Sample records for early immune activation

  1. Socioeconomic disadvantage, gestational immune activity, and neurodevelopment in early childhood

    PubMed Central

    Hornig, Mady; Ghassabian, Akhgar; Hahn, Jill; Cherkerzian, Sara; Albert, Paul S.; Buka, Stephen L.; Goldstein, Jill M.

    2017-01-01

    Children raised in economically disadvantaged households face increased risks of poor health in adulthood, suggesting that inequalities in health have early origins. From the child’s perspective, exposure to economic hardship may begin as early as conception, potentially via maternal neuroendocrine–immune responses to prenatal stressors, which adversely impact neurodevelopment. Here we investigate whether socioeconomic disadvantage is associated with gestational immune activity and whether such activity is associated with abnormalities among offspring during infancy. We analyzed concentrations of five immune markers (IL-1β, IL-6, IL-8, IL-10, and TNF-α) in maternal serum from 1,494 participants in the New England Family Study in relation to the level of maternal socioeconomic disadvantage and their involvement in offspring neurologic abnormalities at 4 mo and 1 y of age. Median concentrations of IL-8 were lower in the most disadvantaged pregnancies [−1.53 log(pg/mL); 95% CI: −1.81, −1.25]. Offspring of these pregnancies had significantly higher risk of neurologic abnormalities at 4 mo [odds ratio (OR) = 4.61; CI = 2.84, 7.48] and 1 y (OR = 2.05; CI = 1.08, 3.90). This higher risk was accounted for in part by fetal exposure to lower maternal IL-8, which also predicted higher risks of neurologic abnormalities at 4 mo (OR = 7.67; CI = 4.05, 14.49) and 1 y (OR = 2.92; CI = 1.46, 5.87). Findings support the role of maternal immune activity in fetal neurodevelopment, exacerbated in part by socioeconomic disadvantage. This finding reveals a potential pathophysiologic pathway involved in the intergenerational transmission of socioeconomic inequalities in health. PMID:28607066

  2. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    PubMed

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success

  3. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    PubMed

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-03-04

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.

  4. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations

    PubMed Central

    2014-01-01

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen. PMID:24589193

  5. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function

    PubMed Central

    Hoeijmakers, Lianne; Lucassen, Paul J.; Korosi, Aniko

    2015-01-01

    Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity. PMID:25620909

  6. Early childhood poverty, immune-mediated disease processes, and adult productivity.

    PubMed

    Ziol-Guest, Kathleen M; Duncan, Greg J; Kalil, Ariel; Boyce, W Thomas

    2012-10-16

    This study seeks to understand whether poverty very early in life is associated with early-onset adult conditions related to immune-mediated chronic diseases. It also tests the role that these immune-mediated chronic diseases may play in accounting for the associations between early poverty and adult productivity. Data (n = 1,070) come from the US Panel Study of Income Dynamics and include economic conditions in utero and throughout childhood and adolescence coupled with adult (age 30-41 y) self-reports of health and economic productivity. Results show that low income, particularly in very early childhood (between the prenatal and second year of life), is associated with increases in early-adult hypertension, arthritis, and limitations on activities of daily living. Moreover, these relationships and particularly arthritis partially account for the associations between early childhood poverty and adult productivity as measured by adult work hours and earnings. The results suggest that the associations between early childhood poverty and these adult disease states may be immune-mediated.

  7. Immune activation and paediatric HIV-1 disease outcome.

    PubMed

    Roider, Julia M; Muenchhoff, Maximilian; Goulder, Philip J R

    2016-03-01

    The paediatric HIV epidemic is changing. Over the past decade, new infections have substantially reduced, whereas access to antiretroviral therapy (ART) has increased. Overall this success means that numbers of children living with HIV are climbing. In addition, the problems observed in adult infection resulting from chronic inflammation triggered by persistent immune activation even following ART mediated suppression of viral replication are magnified in children infected from birth. Features of immune ontogeny favour low immune activation in early life, whereas specific aspects of paediatric HIV infection tend to increase it. A subset of ART-naïve nonprogressing children exists in whom normal CD4 cell counts are maintained in the setting of persistent high viremia and yet in the context of low immune activation. This sooty mangabey-like phenotype contrasts with nonprogressing adult infection which is characterized by the expression of protective HLA class I molecules and low viral load. The particular factors contributing to raised or lowered immune activation in paediatric infection, which ultimately influence disease outcome, are discussed. Novel strategies to circumvent the unwanted long-term consequences of HIV infection may be possible in children in whom natural immune ontogeny in early life militates against immune activation. Defining the mechanisms underlying low immune activation in natural HIV infection would have applications beyond paediatric HIV.

  8. The early cellular signatures of protective immunity induced by live viral vaccination.

    PubMed

    Kohler, Siegfried; Bethke, Nicole; Böthe, Matthias; Sommerick, Sophie; Frentsch, Marco; Romagnani, Chiara; Niedrig, Matthias; Thiel, Andreas

    2012-09-01

    Here, we have used primary vaccination of healthy donors with attenuated live yellow fever virus 17D (YFV-17D) as a model to study the generation of protective immunity. In short intervals after vaccination, we analyzed the induction of YFV-17D specific T- and B-cell immunity, bystander activation, dendritic cell subsets, changes in serum cytokine levels, and YFV-17D-specific antibodies. We show activation of innate immunity and a concomitant decline of numbers of peripheral blood T and B cells. An early peak of antigen-specific T cells at day 2, followed by mobilization of innate immune cells, preceded the development of maximal adaptive immunity against YFV-17D at day 14 after vaccination. Interestingly, potent adaptive immunity as measured by high titers of neutralizing YFV-17D-specific antibodies, correlated with early activation and recruitment of YFV-17D-specific CD4(+) T cells and higher levels of sIL-6R. Thus our data might provide new insights into the interplay of innate and adaptive immunity for the induction of protective immunity. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Initiation of ART during Early Acute HIV Infection Preserves Mucosal Th17 Function and Reverses HIV-Related Immune Activation

    PubMed Central

    Schuetz, Alexandra; Deleage, Claire; Sereti, Irini; Rerknimitr, Rungsun; Phanuphak, Nittaya; Phuang-Ngern, Yuwadee; Estes, Jacob D.; Sandler, Netanya G.; Sukhumvittaya, Suchada; Marovich, Mary; Jongrakthaitae, Surat; Akapirat, Siriwat; Fletscher, James L. K.; Kroon, Eugene; Dewar, Robin; Trichavaroj, Rapee; Chomchey, Nitiya; Douek, Daniel C.; O′Connell, Robert J.; Ngauy, Viseth; Robb, Merlin L.; Phanuphak, Praphan; Michael, Nelson L.; Excler, Jean-Louis; Kim, Jerome H.; de Souza, Mark S.; Ananworanich, Jintanat

    2014-01-01

    Mucosal Th17 cells play an important role in maintaining gut epithelium integrity and thus prevent microbial translocation. Chronic HIV infection is characterized by mucosal Th17 cell depletion, microbial translocation and subsequent immune-activation, which remain elevated despite antiretroviral therapy (ART) correlating with increased mortality. However, when Th17 depletion occurs following HIV infection is unknown. We analyzed mucosal Th17 cells in 42 acute HIV infection (AHI) subjects (Fiebig (F) stage I-V) with a median duration of infection of 16 days and the short-term impact of early initiation of ART. Th17 cells were defined as IL-17+ CD4+ T cells and their function was assessed by the co-expression of IL-22, IL-2 and IFNγ. While intact during FI/II, depletion of mucosal Th17 cell numbers and function was observed during FIII correlating with local and systemic markers of immune-activation. ART initiated at FI/II prevented loss of Th17 cell numbers and function, while initiation at FIII restored Th17 cell numbers but not their polyfunctionality. Furthermore, early initiation of ART in FI/II fully reversed the initially observed mucosal and systemic immune-activation. In contrast, patients treated later during AHI maintained elevated mucosal and systemic CD8+ T-cell activation post initiation of ART. These data support a loss of Th17 cells at early stages of acute HIV infection, and highlight that studies of ART initiation during early AHI should be further explored to assess the underlying mechanism of mucosal Th17 function preservation. PMID:25503054

  10. Innate Immunity to Respiratory Infection in Early Life

    PubMed Central

    Lambert, Laura; Culley, Fiona J.

