here, this issue was addressed by the use of high-density electrophysiology in concert with the multifocal m-sequence technique to examine visual evoked responses to multiple simultaneous streams of stimulation. Concurrently, we assayed the topographic distribution of alpha-band oscillatory mechanisms, a measure of attentional suppression. Participants performed a difficult detection task that required simultaneous attention to two stimuli in contiguous (undivided) or non-contiguous parts of space. In the undivided condition, the classic pattern of attentional modulation was observed, with increased amplitude of the early visual evoked response and increased alpha amplitude ipsilateral to the attended hemifield. For the divided condition, early visual responses to attended stimuli were also enhanced, and the observed multifocal topographic distribution of alpha suppression was in line with the divided attention hypothesis. These results support the existence of divided attentional spotlights, providing evidence that the corresponding modulation occurs during initial sensory processing time-frames in hierarchically early visual regions, and that suppressive mechanisms of visual attention selectively target distracter locations during divided spatial attention. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning

    PubMed Central

    Yee, Meagan; Jones, Susan S.; Smith, Linda B.

    2012-01-01

    Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015

  1. White matter changes linked to visual recovery after nerve decompression

    PubMed Central

    Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.

    2015-01-01

    The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884

  2. Analysis of early thrombus dynamics in a humanized mouse laser injury model.

    PubMed

    Wang, Weiwei; Lindsey, John P; Chen, Jianchun; Diacovo, Thomas G; King, Michael R

    2014-01-01

    Platelet aggregation and thrombus formation at the site of injury is a dynamic process that involves the continuous addition of new platelets as well as thrombus rupture. In the early stages of hemostasis (within minutes after vessel injury) this process can be visualized by transfusing fluorescently labeled human platelets and observing their deposition and detachment. These two counterbalancing events help the developing thrombus reach a steady-state morphology, where it is large enough to cover the injured vessel surface but not too large to form a severe thrombotic occlusion. In this study, the spatial and temporal aspects of early stage thrombus dynamics which result from laser-induced injury on arterioles of cremaster muscle in the humanized mouse were visualized using fluorescent microscopy. It was found that rolling platelets show preference for the upstream region while tethering/detaching platelets were primarily found downstream. It was also determined that the platelet deposition rate is relatively steady, whereas the effective thrombus coverage area does not increase at a constant rate. By introducing a new method to graphically represent the real time in vivo physiological shear stress environment, we conclude that the thrombus continuously changes shape by regional growth and decay, and neither dominates in the high shear stress region.

  3. Lightness computation by the human visual system

    NASA Astrophysics Data System (ADS)

    Rudd, Michael E.

    2017-05-01

    A model of achromatic color computation by the human visual system is presented, which is shown to account in an exact quantitative way for a large body of appearance matching data collected with simple visual displays. The model equations are closely related to those of the original Retinex model of Land and McCann. However, the present model differs in important ways from Land and McCann's theory in that it invokes additional biological and perceptual mechanisms, including contrast gain control, different inherent neural gains for incremental, and decremental luminance steps, and two types of top-down influence on the perceptual weights applied to local luminance steps in the display: edge classification and spatial integration attentional windowing. Arguments are presented to support the claim that these various visual processes must be instantiated by a particular underlying neural architecture. By pointing to correspondences between the architecture of the model and findings from visual neurophysiology, this paper suggests that edge classification involves a top-down gating of neural edge responses in early visual cortex (cortical areas V1 and/or V2) while spatial integration windowing occurs in cortical area V4 or beyond.

  4. Serial grouping of 2D-image regions with object-based attention in humans

    PubMed Central

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188

  5. Early Detection of Clinically Significant Prostate Cancer Using Ultrasonic Acoustic Radiation Force Impulse (ARFI) Imaging

    DTIC Science & Technology

    2017-10-01

    Toolkit for rapid 3D visualization and image volume interpretation, followed by automated transducer positioning in a user-selected image plane for... Toolkit (IGSTK) to enable rapid 3D visualization and image volume interpretation followed by automated transducer positioning in the user-selected... careers in science, technology, and the humanities. What do you plan to do during the next reporting period to accomplish the goals? If this

  6. Dynamics of normalization underlying masking in human visual cortex.

    PubMed

    Tsai, Jeffrey J; Wade, Alex R; Norcia, Anthony M

    2012-02-22

    Stimulus visibility can be reduced by other stimuli that overlap the same region of visual space, a process known as masking. Here we studied the neural mechanisms of masking in humans using source-imaged steady state visual evoked potentials and frequency-domain analysis over a wide range of relative stimulus strengths of test and mask stimuli. Test and mask stimuli were tagged with distinct temporal frequencies and we quantified spectral response components associated with the individual stimuli (self terms) and responses due to interaction between stimuli (intermodulation terms). In early visual cortex, masking alters the self terms in a manner consistent with a reduction of input contrast. We also identify a novel signature of masking: a robust intermodulation term that peaks when the test and mask stimuli have equal contrast and disappears when they are widely different. We fit all of our data simultaneously with family of a divisive gain control models that differed only in their dynamics. Models with either very short or very long temporal integration constants for the gain pool performed worse than a model with an integration time of ∼30 ms. Finally, the absolute magnitudes of the response were controlled by the ratio of the stimulus contrasts, not their absolute values. This contrast-contrast invariance suggests that many neurons in early visual cortex code relative rather than absolute contrast. Together, these results provide a more complete description of masking within the normalization framework of contrast gain control and suggest that contrast normalization accomplishes multiple functional goals.

  7. Preference for language in early infancy: the human language bias is not speech specific.

    PubMed

    Krentz, Ursula C; Corina, David P

    2008-01-01

    Fundamental to infants' acquisition of their native language is an inherent interest in the language spoken around them over non-linguistic environmental sounds. The following studies explored whether the bias for linguistic signals in hearing infants is specific to speech, or reflects a general bias for all human language, spoken and signed. Results indicate that 6-month-old infants prefer an unfamiliar, visual-gestural language (American Sign Language) over non-linguistic pantomime, but 10-month-olds do not. These data provide evidence against a speech-specific bias in early infancy and provide insights into those properties of human languages that may underlie this language-general attentional bias.

  8. Visualization tool for human-machine interface designers

    NASA Astrophysics Data System (ADS)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  9. Fine-grained temporal coding of visually-similar categories in the ventral visual pathway and prefrontal cortex

    PubMed Central

    Xu, Yang; D'Lauro, Christopher; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.

    2013-01-01

    Humans are remarkably proficient at categorizing visually-similar objects. To better understand the cortical basis of this categorization process, we used magnetoencephalography (MEG) to record neural activity while participants learned–with feedback–to discriminate two highly-similar, novel visual categories. We hypothesized that although prefrontal regions would mediate early category learning, this role would diminish with increasing category familiarity and that regions within the ventral visual pathway would come to play a more prominent role in encoding category-relevant information as learning progressed. Early in learning we observed some degree of categorical discriminability and predictability in both prefrontal cortex and the ventral visual pathway. Predictability improved significantly above chance in the ventral visual pathway over the course of learning with the left inferior temporal and fusiform gyri showing the greatest improvement in predictability between 150 and 250 ms (M200) during category learning. In contrast, there was no comparable increase in discriminability in prefrontal cortex with the only significant post-learning effect being a decrease in predictability in the inferior frontal gyrus between 250 and 350 ms (M300). Thus, the ventral visual pathway appears to encode learned visual categories over the long term. At the same time these results add to our understanding of the cortical origins of previously reported signature temporal components associated with perceptual learning. PMID:24146656

  10. Developmental trajectory of neural specialization for letter and number visual processing.

    PubMed

    Park, Joonkoo; van den Berg, Berry; Chiang, Crystal; Woldorff, Marty G; Brannon, Elizabeth M

    2018-05-01

    Adult neuroimaging studies have demonstrated dissociable neural activation patterns in the visual cortex in response to letters (Latin alphabet) and numbers (Arabic numerals), which suggest a strong experiential influence of reading and mathematics on the human visual system. Here, developmental trajectories in the event-related potential (ERP) patterns evoked by visual processing of letters, numbers, and false fonts were examined in four different age groups (7-, 10-, 15-year-olds, and young adults). The 15-year-olds and adults showed greater neural sensitivity to letters over numbers in the left visual cortex and the reverse pattern in the right visual cortex, extending previous findings in adults to teenagers. In marked contrast, 7- and 10-year-olds did not show this dissociable neural pattern. Furthermore, the contrast of familiar stimuli (letters or numbers) versus unfamiliar ones (false fonts) showed stark ERP differences between the younger (7- and 10-year-olds) and the older (15-year-olds and adults) participants. These results suggest that both coarse (familiar versus unfamiliar) and fine (letters versus numbers) tuning for letters and numbers continue throughout childhood and early adolescence, demonstrating a profound impact of uniquely human cultural inventions on visual cognition and its development. © 2017 John Wiley & Sons Ltd.

  11. Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences.

    PubMed

    Lee Masson, Haemy; Bulthé, Jessica; Op de Beeck, Hans P; Wallraven, Christian

    2016-08-01

    Humans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses. Importantly, we use tangible, parametrically defined novel objects as stimuli. Two groups of participants first performed either a visual or haptic similarity-judgment task. The resulting perceptual object-shape spaces were highly similar and matched the physical parameter space. In a subsequent fMRI experiment, objects were first compared within the learned modality and then in the other modality in a one-back task. When correlating neural similarity spaces with perceptual spaces, visually perceived shape was decoded well in the occipital lobe along with the ventral pathway, whereas haptically perceived shape information was mainly found in the parietal lobe, including frontal cortex. Interestingly, ventrolateral occipito-temporal cortex decoded shape in both modalities, highlighting this as an area capable of detailed visuo-haptic shape processing. Finally, we found haptic shape representations in early visual cortex (in the absence of visual input), when participants switched from visual to haptic exploration, suggesting top-down involvement of visual imagery on haptic shape processing. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    PubMed Central

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  13. Early diagnosis and successful treatment of paraneoplastic melanocytic proliferation

    PubMed Central

    Jansen, Joyce C G; Van Calster, Joachim; Pulido, Jose S; Miles, Sarah L; Vile, Richard G; Van Bergen, Tine; Cassiman, Catherine; Spielberg, Leigh H; Leys, Anita M

    2015-01-01

    Background Paraneoplastic melanocytic proliferation (bilateral diffuse uveal melanocytic proliferation, BDUMP) is a rare but devastating disease that causes progressive visual loss in patients who usually have an occult malignancy. Visual loss occurs as a result of paraneoplastic changes in the uveal tissue. Methods In a masked fashion, the serum of two patients with BDUMP was evaluated for the presence of cultured melanocyte elongation and proliferation (CMEP) factor using cultured human melanocytes. We evaluated the efficacy of plasmapheresis as a treatment modality early in the disease in conjunction with radiation and chemotherapy. Results The serum of the first case patient was investigated after plasmapheresis and did not demonstrate proliferation of cultured human melanocytes. The serum of the second case was evaluated prior to treatment with plasmapheresis and did induce this proliferation. These findings are in accordance with the diminution of CMEP factor after plasmapheresis. Treatment with plasmapheresis managed to stabilise the ocular disease progression in both patients. Conclusions In the past, visual loss due to paraneoplastic melanocytic proliferation was considered progressive and irreversible. We treated two patients successfully with plasmapheresis and demonstrated a relation between CMEP factor in the serum of these patients and proliferation of cultured melanocytes. PMID:25908835

  14. Evidence of a visual-to-auditory cross-modal sensory gating phenomenon as reflected by the human P50 event-related brain potential modulation.

    PubMed

    Lebib, Riadh; Papo, David; de Bode, Stella; Baudonnière, Pierre Marie

    2003-05-08

    We investigated the existence of a cross-modal sensory gating reflected by the modulation of an early electrophysiological index, the P50 component. We analyzed event-related brain potentials elicited by audiovisual speech stimuli manipulated along two dimensions: congruency and discriminability. The results showed that the P50 was attenuated when visual and auditory speech information were redundant (i.e. congruent), in comparison with this same event-related potential component elicited with discrepant audiovisual dubbing. When hard to discriminate, however, bimodal incongruent speech stimuli elicited a similar pattern of P50 attenuation. We concluded to the existence of a visual-to-auditory cross-modal sensory gating phenomenon. These results corroborate previous findings revealing a very early audiovisual interaction during speech perception. Finally, we postulated that the sensory gating system included a cross-modal dimension.

  15. Moderation of Stimulus Material on the Prediction of IQ with Infants' Performance in the Visual Expectation Paradigm: Do Greebles Make the Task More Challenging?

    ERIC Educational Resources Information Center

    Teubert, Manuel; Lohaus, Arnold; Fassbender, Ina; Vöhringer, Isabel A.; Suhrke, Janina; Poloczek, Sonja; Freitag, Claudia; Lamm, Bettina; Teiser, Johanna; Keller, Heidi; Knopf, Monika; Schwarzer, Gudrun

    2015-01-01

    The objective of this study was to examine the role of the stimulus material for the prediction of later IQ by early learning measures in the Visual Expectation Paradigm (VExP). The VExP was assessed at 9?months using two types of stimuli, Greebles and human faces. Greebles were assumed to be associated with a higher load on working memory in…

  16. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome.

    PubMed

    Walton, Mark M G; Pallus, Adam; Fleuriet, Jérome; Mustari, Michael J; Tarczy-Hornoch, Kristina

    2017-07-01

    Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements. Copyright © 2017 the American Physiological Society.

  17. Basic multisensory functions can be acquired after congenital visual pattern deprivation in humans.

    PubMed

    Putzar, Lisa; Gondan, Matthias; Röder, Brigitte

    2012-01-01

    People treated for bilateral congenital cataracts offer a model to study the influence of visual deprivation in early infancy on visual and multisensory development. We investigated cross-modal integration capabilities in cataract patients using a simple detection task that provided redundant information to two different senses. In both patients and controls, redundancy gains were consistent with coactivation models, indicating an integrated processing of modality-specific information. This finding is in contrast with recent studies showing impaired higher-level multisensory interactions in cataract patients. The present results suggest that basic cross-modal integrative processes for simple short stimuli do not depend on visual and/or crossmodal input since birth.

  18. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.

  19. Specific attentional dysfunction in adults following early start of cannabis use.

    PubMed

    Ehrenreich, H; Rinn, T; Kunert, H J; Moeller, M R; Poser, W; Schilling, L; Gigerenzer, G; Hoehe, M R

    1999-03-01

    The present study tested the hypothesis that chronic interference by cannabis with endogenous cannabinoid systems during peripubertal development causes specific and persistent brain alterations in humans. As an index of cannabinoid action, visual scanning, along with other attentional functions, was chosen. Visual scanning undergoes a major maturation process around age 12-15 years and, in addition, the visual system is known to react specifically and sensitively to cannabinoids. From 250 individuals consuming cannabis regularly, 99 healthy pure cannabis users were selected. They were free of any other past or present drug abuse, or history of neuropsychiatric disease. After an interview, physical examination, analysis of routine laboratory parameters, plasma/urine analyses for drugs, and MMPI testing, users and respective controls were subjected to a computer-assisted attention test battery comprising visual scanning, alertness, divided attention, flexibility, and working memory. Of the potential predictors of test performance within the user group, including present age, age of onset of cannabis use, degree of acute intoxication (THC+THCOH plasma levels), and cumulative toxicity (estimated total life dose), an early age of onset turned out to be the only predictor, predicting impaired reaction times exclusively in visual scanning. Early-onset users (onset before age 16; n = 48) showed a significant impairment in reaction times in this function, whereas late-onset users (onset after age 16; n = 51) did not differ from controls (n = 49). These data suggest that beginning cannabis use during early adolescence may lead to enduring effects on specific attentional functions in adulthood. Apparently, vulnerable periods during brain development exist that are subject to persistent alterations by interfering exogenous cannabinoids.

  20. Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.

    PubMed

    Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon

    2016-01-06

    Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.

  1. Early suppression effect in human primary visual cortex during Kanizsa illusion processing: A magnetoencephalographic evidence.

    PubMed

    Chernyshev, Boris V; Pronko, Platon K; Stroganova, Tatiana A

    2016-01-01

    Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.

  2. Visual brain plasticity induced by central and peripheral visual field loss.

    PubMed

    Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel

    2018-06-23

    Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

  3. The neural basis of form and form-motion integration from static and dynamic translational Glass patterns: A rTMS investigation.

    PubMed

    Pavan, Andrea; Ghin, Filippo; Donato, Rita; Campana, Gianluca; Mather, George

    2017-08-15

    A long-held view of the visual system is that form and motion are independently analysed. However, there is physiological and psychophysical evidence of early interaction in the processing of form and motion. In this study, we used a combination of Glass patterns (GPs) and repetitive Transcranial Magnetic Stimulation (rTMS) to investigate in human observers the neural mechanisms underlying form-motion integration. GPs consist of randomly distributed dot pairs (dipoles) that induce the percept of an oriented stimulus. GPs can be either static or dynamic. Dynamic GPs have both a form component (i.e., orientation) and a non-directional motion component along the orientation axis. GPs were presented in two temporal intervals and observers were asked to discriminate the temporal interval containing the most coherent GP. rTMS was delivered over early visual area (V1/V2) and over area V5/MT shortly after the presentation of the GP in each interval. The results showed that rTMS applied over early visual areas affected the perception of static GPs, but the stimulation of area V5/MT did not affect observers' performance. On the other hand, rTMS was delivered over either V1/V2 or V5/MT strongly impaired the perception of dynamic GPs. These results suggest that early visual areas seem to be involved in the processing of the spatial structure of GPs, and interfering with the extraction of the global spatial structure also affects the extraction of the motion component, possibly interfering with early form-motion integration. However, visual area V5/MT is likely to be involved only in the processing of the motion component of dynamic GPs. These results suggest that motion and form cues may interact as early as V1/V2. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Yuecheng; Ruan, Haowen; Brodie, Frank L.; Wong, Terence T. W.; Yang, Changhuei; Wang, Lihong V.

    2018-01-01

    Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.

  5. Motion Direction Biases and Decoding in Human Visual Cortex

    PubMed Central

    Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297

  6. The Processing of Biologically Plausible and Implausible forms in American Sign Language: Evidence for Perceptual Tuning.

    PubMed

    Almeida, Diogo; Poeppel, David; Corina, David

    The human auditory system distinguishes speech-like information from general auditory signals in a remarkably fast and efficient way. Combining psychophysics and neurophysiology (MEG), we demonstrate a similar result for the processing of visual information used for language communication in users of sign languages. We demonstrate that the earliest visual cortical responses in deaf signers viewing American Sign Language (ASL) signs show specific modulations to violations of anatomic constraints that would make the sign either possible or impossible to articulate. These neural data are accompanied with a significantly increased perceptual sensitivity to the anatomical incongruity. The differential effects in the early visual evoked potentials arguably reflect an expectation-driven assessment of somatic representational integrity, suggesting that language experience and/or auditory deprivation may shape the neuronal mechanisms underlying the analysis of complex human form. The data demonstrate that the perceptual tuning that underlies the discrimination of language and non-language information is not limited to spoken languages but extends to languages expressed in the visual modality.

  7. Can you hear me yet? An intracranial investigation of speech and non-speech audiovisual interactions in human cortex.

    PubMed

    Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob

    In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.

  8. Differential temporal dynamics during visual imagery and perception.

    PubMed

    Dijkstra, Nadine; Mostert, Pim; Lange, Floris P de; Bosch, Sander; van Gerven, Marcel Aj

    2018-05-29

    Visual perception and imagery rely on similar representations in the visual cortex. During perception, visual activity is characterized by distinct processing stages, but the temporal dynamics underlying imagery remain unclear. Here, we investigated the dynamics of visual imagery in human participants using magnetoencephalography. Firstly, we show that, compared to perception, imagery decoding becomes significant later and representations at the start of imagery already overlap with later time points. This suggests that during imagery, the entire visual representation is activated at once or that there are large differences in the timing of imagery between trials. Secondly, we found consistent overlap between imagery and perceptual processing around 160 ms and from 300 ms after stimulus onset. This indicates that the N170 gets reactivated during imagery and that imagery does not rely on early perceptual representations. Together, these results provide important insights for our understanding of the neural mechanisms of visual imagery. © 2018, Dijkstra et al.

  9. Neocortical Rebound Depolarization Enhances Visual Perception

    PubMed Central

    Funayama, Kenta; Ban, Hiroshi; Chan, Allen W.; Matsuki, Norio; Murphy, Timothy H.; Ikegaya, Yuji

    2015-01-01

    Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments. PMID:26274866

  10. Digital visual communications using a Perceptual Components Architecture

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1991-01-01

    The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.

  11. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    PubMed

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. OCT of early dental caries: a comparative study with histology and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hewko, Mark D.; Choo-Smith, Lin-P'ing; Ko, Alex C.; Leonardi, Lorenzo; Dong, Cecilia C.; Cleghorn, Blaine; Sowa, Michael G.

    2005-03-01

    Early dental caries result from destruction of the tooth's outer mineral matrix by acid-forming bacteria found in dental plaques. Early caries begin as surface disruptions where minerals are leached from the teeth resulting in regions of decreased mineral matrix integrity. Visually, these early carious regions appear as white spots due to the higher backscattering of incident light. With age these areas may become stained by organic compounds. Optical coherence tomography (OCT) examination of human teeth demonstrates a difference in penetration depth of the OCT signal into the carious region in comparison with sound enamel. However, while OCT demonstrates a structural difference in the enamel in the region of the caries, this technique provides little insight into the source of this difference. Raman spectroscopy provides biochemical measures derived from hydroxyapatite within the enamel as well as information on the crystallinity of the enamel matrix. The differences in the biochemical and morphological features of early caries and intact sound enamel are compared. Histological thin sections confirm the observations by OCT morphological imaging while Raman spectroscopy allows for biochemical identification of carious regions by a non-destructive method. Visual examination and conventional radiographic imaging of the intact tooth are used in clinical assessment prior to optical measurements. The combination of OCT, Raman spectroscopy and thin section histology aid in determining the changes that give rise to the visual white spot lesions.

  13. Evidence for unlimited capacity processing of simple features in visual cortex

    PubMed Central

    White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.

    2017-01-01

    Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964

  14. [Circadian rhythm disruption and human development].

    PubMed

    Kohyama, Jun

    2013-12-01

    Ontogenetic developments of rest-activity, sleep-wakefulness, temperature and several hormone rhythms in humans were reviewed. The reported effects of environment on these alterations were also summarized. Then, disorders or conditions which often encounter during early stage of life and reveal circadian rhythm disruptions were described. These disorders or conditions included severe brain damage, visual disturbance, developmental disorders(autistic spectrum disorder and attention deficit/hyperactivity disorder), Rett syndrome, Angelman syndrome, Smith-Magenis syndrome, epilepsy, Yonaki, and inadequate sleep hygiene. Finally, it was emphasized that we should pay special attention on the development of youngsters who showed sleep disturbance during early stage of life with special reference to the later occurrence of developmental disorders.

  15. VISUAL CONTRAST SENSITIVITY: A SENSITIVE INDICATOR OF NEUROTOXICITY FOR RISK ASSESSMENT AND CLINICAL APPLICATIONS.

    EPA Science Inventory

    Both human-health risk assessments of adverse effects from chronic, environmental exposures to neurotoxics and clinical practice are in need of objective indicators sensitive to the early stages of disruption in neurologic function; risk assessment for the purposes of hazard iden...

  16. Some historical crossroads between astronomy and visual neuroscience

    NASA Astrophysics Data System (ADS)

    Berlucchi, G.

    The histories of astronomy and visual neuroscience share some important events. Observation of the sky provided early basic information about visual acuity and sensitivity to light and their variations at different retinal locations. Some of the early tests of visual functions were inspired by astronomical knowledge existing since antiquity and possibly since human prehistory. After science became a hallmark of human civilization, astronomy played a crucial part in the discovery of the laws of nature. At the turn of the 19th century, astronomers discovered interindividual variability in detecting the time of stellar transit and tried to measure the so-called personal equation, a supposedly inherent individual bias in making observations, judgements and measurements. Convinced that the reliability of scientific observations depended on the reliability of the observer, they were the first scientists to realize that studying man and human psychophysiology was essential for achieving accuracy and objectivity in astronomy and other sciences alike. There is general consensus that the science of experimental psychology grew out of astronomy and physiology in connection with the development of the reaction time method and the so-called mental chronometry. The crucial role of the observer in astronomical observations appears to have been neglected by astronomers in the second half of the 19th century after Giovanni Schiaparelli described ``canals" on the surface of the planet Mars. Percival Lowell and others thought that these canals had been constructed by a Martian intelligent population in order to distribute water from the polar regions to the equatorial deserts on the planet. Since it has been ascertained that the Mars canals seen by Schiaparelli do not exist, some speculations are offered from a neuroscientific viewpoint as to why he and others were mistaken in their observations of Mars.

  17. A Computational Model of Afterimage Rotation in the Peripheral Drift Illusion Based on Retinal ON/OFF Responses

    PubMed Central

    Hayashi, Yuichiro; Ishii, Shin; Urakubo, Hidetoshi

    2014-01-01

    Human observers perceive illusory rotations after the disappearance of circularly repeating patches containing dark-to-light luminance. This afterimage rotation is a very powerful phenomenon, but little is known about the mechanisms underlying it. Here, we use a computational model to show that the afterimage rotation can be explained by a combination of fast light adaptation and the physiological architecture of the early visual system, consisting of ON- and OFF-type visual pathways. In this retinal ON/OFF model, the afterimage rotation appeared as a rotation of focus lines of retinal ON/OFF responses. Focus lines rotated clockwise on a light background, but counterclockwise on a dark background. These findings were consistent with the results of psychophysical experiments, which were also performed by us. Additionally, the velocity of the afterimage rotation was comparable with that observed in our psychophysical experiments. These results suggest that the early visual system (including the retina) is responsible for the generation of the afterimage rotation, and that this illusory rotation may be systematically misinterpreted by our high-level visual system. PMID:25517906

  18. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    PubMed

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  19. Posttraining transcranial magnetic stimulation of striate cortex disrupts consolidation early in visual skill learning.

    PubMed

    De Weerd, Peter; Reithler, Joel; van de Ven, Vincent; Been, Marin; Jacobs, Christianne; Sack, Alexander T

    2012-02-08

    Practice-induced improvements in skilled performance reflect "offline " consolidation processes extending beyond daily training sessions. According to visual learning theories, an early, fast learning phase driven by high-level areas is followed by a late, asymptotic learning phase driven by low-level, retinotopic areas when higher resolution is required. Thus, low-level areas would not contribute to learning and offline consolidation until late learning. Recent studies have challenged this notion, demonstrating modified responses to trained stimuli in primary visual cortex (V1) and offline activity after very limited training. However, the behavioral relevance of modified V1 activity for offline consolidation of visual skill memory in V1 after early training sessions remains unclear. Here, we used neuronavigated transcranial magnetic stimulation (TMS) directed to a trained retinotopic V1 location to test for behaviorally relevant consolidation in human low-level visual cortex. Applying TMS to the trained V1 location within 45 min of the first or second training session strongly interfered with learning, as measured by impaired performance the next day. The interference was conditional on task context and occurred only when training in the location targeted by TMS was followed by training in a second location before TMS. In this condition, high-level areas may become coupled to the second location and uncoupled from the previously trained low-level representation, thereby rendering consolidation vulnerable to interference. Our data show that, during the earliest phases of skill learning in the lowest-level visual areas, a behaviorally relevant form of consolidation exists of which the robustness is controlled by high-level, contextual factors.

  20. Plasticity following early-life brain injury: Insights from quantitative MRI.

    PubMed

    Fiori, Simona; Guzzetta, Andrea

    2015-03-01

    Over the last decade, the application of novel advanced neuroimaging techniques to study congenital brain damage has provided invaluable insights into the mechanisms underlying early neuroplasticity. The concept that is clearly emerging, both from human and nun-human studies, is that functional reorganization in the immature brain is substantially different from that of the more mature, developed brain. This applies to the reorganization of language, the sensorimotor system, and the visual system. The rapid implementation and development of higher order imaging methods will offer increased, currently unavailable knowledge about the specific mechanisms of cerebral plasticity in infancy, which is essential to support the development of early therapeutic interventions aimed at supporting and enhancing functional reorganization during a time of greatest potential brain plasticity. Copyright © 2015. Published by Elsevier Inc.

  1. Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.

    PubMed

    Siu, Caitlin R; Beshara, Simon P; Jones, David G; Murphy, Kathryn M

    2017-06-21

    Traditionally, human primary visual cortex (V1) has been thought to mature within the first few years of life, based on anatomical studies of synapse formation, and establishment of intracortical and intercortical connections. Human vision, however, develops well beyond the first few years. Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto et al., 2010). Yet as >80% of synapses in V1 are excitatory, it remains unanswered whether the majority of synapses regulating experience-dependent plasticity and receptive field properties develop late, like their inhibitory counterparts. To address this question, we used Western blotting of postmortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then we quantified a set of postsynaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A, GluN2B), calculated indices for functional pairs that are developmentally regulated (GluA2:GluN1; GluN2A:GluN2B), and determined interindividual variability. We found early loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted development of GluN2A until ∼40 years, and dramatic loss of GluN2A in aging. The GluA2:GluN1 index switched at ∼1 year, but the GluN2A:GluN2B index continued to shift until ∼40 year before changing back to GluN2B in aging. We also identified young childhood as a stage of heightened interindividual variability. The changes show that human V1 develops gradually through a series of five orchestrated stages, making it likely that V1 participates in visual development and plasticity across the lifespan. SIGNIFICANCE STATEMENT Anatomical structure of human V1 appears to mature early, but vision changes across the lifespan. This discrepancy has fostered two hypotheses: either other aspects of V1 continue changing, or later changes in visual perception depend on extrastriate areas. Previously, we showed that some GABAergic synaptic proteins change across the lifespan, but most synapses in V1 are excitatory leaving unanswered how they change. So we studied expression of glutamatergic proteins in human V1 to determine their development. Here we report prolonged maturation of glutamatergic proteins, with five stages that map onto life-long changes in human visual perception. Thus, the apparent discrepancy between development of structure and function may be explained by life-long synaptic changes in human V1. Copyright © 2017 the authors 0270-6474/17/376031-12$15.00/0.

  2. Can responses to basic non-numerical visual features explain neural numerosity responses?

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2017-04-01

    Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain

    PubMed Central

    Liang, Winnie S.; Dunckley, Travis; Beach, Thomas G.; Grover, Andrew; Mastroeni, Diego; Walker, Douglas G.; Caselli, Richard J.; Kukull, Walter A.; McKeel, Daniel; Morris, John C.; Hulette, Christine; Schmechel, Donald; Alexander, Gene E.; Reiman, Eric M.; Rogers, Joseph; Stephan, Dietrich A.

    2008-01-01

    In this article, we have characterized and compared gene expression profiles from laser capture microdissected neurons in six functionally and anatomically distinct regions from clinically and histopathologically normal aged human brains. These regions, which are also known to be differentially vulnerable to the histopathological and metabolic features of Alzheimer’s disease (AD), include the entorhinal cortex and hippocampus (limbic and paralimbic areas vulnerable to early neurofibrillary tangle pathology in AD), posterior cingulate cortex (a paralimbic area vulnerable to early metabolic abnormalities in AD), temporal and prefrontal cortex (unimodal and heteromodal sensory association areas vulnerable to early neuritic plaque pathology in AD), and primary visual cortex (a primary sensory area relatively spared in early AD). These neuronal profiles will provide valuable reference information for future studies of the brain, in normal aging, AD and other neurological and psychiatric disorders. PMID:17077275

  4. Early diagnosis and successful treatment of paraneoplastic melanocytic proliferation.

    PubMed

    Jansen, Joyce C G; Van Calster, Joachim; Pulido, Jose S; Miles, Sarah L; Vile, Richard G; Van Bergen, Tine; Cassiman, Catherine; Spielberg, Leigh H; Leys, Anita M

    2015-07-01

    Paraneoplastic melanocytic proliferation (bilateral diffuse uveal melanocytic proliferation, BDUMP) is a rare but devastating disease that causes progressive visual loss in patients who usually have an occult malignancy. Visual loss occurs as a result of paraneoplastic changes in the uveal tissue. In a masked fashion, the serum of two patients with BDUMP was evaluated for the presence of cultured melanocyte elongation and proliferation (CMEP) factor using cultured human melanocytes. We evaluated the efficacy of plasmapheresis as a treatment modality early in the disease in conjunction with radiation and chemotherapy. The serum of the first case patient was investigated after plasmapheresis and did not demonstrate proliferation of cultured human melanocytes. The serum of the second case was evaluated prior to treatment with plasmapheresis and did induce this proliferation. These findings are in accordance with the diminution of CMEP factor after plasmapheresis. Treatment with plasmapheresis managed to stabilise the ocular disease progression in both patients. In the past, visual loss due to paraneoplastic melanocytic proliferation was considered progressive and irreversible. We treated two patients successfully with plasmapheresis and demonstrated a relation between CMEP factor in the serum of these patients and proliferation of cultured melanocytes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Face recognition increases during saccade preparation.

    PubMed

    Lin, Hai; Rizak, Joshua D; Ma, Yuan-ye; Yang, Shang-chuan; Chen, Lin; Hu, Xin-tian

    2014-01-01

    Face perception is integral to human perception system as it underlies social interactions. Saccadic eye movements are frequently made to bring interesting visual information, such as faces, onto the fovea for detailed processing. Just before eye movement onset, the processing of some basic features, such as the orientation, of an object improves at the saccade landing point. Interestingly, there is also evidence that indicates faces are processed in early visual processing stages similar to basic features. However, it is not known whether this early enhancement of processing includes face recognition. In this study, three experiments were performed to map the timing of face presentation to the beginning of the eye movement in order to evaluate pre-saccadic face recognition. Faces were found to be similarly processed as simple objects immediately prior to saccadic movements. Starting ∼ 120 ms before a saccade to a target face, independent of whether or not the face was surrounded by other faces, the face recognition gradually improved and the critical spacing of the crowding decreased as saccade onset was approaching. These results suggest that an upcoming saccade prepares the visual system for new information about faces at the saccade landing site and may reduce the background in a crowd to target the intended face. This indicates an important role of pre-saccadic eye movement signals in human face recognition.

  6. Differential effect of visual motion adaption upon visual cortical excitability.

    PubMed

    Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer

    2017-03-01

    The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.

  7. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    PubMed

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can implicitly strengthen automatic change detection from an early stage in a cross-sensory manner, at least in the vision to audition direction.

  8. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf

    PubMed Central

    Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao

    2016-01-01

    Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461

  9. Alfred Walter Campbell and the visual functions of the occipital cortex.

    PubMed

    Macmillan, Malcolm

    2014-07-01

    In his pioneering cytoarchitectonic studies of the human brain, Alfred Walter Campbell identified two structurally different areas in the occipital lobes and assigned two different kinds of visual functions to them. The first area, the visuosensory, was essentially on the mesial surface of the calcarine fissure. It was the terminus of nervous impulses generated in the retina and was where simple visual sensations arose. The second area, the visuopsychic, which surrounded or invested the first, was where sensations were interpreted and elaborated into visual perceptions. I argue that Campbell's distinction between the two areas was the starting point for the eventual differentiation of areas V1-V5. After a brief outline of Campbell's early life and education in Australia and of his Scottish medical education and early work as a pathologist at the Lancashire County Lunatic Asylum at Rainhill near Liverpool, I summarise his work on the human brain. In describing the structures he identified in the occipital lobes, I analyse the similarities and differences between them and the related structures identified by Joseph Shaw Bolton. I conclude by proposing some reasons for how that work came to be overshadowed by the later studies of Brodmann and for the more general lack of recognition given Campbell and his work. Those reasons include the effect of the controversies precipitated by Campbell's alliance with Charles Sherrington over the functions of the sensory and motor cortices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Functional outcomes following lesions in visual cortex: Implications for plasticity of high-level vision.

    PubMed

    Liu, Tina T; Behrmann, Marlene

    2017-10-01

    Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience. Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some intermediate possibilities in which some plasticity may be evident but that this might depend on the area that was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally, we offer suggestions for future research that can elucidate plasticity further. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of the Casserius Tables on fetal anatomy illustration and how we envision the unborn.

    PubMed

    Heilemann, Heidi A

    2011-01-01

    The paper demonstrates how visual representation of the fetus in early anatomy texts influenced the reader's perception of the unborn child as an autonomous being. The health, art, and history literatures were used as sources. Original texts and illustrations, with particular attention paid to the Casserius Tables, published by Andreas Spigelius in 1627, are discussed. A review of the literature was conducted to identify and analyze published renderings, reproductions, and discussion of images of the unborn child. Original anatomy atlases were consulted. Artists' renderings of a particularly vulnerable state of human life influenced early perceptions of the status of the unborn child. The images show fetuses as highly independent, providing a visual cue that life is fully formed in utero. The legacy of the Casserius Tables is that they are still able to capture our attention because they portray the idea of a fetus and newborn even more clearly than our modern representations of this charged topic. The use of deceptive realism provides the viewer with an accessible visual representation of the unborn child. These early anatomy illustrations continue to influence modern-day perception of the unborn child as a separate being, completely autonomous from the mother.

  12. Cognitive load effects on early visual perceptual processing.

    PubMed

    Liu, Ping; Forte, Jason; Sewell, David; Carter, Olivia

    2018-05-01

    Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.

  13. Differential contribution of early visual areas to the perceptual process of contour processing.

    PubMed

    Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A

    2004-04-01

    We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.

  14. Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.

    PubMed

    Frieauff, W; Martus, H J; Suter, W; Elhajouji, A

    2013-01-01

    The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.

  15. The Naked Truth: The Face and Body Sensitive N170 Response Is Enhanced for Nude Bodies

    PubMed Central

    Hietanen, Jari K.; Nummenmaa, Lauri

    2011-01-01

    Recent event-related potential studies have shown that the occipitotemporal N170 component - best known for its sensitivity to faces - is also sensitive to perception of human bodies. Considering that in the timescale of evolution clothing is a relatively new invention that hides the bodily features relevant for sexual selection and arousal, we investigated whether the early N170 brain response would be enhanced to nude over clothed bodies. In two experiments, we measured N170 responses to nude bodies, bodies wearing swimsuits, clothed bodies, faces, and control stimuli (cars). We found that the N170 amplitude was larger to opposite and same-sex nude vs. clothed bodies. Moreover, the N170 amplitude increased linearly as the amount of clothing decreased from full clothing via swimsuits to nude bodies. Strikingly, the N170 response to nude bodies was even greater than that to faces, and the N170 amplitude to bodies was independent of whether the face of the bodies was visible or not. All human stimuli evoked greater N170 responses than did the control stimulus. Autonomic measurements and self-evaluations showed that nude bodies were affectively more arousing compared to the other stimulus categories. We conclude that the early visual processing of human bodies is sensitive to the visibility of the sex-related features of human bodies and that the visual processing of other people's nude bodies is enhanced in the brain. This enhancement is likely to reflect affective arousal elicited by nude bodies. Such facilitated visual processing of other people's nude bodies is possibly beneficial in identifying potential mating partners and competitors, and for triggering sexual behavior. PMID:22110574

  16. Two different mechanisms support selective attention at different phases of training.

    PubMed

    Itthipuripat, Sirawaj; Cha, Kexin; Byers, Anna; Serences, John T

    2017-06-01

    Selective attention supports the prioritized processing of relevant sensory information to facilitate goal-directed behavior. Studies in human subjects demonstrate that attentional gain of cortical responses can sufficiently account for attention-related improvements in behavior. On the other hand, studies using highly trained nonhuman primates suggest that reductions in neural noise can better explain attentional facilitation of behavior. Given the importance of selective information processing in nearly all domains of cognition, we sought to reconcile these competing accounts by testing the hypothesis that extensive behavioral training alters the neural mechanisms that support selective attention. We tested this hypothesis using electroencephalography (EEG) to measure stimulus-evoked visual responses from human subjects while they performed a selective spatial attention task over the course of ~1 month. Early in training, spatial attention led to an increase in the gain of stimulus-evoked visual responses. Gain was apparent within ~100 ms of stimulus onset, and a quantitative model based on signal detection theory (SDT) successfully linked the magnitude of this gain modulation to attention-related improvements in behavior. However, after extensive training, this early attentional gain was eliminated even though there were still substantial attention-related improvements in behavior. Accordingly, the SDT-based model required noise reduction to account for the link between the stimulus-evoked visual responses and attentional modulations of behavior. These findings suggest that training can lead to fundamental changes in the way attention alters the early cortical responses that support selective information processing. Moreover, these data facilitate the translation of results across different species and across experimental procedures that employ different behavioral training regimes.

  17. Two different mechanisms support selective attention at different phases of training

    PubMed Central

    Cha, Kexin; Byers, Anna; Serences, John T.

    2017-01-01

    Selective attention supports the prioritized processing of relevant sensory information to facilitate goal-directed behavior. Studies in human subjects demonstrate that attentional gain of cortical responses can sufficiently account for attention-related improvements in behavior. On the other hand, studies using highly trained nonhuman primates suggest that reductions in neural noise can better explain attentional facilitation of behavior. Given the importance of selective information processing in nearly all domains of cognition, we sought to reconcile these competing accounts by testing the hypothesis that extensive behavioral training alters the neural mechanisms that support selective attention. We tested this hypothesis using electroencephalography (EEG) to measure stimulus-evoked visual responses from human subjects while they performed a selective spatial attention task over the course of ~1 month. Early in training, spatial attention led to an increase in the gain of stimulus-evoked visual responses. Gain was apparent within ~100 ms of stimulus onset, and a quantitative model based on signal detection theory (SDT) successfully linked the magnitude of this gain modulation to attention-related improvements in behavior. However, after extensive training, this early attentional gain was eliminated even though there were still substantial attention-related improvements in behavior. Accordingly, the SDT-based model required noise reduction to account for the link between the stimulus-evoked visual responses and attentional modulations of behavior. These findings suggest that training can lead to fundamental changes in the way attention alters the early cortical responses that support selective information processing. Moreover, these data facilitate the translation of results across different species and across experimental procedures that employ different behavioral training regimes. PMID:28654635

  18. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    PubMed Central

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078

  19. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    PubMed

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  20. Decoding complex flow-field patterns in visual working memory.

    PubMed

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The role of lateral occipitotemporal junction and area MT/V5 in the visual analysis of upper-limb postures.

    PubMed

    Peigneux, P; Salmon, E; van der Linden, M; Garraux, G; Aerts, J; Delfiore, G; Degueldre, C; Luxen, A; Orban, G; Franck, G

    2000-06-01

    Humans, like numerous other species, strongly rely on the observation of gestures of other individuals in their everyday life. It is hypothesized that the visual processing of human gestures is sustained by a specific functional architecture, even at an early prelexical cognitive stage, different from that required for the processing of other visual entities. In the present PET study, the neural basis of visual gesture analysis was investigated with functional neuroimaging of brain activity during naming and orientation tasks performed on pictures of either static gestures (upper-limb postures) or tridimensional objects. To prevent automatic object-related cerebral activation during the visual processing of postures, only intransitive postures were selected, i. e., symbolic or meaningless postures which do not imply the handling of objects. Conversely, only intransitive objects which cannot be handled were selected to prevent gesture-related activation during their visual processing. Results clearly demonstrate a significant functional segregation between the processing of static intransitive postures and the processing of intransitive tridimensional objects. Visual processing of objects elicited mainly occipital and fusiform gyrus activity, while visual processing of postures strongly activated the lateral occipitotemporal junction, encroaching upon area MT/V5, involved in motion analysis. These findings suggest that the lateral occipitotemporal junction, working in association with area MT/V5, plays a prominent role in the high-level perceptual analysis of gesture, namely the construction of its visual representation, available for subsequent recognition or imitation. Copyright 2000 Academic Press.

  2. An early colonisation pathway into northwest Australia 70-60,000 years ago

    NASA Astrophysics Data System (ADS)

    Norman, Kasih; Inglis, Josha; Clarkson, Chris; Faith, J. Tyler; Shulmeister, James; Harris, Daniel

    2018-01-01

    Colonisation of Sahul 70-60 thousand years ago (kya) represents the first great maritime migration undertaken by anatomically modern humans in one of the final phases of the Out of Africa dispersal. Visual connectivity network analyses, agent-based simulations and ocean current modelling reveal that modern humans could follow numerous northern and southern migration pathways into Sahul. Our results support a southern route out of Africa through South Asia with entry into ISEA through the Banda Arc, culminating in an early colonisation of Sahul on the northwest shelf. Our results show multiple colonisation events through other entry points were also probable, and raise interesting possibilities for complex regional migration and population histories.

  3. Efficacy and Safety of Human Retinal Progenitor Cells

    PubMed Central

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  4. The Effect of Early Visual Deprivation on the Neural Bases of Auditory Processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2016-02-03

    Transient congenital visual deprivation affects visual and multisensory processing. In contrast, the extent to which it affects auditory processing has not been investigated systematically. Research in permanently blind individuals has revealed brain reorganization during auditory processing, involving both intramodal and crossmodal plasticity. The present study investigated the effect of transient congenital visual deprivation on the neural bases of auditory processing in humans. Cataract-reversal individuals and normally sighted controls performed a speech-in-noise task while undergoing functional magnetic resonance imaging. Although there were no behavioral group differences, groups differed in auditory cortical responses: in the normally sighted group, auditory cortex activation increased with increasing noise level, whereas in the cataract-reversal group, no activation difference was observed across noise levels. An auditory activation of visual cortex was not observed at the group level in cataract-reversal individuals. The present data suggest prevailing auditory processing advantages after transient congenital visual deprivation, even many years after sight restoration. The present study demonstrates that people whose sight was restored after a transient period of congenital blindness show more efficient cortical processing of auditory stimuli (here speech), similarly to what has been observed in congenitally permanently blind individuals. These results underscore the importance of early sensory experience in permanently shaping brain function. Copyright © 2016 the authors 0270-6474/16/361620-11$15.00/0.

  5. Cosmos and Rulership: The Function of Olmec-Style Symbols in Formative Period Mesoamerica.

    ERIC Educational Resources Information Center

    Reilly, F. Kent III

    1990-01-01

    States that iconographic investigations of Olmec style art works have produced convincing evidence that rulership during the Early and Middle Formative Period of Mesoamerican prehistory was publicly legitimized by a visual charter. Shows that the charter's naturally derived symbols functioned within a system which stressed the human ruler's access…

  6. Runtime visualization of the human arterial tree.

    PubMed

    Insley, Joseph A; Papka, Michael E; Dong, Suchuan; Karniadakis, George; Karonis, Nicholas T

    2007-01-01

    Large-scale simulation codes typically execute for extended periods of time and often on distributed computational resources. Because these simulations can run for hours, or even days, scientists like to get feedback about the state of the computation and the validity of its results as it runs. It is also important that these capabilities be made available with little impact on the performance and stability of the simulation. Visualizing and exploring data in the early stages of the simulation can help scientists identify problems early, potentially avoiding a situation where a simulation runs for several days, only to discover that an error with an input parameter caused both time and resources to be wasted. We describe an application that aids in the monitoring and analysis of a simulation of the human arterial tree. The application provides researchers with high-level feedback about the state of the ongoing simulation and enables them to investigate particular areas of interest in greater detail. The application also offers monitoring information about the amount of data produced and data transfer performance among the various components of the application.

  7. Coding of visual object features and feature conjunctions in the human brain.

    PubMed

    Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M

    2008-01-01

    Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.

  8. Pharmacotherapy of retinal disease with visual cycle modulators.

    PubMed

    Hussain, Rehan M; Gregori, Ninel Z; Ciulla, Thomas A; Lam, Byron L

    2018-04-01

    Pharmacotherapy with visual cycle modulators (VCMs) is under investigation for retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), Stargardt macular dystrophy (SMD) and nonexudative age-related macular degeneration (AMD), all blinding diseases that lack effective treatment options. Areas covered: The authors review investigational VCMs, including oral retinoids, 9-cis-retinyl-acetate (zuretinol) and 9-cis-β-carotene, which restore 11-cis-retinal levels in RP and LCA caused by LRAT and RPE65 gene mutations, and may improve visual acuity and visual fields. Therapies for SMD aiming to decrease accumulation of toxic Vitamin A dimers and lipofuscin in the retina and retinal pigment epithelium (RPE) include C20-D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Mouse models of SMD show promising data for these treatments, though proof of efficacy in humans is currently lacking. Fenretinide and emixustat are investigational VCMs for dry AMD, though neither has been shown to reduce geographic atrophy or improve vision in human trials. A1120 prevents retinol transport into the RPE and may spare the side effects typically seen in VCMs (nyctalopia and chromatopsia) per mouse studies. Expert opinion: Oral VCMs may be feasible treatment options for degenerative retinal diseases based on pre-clinical and some early clinical studies. Further trials are warranted to assess their efficacy and safety in humans.

  9. The optical diagnostics of parameters of biological tissues of human intact skin in near-infrared range

    NASA Astrophysics Data System (ADS)

    Petruk, Vasyl; Kvaternyuk, Sergii; Bolyuh, Boris; Bolyuh, Dmitry; Dronenko, Vladimir; Harasim, Damian; Annabayev, Azamat

    2016-09-01

    Melanoma skin is difficult to diagnose in the early stages of development despite its location outside. Melanoma is difficult to visually differentiate from benign melanocytic nevi. In the work we investigated parameters of human intact skin in near-infrared range for different racial and gender groups. This allows to analyze statistical differences in the coefficient of diffuse reflection and use them in the differential diagnosis of cancer by optical methods subject.

  10. Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex.

    PubMed

    Eger, E; Pinel, P; Dehaene, S; Kleinschmidt, A

    2015-05-01

    Macaque electrophysiology has revealed neurons responsive to number in lateral (LIP) and ventral (VIP) intraparietal areas. Recently, fMRI pattern recognition revealed information discriminative of individual numbers in human parietal cortex but without precisely localizing the relevant sites or testing for subregions with different response profiles. Here, we defined the human functional equivalents of LIP (feLIP) and VIP (feVIP) using neurophysiologically motivated localizers. We applied multivariate pattern recognition to investigate whether both regions represent numerical information and whether number codes are position specific or invariant. In a delayed number comparison paradigm with laterally presented numerosities, parietal cortex discriminated between numerosities better than early visual cortex, and discrimination generalized across hemifields in parietal, but not early visual cortex. Activation patterns in the 2 parietal regions of interest did not differ in the coding of position-specific or position-independent number information, but in the expression of a numerical distance effect which was more pronounced in feLIP. Thus, the representation of number in parietal cortex is at least partially position invariant. Both feLIP and feVIP contain information about individual numerosities in humans, but feLIP hosts a coarser representation of numerosity than feVIP, compatible with either broader tuning or a summation code. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Attention distributed across sensory modalities enhances perceptual performance

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2012-01-01

    This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811

  12. Learning invariance from natural images inspired by observations in the primary visual cortex.

    PubMed

    Teichmann, Michael; Wiltschut, Jan; Hamker, Fred

    2012-05-01

    The human visual system has the remarkable ability to largely recognize objects invariant of their position, rotation, and scale. A good interpretation of neurobiological findings involves a computational model that simulates signal processing of the visual cortex. In part, this is likely achieved step by step from early to late areas of visual perception. While several algorithms have been proposed for learning feature detectors, only few studies at hand cover the issue of biologically plausible learning of such invariance. In this study, a set of Hebbian learning rules based on calcium dynamics and homeostatic regulations of single neurons is proposed. Their performance is verified within a simple model of the primary visual cortex to learn so-called complex cells, based on a sequence of static images. As a result, the learned complex-cell responses are largely invariant to phase and position.

  13. Development of an In Flight Vision Self-Assessment Questionnaire for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky E.; Gibson, Charles R.; Pierpoline, Katherine M.

    2010-01-01

    OVERVIEW A NASA Flight Medicine optometrist teamed with a human factors specialist to develop an electronic questionnaire for crewmembers to record their visual acuity test scores and perceived vision assessment. It will be implemented on the International Space Station (ISS) and administered as part of a suite of tools for early detection of potential vision changes. The goal of this effort was to rapidly develop a set of questions to help in early detection of visual (e.g. blurred vision) and/or non-visual (e.g. headaches) symptoms by allowing the ISS crewmembers to think about their own current vision during their spaceflight missions. PROCESS An iterative process began with a Space Shuttle one-page paper questionnaire generated by the optometrist that was updated by applying human factors design principles. It was used as a baseline to establish an electronic questionnaire for ISS missions. Additional questions needed for the ISS missions were included and the information was organized to take advantage of the computer-based file format available. Human factors heuristics were applied to the prototype and then they were reviewed by the optometrist and procedures specialists with rapid-turn around updates that lead to the final questionnaire. CONCLUSIONS With about only a month lead time, a usable tool to collect crewmember assessments was developed through this cross-discipline collaboration. With only a little expenditure of energy, the potential payoff is great. ISS crewmembers will complete the questionnaire at 30 days into the mission, 100 days into the mission and 30 days prior to return to Earth. The systematic layout may also facilitate physicians later data extraction for quick interpretation of the data. The data collected along with other measures (e.g. retinal and ultrasound imaging) at regular intervals could potentially lead to early detection and treatment of related vision problems than using the other measures alone.

  14. Supranormal orientation selectivity of visual neurons in orientation-restricted animals.

    PubMed

    Sasaki, Kota S; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-11-16

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.

  15. Effects of feature-selective and spatial attention at different stages of visual processing.

    PubMed

    Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M

    2011-01-01

    We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.

  16. Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    PubMed Central

    Sasaki, Kota S.; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C.; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M.; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-01-01

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure. PMID:26567927

  17. Determinants of motion response anisotropies in human early visual cortex: the role of configuration and eccentricity.

    PubMed

    Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G

    2014-10-15

    Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal "predictability" of the moving pattern. Such stimulus predictability, and its relationship to models of predictive coding, has found considerable support in recent years in accounting for a number of other perceptual and neural phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Binding of motion and colour is early and automatic.

    PubMed

    Blaser, Erik; Papathomas, Thomas; Vidnyánszky, Zoltán

    2005-04-01

    At what stages of the human visual hierarchy different features are bound together, and whether this binding requires attention, is still highly debated. We used a colour-contingent motion after-effect (CCMAE) to study the binding of colour and motion signals. The logic of our approach was as follows: if CCMAEs can be evoked by targeted adaptation of early motion processing stages, without allowing for feedback from higher motion integration stages, then this would support our hypothesis that colour and motion are bound automatically on the basis of spatiotemporally local information. Our results show for the first time that CCMAE's can be evoked by adaptation to a locally paired opposite-motion dot display, a stimulus that, importantly, is known to trigger direction-specific responses in the primary visual cortex yet results in strong inhibition of the directional responses in area MT of macaques as well as in area MT+ in humans and, indeed, is perceived only as motionless flicker. The magnitude of the CCMAE in the locally paired condition was not significantly different from control conditions where the different directions were spatiotemporally separated (i.e. not locally paired) and therefore perceived as two moving fields. These findings provide evidence that adaptation at an early, local motion stage, and only adaptation at this stage, underlies this CCMAE, which in turn implies that spatiotemporally coincident colour and motion signals are bound automatically, most probably as early as cortical area V1, even when the association between colour and motion is perceptually inaccessible.

  19. Demonstration of Tuning to Stimulus Orientation in the Human Visual Cortex: A High-Resolution fMRI Study with a Novel Continuous and Periodic Stimulation Paradigm

    PubMed Central

    Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang

    2013-01-01

    Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413

  20. Pupil size directly modulates the feedforward response in human primary visual cortex independently of attention.

    PubMed

    Bombeke, Klaas; Duthoo, Wout; Mueller, Sven C; Hopf, Jens-Max; Boehler, C Nico

    2016-02-15

    Controversy revolves around the question of whether psychological factors like attention and emotion can influence the initial feedforward response in primary visual cortex (V1). Although traditionally, the electrophysiological correlate of this response in humans (the C1 component) has been found to be unaltered by psychological influences, a number of recent studies have described attentional and emotional modulations. Yet, research into psychological effects on the feedforward V1 response has neglected possible direct contributions of concomitant pupil-size modulations, which are known to also occur under various conditions of attentional load and emotional state. Here we tested the hypothesis that such pupil-size differences themselves directly affect the feedforward V1 response. We report data from two complementary experiments, in which we used procedures that modulate pupil size without differences in attentional load or emotion while simultaneously recording pupil-size and EEG data. Our results confirm that pupil size indeed directly influences the feedforward V1 response, showing an inverse relationship between pupil size and early V1 activity. While it is unclear in how far this effect represents a functionally-relevant adaptation, it identifies pupil-size differences as an important modulating factor of the feedforward response of V1 and could hence represent a confounding variable in research investigating the neural influence of psychological factors on early visual processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

    NASA Astrophysics Data System (ADS)

    Meliker, Jaymie R.; Slotnick, Melissa J.; Avruskin, Gillian A.; Kaufmann, Andrew; Jacquez, Geoffrey M.; Nriagu, Jerome O.

    2005-05-01

    A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μg/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.

  2. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data

    PubMed Central

    Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida

    2016-01-01

    Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern is a nasotemporal bias; for orientation it is a radial bias. Differences in decoding performance across areas and stimulus features are not well predicted by differences in columnar-scale organization of each feature. Large-scale biases in extrastriate areas are spatially correlated with those in V1, suggesting biases originate in primary visual cortex. PMID:27903637

  3. The evolution of human artistic creativity

    PubMed Central

    Morriss-Kay, Gillian M

    2010-01-01

    Creating visual art is one of the defining characteristics of the human species, but the paucity of archaeological evidence means that we have limited information on the origin and evolution of this aspect of human culture. The components of art include colour, pattern and the reproduction of visual likeness. The 2D and 3D art forms that were created by Upper Palaeolithic Europeans at least 30 000 years ago are conceptually equivalent to those created in recent centuries, indicating that human cognition and symbolling activity, as well as anatomy, were fully modern by that time. The origins of art are therefore much more ancient and lie within Africa, before worldwide human dispersal. The earliest known evidence of ‘artistic behaviour’ is of human body decoration, including skin colouring with ochre and the use of beads, although both may have had functional origins. Zig-zag and criss-cross patterns, nested curves and parallel lines are the earliest known patterns to have been created separately from the body; their similarity to entopic phenomena (involuntary products of the visual system) suggests a physiological origin. 3D art may have begun with human likeness recognition in natural objects, which were modified to enhance that likeness; some 2D art has also clearly been influenced by suggestive features of an uneven surface. The creation of images from the imagination, or ‘the mind’s eye’, required a seminal evolutionary change in the neural structures underpinning perception; this change would have had a survival advantage in both tool-making and hunting. Analysis of early tool-making techniques suggests that creating 3D objects (sculptures and reliefs) involves their cognitive deconstruction into a series of surfaces, a principle that could have been applied to early sculpture. The cognitive ability to create art separate from the body must have originated in Africa but the practice may have begun at different times in genetically and culturally distinct groups both within Africa and during global dispersal, leading to the regional variety seen in both ancient and recent art. At all stages in the evolution of artistic creativity, stylistic change must have been due to rare, highly gifted individuals. PMID:19900185

  4. The evolution of human artistic creativity.

    PubMed

    Morriss-Kay, Gillian M

    2010-02-01

    Creating visual art is one of the defining characteristics of the human species, but the paucity of archaeological evidence means that we have limited information on the origin and evolution of this aspect of human culture. The components of art include colour, pattern and the reproduction of visual likeness. The 2D and 3D art forms that were created by Upper Palaeolithic Europeans at least 30,000 years ago are conceptually equivalent to those created in recent centuries, indicating that human cognition and symbolling activity, as well as anatomy, were fully modern by that time. The origins of art are therefore much more ancient and lie within Africa, before worldwide human dispersal. The earliest known evidence of 'artistic behaviour' is of human body decoration, including skin colouring with ochre and the use of beads, although both may have had functional origins. Zig-zag and criss-cross patterns, nested curves and parallel lines are the earliest known patterns to have been created separately from the body; their similarity to entopic phenomena (involuntary products of the visual system) suggests a physiological origin. 3D art may have begun with human likeness recognition in natural objects, which were modified to enhance that likeness; some 2D art has also clearly been influenced by suggestive features of an uneven surface. The creation of images from the imagination, or 'the mind's eye', required a seminal evolutionary change in the neural structures underpinning perception; this change would have had a survival advantage in both tool-making and hunting. Analysis of early tool-making techniques suggests that creating 3D objects (sculptures and reliefs) involves their cognitive deconstruction into a series of surfaces, a principle that could have been applied to early sculpture. The cognitive ability to create art separate from the body must have originated in Africa but the practice may have begun at different times in genetically and culturally distinct groups both within Africa and during global dispersal, leading to the regional variety seen in both ancient and recent art. At all stages in the evolution of artistic creativity, stylistic change must have been due to rare, highly gifted individuals.

  5. Electrophysiological indices of surround suppression in humans

    PubMed Central

    Vanegas, M. Isabel; Blangero, Annabelle

    2014-01-01

    Surround suppression is a well-known example of contextual interaction in visual cortical neurophysiology, whereby the neural response to a stimulus presented within a neuron's classical receptive field is suppressed by surrounding stimuli. Human psychophysical reports present an obvious analog to the effects seen at the single-neuron level: stimuli are perceived as lower-contrast when embedded in a surround. Here we report on a visual paradigm that provides relatively direct, straightforward indices of surround suppression in human electrophysiology, enabling us to reproduce several well-known neurophysiological and psychophysical effects, and to conduct new analyses of temporal trends and retinal location effects. Steady-state visual evoked potentials (SSVEP) elicited by flickering “foreground” stimuli were measured in the context of various static surround patterns. Early visual cortex geometry and retinotopic organization were exploited to enhance SSVEP amplitude. The foreground response was strongly suppressed as a monotonic function of surround contrast. Furthermore, suppression was stronger for surrounds of matching orientation than orthogonally-oriented ones, and stronger at peripheral than foveal locations. These patterns were reproduced in psychophysical reports of perceived contrast, and peripheral electrophysiological suppression effects correlated with psychophysical effects across subjects. Temporal analysis of SSVEP amplitude revealed short-term contrast adaptation effects that caused the foreground signal to either fall or grow over time, depending on the relative contrast of the surround, consistent with stronger adaptation of the suppressive drive. This electrophysiology paradigm has clinical potential in indexing not just visual deficits but possibly gain control deficits expressed more widely in the disordered brain. PMID:25411464

  6. Reduced Looming Sensitivity in Primary School Children with Developmental Co-Ordination Disorder

    ERIC Educational Resources Information Center

    Purcell, Catherine; Wann, John P.; Wilmut, Kate; Poulter, Damian

    2012-01-01

    Almost all locomotor animals are sensitive to optical expansion (visual looming) and for most animals this sensitivity is evident very early in their development. In humans there is evidence that responses to looming stimuli begin in the first 6 weeks of life, but here we demonstrate that as children become independent their perceptual acuity…

  7. Influence of the Casserius Tables on fetal anatomy illustration and how we envision the unborn*

    PubMed Central

    Heilemann, Heidi A

    2011-01-01

    Objective: The paper demonstrates how visual representation of the fetus in early anatomy texts influenced the reader's perception of the unborn child as an autonomous being. Data Sources: The health, art, and history literatures were used as sources. Original texts and illustrations, with particular attention paid to the Casserius Tables, published by Andreas Spigelius in 1627, are discussed. Study Selection: A review of the literature was conducted to identify and analyze published renderings, reproductions, and discussion of images of the unborn child. Original anatomy atlases were consulted. Main Results: Artists' renderings of a particularly vulnerable state of human life influenced early perceptions of the status of the unborn child. The images show fetuses as highly independent, providing a visual cue that life is fully formed in utero. Conclusion: The legacy of the Casserius Tables is that they are still able to capture our attention because they portray the idea of a fetus and newborn even more clearly than our modern representations of this charged topic. The use of deceptive realism provides the viewer with an accessible visual representation of the unborn child. These early anatomy illustrations continue to influence modern-day perception of the unborn child as a separate being, completely autonomous from the mother. PMID:21243052

  8. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.

    PubMed

    Monaco, Simona; Gallivan, Jason P; Figley, Teresa D; Singhal, Anthony; Culham, Jody C

    2017-11-29

    The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay. SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it. Copyright © 2017 the authors 0270-6474/17/3711572-20$15.00/0.

  9. It's all connected: Pathways in visual object recognition and early noun learning.

    PubMed

    Smith, Linda B

    2013-11-01

    A developmental pathway may be defined as the route, or chain of events, through which a new structure or function forms. For many human behaviors, including object name learning and visual object recognition, these pathways are often complex and multicausal and include unexpected dependencies. This article presents three principles of development that suggest the value of a developmental psychology that explicitly seeks to trace these pathways and uses empirical evidence on developmental dependencies among motor development, action on objects, visual object recognition, and object name learning in 12- to 24-month-old infants to make the case. The article concludes with a consideration of the theoretical implications of this approach. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  10. Cortical Cartography and Caret Software

    PubMed Central

    Van Essen, David C.

    2011-01-01

    Caret software is widely used for analyzing and visualizing many types of fMRI data, often in conjunction with experimental data from other modalities. This article places Caret’s development in a historical context that spans three decades of brain mapping – from the early days of manually generated flat maps to the nascent field of human connectomics. It also highlights some of Caret’s distinctive capabilities. This includes the ease of visualizing data on surfaces and/or volumes and on atlases as well as individual subjects. Caret can display many types of experimental data using various combinations of overlays (e.g., fMRI activation maps, cortical parcellations, areal boundaries), and it has other features that facilitate the analysis and visualization of complex neuroimaging datasets. PMID:22062192

  11. A spatio-temporal model of the human observer for use in display design

    NASA Astrophysics Data System (ADS)

    Bosman, Dick

    1989-08-01

    A "quick look" visual model, a kind of standard observer in software, is being developed to estimate the appearance of new display designs before prototypes are built. It operates on images also stored in software. It is assumed that the majority of display design flaws and technology artefacts can be identified in representations of early visual processing, and insight obtained into very local to global (supra-threshold) brightness distributions. Cognitive aspects are not considered because it seems that poor acceptance of technology and design is only weakly coupled to image content.

  12. Multivariate Patterns in the Human Object-Processing Pathway Reveal a Shift from Retinotopic to Shape Curvature Representations in Lateral Occipital Areas, LO-1 and LO-2.

    PubMed

    Vernon, Richard J W; Gouws, André D; Lawrence, Samuel J D; Wade, Alex R; Morland, Antony B

    2016-05-25

    Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to "functional" organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1-V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more "abstracted" representation, typically considered the preserve of "category-selective" extrastriate cortex, can nevertheless emerge in retinotopic regions. Visual areas are typically identified either through retinotopy (e.g., V1-V3) or from functional selectivity [e.g., shape-selective lateral occipital complex (LOC)]. We combined these approaches to explore the nature of shape representations through the visual hierarchy. Two different representations emerged: the first reflected low-level shape properties (dependent on the spatial layout of the shape outline), whereas the second captured more abstract curvature-related shape features. Critically, early visual cortex represented low-level information but this diminished in the extrastriate cortex (LO-1/LO-2/LOC), in which the abstract representation emerged. Therefore, this work further elucidates the nature of shape representations in the LOC, provides insight into how those representations emerge from early retinotopic cortex, and crucially demonstrates that retinotopically tuned regions (LO-1/LO-2) are not necessarily constrained to retinotopic representations. Copyright © 2016 Vernon et al.

  13. Multivariate Patterns in the Human Object-Processing Pathway Reveal a Shift from Retinotopic to Shape Curvature Representations in Lateral Occipital Areas, LO-1 and LO-2

    PubMed Central

    Vernon, Richard J. W.; Gouws, André D.; Lawrence, Samuel J. D.; Wade, Alex R.

    2016-01-01

    Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to “functional” organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1–V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more “abstracted” representation, typically considered the preserve of “category-selective” extrastriate cortex, can nevertheless emerge in retinotopic regions. SIGNIFICANCE STATEMENT Visual areas are typically identified either through retinotopy (e.g., V1–V3) or from functional selectivity [e.g., shape-selective lateral occipital complex (LOC)]. We combined these approaches to explore the nature of shape representations through the visual hierarchy. Two different representations emerged: the first reflected low-level shape properties (dependent on the spatial layout of the shape outline), whereas the second captured more abstract curvature-related shape features. Critically, early visual cortex represented low-level information but this diminished in the extrastriate cortex (LO-1/LO-2/LOC), in which the abstract representation emerged. Therefore, this work further elucidates the nature of shape representations in the LOC, provides insight into how those representations emerge from early retinotopic cortex, and crucially demonstrates that retinotopically tuned regions (LO-1/LO-2) are not necessarily constrained to retinotopic representations. PMID:27225766

  14. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    PubMed

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Abnormal brain activation in neurofibromatosis type 1: a link between visual processing and the default mode network.

    PubMed

    Violante, Inês R; Ribeiro, Maria J; Cunha, Gil; Bernardino, Inês; Duarte, João V; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.

  16. Testing the snake-detection hypothesis: larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs.

    PubMed

    Van Strien, Jan W; Franken, Ingmar H A; Huijding, Jorg

    2014-01-01

    According to the snake detection hypothesis (Isbell, 2006), fear specifically of snakes may have pushed evolutionary changes in the primate visual system allowing pre-attentional visual detection of fearful stimuli. A previous study demonstrated that snake pictures, when compared to spiders or bird pictures, draw more early attention as reflected by larger early posterior negativity (EPN). Here we report two studies that further tested the snake detection hypothesis. In Study 1, we tested whether the enlarged EPN is specific for snakes or also generalizes to other reptiles. Twenty-four healthy, non-phobic women watched the random rapid serial presentation of snake, crocodile, and turtle pictures. The EPN was scored as the mean activity at occipital electrodes (PO3, O1, Oz, PO4, O2) in the 225-300 ms time window after picture onset. The EPN was significantly larger for snake pictures than for pictures of the other reptiles. In Study 2, we tested whether disgust plays a role in the modulation of the EPN and whether preferential processing of snakes also can be found in men. 12 men and 12 women watched snake, spider, and slug pictures. Both men and women exhibited the largest EPN amplitudes to snake pictures, intermediate amplitudes to spider pictures and the smallest amplitudes to slug pictures. Disgust ratings were not associated with EPN amplitudes. The results replicate previous findings and suggest that ancestral priorities modulate the early capture of visual attention.

  17. Near-instant automatic access to visually presented words in the human neocortex: neuromagnetic evidence.

    PubMed

    Shtyrov, Yury; MacGregor, Lucy J

    2016-05-24

    Rapid and efficient processing of external information by the brain is vital to survival in a highly dynamic environment. The key channel humans use to exchange information is language, but the neural underpinnings of its processing are still not fully understood. We investigated the spatio-temporal dynamics of neural access to word representations in the brain by scrutinising the brain's activity elicited in response to psycholinguistically, visually and phonologically matched groups of familiar words and meaningless pseudowords. Stimuli were briefly presented on the visual-field periphery to experimental participants whose attention was occupied with a non-linguistic visual feature-detection task. The neural activation elicited by these unattended orthographic stimuli was recorded using multi-channel whole-head magnetoencephalography, and the timecourse of lexically-specific neuromagnetic responses was assessed in sensor space as well as at the level of cortical sources, estimated using individual MR-based distributed source reconstruction. Our results demonstrate a neocortical signature of automatic near-instant access to word representations in the brain: activity in the perisylvian language network characterised by specific activation enhancement for familiar words, starting as early as ~70 ms after the onset of unattended word stimuli and underpinned by temporal and inferior-frontal cortices.

  18. Space Suit Performance: Methods for Changing the Quality of Quantitative Data

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. To verify that new suits will enable astronauts to perform to their maximum capacity, prototype suits must be built and tested with human subjects. However, engineers and flight surgeons often have difficulty understanding and applying traditional representations of human data without training. To overcome these challenges, NASA is developing modern simulation and analysis techniques that focus on 3D visualization. Early understanding of actual performance early on in the design cycle is extremely advantageous to increase performance capabilities, reduce the risk of injury, and reduce costs. The primary objective of this project was to test modern simulation and analysis techniques for evaluating the performance of a human operating in extra-vehicular space suits.

  19. Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli

    PubMed Central

    Saproo, Sameer

    2010-01-01

    Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives. PMID:20410360

  20. Visual Data Mining: An Exploratory Approach to Analyzing Temporal Patterns of Eye Movements

    ERIC Educational Resources Information Center

    Yu, Chen; Yurovsky, Daniel; Xu, Tian

    2012-01-01

    Infant eye movements are an important behavioral resource to understand early human development and learning. But the complexity and amount of gaze data recorded from state-of-the-art eye-tracking systems also pose a challenge: how does one make sense of such dense data? Toward this goal, this article describes an interactive approach based on…

  1. Six-and-a-Half-Month-Old Children Positively Attribute Goals to Human Action and to Humanoid-Robot Motion

    ERIC Educational Resources Information Center

    Kamewari, K.; Kato, M.; Kanda, T.; Ishiguro, H.; Hiraki, K.