    2017-01-01

    Early life is a period of particular susceptibility to respiratory infections and symptoms are frequently more severe in infants than in adults. The neonatal immune system is generally held to be deficient in most compartments; responses to innate stimuli are weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lymphocyte responses are limited, leading to poor immune memory and ineffective vaccine responses. For mucosal surfaces such as the lung, which is continuously exposed to airborne antigen and to potential pathogenic invasion, the ability to discriminate between harmless and potentially dangerous antigens is essential, to prevent inflammation that could lead to loss of gaseous exchange and damage to the developing lung tissue. We have only recently begun to define the differences in respiratory immunity in early life and its environmental and developmental influences. The innate immune system may be of relatively greater importance than the adaptive immune system in the neonatal and infant period than later in life, as it does not require specific antigenic experience. A better understanding of what constitutes protective innate immunity in the respiratory tract in this age group and the factors that influence its development should allow us to predict why certain infants are vulnerable to severe respiratory infections, design treatments to accelerate the development of protective immunity, and design age specific adjuvants to better boost immunity to infection in the lung. PMID:29184555

  11. The cellular immunity and oxidative stress markers in early pregnancy loss.

    PubMed

    Daglar, Korkut; Biberoglu, Ebru; Kirbas, Ayse; Dirican, Aylin Onder; Genc, Metin; Avci, Aslihan; Biberoglu, Kutay

    2016-01-01

    We investigated whether changes in cellular immunity and oxidative stress in pregnancy have any association with spontaneous miscarriage. Circulating adenosine deaminase (ADA) activity as a marker of cellular immunity and malondialdehyde (MDA) and catalase (CAT), glutathione peroxidase (GPx) as markers of T lymphocyte activation and parameters of oxidative stress and antioxidant defense were compared between 40 women with early pregnancy loss and another 40 women with ungoing healthy pregnancy. Women with miscarriage had higher serum ADA and GPx levels when compared with women with normal pregnancy (p = 0.034 and p < 0.001, respectively). Although serum MDA level was slightly higher in women with miscarriage, the difference was not significant (p = 0.083). CAT levels were alike in both groups. We have demonstrated an increased cellular immunity and perhaps a compensated oxidative stress related to increased antioxidant activation in women with early spontaneous pregnancy loss.

  12. Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring.

    PubMed

    Meehan, Crystal; Harms, Lauren; Frost, Jade D; Barreto, Rafael; Todd, Juanita; Schall, Ulrich; Shannon Weickert, Cynthia; Zavitsanou, Katerina; Michie, Patricia T; Hodgson, Deborah M

    2017-07-01

    Maternal exposure to infectious agents during gestation has been identified as a significant risk factor for schizophrenia. Using a mouse model, past work has demonstrated that the gestational timing of the immune-activating event can impact the behavioural phenotype and expression of dopaminergic and glutamatergic neurotransmission markers in the offspring. In order to determine the inter-species generality of this effect to rats, another commonly used model species, the current study investigated the impact of a viral mimetic Poly (I:C) at either an early (gestational day 10) or late (gestational day 19) time-point on schizophrenia-related behaviour and neurotransmitter receptor expression in rat offspring. Exposure to Poly (I:C) in late, but not early, gestation resulted in transient impairments in working memory. In addition, male rats exposed to maternal immune activation (MIA) in either early or late gestation exhibited sensorimotor gating deficits. Conversely, neither early nor late MIA exposure altered locomotor responses to MK-801 or amphetamine. In addition, increased dopamine 1 receptor mRNA levels were found in the nucleus accumbens of male rats exposed to early gestational MIA. The findings from this study diverge somewhat from previous findings in mice with MIA exposure, which were often found to exhibit a more comprehensive spectrum of schizophrenia-like phenotypes in both males and females, indicating potential differences in the neurodevelopmental vulnerability to MIA exposure in the rat with regards to schizophrenia related changes. Copyright © 2016. Published by Elsevier Inc.

  13. Impact of antiretroviral therapy (ART) timing on chronic immune activation/inflammation and end-organ damage.

    PubMed

    Rajasuriar, Reena; Wright, Edwina; Lewin, Sharon R

    2015-01-01

    The purpose of this review was to summarize recent studies on the effect of early antiretroviral therapy (ART) in HIV-infected patients on markers of immune activation/inflammation, viral persistence and serious non-AIDS events. Early ART, initiated within days to months of HIV infection, was associated with marked reduction in T-cell activation often reaching levels observed in HIV-uninfected individuals. However, the impact of early ART on markers of innate immune activation, microbial translocation and inflammation/coagulation was less clear. Early ART has also been associated with a significant reduction in the frequency of latently infected cells, which was greater if ART was initiated within days to weeks rather than months following infection. However, few studies have evaluated the relationship between immune activation and viral reservoirs, specifically following early ART. Early ART may potentially reduce serious non-AIDS events and associated mortality, but most of these studies have extrapolated from changes in surrogate markers, such as CD4 : CD8 ratio. Early ART was associated with beneficial effects on multiple markers of immune activation, inflammation and viral persistence. Longer term prospective studies are still needed to determine whether early ART translates to a significant reduction in serious non-AIDS events and mortality.

  14. Immune system development during early childhood in tropical Latin America: evidence for the age-dependent down regulation of the innate immune response.

    PubMed

    Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J

    2011-03-01

    The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. [Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].

    PubMed

    Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B

    2014-01-01

    Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,

  16. Lower Pre-Treatment T Cell Activation in Early- and Late-Onset Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Goovaerts, Odin; Jennes, Wim; Massinga-Loembé, Marguerite; Ondoa, Pascale; Ceulemans, Ann; Vereecken, Chris; Worodria, William; Mayanja-Kizza, Harriet; Colebunders, Robert; Kestens, Luc

    2015-01-01

    Background Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is an inflammatory complication in HIV-TB co-infected patients receiving antiretroviral therapy (ART). The role of disturbed T cell reconstitution in TB-IRIS is not well understood. We investigated T cell activation and maturation profiles in patients who developed TB-IRIS at different intervals during ART. Methods Twenty-two HIV-TB patients who developed early-onset TB-IRIS and 10 who developed late-onset TB-IRIS were matched for age, sex and CD4 count to equal numbers of HIV-TB patients who did not develop TB-IRIS. Flow cytometry analysis was performed on fresh blood, drawn before and after ART initiation and during TB-IRIS events. T cell activation and maturation was measured on CD4+ and CD8+ T cells using CD45RO, CD38, HLA-DR, CCR7 and CD27 antibodies. Results CD8+ T cell activation before ART was decreased in both early-onset (77% vs. 82%, p = 0.014) and late-onset (71% vs. 83%, p = 0.012) TB-IRIS patients compared to non-IRIS controls. After ART initiation, the observed differences in T cell activation disappeared. During late-onset, but not early-onset TB-IRIS, we observed a skewing from memory to terminal effector CD4+ and CD8+ T cell populations (p≤0.028). Conclusion Our data provide evidence of reduced CD8+ T cell activation before ART as a common predisposing factor of early- and late-onset TB-IRIS. The occurrence of TB-IRIS itself was not marked by an over-activated CD8+ T cell compartment. Late- but not early-onset TB-IRIS was characterized by a more terminally differentiated T cell phenotype. PMID:26208109

  17. Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis.

    PubMed

    Hayashi, Yumiko; Okutani, Mie; Ogawa, Shohei; Tsukahara, Takamitsu; Inoue, Ryo

    2018-05-01

    T cell-mediated cellular immunity and humoral immunity are equally important for the prevention of diseases. To assess activation of human and mouse cellular immunity, early activation markers of lymphocytes are often used in flow cytometry targeting expression of CD69 molecules. Response of humoral immunity against infection or vaccination has been well investigated in pigs, but that of cellular immunity has been largely neglected due to lack of direct evaluation tools. Thus, in pig research a proper assay of antibody reacted with porcine CD69 is still unavailable. In the present study, two anti-porcine CD69 mAb-producing mouse hybridomas, 01-14-22-51 (IgG2b-κ) and 01-22-44-102 (IgG2a-κ), both showing fine reactivity with phorbol 12-myristate 13-acetate (PMA) and ionomycin-stimulated porcine peripheral blood lymphocytes in flow cytometry, were established. When porcine peripheral blood lymphocytes were activated with PMA and ionomycin and analyzed by flow cytometry, it was found that both mAbs generated in this study stained about 70% of lymphocytes. In contrast, after an identical procedure, only 5% and 13.5% of lymphocytes were stained with anti-interferon-γ mAb and anti-tumor necrosis factor-α mAb, respectively. These results indicate that evaluation of cellular immunity activation turns more sensitive after using our newly generated mAbs. © 2018 Japanese Society of Animal Science.

  18. Innate immune activation in neurodegenerative disease.

    PubMed

    Heneka, Michael T; Kummer, Markus P; Latz, Eicke

    2014-07-01

    The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.

  19. Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses.

    PubMed

    Wolferstätter, Michael; Schweneker, Marc; Späth, Michaela; Lukassen, Susanne; Klingenberg, Marieken; Brinkmann, Kay; Wielert, Ursula; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2014-12-01

    Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral

  20. Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

    PubMed Central

    Nash, Michael J.; Frank, Daniel N.; Friedman, Jacob E.