    2005-01-01

    Recent infant studies indicate that goal attribution (understanding of goal-directed action) is present very early in infancy. We examined whether 6.5-month-olds attribute goals to agents and whether infants change the interpretation of goal-directed action according to the kind of agent. We conducted three experiments using the visual habituation…

  2. Optimal Eye-Gaze Fixation Position for Face-Related Neural Responses

    PubMed Central

    Zerouali, Younes; Lina, Jean-Marc; Jemel, Boutheina

    2013-01-01

    It is generally agreed that some features of a face, namely the eyes, are more salient than others as indexed by behavioral diagnosticity, gaze-fixation patterns and evoked-neural responses. However, because previous studies used unnatural stimuli, there is no evidence so far that the early encoding of a whole face in the human brain is based on the eyes or other facial features. To address this issue, scalp electroencephalogram (EEG) and eye gaze-fixations were recorded simultaneously in a gaze-contingent paradigm while observers viewed faces. We found that the N170 indexing the earliest face-sensitive response in the human brain was the largest when the fixation position is located around the nasion. Interestingly, for inverted faces, this optimal fixation position was more variable, but mainly clustered in the upper part of the visual field (around the mouth). These observations extend the findings of recent behavioral studies, suggesting that the early encoding of a face, as indexed by the N170, is not driven by the eyes per se, but rather arises from a general perceptual setting (upper-visual field advantage) coupled with the alignment of a face stimulus to a stored face template. PMID:23762224

  3. Optimal eye-gaze fixation position for face-related neural responses.

    PubMed

    Zerouali, Younes; Lina, Jean-Marc; Jemel, Boutheina

    2013-01-01

    It is generally agreed that some features of a face, namely the eyes, are more salient than others as indexed by behavioral diagnosticity, gaze-fixation patterns and evoked-neural responses. However, because previous studies used unnatural stimuli, there is no evidence so far that the early encoding of a whole face in the human brain is based on the eyes or other facial features. To address this issue, scalp electroencephalogram (EEG) and eye gaze-fixations were recorded simultaneously in a gaze-contingent paradigm while observers viewed faces. We found that the N170 indexing the earliest face-sensitive response in the human brain was the largest when the fixation position is located around the nasion. Interestingly, for inverted faces, this optimal fixation position was more variable, but mainly clustered in the upper part of the visual field (around the mouth). These observations extend the findings of recent behavioral studies, suggesting that the early encoding of a face, as indexed by the N170, is not driven by the eyes per se, but rather arises from a general perceptual setting (upper-visual field advantage) coupled with the alignment of a face stimulus to a stored face template.

  4. [Sensory loss and brain reorganization].

    PubMed

    Fortin, Madeleine; Voss, Patrice; Lassonde, Maryse; Lepore, Franco

    2007-11-01

    It is without a doubt that humans are first and foremost visual beings. Even though the other sensory modalities provide us with valuable information, it is vision that generally offers the most reliable and detailed information concerning our immediate surroundings. It is therefore not surprising that nearly a third of the human brain processes, in one way or another, visual information. But what happens when the visual information no longer reaches these brain regions responsible for processing it? Indeed numerous medical conditions such as congenital glaucoma, retinis pigmentosa and retinal detachment, to name a few, can disrupt the visual system and lead to blindness. So, do the brain areas responsible for processing visual stimuli simply shut down and become non-functional? Do they become dead weight and simply stop contributing to cognitive and sensory processes? Current data suggests that this is not the case. Quite the contrary, it would seem that congenitally blind individuals benefit from the recruitment of these areas by other sensory modalities to carry out non-visual tasks. In fact, our laboratory has been studying blindness and its consequences on both the brain and behaviour for many years now. We have shown that blind individuals demonstrate exceptional hearing abilities. This finding holds true for stimuli originating from both near and far space. It also holds true, under certain circumstances, for those who lost their sight later in life, beyond a period generally believed to limit the brain changes following the loss of sight. In the case of the early blind, we have shown their ability to localize sounds is strongly correlated with activity in the occipital cortex (the location of the visual processing), demonstrating that these areas are functionally engaged by the task. Therefore it would seem that the plastic nature of the human brain allows them to make new use of the cerebral areas normally dedicated to visual processing.

  5. Numerical cognition is resilient to dramatic changes in early sensory experience.

    PubMed

    Kanjlia, Shipra; Feigenson, Lisa; Bedny, Marina

    2018-06-20

    Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities. Copyright © 2018. Published by Elsevier B.V.

  6. Neural evidence reveals the rapid effects of reward history on selective attention.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-05-05

    Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Transient visual pathway critical for normal development of primate grasping behavior.

    PubMed

    Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A

    2018-02-06

    An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.

  8. Priming with real motion biases visual cortical response to bistable apparent motion

    PubMed Central

    Zhang, Qing-fang; Wen, Yunqing; Zhang, Deng; She, Liang; Wu, Jian-young; Dan, Yang; Poo, Mu-ming

    2012-01-01

    Apparent motion quartet is an ambiguous stimulus that elicits bistable perception, with the perceived motion alternating between two orthogonal paths. In human psychophysical experiments, the probability of perceiving motion in each path is greatly enhanced by a brief exposure to real motion along that path. To examine the neural mechanism underlying this priming effect, we used voltage-sensitive dye (VSD) imaging to measure the spatiotemporal activity in the primary visual cortex (V1) of awake mice. We found that a brief real motion stimulus transiently biased the cortical response to subsequent apparent motion toward the spatiotemporal pattern representing the real motion. Furthermore, intracellular recording from V1 neurons in anesthetized mice showed a similar increase in subthreshold depolarization in the neurons representing the path of real motion. Such short-term plasticity in early visual circuits may contribute to the priming effect in bistable visual perception. PMID:23188797

  9. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex.

    PubMed

    Siu, Caitlin R; Balsor, Justin L; Jones, David G; Murphy, Kathryn M

    2015-01-01

    Traditionally, myelin is viewed as insulation around axons, however, more recent studies have shown it also plays an important role in plasticity, axonal metabolism, and neuroimmune signaling. Myelin is a complex multi-protein structure composed of hundreds of proteins, with Myelin Basic Protein (MBP) being the most studied. MBP has two families: Classic-MBP that is necessary for activity driven compaction of myelin around axons, and Golli-MBP that is found in neurons, oligodendrocytes, and T-cells. Furthermore, Golli-MBP has been called a "molecular link" between the nervous and immune systems. In visual cortex specifically, myelin proteins interact with immune processes to affect experience-dependent plasticity. We studied myelin in human visual cortex using Western blotting to quantify Classic- and Golli-MBP expression in post-mortem tissue samples ranging in age from 20 days to 80 years. We found that Classic- and Golli-MBP have different patterns of change across the lifespan. Classic-MBP gradually increases to 42 years and then declines into aging. Golli-MBP has early developmental changes that are coincident with milestones in visual system sensitive period, and gradually increases into aging. There are three stages in the balance between Classic- and Golli-MBP expression, with Golli-MBP dominating early, then shifting to Classic-MBP, and back to Golli-MBP in aging. Also Golli-MBP has a wave of high inter-individual variability during childhood. These results about cortical MBP expression are timely because they compliment recent advances in MRI techniques that produce high resolution maps of cortical myelin in normal and diseased brain. In addition, the unique pattern of Golli-MBP expression across the lifespan suggests that it supports high levels of neuroimmune interaction in cortical development and in aging.

  10. Spatial updating depends on gaze direction even after loss of vision.

    PubMed

    Reuschel, Johanna; Rösler, Frank; Henriques, Denise Y P; Fiehler, Katja

    2012-02-15

    Direction of gaze (eye angle + head angle) has been shown to be important for representing space for action, implying a crucial role of vision for spatial updating. However, blind people have no access to vision yet are able to perform goal-directed actions successfully. Here, we investigated the role of visual experience for localizing and updating targets as a function of intervening gaze shifts in humans. People who differed in visual experience (late blind, congenitally blind, or sighted) were briefly presented with a proprioceptive reach target while facing it. Before they reached to the target's remembered location, they turned their head toward an eccentric direction that also induced corresponding eye movements in sighted and late blind individuals. We found that reaching errors varied systematically as a function of shift in gaze direction only in participants with early visual experience (sighted and late blind). In the late blind, this effect was solely present in people with moveable eyes but not in people with at least one glass eye. Our results suggest that the effect of gaze shifts on spatial updating develops on the basis of visual experience early in life and remains even after loss of vision as long as feedback from the eyes and head is available.

  11. Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation

    PubMed Central

    Mur, Marieke; Meys, Mirjam; Bodurka, Jerzy; Goebel, Rainer; Bandettini, Peter A.; Kriegeskorte, Nikolaus

    2013-01-01

    Primate inferior temporal (IT) cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral-stream regions, and a range of computational models. Human similarity judgments exhibited category clusters that reflected several categorical divisions that are prevalent in the IT representation of both human and monkey, including the animate/inanimate and the face/body division. Human judgments also reflected the within-category representation of IT. However, the judgments transcended the IT representation in that they introduced additional categorical divisions. In particular, human judgments emphasized human-related additional divisions between human and non-human animals and between man-made and natural objects. hIT was more similar to monkey IT than to human judgments. One interpretation is that IT has evolved visual-feature detectors that distinguish between animates and inanimates and between faces and bodies because these divisions are fundamental to survival and reproduction for all primate species, and that other brain systems serve to more flexibly introduce species-dependent and evolutionarily more recent divisions. PMID:23525516

  12. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-09

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.

  13. Exposure to unpredictable maternal sensory signals influences cognitive development across species.

    PubMed

    Davis, Elysia Poggi; Stout, Stephanie A; Molet, Jenny; Vegetabile, Brian; Glynn, Laura M; Sandman, Curt A; Heins, Kevin; Stern, Hal; Baram, Tallie Z

    2017-09-26

    Maternal care is a critical determinant of child development. However, our understanding of processes and mechanisms by which maternal behavior influences the developing human brain remains limited. Animal research has illustrated that patterns of sensory information is important in shaping neural circuits during development. Here we examined the relation between degree of predictability of maternal sensory signals early in life and subsequent cognitive function in both humans ( n = 128 mother/infant dyads) and rats ( n = 12 dams; 28 adolescents). Behaviors of mothers interacting with their offspring were observed in both species, and an entropy rate was calculated as a quantitative measure of degree of predictability of transitions among maternal sensory signals (visual, auditory, and tactile). Human cognitive function was assessed at age 2 y with the Bayley Scales of Infant Development and at age 6.5 y with a hippocampus-dependent delayed-recall task. Rat hippocampus-dependent spatial memory was evaluated on postnatal days 49-60. Early life exposure to unpredictable sensory signals portended poor cognitive performance in both species. The present study provides evidence that predictability of maternal sensory signals early in life impacts cognitive function in both rats and humans. The parallel between experimental animal and observational human data lends support to the argument that predictability of maternal sensory signals causally influences cognitive development.

  14. Early visual language exposure and emergent literacy in preschool deaf children: findings from a national longitudinal study.

    PubMed

    Allen, Thomas E; Letteri, Amy; Choi, Song Hoa; Dang, Daqian

    2014-01-01

    Brief review is provided of recent research on the impact of early visual language exposure on a variety of developmental outcomes, including literacy, cognition, and social adjustment. This body of work points to the great importance of giving young deaf children early exposure to a visual language as a critical precursor to the acquisition of literacy. Four analyses of data from the Visual Language and Visual Learning (VL2) Early Education Longitudinal Study are summarized. Each confirms findings from previously published laboratory findings and points to the positive effects of early sign language on, respectively, letter knowledge, social adaptability, sustained visual attention, and cognitive-behavioral milestones necessary for academic success. The article concludes with a consideration of the qualitative similarity hypothesis and a finding that the hypothesis is valid, but only if it can be presented as being modality independent.

  15. From genes to brain oscillations: is the visual pathway the epigenetic clue to schizophrenia?

    PubMed

    González-Hernández, J A; Pita-Alcorta, C; Cedeño, I R

    2006-01-01

    Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere with the local physiology. In this context the strategy to search target genes need to be rearrangement and redirected to visual-related genes. Otherwise, psychophysics studies combining functional neuroimage, and electrophysiology are strongly recommended, for the search of epigenetic clues that will allow to carrier gene association studies in schizophrenia.

  16. Salience of the lambs: a test of the saliency map hypothesis with pictures of emotive objects.

    PubMed

    Humphrey, Katherine; Underwood, Geoffrey; Lambert, Tony

    2012-01-25

    Humans have an ability to rapidly detect emotive stimuli. However, many emotional objects in a scene are also highly visually salient, which raises the question of how dependent the effects of emotionality are on visual saliency and whether the presence of an emotional object changes the power of a more visually salient object in attracting attention. Participants were shown a set of positive, negative, and neutral pictures and completed recall and recognition memory tests. Eye movement data revealed that visual saliency does influence eye movements, but the effect is reliably reduced when an emotional object is present. Pictures containing negative objects were recognized more accurately and recalled in greater detail, and participants fixated more on negative objects than positive or neutral ones. Initial fixations were more likely to be on emotional objects than more visually salient neutral ones, suggesting that the processing of emotional features occurs at a very early stage of perception.

  17. On a common circle: natural scenes and Gestalt rules.

    PubMed

    Sigman, M; Cecchi, G A; Gilbert, C D; Magnasco, M O

    2001-02-13

    To understand how the human visual system analyzes images, it is essential to know the structure of the visual environment. In particular, natural images display consistent statistical properties that distinguish them from random luminance distributions. We have studied the geometric regularities of oriented elements (edges or line segments) present in an ensemble of visual scenes, asking how much information the presence of a segment in a particular location of the visual scene carries about the presence of a second segment at different relative positions and orientations. We observed strong long-range correlations in the distribution of oriented segments that extend over the whole visual field. We further show that a very simple geometric rule, cocircularity, predicts the arrangement of segments in natural scenes, and that different geometrical arrangements show relevant differences in their scaling properties. Our results show similarities to geometric features of previous physiological and psychophysical studies. We discuss the implications of these findings for theories of early vision.

  18. [Early diagnosis of ectopic pregnancy].

    PubMed

    Belics, Zoran; Gérecz, Balázs; Csákány, M György

    2014-07-20

    Ectopic pregnancy is a high-risk condition that occurs in 2% of reported pregnancies. This percentage is fivefold higher than that registered in the 1970s. Since 1970 there has been a two-fold increase in the ratio of ectopic pregnancies to all reported pregnancies in Hungary and in 2012 7.4 ectopic pregnancies per thousand registered pregnancies were reported. Recently, the majority (80%) of cases can be diagnosed in early stage, and the related mortality objectively decreased in the past few decades to 3.8/10,000 ectopic pregnancies. If a woman with positive pregnancy test has abdominal pain and/or vaginal bleeding the physician should perform a work-up to safely exclude the possibility of ectopic pregnancy. The basis of diagnosis is ultrasonography, especially vaginal ultrasound examination and measurement of the β-subunit of human chorionic gonadotropin. The ultrasound diagnosis is based on the visualization of an ectopic mass rather than the inability to visualize an intrauterine pregnancy. In some questionable cases the diagnostic uterine curettage or laparoscopy may be useful. The actuality of this topic is justified by practical difficulties in obtaining correct diagnosis, especially in the early gestational time.

  19. Human-System Integration Scorecard Update to VB.Net

    NASA Technical Reports Server (NTRS)

    Sanders, Blaze D.

    2009-01-01

    The purpose of this project was to create Human-System Integration (HSI) scorecard software, which could be utilized to validate that human factors have been considered early in hardware/system specifications and design. The HSI scorecard is partially based upon the revised Human Rating Requirements (HRR) intended for NASA's Constellation program. This software scorecard will allow for quick appraisal of HSI factors, by using visual aids to highlight low and rapidly changing scores. This project consisted of creating a user-friendly Visual Basic program that could be easily distributed and updated, to and by fellow colleagues. Updating the Microsoft Word version of the HSI scorecard to a computer application will allow for the addition of useful features, improved easy of use, and decreased completion time for user. One significant addition is the ability to create Microsoft Excel graphs automatically from scorecard data, to allow for clear presentation of problematic areas. The purpose of this paper is to describe the rational and benefits of creating the HSI scorecard software, the problems and goals of project, and future work that could be done.

  20. Spatiotemporal dynamics in human visual cortex rapidly encode the emotional content of faces.

    PubMed

    Dima, Diana C; Perry, Gavin; Messaritaki, Eirini; Zhang, Jiaxiang; Singh, Krish D

    2018-06-08

    Recognizing emotion in faces is important in human interaction and survival, yet existing studies do not paint a consistent picture of the neural representation supporting this task. To address this, we collected magnetoencephalography (MEG) data while participants passively viewed happy, angry and neutral faces. Using time-resolved decoding of sensor-level data, we show that responses to angry faces can be discriminated from happy and neutral faces as early as 90 ms after stimulus onset and only 10 ms later than faces can be discriminated from scrambled stimuli, even in the absence of differences in evoked responses. Time-resolved relevance patterns in source space track expression-related information from the visual cortex (100 ms) to higher-level temporal and frontal areas (200-500 ms). Together, our results point to a system optimised for rapid processing of emotional faces and preferentially tuned to threat, consistent with the important evolutionary role that such a system must have played in the development of human social interactions. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  1. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.

    PubMed

    Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P

    2016-02-08

    In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effective Connectivity from Early Visual Cortex to Posterior Occipitotemporal Face Areas Supports Face Selectivity and Predicts Developmental Prosopagnosia

    PubMed Central

    Garrido, Lucia; Driver, Jon; Dolan, Raymond J.; Duchaine, Bradley C.; Furl, Nicholas

    2016-01-01

    Face processing is mediated by interactions between functional areas in the occipital and temporal lobe, and the fusiform face area (FFA) and anterior temporal lobe play key roles in the recognition of facial identity. Individuals with developmental prosopagnosia (DP), a lifelong face recognition impairment, have been shown to have structural and functional neuronal alterations in these areas. The present study investigated how face selectivity is generated in participants with normal face processing, and how functional abnormalities associated with DP, arise as a function of network connectivity. Using functional magnetic resonance imaging and dynamic causal modeling, we examined effective connectivity in normal participants by assessing network models that include early visual cortex (EVC) and face-selective areas and then investigated the integrity of this connectivity in participants with DP. Results showed that a feedforward architecture from EVC to the occipital face area, EVC to FFA, and EVC to posterior superior temporal sulcus (pSTS) best explained how face selectivity arises in both controls and participants with DP. In this architecture, the DP group showed reduced connection strengths on feedforward connections carrying face information from EVC to FFA and EVC to pSTS. These altered network dynamics in DP contribute to the diminished face selectivity in the posterior occipitotemporal areas affected in DP. These findings suggest a novel view on the relevance of feedforward projection from EVC to posterior occipitotemporal face areas in generating cortical face selectivity and differences in face recognition ability. SIGNIFICANCE STATEMENT Areas of the human brain showing enhanced activation to faces compared to other objects or places have been extensively studied. However, the factors leading to this face selectively have remained mostly unknown. We show that effective connectivity from early visual cortex to posterior occipitotemporal face areas gives rise to face selectivity. Furthermore, people with developmental prosopagnosia, a lifelong face recognition impairment, have reduced face selectivity in the posterior occipitotemporal face areas and left anterior temporal lobe. We show that this reduced face selectivity can be predicted by effective connectivity from early visual cortex to posterior occipitotemporal face areas. This study presents the first network-based account of how face selectivity arises in the human brain. PMID:27030766

  3. Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception

    PubMed Central

    Gintautas, Vadas; Ham, Michael I.; Kunsberg, Benjamin; Barr, Shawn; Brumby, Steven P.; Rasmussen, Craig; George, John S.; Nemenman, Ilya; Bettencourt, Luís M. A.; Kenyon, Garret T.

    2011-01-01

    Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas. PMID:21998562

  4. Early Childhood Special Education for Children with Visual Impairments: Problems and Solutions

    ERIC Educational Resources Information Center

    Kesiktas, A. Dolunay

    2009-01-01

    Studies showing developmental delays in infants and children with visual impairments have triggered early childhood special education studies for this population. Early childhood special education guidelines for visually impaired infants and children range from individualized services to personnel preparation issues while all display certain…

  5. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.

    PubMed

    Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel

    2017-07-26

    Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required. Copyright © 2017 the authors 0270-6474/17/377188-10$15.00/0.

  6. Anthropological film: a scientific and humanistic resource.

    PubMed

    Soren, E R

    1974-12-20

    More than a scientific endeavor but not strictly one of the humanities either, anthropology stands between these basic kinds of intellectual pursuit, bridging and contributing to both. Not limited to natural history, anthropology touches art, historical process, and human values, drawing from the materials and approaches of both science and humanities. This professional interest in a broad understanding of the human condition has led anthropologists to adapt and use modern cameras and films to inquire further into the variety of ways of life of mankind and to develop method and theory to prepare anthropological film as a permanent scientific and humanistic resource. Until quite recently the evolution of human culture and organization has diverged in the hitherto isolated regions of the world. Now this divergence has virtually ceased; we are witnessing an unprecedented period in human history-one where cultural divergence has turned to cultural convergence and where the varieties of independently evolved expressions of basic human potential are giving way to a single system of modern communications, transport, commerce, and manufacturing technology. Before the varieties of ways of life of the world disappear, they can be preserved in facsimile in anthropological films. As primary, undifferentiated visual information, these films facilitate that early step in the creation of new knowledge which is sometimes called humanistic and without which scientific application lies dormant, lacking an idea to test. In keeping with the two scholarly faces of anthropology, humanistic and scientific, anthropological films may provide material permitting both humanistic insight and the more controlled formulations of science. The lightweight filming equipment recently developed has been adapted by anthropologists as a tool of scholarly visual inquiry; methods of retrieving visual data from changing and vanishing ways of life have been developed; and new ways to reveal human beings to one another by using such visual resources have been explored. As a result, not only can anthropological film records permit continued reexamination of the past human conditions from which the present was shaped, but they also facilitate an ongoing public and scientific review of the dynamics of the human behavioral and social repertoire in relation to the contemporary conditions which pattern human responses and adaptation. How man fits into and copes with the changing world is of vital interest and concern. Visual data provide otherwise unobtainable information on human potential, behavior, and social organization. Such information, fed into the public media, facilitates informed consideration of alternative possibilities. By contributing to a better informed society, such films will help make our future more human and more humane.

  7. The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children

    PubMed Central

    Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica

    2017-01-01

    The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion. PMID:28443040

  8. Inferring the direction of implied motion depends on visual awareness

    PubMed Central

    Faivre, Nathan; Koch, Christof

    2014-01-01

    Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction. PMID:24706951

  9. Inferring the direction of implied motion depends on visual awareness.

    PubMed

    Faivre, Nathan; Koch, Christof

    2014-04-04

    Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction.

  10. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    PubMed Central

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  11. Visual recognition and visually guided action after early bilateral lesion of occipital cortex: a behavioral study of a 4.6-year-old girl.

    PubMed

    Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico

    2006-10-01

    We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.

  12. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning.

    PubMed

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Tuning the developing brain to social signals of emotions

    PubMed Central

    Leppänen, Jukka M.; Nelson, Charles A.

    2010-01-01

    PREFACE Humans in diverse cultures develop a similar capacity to recognize the emotional signals of different facial expressions. This capacity is mediated by a brain network that involves emotion-related brain circuits and higher-level visual representation areas. Recent studies suggest that the key components of this network begin to emerge early in life. The studies also suggest that initial biases in emotion-related brain circuits and the early coupling of these circuits and cortical perceptual areas provides a foundation for a rapid acquisition of representations of those facial features that denote specific emotions. PMID:19050711

  14. Objects predict fixations better than early saliency.

    PubMed

    Einhäuser, Wolfgang; Spain, Merrielle; Perona, Pietro

    2008-11-20

    Humans move their eyes while looking at scenes and pictures. Eye movements correlate with shifts in attention and are thought to be a consequence of optimal resource allocation for high-level tasks such as visual recognition. Models of attention, such as "saliency maps," are often built on the assumption that "early" features (color, contrast, orientation, motion, and so forth) drive attention directly. We explore an alternative hypothesis: Observers attend to "interesting" objects. To test this hypothesis, we measure the eye position of human observers while they inspect photographs of common natural scenes. Our observers perform different tasks: artistic evaluation, analysis of content, and search. Immediately after each presentation, our observers are asked to name objects they saw. Weighted with recall frequency, these objects predict fixations in individual images better than early saliency, irrespective of task. Also, saliency combined with object positions predicts which objects are frequently named. This suggests that early saliency has only an indirect effect on attention, acting through recognized objects. Consequently, rather than treating attention as mere preprocessing step for object recognition, models of both need to be integrated.

  15. Functional size of human visual area V1: a neural correlate of top-down attention.

    PubMed

    Verghese, Ashika; Kolbe, Scott C; Anderson, Andrew J; Egan, Gary F; Vidyasagar, Trichur R

    2014-06-01

    Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is considerable variation in the surface area of V1. This variation may impact on either the number or specificity of attentional feedback signals and, thereby, the efficiency of attentional mechanisms. In this study, we investigated whether individual differences between humans performing attention-demanding tasks can be related to the functional area of V1. We found that those with a larger representation in V1 of the central 12° of the visual field as measured using BOLD signals from fMRI were able to perform a serial search task at a faster rate. In line with recent suggestions of the vital role of visuo-spatial attention in reading, the speed of reading showed a strong positive correlation with the speed of visual search, although it showed little correlation with the size of V1. The results support the idea that the functional size of the primary visual cortex is an important determinant of the efficiency of selective spatial attention for simple tasks, and that the attentional processing required for complex tasks like reading are to a large extent determined by other brain areas and inter-areal connections. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Evolution of attention mechanisms for early visual processing

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism: mutation and cloning of the best performers and extinction of the worst performers considering computation of regions of attention. A fitness function can be derived by evaluating, whether relevant objects are found in the regions created. It can be seen from various experiments, that the approach significantly speeds up visual processing, especially regarding robust ealtime object recognition, compared to an approach not using saliency based preprocessing. Furthermore, the evolutionary algorithm improves the overall performance of the preprocessing system in terms of quality, as the system automatically and autonomously tunes the saliency parameters. The computational overhead produced by periodical clone/delete/mutation operations can be handled well within the realtime constraints of the experimental computer vision system. Nevertheless, limitations apply whenever the visual field does not contain any significant saliency information for some time, but the population still tries to tune the parameters - overfitting avoids generalization in this case and the evolutionary process may be reset by manual intervention.

  17. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps

    PubMed Central

    2016-01-01

    Abstract Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor‐preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface‐based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory‐motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory‐motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M‐I. Hum Brain Mapp 37:2784–2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061771

  18. Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex

    PubMed Central

    Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D

    2013-01-01

    The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120

  19. Designing human centered GeoVisualization application--the SanaViz--for telehealth users: a case study.

    PubMed

    Joshi, Ashish; de Araujo Novaes, Magdala; Machiavelli, Josiane; Iyengar, Sriram; Vogler, Robert; Johnson, Craig; Zhang, Jiajie; Hsu, Chiehwen E

    2012-01-01

    Public health data is typically organized by geospatial unit. GeoVisualization (GeoVis) allows users to see information visually on a map. Examine telehealth users' perceptions towards existing public health GeoVis applications and obtains users' feedback about features important for the design and development of Human Centered GeoVis application "the SanaViz". We employed a cross sectional study design using mixed methods approach for this pilot study. Twenty users involved with the NUTES telehealth center at Federal University of Pernambuco (UFPE), Recife, Brazil were enrolled. Open and closed ended questionnaires were used to gather data. We performed audio recording for the interviews. Information gathered included socio-demographics, prior spatial skills and perception towards use of GeoVis to evaluate telehealth services. Card sorting and sketching methods were employed. Univariate analysis was performed for the continuous and categorical variables. Qualitative analysis was performed for open ended questions. Existing Public Health GeoVis applications were difficult to use. Results found interaction features zooming, linking and brushing and representation features Google maps, tables and bar chart as most preferred GeoVis features. Early involvement of users is essential to identify features necessary to be part of the human centered GeoVis application "the SanaViz".

  20. Testing the snake-detection hypothesis: larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs

    PubMed Central

    Van Strien, Jan W.; Franken, Ingmar H. A.; Huijding, Jorg

    2014-01-01

    According to the snake detection hypothesis (Isbell, 2006), fear specifically of snakes may have pushed evolutionary changes in the primate visual system allowing pre-attentional visual detection of fearful stimuli. A previous study demonstrated that snake pictures, when compared to spiders or bird pictures, draw more early attention as reflected by larger early posterior negativity (EPN). Here we report two studies that further tested the snake detection hypothesis. In Study 1, we tested whether the enlarged EPN is specific for snakes or also generalizes to other reptiles. Twenty-four healthy, non-phobic women watched the random rapid serial presentation of snake, crocodile, and turtle pictures. The EPN was scored as the mean activity at occipital electrodes (PO3, O1, Oz, PO4, O2) in the 225–300 ms time window after picture onset. The EPN was significantly larger for snake pictures than for pictures of the other reptiles. In Study 2, we tested whether disgust plays a role in the modulation of the EPN and whether preferential processing of snakes also can be found in men. 12 men and 12 women watched snake, spider, and slug pictures. Both men and women exhibited the largest EPN amplitudes to snake pictures, intermediate amplitudes to spider pictures and the smallest amplitudes to slug pictures. Disgust ratings were not associated with EPN amplitudes. The results replicate previous findings and suggest that ancestral priorities modulate the early capture of visual attention. PMID:25237303

  1. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  2. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  4. Short-term retention of visual information: Evidence in support of feature-based attention as an underlying mechanism.

    PubMed

    Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein

    2015-01-01

    Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Active training for amblyopia in adult rodents

    PubMed Central

    Sale, Alessandro; Berardi, Nicoletta

    2015-01-01

    Amblyopia is the most diffused form of visual function impairment affecting one eye, with a prevalence of 1–5% in the total world population. Amblyopia is usually caused by an early functional imbalance between the two eyes, deriving from anisometropia, strabismus, or congenital cataract, leading to severe deficits in visual acuity, contrast sensitivity and stereopsis. While amblyopia can be efficiently treated in children, it becomes irreversible in adults, as a result of a dramatic decline in visual cortex plasticity which occurs at the end of the critical period (CP) in the primary visual cortex. Notwithstanding this widely accepted dogma, recent evidence in animal models and in human patients have started to challenge this view, revealing a previously unsuspected possibility to enhance plasticity in the adult visual system and to achieve substantial visual function recovery. Among the new proposed intervention strategies, non invasive procedures based on environmental enrichment, physical exercise or visual perceptual learning (vPL) appear particularly promising in terms of future applicability in the clinical setting. In this survey, we will review recent literature concerning the application of these behavioral intervention strategies to the treatment of amblyopia, with a focus on possible underlying molecular and cellular mechanisms. PMID:26578911

  6. Neuroplasticity and amblyopia: vision at the balance point.

    PubMed

    Tailor, Vijay K; Schwarzkopf, D Samuel; Dahlmann-Noor, Annegret H

    2017-02-01

    New insights into triggers and brakes of plasticity in the visual system are being translated into new treatment approaches which may improve outcomes not only in children, but also in adults. Visual experience-driven plasticity is greatest in early childhood, triggered by maturation of inhibitory interneurons which facilitate strengthening of synchronous synaptic connections, and inactivation of others. Normal binocular development leads to progressive refinement of monocular visual acuity, stereoacuity and fusion of images from both eyes. At the end of the 'critical period', structural and functional brakes such as dampening of acetylcholine receptor signalling and formation of perineuronal nets limit further synaptic remodelling. Imbalanced visual input from the two eyes can lead to imbalanced neural processing and permanent visual deficits, the commonest of which is amblyopia. The efficacy of new behavioural, physical and pharmacological interventions aiming to balance visual input and visual processing have been described in humans, and some are currently under evaluation in randomised controlled trials. Outcomes may change amblyopia treatment for children and adults, but the safety of new approaches will need careful monitoring, as permanent adverse events may occur when plasticity is re-induced after the end of the critical period.Video abstracthttp://links.lww.com/CONR/A42.

  7. Fear-potentiated startle processing in humans: Parallel fMRI and orbicularis EMG assessment during cue conditioning and extinction.

    PubMed

    Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia

    2015-12-01

    Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Level-2 Milestone 4797: Early Users on Max, Sequoia Visualization Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cupps, Kim C.

    This report documents the fact that an early user has run successfully on Max, the Sequoia visualization cluster, ASC L2 milestone 4797: Early Users on Sequoia Visualization System (Max), due December 31, 2013. The Max visualization and data analysis cluster will provide Sequoia users with compute cycles and an interactive option for data exploration and analysis. The system will be integrated in the first quarter of FY14 and the system is expected to be moved to the classified network by the second quarter of FY14. The goal of this milestone is to have early users running their visualization and datamore » analysis work on the Max cluster on the classified network.« less

  9. ERP Evidence of Visualization at Early Stages of Visual Processing

    ERIC Educational Resources Information Center

    Page, Jonathan W.; Duhamel, Paul; Crognale, Michael A.

    2011-01-01

    Recent neuroimaging research suggests that early visual processing circuits are activated similarly during visualization and perception but have not demonstrated that the cortical activity is similar in character. We found functional equivalency in cortical activity by recording evoked potentials while color and luminance patterns were viewed and…

  10. Spatial attention improves the quality of population codes in human visual cortex.

    PubMed

    Saproo, Sameer; Serences, John T

    2010-08-01

    Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.

  11. Dynamic facial expressions evoke distinct activation in the face perception network: a connectivity analysis study.

    PubMed

    Foley, Elaine; Rippon, Gina; Thai, Ngoc Jade; Longe, Olivia; Senior, Carl

    2012-02-01

    Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223-233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.

  12. Concept of Operations Visualization for Ares I Production

    NASA Technical Reports Server (NTRS)

    Chilton, Jim; Smith, David Alan

    2008-01-01

    Establishing Computer Aided Design models of the Ares I production facility, tooling and vehicle components and integrating them into manufacturing visualizations/simulations allows Boeing and NASA to collaborate real time early in the design/development cycle. This collaboration identifies cost effective and lean solutions that can be easily shared with Ares stakeholders (e.g., other NASA Centers and potential science users). These Ares I production visualizations and analyses by their nature serve as early manufacturing improvement precursors for other Constellation elements to be built at the Michoud Assembly Facility such as Ares V and the Altair Lander. Key to this Boeing and Marshall Space Flight Center collaboration has been the use of advanced virtual manufacturing tools to understand the existing Shuttle era infrastructure and trade potential modifications to support Ares I production. These approaches are then used to determine an optimal manufacturing configuration in terms of labor efficiency, safety and facility enhancements. These same models and tools can be used in an interactive simulation of Ares I and V flight to the Space Station or moon to educate the human space constituency (e.g., government, academia, media and the public) in order to increase national and international understanding of Constellation goals and benefits.

  13. Attentional bias to briefly presented emotional distractors follows a slow time course in visual cortex.

    PubMed

    Müller, Matthias M; Andersen, Søren K; Hindi Attar, Catherine

    2011-11-02

    A central controversy in the field of attention is how the brain deals with emotional distractors and to what extent they capture attentional processing resources reflexively due to their inherent significance for guidance of adaptive behavior and survival. Especially, the time course of competitive interactions in early visual areas and whether masking of briefly presented emotional stimuli can inhibit biasing of processing resources in these areas is currently unknown. We recorded frequency-tagged potentials evoked by a flickering target detection task in the foreground of briefly presented emotional or neutral pictures that were followed by a mask in human subjects. We observed greater competition for processing resources in early visual cortical areas with shortly presented emotional relative to neutral pictures ~275 ms after picture offset. This was paralleled by a reduction of target detection rates in trials with emotional pictures ~400 ms after picture offset. Our finding that briefly presented emotional distractors are able to bias attention well after their offset provides evidence for a rather slow feedback or reentrant neural competition mechanism for emotional distractors that continues after the offset of the emotional stimulus.

  14. Emotional tears facilitate the recognition of sadness and the perceived need for social support.

    PubMed

    Balsters, Martijn J H; Krahmer, Emiel J; Swerts, Marc G J; Vingerhoets, Ad J J M

    2013-02-12

    The tearing effect refers to the relevance of tears as an important visual cue adding meaning to human facial expression. However, little is known about how people process these visual cues and their mediating role in terms of emotion perception and person judgment. We therefore conducted two experiments in which we measured the influence of tears on the identification of sadness and the perceived need for social support at an early perceptional level. In two experiments (1 and 2), participants were exposed to sad and neutral faces. In both experiments, the face stimuli were presented for 50 milliseconds. In experiment 1, tears were digitally added to sad faces in one condition. Participants demonstrated a significant faster recognition of sad faces with tears compared to those without tears. In experiment 2, tears were added to neutral faces as well. Participants had to indicate to what extent the displayed individuals were in need of social support. Study participants reported a greater perceived need for social support to both sad and neutral faces with tears than to those without tears. This study thus demonstrated that emotional tears serve as important visual cues at an early (pre-attentive) level.

  15. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  16. Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex

    PubMed Central

    2017-01-01

    Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749

  17. Stimulation of functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  18. Label-free visualization of collagen in submucosa as a potential diagnostic marker for early detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Qiu, Jingting; Yang, Yinghong; Jiang, Weizhong; Feng, Changyin; Chen, Zhifen; Guan, Guoxian; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2014-09-01

    The collagen signature in colorectal submucosa is changed due to remodeling of the extracellular matrix during the malignant process and plays an important role in noninvasive early detection of human colorectal cancer. In this work, multiphoton microscopy (MPM) was used to monitor the changes of collagen in normal colorectal submucosa (NCS) and cancerous colorectal submucosa (CCS). What's more, the collagen content was quantitatively measured. It was found that in CCS the morphology of collagen becomes much looser and the collagen content is significantly reduced compared to NCS. These results suggest that MPM has the ability to provide collagen signature as a potential diagnostic marker for early detection of colorectal cancer.

  19. Effects of visual attention on chromatic and achromatic detection sensitivities.

    PubMed

    Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko

    2014-05-01

    Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.

  20. Electrophysiological evidence of altered visual processing in adults who experienced visual deprivation during infancy.

    PubMed

    Segalowitz, Sidney J; Sternin, Avital; Lewis, Terri L; Dywan, Jane; Maurer, Daphne

    2017-04-01

    We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion. © 2017 Wiley Periodicals, Inc.

  1. Independent Deficits of Visual Word and Motion Processing in Aging and Early Alzheimer's Disease

    PubMed Central

    Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy; Duffy, Charles J.

    2013-01-01

    We tested whether visual processing impairments in aging and Alzheimer's disease (AD) reflect uniform posterior cortical decline, or independent disorders of visual processing for reading and navigation. Young and older normal controls were compared to early AD patients using psychophysical measures of visual word and motion processing. We find elevated perceptual thresholds for letters and word discrimination from young normal controls, to older normal controls, to early AD patients. Across subject groups, visual motion processing showed a similar pattern of increasing thresholds, with the greatest impact on radial pattern motion perception. Combined analyses show that letter, word, and motion processing impairments are independent of each other. Aging and AD may be accompanied by independent impairments of visual processing for reading and navigation. This suggests separate underlying disorders and highlights the need for comprehensive evaluations to detect early deficits. PMID:22647256

  2. Visual Detection Under Uncertainty Operates Via an Early Static, Not Late Dynamic, Non-Linearity

    PubMed Central

    Neri, Peter

    2010-01-01

    Signals in the environment are rarely specified exactly: our visual system may know what to look for (e.g., a specific face), but not its exact configuration (e.g., where in the room, or in what orientation). Uncertainty, and the ability to deal with it, is a fundamental aspect of visual processing. The MAX model is the current gold standard for describing how human vision handles uncertainty: of all possible configurations for the signal, the observer chooses the one corresponding to the template associated with the largest response. We propose an alternative model in which the MAX operation, which is a dynamic non-linearity (depends on multiple inputs from several stimulus locations) and happens after the input stimulus has been matched to the possible templates, is replaced by an early static non-linearity (depends only on one input corresponding to one stimulus location) which is applied before template matching. By exploiting an integrated set of analytical and experimental tools, we show that this model is able to account for a number of empirical observations otherwise unaccounted for by the MAX model, and is more robust with respect to the realistic limitations imposed by the available neural hardware. We then discuss how these results, currently restricted to a simple visual detection task, may extend to a wider range of problems in sensory processing. PMID:21212835

  3. Reward speeds up and increases consistency of visual selective attention: a lifespan comparison.

    PubMed

    Störmer, Viola; Eppinger, Ben; Li, Shu-Chen

    2014-06-01

    Children and older adults often show less favorable reward-based learning and decision making, relative to younger adults. It is unknown, however, whether reward-based processes that influence relatively early perceptual and attentional processes show similar lifespan differences. In this study, we investigated whether stimulus-reward associations affect selective visual attention differently across the human lifespan. Children, adolescents, younger adults, and older adults performed a visual search task in which the target colors were associated with either high or low monetary rewards. We discovered that high reward value speeded up response times across all four age groups, indicating that reward modulates attentional selection across the lifespan. This speed-up in response time was largest in younger adults, relative to the other three age groups. Furthermore, only younger adults benefited from high reward value in increasing response consistency (i.e., reduction of trial-by-trial reaction time variability). Our findings suggest that reward-based modulations of relatively early and implicit perceptual and attentional processes are operative across the lifespan, and the effects appear to be greater in adulthood. The age-specific effect of reward on reducing intraindividual response variability in younger adults likely reflects mechanisms underlying the development and aging of reward processing, such as lifespan age differences in the efficacy of dopaminergic modulation. Overall, the present results indicate that reward shapes visual perception across different age groups by biasing attention to motivationally salient events.

  4. Cross-Modality Information Transfer: A Hypothesis about the Relationship among Prehistoric Cave Paintings, Symbolic Thinking, and the Emergence of Language.

    PubMed

    Miyagawa, Shigeru; Lesure, Cora; Nóbrega, Vitor A

    2018-01-01

    Early modern humans developed mental capabilities that were immeasurably greater than those of non-human primates. We see this in the rapid innovation in tool making, the development of complex language, and the creation of sophisticated art forms, none of which we find in our closest relatives. While we can readily observe the results of this high-order cognitive capacity, it is difficult to see how it could have developed. We take up the topic of cave art and archeoacoustics, particularly the discovery that cave art is often closely connected to the acoustic properties of the cave chambers in which it is found. Apparently, early modern humans were able to detect the way sound reverberated in these chambers, and they painted artwork on surfaces that were acoustic "hot spots," i.e., suitable for generating echoes. We argue that cave art is a form of cross-modality information transfer, in which acoustic signals are transformed into symbolic visual representations. This form of information transfer across modalities is an instance of how the symbolic mind of early modern humans was taking shape into concrete, externalized language. We also suggest that the earliest rock art found in Africa may constitute one of the first fossilized proxies for the expression of full-fledged human linguistic behavior.

  5. Cross-Modality Information Transfer: A Hypothesis about the Relationship among Prehistoric Cave Paintings, Symbolic Thinking, and the Emergence of Language

    PubMed Central

    Miyagawa, Shigeru; Lesure, Cora; Nóbrega, Vitor A.

    2018-01-01

    Early modern humans developed mental capabilities that were immeasurably greater than those of non-human primates. We see this in the rapid innovation in tool making, the development of complex language, and the creation of sophisticated art forms, none of which we find in our closest relatives. While we can readily observe the results of this high-order cognitive capacity, it is difficult to see how it could have developed. We take up the topic of cave art and archeoacoustics, particularly the discovery that cave art is often closely connected to the acoustic properties of the cave chambers in which it is found. Apparently, early modern humans were able to detect the way sound reverberated in these chambers, and they painted artwork on surfaces that were acoustic “hot spots,” i.e., suitable for generating echoes. We argue that cave art is a form of cross-modality information transfer, in which acoustic signals are transformed into symbolic visual representations. This form of information transfer across modalities is an instance of how the symbolic mind of early modern humans was taking shape into concrete, externalized language. We also suggest that the earliest rock art found in Africa may constitute one of the first fossilized proxies for the expression of full-fledged human linguistic behavior. PMID:29515474

  6. [Associative Learning between Orientation and Color in Early Visual Areas].

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  7. ASSOCIATION BETWEEN VISUAL FUNCTION AND SUBRETINAL DRUSENOID DEPOSITS IN NORMAL AND EARLY AGE-RELATED MACULAR DEGENERATION EYES.

    PubMed

    Neely, David; Zarubina, Anna V; Clark, Mark E; Huisingh, Carrie E; Jackson, Gregory R; Zhang, Yuhua; McGwin, Gerald; Curcio, Christine A; Owsley, Cynthia

    2017-07-01

    To examine the association between subretinal drusenoid deposits (SDDs) identified by multimodal retinal imaging and visual function in older eyes with normal macular health or in the earliest phases of age-related macular degeneration (AMD). Age-related macular degeneration status for each eye was defined according to the Age-Related Eye Disease Study (AREDS) 9-step classification system (normal = Step 1, early AMD = Steps 2-4) based on color fundus photographs. Visual functions measured were best-corrected photopic visual acuity, contrast and light sensitivity, mesopic visual acuity, low-luminance deficit, and rod-mediated dark adaptation. Subretinal drusenoid deposits were identified through multimodal imaging (color fundus photographs, infrared reflectance and fundus autofluorescence images, and spectral domain optical coherence tomography). The sample included 1,202 eyes (958 eyes with normal health and 244 eyes with early AMD). In normal eyes, SDDs were not associated with any visual function evaluated. In eyes with early AMD, dark adaptation was markedly delayed in eyes with SDDs versus no SDD (a 4-minute delay on average), P = 0.0213. However, this association diminished after age adjustment, P = 0.2645. Other visual functions in early AMD eyes were not associated with SDDs. In a study specifically focused on eyes in normal macular health and in the earliest phases of AMD, early AMD eyes with SDDs have slower dark adaptation, largely attributable to the older ages of eyes with SDD; they did not exhibit deficits in other visual functions. Subretinal drusenoid deposits in older eyes in normal macular health are not associated with any visual functions evaluated.

  8. Time-Resolved Influences of Functional DAT1 and COMT Variants on Visual Perception and Post-Processing

    PubMed Central

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Background Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Results Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500–1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Conclusions Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems. PMID:22844499

  9. Time-resolved influences of functional DAT1 and COMT variants on visual perception and post-processing.

    PubMed

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500-1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems.

  10. Growth and development of the brain and impact on cognitive outcomes.

    PubMed

    Hüppi, Petra S

    2010-01-01

    Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental plasticity or disruption of the developmental program' summarizes these events. Increases in white matter, which speed up communication between brain cells, growing complexity of neuronal networks suggested by gray and white matter changes, and environmentally sensitive plasticity are all essential aspects in a child's ability to mentalize and maintain the adaptive flexibility necessary for achieving high sociocognitive functioning. Advancement in neuroimaging has opened up new ways for examining the developing human brain in vivo, the study of the effects of early antenatal, perinatal and neonatal events on later structural and functional brain development resulting in developmental disabilities or developmental resilience. In this review, methods of quantitative assessment of human brain development, such as 3D-MRI with image segmentation, diffusion tensor imaging to assess connectivity and functional MRI to visualize brain function will be presented. Copyright (c) 2010 S. Karger AG, Basel.

  11. Aging effects on selective attention-related electroencephalographic patterns during face encoding.

    PubMed

    Deiber, M-P; Rodriguez, C; Jaques, D; Missonnier, P; Emch, J; Millet, P; Gold, G; Giannakopoulos, P; Ibañez, V

    2010-11-24

    Previous electrophysiological studies revealed that human faces elicit an early visual event-related potential (ERP) within the occipito-temporal cortex, the N170 component. Although face perception has been proposed to rely on automatic processing, the impact of selective attention on N170 remains controversial both in young and elderly individuals. Using early visual ERP and alpha power analysis, we assessed the influence of aging on selective attention to faces during delayed-recognition tasks for face and letter stimuli, examining 36 elderly and 20 young adults with preserved cognition. Face recognition performance worsened with age. Aging induced a latency delay of the N1 component for faces and letters, as well as of the face N170 component. Contrasting with letters, ignored faces elicited larger N1 and N170 components than attended faces in both age groups. This counterintuitive attention effect on face processing persisted when scenes replaced letters. In contrast with young, elderly subjects failed to suppress irrelevant letters when attending faces. Whereas attended stimuli induced a parietal alpha band desynchronization within 300-1000 ms post-stimulus with bilateral-to-right distribution for faces and left lateralization for letters, ignored and passively viewed stimuli elicited a central alpha synchronization larger on the right hemisphere. Aging delayed the latency of this alpha synchronization for both face and letter stimuli, and reduced its amplitude for ignored letters. These results suggest that due to their social relevance, human faces may cause paradoxical attention effects on early visual ERP components, but they still undergo classical top-down control as a function of endogenous selective attention. Aging does not affect the face bottom-up alerting mechanism but reduces the top-down suppression of distracting letters, possibly impinging upon face recognition, and more generally delays the top-down suppression of task-irrelevant information. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Reward associations impact both iconic and visual working memory.

    PubMed

    Infanti, Elisa; Hickey, Clayton; Turatto, Massimo

    2015-02-01

    Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition.

    PubMed

    Díaz, Begoña; Blank, Helen; von Kriegstein, Katharina

    2018-05-14

    The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition. Copyright © 2018. Published by Elsevier Inc.

  15. Timing the impact of literacy on visual processing

    PubMed Central

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W.; Cohen, Laurent; Dehaene, Stanislas

    2014-01-01

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. PMID:25422460

  16. Timing the impact of literacy on visual processing.

    PubMed

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W; Cohen, Laurent; Dehaene, Stanislas

    2014-12-09

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.

  17. Early visual processing is enhanced in the midluteal phase of the menstrual cycle.

    PubMed

    Lusk, Bethany R; Carr, Andrea R; Ranson, Valerie A; Bryant, Richard A; Felmingham, Kim L

    2015-12-01

    Event-related potential (ERP) studies have revealed an early attentional bias in processing unpleasant emotional images in women. Recent neuroimaging data suggests there are significant differences in cortical emotional processing according to menstrual phase. This study examined the impact of menstrual phase on visual emotional processing in women compared to men. ERPs were recorded from 28 early follicular women, 29 midluteal women, and 27 men while they completed a passive viewing task of neutral and low- and high- arousing pleasant and unpleasant images. There was a significant effect of menstrual phase in early visual processing, as midluteal women displayed significantly greater P1 amplitude at occipital regions to all visual images compared to men. Both midluteal and early follicular women displayed larger N1 amplitudes than men (although this only reached significance for the midluteal group) to the visual images. No sex or menstrual phase differences were apparent in later N2, P3, or LPP. A condition effect demonstrated greater P3 and LPP amplitude to highly-arousing unpleasant images relative to all other stimuli conditions. These results indicate that women have greater early automatic visual processing compared to men, and suggests that this effect is particularly strong in women in the midluteal phase at the earliest stage of visual attention processing. Our findings highlight the importance of considering menstrual phase when examining sex differences in the cortical processing of visual stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas.

    PubMed

    Dijkstra, Nadine; Bosch, Sander E; van Gerven, Marcel A J

    2017-02-01

    Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest. Visual imagery is the ability to visualize objects that are not in our direct line of sight: something that is important for memory, spatial reasoning, and many other tasks. It is known that the better people are at visual imagery, the better they can perform these tasks. However, the neural correlates of moment-to-moment variation in visual imagery remain unclear. In this study, we show that the more the neural response during imagery is similar to the neural response during perception, the more vivid or perception-like the imagery experience is. Copyright © 2017 the authors 0270-6474/17/371367-07$15.00/0.

  19. Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review.

    PubMed

    Spering, Miriam; Montagnini, Anna

    2011-04-22

    Many neurophysiological studies in monkeys have indicated that visual motion information for the guidance of perception and smooth pursuit eye movements is - at an early stage - processed in the same visual pathway in the brain, crucially involving the middle temporal area (MT). However, these studies left some questions unanswered: Are perception and pursuit driven by the same or independent neuronal signals within this pathway? Are the perceptual interpretation of visual motion information and the motor response to visual signals limited by the same source of neuronal noise? Here, we review psychophysical studies that were motivated by these questions and compared perception and pursuit behaviorally in healthy human observers. We further review studies that focused on the interaction between perception and pursuit. The majority of results point to similarities between perception and pursuit, but dissociations were also reported. We discuss recent developments in this research area and conclude with suggestions for common and separate principles for the guidance of perceptual and motor responses to visual motion information. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Polypeptide profiles of human oocytes and preimplantation embryos.

    PubMed

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  1. Prentice Award Lecture 2011: Removing the Brakes on Plasticity in the Amblyopic Brain

    PubMed Central

    Levi, Dennis M.

    2012-01-01

    Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the “brakes” that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to re-consider our notions about neural plasticity in amblyopia. PMID:22581119

  2. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  3. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    PubMed

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Analysis by NASA's VESGEN Software of Retinal Blood Vessels Before and After 70-Day Bed Rest: A Retrospective Study

    NASA Technical Reports Server (NTRS)

    Raghunandan, Sneha; Vyas, Ruchi J.; Vizzeri, Gianmarco; Taibbi, Giovanni; Zanello, Susana B.; Ploutz-Snyder, Robert; Parsons-Wingerter, Patricia A.

    2016-01-01

    Significant risks for visual impairment associated with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. Impairments include decreased near visual acuity, posterior globe flattening, choroidal folds, optic disc edema and cotton wool spots. We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal blood vessels that precede development of visual and other ocular impairments. Potential contributions of retinal vascular remodeling to VIIP etiology are therefore being investigated by NASAs innovative VESsel GENeration Analysis (VESGEN) software for two studies: (1) head-down tilt in human subjects before and after 70 days of bed rest, and (2) U.S. crew members before and after ISS missions. VESGEN analysis in previous research supported by the US National Institutes of Health identified surprising new opportunities to regenerate retinal vessels during early-stage, potentially reversible progression of the visually impairing and blinding disease, diabetic retinopathy.

  5. Saliency affects feedforward more than feedback processing in early visual cortex.

    PubMed

    Emmanouil, Tatiana Aloi; Avigan, Philip; Persuh, Marjan; Ro, Tony

    2013-07-01

    Early visual cortex activity is influenced by both bottom-up and top-down factors. To investigate the influences of bottom-up (saliency) and top-down (task) factors on different stages of visual processing, we used transcranial magnetic stimulation (TMS) of areas V1/V2 to induce visual suppression at varying temporal intervals. Subjects were asked to detect and discriminate the color or the orientation of briefly-presented small lines that varied on color saliency based on color contrast with the surround. Regardless of task, color saliency modulated the magnitude of TMS-induced visual suppression, especially at earlier temporal processing intervals that reflect the feedforward stage of visual processing in V1/V2. In a second experiment we found that our color saliency effects were also influenced by an inherent advantage of the color red relative to other hues and that color discrimination difficulty did not affect visual suppression. These results support the notion that early visual processing is stimulus driven and that feedforward and feedback processing encode different types of information about visual scenes. They further suggest that certain hues can be prioritized over others within our visual systems by being more robustly represented during early temporal processing intervals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Early Visual Language Exposure and Emergent Literacy in Preschool Deaf Children: Findings from a National Longitudinal Study

    ERIC Educational Resources Information Center

    Allen, Thomas E.; Letteri, Amy; Choi, Song Hoa; Dang, Daqian

    2014-01-01

    A brief review is provided of recent research on the impact of early visual language exposure on a variety of developmental outcomes, including literacy, cognition, and social adjustment. This body of work points to the great importance of giving young deaf children early exposure to a visual language as a critical precursor to the acquisition of…

  7. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    NASA Astrophysics Data System (ADS)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  8. Evidence for Non-Opponent Coding of Colour Information in Human Visual Cortex: Selective Loss of "Green" Sensitivity in a Subject with Damaged Ventral Occipito-Temporal Cortex.

    PubMed

    Rauscher, Franziska G; Plant, Gordon T; James-Galton, Merle; Barbur, John L

    2011-01-01

    Damage to ventral occipito-temporal extrastriate visual cortex leads to the syndrome of prosopagnosia often with coexisting cerebral achromatopsia. A patient with this syndrome resulting in a left upper homonymous quadrantanopia, prosopagnosia, and incomplete achromatopsia is described. Chromatic sensitivity was assessed at a number of locations in the intact visual field using a dynamic luminance contrast masking technique that isolates the use of colour signals. In normal subjects chromatic detection thresholds form an elliptical contour when plotted in the Commission Internationale d'Eclairage, (x-y), chromaticity diagram. Because the extraction of colour signals in early visual processing involves opponent mechanisms, subjects with Daltonism (congenital red/green loss of sensitivity) show symmetric increase in thresholds towards the long wavelength ("red") and middle wavelength ("green") regions of the spectrum locus. This is also the case with acquired loss of chromatic sensitivity as a result of retinal or optic nerve disease. Our patient's results were an exception to this rule. Whilst his chromatic sensitivity in the central region of the visual field was reduced symmetrically for both "red/green" and "yellow/blue" directions in colour space, the subject's lower left quadrant showed a marked asymmetry in "red/green" thresholds with the greatest loss of sensitivity towards the "green" region of the spectrum locus. This spatially localized asymmetric loss of "green" but not "red" sensitivity has not been reported previously in human vision. Such loss is consistent with selective damage of neural substrates in the visual cortex that process colour information, but are spectrally non-opponent.

  9. The role of emotion in dynamic audiovisual integration of faces and voices

    PubMed Central

    Kotz, Sonja A.; Tavano, Alessandro; Schröger, Erich

    2015-01-01

    We used human electroencephalogram to study early audiovisual integration of dynamic angry and neutral expressions. An auditory-only condition served as a baseline for the interpretation of integration effects. In the audiovisual conditions, the validity of visual information was manipulated using facial expressions that were either emotionally congruent or incongruent with the vocal expressions. First, we report an N1 suppression effect for angry compared with neutral vocalizations in the auditory-only condition. Second, we confirm early integration of congruent visual and auditory information as indexed by a suppression of the auditory N1 and P2 components in the audiovisual compared with the auditory-only condition. Third, audiovisual N1 suppression was modulated by audiovisual congruency in interaction with emotion: for neutral vocalizations, there was N1 suppression in both the congruent and the incongruent audiovisual conditions. For angry vocalizations, there was N1 suppression only in the congruent but not in the incongruent condition. Extending previous findings of dynamic audiovisual integration, the current results suggest that audiovisual N1 suppression is congruency- and emotion-specific and indicate that dynamic emotional expressions compared with non-emotional expressions are preferentially processed in early audiovisual integration. PMID:25147273

  10. [Analysis of electrically evoked response (EER) in relation to the central visual pathway of the cat (1). Wave shape of the cat EER].

    PubMed

    Fukatsu, Y; Miyake, Y; Sugita, S; Saito, A; Watanabe, S

    1990-11-01

    To analyze the Electrically evoked response (EER) in relation to the central visual pathway, the authors studied the properties of wave patterns and peak latencies of EER in 35 anesthetized adult cats. The cat EER showed two early positive waves on outward current (cornea cathode) stimulus and three or four early positive waves on inward current (cornea anode) stimulus. These waves were recorded within 50 ms after stimulus onset, and were the most consistent components in cat EER. The stimulus threshold for EER showed a less individual variation than amplitude. The difference of stimulus threshold between outward and inward current stimulus was also essentially negligible. The stimulus threshold was higher in early components than in late components. The peak latency of EER became shorter and the amplitude became higher, as the stimulus intensity was increased. However, this tendency was reversed and some wavelets started to appear when the stimulus was extremely strong. The recording using short stimulus duration and bipolar electrodes enabled us to reduce the electrical artifact of EER. These results obtained from cats were compared with those of humans and rabbits.

  11. Exploring the Early Literacy Practices of Teachers of Infants, Toddlers, and Preschoolers with Visual Impairments

    ERIC Educational Resources Information Center

    Murphy, Jeanne Lovo; Hatton, Deborah; Erickson, Karen A.

    2008-01-01

    Practices endorsed by 192 teachers of young children with visual impairments who completed an online early literacy survey included facilitating early attachment (70%), providing early literacy support to families (74%), and providing adaptations to increase accessibility (55%). Few teachers reported using assistive technology, providing…

  12. Supramodal parametric working memory processing in humans.

    PubMed

    Spitzer, Bernhard; Blankenburg, Felix

    2012-03-07

    Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.

  13. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders.

    PubMed

    Le Bel, Ronald M; Pineda, Jaime A; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD).

  14. Additive effects of affective arousal and top-down attention on the event-related brain responses to human bodies.

    PubMed

    Hietanen, Jari K; Kirjavainen, Ilkka; Nummenmaa, Lauri

    2014-12-01

    The early visual event-related 'N170 response' is sensitive to human body configuration and it is enhanced to nude versus clothed bodies. We tested whether the N170 response as well as later EPN and P3/LPP responses to nude bodies reflect the effect of increased arousal elicited by these stimuli, or top-down allocation of object-based attention to the nude bodies. Participants saw pictures of clothed and nude bodies and faces. In each block, participants were asked to direct their attention towards stimuli from a specified target category while ignoring others. Object-based attention did not modulate the N170 amplitudes towards attended stimuli; instead N170 response was larger to nude bodies compared to stimuli from other categories. Top-down attention and affective arousal had additive effects on the EPN and P3/LPP responses reflecting later processing stages. We conclude that nude human bodies have a privileged status in the visual processing system due to the affective arousal they trigger. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.

    PubMed

    Lund, Raymond D; Wang, Shaomei; Klimanskaya, Irina; Holmes, Toby; Ramos-Kelsey, Rebeca; Lu, Bin; Girman, Sergej; Bischoff, N; Sauvé, Yves; Lanza, Robert

    2006-01-01

    Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.

  16. Early (N170/M170) Face-Sensitivity Despite Right Lateral Occipital Brain Damage in Acquired Prosopagnosia

    PubMed Central

    Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno

    2011-01-01

    Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect. PMID:22275889

  17. Application of Carnegie stages of development to unify human and baboon ultrasound findings early in pregnancy.

    PubMed

    Santolaya-Forgas, Joaquin; De Leon-Luis, Juan; Friel, Lara A; Wolf, Roman

    2007-09-01

    The objective of this study was to determine if very early ultrasonographic measurements obtained from human and baboon are comparable. For this purpose, the gestational, amniotic and yolk sacs, embryonic crown rump length (CRL) and heart rate were measured ultrasonographically between 35 and 47 days from the mean day of a three-day mating period in baboons (n=18) and between 42 to 58 days from fertilization as calculated from the CRL measurements in human pregnancies (n=82). Ultrasonographic measurements from both species were then plotted in the same graph using Carnegie stages of embryonic development as the independent variable to allow for visual comparisons. Mean gestational age at ultrasonographic studies was significantly different for humans and baboons (50.4 vs. 41 days, respectively; p>0.01). Significant correlations (p>0.01) were noted between ultrasonographic measurements and Carnegie stages of development in both humans and baboons. Only the gestational and the yolk sacs were significantly smaller in baboons than in humans (p>0.05). The findings that embryonic CRL, extra-embryonic space and heart rate are very similar between the 17th and 23rd Carnegie developmental stages make the baboon a promising surrogate of human pregnancy for investigations using celocentesis.

  18. NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization

    PubMed Central

    Parraga, C. Alejandro; Akbarinia, Arash

    2016-01-01

    The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms. PMID:26954691

  19. NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization.

    PubMed

    Parraga, C Alejandro; Akbarinia, Arash

    2016-01-01

    The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.

  20. Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction.

    PubMed

    Faust, Kevin; Xie, Quin; Han, Dominick; Goyle, Kartikay; Volynskaya, Zoya; Djuric, Ugljesa; Diamandis, Phedias

    2018-05-16

    There is growing interest in utilizing artificial intelligence, and particularly deep learning, for computer vision in histopathology. While accumulating studies highlight expert-level performance of convolutional neural networks (CNNs) on focused classification tasks, most studies rely on probability distribution scores with empirically defined cutoff values based on post-hoc analysis. More generalizable tools that allow humans to visualize histology-based deep learning inferences and decision making are scarce. Here, we leverage t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce dimensionality and depict how CNNs organize histomorphologic information. Unique to our workflow, we develop a quantitative and transparent approach to visualizing classification decisions prior to softmax compression. By discretizing the relationships between classes on the t-SNE plot, we show we can super-impose randomly sampled regions of test images and use their distribution to render statistically-driven classifications. Therefore, in addition to providing intuitive outputs for human review, this visual approach can carry out automated and objective multi-class classifications similar to more traditional and less-transparent categorical probability distribution scores. Importantly, this novel classification approach is driven by a priori statistically defined cutoffs. It therefore serves as a generalizable classification and anomaly detection tool less reliant on post-hoc tuning. Routine incorporation of this convenient approach for quantitative visualization and error reduction in histopathology aims to accelerate early adoption of CNNs into generalized real-world applications where unanticipated and previously untrained classes are often encountered.

  1. Saccades to a remembered location elicit spatially-specific activation in human retinotopic visual cortex

    PubMed Central

    Geng, Joy J.; Ruff, Christian C.; Driver, Jon

    2008-01-01

    The possible impact upon human visual cortex from saccades to remembered target locations was investigated using fMRI. A specific location in the upper-right or upper-left visual quadrant served as the saccadic target. After a delay of 2400 msecs, an auditory signal indicated whether to execute a saccade to that location (go trial) or to cancel the saccade and remain centrally fixated (no-go). Group fMRI analysis revealed activation specific to the remembered target location for executed saccades, in contralateral lingual gyrus. No-go trials produced similar, albeit significantly reduced effects. Individual retinotopic mapping confirmed that on go trials, quadrant-specific activations arose in those parts of ventral V1, V2, and V3 that coded the target location for the saccade, whereas on no-go trials only the corresponding parts of V2 and V3 were significantly activated. These results indicate that a spatial-motor saccadic task (i.e. making an eye-movement to a remembered location) is sufficient to activate retinotopic visual cortex spatially corresponding to the target location, and that this activation is also present (though reduced) when no saccade is executed. We discuss the implications of finding that saccades to remembered locations can affect early visual cortex, not just those structures conventionally associated with eye-movements, in relation to recent ideas about attention, spatial working memory, and the notion that recently activated representations can be ‘refreshed’ when needed. PMID:18510442

  2. Progressive Recruitment of Mesenchymal Progenitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human Nephrogenesis.

    PubMed

    Lindström, Nils O; De Sena Brandine, Guilherme; Tran, Tracy; Ransick, Andrew; Suh, Gio; Guo, Jinjin; Kim, Albert D; Parvez, Riana K; Ruffins, Seth W; Rutledge, Elisabeth A; Thornton, Matthew E; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-06-04

    Mammalian nephrons arise from a limited nephron progenitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney development. Here, we present evidence that human nephron patterning reflects a time-dependent process of recruitment of mesenchymal progenitors into an epithelial nephron precursor. Progressive recruitment predicted from high-resolution image analysis and three-dimensional reconstruction of human nephrogenesis was confirmed through direct visualization and cell fate analysis of mouse kidney organ cultures. Single-cell RNA sequencing of the human nephrogenic niche provided molecular insights into these early patterning processes and predicted developmental trajectories adopted by nephron progenitor cells in forming segment-specific domains of the human nephron. The temporal-recruitment model for nephron polarity and patterning suggested by direct analysis of human kidney development provides a framework for integrating signaling pathways driving mammalian nephrogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.

    PubMed

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2018-05-24

    Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields

    PubMed Central

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931

  5. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  6. Survey Results for Training and Resource Needs Cited by Early Intervention Professionals in the Field of Visual Impairment

    ERIC Educational Resources Information Center

    Ely, Mindy S.; Ostrosky, Michaelene M.

    2017-01-01

    Introduction: Professionals working with infants and toddlers with visual impairments (that is, those who are blind or have low vision) were surveyed regarding their preservice training and their awareness and use of 29 resources related to young children who are visually impaired. Methods: Early intervention visual impairment professionals (n =…

  7. The Brightness of Colour

    PubMed Central

    Corney, David; Haynes, John-Dylan; Rees, Geraint; Lotto, R. Beau

    2009-01-01

    Background The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour) appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK) effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this ‘illusion’ to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies. Results Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1), if not earlier in the visual system, since the brightness of colours (as opposed to their luminance) accords with activity in V1 as measured with fMRI. Conclusions The data suggest that perceptions of brightness represent a robust visual response to the likely sources of stimuli, as determined, in this instance, by the known statistical relationship between scenes and their retinal responses. While the responses of the early visual system (receptors in this case) may represent specifically the statistics of images, post receptor responses are more likely represent the statistical relationship between images and scenes. A corollary of this suggestion is that the visual cortex is adapted to relate the retinal image to behaviour given the statistics of its past interactions with the sources of retinal images: the visual cortex is adapted to the signals it receives from the eyes, and not directly to the world beyond. PMID:19333398

  8. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia

    PubMed Central

    Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P.; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2016-01-01

    Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia. PMID:26763954

  9. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia.

    PubMed

    Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2016-01-14

    Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia.

  10. Attention reduces spatial uncertainty in human ventral temporal cortex.

    PubMed

    Kay, Kendrick N; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-03-02

    Ventral temporal cortex (VTC) is the latest stage of the ventral "what" visual pathway, which is thought to code the identity of a stimulus regardless of its position or size [1, 2]. Surprisingly, recent studies show that position information can be decoded from VTC [3-5]. However, the computational mechanisms by which spatial information is encoded in VTC are unknown. Furthermore, how attention influences spatial representations in human VTC is also unknown because the effect of attention on spatial representations has only been examined in the dorsal "where" visual pathway [6-10]. Here, we fill these significant gaps in knowledge using an approach that combines functional magnetic resonance imaging and sophisticated computational methods. We first develop a population receptive field (pRF) model [11, 12] of spatial responses in human VTC. Consisting of spatial summation followed by a compressive nonlinearity, this model accurately predicts responses of individual voxels to stimuli at any position and size, explains how spatial information is encoded, and reveals a functional hierarchy in VTC. We then manipulate attention and use our model to decipher the effects of attention. We find that attention to the stimulus systematically and selectively modulates responses in VTC, but not early visual areas. Locally, attention increases eccentricity, size, and gain of individual pRFs, thereby increasing position tolerance. However, globally, these effects reduce uncertainty regarding stimulus location and actually increase position sensitivity of distributed responses across VTC. These results demonstrate that attention actively shapes and enhances spatial representations in the ventral visual pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Attention reduces spatial uncertainty in human ventral temporal cortex

    PubMed Central

    Kay, Kendrick N.; Weiner, Kevin S.; Grill-Spector, Kalanit

    2014-01-01

    SUMMARY Ventral temporal cortex (VTC) is the latest stage of the ventral ‘what’ visual pathway, which is thought to code the identity of a stimulus regardless of its position or size [1, 2]. Surprisingly, recent studies show that position information can be decoded from VTC [3–5]. However, the computational mechanisms by which spatial information is encoded in VTC are unknown. Furthermore, how attention influences spatial representations in human VTC is also unknown because the effect of attention on spatial representations has only been examined in the dorsal ‘where’ visual pathway [6–10]. Here we fill these significant gaps in knowledge using an approach that combines functional magnetic resonance imaging and sophisticated computational methods. We first develop a population receptive field (pRF) model [11, 12] of spatial responses in human VTC. Consisting of spatial summation followed by a compressive nonlinearity, this model accurately predicts responses of individual voxels to stimuli at any position and size, explains how spatial information is encoded, and reveals a functional hierarchy in VTC. We then manipulate attention and use our model to decipher the effects of attention. We find that attention to the stimulus systematically and selectively modulates responses in VTC, but not early visual areas. Locally, attention increases eccentricity, size, and gain of individual pRFs, thereby increasing position tolerance. However, globally, these effects reduce uncertainty regarding stimulus location and actually increase position sensitivity of distributed responses across VTC. These results demonstrate that attention actively shapes and enhances spatial representations in the ventral visual pathway. PMID:25702580

  12. Parallel processing of general and specific threat during early stages of perception

    PubMed Central

    2016-01-01

    Differential processing of threat can consummate as early as 100 ms post-stimulus. Moreover, early perception not only differentiates threat from non-threat stimuli but also distinguishes among discrete threat subtypes (e.g. fear, disgust and anger). Combining spatial-frequency-filtered images of fear, disgust and neutral scenes with high-density event-related potentials and intracranial source estimation, we investigated the neural underpinnings of general and specific threat processing in early stages of perception. Conveyed in low spatial frequencies, fear and disgust images evoked convergent visual responses with similarly enhanced N1 potentials and dorsal visual (middle temporal gyrus) cortical activity (relative to neutral cues; peaking at 156 ms). Nevertheless, conveyed in high spatial frequencies, fear and disgust elicited divergent visual responses, with fear enhancing and disgust suppressing P1 potentials and ventral visual (occipital fusiform) cortical activity (peaking at 121 ms). Therefore, general and specific threat processing operates in parallel in early perception, with the ventral visual pathway engaged in specific processing of discrete threats and the dorsal visual pathway in general threat processing. Furthermore, selectively tuned to distinctive spatial-frequency channels and visual pathways, these parallel processes underpin dimensional and categorical threat characterization, promoting efficient threat response. These findings thus lend support to hybrid models of emotion. PMID:26412811

  13. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  14. Infants learn better from left to right: a directional bias in infants' sequence learning.

    PubMed

    Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola

    2017-05-26

    A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.

  15. Automatic video summarization driven by a spatio-temporal attention model

    NASA Astrophysics Data System (ADS)

    Barland, R.; Saadane, A.