    2017-01-01

    The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the “Restaurant” hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate’s gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research. PMID:29326657

  1. HIV-associated chronic immune activation

    PubMed Central

    Paiardini, Mirko; Müller-Trutwin, Michaela

    2013-01-01

    Summary Systemic chronic immune activation is considered today as the driving force of CD4+ T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by antiretroviral therapy, with the extent of this residual immune activation being associated with CD4+ T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4+ T-cell loss has not been formally established. This article provides first a brief historical overview on how the perception of the causative role of immune activation has changed over the years and lists the different kinds of immune activation that have been observed to be characteristic for human immunodeficiency virus (HIV) infection. The mechanisms proposed to explain the chronic immune activation are multiple and are enumerated here, as well as the mechanisms proposed on how chronic immune activation could lead to AIDS. In addition, we summarize the lessons learned from natural hosts that know how to ‘show AIDS the door’, and discuss how these studies informed the design of novel immune modulatory interventions that are currently being tested. Finally, we review the current approaches aimed at targeting chronic immune activation and evoke future perspectives. PMID:23772616

  2. Early life socioeconomic position and immune response to persistent infections among elderly Latinos.

    PubMed

    Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E

    2016-10-01

    Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age. Copyright © 2016 Elsevier Ltd. All rights

  3. Early Peritoneal Immune Response during Echinococcus granulosus Establishment Displays a Biphasic Behavior

    PubMed Central

    Mourglia-Ettlin, Gustavo; Marqués, Juan Martín; Chabalgoity, José Alejandro; Dematteis, Sylvia

    2011-01-01

    Background Cystic echinococcosis is a worldwide distributed helminth zoonosis caused by the larval stage of Echinococcus granulosus. Human secondary cystic echinococcosis is caused by dissemination of protoscoleces after accidental rupture of fertile cysts and is due to protoscoleces ability to develop into new metacestodes. In the experimental model of secondary cystic echinococcosis mice react against protoscoleces producing inefficient immune responses, allowing parasites to develop into cysts. Although the chronic phase of infection has been analyzed in depth, early immune responses at the site of infection establishment, e.g., peritoneal cavity, have not been well studied. Because during early stages of infection parasites are thought to be more susceptible to immune attack, this work focused on the study of cellular and molecular events triggered early in the peritoneal cavity of infected mice. Principal Findings Data obtained showed disparate behaviors among subpopulations within the peritoneal lymphoid compartment. Regarding B cells, there is an active molecular process of plasma cell differentiation accompanied by significant local production of specific IgM and IgG2b antibodies. In addition, peritoneal NK cells showed a rapid increase with a significant percentage of activated cells. Peritoneal T cells showed a substantial increase, with predominance in CD4+ T lymphocytes. There was also a local increase in Treg cells. Finally, cytokine response showed local biphasic kinetics: an early predominant induction of Th1-type cytokines (IFN-γ, IL-2 and IL-15), followed by a shift toward a Th2-type profile (IL-4, IL-5, IL-6, IL-10 and IL-13). Conclusions Results reported here open new ways to investigate the involvement of immune effectors players in E. granulosus establishment, and also in the sequential promotion of Th1- toward Th2-type responses in experimental secondary cystic echinococcosis. These data would be relevant for designing rational therapies

  4. Posttransplant Immune Activation

    PubMed Central

    Bamoulid, Jamal; Crepin, Thomas; Rebibou, Jean-Michel; Courivaud, Cecile; Saas, Philippe

    2017-01-01

    Cardiovascular disease is a major cause of morbidity, disability, and mortality in kidney transplant patients. Cumulative reports indicate that the excessive risk of cardiovascular events is not entirely explained by the increased prevalence of traditional cardiovascular risk factors. Atherosclerosis is a chronic inflammatory disease, and it has been postulated that posttransplant immune disturbances may explain the gap between the predicted and observed risks of cardiovascular events. Although concordant data suggest that innate immunity contributes to the posttransplant accelerated atherosclerosis, only few arguments plead for a role of adaptive immunity. We report and discuss here consistent data demonstrating that CD8+ T cell activation is a frequent posttransplant immune feature that may have pro-atherogenic effects. Expansion of exhausted/activated CD8+ T cells in kidney transplant recipients is stimulated by several factors including cytomegalovirus infections, lymphodepletive therapy (e.g., antithymocyte globulins), chronic allogeneic stimulation, and a past history of renal insufficiency. This is observed in the setting of decreased thymic activity, a process also found in elderly individuals and reflecting accelerated immune senescence. PMID:29113470

  5. U.S. Immunization program adult immunization activities and resources.

    PubMed

    Woods, LaDora O; Bridges, Carolyn B; Graitcer, Samuel B; Lamont, Brock

    2016-04-02

    Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve vaccination of

  6. U.S. Immunization program adult immunization activities and resources

    PubMed Central

    Woods, LaDora O.; Bridges, Carolyn B.; Graitcer, Samuel B.; Lamont, Brock

    2016-01-01

    ABSTRACT Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve

  7. Incomplete Early Childhood Immunization Series and Missing Fourth DTaP Immunizations; Missed Opportunities or Missed Visits?

    PubMed

    Robison, Steve G

    2013-01-01

    The successful completion of early childhood immunizations is a proxy for overall quality of early care. Immunization statuses are usually assessed by up-to-date (UTD) rates covering combined series of different immunizations. However, series UTD rates often only bear on which single immunization is missing, rather than the success of all immunizations. In the US, most series UTD rates are limited by missing fourth DTaP-containing immunizations (diphtheria/tetanus/pertussis) due at 15 to 18 months of age. Missing 4th DTaP immunizations are associated either with a lack of visits at 15 to 18 months of age, or to visits without immunizations. Typical immunization data however cannot distinguish between these two reasons. This study compared immunization records from the Oregon ALERT IIS with medical encounter records for two-year olds in the Oregon Health Plan. Among those with 3 valid DTaPs by 9 months of age, 31.6% failed to receive a timely 4th DTaP; of those without a 4th DTaP, 42.1% did not have any provider visits from 15 through 18 months of age, while 57.9% had at least one provider visit. Those with a 4th DTaP averaged 2.45 encounters, while those with encounters but without 4th DTaPs averaged 2.23 encounters.

  8. Measuring polio immunity to plan immunization activities.

    PubMed

    Voorman, Arend; Lyons, Hil M

    2016-11-21

    The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Toll immune signal activates cellular immune response via eicosanoids.

    PubMed

    Shafeeq, Tahir; Ahmed, Shabbir; Kim, Yonggyun

    2018-07-01

    Upon immune challenge, insects recognize nonself. The recognition signal will propagate to nearby immune effectors. It is well-known that Toll signal pathway induces antimicrobial peptide (AMP) gene expression. Eicosanoids play crucial roles in mediating the recognition signal to immune effectors by enhancing humoral immune response through activation of AMP synthesis as well as cellular immune responses, suggesting a functional cross-talk between Toll and eicosanoid signals. This study tested a cross-talk between these two signals. Two signal transducing factors (MyD88 and Pelle) of Toll immune pathway were identified in Spodoptera exigua. RNA interference (RNAi) of either SeMyD88 or SePelle expression interfered with the expression of AMP genes under Toll signal pathway. Bacterial challenge induced PLA 2 enzyme activity. However, RNAi of these two immune factors significantly suppressed the induction of PLA 2 enzyme activity. Furthermore, RNAi treatment prevented gene expression of cellular PLA 2 . Inhibition of PLA 2 activity reduced phenoloxidase activity and subsequent suppression in cellular immune response measured by hemocyte nodule formation. However, immunosuppression induced by RNAi of Toll signal molecules was significantly reversed by addition of arachidonic acid (AA), a catalytic product of PLA 2 . The addition also significantly reduced the enhanced fungal susceptibility of S. exigua treated by RNAi against two Toll signal molecules. These results indicate that there is a cross-talk between Toll and eicosanoid signals in insect immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Early Immune Function and Duration of Organ Dysfunction in Critically Ill Septic Children.

    PubMed

    Muszynski, Jennifer A; Nofziger, Ryan; Moore-Clingenpeel, Melissa; Greathouse, Kristin; Anglim, Larissa; Steele, Lisa; Hensley, Josey; Hanson-Huber, Lisa; Nateri, Jyotsna; Ramilo, Octavio; Hall, Mark W

    2018-02-22

    Late immune suppression is associated with nosocomial infection and mortality in septic adults and children. Relationships between early immune suppression and outcomes in septic children remain unclear. Prospective observational study to test the hypothesis that early innate and adaptive immune suppression are associated with longer duration of organ dysfunction in children with severe sepsis/septic shock. Methods, Measurements and Main Results: Children aged < 18 years meeting consensus criteria for severe sepsis or septic shock were sampled within 48 hours of sepsis onset. Healthy controls were sampled once. Innate immune function was quantified by whole blood ex vivo lipopolysaccharide-induced TNFα production capacity. Adaptive immune function was quantified by ex vivo phytohemagglutinin-induced IFNγ production capacity. 102 septic children and 35 healthy children were enrolled. Compared to healthy children, septic children demonstrated lower LPS-induced TNFα production (p < 0.0001) and lower PHA-induced IFNγ production (p<0.0001). Among septic children, early innate and adaptive immune suppression were associated with greater number of days with multiple organ dysfunction (MODS) and greater number of days with any organ dysfunction. On multivariable analyses, early innate immune suppression remained independently associated with increased MODS days [aRR 1.2 (1.03, 1.5)] and organ dysfunction days [aRR 1.2 (1.1, 1.3)]. Critically ill children with severe sepsis or septic shock demonstrate early innate and adaptive immune suppression. Early suppression of both innate and adaptive immunity are associated with longer duration of organ dysfunction and may be useful markers to guide investigations of immunomodulatory therapies in septic children.