    2008-02-01

    According to the literature, automatic video summarization techniques can be classified in two parts, following the output nature: "video skims", which are generated using portions of the original video and "key-frame sets", which correspond to the images, selected from the original video, having a significant semantic content. The difference between these two categories is reduced when we consider automatic procedures. Most of the published approaches are based on the image signal and use either pixel characterization or histogram techniques or image decomposition by blocks. However, few of them integrate properties of the Human Visual System (HVS). In this paper, we propose to extract keyframes for video summarization by studying the variations of salient information between two consecutive frames. For each frame, a saliency map is produced simulating the human visual attention by a bottom-up (signal-dependent) approach. This approach includes three parallel channels for processing three early visual features: intensity, color and temporal contrasts. For each channel, the variations of the salient information between two consecutive frames are computed. These outputs are then combined to produce the global saliency variation which determines the key-frames. Psychophysical experiments have been defined and conducted to analyze the relevance of the proposed key-frame extraction algorithm.

  16. Dichoptic training enables the adult amblyopic brain to learn.

    PubMed

    Li, Jinrong; Thompson, Benjamin; Deng, Daming; Chan, Lily Y L; Yu, Minbin; Hess, Robert F

    2013-04-22

    Adults with amblyopia, a common visual cortex disorder caused primarily by binocular disruption during an early critical period, do not respond to conventional therapy involving occlusion of one eye. But it is now clear that the adult human visual cortex has a significant degree of plasticity, suggesting that something must be actively preventing the adult brain from learning to see through the amblyopic eye. One possibility is an inhibitory signal from the contralateral eye that suppresses cortical inputs from the amblyopic eye. Such a gating mechanism could explain the apparent lack of plasticity within the adult amblyopic visual cortex. Here we provide direct evidence that alleviating suppression of the amblyopic eye through dichoptic stimulus presentation induces greater levels of plasticity than forced use of the amblyopic eye alone. This indicates that suppression is a key gating mechanism that prevents the amblyopic brain from learning to see. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A neurophysiologically plausible population code model for feature integration explains visual crowding.

    PubMed

    van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W

    2010-01-22

    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.

  18. Art and brain: the relationship of biology and evolution to art.

    PubMed

    Zaidel, Dahlia W

    2013-01-01

    Visual art, as with all other arts, is spontaneously created only by humans and is ubiquitously present to various extents in all societies today. Exploring the deep roots of art from cognitive, neurological, genetic, evolutionary, archaeological, and biological perspectives is essential for the full understanding of why we have art, and what art is about. The cognitive basis of art is symbolic, abstract, and referential thinking. However, archaeological markers of symbolic activity by early humans are not associated with art production. There is an enormously large time gap between the activity and the appearance of sporadic art by early Homo sapiens, and another large time delay before appearance of enduring practice of art. The aesthetic aspect of art is not considered to be the initial impetus for creating it. Instead, archaeological markers suggest that the early beginnings of art are associated with development of stratified societies where external visual identifiers by way of body ornaments and decorations were used. The major contributing forces for the consistency in art-making are presumed to be the formation of socioculture, intragroup cooperation, increased group size, survival of skillful artisans, and favorable demographic conditions. The biological roots of art are hypothesized to parallel aspects of our ancestry, specifically animal courtship displays, where signals of health and genetic quality are exhibited for inspection by potential mates. Viewers assess displayed art for talent, skill, communicative, and aesthetic-related qualities. Interdisciplinary discussions of art reflect the current approach to full understanding of the nature of art. © 2013 Elsevier B.V. All rights reserved.

  19. Visual sign phonology: insights into human reading and language from a natural soundless phonology.

    PubMed

    Petitto, L A; Langdon, C; Stone, A; Andriola, D; Kartheiser, G; Cochran, C

    2016-11-01

    Among the most prevailing assumptions in science and society about the human reading process is that sound and sound-based phonology are critical to young readers. The child's sound-to-letter decoding is viewed as universal and vital to deriving meaning from print. We offer a different view. The crucial link for early reading success is not between segmental sounds and print. Instead the human brain's capacity to segment, categorize, and discern linguistic patterning makes possible the capacity to segment all languages. This biological process includes the segmentation of languages on the hands in signed languages. Exposure to natural sign language in early life equally affords the child's discovery of silent segmental units in visual sign phonology (VSP) that can also facilitate segmental decoding of print. We consider powerful biological evidence about the brain, how it builds sound and sign phonology, and why sound and sign phonology are equally important in language learning and reading. We offer a testable theoretical account, reading model, and predictions about how VSP can facilitate segmentation and mapping between print and meaning. We explain how VSP can be a powerful facilitator of all children's reading success (deaf and hearing)-an account with profound transformative impact on learning to read in deaf children with different language backgrounds. The existence of VSP has important implications for understanding core properties of all human language and reading, challenges assumptions about language and reading as being tied to sound, and provides novel insight into a remarkable biological equivalence in signed and spoken languages. WIREs Cogn Sci 2016, 7:366-381. doi: 10.1002/wcs.1404 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  20. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    PubMed

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Neurotechnology for intelligence analysts

    NASA Astrophysics Data System (ADS)

    Kruse, Amy A.; Boyd, Karen C.; Schulman, Joshua J.

    2006-05-01

    Geospatial Intelligence Analysts are currently faced with an enormous volume of imagery, only a fraction of which can be processed or reviewed in a timely operational manner. Computer-based target detection efforts have failed to yield the speed, flexibility and accuracy of the human visual system. Rather than focus solely on artificial systems, we hypothesize that the human visual system is still the best target detection apparatus currently in use, and with the addition of neuroscience-based measurement capabilities it can surpass the throughput of the unaided human severalfold. Using electroencephalography (EEG), Thorpe et al1 described a fast signal in the brain associated with the early detection of targets in static imagery using a Rapid Serial Visual Presentation (RSVP) paradigm. This finding suggests that it may be possible to extract target detection signals from complex imagery in real time utilizing non-invasive neurophysiological assessment tools. To transform this phenomenon into a capability for defense applications, the Defense Advanced Research Projects Agency (DARPA) currently is sponsoring an effort titled Neurotechnology for Intelligence Analysts (NIA). The vision of the NIA program is to revolutionize the way that analysts handle intelligence imagery, increasing both the throughput of imagery to the analyst and overall accuracy of the assessments. Successful development of a neurobiologically-based image triage system will enable image analysts to train more effectively and process imagery with greater speed and precision.

  2. Insights from zebrafish on human pigment cell disease and treatment.

    PubMed

    Cooper, Cynthia D

    2017-11-01

    Black pigment cells, melanocytes, arise early during development from multipotent neural crest cells. Melanocytes protect human skin from DNA damaging sunrays and provide color for hair, eyes, and skin. Several disorders and diseases originate from these cells, including the deadliest skin cell cancer, melanoma. Thus, melanocytes are critical for a healthy life and for protecting humans from disease. Due to the ease of visualizing pigment cells through transparent larvae skin and conserved roles for zebrafish melanophore genes to mammalian melanocyte genes, zebrafish larvae offer a biologically relevant model for understanding pigment cell development and disease in humans. This review discusses our current knowledge of melanophore biology and how zebrafish are contributing to improving how diseases of melanocytes are understood and treated in humans. Developmental Dynamics 246:889-896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  4. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed Central

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766

  5. Early detection of glaucoma using fully automated disparity analysis of the optic nerve head (ONH) from stereo fundus images

    NASA Astrophysics Data System (ADS)

    Sharma, Archie; Corona, Enrique; Mitra, Sunanda; Nutter, Brian S.

    2006-03-01

    Early detection of structural damage to the optic nerve head (ONH) is critical in diagnosis of glaucoma, because such glaucomatous damage precedes clinically identifiable visual loss. Early detection of glaucoma can prevent progression of the disease and consequent loss of vision. Traditional early detection techniques involve observing changes in the ONH through an ophthalmoscope. Stereo fundus photography is also routinely used to detect subtle changes in the ONH. However, clinical evaluation of stereo fundus photographs suffers from inter- and intra-subject variability. Even the Heidelberg Retina Tomograph (HRT) has not been found to be sufficiently sensitive for early detection. A semi-automated algorithm for quantitative representation of the optic disc and cup contours by computing accumulated disparities in the disc and cup regions from stereo fundus image pairs has already been developed using advanced digital image analysis methodologies. A 3-D visualization of the disc and cup is achieved assuming camera geometry. High correlation among computer-generated and manually segmented cup to disc ratios in a longitudinal study involving 159 stereo fundus image pairs has already been demonstrated. However, clinical usefulness of the proposed technique can only be tested by a fully automated algorithm. In this paper, we present a fully automated algorithm for segmentation of optic cup and disc contours from corresponding stereo disparity information. Because this technique does not involve human intervention, it eliminates subjective variability encountered in currently used clinical methods and provides ophthalmologists with a cost-effective and quantitative method for detection of ONH structural damage for early detection of glaucoma.

  6. Method of simulation and visualization of FDG metabolism based on VHP image

    NASA Astrophysics Data System (ADS)

    Cui, Yunfeng; Bai, Jing

    2005-04-01

    FDG ([18F] 2-fluoro-2-deoxy-D-glucose) is the typical tracer used in clinical PET (positron emission tomography) studies. The FDG-PET is an important imaging tool for early diagnosis and treatment of malignant tumor and functional disease. The main purpose of this work is to propose a method that represents FDG metabolism in human body through the simulation and visualization of 18F distribution process dynamically based on the segmented VHP (Visible Human Project) image dataset. First, the plasma time-activity curve (PTAC) and the tissues time-activity curves (TTAC) are obtained from the previous studies and the literatures. According to the obtained PTAC and TTACs, a set of corresponding values are assigned to the segmented VHP image, Thus a set of dynamic images are derived to show the 18F distribution in the concerned tissues for the predetermined sampling schedule. Finally, the simulated FDG distribution images are visualized in 3D and 2D formats, respectively, incorporated with principal interaction functions. As compared with original PET image, our visualization result presents higher resolution because of the high resolution of VHP image data, and show the distribution process of 18F dynamically. The results of our work can be used in education and related research as well as a tool for the PET operator to design their PET experiment program.

  7. Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism

    PubMed Central

    Kraft, Andrew W.; Mitra, Anish; Bauer, Adam Q.; Raichle, Marcus E.; Culver, Joseph P.; Lee, Jin-Moo

    2017-01-01

    Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism. PMID:29087327

  8. Research on metallic material defect detection based on bionic sensing of human visual properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  9. Visual short-term memory load modulates the early attention and perception of task-irrelevant emotional faces

    PubMed Central

    Yang, Ping; Wang, Min; Jin, Zhenlan; Li, Ling

    2015-01-01

    The ability to focus on task-relevant information, while suppressing distraction, is critical for human cognition and behavior. Using a delayed-match-to-sample (DMS) task, we investigated the effects of emotional face distractors (positive, negative, and neutral faces) on early and late phases of visual short-term memory (VSTM) maintenance intervals, using low and high VSTM loads. Behavioral results showed decreased accuracy and delayed reaction times (RTs) for high vs. low VSTM load. Event-related potentials (ERPs) showed enhanced frontal N1 and occipital P1 amplitudes for negative faces vs. neutral or positive faces, implying rapid attentional alerting effects and early perceptual processing of negative distractors. However, high VSTM load appeared to inhibit face processing in general, showing decreased N1 amplitudes and delayed P1 latencies. An inverse correlation between the N1 activation difference (high-load minus low-load) and RT costs (high-load minus low-load) was found at left frontal areas when viewing negative distractors, suggesting that the greater the inhibition the lower the RT cost for negative faces. Emotional interference effect was not found in the late VSTM-related parietal P300, frontal positive slow wave (PSW) and occipital negative slow wave (NSW) components. In general, our findings suggest that the VSTM load modulates the early attention and perception of emotional distractors. PMID:26388763

  10. Spatial Working Memory Effects in Early Visual Cortex

    ERIC Educational Resources Information Center

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  11. Immunoreactivities of human nonmetastatic clone 23 and p53 products are disassociated and not good predictors of lymph node metastases in early-stage cervical cancer patients.

    PubMed

    Tee, Y T; Wang, P H; Ko, J L; Chen, G D; Chang, H; Lin, L Y

    2007-01-01

    To assess the relation between expressions of human nonmetastatic clone 23 (nm23-H1) and p53 in cervical cancer, their relationships with lymph node metastasis, and further to examine their predictive of lymph node metastases. nm23-H1 and p53 expression profiles were visualized by immunohistochemistry in early-stage cervical cancer specimens. Immunoreactivities of nm23-H1 and p53 were disassociated. The independent variables related with lymph node metastases were grade of cancer cell differentiation (p < 0.029) and stromal invasion (p < 0.039). Sensitivity, specificity, positive and negative predictive values, and accuracy for lymph node metastasis were calculated to be 91.7%, 13.5%, 25.6%, 83.3%, and 32.7% for nm23-H1 and 66.7%, 51.4%, 30.8%, 82.6%, and 55.1% for p53. Nm23-H1 and p53 are disassociated and not good predictors of lymph node metastases in early-stage cervical cancer patients. However, stromal invasion and cell differentiation can predict lymph node metastasis.

  12. Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.

    PubMed

    Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P

    2013-07-24

    Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.

  13. Visual awareness suppression by pre-stimulus brain stimulation; a neural effect.

    PubMed

    Jacobs, Christianne; Goebel, Rainer; Sack, Alexander T

    2012-01-02

    Transcranial magnetic stimulation (TMS) has established the functional relevance of early visual cortex (EVC) for visual awareness with great temporal specificity non-invasively in conscious human volunteers. Many studies have found a suppressive effect when TMS was applied over EVC 80-100 ms after the onset of the visual stimulus (post-stimulus TMS time window). Yet, few studies found task performance to also suffer when TMS was applied even before visual stimulus presentation (pre-stimulus TMS time window). This pre-stimulus TMS effect, however, remains controversially debated and its origin had mainly been ascribed to TMS-induced eye-blinking artifacts. Here, we applied chronometric TMS over EVC during the execution of a visual discrimination task, covering an exhaustive range of visual stimulus-locked TMS time windows ranging from -80 pre-stimulus to 300 ms post-stimulus onset. Electrooculographical (EoG) recordings, sham TMS stimulation, and vertex TMS stimulation controlled for different types of non-neural TMS effects. Our findings clearly reveal TMS-induced masking effects for both pre- and post-stimulus time windows, and for both objective visual discrimination performance and subjective visibility. Importantly, all effects proved to be still present after post hoc removal of eye blink trials, suggesting a neural origin for the pre-stimulus TMS suppression effect on visual awareness. We speculate based on our data that TMS exerts its pre-stimulus effect via generation of a neural state which interacts with subsequent visual input. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. The Neural Dynamics of Attentional Selection in Natural Scenes.

    PubMed

    Kaiser, Daniel; Oosterhof, Nikolaas N; Peelen, Marius V

    2016-10-12

    The human visual system can only represent a small subset of the many objects present in cluttered scenes at any given time, such that objects compete for representation. Despite these processing limitations, the detection of object categories in cluttered natural scenes is remarkably rapid. How does the brain efficiently select goal-relevant objects from cluttered scenes? In the present study, we used multivariate decoding of magneto-encephalography (MEG) data to track the neural representation of within-scene objects as a function of top-down attentional set. Participants detected categorical targets (cars or people) in natural scenes. The presence of these categories within a scene was decoded from MEG sensor patterns by training linear classifiers on differentiating cars and people in isolation and testing these classifiers on scenes containing one of the two categories. The presence of a specific category in a scene could be reliably decoded from MEG response patterns as early as 160 ms, despite substantial scene clutter and variation in the visual appearance of each category. Strikingly, we find that these early categorical representations fully depend on the match between visual input and top-down attentional set: only objects that matched the current attentional set were processed to the category level within the first 200 ms after scene onset. A sensor-space searchlight analysis revealed that this early attention bias was localized to lateral occipitotemporal cortex, reflecting top-down modulation of visual processing. These results show that attention quickly resolves competition between objects in cluttered natural scenes, allowing for the rapid neural representation of goal-relevant objects. Efficient attentional selection is crucial in many everyday situations. For example, when driving a car, we need to quickly detect obstacles, such as pedestrians crossing the street, while ignoring irrelevant objects. How can humans efficiently perform such tasks, given the multitude of objects contained in real-world scenes? Here we used multivariate decoding of magnetoencephalogaphy data to characterize the neural underpinnings of attentional selection in natural scenes with high temporal precision. We show that brain activity quickly tracks the presence of objects in scenes, but crucially only for those objects that were immediately relevant for the participant. These results provide evidence for fast and efficient attentional selection that mediates the rapid detection of goal-relevant objects in real-world environments. Copyright © 2016 the authors 0270-6474/16/3610522-07$15.00/0.

  15. The emergence of the silent witness: the legal and medical reception of X-rays in the USA.

    PubMed

    Golan, Tal

    2004-08-01

    The late 19th-century discovery of X-rays befuddled not only the scientific world but also the medical and legal worlds. The possibility of looking into the human body as if through an open window challenged the time-honored medical monopoly over the inner cavities of the human body. Likewise, the possibility of visualizing objects unavailable to the naked eye challenged the established legal theories and practices of illustration and proof. This paper describes the reactions to those challenges by the medical and the legal professions in the USA. The two professions are treated as connected social institutions, producing ongoing negotiations through which legal doctrines affect medicine no less than scientific discoveries and medical applications affect the law. This joint analysis rewards us with a rich story about an early and overlooked chapter in X-ray history on the professionalization of radiology, the origins of defensive medicine, and the evolution of the legal theory and practice of visual evidence.

  16. Temporal dynamics of figure-ground segregation in human vision.

    PubMed

    Neri, Peter; Levi, Dennis M

    2007-01-01

    The segregation of figure from ground is arguably one of the most fundamental operations in human vision. Neural signals reflecting this operation appear in cortex as early as 50 ms and as late as 300 ms after presentation of a visual stimulus, but it is not known when these signals are used by the brain to construct the percepts of figure and ground. We used psychophysical reverse correlation to identify the temporal window for figure-ground signals in human perception and found it to lie within the range of 100-160 ms. Figure enhancement within this narrow temporal window was transient rather than sustained as may be expected from measurements in single neurons. These psychophysical results prompt and guide further electrophysiological studies.

  17. Psychophysical chromatic mechanisms in macaque monkey.

    PubMed

    Stoughton, Cleo M; Lafer-Sousa, Rosa; Gagin, Galina; Conway, Bevil R

    2012-10-24

    Chromatic mechanisms have been studied extensively with psychophysical techniques in humans, but the number and nature of the mechanisms are still controversial. Appeals to monkey neurophysiology are often used to sort out the competing claims and to test hypotheses arising from the experiments in humans, but psychophysical chromatic mechanisms have never been assessed in monkeys. Here we address this issue by measuring color-detection thresholds in monkeys before and after chromatic adaptation, employing a standard approach used to determine chromatic mechanisms in humans. We conducted separate experiments using adaptation configured as either flickering full-field colors or heterochromatic gratings. Full-field colors would favor activity within the visual system at or before the arrival of retinal signals to V1, before the spatial transformation of color signals by the cortex. Conversely, gratings would favor activity within the cortex where neurons are often sensitive to spatial chromatic structure. Detection thresholds were selectively elevated for the colors of full-field adaptation when it modulated along either of the two cardinal chromatic axes that define cone-opponent color space [L vs M or S vs (L + M)], providing evidence for two privileged cardinal chromatic mechanisms implemented early in the visual-processing hierarchy. Adaptation with gratings produced elevated thresholds for colors of the adaptation regardless of its chromatic makeup, suggesting a cortical representation comprised of multiple higher-order mechanisms each selective for a different direction in color space. The results suggest that color is represented by two cardinal channels early in the processing hierarchy and many chromatic channels in brain regions closer to perceptual readout.

  18. Evidence for Non-Opponent Coding of Colour Information in Human Visual Cortex: Selective Loss of “Green” Sensitivity in a Subject with Damaged Ventral Occipito-Temporal Cortex

    PubMed Central

    Rauscher, Franziska G.; Plant, Gordon T.; James-Galton, Merle; Barbur, John L.

    2011-01-01

    Damage to ventral occipito-temporal extrastriate visual cortex leads to the syndrome of prosopagnosia often with coexisting cerebral achromatopsia. A patient with this syndrome resulting in a left upper homonymous quadrantanopia, prosopagnosia, and incomplete achromatopsia is described. Chromatic sensitivity was assessed at a number of locations in the intact visual field using a dynamic luminance contrast masking technique that isolates the use of colour signals. In normal subjects chromatic detection thresholds form an elliptical contour when plotted in the Commission Internationale d’Eclairage, (x-y), chromaticity diagram. Because the extraction of colour signals in early visual processing involves opponent mechanisms, subjects with Daltonism (congenital red/green loss of sensitivity) show symmetric increase in thresholds towards the long wavelength (“red”) and middle wavelength (“green”) regions of the spectrum locus. This is also the case with acquired loss of chromatic sensitivity as a result of retinal or optic nerve disease. Our patient’s results were an exception to this rule. Whilst his chromatic sensitivity in the central region of the visual field was reduced symmetrically for both “red/green” and “yellow/blue” directions in colour space, the subject’s lower left quadrant showed a marked asymmetry in “red/green” thresholds with the greatest loss of sensitivity towards the “green” region of the spectrum locus. This spatially localized asymmetric loss of “green” but not “red” sensitivity has not been reported previously in human vision. Such loss is consistent with selective damage of neural substrates in the visual cortex that process colour information, but are spectrally non-opponent. PMID:27956924

  19. The case from animal studies for balanced binocular treatment strategies for human amblyopia.

    PubMed

    Mitchell, Donald E; Duffy, Kevin R

    2014-03-01

    Although amblyopia typically manifests itself as a monocular condition, its origin has long been linked to unbalanced neural signals from the two eyes during early postnatal development, a view confirmed by studies conducted on animal models in the last 50 years. Despite recognition of its binocular origin, treatment of amblyopia continues to be dominated by a period of patching of the non-amblyopic eye that necessarily hinders binocular co-operation. This review summarizes evidence from three lines of investigation conducted on an animal model of deprivation amblyopia to support the thesis that treatment of amblyopia should instead focus upon procedures that promote and enhance binocular co-operation. First, experiments with mixed daily visual experience in which episodes of abnormal visual input were pitted against normal binocular exposure revealed that short exposures of the latter offset much longer periods of abnormal input to allow normal development of visual acuity in both eyes. Second, experiments on the use of part-time patching revealed that purposeful introduction of episodes of binocular vision each day could be very beneficial. Periods of binocular exposure that represented 30-50% of the daily visual exposure included with daily occlusion of the non-amblyopic could allow recovery of normal vision in the amblyopic eye. Third, very recent experiments demonstrate that a short 10 day period of total darkness can promote very fast and complete recovery of visual acuity in the amblyopic eye of kittens and may represent an example of a class of artificial environments that have similar beneficial effects. Finally, an approach is described to allow timing of events in kitten and human visual system development to be scaled to optimize the ages for therapeutic interventions. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  20. Defining Quality in Visual Art Education for Young Children: Building on the Position Statement of the Early Childhood Art Educators

    ERIC Educational Resources Information Center

    McClure, Marissa; Tarr, Patricia; Thompson, Christine Marmé; Eckhoff, Angela

    2017-01-01

    This article reflects the collective voices of four early childhood visual arts educators, each of whom is a member of the Early Childhood Art Educators (ECAE) Issues Group of the National Arts Educators Association. The authors frame the article around the ECAE position statement, "Art: Essential for Early Learning" (2016), which…

  1. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses

    PubMed Central

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian

    2017-01-01

    Abstract Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150–300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. PMID:28008078

  2. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses.

    PubMed

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian; Kissler, Johanna

    2017-04-01

    Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150-300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. © The Author (2016). Published by Oxford University Press.

  3. Reading Acquisition Enhances an Early Visual Process of Contour Integration

    ERIC Educational Resources Information Center

    Szwed, Marcin; Ventura, Paulo; Querido, Luis; Cohen, Laurent; Dehaene, Stanislas

    2012-01-01

    The acquisition of reading has an extensive impact on the developing brain and leads to enhanced abilities in phonological processing and visual letter perception. Could this expertise also extend to early visual abilities outside the reading domain? Here we studied the performance of illiterate, ex-illiterate and literate adults closely matched…

  4. Improving Empathy and Communication Skills of Visually Impaired Early Adolescents through a Psycho-Education Program

    ERIC Educational Resources Information Center

    Yildiz, Mehmet Ali; Duy, Baki

    2013-01-01

    The purpose of this study was to investigate the effectiveness of an interpersonal communication skills psycho-education program to improve empathy and communication skills of visually impaired adolescents. Participants of the study were sixteen early adolescents schooling in an elementary school for visually impaired youth in Diyarbakir. The…

  5. Emotional words facilitate lexical but not early visual processing.

    PubMed

    Trauer, Sophie M; Kotz, Sonja A; Müller, Matthias M

    2015-12-12

    Emotional scenes and faces have shown to capture and bind visual resources at early sensory processing stages, i.e. in early visual cortex. However, emotional words have led to mixed results. In the current study ERPs were assessed simultaneously with steady-state visual evoked potentials (SSVEPs) to measure attention effects on early visual activity in emotional word processing. Neutral and negative words were flickered at 12.14 Hz whilst participants performed a Lexical Decision Task. Emotional word content did not modulate the 12.14 Hz SSVEP amplitude, neither did word lexicality. However, emotional words affected the ERP. Negative compared to neutral words as well as words compared to pseudowords lead to enhanced deflections in the P2 time range indicative of lexico-semantic access. The N400 was reduced for negative compared to neutral words and enhanced for pseudowords compared to words indicating facilitated semantic processing of emotional words. LPC amplitudes reflected word lexicality and thus the task-relevant response. In line with previous ERP and imaging evidence, the present results indicate that written emotional words are facilitated in processing only subsequent to visual analysis.

  6. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    PubMed

    Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  7. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate

    PubMed Central

    van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347

  8. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders

    PubMed Central

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuro-imaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Learning outcomes Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD). PMID:19419735

  9. Social Identity, Autism and Visual Impairment (VI) in the Early Years

    ERIC Educational Resources Information Center

    Dale, Naomi; Salt, Alison

    2008-01-01

    This article explores how visual impairment might impact on early social and emotional development including self-awareness and communication with others. Some children show a "developmental setback" and other worrying developmental trajectories in the early years, including autistic related behaviours and autistic spectrum disorders.…

  10. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects.

    PubMed

    Giraud, Anne Lise; Truy, Eric

    2002-01-01

    Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.

  11. Electromechanical properties of human osteoarthritic and asymptomatic articular cartilage are sensitive and early detectors of degeneration.

    PubMed

    Hadjab, I; Sim, S; Karhula, S S; Kauppinen, S; Garon, M; Quenneville, E; Lavigne, P; Lehenkari, P P; Saarakkala, S; Buschmann, M D

    2018-03-01

    To evaluate cross-correlations of ex vivo electromechanical properties with cartilage and subchondral bone plate thickness, as well as their sensitivity and specificity regarding early cartilage degeneration in human tibial plateau. Six pairs of tibial plateaus were assessed ex vivo using an electromechanical probe (Arthro-BST) which measures a quantitative parameter (QP) reflecting articular cartilage compression-induced streaming potentials. Cartilage thickness was then measured with an automated thickness mapping technique using Mach-1 multiaxial mechanical tester. Subsequently, a visual assessment was performed by an experienced orthopedic surgeon using the International Cartilage Repair Society (ICRS) grading system. Each tibial plateau was finally evaluated with μCT scanner to determine the subchondral-bone plate thickness over the entire surface. Cross-correlations between assessments decreased with increasing degeneration level. Moreover, electromechanical QP and subchondral-bone plate thickness increased strongly with ICRS grade (ρ = 0.86 and ρ = 0.54 respectively), while cartilage thickness slightly increased (ρ = 0.27). Sensitivity and specificity analysis revealed that the electromechanical QP is the most performant to distinguish between different early degeneration stages, followed by subchondral-bone plate thickness and then cartilage thickness. Lastly, effect sizes of cartilage and subchondral-bone properties were established to evaluate whether cartilage or bone showed the most noticeable changes between normal (ICRS 0) and each early degenerative stage. Thus, the effect sizes of cartilage electromechanical QP were almost twice those of the subchondral-bone plate thickness, indicating greater sensitivity of electromechanical measurements to detect early osteoarthritis. The potential of electromechanical properties for the diagnosis of early human cartilage degeneration was highlighted and supported by cartilage thickness and μCT assessments. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex

    PubMed Central

    Zilles, Karl; Palomero-Gallagher, Nicola

    2017-01-01

    We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). Highlights Densities of transmitter receptors vary between areas of human cerebral cortex.Multi-receptor fingerprints segregate cortical layers.The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas.The lowest values are found in the infragranular stratum.Multi-receptor fingerprints of entire areas and their layers segregate functional systemsCortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints. PMID:28970785

  13. Face race processing and racial bias in early development: A perceptual-social linkage.

    PubMed

    Lee, Kang; Quinn, Paul C; Pascalis, Olivier

    2017-06-01

    Infants have asymmetrical exposure to different types of faces (e.g., more human than other-species, more female than male, and more own-race than other-race). What are the developmental consequences of such experiential asymmetry? Here we review recent advances in research on the development of cross-race face processing. The evidence suggests that greater exposure to own- than other-race faces in infancy leads to developmentally early perceptual differences in visual preference, recognition, category formation, and scanning of own- and other-race faces. Further, such perceptual differences in infancy may be associated with the emergence of implicit racial bias, consistent with a Perceptual-Social Linkage Hypothesis. Current and future work derived from this hypothesis may lay an important empirical foundation for the development of intervention programs to combat the early occurrence of implicit racial bias.

  14. Selective attention to signs of success: social dominance and early stage interpersonal perception.

    PubMed

    Maner, Jon K; DeWall, C Nathan; Gailliot, Matthew T

    2008-04-01

    Results from two experiments suggest that observers selectively attend to male, but not female, targets displaying signs of social dominance. Participants overestimated the frequency of dominant men in rapidly presented stimulus arrays (Study 1) and visually fixated on dominant men in an eyetracking experiment (Study 2). When viewing female targets, participants attended to signs of physical attractiveness rather than social dominance. Findings fit with evolutionary models of mating, which imply that dominance and physical attractiveness sometimes tend to be prioritized preferentially in judgments of men versus women, respectively. Findings suggest that sex differences in human mating are observed not only at the level of overt mating preferences and choices but also at early stages of interpersonal perception. This research demonstrates the utility of examining early-in-the-stream social cognition through the functionalist lens of adaptive thinking.

  15. Temporal dynamics of the knowledge-mediated visual disambiguation process in humans: a magnetoencephalography study.

    PubMed

    Urakawa, Tomokazu; Ogata, Katsuya; Kimura, Takahiro; Kume, Yuko; Tobimatsu, Shozo

    2015-01-01

    Disambiguation of a noisy visual scene with prior knowledge is an indispensable task of the visual system. To adequately adapt to a dynamically changing visual environment full of noisy visual scenes, the implementation of knowledge-mediated disambiguation in the brain is imperative and essential for proceeding as fast as possible under the limited capacity of visual image processing. However, the temporal profile of the disambiguation process has not yet been fully elucidated in the brain. The present study attempted to determine how quickly knowledge-mediated disambiguation began to proceed along visual areas after the onset of a two-tone ambiguous image using magnetoencephalography with high temporal resolution. Using the predictive coding framework, we focused on activity reduction for the two-tone ambiguous image as an index of the implementation of disambiguation. Source analysis revealed that a significant activity reduction was observed in the lateral occipital area at approximately 120 ms after the onset of the ambiguous image, but not in preceding activity (about 115 ms) in the cuneus when participants perceptually disambiguated the ambiguous image with prior knowledge. These results suggested that knowledge-mediated disambiguation may be implemented as early as approximately 120 ms following an ambiguous visual scene, at least in the lateral occipital area, and provided an insight into the temporal profile of the disambiguation process of a noisy visual scene with prior knowledge. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location

    PubMed Central

    Kanwisher, Nancy

    2012-01-01

    The crux of vision is to identify objects and determine their locations in the environment. Although initial visual representations are necessarily retinotopic (eye centered), interaction with the real world requires spatiotopic (absolute) location information. We asked whether higher level human visual cortex—important for stable object recognition and action—contains information about retinotopic and/or spatiotopic object position. Using functional magnetic resonance imaging multivariate pattern analysis techniques, we found information about both object category and object location in each of the ventral, dorsal, and early visual regions tested, replicating previous reports. By manipulating fixation position and stimulus position, we then tested whether these location representations were retinotopic or spatiotopic. Crucially, all location information was purely retinotopic. This pattern persisted when location information was irrelevant to the task, and even when spatiotopic (not retinotopic) stimulus position was explicitly emphasized. We also conducted a “searchlight” analysis across our entire scanned volume to explore additional cortex but again found predominantly retinotopic representations. The lack of explicit spatiotopic representations suggests that spatiotopic object position may instead be computed indirectly and continually reconstructed with each eye movement. Thus, despite our subjective impression that visual information is spatiotopic, even in higher level visual cortex, object location continues to be represented in retinotopic coordinates. PMID:22190434

  17. The role of emotion in dynamic audiovisual integration of faces and voices.

    PubMed

    Kokinous, Jenny; Kotz, Sonja A; Tavano, Alessandro; Schröger, Erich

    2015-05-01

    We used human electroencephalogram to study early audiovisual integration of dynamic angry and neutral expressions. An auditory-only condition served as a baseline for the interpretation of integration effects. In the audiovisual conditions, the validity of visual information was manipulated using facial expressions that were either emotionally congruent or incongruent with the vocal expressions. First, we report an N1 suppression effect for angry compared with neutral vocalizations in the auditory-only condition. Second, we confirm early integration of congruent visual and auditory information as indexed by a suppression of the auditory N1 and P2 components in the audiovisual compared with the auditory-only condition. Third, audiovisual N1 suppression was modulated by audiovisual congruency in interaction with emotion: for neutral vocalizations, there was N1 suppression in both the congruent and the incongruent audiovisual conditions. For angry vocalizations, there was N1 suppression only in the congruent but not in the incongruent condition. Extending previous findings of dynamic audiovisual integration, the current results suggest that audiovisual N1 suppression is congruency- and emotion-specific and indicate that dynamic emotional expressions compared with non-emotional expressions are preferentially processed in early audiovisual integration. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. How does visual language affect crossmodal plasticity and cochlear implant success?

    PubMed Central

    Lyness, C.R.; Woll, B.; Campbell, R.; Cardin, V.

    2013-01-01

    Cochlear implants (CI) are the most successful intervention for ameliorating hearing loss in severely or profoundly deaf children. Despite this, educational performance in children with CI continues to lag behind their hearing peers. From animal models and human neuroimaging studies it has been proposed the integrative functions of auditory cortex are compromised by crossmodal plasticity. This has been argued to result partly from the use of a visual language. Here we argue that ‘cochlear implant sensitive periods’ comprise both auditory and language sensitive periods, and thus cannot be fully described with animal models. Despite prevailing assumptions, there is no evidence to link the use of a visual language to poorer CI outcome. Crossmodal reorganisation of auditory cortex occurs regardless of compensatory strategies, such as sign language, used by the deaf person. In contrast, language deprivation during early sensitive periods has been repeatedly linked to poor language outcomes. Language sensitive periods have largely been ignored when considering variation in CI outcome, leading to ill-founded recommendations concerning visual language in CI habilitation. PMID:23999083

  19. Basic level category structure emerges gradually across human ventral visual cortex.

    PubMed

    Iordan, Marius Cătălin; Greene, Michelle R; Beck, Diane M; Fei-Fei, Li

    2015-07-01

    Objects can be simultaneously categorized at multiple levels of specificity ranging from very broad ("natural object") to very distinct ("Mr. Woof"), with a mid-level of generality (basic level: "dog") often providing the most cognitively useful distinction between categories. It is unknown, however, how this hierarchical representation is achieved in the brain. Using multivoxel pattern analyses, we examined how well each taxonomic level (superordinate, basic, and subordinate) of real-world object categories is represented across occipitotemporal cortex. We found that, although in early visual cortex objects are best represented at the subordinate level (an effect mostly driven by low-level feature overlap between objects in the same category), this advantage diminishes compared to the basic level as we move up the visual hierarchy, disappearing in object-selective regions of occipitotemporal cortex. This pattern stems from a combined increase in within-category similarity (category cohesion) and between-category dissimilarity (category distinctiveness) of neural activity patterns at the basic level, relative to both subordinate and superordinate levels, suggesting that successive visual areas may be optimizing basic level representations.

  20. Exploring Transformations in Caribbean Indigenous Social Networks through Visibility Studies: the Case of Late Pre-Colonial Landscapes in East-Guadeloupe (French West Indies).

    PubMed

    Brughmans, Tom; de Waal, Maaike S; Hofman, Corinne L; Brandes, Ulrik

    2018-01-01

    This paper presents a study of the visual properties of natural and Amerindian cultural landscapes in late pre-colonial East-Guadeloupe and of how these visual properties affected social interactions. Through a review of descriptive and formal visibility studies in Caribbean archaeology, it reveals that the ability of visual properties to affect past human behaviour is frequently evoked but the more complex of these hypotheses are rarely studied formally. To explore such complex hypotheses, the current study applies a range of techniques: total viewsheds, cumulative viewsheds, visual neighbourhood configurations and visibility networks. Experiments were performed to explore the control of seascapes, the functioning of hypothetical smoke signalling networks, the correlation of these visual properties with stylistic similarities of material culture found at sites and the change of visual properties over time. The results of these experiments suggest that only few sites in Eastern Guadeloupe are located in areas that are particularly suitable to visually control possible sea routes for short- and long-distance exchange; that visual control over sea areas was not a factor of importance for the existence of micro-style areas; that during the early phase of the Late Ceramic Age networks per landmass are connected and dense and that they incorporate all sites, a structure that would allow hypothetical smoke signalling networks; and that the visual properties of locations of the late sites Morne Souffleur and Morne Cybèle-1 were not ideal for defensive purposes. These results led us to propose a multi-scalar hypothesis for how lines of sight between settlements in the Lesser Antilles could have structured past human behaviour: short-distance visibility networks represent the structuring of navigation and communication within landmasses, whereas the landmasses themselves served as focal points for regional navigation and interaction. We conclude by emphasising that since our archaeological theories about visual properties usually take a multi-scalar landscape perspective, there is a need for this perspective to be reflected in our formal visibility methods as is made possible by the methods used in this paper.

  1. Cortical network differences in the sighted versus early blind for recognition of human-produced action sounds

    PubMed Central

    Lewis, James W.; Frum, Chris; Brefczynski-Lewis, Julie A.; Talkington, William J.; Walker, Nathan A.; Rapuano, Kristina M.; Kovach, Amanda L.

    2012-01-01

    Both sighted and blind individuals can readily interpret meaning behind everyday real-world sounds. In sighted listeners, we previously reported that regions along the bilateral posterior superior temporal sulci (pSTS) and middle temporal gyri (pMTG) are preferentially activated when presented with recognizable action sounds. These regions have generally been hypothesized to represent primary loci for complex motion processing, including visual biological motion processing and audio-visual integration. However, it remained unclear whether, or to what degree, life-long visual experience might impact functions related to hearing perception or memory of sound-source actions. Using functional magnetic resonance imaging (fMRI), we compared brain regions activated in congenitally blind versus sighted listeners in response to hearing a wide range of recognizable human-produced action sounds (excluding vocalizations) versus unrecognized, backward-played versions of those sounds. Here we show that recognized human action sounds commonly evoked activity in both groups along most of the left pSTS/pMTG complex, though with relatively greater activity in the right pSTS/pMTG by the blind group. These results indicate that portions of the postero-lateral temporal cortices contain domain-specific hubs for biological and/or complex motion processing independent of sensory-modality experience. Contrasting the two groups, the sighted listeners preferentially activated bilateral parietal plus medial and lateral frontal networks, while the blind listeners preferentially activated left anterior insula plus bilateral anterior calcarine and medial occipital regions, including what would otherwise have been visual-related cortex. These global-level network differences suggest that blind and sighted listeners may preferentially use different memory retrieval strategies when attempting to recognize action sounds. PMID:21305666

  2. The Concept of Happiness as Conveyed in Visual Representations: Analysis of the Work of Early Childhood Educators

    ERIC Educational Resources Information Center

    Russo-Zimet, Gila; Segel, Sarit

    2014-01-01

    This research was designed to examine how early-childhood educators pursuing their graduate degrees perceive the concept of happiness, as conveyed in visual representations. The research methodology combines qualitative and quantitative paradigms using the metaphoric collage, a tool used to analyze visual and verbal aspects. The research…

  3. An Examination of Characteristics Related to the Social Skills of Youths with Visual Impairments

    ERIC Educational Resources Information Center

    Zebehazy, Kim T.; Smith, Thomas J.

    2011-01-01

    From an early age, children with visual impairments can be at a disadvantage for developing social skills. Since vision plays a role in the early development of social behaviors and of social cognition, the lack of visual cues could lead to difficulties in initiating and maintaining social interactions. The study presented here investigated…

  4. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind

    PubMed Central

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T.; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J.; Sadato, Norihiro

    2012-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience. PMID:23372547

  5. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind.

    PubMed

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J; Sadato, Norihiro

    2013-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience.

  6. Distributed and opposing effects of incidental learning in the human brain.

    PubMed

    Hall, Michelle G; Naughtin, Claire K; Mattingley, Jason B; Dux, Paul E

    2018-06-01

    Incidental learning affords a behavioural advantage when sensory information matches regularities that have previously been encountered. Previous studies have taken a focused approach by probing the involvement of specific candidate brain regions underlying incidentally acquired memory representations, as well as expectation effects on early sensory representations. Here, we investigated the broader extent of the brain's sensitivity to violations and fulfilments of expectations, using an incidental learning paradigm in which the contingencies between target locations and target identities were manipulated without participants' overt knowledge. Multivariate analysis of functional magnetic resonance imaging data was applied to compare the consistency of neural activity for visual events that the contingency manipulation rendered likely versus unlikely. We observed widespread sensitivity to expectations across frontal, temporal, occipital, and sub-cortical areas. These activation clusters showed distinct response profiles, such that some regions displayed more reliable activation patterns under fulfilled expectations, whereas others showed more reliable patterns when expectations were violated. These findings reveal that expectations affect multiple stages of information processing during visual decision making, rather than early sensory processing stages alone. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Spatial sexual dimorphism of X and Y homolog gene expression in the human central nervous system during early male development.

    PubMed

    Johansson, Martin M; Lundin, Elin; Qian, Xiaoyan; Mirzazadeh, Mohammadreza; Halvardson, Jonatan; Darj, Elisabeth; Feuk, Lars; Nilsson, Mats; Jazin, Elena

    2016-01-01

    Renewed attention has been directed to the functions of the Y chromosome in the central nervous system during early human male development, due to the recent proposed involvement in neurodevelopmental diseases. PCDH11Y and NLGN4Y are of special interest because they belong to gene families involved in cell fate determination and formation of dendrites and axon. We used RNA sequencing, immunocytochemistry and a padlock probing and rolling circle amplification strategy, to distinguish the expression of X and Y homologs in situ in the human brain for the first time. To minimize influence of androgens on the sex differences in the brain, we focused our investigation to human embryos at 8-11 weeks post-gestation. We found that the X- and Y-encoded genes are expressed in specific and heterogeneous cellular sub-populations of both glial and neuronal origins. More importantly, we found differential distribution patterns of X and Y homologs in the male developing central nervous system. This study has visualized the spatial distribution of PCDH11X/Y and NLGN4X/Y in human developing nervous tissue. The observed spatial distribution patterns suggest the existence of an additional layer of complexity in the development of the male CNS.

  8. [Rate of human papillomavirus infection in rural areas diagnosed by direct visualization with acetic acid and lugol].

    PubMed

    José Daniel, Flores-Alatriste; Karla Georgina, Saldivar-Gutiérrez; Josué Sarmiento-Ángeles; Jaime Claudio, Granados-Marin; Marco Antonio, Olaya-Rivera; Stark, Carlotta; Hugo, Flores-Navarro; Jaroslav, Stern-Colin

    2015-07-01

    Infection by HPV is a major global health problem and the main risk factor for cervical cancer with high morbidity and mortality. Simple diagnostic methods, such as visual inspection with the naked eye of the cervix with acetic acid application 5% (VAT) or solution of iodine (tincture of iodine) are simple to detect early lesions, sensitivity varies from 87 to 99% and specificity varies from 23 to 87%. To find the proportion of infection by human papillomavirus in a population of extreme poverty. Linear, observational and descriptive pilot study was done in patients of marginalized communities in extreme poverty in Chiapas (Mexico), from 1 to 30 November 2013. The existence of acetowhite lesions suggestive of virus was verified human papillomavirus, and medical history of all patients was formed for the incidence of risk factors. 214 women with age limits of 19 and 78 years, median age of 37 years were studied. Of the total, 66 (31%) had acetowhite lesions consistent with human papillomavirus at the time of the study. Marginalized populations have a higher risk of infection with human papillomavirus, consequently high rate of progression to cervical cancer due to sociodemographic characteristics, risk factors and lack of resources in health. Diagnostic tests like the simple display with acetic acid are ideal for people such as this.

  9. Re-Design and Beat Testing of the Man-Machine Integration Design and Analysis System: MIDAS

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Rutkowski, Michael (Technical Monitor)

    1999-01-01

    The Man-machine Design and Analysis System (MIDAS) is a human factors design and analysis system that combines human cognitive models with 3D CAD models and rapid prototyping and simulation techniques. MIDAS allows designers to ask 'what if' types of questions early in concept exploration and development prior to actual hardware development. The system outputs predictions of operator workload, situational awareness and system performance as well as graphical visualization of the cockpit designs interacting with models of the human in a mission scenario. Recently, MIDAS was re-designed to enhance functionality and usability. The goals driving the redesign include more efficient processing, GUI interface, advances in the memory structures, implementation of external vision models and audition. These changes were detailed in an earlier paper. Two Beta test sites with diverse applications have been chosen. One Beta test site is investigating the development of a new airframe and its interaction with the air traffic management system. The second Beta test effort will investigate 3D auditory cueing in conjunction with traditional visual cueing strategies including panel-mounted and heads-up displays. The progress and lessons learned on each of these projects will be discussed.

  10. Using spoken words to guide open-ended category formation.

    PubMed

    Chauhan, Aneesh; Seabra Lopes, Luís

    2011-11-01

    Naming is a powerful cognitive tool that facilitates categorization by forming an association between words and their referents. There is evidence in child development literature that strong links exist between early word-learning and conceptual development. A growing view is also emerging that language is a cultural product created and acquired through social interactions. Inspired by these studies, this paper presents a novel learning architecture for category formation and vocabulary acquisition in robots through active interaction with humans. This architecture is open-ended and is capable of acquiring new categories and category names incrementally. The process can be compared to language grounding in children at single-word stage. The robot is embodied with visual and auditory sensors for world perception. A human instructor uses speech to teach the robot the names of the objects present in a visually shared environment. The robot uses its perceptual input to ground these spoken words and dynamically form/organize category descriptions in order to achieve better categorization. To evaluate the learning system at word-learning and category formation tasks, two experiments were conducted using a simple language game involving naming and corrective feedback actions from the human user. The obtained results are presented and discussed in detail.

  11. Mitochondrial Fragmentation in Aspergillus fumigatus as Early Marker of Granulocyte Killing Activity

    PubMed Central

    Ruf, Dominik; Brantl, Victor; Wagener, Johannes

    2018-01-01

    The host's defense against invasive mold infections relies on diverse antimicrobial activities of innate immune cells. However, studying these mechanisms in vitro is complicated by the filamentous nature of such pathogens that typically form long, branched, multinucleated and compartmentalized hyphae. Here we describe a novel method that allows for the visualization and quantification of the antifungal killing activity exerted by human granulocytes against hyphae of the opportunistic pathogen Aspergillus fumigatus. The approach relies on the distinct impact of fungal cell death on the morphology of mitochondria that were visualized with green fluorescent protein (GFP). We show that oxidative stress induces complete fragmentation of the tubular mitochondrial network which correlates with cell death of affected hyphae. Live cell microscopy revealed a similar and non-reversible disruption of the mitochondrial morphology followed by fading of fluorescence in Aspergillus hyphae that were killed by human granulocytes. Quantitative microscopic analysis of fixed samples was subsequently used to estimate the antifungal activity. By utilizing this assay, we demonstrate that lipopolysaccharides as well as human serum significantly increase the killing efficacy of the granulocytes. Our results demonstrate that evaluation of the mitochondrial morphology can be utilized to assess the fungicidal activity of granulocytes against A. fumigatus hyphae. PMID:29868488

  12. Assessment of prostate cancer detection with a visual-search human model observer

    NASA Astrophysics Data System (ADS)

    Sen, Anando; Kalantari, Faraz; Gifford, Howard C.

    2014-03-01

    Early staging of prostate cancer (PC) is a significant challenge, in part because of the small tumor sizes in- volved. Our long-term goal is to determine realistic diagnostic task performance benchmarks for standard PC imaging with single photon emission computed tomography (SPECT). This paper reports on a localization receiver operator characteristic (LROC) validation study comparing human and model observers. The study made use of a digital anthropomorphic phantom and one-cm tumors within the prostate and pelvic lymph nodes. Uptake values were consistent with data obtained from clinical In-111 ProstaScint scans. The SPECT simulation modeled a parallel-hole imaging geometry with medium-energy collimators. Nonuniform attenua- tion and distance-dependent detector response were accounted for both in the imaging and the ordered-subset expectation-maximization (OSEM) iterative reconstruction. The observer study made use of 2D slices extracted from reconstructed volumes. All observers were informed about the prostate and nodal locations in an image. Iteration number and the level of postreconstruction smoothing were study parameters. The results show that a visual-search (VS) model observer correlates better with the average detection performance of human observers than does a scanning channelized nonprewhitening (CNPW) model observer.

  13. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration.

    PubMed

    Akuffo, Kwadwo Owusu; Nolan, John M; Peto, Tunde; Stack, Jim; Leung, Irene; Corcoran, Laura; Beatty, Stephen

    2017-02-01

    To investigate the relationship between macular pigment (MP) and visual function in subjects with early age-related macular degeneration (AMD). 121 subjects with early AMD enrolled as part of the Central Retinal Enrichment Supplementation Trial (CREST; ISRCTN13894787) were assessed using a range of psychophysical measures of visual function, including best corrected visual acuity (BCVA), letter contrast sensitivity (CS), mesopic and photopic CS, mesopic and photopic glare disability (GD), photostress recovery time (PRT), reading performance and subjective visual function, using the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). MP was measured using customised heterochromatic flicker photometry. Letter CS, mesopic and photopic CS, photopic GD and mean reading speed were each significantly (p<0.05) associated with MP across a range of retinal eccentricities, and these statistically significant relationships persisted after controlling for age, sex and cataract grade. BCVA, NEI VFQ-25 score, PRT and mesopic GD were unrelated to MP after controlling for age, sex and cataract grade (p>0.05, for all). MP relates positively to many measures of visual function in unsupplemented subjects with early AMD. The CREST trial will investigate whether enrichment of MP influences visual function among those afflicted with this condition. ISRCTN13894787. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism.

    PubMed

    Harris, Joseph A; Wu, Chien-Te; Woldorff, Marty G

    2011-06-07

    It is generally agreed that considerable amounts of low-level sensory processing of visual stimuli can occur without conscious awareness. On the other hand, the degree of higher level visual processing that occurs in the absence of awareness is as yet unclear. Here, event-related potential (ERP) measures of brain activity were recorded during a sandwich-masking paradigm, a commonly used approach for attenuating conscious awareness of visual stimulus content. In particular, the present study used a combination of ERP activation contrasts to track both early sensory-processing ERP components and face-specific N170 ERP activations, in trials with versus without awareness. The electrophysiological measures revealed that the sandwich masking abolished the early face-specific N170 neural response (peaking at ~170 ms post-stimulus), an effect that paralleled the abolition of awareness of face versus non-face image content. Furthermore, however, the masking appeared to render a strong attenuation of earlier feedforward visual sensory-processing signals. This early attenuation presumably resulted in insufficient information being fed into the higher level visual system pathways specific to object category processing, thus leading to unawareness of the visual object content. These results support a coupling of visual awareness and neural indices of face processing, while also demonstrating an early low-level mechanism of interference in sandwich masking.

  16. Semantic integration of differently asynchronous audio-visual information in videos of real-world events in cognitive processing: an ERP study.

    PubMed

    Liu, Baolin; Wu, Guangning; Wang, Zhongning; Ji, Xiang

    2011-07-01

    In the real world, some of the auditory and visual information received by the human brain are temporally asynchronous. How is such information integrated in cognitive processing in the brain? In this paper, we aimed to study the semantic integration of differently asynchronous audio-visual information in cognitive processing using ERP (event-related potential) method. Subjects were presented with videos of real world events, in which the auditory and visual information are temporally asynchronous. When the critical action was prior to the sound, sounds incongruous with the preceding critical actions elicited a N400 effect when compared to congruous condition. This result demonstrates that semantic contextual integration indexed by N400 also applies to cognitive processing of multisensory information. In addition, the N400 effect is early in latency when contrasted with other visually induced N400 studies. It is shown that cross modal information is facilitated in time when contrasted with visual information in isolation. When the sound was prior to the critical action, a larger late positive wave was observed under the incongruous condition compared to congruous condition. P600 might represent a reanalysis process, in which the mismatch between the critical action and the preceding sound was evaluated. It is shown that environmental sound may affect the cognitive processing of a visual event. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Is race erased? Decoding race from patterns of neural activity when skin color is not diagnostic of group boundaries.

    PubMed

    Ratner, Kyle G; Kaul, Christian; Van Bavel, Jay J

    2013-10-01

    Several theories suggest that people do not represent race when it does not signify group boundaries. However, race is often associated with visually salient differences in skin tone and facial features. In this study, we investigated whether race could be decoded from distributed patterns of neural activity in the fusiform gyri and early visual cortex when visual features that often covary with race were orthogonal to group membership. To this end, we used multivariate pattern analysis to examine an fMRI dataset that was collected while participants assigned to mixed-race groups categorized own-race and other-race faces as belonging to their newly assigned group. Whereas conventional univariate analyses provided no evidence of race-based responses in the fusiform gyri or early visual cortex, multivariate pattern analysis suggested that race was represented within these regions. Moreover, race was represented in the fusiform gyri to a greater extent than early visual cortex, suggesting that the fusiform gyri results do not merely reflect low-level perceptual information (e.g. color, contrast) from early visual cortex. These findings indicate that patterns of activation within specific regions of the visual cortex may represent race even when overall activation in these regions is not driven by racial information.

  18. New technologies lead to a new frontier: cognitive multiple data representation

    NASA Astrophysics Data System (ADS)

    Buffat, S.; Liege, F.; Plantier, J.; Roumes, C.

    2005-05-01

    The increasing number and complexity of operational sensors (radar, infrared, hyperspectral...) and availability of huge amount of data, lead to more and more sophisticated information presentations. But one key element of the IMINT line cannot be improved beyond initial system specification: the operator.... In order to overcome this issue, we have to better understand human visual object representation. Object recognition theories in human vision balance between matching 2D templates representation with viewpoint-dependant information, and a viewpoint-invariant system based on structural description. Spatial frequency content is relevant due to early vision filtering. Orientation in depth is an important variable to challenge object constancy. Three objects, seen from three different points of view in a natural environment made the original images in this study. Test images were a combination of spatial frequency filtered original images and an additive contrast level of white noise. In the first experiment, the observer's task was a same versus different forced choice with spatial alternative. Test images had the same noise level in a presentation row. Discrimination threshold was determined by modifying the white noise contrast level by means of an adaptative method. In the second experiment, a repetition blindness paradigm was used to further investigate the viewpoint effect on object recognition. The results shed some light on the human visual system processing of objects displayed under different physical descriptions. This is an important achievement because targets which not always match physical properties of usual visual stimuli can increase operational workload.

  19. Selective attention to task-irrelevant emotional distractors is unaffected by the perceptual load associated with a foreground task.

    PubMed

    Hindi Attar, Catherine; Müller, Matthias M

    2012-01-01

    A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.

  20. Splenium of Corpus Callosum: Patterns of Interhemispheric Interaction in Children and Adults

    PubMed Central

    Knyazeva, Maria G.

    2013-01-01

    The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain. PMID:23577273

  1. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    PubMed

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.

  2. Characterizing the effects of feature salience and top-down attention in the early visual system.

    PubMed

    Poltoratski, Sonia; Ling, Sam; McCormack, Devin; Tong, Frank

    2017-07-01

    The visual system employs a sophisticated balance of attentional mechanisms: salient stimuli are prioritized for visual processing, yet observers can also ignore such stimuli when their goals require directing attention elsewhere. A powerful determinant of visual salience is local feature contrast: if a local region differs from its immediate surround along one or more feature dimensions, it will appear more salient. We used high-resolution functional MRI (fMRI) at 7T to characterize the modulatory effects of bottom-up salience and top-down voluntary attention within multiple sites along the early visual pathway, including visual areas V1-V4 and the lateral geniculate nucleus (LGN). Observers viewed arrays of spatially distributed gratings, where one of the gratings immediately to the left or right of fixation differed from all other items in orientation or motion direction, making it salient. To investigate the effects of directed attention, observers were cued to attend to the grating to the left or right of fixation, which was either salient or nonsalient. Results revealed reliable additive effects of top-down attention and stimulus-driven salience throughout visual areas V1-hV4. In comparison, the LGN exhibited significant attentional enhancement but was not reliably modulated by orientation- or motion-defined salience. Our findings indicate that top-down effects of spatial attention can influence visual processing at the earliest possible site along the visual pathway, including the LGN, whereas the processing of orientation- and motion-driven salience primarily involves feature-selective interactions that take place in early cortical visual areas. NEW & NOTEWORTHY While spatial attention allows for specific, goal-driven enhancement of stimuli, salient items outside of the current focus of attention must also be prioritized. We used 7T fMRI to compare salience and spatial attentional enhancement along the early visual hierarchy. We report additive effects of attention and bottom-up salience in early visual areas, suggesting that salience enhancement is not contingent on the observer's attentional state. Copyright © 2017 the American Physiological Society.

  3. The Anatomy of Non-conscious Recognition Memory.

    PubMed

    Rosenthal, Clive R; Soto, David

    2016-11-01

    Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. An occlusion paradigm to assess the importance of the timing of the quiet eye fixation.

    PubMed

    Vine, Samuel J; Lee, Don Hyung; Walters-Symons, Rosanna; Wilson, Mark R

    2017-02-01

    The aim of the study was to explore the significance of the 'timing' of the quiet eye (QE), and the relative importance of late (online control) or early (pre-programming) visual information for accuracy. Twenty-seven skilled golfers completed a putting task using an occlusion paradigm with three conditions: early (prior to backswing), late (during putter stroke), and no (control) occlusion of vision. Performance, QE, and kinematic variables relating to the swing were measured. Results revealed that providing only early visual information (occluding late visual information) had a significant detrimental effect on performance and kinematic measures, compared to the control condition (no occlusion), despite QE durations being maintained. Conversely, providing only late visual information (occluding early visual information) was not significantly detrimental to performance or kinematics, with results similar to those in the control condition. These findings imply that the visual information extracted during movement execution - the late proportion of the QE - is critical when golf putting. The results challenge the predominant view that the QE serves only a pre-programming function. We propose that the different proportions of the QE (before and during movement) may serve different functions in supporting accuracy in golf putting.

  5. The locus of origin of augmenting and reducing of visual evoked potentials in rat brain.

    PubMed

    Siegel, J; Gayle, D; Sharma, A; Driscoll, P

    1996-07-01

    Humans who are high sensation seekers and cats who demonstrate comparable behavioral traits show increasing amplitudes of the early components of the cortical visual evoked potential (VEP) to increasing intensities of light flash; low sensation seekers show VEP reducing. Roman high-avoidance (RHA) and Roman low-avoidance (RLA) rats have behavioral traits comparable to human and cat high and low sensation seekers, respectively. Previously, we showed that RHA and RLA rats are cortical VEP augmenters and reducers, respectively. The goal of this study was to determine if augmenting-reducing is in fact a property of the visual cortex or if it originates at the lateral geniculate nucleus and is merely reflected in recordings from the cortex. EPs to five flash intensities were recorded from the visual cortex and dorsal lateral geniculate of RHA and RLA rats. As in the previous study, the slope of the first cortical component as a function of flash intensity was greater in the RHA than in the RLA rats. The amplitude of the geniculate component that has a latency shorter than the first cortical component was no different in the two lines of rats. The finding from the cortex confirms the earlier finding of augmenting and reducing in RHA and RLA rats, respectively. The major new finding is that the augmenting-reducing difference recorded at the cortex does not occur at the thalamus, indicating that it is truly a cortical phenomenon.

  6. A Prospective Study of Pterygium Excision and Conjunctival Autograft With Human Fibrin Tissue Adhesive: Effects on Vision, Refraction, and Corneal Topography.

    PubMed

    Misra, Stuti; Craig, Jennifer P; McGhee, Charles N J; Patel, Dipika V

    2014-01-01

    This study aimed to investigate changes in visual acuity, corneal parameters, and topographic parameters after pterygium surgery. A prospective observational study was conducted. Twenty eyes of 20 participants undergoing pterygium excision with conjunctival autograft secured using human fibrin tissue adhesive were included in the study. All the participants were assessed preoperatively and 1 and 3 months postoperatively. The parameters included subjective refraction, visual acuity, and pterygium size (pterygium horizontal corneal length [PHCL]) and corneal tomography by Pentacam rotating Scheimpflug tomographer (OCULUS Optikgeräte GmbH, Wetzlar, Germany). The astigmatic changes were calculated using vector analysis. The mean age of participants was 49.3 ± 12.1 years. Mean PHCL was 2.68 ± 0.30 mm. The mean best corrected visual acuity preoperatively was 6/7.5, improving significantly to 6/6 at 1 month (P = 0.001) with this improvement remaining stable at 3 months postoperatively (P = 0.34). There was no significant change in subjective astigmatism, however, mean topographic astigmatism decreased significantly at 1 month (4.36 diopter, P < 0.01) and remained unchanged at 3 months (P < 0.01). Greater PHCL was associated with greater changes in corneal astigmatism. Significant improvements and early stabilization of visual acuity and topographic astigmatism confirm the optical benefits of pterygium excision. These data also suggest a significant advantage of performing pterygium before rather than simultaneously with or after cataract surgery by enabling the most accurate biometry.

  7. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  8. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model.

    PubMed

    Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin

    2018-04-01

    Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Family-Centered Early Intervention Visual Impairment Services through Matrix Session Planning

    ERIC Educational Resources Information Center

    Ely, Mindy S.; Gullifor, Kateri; Hollinshead, Tara

    2017-01-01

    Early intervention visual impairment services are built on a model that values family. Matrix session planning pulls together parent priorities, family routines, and identified strategies in a way that helps families and early intervention professionals outline a plan that can both highlight long-term goals and focus on what can be done today.…

  10. The onset of visual experience gates auditory cortex critical periods

    PubMed Central

    Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.

    2016-01-01

    Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281

  11. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.

  13. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL.

    PubMed

    Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash

    2012-10-01

    To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Final visual acuity results in the early treatment for retinopathy of prematurity study.

    PubMed

    Good, William V; Hardy, Robert J; Dobson, Velma; Palmer, Earl A; Phelps, Dale L; Tung, Betty; Redford, Maryann

    2010-06-01

    To compare visual acuity at 6 years of age in eyes that received early treatment for high-risk prethreshold retinopathy of prematurity (ROP) with conventionally managed eyes. Infants with symmetrical, high-risk prethreshold ROP (n = 317) had one eye randomized to earlier treatment at high-risk prethreshold disease and the other eye managed conventionally, treated if ROP progressed to threshold severity. For asymmetric cases (n = 84), the high-risk prethreshold eye was randomized to either early treatment or conventional management. The main outcome measure was ETDRS visual acuity measured at 6 years of age by masked testers. Retinal structure was assessed as a secondary outcome. Analysis of all subjects with high-risk prethreshold ROP showed no statistically significant benefit for early treatment (24.3% vs 28.6% [corrected] unfavorable outcome; P = .15). Analysis of 6-year visual acuity results according to the Type 1 and 2 clinical algorithm showed a benefit for Type 1 eyes (25.1% vs 32.8%; P = .02) treated early but not Type 2 eyes (23.6% vs 19.4%; P = .37). Early-treated eyes showed a significantly better structural outcome compared with conventionally managed eyes (8.9% vs 15.2% unfavorable outcome; P < .001), with no greater risk of ocular complications. Early treatment for Type 1 high-risk prethreshold eyes improved visual acuity outcomes at 6 years of age. Early treatment for Type 2 high-risk prethreshold eyes did not. Application to Clinical Practice Type 1 eyes, not Type 2 eyes, should be treated early. These results are particularly important considering that 52% of Type 2 high-risk prethreshold eyes underwent regression of ROP without requiring treatment. Trial Registration clinicaltrials.gov Identifier: NCT00027222.

  15. [Evoked potentials in the human visual cortex when observing whole figures and their elements].

    PubMed

    Slavutskaia, A V; Mikhaĭlova, E S

    2010-01-01

    Evoked potentials changes were analyzed in 32 subjects in a task of observing whole and disintegrated images. In the occipital and parietal regions, reactions to a disintegrated image appeared early (within the period of P1 development), and their characteristics were determined by the magnitude of the response to the whole image. In the occipital cortex, a low-amplitude P1 (the 1st group of subjects) increased in response to image disintegration, whereas in cases of a high P1 amplitude (the 2nd group), the tendency to its reduction was observed. In the parietal regions, the effects were distinct only in the 1st group of subjects and different in the right and left hemispheres: in the left hemisphere, the P1 amplitude increased when simpler elements appeared in the image, in the right hemisphere, a change in the spatial disposition of details was more significant. In the inferior temporal cortex, the amplitude of the later wave N1 decreased in response to disintegration, the effect being significant only in the 2nd group of subjects. The appearance of simpler elements in the image resulted in a P3 wave increase in both groups. The results point to topographic and temporal specificity of the reactions of the visual cortex to image disintegration and suggest the existence of various strategies of the visual image analysis at the early stages.

  16. Direction of Magnetoencephalography Sources Associated with Feedback and Feedforward Contributions in a Visual Object Recognition Task

    PubMed Central

    Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe

    2014-01-01

    Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356

  17. Who is afraid of the invisible snake? Subjective visual awareness modulates posterior brain activity for evolutionarily threatening stimuli.

    PubMed

    Grassini, Simone; Holm, Suvi K; Railo, Henry; Koivisto, Mika

    2016-12-01

    Snakes were probably one of the earliest predators of primates, and snake images produce specific behavioral and electrophysiological reactions in humans. Pictures of snakes evoke enhanced activity over the occipital cortex, indexed by the "early posterior negativity" (EPN), as compared with pictures of other dangerous or non-dangerous animals. The present study investigated the possibility that the response to snake images is independent from visual awareness. The observers watched images of threatening and non-threatening animals presented in random order during rapid serial visual presentation. Four different masking conditions were used to manipulate awareness of the images. Electrophysiological results showed that the EPN was larger for snake images than for the other images employed in the unmasked condition. However, the difference disappeared when awareness of the stimuli decreased. Behavioral results on the effects of awareness did not show any advantage for snake images. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Neurophysiologically Plausible Population Code Model for Feature Integration Explains Visual Crowding

    PubMed Central

    van den Berg, Ronald; Roerdink, Jos B. T. M.; Cornelissen, Frans W.

    2010-01-01

    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality. PMID:20098499

  19. Vestibular nuclei and cerebellum put visual gravitational motion in context.

    PubMed

    Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco

    2008-04-01

    Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.

  20. Rhesus Monkeys Behave As If They Perceive the Duncker Illusion

    PubMed Central

    Zivotofsky, A. Z.; Goldberg, M. E.; Powell, K. D.

    2008-01-01

    The visual system uses the pattern of motion on the retina to analyze the motion of objects in the world, and the motion of the observer him/herself. Distinguishing between retinal motion evoked by movement of the retina in space and retinal motion evoked by movement of objects in the environment is computationally difficult, and the human visual system frequently misinterprets the meaning of retinal motion. In this study, we demonstrate that the visual system of the Rhesus monkey also misinterprets retinal motion. We show that monkeys erroneously report the trajectories of pursuit targets or their own pursuit eye movements during an epoch of smooth pursuit across an orthogonally moving background. Furthermore, when they make saccades to the spatial location of stimuli that flashed early in an epoch of smooth pursuit or fixation, they make large errors that appear to take into account the erroneous smooth eye movement that they report in the first experiment, and not the eye movement that they actually make. PMID:16102233

  1. TMS over the right precuneus reduces the bilateral field advantage in visual short term memory capacity.

    PubMed

    Kraft, Antje; Dyrholm, Mads; Kehrer, Stefanie; Kaufmann, Christian; Bruening, Jovita; Kathmann, Norbert; Bundesen, Claus; Irlbacher, Kerstin; Brandt, Stephan A

    2015-01-01

    Several studies have demonstrated a bilateral field advantage (BFA) in early visual attentional processing, that is, enhanced visual processing when stimuli are spread across both visual hemifields. The results are reminiscent of a hemispheric resource model of parallel visual attentional processing, suggesting more attentional resources on an early level of visual processing for bilateral displays [e.g. Sereno AB, Kosslyn SM. Discrimination within and between hemifields: a new constraint on theories of attention. Neuropsychologia 1991;29(7):659-75.]. Several studies have shown that the BFA extends beyond early stages of visual attentional processing, demonstrating that visual short term memory (VSTM) capacity is higher when stimuli are distributed bilaterally rather than unilaterally. Here we examine whether hemisphere-specific resources are also evident on later stages of visual attentional processing. Based on the Theory of Visual Attention (TVA) [Bundesen C. A theory of visual attention. Psychol Rev 1990;97(4):523-47.] we used a whole report paradigm that allows investigating visual attention capacity variability in unilateral and bilateral displays during navigated repetitive transcranial magnetic stimulation (rTMS) of the precuneus region. A robust BFA in VSTM storage capacity was apparent after rTMS over the left precuneus and in the control condition without rTMS. In contrast, the BFA diminished with rTMS over the right precuneus. This finding indicates that the right precuneus plays a causal role in VSTM capacity, particularly in bilateral visual displays. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Contributions of visual and embodied expertise to body perception.

    PubMed

    Reed, Catherine L; Nyberg, Andrew A; Grubb, Jefferson D

    2012-01-01

    Recent research has demonstrated that our perception of the human body differs from that of inanimate objects. This study investigated whether the visual perception of the human body differs from that of other animate bodies and, if so, whether that difference could be attributed to visual experience and/or embodied experience. To dissociate differential effects of these two types of expertise, inversion effects (recognition of inverted stimuli is slower and less accurate than recognition of upright stimuli) were compared for two types of bodies in postures that varied in typicality: humans in human postures (human-typical), humans in dog postures (human-atypical), dogs in dog postures (dog-typical), and dogs in human postures (dog-atypical). Inversion disrupts global configural processing. Relative changes in the size and presence of inversion effects reflect changes in visual processing. Both visual and embodiment expertise predict larger inversion effects for human over dog postures because we see humans more and we have experience producing human postures. However, our design that crosses body type and typicality leads to distinct predictions for visual and embodied experience. Visual expertise predicts an interaction between typicality and orientation: greater inversion effects should be found for typical over atypical postures regardless of body type. Alternatively, embodiment expertise predicts a body, typicality, and orientation interaction: larger inversion effects should be found for all human postures but only for atypical dog postures because humans can map their bodily experience onto these postures. Accuracy data supported embodiment expertise with the three-way interaction. However, response-time data supported contributions of visual expertise with larger inversion effects for typical over atypical postures. Thus, both types of expertise affect the visual perception of bodies.

  3. Origins and early development of human body knowledge.

    PubMed

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.

  4. Sex-related variation in human behavior and the brain

    PubMed Central

    Hines, Melissa

    2010-01-01

    Male and female fetuses differ in testosterone concentrations beginning as early as week 8 of gestation. This early hormone difference exerts permanent influences on brain development and behavior. Contemporary research shows that hormones are particularly important for the development of sex-typical childhood behavior, including toy choices, which until recently were thought to result solely from sociocultural influences. Prenatal testosterone exposure also appears to influence sexual orientation and gender identity, as well as some, but not all, sex-related cognitive, motor and personality characteristics. Neural mechanisms responsible for these hormone-induced behavioral outcomes are beginning to be identified, and current evidence suggests involvement of the hypothalamus and amygdala, as well as interhemispheric connectivity, and cortical areas involved in visual processing. PMID:20724210

  5. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  6. The social origins of sustained attention in one-year-old human infants

    PubMed Central

    Yu, Chen; Smith, Linda B.