  11. Immunizations: Active vs. Passive

    MedlinePlus

    ... Listen Español Text Size Email Print Share Immunizations: Active vs. Passive Page Content Article Body Pediatricians can protect your child by administering not only active immunizations , but sometimes they can use what physicians ...

  12. Immunization of pregnant women: Future of early infant protection

    PubMed Central

    Faucette, Azure N; Pawlitz, Michael D; Pei, Bo; Yao, Fayi; Chen, Kang

    2015-01-01

    Children in early infancy do not mount effective antibody responses to many vaccines against commons infectious pathogens, which results in a window of increased susceptibility or severity infections. In addition, vaccine-preventable infections are among the leading causes of morbidity in pregnant women. Immunization during pregnancy can generate maternal immune protection as well as elicit the production and transfer of antibodies cross the placenta and via breastfeeding to provide early infant protection. Several successful vaccines are now recommended to all pregnant women worldwide. However, significant gaps exist in our understanding of the efficacy and safety of other vaccines and in women with conditions associated with increased susceptible to high-risk pregnancies. Public acceptance of maternal immunization remained to be improved. Broader success of maternal immunization will rely on the integration of advances in basic science in vaccine design and evaluation and carefully planned clinical trials that are inclusive to pregnant women. PMID:26366844

  13. Early adaption to the antarctic environment at dome C: consequences on stress-sensitive innate immune functions.

    PubMed

    Feuerecker, Matthias; Crucian, Brian; Salam, Alex P; Rybka, Ales; Kaufmann, Ines; Moreels, Marjan; Quintens, Roel; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Sams, Clarence; Choukèr, Alexander

    2014-09-01

    Abstract Feuerecker, Matthias, Brian Crucian, Alex P. Salam, Ales Rybka, Ines Kaufmann, Marjan Moreels, Roel Quintens, Gustav Schelling, Manfred Thiel, Sarah Baatout, Clarence Sams, and Alexander Choukèr. Early adaption in the Antarctic environment at Dome C: Consequences on stress-sensitive innate immune functions. High Alt Med Biol 15:341-348, 2014.-Purpose/Aims: Medical reports of Antarctic expeditions indicate that health is affected under these extreme conditions. The present study at CONCORDIA-Station (Dome C, 3233 m) seeks to investigate the early consequences of confinement and hypobaric hypoxia on the human organism. Nine healthy male participants were included in this study. Data collection occurred before traveling to Antarctica (baseline), and at 1 week and 1 month upon arrival. Investigated parameters included basic physiological variables, psychological stress tests, cell blood count, stress hormones, and markers of innate immune functions in resting and stimulated immune cells. By testing for the hydrogen peroxide (H2O2) production of stimulated polymorphonuclear leukocytes (PMNs), the effects of the hypoxia-adenosine-sensitive immune modulatory pathways were examined. As compared to baseline data, reduced oxygen saturation, hemoconcentration, and an increase of secreted catecholamines was observed, whereas no psychological stress was seen. Upon stimulation, the activity of PMNs and L-selectin shedding was mitigated after 1 week. Endogenous adenosine concentration was elevated during the early phase. In summary, living conditions at high altitude influence the innate immune system's response. After 1 month, some of the early effects on the human organism were restored. As this early adaptation is not related to psychological stress, the changes observed are likely to be induced by environmental stressors, especially hypoxia. As hypoxia is triggering ATP-catabolism, leading to elevated endogenous adenosine concentrations, this and the increased

  14. Deconvoluting Post-Transplant Immunity: Cell Subset-Specific Mapping Reveals Pathways for Activation and Expansion of Memory T, Monocytes and B Cells

    PubMed Central

    Grigoryev, Yevgeniy A.; Kurian, Sunil M.; Avnur, Zafi; Borie, Dominic; Deng, Jun; Campbell, Daniel; Sung, Joanna; Nikolcheva, Tania; Quinn, Anthony; Schulman, Howard; Peng, Stanford L.; Schaffer, Randolph; Fisher, Jonathan; Mondala, Tony; Head, Steven; Flechner, Stuart M.; Kantor, Aaron B.; Marsh, Christopher; Salomon, Daniel R.

    2010-01-01

    A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO+CD62L− effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant. PMID:20976225

  15. Deconvoluting post-transplant immunity: cell subset-specific mapping reveals pathways for activation and expansion of memory T, monocytes and B cells.

    PubMed

    Grigoryev, Yevgeniy A; Kurian, Sunil M; Avnur, Zafi; Borie, Dominic; Deng, Jun; Campbell, Daniel; Sung, Joanna; Nikolcheva, Tania; Quinn, Anthony; Schulman, Howard; Peng, Stanford L; Schaffer, Randolph; Fisher, Jonathan; Mondala, Tony; Head, Steven; Flechner, Stuart M; Kantor, Aaron B; Marsh, Christopher; Salomon, Daniel R

    2010-10-14

    A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO(+)CD62L(-) effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant.

  16. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    PubMed

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-07-01

    Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection

  17. Plasticity in early immune evasion strategies of a bacterial pathogen.

    PubMed

    Bernard, Quentin; Smith, Alexis A; Yang, Xiuli; Koci, Juraj; Foor, Shelby D; Cramer, Sarah D; Zhuang, Xuran; Dwyer, Jennifer E; Lin, Yi-Pin; Mongodin, Emmanuel F; Marques, Adriana; Leong, John M; Anguita, Juan; Pal, Utpal

    2018-04-17

    Borrelia burgdorferi is one of the few extracellular pathogens capable of establishing persistent infection in mammals. The mechanisms that sustain long-term survival of this bacterium are largely unknown. Here we report a unique innate immune evasion strategy of B. burgdorferi , orchestrated by a surface protein annotated as BBA57, through its modulation of multiple spirochete virulent determinants. BBA57 function is critical for early infection but largely redundant for later stages of spirochetal persistence, either in mammals or in ticks. The protein influences host IFN responses as well as suppresses multiple host microbicidal activities involving serum complement, neutrophils, and antimicrobial peptides. We also discovered a remarkable plasticity in BBA57-mediated spirochete immune evasion strategy because its loss, although resulting in near clearance of pathogens at the inoculum site, triggers nonheritable adaptive changes that exclude detectable nucleotide alterations in the genome but incorporate transcriptional reprograming events. Understanding the malleability in spirochetal immune evasion mechanisms that ensures their host persistence is critical for the development of novel therapeutic and preventive approaches to combat long-term infections like Lyme borreliosis.

  18. Early-life inflammation, immune response and ageing.

    PubMed

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  19. Early-life inflammation, immune response and ageing

    PubMed Central

    2017-01-01

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. PMID:28275145

  20. Childhood Immunization: A Key Component of Early Childhood Development

    ERIC Educational Resources Information Center

    Messonnier, Nancy

    2017-01-01

    Physical health is a key component of early childhood development and school readiness. By keeping children healthy and decreasing the chances of disease outbreaks, immunizations help early childhood programs create a safe environment for children. While overall vaccination rates are high nationally for most vaccines routinely recommended for…

  1. Early-Life Host–Microbiome Interphase: The Key Frontier for Immune Development

    PubMed Central

    Amenyogbe, Nelly; Kollmann, Tobias R.; Ben-Othman, Rym

    2017-01-01

    Human existence can be viewed as an “animal in a microbial world.” A healthy interaction of the human host with the microbes in and around us heavily relies on a well-functioning immune system. As development of both the microbiota and the host immune system undergo rapid changes in early life, it is not surprising that even minor alterations during this co-development can have profound consequences. Scrutiny of existing data regarding pre-, peri-, as well as early postnatal modulators of newborn microbiota indeed suggest strong associations with several immune-mediated diseases with onset far beyond the newborn period. We here summarize these data and extract overarching themes. This same effort in turn sets the stage to guide effective countermeasures, such as probiotic administration. The objective of our review is to highlight the interaction of host immune ontogeny with the developing microbiome in early life as a critical window of susceptibility for lifelong disease, as well as to identify the enormous potential to protect and promote lifelong health by specifically targeting this window of opportunity. PMID:28596951

  2. Dynamic range of Nef-mediated evasion of HLA class II-restricted immune responses in early HIV-1 infection.

    PubMed

    Mahiti, Macdonald; Brumme, Zabrina L; Jessen, Heiko; Brockman, Mark A; Ueno, Takamasa

    2015-07-31

    HLA class II-restricted CD4(+) T lymphocytes play an important role in controlling HIV-1 replication, especially in the acute/early infection stage. But, HIV-1 Nef counteracts this immune response by down-regulating HLA-DR and up-regulating the invariant chain associated with immature HLA-II (Ii). Although functional heterogeneity of various Nef activities, including down-regulation of HLA class I (HLA-I), is well documented, our understanding of Nef-mediated evasion of HLA-II-restricted immune responses during acute/early infection remains limited. Here, we examined the ability of Nef clones from 47 subjects with acute/early progressive infection and 46 subjects with chronic progressive infection to up-regulate Ii and down-regulate HLA-DR and HLA-I from the surface of HIV-infected cells. HLA-I down-regulation function was preserved among acute/early Nef clones, whereas both HLA-DR down-regulation and Ii up-regulation functions displayed relatively broad dynamic ranges. Nef's ability to down-regulate HLA-DR and up-regulate Ii correlated positively at this stage, suggesting they are functionally linked in vivo. Acute/early Nef clones also exhibited higher HLA-DR down-regulation and lower Ii up-regulation functions compared to chronic Nef clones. Taken together, our results support enhanced Nef-mediated HLA class II immune evasion activities in acute/early compared to chronic infection, highlighting the potential importance of these functions following transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Impact of early treatment programs on HIV epidemics: An immunity-based mathematical model.

    PubMed

    Rahman, S M Ashrafur; Vaidya, Naveen K; Zou, Xingfu

    2016-10-01

    While studies on pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) have demonstrated substantial advantages in controlling HIV transmission, the overall benefits of the programs with early initiation of antiretroviral therapy (ART) have not been fully understood and are still on debate. Here, we develop an immunity-based (CD4+ T cell count based) mathematical model to study the impacts of early treatment programs on HIV epidemics and the overall community-level immunity. The model is parametrized using the HIV prevalence data from South Africa and fully analyzed for stability of equilibria and infection persistence criteria. Using our model, we evaluate the effects of early treatment on the new infection transmission, disease death, basic reproduction number, HIV prevalence, and the community-level immunity. Our model predicts that the programs with early treatments significantly reduce the new infection transmission and increase the community-level immunity, but the treatments alone may not be enough to eliminate HIV epidemics. These findings, including the community-level immunity, might provide helpful information for proper implementation of HIV treatment programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice.

    PubMed

    Ogawa, Yasuhiro; Sano, Takafumi; Irisa, Masahiro; Kodama, Takashi; Saito, Takahiro; Furusawa, Eiri; Kaizu, Katsutoshi; Yanagi, Yusuke; Tsukimura, Takahiro; Togawa, Tadayasu; Yamanaka, Shoji; Itoh, Kohji; Sakuraba, Hitoshi; Oishi, Kazuhiko

    2017-01-13

    Sandhoff disease (SD) is caused by the loss of β-hexosaminidase (Hex) enzymatic activity in lysosomes resulting from Hexb mutations. In SD patients, the Hex substrate GM2 ganglioside accumulates abnormally in neuronal cells, resulting in neuronal loss, microglial activation, and astrogliosis. Hexb -/- mice, which manifest a phenotype similar to SD, serve as animal models for examining the pathophysiology of SD. Hexb -/- mice reach ~8 weeks without obvious neurological defects; however, trembling begins at 12 weeks and is accompanied by startle reactions and increased limb tone. These symptoms gradually become severe by 16-18 weeks. Immune reactions caused by autoantibodies have been recently associated with the pathology of SD. The inhibition of immune activation may represent a novel therapeutic target for SD. Herein, SD mice (Hexb -/- ) were crossed to mice lacking an activating immune receptor (FcRγ -/- ) to elucidate the potential relationship between immune responses activated through SD autoantibodies and astrogliosis. Microglial activation and astrogliosis were observed in cortices of Hexb -/- mice during the asymptomatic phase, and were inhibited in Hexb -/- FcRγ -/- mice. Moreover, early astrogliosis and impaired motor coordination in Hexb -/- mice could be ameliorated by immunosuppressants, such as FTY720. Our findings demonstrate the importance of early treatment and the therapeutic effectiveness of immunosuppression in SD.

  5. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice.

    PubMed

    Meyer, Urs; Nyffeler, Myriel; Yee, Benjamin K; Knuesel, Irene; Feldon, Joram

    2008-05-01

    Maternal infection during pregnancy increases the risk for neurodevelopmental disorders such as schizophrenia and autism in the offspring. This association appears to be critically dependent on the precise prenatal timing. However, the extent to which distinct adult psychopathological and neuropathological traits may be sensitive to the precise times of prenatal immune activation remains to be further characterized. Here, we evaluated in a mouse model of prenatal immune challenge by the viral mimic, polyriboinosinic-polyribocytidilic acid (PolyIC), whether prenatal immune activation in early/middle and late gestation may influence the susceptibility to some of the critical cognitive, pharmacological, and neuroanatomical dysfunctions implicated in schizophrenia and autism. We revealed that PolyIC-induced prenatal immune challenge on gestation day (GD) 9 but not GD17 significantly impaired sensorimotor gating and reduced prefrontal dopamine D1 receptors in adulthood, whereas prenatal immune activation specifically in late gestation impaired working memory, potentiated the locomotor reaction to the NMDA-receptor antagonist dizocilpine, and reduced hippocampal NMDA-receptor subunit 1 expression. On the other hand, potentiation of the locomotor reaction to the dopamine-receptor agonist amphetamine and reduction in Reelin- and Parvalbumin-expressing prefrontal neurons emerged independently of the precise times of prenatal immune challenge. Our findings thus highlight that prenatal immune challenge during early/middle and late fetal development in mice leads to distinct brain and behavioral pathological symptom clusters in adulthood. Further examination and evaluation of in utero immune challenge at different times of gestation may provide important new insight into the neuroimmunological and neuropathological mechanisms underlying the segregation of different symptom clusters in heterogeneous neuropsychiatric disorders such as schizophrenia and autism.

  6. ACTIVE IMMUNIZATION AGAINST POLIOMYELITIS IN MONKEYS.

    PubMed

    Brodie, M; Goldbloom, A

    1931-05-31

    1. A combination of poliomyelitis virus and specific human serum is effective for the production of active immunity. 2. For each gram of active virus given intradermally as an emulsion, 6 cc. of human immune serum, injected subcutaneously, was required in our experiments to protect a monkey from paralysis. Some degree of active immunity was induced. 3. Immunity, without symptom of the disease, was secured when the serum was given at the time of inoculation, or within 3 days preceding or following inoculation of the virus. 4. For the production of immunity, virus, preceded by serum administration, is probably less effective than when it is given simultaneously with, or before, the injection of serum. 5. The virus neutralization test is more sensitive than the direct intracerebral test for determining the production of immunity.

  7. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses.

    PubMed

    Thwe, Phyu M; Pelgrom, Leonard; Cooper, Rachel; Beauchamp, Saritha; Reisz, Julie A; D'Alessandro, Angelo; Everts, Bart; Amiel, Eyal

    2017-09-05

    Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Arsenic and Immune Response to Infection During Pregnancy and Early Life.

    PubMed

    Attreed, Sarah E; Navas-Acien, Ana; Heaney, Christopher D

    2017-06-01

    Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity-including the specific mechanisms in humans-is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines.

  9. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection

    PubMed Central

    Sena, Angela A. S.; Glavan, Tiffany; Jiang, Guochun; Sankaran-Walters, Sumathi; Grishina, Irina; Dandekar, Satya; Goulart, Luiz R.

    2016-01-01

    HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection. PMID:27484833

  10. [The effect of active immunization with Acanthamoeba culbertsoni in mice born to immune mother].

    PubMed

    Kong, H H; Seo, S A; Shin, C O; Im, K I

    1993-06-01

    Acanthamoeba culbertsoni is a pathogenic free-living amoeba causing primary amoebic meningoencephalitis (PAME) in human and mouse. Several reports on the immune responses in mice with this amoebic infection have been published, but the effects of transferred passive immunity on the active immunization in offspring mice have not been demonstrated. This experiment was done to observe the effect of active immunization with Acanthamoeba culbertsoni in mice born to immune mothers. Acanthamoeba culbertsoni was cultured in the CGV medium axenically. Female BALB/c mice weighing about 20g were immunized through the intraperitoneal injection of Acanthamoeba culbertsoni trophozoites 1 x 10(6) each three times at the interval of one week. Offspring mice were immunized two times. The mice were inoculated intranasally with 1 x 10(4) trophozoites under secobarbital anesthesia. There was a statistical difference in mortality between the transferred immunity group and the active immunization group. Statistical differences were not demonstrated in antibody titer between both groups. But L3T4+ T cell/Ly2+ T cell ratio was increased in the transferred immunity group more than active immunization group of the offspring mice at the age of 5 weeks. There was no differences statistically in mortality between both groups. It was recognized that active immunization in offspring mice born to immune mother could modulate the immune status according to the time of immunization.