    2016-01-01

    Summary The ability to sustain attention is a major achievement in human development and is generally believed to be the developmental product of increasing self-regulatory and endogenous (i.e., internal, top-down, voluntary) control over one’s attention and cognitive systems [1–5]. Because sustained attention in late infancy is predictive of future development and because early deficits in sustained attention are markers for later diagnoses of attentional disorders [6], sustained attention is often viewed as a constitutional and individual property of the infant [6–9]. However, humans are social animals; developmental pathways for seemingly non-social competencies evolved within the social group and therefore may be dependent on social experience [10–13]. Here, we show that social context matters for the duration of sustained attention episodes in one-year-old infants during toy play. Using head-mounted eye-tracking to record moment-by-moment gaze data from both parents and infants, we found that when the social partner (parent) visually attended to the object to which infant attention was directed, infants, after the parent’s look, extended their duration of visual attention to the object. Looks to the same object by two social partners is a well-studied phenomenon known as joint attention which has been shown to be critical to early word learning and to the development of social skills [14, 15]. The present findings implicate joint attention in the development of the child’s own sustained attention, and thus challenge the current understanding of the origins of individual differences in sustained attention, providing a new and potentially malleable developmental pathway to the self-regulation of attention. PMID:27133869

  7. The Social Origins of Sustained Attention in One-Year-Old Human Infants.

    PubMed

    Yu, Chen; Smith, Linda B

    2016-05-09

    The ability to sustain attention is a major achievement in human development and is generally believed to be the developmental product of increasing self-regulatory and endogenous (i.e., internal, top-down, voluntary) control over one's attention and cognitive systems [1-5]. Because sustained attention in late infancy is predictive of future development, and because early deficits in sustained attention are markers for later diagnoses of attentional disorders [6], sustained attention is often viewed as a constitutional and individual property of the infant [6-9]. However, humans are social animals; developmental pathways for seemingly non-social competencies evolved within the social group and therefore may be dependent on social experience [10-13]. Here, we show that social context matters for the duration of sustained attention episodes in one-year-old infants during toy play. Using head-mounted eye tracking to record moment-by-moment gaze data from both parents and infants, we found that when the social partner (parent) visually attended to the object to which infant attention was directed, infants, after the parent's look, extended their duration of visual attention to the object. Looks to the same object by two social partners is a well-studied phenomenon known as joint attention, which has been shown to be critical to early learning and to the development of social skills [14, 15]. The present findings implicate joint attention in the development of the child's own sustained attention and thus challenge the current understanding of the origins of individual differences in sustained attention, providing a new and potentially malleable developmental pathway to the self-regulation of attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects

    PubMed Central

    Roberts, Victoria HJ; Lo, Jamie O; Salati, Jennifer A; Lewandowski, Katherine S; Lindner, Jonathan R; Morgan, Terry K; Frias, Antonio E

    2016-01-01

    Background The utero-placental vascular supply is a critical determinant of placental function and fetal growth. Current methods for the in vivo assessment of placental blood flow are limited. Objective Here we demonstrate the feasibility of utilizing contrast-enhanced ultrasound to visualize and quantify perfusion kinetics in the intervillous space of the primate placenta. Study design Pregnant Japanese macaques were studied at mid second trimester and in the early third trimester. Markers of injury were assessed in placenta samples from animals with or without contrast-enhanced ultrasound exposure (n=6/group). Human subjects were recruited immediately prior to scheduled first trimester pregnancy termination. All studies were performed with maternal intravenous infusion of lipid-shelled octofluoropropane microbubbles with image acquisition using a multipulse contrast-specific algorithm with destruction-replenishment analysis of signal intensity for assessment of perfusion. Results In macaques, rate of perfusion in the intervillous space was increased with advancing gestation. No evidence of microvascular hemorrhage or acute inflammation was found in placental villous tissue and expression levels of caspase-3, nitrotyrosine and HSP70 as markers of apoptosis, nitrative and oxidative stress respectively were unchanged by contrast-enhanced ultrasound exposure. In humans, placental perfusion was visualized at 11wks gestation and preliminary data reveal regional differences in intervillous space perfusion within an individual placenta. By electron microscopy, we demonstrate no evidence of ultrastructure damage to the microvilli on the syncytiotrophoblast following first trimester ultrasound studies. Conclusions Use of contrast-enhanced ultrasound did not result in placental structural damage, and was able to identify intervillous space perfusion rate differences within a placenta. Contrast-enhanced ultrasound may offer a safe clinical tool for the identification of pregnancies at-risk for vascular insufficiency; early recognition may facilitate intervention and improved pregnancy outcomes. PMID:26928151

  9. What colour does that feel? Tactile--visual mapping and the development of cross-modality.

    PubMed

    Ludwig, Vera U; Simner, Julia

    2013-04-01

    Humans share implicit preferences for cross-modal mappings (e.g., low pitch sounds are preferentially paired with darker colours). Individuals with synaesthesia experience cross-modal mappings to a conscious degree (e.g., they may see colours when they hear sounds). The neonatal synaesthesia hypothesis claims that all humans may be born with this explicit cross-modal perception, which dies out in most people through childhood, leaving only implicit associations in the average adult. Although there is evidence for decreasing cross-modality throughout early infancy, it is unclear whether this decline continues to take place throughout childhood and adolescence. This large-scale study had two goals. First, we aimed to establish whether human non-synaesthetes systematically map tactile and visual dimensions - a combination that has rarely been studied. Second, we asked whether tactile-visual associations may be more pronounced in younger compared to older participants. 210 participants between the ages of 5-74 years assigned colours to tactile stimuli. Smoothness, softness and roundness of stimuli positively correlated with luminance of the chosen colour; and smoothness and softness also positively correlated with chroma. Moreover, tactile sensations were associated with specific colours (e.g., softness with pink). There were no age differences for luminance effects. Chroma effects, however, were found exclusively in children and adolescents. Our findings are consistent with the neonatal synaesthesia hypothesis which suggests that all humans are born with strong cross-modal perception which is pruned away or inhibited throughout development. Moreover, the findings suggest that a decline of some forms of cross-modality may take place over a much longer time span than previously assumed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding.

    PubMed

    Hogendoorn, Hinze; Burkitt, Anthony N

    2018-05-01

    Due to the delays inherent in neuronal transmission, our awareness of sensory events necessarily lags behind the occurrence of those events in the world. If the visual system did not compensate for these delays, we would consistently mislocalize moving objects behind their actual position. Anticipatory mechanisms that might compensate for these delays have been reported in animals, and such mechanisms have also been hypothesized to underlie perceptual effects in humans such as the Flash-Lag Effect. However, to date no direct physiological evidence for anticipatory mechanisms has been found in humans. Here, we apply multivariate pattern classification to time-resolved EEG data to investigate anticipatory coding of object position in humans. By comparing the time-course of neural position representation for objects in both random and predictable apparent motion, we isolated anticipatory mechanisms that could compensate for neural delays when motion trajectories were predictable. As well as revealing an early neural position representation (lag 80-90 ms) that was unaffected by the predictability of the object's trajectory, we demonstrate a second neural position representation at 140-150 ms that was distinct from the first, and that was pre-activated ahead of the moving object when it moved on a predictable trajectory. The latency advantage for predictable motion was approximately 16 ± 2 ms. To our knowledge, this provides the first direct experimental neurophysiological evidence of anticipatory coding in human vision, revealing the time-course of predictive mechanisms without using a spatial proxy for time. The results are numerically consistent with earlier animal work, and suggest that current models of spatial predictive coding in visual cortex can be effectively extended into the temporal domain. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells.

    PubMed

    Whitmore, S Scott; Braun, Terry A; Skeie, Jessica M; Haas, Christine M; Sohn, Elliott H; Stone, Edwin M; Scheetz, Todd E; Mullins, Robert F

    2013-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = -2.61; raw p value=0.0008). GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker expression. These results are consistent with the notion that choroidal endothelial cell dropout or dedifferentiation occurs early in the pathogenesis of AMD.

  12. Mismatch Negativity with Visual-only and Audiovisual Speech

    PubMed Central

    Ponton, Curtis W.; Bernstein, Lynne E.; Auer, Edward T.

    2009-01-01

    The functional organization of cortical speech processing is thought to be hierarchical, increasing in complexity and proceeding from primary sensory areas centrifugally. The current study used the mismatch negativity (MMN) obtained with electrophysiology (EEG) to investigate the early latency period of visual speech processing under both visual-only (VO) and audiovisual (AV) conditions. Current density reconstruction (CDR) methods were used to model the cortical MMN generator locations. MMNs were obtained with VO and AV speech stimuli at early latencies (approximately 82-87 ms peak in time waveforms relative to the acoustic onset) and in regions of the right lateral temporal and parietal cortices. Latencies were consistent with bottom-up processing of the visible stimuli. We suggest that a visual pathway extracts phonetic cues from visible speech, and that previously reported effects of AV speech in classical early auditory areas, given later reported latencies, could be attributable to modulatory feedback from visual phonetic processing. PMID:19404730

  13. Perceived visual speed constrained by image segmentation

    NASA Technical Reports Server (NTRS)

    Verghese, P.; Stone, L. S.

    1996-01-01

    Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.

  14. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  15. Beyond Phonology: Visual Processes Predict Alphanumeric and Nonalphanumeric Rapid Naming in Poor Early Readers

    ERIC Educational Resources Information Center

    Kruk, Richard S.; Luther Ruban, Cassia

    2018-01-01

    Visual processes in Grade 1 were examined for their predictive influences in nonalphanumeric and alphanumeric rapid naming (RAN) in 51 poor early and 69 typical readers. In a lagged design, children were followed longitudinally from Grade 1 to Grade 3 over 5 testing occasions. RAN outcomes in early Grade 2 were predicted by speeded and nonspeeded…

  16. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  17. Functional neuroanatomy of visual masking deficits in schizophrenia.

    PubMed

    Green, Michael F; Lee, Junghee; Cohen, Mark S; Engel, Steven A; Korb, Alexander S; Nuechterlein, Keith H; Wynn, Jonathan K; Glahn, David C

    2009-12-01

    Visual masking procedures assess the earliest stages of visual processing. Patients with schizophrenia reliably show deficits on visual masking, and these procedures have been used to explore vulnerability to schizophrenia, probe underlying neural circuits, and help explain functional outcome. To identify and compare regional brain activity associated with one form of visual masking (ie, backward masking) in schizophrenic patients and healthy controls. Subjects received functional magnetic resonance imaging scans. While in the scanner, subjects performed a backward masking task and were given 3 functional localizer activation scans to identify early visual processing regions of interest (ROIs). University of California, Los Angeles, and the Department of Veterans Affairs Greater Los Angeles Healthcare System. Nineteen patients with schizophrenia and 19 healthy control subjects. Main Outcome Measure The magnitude of the functional magnetic resonance imaging signal during backward masking. Two ROIs (lateral occipital complex [LO] and the human motion selective cortex [hMT+]) showed sensitivity to the effects of masking, meaning that signal in these areas increased as the target became more visible. Patients had lower activation than controls in LO across all levels of visibility but did not differ in other visual processing ROIs. Using whole-brain analyses, we also identified areas outside the ROIs that were sensitive to masking effects (including bilateral inferior parietal lobe and thalamus), but groups did not differ in signal magnitude in these areas. The study results support a key role in LO for visual masking, consistent with previous studies in healthy controls. The current results indicate that patients fail to activate LO to the same extent as controls during visual processing regardless of stimulus visibility, suggesting a neural basis for the visual masking deficit, and possibly other visual integration deficits, in schizophrenia.

  18. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System.

    PubMed

    Roth, Zvi N

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream.

  19. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System

    PubMed Central

    Roth, Zvi N.

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream. PMID:27242455

  20. How cortical neurons help us see: visual recognition in the human brain

    PubMed Central

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161

  1. The physiology and psychophysics of the color-form relationship: a review

    PubMed Central

    Moutoussis, Konstantinos

    2015-01-01

    The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies. PMID:26578989

  2. The physiology and psychophysics of the color-form relationship: a review.

    PubMed

    Moutoussis, Konstantinos

    2015-01-01

    The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies.

  3. A pseudoisochromatic test of color vision for human infants.

    PubMed

    Mercer, Michele E; Drodge, Suzanne C; Courage, Mary L; Adams, Russell J

    2014-07-01

    Despite the development of experimental methods capable of measuring early human color vision, we still lack a procedure comparable to those used to diagnose the well-identified congenital and acquired color vision anomalies in older children, adults, and clinical patients. In this study, we modified a pseudoisochromatic test to make it more suitable for young infants. Using a forced choice preferential looking procedure, 216 3-to-23-mo-old babies were tested with pseudoisochromatic targets that fell on either a red/green or a blue/yellow dichromatic confusion axis. For comparison, 220 color-normal adults and 22 color-deficient adults were also tested. Results showed that all babies and adults passed the blue/yellow target but many of the younger infants failed the red/green target, likely due to the interaction of the lingering immaturities within the visual system and the small CIE vector distance within the red/green plate. However, older (17-23 mo) infants, color- normal adults and color-defective adults all performed according to expectation. Interestingly, performance on the red/green plate was better among female infants, well exceeding the expected rate of genetic dimorphism between genders. Overall, with some further modification, the test serves as a promising tool for the detection of early color vision anomalies in early human life. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Harmonics added to a flickering light can upset the balance between ON and OFF pathways to produce illusory colors.

    PubMed

    Rider, Andrew T; Henning, G Bruce; Eskew, Rhea T; Stockman, Andrew

    2018-04-24

    The neural signals generated by the light-sensitive photoreceptors in the human eye are substantially processed and recoded in the retina before being transmitted to the brain via the optic nerve. A key aspect of this recoding is the splitting of the signals within the two major cone-driven visual pathways into distinct ON and OFF branches that transmit information about increases and decreases in the neural signal around its mean level. While this separation is clearly important physiologically, its effect on perception is unclear. We have developed a model of the ON and OFF pathways in early color processing. Using this model as a guide, we can produce imbalances in the ON and OFF pathways by changing the shapes of time-varying stimulus waveforms and thus make reliable and predictable alterations to the perceived average color of the stimulus-although the physical mean of the waveforms does not change. The key components in the model are the early half-wave rectifying synapses that split retinal photoreceptor outputs into the ON and OFF pathways and later sigmoidal nonlinearities in each pathway. The ability to systematically vary the waveforms to change a perceptual quality by changing the balance of signals between the ON and OFF visual pathways provides a powerful psychophysical tool for disentangling and investigating the neural workings of human vision. Copyright © 2018 the Author(s). Published by PNAS.

  5. Dual processing of visual rotation for bipedal stance control.

    PubMed

    Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene

    2016-10-01

    When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  6. Early Language Development in Infants and Toddlers with Fragile X Syndrome: Change over Time and the Role of Attention

    PubMed Central

    Kover, Sara T.; McCary, Lindsay M.; Ingram, Alexandra M.; Hatton, Deborah D.; Roberts, Jane E.

    2017-01-01

    Fragile X syndrome (FXS) is associated with significant language and communication delays, as well as problems with attention. This study investigated early language abilities in infants and toddlers with FXS (n = 13) and considered visual attention as a predictor of those skills. We found that language abilities increased over the study period of 9 to 24 months with moderate correlations among language assessments. In comparison to typically developing infants (n = 11), language skills were delayed beyond chronological age- and developmental level-expectations. Aspects of early visual attention predicted later language ability. Atypical visual attention is an important aspect of the FXS phenotype with implications for early language development, particularly in the domain of vocabulary. PMID:25715182

  7. Gene Therapy for Color Blindness.

    PubMed

    Hassall, Mark M; Barnard, Alun R; MacLaren, Robert E

    2017-12-01

    Achromatopsia is a rare congenital cause of vision loss due to isolated cone photoreceptor dysfunction. The most common underlying genetic mutations are autosomal recessive changes in CNGA3 , CNGB3 , GNAT2 , PDE6H , PDE6C , or ATF6 . Animal models of Cnga3 , Cngb3 , and Gnat2 have been rescued using AAV gene therapy; showing partial restoration of cone electrophysiology and integration of this new photopic vision in reflexive and behavioral visual tests. Three gene therapy phase I/II trials are currently being conducted in human patients in the USA, the UK, and Germany. This review details the AAV gene therapy treatments of achromatopsia to date. We also present novel data showing rescue of a Cnga3 -/- mouse model using an rAAV.CBA.CNGA3 vector. We conclude by synthesizing the implications of this animal work for ongoing human trials, particularly, the challenge of restoring integrated cone retinofugal pathways in an adult visual system. The evidence to date suggests that gene therapy for achromatopsia will need to be applied early in childhood to be effective.

  8. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    PubMed Central

    Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude

    2013-01-01

    Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894

  9. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task.

    PubMed

    Chang, Yu-Cherng C; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N; Hämäläinen, Matti S; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150-350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition.

  10. Cortical Representations of Symbols, Objects, and Faces Are Pruned Back during Early Childhood

    PubMed Central

    Pinel, Philippe; Dehaene, Stanislas; Pelphrey, Kevin A.

    2011-01-01

    Regions of human ventral extrastriate visual cortex develop specializations for natural categories (e.g., faces) and cultural artifacts (e.g., words). In adults, category-based specializations manifest as greater neural responses in visual regions of the brain (e.g., fusiform gyrus) to some categories over others. However, few studies have examined how these specializations originate in the brains of children. Moreover, it is as yet unknown whether the development of visual specializations hinges on “increases” in the response to the preferred categories, “decreases” in the responses to nonpreferred categories, or “both.” This question is relevant to a long-standing debate concerning whether neural development is driven by building up or pruning back representations. To explore these questions, we measured patterns of visual activity in 4-year-old children for 4 categories (faces, letters, numbers, and shoes) using functional magnetic resonance imaging. We report 2 key findings regarding the development of visual categories in the brain: 1) the categories “faces” and “symbols” doubly dissociate in the fusiform gyrus before children can read and 2) the development of category-specific responses in young children depends on cortical responses to nonpreferred categories that decrease as preferred category knowledge is acquired. PMID:20457691

  11. The role of temporo-parietal junction (TPJ) in global Gestalt perception.

    PubMed

    Huberle, Elisabeth; Karnath, Hans-Otto

    2012-07-01

    Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.

  12. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task

    PubMed Central

    Chang, Yu-Cherng C.; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N.; Hämäläinen, Matti S.; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150–350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition. PMID:29867372

  13. Blind Babies Play Program: A Model for Affordable, Sustainable Early Childhood Literacy Intervention through Play and Socialization

    ERIC Educational Resources Information Center

    Jacko, Virginia A.; Mayros, Roxann; Brady-Simmons, Carol; Chica, Isabel; Moore, J. Elton

    2013-01-01

    The Miami Lighthouse, in its 81 years of service to persons who are visually impaired (that is, those who are blind or have low vision), has adapted to meet the ever-changing needs of clients of all ages. To meet the significant needs of visually impaired children--more than 80% of early learning is visual (Blind Babies Foundation, 2012)--the…

  14. The Impact of Visual Communication on the Intersubjective Development of Early Parent?Child Interaction with 18- to 24-Month-Old Deaf Toddlers

    ERIC Educational Resources Information Center

    Loots, Gerrit; Devise, Isabel; Jacquet, Wolfgang

    2005-01-01

    This article presents a study that examined the impact of visual communication on the quality of the early interaction between deaf and hearing mothers and fathers and their deaf children aged between 18 and 24 months. Three communication mode groups of parent?deaf child dyads that differed by the use of signing and visual?tactile communication…

  15. Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.

    PubMed

    Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A

    2004-11-09

    Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.

  16. Correlation between Macular Thickness and Visual Field in Early Open Angle Glaucoma: A Cross-Sectional Study.

    PubMed

    Fallahi Motlagh, Behzad; Sadeghi, Ali

    2017-01-01

    The aim of this study was to correlate macular thickness and visual field parameters in early glaucoma. A total of 104 eyes affected with early glaucoma were examined in a cross-sectional, prospective study. Visual field testing using both standard automated perimetry (SAP) and shortwave automated perimetry (SWAP) was performed. Global visual field parameters, including mean deviation (MD) and pattern standard deviation (PSD), were recorded and correlated with spectral domain optical coherence tomography (SD-OCT)-measured macular thickness and asymmetry. Average macular thickness correlated significantly with all measures of visual field including MD-SWAP (r = 0.42), MD-SAP (r = 0.41), PSD-SWAP (r = -0.23), and PSD-SAP (r = -0.21), with P-values <0.001 for all correlations. The mean MD scores (using both SWAP and SAP) were significantly higher in the eyes with thin than in those with intermediate average macular thickness. Intraeye (superior macula thickness - inferior macula thickness) asymmetries correlated significantly with both PSD-SWAP (r = 0.63, P < 0.001) and PSD-SAP (r = 0.26, P = 0.01) scores. This study revealed a significant correlation between macular thickness and visual field parameters in early glaucoma. The results of this study should make macular thickness measurements even more meaningful to glaucoma specialists.

  17. Audiovisual plasticity following early abnormal visual experience: Reduced McGurk effect in people with one eye.

    PubMed

    Moro, Stefania S; Steeves, Jennifer K E

    2018-04-13

    Previously, we have shown that people who have had one eye surgically removed early in life during visual development have enhanced sound localization [1] and lack visual dominance, commonly observed in binocular and monocular (eye-patched) viewing controls [2]. Despite these changes, people with one eye integrate auditory and visual components of multisensory events optimally [3]. The current study investigates how people with one eye perceive the McGurk effect, an audiovisual illusion where a new syllable is perceived when visual lip movements do not match the corresponding sound [4]. We compared individuals with one eye to binocular and monocular viewing controls and found that they have a significantly smaller McGurk effect compared to binocular controls. Additionally, monocular controls tended to perceive the McGurk effect less often than binocular controls suggesting a small transient modulation of the McGurk effect. These results suggest altered weighting of the auditory and visual modalities with both short and long-term monocular viewing. These results indicate the presence of permanent adaptive perceptual accommodations in people who have lost one eye early in life that may serve to mitigate the loss of binocularity during early brain development. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Retinotopically specific reorganization of visual cortex for tactile pattern recognition

    PubMed Central

    Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.

    2009-01-01

    Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999

  19. Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals.

    PubMed

    Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta

    2017-02-01

    Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Tactile stimulation partially prevents neurodevelopmental changes in visual tract caused by early iron deficiency.

    PubMed

    Horiquini-Barbosa, Everton; Gibb, Robbin; Kolb, Bryan; Bray, Douglas; Lachat, Joao-Jose

    2017-02-15

    Iron deficiency has a critical impact on maturational mechanisms of the brain and the damage related to neuroanatomical parameters is not satisfactorily reversed after iron replacement. However, emerging evidence suggest that enriched early experience may offer great therapeutic efficacy in cases of nutritional disorders postnatally, since the brain is remarkably responsive to its interaction with the environment. Given the fact that tactile stimulation (TS) treatment has been previously shown to be an effective therapeutic approach and with potential application to humans, here we ask whether exposure to TS treatment, from postnatal day (P) 1 to P32 for 3min/day, could also be employed to prevent neuroanatomical changes in the optic nerve of rats maintained on an iron-deficient diet during brain development. We found that iron deficiency changed astrocyte, oligodendrocyte, damaged fiber, and myelinated fiber density, however, TS reversed the iron-deficiency-induced alteration in oligodendrocyte, damaged fiber and myelinated fiber density, but failed to reverse astrocyte density. Our results suggest that early iron deficiency may act by disrupting the timing of key steps in visual system development thereby modifying the normal progression of optic nerve maturation. However, optic nerve development is sensitive to enriching experiences, and in the current study we show that this sensitivity can be used to prevent damage from postnatal iron deficiency during the critical period. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Experience, Context, and the Visual Perception of Human Movement

    ERIC Educational Resources Information Center

    Jacobs, Alissa; Pinto, Jeannine; Shiffrar, Maggie

    2004-01-01

    Why are human observers particularly sensitive to human movement? Seven experiments examined the roles of visual experience and motor processes in human movement perception by comparing visual sensitivities to point-light displays of familiar, unusual, and impossible gaits across gait-speed and identity discrimination tasks. In both tasks, visual…

  2. Visual Inspection Reliability for Precision Manufactured Parts.

    PubMed

    See, Judi E

    2015-12-01

    Sandia National Laboratories conducted an experiment for the National Nuclear Security Administration to determine the reliability of visual inspection of precision manufactured parts used in nuclear weapons. Visual inspection has been extensively researched since the early 20th century; however, the reliability of visual inspection for nuclear weapons parts has not been addressed. In addition, the efficacy of using inspector confidence ratings to guide multiple inspections in an effort to improve overall performance accuracy is unknown. Further, the workload associated with inspection has not been documented, and newer measures of stress have not been applied. Eighty-two inspectors in the U.S. Nuclear Security Enterprise inspected 140 parts for eight different defects. Inspectors correctly rejected 85% of defective items and incorrectly rejected 35% of acceptable parts. Use of a phased inspection approach based on inspector confidence ratings was not an effective or efficient technique to improve the overall accuracy of the process. Results did verify that inspection is a workload-intensive task, dominated by mental demand and effort. Hits for Nuclear Security Enterprise inspection were not vastly superior to the industry average of 80%, and they were achieved at the expense of a high scrap rate not typically observed during visual inspection tasks. This study provides the first empirical data to address the reliability of visual inspection for precision manufactured parts used in nuclear weapons. Results enhance current understanding of the process of visual inspection and can be applied to improve reliability for precision manufactured parts. © 2015, Human Factors and Ergonomics Society.

  3. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

    PubMed

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-02-25

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.

  4. Mapping visual cortex in monkeys and humans using surface-based atlases

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  5. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    NASA Technical Reports Server (NTRS)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  6. Developmental visual perception deficits with no indications of prosopagnosia in a child with abnormal eye movements.

    PubMed

    Gilaie-Dotan, Sharon; Doron, Ravid

    2017-06-01

    Visual categories are associated with eccentricity biases in high-order visual cortex: Faces and reading with foveally-biased regions, while common objects and space with mid- and peripherally-biased regions. As face perception and reading are among the most challenging human visual skills, and are often regarded as the peak achievements of a distributed neural network supporting common objects perception, it is unclear why objects, which also rely on foveal vision to be processed, are associated with mid-peripheral rather than with a foveal bias. Here, we studied BN, a 9 y.o. boy who has normal basic-level vision, abnormal (limited) oculomotor pursuit and saccades, and shows developmental object and contour integration deficits but with no indication of prosopagnosia. Although we cannot infer causation from the data presented here, we suggest that normal pursuit and saccades could be critical for the development of contour integration and object perception. While faces and perhaps reading, when fixated upon, take up a small portion of central visual field and require only small eye movements to be properly processed, common objects typically prevail in mid-peripheral visual field and rely on longer-distance voluntary eye movements as saccades to be brought to fixation. While retinal information feeds into early visual cortex in an eccentricity orderly manner, we hypothesize that propagation of non-foveal information to mid and high-order visual cortex critically relies on circuitry involving eye movements. Limited or atypical eye movements, as in the case of BN, may hinder normal information flow to mid-eccentricity biased high-order visual cortex, adversely affecting its development and consequently inducing visual perceptual deficits predominantly for categories associated with these regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of a vocabulary of object shapes in a child with a very-early-acquired visual agnosia: a unique case.

    PubMed

    Funnell, Elaine; Wilding, John

    2011-02-01

    We report a longitudinal study of an exceptional child (S.R.) whose early-acquired visual agnosia, following encephalitis at 8 weeks of age, did not prevent her from learning to construct an increasing vocabulary of visual object forms (drawn from different categories), albeit slowly. S.R. had problems perceiving subtle differences in shape; she was unable to segment local letters within global displays; and she would bring complex scenes close to her eyes: a symptom suggestive of an attempt to reduce visual crowding. Investigations revealed a robust ability to use the gestalt grouping factors of proximity and collinearity to detect fragmented forms in noisy backgrounds, compared with a very weak ability to segment fragmented forms on the basis of contrasts of shape. When contrasts in spatial grouping and shape were pitted against each other, shape made little contribution, consistent with problems in perceiving complex scenes, but when shape contrast was varied, and spatial grouping was held constant, S.R. showed the same hierarchy of difficulty as the controls, although her responses were slowed. This is the first report of a child's visual-perceptual development following very early neurological impairments to the visual cortex. Her ability to learn to perceive visual shape following damage at a rudimentary stage of perceptual development contrasts starkly with the loss of such ability in childhood cases of acquired visual agnosia that follow damage to the established perceptual system. Clearly, there is a critical period during which neurological damage to the highly active, early developing visual-perceptual system does not prevent but only impairs further learning.

  8. Multimodal Word Meaning Induction From Minimal Exposure to Natural Text.

    PubMed

    Lazaridou, Angeliki; Marelli, Marco; Baroni, Marco

    2017-04-01

    By the time they reach early adulthood, English speakers are familiar with the meaning of thousands of words. In the last decades, computational simulations known as distributional semantic models (DSMs) have demonstrated that it is possible to induce word meaning representations solely from word co-occurrence statistics extracted from a large amount of text. However, while these models learn in batch mode from large corpora, human word learning proceeds incrementally after minimal exposure to new words. In this study, we run a set of experiments investigating whether minimal distributional evidence from very short passages suffices to trigger successful word learning in subjects, testing their linguistic and visual intuitions about the concepts associated with new words. After confirming that subjects are indeed very efficient distributional learners even from small amounts of evidence, we test a DSM on the same multimodal task, finding that it behaves in a remarkable human-like way. We conclude that DSMs provide a convincing computational account of word learning even at the early stages in which a word is first encountered, and the way they build meaning representations can offer new insights into human language acquisition. Copyright © 2017 Cognitive Science Society, Inc.

  9. Social vision: sustained perceptual enhancement of affective facial cues in social anxiety

    PubMed Central

    McTeague, Lisa M.; Shumen, Joshua R.; Wieser, Matthias J.; Lang, Peter J.; Keil, Andreas

    2010-01-01

    Heightened perception of facial cues is at the core of many theories of social behavior and its disorders. In the present study, we continuously measured electrocortical dynamics in human visual cortex, as evoked by happy, neutral, fearful, and angry faces. Thirty-seven participants endorsing high versus low generalized social anxiety (upper and lower tertiles of 2,104 screened undergraduates) viewed naturalistic faces flickering at 17.5 Hz to evoke steady-state visual evoked potentials (ssVEPs), recorded from 129 scalp electrodes. Electrophysiological data were evaluated in the time-frequency domain after linear source space projection using the minimum norm method. Source estimation indicated an early visual cortical origin of the face-evoked ssVEP, which showed sustained amplitude enhancement for emotional expressions specifically in individuals with pervasive social anxiety. Participants in the low symptom group showed no such sensitivity, and a correlational analysis across the entire sample revealed a strong relationship between self-reported interpersonal anxiety/avoidance and enhanced visual cortical response amplitude for emotional, versus neutral expressions. This pattern was maintained across the 3500 ms viewing epoch, suggesting that temporally sustained, heightened perceptual bias towards affective facial cues is associated with generalized social anxiety. PMID:20832490

  10. Carbon nanotube-based labels for highly sensitive colorimetric and aggregation-based visual detection of nucleic acids

    NASA Astrophysics Data System (ADS)

    Lee, Ai Cheng; Ye, Jian-Shan; Ngin Tan, Swee; Poenar, Daniel P.; Sheu, Fwu-Shan; Kiat Heng, Chew; Meng Lim, Tit

    2007-11-01

    A novel carbon nanotube (CNT) derived label capable of dramatic signal amplification of nucleic acid detection and direct visual detection of target hybridization has been developed. Highly sensitive colorimetric detection of human acute lymphocytic leukemia (ALL) related oncogene sequences amplified by the novel CNT-based label was demonstrated. Atomic force microscope (AFM) images confirmed that a monolayer of horseradish peroxidase and detection probe molecules was immobilized along the carboxylated CNT carrier. The resulting CNT labels significantly enhanced the nucleic acid assay sensitivity by at least 1000 times compared to that of conventional labels used in enzyme-linked oligosorbent assay (ELOSA). An excellent detection limit of 1 × 10-12 M (60 × 10-18 mol in 60 µl) and a four-order wide dynamic range of target concentration were achieved. Hybridizations using these labels were coupled to a concentration-dependent formation of visible dark aggregates. Targets can thus be detected simply with visual inspection, eliminating the need for expensive and sophisticated detection systems. The approach holds promise for ultrasensitive and low cost visual inspection and colorimetric nucleic acid detection in point-of-care and early disease diagnostic application.

  11. Adequacy of the Regular Early Education Classroom Environment for Students with Visual Impairment

    ERIC Educational Resources Information Center

    Brown, Cherylee M.; Packer, Tanya L.; Passmore, Anne

    2013-01-01

    This study describes the classroom environment that students with visual impairment typically experience in regular Australian early education. Adequacy of the classroom environment (teacher training and experience, teacher support, parent involvement, adult involvement, inclusive attitude, individualization of the curriculum, physical…

  12. Prosodic Phonological Representations Early in Visual Word Recognition

    ERIC Educational Resources Information Center

    Ashby, Jane; Martin, Andrea E.

    2008-01-01

    Two experiments examined the nature of the phonological representations used during visual word recognition. We tested whether a minimality constraint (R. Frost, 1998) limits the complexity of early representations to a simple string of phonemes. Alternatively, readers might activate elaborated representations that include prosodic syllable…

  13. Anorexia nervosa and body dysmorphic disorder are associated with abnormalities in processing visual information.

    PubMed

    Li, W; Lai, T M; Bohon, C; Loo, S K; McCurdy, D; Strober, M; Bookheimer, S; Feusner, J

    2015-07-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities--event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI)--to test for abnormal activity associated with early visual signaling. We acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems. AN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces. Results provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.

  14. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  15. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas

    PubMed Central

    Michalareas, Georgios; Vezoli, Julien; van Pelt, Stan; Schoffelen, Jan-Mathijs; Kennedy, Henry; Fries, Pascal

    2016-01-01

    Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. PMID:26777277

  16. GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance.

    PubMed

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Cools, Roshan; Jensen, Ole

    2014-12-15

    Impressive in vitro research in rodents and computational modeling has uncovered the core mechanisms responsible for generating neuronal oscillations. In particular, GABAergic interneurons play a crucial role for synchronizing neural populations. Do these mechanistic principles apply to human oscillations associated with function? To address this, we recorded ongoing brain activity using magnetoencephalography (MEG) in healthy human subjects participating in a double-blind pharmacological study receiving placebo, 0.5 mg and 1.5 mg of lorazepam (LZP; a benzodiazepine upregulating GABAergic conductance). Participants performed a demanding visuospatial working memory (WM) task. We found that occipital gamma power associated with WM recognition increased with LZP dosage. Importantly, the frequency of the gamma activity decreased with dosage, as predicted by models derived from the rat hippocampus. A regionally specific gamma increase correlated with the drug-related performance decrease. Despite the system-wide pharmacological intervention, gamma power drug modulations were specific to visual cortex: sensorimotor gamma power and frequency during button presses remained unaffected. In contrast, occipital alpha power modulations during the delay interval decreased parametrically with drug dosage, predicting performance impairment. Consistent with alpha oscillations reflecting functional inhibition, LZP affected alpha power strongly in early visual regions not required for the task demonstrating a regional specific occipital impairment. GABAergic interneurons are strongly implicated in the generation of gamma and alpha oscillations in human occipital cortex where drug-induced power modulations predicted WM performance. Our findings bring us an important step closer to linking neuronal dynamics to behavior by embracing established animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Method to Quantify Visual Information Processing in Children Using Eye Tracking

    PubMed Central

    Kooiker, Marlou J.G.; Pel, Johan J.M.; van der Steen-Kant, Sanny P.; van der Steen, Johannes

    2016-01-01

    Visual problems that occur early in life can have major impact on a child's development. Without verbal communication and only based on observational methods, it is difficult to make a quantitative assessment of a child's visual problems. This limits accurate diagnostics in children under the age of 4 years and in children with intellectual disabilities. Here we describe a quantitative method that overcomes these problems. The method uses a remote eye tracker and a four choice preferential looking paradigm to measure eye movement responses to different visual stimuli. The child sits without head support in front of a monitor with integrated infrared cameras. In one of four monitor quadrants a visual stimulus is presented. Each stimulus has a specific visual modality with respect to the background, e.g., form, motion, contrast or color. From the reflexive eye movement responses to these specific visual modalities, output parameters such as reaction times, fixation accuracy and fixation duration are calculated to quantify a child's viewing behavior. With this approach, the quality of visual information processing can be assessed without the use of communication. By comparing results with reference values obtained in typically developing children from 0-12 years, the method provides a characterization of visual information processing in visually impaired children. The quantitative information provided by this method can be advantageous for the field of clinical visual assessment and rehabilitation in multiple ways. The parameter values provide a good basis to: (i) characterize early visual capacities and consequently to enable early interventions; (ii) compare risk groups and follow visual development over time; and (iii), construct an individual visual profile for each child. PMID:27500922

  18. A Method to Quantify Visual Information Processing in Children Using Eye Tracking.

    PubMed

    Kooiker, Marlou J G; Pel, Johan J M; van der Steen-Kant, Sanny P; van der Steen, Johannes

    2016-07-09

    Visual problems that occur early in life can have major impact on a child's development. Without verbal communication and only based on observational methods, it is difficult to make a quantitative assessment of a child's visual problems. This limits accurate diagnostics in children under the age of 4 years and in children with intellectual disabilities. Here we describe a quantitative method that overcomes these problems. The method uses a remote eye tracker and a four choice preferential looking paradigm to measure eye movement responses to different visual stimuli. The child sits without head support in front of a monitor with integrated infrared cameras. In one of four monitor quadrants a visual stimulus is presented. Each stimulus has a specific visual modality with respect to the background, e.g., form, motion, contrast or color. From the reflexive eye movement responses to these specific visual modalities, output parameters such as reaction times, fixation accuracy and fixation duration are calculated to quantify a child's viewing behavior. With this approach, the quality of visual information processing can be assessed without the use of communication. By comparing results with reference values obtained in typically developing children from 0-12 years, the method provides a characterization of visual information processing in visually impaired children. The quantitative information provided by this method can be advantageous for the field of clinical visual assessment and rehabilitation in multiple ways. The parameter values provide a good basis to: (i) characterize early visual capacities and consequently to enable early interventions; (ii) compare risk groups and follow visual development over time; and (iii), construct an individual visual profile for each child.