  11. The bradykinin B2 receptor in the early immune response against Listeria infection.

    PubMed

    Kaman, Wendy E; Wolterink, Arthur F W M; Bader, Michael; Boele, Linda C L; van der Kleij, Desiree

    2009-02-01

    The endogenous danger signal bradykinin was recently found implicated in the development of immunity against parasites via dendritic cells. We here report an essential role of the B(2) (B(2)R) bradykinin receptor in the early immune response against Listeria infection. Mice deficient in B(2)R (B(2)R(-/-) mice) were shown to suffer from increased hepatic bacterial burden and concomitant dramatic weight loss during infection with Listeria monocytogenes. Levels of cytokines known to play a pivotal role in the early phase immune response against L. monocytogenes, IL-12p70 and IFN-gamma, were reduced in B(2)R(-/-) mice. To extend these findings to the human system, we show that bradykinin potentiates the production of IL-12p70 in human monocyte-derived dendritic cells. Thus, we show that bradykinin and the B(2)R play a role in early innate immune functions during bacterial infection.

  12. Reproductive Toxicity of T Cells in Early Life: Abnormal Immune Development and Postnatal Diseases.

    PubMed

    Liu, Han-Xiao; Jiang, Aifang; Chen, Ting; Qu, Wen; Yan, Hui-Yi; Ping, Jie

    2017-01-01

    Immunity is a balanced status with adequate biological defenses to recognize and fight "non-self", as well as adequate tolerance to recognize "self". To maintain this immune homeostasis, a well-organized T cell immune network is required, which in part depends on the well-controlled development of alternative effector T cells, with different cytokine repertoires. Recent researches have pointed that developing fetal T cells network is a remarkably sensitive toxicological target for adverse factors in early life. Epidemiological and experimental studies showed an inseparable relationship between T cell developmental toxicity and immune diseases in adults. Considering that the inflammatory and immune disorders have become a growing health problem worldwide, increasing attention is now being paid to the T cell developmental toxicity. We propose that adverse factors may have programming effects on the crucial functions of immune system during early life which is critical for fetal T cell development and the establishment of the distinct T cell repertoires balance. The permanently disturbed intrathymic or peripheral T cell development may in turn lead to the immune disorders in later life. In this manuscript, we reviewed how adverse factors affected T cell development in early-life with the consequence of the immune dysfunction and immune diseases, and further elucidate the mechanisms. These mechanisms will be helpful in prevention and treatment of the increased prevalence of immune diseases by interfering those pathways. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. An active-learning laboratory on immunizations.

    PubMed

    Donohoe, Krista L; Mawyer, Tonya M; Stevens, J Tyler; Morgan, Laura A; Harpe, Spencer E

    2012-12-12

    To implement and evaluate an active-learning laboratory activity to teach pharmacy students about influenza, pneumococcal, and shingles vaccines. The laboratory session was divided into 6 immunization stations: 3 stations on influenza including a pediatrics station, and 1 station each for pneumococcal, shingles, and anaphylaxis. Although 118 of 123 (95.9%) students had completed an immunization training certificate prior to attending the laboratory, the average score on a pre-assessment to measure immunization knowledge and confidence was 56%. The post-assessment score was 87.4%. Students' confidence improved by 18.7% to 51.2% in each of the 5 areas assessed. Most respondents rated the activity overall as good or excellent on a post-activity evaluation. An active-learning approach to teaching immunizations allowed students to gain knowledge in simulated real-world experiences and reinforced key concepts on influenza, pneumococcal, and shingles vaccines.

  14. ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.

    PubMed

    Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B

    2018-05-31

    Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.

  15. [Immune system aging rate in patients with early forms of chronic cerebrovascular diseases].

    PubMed

    Kochetkova, N G; Al'tman, D Sh; Teplova, S N

    2009-01-01

    Using the Bioage and Snake software the immune and cardiovascular system aging rate was diagnosed in patients having early forms of chronic cerebrovascular diseases (CCVD). The indicators of biological, cardiopulmonary and immunological age were studied in patients showing early symptoms of cerebrovascular insufficiency and dyscirculatory encephalopathy of the 1st stage. The rate of age-dependent physiological changes was diagnosed compared to general body aging rate. Some specific patterns of immune system aging were found in patients with early forms of CCVDs, the cardinal aging symptoms (heterotropia, heterochronia) were verified.

  16. Estimation of immunization providers' activities cost, medication cost, and immunization dose errors cost in Iraq.

    PubMed

    Al-lela, Omer Qutaiba B; Bahari, Mohd Baidi; Al-abbassi, Mustafa G; Salih, Muhannad R M; Basher, Amena Y

    2012-06-06

    The immunization status of children is improved by interventions that increase community demand for compulsory and non-compulsory vaccines, one of the most important interventions related to immunization providers. The aim of this study is to evaluate the activities of immunization providers in terms of activities time and cost, to calculate the immunization doses cost, and to determine the immunization dose errors cost. Time-motion and cost analysis study design was used. Five public health clinics in Mosul-Iraq participated in the study. Fifty (50) vaccine doses were required to estimate activities time and cost. Micro-costing method was used; time and cost data were collected for each immunization-related activity performed by the clinic staff. A stopwatch was used to measure the duration of activity interactions between the parents and clinic staff. The immunization service cost was calculated by multiplying the average salary/min by activity time per minute. 528 immunization cards of Iraqi children were scanned to determine the number and the cost of immunization doses errors (extraimmunization doses and invalid doses). The average time for child registration was 6.7 min per each immunization dose, and the physician spent more than 10 min per dose. Nurses needed more than 5 min to complete child vaccination. The total cost of immunization activities was 1.67 US$ per each immunization dose. Measles vaccine (fifth dose) has a lower price (0.42 US$) than all other immunization doses. The cost of a total of 288 invalid doses was 744.55 US$ and the cost of a total of 195 extra immunization doses was 503.85 US$. The time spent on physicians' activities was longer than that spent on registrars' and nurses' activities. Physician total cost was higher than registrar cost and nurse cost. The total immunization cost will increase by about 13.3% owing to dose errors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Regulatory parameters of the lung immune response during the early phase of experimental trichinellosis.

    PubMed

    Falduto, Guido H; Vila, Cecilia C; Saracino, María P; Gentilini, María V; Venturiello, Stella M

    2016-11-15

    Parasitic infection caused by Trichinella spiralis provokes an early stimulation of the mucosal immune system which causes an allergic inflammatory response in the lungs. The present work was intended to characterize the kinetics of emergence of regulatory parameters in Wistar rat lungs during this early inflammatory response, between days 0 and 13p.i. The presence of regulatory cells such as regulatory T cells (Tregs) and alternatively activated macrophages (AAM) was analyzed in lung cell suspensions. Moreover, a regulatory cytokine (TGF-β) was studied in lung tissue extracts. Considering that newborn larvae (NBL) travel along the pulmonary microvasculature, the ability of this parasite stage to modulate the activation of lung macrophages was evaluated. For this purpose, lung macrophages from non-infected or infected rats (day 6p.i.) were cultured with live or dead NBL. Arginase activity (characteristic of AAM) and nitric oxide (NO produced by iNOS, characteristic of classical activated macrophages) were measured after 48h. Our results revealed a significant increase in the percentage of Tregs on days 6 and 13p.i., arginase activity on day 13p.i. and TGF-β levels on days 6 and 13p.i. Lung macrophages from non-infected rats cultured with live NBL showed a significant increase in arginase activity and NO levels. Live and dead NBL induced a significant increase in arginase activity in lung macrophages from infected rats. Only live NBL significantly increased NO levels in these macrophages. The present work demonstrates for the first time, the emergence of regulatory parameters in the early lung immune response during T. spiralis infection. The immumodulatory properties exerted by NBL during its passage through this organ could be the cause of such regulation. Moreover, we have shown the ability of NBL to activate macrophages from the lung parenchyma by the classical and alternative pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

    PubMed Central

    Arnaud, Noëlla; Dabo, Stéphanie; Akazawa, Daisuke; Fukasawa, Masayoshi; Shinkai-Ouchi, Fumiko; Hugon, Jacques; Wakita, Takaji; Meurs, Eliane F.

    2011-01-01

    Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response. PMID:22022264

  19. Immune response profiling in early rheumatoid arthritis: discovery of a novel interaction of treatment response with viral immunity

    PubMed Central

    2013-01-01

    Introduction It remains challenging to predict the outcomes of therapy in patients with rheumatoid arthritis (RA). The objective of this study was to identify immune response signatures that correlate with clinical treatment outcomes in patients with RA. Methods A cohort of 71 consecutive patients with early RA starting treatment with disease-modifying antirheumatic drugs (DMARDs) was recruited. Disease activity at baseline and after 21 to 24 weeks of follow-up was measured using the Disease Activity Score in 28 joints (DAS28). Immune response profiling was performed by analyzing multi-cytokine production from peripheral blood cells following incubation with a panel of stimuli, including a mixture of human cytomegalovirus (CMV) and Epstein-Barr virus (EBV) lysates. Profiles identified via principal components analysis (PCA) for each stimulus were then correlated with the ΔDAS28 from baseline to follow-up. A clinically meaningful improvement in the DAS28 was defined as a decrease of ≥1.2. Results A profile of T-cell cytokines (IL-13, IL-4, IL-5, IL-2, IL-12, and IFN-γ) produced in response to CMV/EBV was found to correlate with the ΔDAS28 from baseline to follow-up. At baseline, a higher magnitude of the CMV/EBV immune response profile predicted inadequate DAS28 improvement (mean PCA-1 scores: 65.6 versus 50.2; P = 0.029). The baseline CMV/EBV response was particularly driven by IFN-γ (P = 0.039) and IL-4 (P = 0.027). Among patients who attained clinically meaningful DAS28 improvement, the CMV/EBV PCA-1 score increased from baseline to follow-up (mean +11.6, SD 25.5), whereas among patients who responded inadequately to DMARD therapy, the CMV/EBV PCA-1 score decreased (mean -12.8, SD 25.4; P = 0.002). Irrespective of the ΔDAS28, methotrexate use was associated with up-regulation of the CMV/EBV response. The CMV/EBV profile was associated with positive CMV IgG (P <0.001), but not EBV IgG (P = 0.32), suggesting this response was related to

  20. Unique aspects of the perinatal immune system.

    PubMed

    Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard

    2017-08-01

    The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.

  1. Mast cell activators as novel immune regulators.

    PubMed

    Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F

    2018-05-26

    Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The effects of early life adversity on the immune system.

    PubMed

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. CHANGES IN HUMORAL IMMUNITY OCCURRING DURING THE EARLY STAGES OF EXPERIMENTAL PNEUMOCOCCUS INFECTION

    PubMed Central

    Terrell, Edward E.

    1930-01-01

    A study was made of the changes in humoral immunity occurring during the early phases of experimental pneumococcus infection in the dog and cat. The methods devised by Robertson and Sia were employed to demonstrate the presence of anti-pneumococcus properties in the serum of animals naturally resistant to this micro-organism. It was found that with a generalized and overwhelming infection accompanied by early blood invasion, there was a prompt and rapid decrease in the concentration of natural humoral immune bodies which frequently disappeared entirely by the time of death. This same early diminution of humoral immune substances, opsonins, agglutinins, and pneumococcidal-promoting bodies was observed in animals that survived a moderately severe generalized infection but the concentration of immune bodies rose again with the onset of recovery. The decrease in concentration of humoral immune substances during a severe generalized infection appeared to be due to the combination of "S" substance with the normal immune bodies. When the pneumococcus infection was more localized as in the case of true lobar pneumonia a quite different sequence of events was observed to occur. Several animals, in which extensive lobar pneumonia was produced, showed the presence in quantity of humoral immune bodies in the blood throughout the course of an infection terminating fatally. These findings suggest that after the inception of pneumococcus infection in the dog and cat the chief function of natural anti-pneurnococcus substances in the blood is to limit or prevent blood invasion. When pneumococcic infection is localized these circulating antibodies appear to have little effect either in preventing the spread of the process or determining the outcome of the disease. PMID:19869701

  4. Distinct plasma immune signatures in ME/CFS are present early in the course of illness.

    PubMed

    Hornig, Mady; Montoya, José G; Klimas, Nancy G; Levine, Susan; Felsenstein, Donna; Bateman, Lucinda; Peterson, Daniel L; Gottschalk, C Gunnar; Schultz, Andrew F; Che, Xiaoyu; Eddy, Meredith L; Komaroff, Anthony L; Lipkin, W Ian

    2015-02-01

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an unexplained incapacitating illness that may affect up to 4 million people in the United States alone. There are no validated laboratory tests for diagnosis or management despite global efforts to find biomarkers of disease. We considered the possibility that inability to identify such biomarkers reflected variations in diagnostic criteria and laboratory methods as well as the timing of sample collection during the course of the illness. Accordingly, we leveraged two large, multicenter cohort studies of ME/CFS to assess the relationship of immune signatures with diagnosis, illness duration, and other clinical variables. Controls were frequency-matched on key variables known to affect immune status, including season of sampling and geographic site, in addition to age and sex. We report here distinct alterations in plasma immune signatures early in the course of ME/CFS ( n = 52) relative to healthy controls ( n = 348) that are not present in subjects with longer duration of illness ( n = 246). Analyses based on disease duration revealed that early ME/CFS cases had a prominent activation of both pro- and anti-inflammatory cytokines as well as dissociation of intercytokine regulatory networks. We found a stronger correlation of cytokine alterations with illness duration than with measures of illness severity, suggesting that the immunopathology of ME/CFS is not static. These findings have critical implications for discovery of interventional strategies and early diagnosis of ME/CFS.

  5. Distinct plasma immune signatures in ME/CFS are present early in the course of illness

    PubMed Central

    Hornig, Mady; Montoya, José G.; Klimas, Nancy G.; Levine, Susan; Felsenstein, Donna; Bateman, Lucinda; Peterson, Daniel L.; Gottschalk, C. Gunnar; Schultz, Andrew F.; Che, Xiaoyu; Eddy, Meredith L.; Komaroff, Anthony L.; Lipkin, W. Ian

    2015-01-01

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an unexplained incapacitating illness that may affect up to 4 million people in the United States alone. There are no validated laboratory tests for diagnosis or management despite global efforts to find biomarkers of disease. We considered the possibility that inability to identify such biomarkers reflected variations in diagnostic criteria and laboratory methods as well as the timing of sample collection during the course of the illness. Accordingly, we leveraged two large, multicenter cohort studies of ME/CFS to assess the relationship of immune signatures with diagnosis, illness duration, and other clinical variables. Controls were frequency-matched on key variables known to affect immune status, including season of sampling and geographic site, in addition to age and sex. We report here distinct alterations in plasma immune signatures early in the course of ME/CFS (n = 52) relative to healthy controls (n = 348) that are not present in subjects with longer duration of illness (n = 246). Analyses based on disease duration revealed that early ME/CFS cases had a prominent activation of both pro- and anti-inflammatory cytokines as well as dissociation of intercytokine regulatory networks. We found a stronger correlation of cytokine alterations with illness duration than with measures of illness severity, suggesting that the immunopathology of ME/CFS is not static. These findings have critical implications for discovery of interventional strategies and early diagnosis of ME/CFS. PMID:26079000

  6. Active and passive immunization for cancer.

    PubMed

    Baxter, David

    2014-01-01

    Vaccination started around the 10th century AD as a means of preventing smallpox. By the end of the 19th century such therapeutic vaccines were well established with both active and passive preparations being used in clinical practice. Active immunization involved administering an immunogen that might be live/ attenuated, killed/ inactivated, toxoid or subunit in origin. Passive immunization involved giving pre-formed antibodies, usually to very recently exposed individuals. At about the same time such approaches were also tried to treat a variety of cancers - proof of principle for the protective role of the immune response against malignancy was established by the observation that tumors transplanted into syngeneic hosts were rejected by the host innate and adaptive responses. The impact of these therapeutic vaccination has taken a considerable time to become established - in part because target antigens against which an adaptive response can be directed do not appear to be uniquely expressed on malignant transformed cells; and also because tumor cells are able to manipulate their environment to downregulate the host immune response. Therapeutic cancer vaccines are also divided into active and passive types - the latter being subdivided into specific and non-specific vaccines. Active immunization utilizes an immunogen to generate a host response designed to eliminate the malignant cells, whereas in passive immunization preformed antibodies or cells are administered to directly eliminate the transformed cells - examples of each are considered in this review.

  7. Active and passive immunization for cancer

    PubMed Central

    Baxter, David

    2014-01-01

    Vaccination started around the 10th century AD as a means of preventing smallpox. By the end of the 19th century such therapeutic vaccines were well established with both active and passive preparations being used in clinical practice. Active immunization involved administering an immunogen that might be live/ attenuated, killed/ inactivated, toxoid or subunit in origin. Passive immunization involved giving pre-formed antibodies, usually to very recently exposed individuals. At about the same time such approaches were also tried to treat a variety of cancers – proof of principle for the protective role of the immune response against malignancy was established by the observation that tumors transplanted into syngeneic hosts were rejected by the host innate and adaptive responses. The impact of these therapeutic vaccination has taken a considerable time to become established - in part because target antigens against which an adaptive response can be directed do not appear to be uniquely expressed on malignant transformed cells; and also because tumor cells are able to manipulate their environment to downregulate the host immune response. Therapeutic cancer vaccines are also divided into active and passive types – the latter being subdivided into specific and non-specific vaccines. Active immunization utilizes an immunogen to generate a host response designed to eliminate the malignant cells, whereas in passive immunization preformed antibodies or cells are administered to directly eliminate the transformed cells - examples of each are considered in this review. PMID:25424829

  8. Early growth response 2 and Egr3 are unique regulators in immune system.

    PubMed

    Taefehshokr, Sina; Key, Yashar Azari; Khakpour, Mansour; Dadebighlu, Pourya; Oveisi, Amin

    2017-01-01

    The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.