  19. A Cortical Network for the Encoding of Object Change

    PubMed Central

    Hindy, Nicholas C.; Solomon, Sarah H.; Altmann, Gerry T.M.; Thompson-Schill, Sharon L.

    2015-01-01

    Understanding events often requires recognizing unique stimuli as alternative, mutually exclusive states of the same persisting object. Using fMRI, we examined the neural mechanisms underlying the representation of object states and object-state changes. We found that subjective ratings of visual dissimilarity between a depicted object and an unseen alternative state of that object predicted the corresponding multivoxel pattern dissimilarity in early visual cortex during an imagery task, while late visual cortex patterns tracked dissimilarity among distinct objects. Early visual cortex pattern dissimilarity for object states in turn predicted the level of activation in an area of left posterior ventrolateral prefrontal cortex (pVLPFC) most responsive to conflict in a separate Stroop color-word interference task, and an area of left ventral posterior parietal cortex (vPPC) implicated in the relational binding of semantic features. We suggest that when visualizing object states, representational content instantiated across early and late visual cortex is modulated by processes in left pVLPFC and left vPPC that support selection and binding, and ultimately event comprehension. PMID:24127425

  20. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  1. [Quality of life in visual impaired children treated for Early Visual Stimulation].

    PubMed

    Messa, Alcione Aparecida; Nakanami, Célia Regina; Lopes, Marcia Caires Bestilleiro

    2012-01-01

    To evaluate the quality of life in visually impaired children followed in the Early Visual Stimulation Ambulatory of Unifesp in two moments, before and after rehabilitational intervention of multiprofessional team. A CVFQ quality of life questionnaire was used. This instrument has a version for less than three years old children and another one for children older than three years (three to seven years) divided in six subscales: General health, General vision health, Competence, Personality, Family impact and Treatment. The correlation between the subscales on two moments was significant. There was a statistically significant difference in general vision health (p=0,029) and other important differences obtained in general health, family impact and quality of life general score. The questionnaire showed to be effective in order to measure the quality of life related to vision on families followed on this ambulatory. The multidisciplinary interventions provided visual function and familiar quality of life improvement. The quality of life related to vision in children followed in Early Visual Stimulation Ambulatory of Unifesp showed a significant improvement on general vision health.

  2. Affective facilitation of early visual cortex during rapid picture presentation at 6 and 15 Hz

    PubMed Central

    Bekhtereva, Valeria

    2015-01-01

    The steady-state visual evoked potential (SSVEP), a neurophysiological marker of attentional resource allocation with its generators in early visual cortex, exhibits enhanced amplitude for emotional compared to neutral complex pictures. Emotional cue extraction for complex images is linked to the N1-EPN complex with a peak latency of ∼140–160 ms. We tested whether neural facilitation in early visual cortex with affective pictures requires emotional cue extraction of individual images, even when a stream of images of the same valence category is presented. Images were shown at either 6 Hz (167 ms, allowing for extraction) or 15 Hz (67 ms per image, causing disruption of processing by the following image). Results showed SSVEP amplitude enhancement for emotional compared to neutral images at a presentation rate of 6 Hz but no differences at 15 Hz. This was not due to featural differences between the two valence categories. Results strongly suggest that individual images need to be displayed for sufficient time allowing for emotional cue extraction to drive affective neural modulation in early visual cortex. PMID:25971598

  3. Potential pre-cataractous markers induced by low-dose radiation effects in cultured human lens cells

    NASA Astrophysics Data System (ADS)

    Blakely, E.; McNamara, M.; Bjornstad, K.; Chang, P.

    The human lens is one of the most radiosensitive organs of the body. Cataract, the opacification of the lens, is a late-appearing response to radiation damage. Recent evidence indicates that exposure to relatively low doses of space radiation are associated with an increased incidence and early appearance of human cataracts (Cucinotta et al., Radiat. Res. 156:460-466, 2001). Basic research in this area is needed to integrate the early responses of various late-responding tissues into our understanding and estimation of radiation risk for space travel. In addition, these studies may contribute to the development of countermeasures for the early lenticular changes, in order to prevent the late sequelae. Radiation damage to the lens is not life threatening but, if severe, can affect vision unless surgically corrected with synthetic lens replacement. The lens, however, may be a sensitive detector of radiation effects for other cells of ectodermal origin in the body for which there are not currently clear endpoints of low-dose radiation effects. We have investigated the dose-dependent expression of several radiation-responsive endpoints using our in vitro model of differentiating human lens epithelial cells (Blakely et al., Investigative Ophthalmology &Visual Sciences, 41(12):3898-3907, 2000). We have investigated radiation effects on several gene families that include, or relate to, DNA damage, cytokines, cell-cycle regulators, cell adhesion molecules, cell cytoskeletal function and apoptotic cell death. In this paper we will summarize some of our dose-dependent data from several radiation types, and describe the model of molecular and cellular events that we believe may be associated with precataractous events in the human lens after radiation exposure. This work was supported by NASA Grant #T-965W.

  4. Differential patterns of 2D location versus depth decoding along the visual hierarchy.

    PubMed

    Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D

    2017-02-15

    Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The Role of Visual and Semantic Properties in the Emergence of Category-Specific Patterns of Neural Response in the Human Brain.

    PubMed

    Coggan, David D; Baker, Daniel H; Andrews, Timothy J

    2016-01-01

    Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they have many of the visual properties found in intact images, but do not convey any semantic information. Images from different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A multivariate pattern analysis revealed categorical patterns of response to intact images emerged ∼80-100 ms after stimulus onset and were still evident when the stimulus was no longer present (∼800 ms). Next, we measured the patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged ∼80-100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to scrambled images were mostly evident while the stimulus was present (∼400 ms). Moreover, scrambled images were able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to which different stages of processing are dependent on lower-level or higher-level properties of the image.

  6. Microstructural correlates of infant functional development: example of the visual pathways.

    PubMed

    Dubois, Jessica; Dehaene-Lambertz, Ghislaine; Soarès, Catherine; Cointepas, Yann; Le Bihan, Denis; Hertz-Pannier, Lucie

    2008-02-20

    The development of cognitive functions during childhood relies on several neuroanatomical maturation processes. Among these processes is myelination of the white matter pathways, which speeds up electrical conduction. Quantitative indices of such structural processes can be obtained in vivo with diffusion tensor imaging (DTI), but their physiological significance remains uncertain. Here, we investigated the microstructural correlates of early functional development by combining DTI and visual event-related potentials (VEPs) in 15 one- to 4-month-old healthy infants. Interindividual variations of the apparent conduction speed, computed from the latency of the first positive VEP wave (P1), were significantly correlated with the infants' age and DTI indices measured in the optic radiations. This demonstrates that fractional anisotropy and transverse diffusivity are structural markers of functionally efficient myelination. Moreover, these indices computed along the optic radiations showed an early wave of maturation in the anterior region, with the posterior region catching up later in development, which suggests two asynchronous fronts of myelination in both the geniculocortical and corticogeniculate fibers. Thus, in addition to microstructural information, DTI provides noninvasive exquisite information on the functional development of the brain in human infants.

  7. Snake pictures draw more early attention than spider pictures in non-phobic women: evidence from event-related brain potentials.

    PubMed

    Van Strien, J W; Eijlers, R; Franken, I H A; Huijding, J

    2014-02-01

    Snakes were probably the first predators of mammals and may have been important agents of evolutionary changes in the primate visual system allowing rapid visual detection of fearful stimuli (Isbell, 2006). By means of early and late attention-related brain potentials, we examined the hypothesis that more early visual attention is automatically allocated to snakes than to spiders. To measure the early posterior negativity (EPN), 24 healthy, non-phobic women watched the random rapid serial presentation of 600 snake pictures, 600 spider pictures, and 600 bird pictures (three pictures per second). To measure the late positive potential (LPP), they also watched similar pictures (30 pictures per stimulus category) in a non-speeded presentation. The EPN amplitude was largest for snake pictures, intermediate for spider pictures and smallest for bird pictures. The LPP was significantly larger for both snake and spider pictures when compared to bird pictures. Interestingly, spider fear (as measured by a questionnaire) was associated with EPN amplitude for spider pictures, whereas snake fear was not associated with EPN amplitude for snake pictures. The results suggest that ancestral priorities modulate the early capture of visual attention and that early attention to snakes is more innate and independent of reported fear. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    PubMed

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Dissociation of neural mechanisms underlying orientation processing in humans

    PubMed Central

    Ling, Sam; Pearson, Joel; Blake, Randolph

    2009-01-01

    Summary Orientation selectivity is a fundamental, emergent property of neurons in early visual cortex, and discovery of that property [1, 2] dramatically shaped how we conceptualize visual processing [3–6]. However, much remains unknown about the neural substrates of these basic building blocks of perception, and what is known primarily stems from animal physiology studies. To probe the neural concomitants of orientation processing in humans, we employed repetitive transcranial magnetic stimulation (rTMS) to attenuate neural responses evoked by stimuli presented within a local region of the visual field. Previous physiological studies have shown that rTMS can significantly suppress the neuronal spiking activity, hemodynamic responses, and local field potentials within a focused cortical region [7, 8]. By suppressing neural activity with rTMS, we were able to dissociate components of the neural circuitry underlying two distinct aspects of orientation processing: selectivity and contextual effects. Orientation selectivity gauged by masking was unchanged by rTMS, whereas an otherwise robust orientation repulsion illusion was weakened following rTMS. This dissociation implies that orientation processing relies on distinct mechanisms, only one of which was impacted by rTMS. These results are consistent with models positing that orientation selectivity is largely governed by the patterns of convergence of thalamic afferents onto cortical neurons, with intracortical activity then shaping population responses contained within those orientation-selective cortical neurons. PMID:19682905

  10. Theories of Visual Rhetoric: Looking at the Human Genome.

    ERIC Educational Resources Information Center

    Rosner, Mary

    2001-01-01

    Considers how visuals are constructions that are products of a writer's interpretation with its own "power-laden agenda." Reviews the current approach taken by composition scholars, surveys richer interdisciplinary work on visuals, and (by using visuals connected with the Human Genome Project) models an analysis of visuals as rhetoric.…

  11. A methodology for coupling a visual enhancement device to human visual attention

    NASA Astrophysics Data System (ADS)

    Todorovic, Aleksandar; Black, John A., Jr.; Panchanathan, Sethuraman

    2009-02-01

    The Human Variation Model views disability as simply "an extension of the natural physical, social, and cultural variability of mankind." Given this human variation, it can be difficult to distinguish between a prosthetic device such as a pair of glasses (which extends limited visual abilities into the "normal" range) and a visual enhancement device such as a pair of binoculars (which extends visual abilities beyond the "normal" range). Indeed, there is no inherent reason why the design of visual prosthetic devices should be limited to just providing "normal" vision. One obvious enhancement to human vision would be the ability to visually "zoom" in on objects that are of particular interest to the viewer. Indeed, it could be argued that humans already have a limited zoom capability, which is provided by their highresolution foveal vision. However, humans still find additional zooming useful, as evidenced by their purchases of binoculars equipped with mechanized zoom features. The fact that these zoom features are manually controlled raises two questions: (1) Could a visual enhancement device be developed to monitor attention and control visual zoom automatically? (2) If such a device were developed, would its use be experienced by users as a simple extension of their natural vision? This paper details the results of work with two research platforms called the Remote Visual Explorer (ReVEx) and the Interactive Visual Explorer (InVEx) that were developed specifically to answer these two questions.

  12. Syphilitic posterior placoid chorioretinitis as initial presentation of early neurosyphilis.

    PubMed

    Molina-Sócola, F E; López-Herrero, F; Medina-Tapia, A; Rueda-Rueda, T; Contreras-Díaz, M; Sánchez-Vicente, J L

    2017-10-01

    A 36 year-old male with a recent HIV diagnosis, presented with loss of vision of his left eye. Ophthalmoscopy revealed a unilateral yellowish placoid lesion in the macula. After fluorescein angiography, optical coherence tomography, optical coherence tomography angiography, syphilis serology, and cerebrospinal fluid results, he was diagnosed with neurosyphilis and syphilitic posterior placoid chorioretinitis. Acute syphilitic posterior placoid chorioretinitis is a rare ocular manifestation of syphilis. All patients with characteristic clinical and angiographic findings of acute syphilitic posterior placoid chorioretinitis should be tested for a neurosyphilis and human immunodeficiency virus co-infection. Early treatment with intravenous penicillin is usually effective with good visual results. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. An early underwater artificial vision model in ocean investigations via independent component analysis.

    PubMed

    Nian, Rui; Liu, Fang; He, Bo

    2013-07-16

    Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs).

  14. An Early Underwater Artificial Vision Model in Ocean Investigations via Independent Component Analysis

    PubMed Central

    Nian, Rui; Liu, Fang; He, Bo

    2013-01-01

    Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs). PMID:23863855

  15. Before the N400: effects of lexical-semantic violations in visual cortex.

    PubMed

    Dikker, Suzanne; Pylkkanen, Liina

    2011-07-01

    There exists an increasing body of research demonstrating that language processing is aided by context-based predictions. Recent findings suggest that the brain generates estimates about the likely physical appearance of upcoming words based on syntactic predictions: words that do not physically look like the expected syntactic category show increased amplitudes in the visual M100 component, the first salient MEG response to visual stimulation. This research asks whether violations of predictions based on lexical-semantic information might similarly generate early visual effects. In a picture-noun matching task, we found early visual effects for words that did not accurately describe the preceding pictures. These results demonstrate that, just like syntactic predictions, lexical-semantic predictions can affect early visual processing around ∼100ms, suggesting that the M100 response is not exclusively tuned to recognizing visual features relevant to syntactic category analysis. Rather, the brain might generate predictions about upcoming visual input whenever it can. However, visual effects of lexical-semantic violations only occurred when a single lexical item could be predicted. We argue that this may be due to the fact that in natural language processing, there is typically no straightforward mapping between lexical-semantic fields (e.g., flowers) and visual or auditory forms (e.g., tulip, rose, magnolia). For syntactic categories, in contrast, certain form features do reliably correlate with category membership. This difference may, in part, explain why certain syntactic effects typically occur much earlier than lexical-semantic effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Normal aging delays and compromises early multifocal visual attention during object tracking.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2013-02-01

    Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.

  17. Real-time tracking using stereo and motion: Visual perception for space robotics

    NASA Technical Reports Server (NTRS)

    Nishihara, H. Keith; Thomas, Hans; Huber, Eric; Reid, C. Ann

    1994-01-01

    The state-of-the-art in computing technology is rapidly attaining the performance necessary to implement many early vision algorithms at real-time rates. This new capability is helping to accelerate progress in vision research by improving our ability to evaluate the performance of algorithms in dynamic environments. In particular, we are becoming much more aware of the relative stability of various visual measurements in the presence of camera motion and system noise. This new processing speed is also allowing us to raise our sights toward accomplishing much higher-level processing tasks, such as figure-ground separation and active object tracking, in real-time. This paper describes a methodology for using early visual measurements to accomplish higher-level tasks; it then presents an overview of the high-speed accelerators developed at Teleos to support early visual measurements. The final section describes the successful deployment of a real-time vision system to provide visual perception for the Extravehicular Activity Helper/Retriever robotic system in tests aboard NASA's KC135 reduced gravity aircraft.

  18. Preliminary investigation of visual attention to human figures in photographs: potential considerations for the design of aided AAC visual scene displays.

    PubMed

    Wilkinson, Krista M; Light, Janice

    2011-12-01

    Many individuals with complex communication needs may benefit from visual aided augmentative and alternative communication systems. In visual scene displays (VSDs), language concepts are embedded into a photograph of a naturalistic event. Humans play a central role in communication development and might be important elements in VSDs. However, many VSDs omit human figures. In this study, the authors sought to describe the distribution of visual attention to humans in naturalistic scenes as compared with other elements. Nineteen college students observed 8 photographs in which a human figure appeared near 1 or more items that might be expected to compete for visual attention (such as a Christmas tree or a table loaded with food). Eye-tracking technology allowed precise recording of participants' gaze. The fixation duration over a 7-s viewing period and latency to view elements in the photograph were measured. Participants fixated on the human figures more rapidly and for longer than expected based on the size of these figures, regardless of the other elements in the scene. Human figures attract attention in a photograph even when presented alongside other attractive distracters. Results suggest that humans may be a powerful means to attract visual attention to key elements in VSDs.

  19. Information visualization: Beyond traditional engineering

    NASA Technical Reports Server (NTRS)

    Thomas, James J.

    1995-01-01

    This presentation addresses a different aspect of the human-computer interface; specifically the human-information interface. This interface will be dominated by an emerging technology called Information Visualization (IV). IV goes beyond the traditional views of computer graphics, CADS, and enables new approaches for engineering. IV specifically must visualize text, documents, sound, images, and video in such a way that the human can rapidly interact with and understand the content structure of information entities. IV is the interactive visual interface between humans and their information resources.

  20. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    PubMed

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  1. Interocular induction of illusory size perception.

    PubMed

    Song, Chen; Schwarzkopf, D Samuel; Rees, Geraint

    2011-03-11

    The perceived size of objects not only depends on their physical size but also on the surroundings in which they appear. For example, an object surrounded by small items looks larger than a physically identical object surrounded by big items (Ebbinghaus illusion), and a physically identical but distant object looks larger than an object that appears closer in space (Ponzo illusion). Activity in human primary visual cortex (V1) reflects the perceived rather than the physical size of objects, indicating an involvement of V1 in illusory size perception. Here we investigate the role of eye-specific signals in two common size illusions in order to provide further information about the mechanisms underlying illusory size perception. We devised stimuli so that an object and its spatial context associated with illusory size perception could be presented together to one eye or separately to two eyes. We found that the Ponzo illusion had an equivalent magnitude whether the objects and contexts were presented to the same or different eyes, indicating that it may be largely mediated by binocular neurons. In contrast, the Ebbinghaus illusion became much weaker when objects and their contexts were presented to different eyes, indicating important contributions to the illusion from monocular neurons early in the visual pathway. Our findings show that two well-known size illusions - the Ponzo illusion and the Ebbinghaus illusion - are mediated by different neuronal populations, and suggest that the underlying neural mechanisms associated with illusory size perception differ and can be dependent on monocular channels in the early visual pathway.

  2. Visual attention to meaningful stimuli by 1- to 3-year olds: implications for the measurement of memory.

    PubMed

    Hayne, Harlene; Jaeger, Katja; Sonne, Trine; Gross, Julien

    2016-11-01

    The visual recognition memory (VRM) paradigm has been widely used to measure memory during infancy and early childhood; it has also been used to study memory in human and nonhuman adults. Typically, participants are familiarized with stimuli that have no special significance to them. Under these conditions, greater attention to the novel stimulus during the test (i.e., novelty preference) is used as the primary index of memory. Here, we took a novel approach to the VRM paradigm and tested 1-, 2-, and 3-year olds using photos of meaningful stimuli that were drawn from the participants' own environment (e.g., photos of their mother, father, siblings, house). We also compared their performance to that of participants of the same age who were tested in an explicit pointing version of the VRM task. Two- and 3-year olds exhibited a strong familiarity preference for some, but not all, of the meaningful stimuli; 1-year olds did not. At no age did participants exhibit the kind of novelty preference that is commonly used to define memory in the VRM task. Furthermore, when compared to pointing, looking measures provided a rough approximation of recognition memory, but in some instances, the looking measure underestimated retention. The use of meaningful stimuli raise important questions about the way in which visual attention is interpreted in the VRM paradigm, and may provide new opportunities to measure memory during infancy and early childhood. © 2016 Wiley Periodicals, Inc.

  3. A computer-generated animated face stimulus set for psychophysiological research

    PubMed Central

    Naples, Adam; Nguyen-Phuc, Alyssa; Coffman, Marika; Kresse, Anna; Faja, Susan; Bernier, Raphael; McPartland., James

    2014-01-01

    Human faces are fundamentally dynamic, but experimental investigations of face perception traditionally rely on static images of faces. While naturalistic videos of actors have been used with success in some contexts, much research in neuroscience and psychophysics demands carefully controlled stimuli. In this paper, we describe a novel set of computer generated, dynamic, face stimuli. These grayscale faces are tightly controlled for low- and high-level visual properties. All faces are standardized in terms of size, luminance, and location and size of facial features. Each face begins with a neutral pose and transitions to an expression over the course of 30 frames. Altogether there are 222 stimuli spanning 3 different categories of movement: (1) an affective movement (fearful face); (2) a neutral movement (close-lipped, puffed cheeks with open eyes); and (3) a biologically impossible movement (upward dislocation of eyes and mouth). To determine whether early brain responses sensitive to low-level visual features differed between expressions, we measured the occipital P100 event related potential (ERP), which is known to reflect differences in early stages of visual processing and the N170, which reflects structural encoding of faces. We found no differences between faces at the P100, indicating that different face categories were well matched on low-level image properties. This database provides researchers with a well-controlled set of dynamic faces controlled on low-level image characteristics that are applicable to a range of research questions in social perception. PMID:25028164

  4. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss

    PubMed Central

    Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde

    2015-01-01

    The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788

  5. Goal-Directed Visual Processing Differentially Impacts Human Ventral and Dorsal Visual Representations

    PubMed Central

    2017-01-01

    Recent studies have challenged the ventral/“what” and dorsal/“where” two-visual-processing-pathway view by showing the existence of “what” and “where” information in both pathways. Is the two-pathway distinction still valid? Here, we examined how goal-directed visual information processing may differentially impact visual representations in these two pathways. Using fMRI and multivariate pattern analysis, in three experiments on human participants (57% females), by manipulating whether color or shape was task-relevant and how they were conjoined, we examined shape-based object category decoding in occipitotemporal and parietal regions. We found that object category representations in all the regions examined were influenced by whether or not object shape was task-relevant. This task effect, however, tended to decrease as task-relevant and irrelevant features were more integrated, reflecting the well-known object-based feature encoding. Interestingly, task relevance played a relatively minor role in driving the representational structures of early visual and ventral object regions. They were driven predominantly by variations in object shapes. In contrast, the effect of task was much greater in dorsal than ventral regions, with object category and task relevance both contributing significantly to the representational structures of the dorsal regions. These results showed that, whereas visual representations in the ventral pathway are more invariant and reflect “what an object is,” those in the dorsal pathway are more adaptive and reflect “what we do with it.” Thus, despite the existence of “what” and “where” information in both visual processing pathways, the two pathways may still differ fundamentally in their roles in visual information representation. SIGNIFICANCE STATEMENT Visual information is thought to be processed in two distinctive pathways: the ventral pathway that processes “what” an object is and the dorsal pathway that processes “where” it is located. This view has been challenged by recent studies revealing the existence of “what” and “where” information in both pathways. Here, we found that goal-directed visual information processing differentially modulates shape-based object category representations in the two pathways. Whereas ventral representations are more invariant to the demand of the task, reflecting what an object is, dorsal representations are more adaptive, reflecting what we do with the object. Thus, despite the existence of “what” and “where” information in both pathways, visual representations may still differ fundamentally in the two pathways. PMID:28821655

  6. Global motion perception is associated with motor function in 2-year-old children.

    PubMed

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Visual Function Metrics in Early and Intermediate Dry Age-related Macular Degeneration for Use as Clinical Trial Endpoints.

    PubMed

    Cocce, Kimberly J; Stinnett, Sandra S; Luhmann, Ulrich F O; Vajzovic, Lejla; Horne, Anupama; Schuman, Stefanie G; Toth, Cynthia A; Cousins, Scott W; Lad, Eleonora M

    2018-05-01

    To evaluate and quantify visual function metrics to be used as endpoints of age-related macular degeneration (AMD) stages and visual acuity (VA) loss in patients with early and intermediate AMD. Cross-sectional analysis of baseline data from a prospective study. One hundred and one patients were enrolled at Duke Eye Center: 80 patients with early AMD (Age-Related Eye Disease Study [AREDS] stage 2 [n = 33] and intermediate stage 3 [n = 47]) and 21 age-matched, normal controls. A dilated retinal examination, macular pigment optical density measurements, and several functional assessments (best-corrected visual acuity, macular integrity assessment mesopic microperimety, dark adaptometry, low-luminance visual acuity [LLVA] [standard using a log 2.0 neutral density filter and computerized method], and cone contrast test [CCT]) were performed. Low-luminance deficit (LLD) was defined as the difference in numbers of letters read at standard vs low luminance. Group comparisons were performed to evaluate differences between the control and the early and intermediate AMD groups using 2-sided significance tests. Functional measures that significantly distinguished between normal and intermediate AMD were standard and computerized (0.5 cd/m 2 ) LLVA, percent reduced threshold and average threshold on microperimetry, CCTs, and rod intercept on dark adaptation (P < .05). The intermediate group demonstrated deficits in microperimetry reduced threshhold, computerized LLD2, and dark adaptation (P < .05) relative to early AMD. Our study suggests that LLVA, microperimetry, CCT, and dark adaptation may serve as functional measures differentiating early-to-intermediate stages of dry AMD. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Profile of cognitive deficits and associations with depressive symptoms and intelligence in chronic early-onset schizophrenia patients.

    PubMed

    Jepsen, Jens Richardt Møllegaard; Fagerlund, Birgitte; Pagsberg, Anne Katrine; Christensen, Anne Marie Raaberg; Nordentoft, Merete; Mortensen, Erik Lykke

    2013-10-01

    Cognitive deficits in several domains have been demonstrated in early-onset schizophrenia patients but their profile and relation to depressive symptoms and intelligence need further characterization. The purpose was to characterize the profile of cognitive deficits in chronic, early-onset schizophrenia patients, assess the potential associations with depressive symptom severity, and examine whether cognitive deficits within several domains reflect intelligence impairments. This study compared attention, visual-construction, aspects of visual and verbal memory, and executive functions in chronic, early-onset schizophrenia patients (mean age = 20.7 years) (N = 18) and healthy controls (N = 38). Schizophrenia diagnoses were established at the time of the patients' first clinical presentation during childhood or adolescence and were confirmed five years later. In the chronic phase of early-onset schizophrenia, significant deficits were observed in all specific cognitive functions. The profile of cognitive deficits was jagged, and visual-construction, attention, and one aspect of verbal memory (verbal stories recall) were differentially impaired. Deficits of visual recall, visual recognition, and executive functions were accounted for by deficits in intelligence, while this was not the case for deficits of verbal recall of stories or attention. No significant associations were observed between the severity of cognitive deficits and that of depressive symptoms. Chronic, early-onset schizophrenia is characterized by a broad and jagged profile of cognitive deficits. Deficits of attention and verbal recall of stories appear not to be accounted for by deficits in intelligence, and the severity of cognitive deficits seems independent from that of depressive symptoms. © 2013 The Scandinavian Psychological Associations.

  9. Preparation for the Implantation of an Intracortical Visual Prosthesis in a Human

    DTIC Science & Technology

    2014-10-01

    Intracortical Visual Prosthesis in a Human PRINCIPAL INVESTIGATOR: Philip R Troyk, PhD... Prosthesis in a Human 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0394 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Philip R Troyk...visual prosthesis (ICVP) for testing in a human. No human trial testing of the prosthesis will occur under the funded work. Preparatory tasks include

  10. Gaze-stabilizing deficits and latent nystagmus in monkeys with brief, early-onset visual deprivation: eye movement recordings.

    PubMed

    Tusa, R J; Mustari, M J; Burrows, A F; Fuchs, A F

    2001-08-01

    The normal development and the capacity to calibrate gaze-stabilizing systems may depend on normal vision during infancy. At the end of 1 yr of dark rearing, cats have gaze-stabilizing deficits similar to that of the newborn human infant including decreased monocular optokinetic nystagmus (OKN) in the nasal to temporal (N-T) direction and decreased velocity storage in the vestibuloocular reflex (VOR). The purpose of this study is to determine to what extent restricted vision during the first 2 mo of life in monkeys affects the development of gaze-stabilizing systems. The eyelids of both eyes were sutured closed in three rhesus monkeys (Macaca mulatta) at birth. Eyelids were opened at 25 days in one monkey and 40 and 55 days in the other two animals. Eye movements were recorded from each eye using scleral search coils. The VOR, OKN, and fixation were examined at 6 and 12 mo of age. We also examined ocular alignment, refraction, and visual acuity in these animals. At 1 yr of age, visual acuity ranged from 0.3 to 0.6 LogMAR (20/40-20/80). All animals showed a defect in monocular OKN in the N-T direction. The velocity-storage component of OKN (i.e., OKAN) was the most impaired. All animals had a mild reduction in VOR gain but had a normal time constant. The animals deprived for 40 and 55 days had a persistent strabismus. All animals showed a nystagmus similar to latent nystagmus (LN) in human subjects. The amount of LN and OKN defect correlated positively with the duration of deprivation. In addition, the animal deprived for 55 days demonstrated a pattern of nystagmus similar to congenital nystagmus in human subjects. We found that restricted visual input during the first 2 mo of life impairs certain gaze-stabilizing systems and causes LN in primates.

  11. Human Computation in Visualization: Using Purpose Driven Games for Robust Evaluation of Visualization Algorithms.

    PubMed

    Ahmed, N; Zheng, Ziyi; Mueller, K

    2012-12-01

    Due to the inherent characteristics of the visualization process, most of the problems in this field have strong ties with human cognition and perception. This makes the human brain and sensory system the only truly appropriate evaluation platform for evaluating and fine-tuning a new visualization method or paradigm. However, getting humans to volunteer for these purposes has always been a significant obstacle, and thus this phase of the development process has traditionally formed a bottleneck, slowing down progress in visualization research. We propose to take advantage of the newly emerging field of Human Computation (HC) to overcome these challenges. HC promotes the idea that rather than considering humans as users of the computational system, they can be made part of a hybrid computational loop consisting of traditional computation resources and the human brain and sensory system. This approach is particularly successful in cases where part of the computational problem is considered intractable using known computer algorithms but is trivial to common sense human knowledge. In this paper, we focus on HC from the perspective of solving visualization problems and also outline a framework by which humans can be easily seduced to volunteer their HC resources. We introduce a purpose-driven game titled "Disguise" which serves as a prototypical example for how the evaluation of visualization algorithms can be mapped into a fun and addicting activity, allowing this task to be accomplished in an extensive yet cost effective way. Finally, we sketch out a framework that transcends from the pure evaluation of existing visualization methods to the design of a new one.

  12. Primary Pterygium in a 7-Year-Old Boy: A Report of a Rare Case and Dilemma of its Management

    PubMed Central

    Noor, Raja Azmi Mohd

    2003-01-01

    Primary pterygium in children is uncommon but is associated with severe visual problems. Astigmatism is the main visual problem caused by pterygium. Significant amounts of astigmatism occur long before a pterygium encroaches the visual axis. Early surgical intervention is safe and effective. It is associated with significant visual improvement in outcome. This is a case report on seven-year-old Malay boy who presented with a growth over nasal aspect of the right eye of 1 year duration. His right eye visual acuity is affected up to 6/12. The dilemma pased to early surgical interview is the high rate of recurrancean the young age group. This problem is highlighted in this case report. PMID:23386804

  13. Primary pterygium in a 7-year-old boy: a report of a rare case and dilemma of its management.

    PubMed

    Noor, Raja Azmi Mohd

    2003-07-01

    Primary pterygium in children is uncommon but is associated with severe visual problems. Astigmatism is the main visual problem caused by pterygium. Significant amounts of astigmatism occur long before a pterygium encroaches the visual axis. Early surgical intervention is safe and effective. It is associated with significant visual improvement in outcome. This is a case report on seven-year-old Malay boy who presented with a growth over nasal aspect of the right eye of 1 year duration. His right eye visual acuity is affected up to 6/12. The dilemma pased to early surgical interview is the high rate of recurrancean the young age group. This problem is highlighted in this case report.

  14. Color matrix display simulation based upon luminance and chromatic contrast sensitivity of early vision

    NASA Technical Reports Server (NTRS)

    Martin, Russel A.; Ahumada, Albert J., Jr.; Larimer, James O.

    1992-01-01

    This paper describes the design and operation of a new simulation model for color matrix display development. It models the physical structure, the signal processing, and the visual perception of static displays, to allow optimization of display design parameters through image quality measures. The model is simple, implemented in the Mathematica computer language, and highly modular. Signal processing modules operate on the original image. The hardware modules describe backlights and filters, the pixel shape, and the tiling of the pixels over the display. Small regions of the displayed image can be visualized on a CRT. Visual perception modules assume static foveal images. The image is converted into cone catches and then into luminance, red-green, and blue-yellow images. A Haar transform pyramid separates the three images into spatial frequency and direction-specific channels. The channels are scaled by weights taken from human contrast sensitivity measurements of chromatic and luminance mechanisms at similar frequencies and orientations. Each channel provides a detectability measure. These measures allow the comparison of images displayed on prospective devices and, by that, the optimization of display designs.

  15. The selective disruption of spatial working memory by eye movements

    PubMed Central

    Postle, Bradley R.; Idzikowski, Christopher; Sala, Sergio Della; Logie, Robert H.; Baddeley, Alan D.

    2005-01-01

    In the late 1970s/early 1980s, Baddeley and colleagues conducted a series of experiments investigating the role of eye movements in visual working memory. Although only described briefly in a book (Baddeley, 1986), these studies have influenced a remarkable number of empirical and theoretical developments in fields ranging from experimental psychology to human neuropsychology to nonhuman primate electrophysiology. This paper presents, in full detail, three critical studies from this series, together with a recently performed study that includes a level of eye movement measurement and control that was not available for the older studies. Together, the results demonstrate several facts about the sensitivity of visuospatial working memory to eye movements. First, it is eye movement control, not movement per se, that produces the disruptive effects. Second, these effects are limited to working memory for locations, and do not generalize to visual working memory for shapes. Third, they can be isolated to the storage/maintenance components of working memory (e.g., to the delay period of the delayed-recognition task). These facts have important implications for models of visual working memory. PMID:16556561

  16. The ego-moving metaphor of time relies on visual experience: No representation of time along the sagittal space in the blind.

    PubMed

    Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B; Cattaneo, Zaira

    2018-03-01

    In many cultures, humans conceptualize the past as behind the body and the future as in front. Whether this spatial mapping of time depends on visual experience is still not known. Here, we addressed this issue by testing early-blind participants in a space-time motor congruity task requiring them to classify a series of words as referring to the past or the future by moving their hand backward or forward. Sighted participants showed a preferential mapping between forward movements and future-words and backward movements and past-words. Critically, blind participants did not show any such preferential time-space mapping. Furthermore, in a questionnaire requiring participants to think about past and future events, blind participants did not appear to perceive the future as psychologically closer than the past, as it is the case of sighted individuals. These findings suggest that normal visual development is crucial for representing time along the sagittal space. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism.

    PubMed

    Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent

    2010-06-01

    Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales.

  18. Multifocal visual evoked potentials for early glaucoma detection.

    PubMed

    Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W

    2012-07-01

    To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.

  19. Does silent reading speed in normal adult readers depend on early visual processes? evidence from event-related brain potentials.

    PubMed

    Korinth, Sebastian Peter; Sommer, Werner; Breznitz, Zvia

    2012-01-01

    Little is known about the relationship of reading speed and early visual processes in normal readers. Here we examined the association of the early P1, N170 and late N1 component in visual event-related potentials (ERPs) with silent reading speed and a number of additional cognitive skills in a sample of 52 adult German readers utilizing a Lexical Decision Task (LDT) and a Face Decision Task (FDT). Amplitudes of the N170 component in the LDT but, interestingly, also in the FDT correlated with behavioral tests measuring silent reading speed. We suggest that reading speed performance can be at least partially accounted for by the extraction of essential structural information from visual stimuli, consisting of a domain-general and a domain-specific expertise-based portion. © 2011 Elsevier Inc. All rights reserved.

  20. Preparation for the Implantation of an Intracortical Visual Prosthesis in a Human

    DTIC Science & Technology

    2013-10-01

    Intracortical Visual Prosthesis in a Human PRINCIPAL INVESTIGATOR: Philip R Troyk, PhD... Prosthesis in a Human 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0394 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Philip R Troyk, PhD...to prepare an intracortical visual prosthesis (ICVP) for testing in a human. No human trial testing of the prosthesis will occur under the funded

Top