  9. Interferon-alpha, immune activation and immune dysfunction in treated HIV infection

    PubMed Central

    Cha, Lilian; Berry, Cassandra M; Nolan, David; Castley, Allison; Fernandez, Sonia; French, Martyn A

    2014-01-01

    Type I interferons (IFNs) exert anti-viral effects through the induction of numerous IFN-stimulated genes and an immunomodulatory effect on innate and adaptive immune responses. This is beneficial in controlling virus infections but prolonged IFN-α activity in persistent virus infections, such as HIV infection, may contribute to immune activation and have a detrimental effect on the function of monocytes and T and B lymphocytes. Activation of monocytes, associated with increased IFN-α activity, contributes to atherosclerotic vascular disease, brain disease and other ‘age-related diseases' in HIV patients treated with long-term antiretroviral therapy (ART). In HIV patients receiving ART, the anti-viral effects of IFN-α therapy have the potential to contribute to eradication of HIV infection while IFN-α inhibitor therapy is under investigation for the treatment of immune activation. The management of HIV patients receiving ART will be improved by understanding more about the opposing effects of IFN-α on HIV infection and disease and by developing methods to assess IFN-α activity in clinical practice. PMID:25505958

  10. Early-Life Food Nutrition, Microbiota Maturation and Immune Development Shape Life-Long Health.

    PubMed

    Zhou, Xiaoli; Du, Lina; Shi, Ronghua; Chen, Zhidong; Zhou, Yiming; Li, Zongjie

    2018-06-06

    The current knowledge about early-life nutrition and environmental factors that affect the interaction between the symbiotic microbiota and the host immune system has demonstrated novel regulatory target for treating allergic diseases, autoimmune disorders and metabolic syndrome. Various kinds of food nutrients (such as dietary fiber, starch, polyphenols and proteins) can provide energy resources for both intestinal microbiota and the host. The indigestible food components are fermented by the indigenous gut microbiota to produce diverse metabolites, including short-chain fatty acids, bile acids and trimethylamine-N-oxide, which can regulate the host metabolized physiology, immunity homeostasis and health state. Therefore it is commonly believed early-life perturbation of the microbial community structure and the dietary nutrition interference on the child mucosal immunity contribute to the whole life susceptibility to chronic diseases. In all, the combined interrelationship between food ingredients nutrition, intestinal microbiota configurations and host system immunity provides new therapeutic targets to treat various kinds of pathogenic inflammations and chronic diseases.

  11. Early Development of the Gut Microbiota and Immune Health

    PubMed Central

    Francino, M. Pilar

    2014-01-01

    In recent years, the increase in human microbiome research brought about by the rapidly evolving “omic” technologies has established that the balance among the microbial groups present in the human gut, and their multipronged interactions with the host, are crucial for health. On the other hand, epidemiological and experimental support has also grown for the ‘early programming hypothesis’, according to which factors that act in utero and early in life program the risks for adverse health outcomes later on. The microbiota of the gut develops during infancy, in close interaction with immune development, and with extensive variability across individuals. It follows that the specific process of gut colonization and the microbe-host interactions established in an individual during this period have the potential to represent main determinants of life-long propensity to immune disease. Although much remains to be learnt on the progression of events by which the gut microbiota becomes established and initiates its intimate relationships with the host, and on the long-term repercussions of this process, recent works have advanced significatively in this direction. PMID:25438024

  12. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin.

  13. Evidence of premature immune aging in patients thymectomized during early childhood

    PubMed Central

    Sauce, Delphine; Larsen, Martin; Fastenackels, Solène; Duperrier, Anne; Keller, Michael; Grubeck-Loebenstein, Beatrix; Ferrand, Christophe; Debré, Patrice; Sidi, Daniel; Appay, Victor

    2009-01-01

    While the thymus is known to be essential for the initial production of T cells during early life, its contribution to immune development remains a matter of debate. In fact, during cardiac surgery in newborns, the thymus is completely resected to enable better access to the heart to correct congenital heart defects, suggesting that it may be dispensable during childhood and adulthood. Here, we show that young adults thymectomized during early childhood exhibit an altered T cell compartment. Specifically, absolute CD4+ and CD8+ T cell counts were decreased, and these T cell populations showed substantial loss of naive cells and accumulation of oligoclonal memory cells. A subgroup of these young patients (22 years old) exhibited a particularly altered T cell profile that is usually seen in elderly individuals (more than 75 years old). This condition was directly related to CMV infection and the induction of strong CMV-specific T cell responses, which may exhaust the naive T cell pool in the absence of adequate T cell renewal from the thymus. Together, these marked immunological alterations are reminiscent of the immune risk phenotype, which is defined by a cluster of immune markers predictive of increased mortality in the elderly. Overall, our data highlight the importance of the thymus in maintaining the integrity of T cell immunity during adult life. PMID:19770514

  14. Oral treatment with enrofloxacin early in life promotes Th2-mediated immune response in mice.

    PubMed

    Strzępa, Anna; Majewska-Szczepanik, Monika; Kowalczyk, Paulina; Woźniak, Dorota; Motyl, Sylwia; Szczepanik, Marian

    2016-02-01

    Th2 lymphocytes play a crucial role in the development of allergy. These pathologies are caused by coordinated production of the cytokines IL-4, IL-5 and IL-13 that regulate the activity of eosinophils, basophils and B cells. According to the 'hygiene hypothesis', the reduced exposure to microorganisms favors allergy occurrence. The advances in medicine in the field of infection therapy promoted an increasing application of antibiotics which, apart from eliminating pathogens, also partially eliminate the microbiota. Epicutaneous (EC) immunization with ovalbumin (OVA) followed by OVA challenge was used to study the influence of partial gut flora depletion by oral treatment with enrofloxacin on type-2 immune response. Current work describes the influence of enrofloxacin application on anti-OVA antibody production and cytokine synthesis in young and adult mice. Immune response in adult mice is less sensitive to modification of natural gut flora. We observed that enrofloxacin treatment of adult mice leads to significant decrease of anti-OVA IgG2a production while synthesis of anti-OVA IgE was not changed. The production of type-1 (IFN-γ), type-2 (IL-4, IL-5, IL-10, IL-13) and Th17-associated (IL-17A) cytokines was inhibited. On the other hand, treatment of young mice with enrofloxacin significantly upregulates the production of anti-OVA IgE and inhibits the secretion of anti-OVA IgG2a antibodies. Additionally, treatment with enrofloxacin early in life prior to OVA immunization results in increased production of type-2 (IL-4, IL-10 and IL-13) cytokines. Our results clearly indicate that the immune system is more vulnerable to decreased bacterial exposure early in life that may promote development of allergy. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective.

    PubMed

    Harder, Jeffrey M; Braine, Catherine E; Williams, Pete A; Zhu, Xianjun; MacNicoll, Katharine H; Sousa, Gregory L; Buchanan, Rebecca A; Smith, Richard S; Libby, Richard T; Howell, Gareth R; John, Simon W M

    2017-05-09

    Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wld s allele, which protects from axon dysfunction. We demonstrate that DBA/2J .Wld s mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J .Wld s mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J. Wld s mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.

  16. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective

    PubMed Central

    Harder, Jeffrey M.; Braine, Catherine E.; Williams, Pete A.; Zhu, Xianjun; MacNicoll, Katharine H.; Sousa, Gregory L.; Buchanan, Rebecca A.; Smith, Richard S.; Howell, Gareth R.; John, Simon W. M.

    2017-01-01

    Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma. PMID:28446616

  17. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  18. Effects of early-life adversity on immune function are mediated by prenatal environment: Role of prenatal alcohol exposure.

    PubMed

    Raineki, Charlis; Bodnar, Tamara S; Holman, Parker J; Baglot, Samantha L; Lan, Ni; Weinberg, Joanne

    2017-11-01

    The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Arsenic and Immune Response to Infection During Pregnancy and Early Life

    PubMed Central

    Attreed, Sarah E.; Navas-Acien, Ana

    2017-01-01

    Purpose of Review Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity—including the specific mechanisms in humans—is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. Recent Findings The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Summary Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines. PMID:28488132

  20. Active Suppression of Early Immune Response in Tobacco by the Human Pathogen Salmonella Typhimurium

    PubMed Central

    Shirron, Natali; Yaron, Sima

    2011-01-01

    The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants. PMID:21541320

  1. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    PubMed

    Puill-Stephan, Eneour; Seneca, François O; Miller, David J; van Oppen, Madeleine J H; Willis, Bette L

    2012-01-01

    Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further

  2. Association between latent proviral characteristics and immune activation in antiretrovirus-treated human immunodeficiency virus type 1-infected adults.

    PubMed

    Liang, Emily C; Sceats, Lindsay; Bayless, Nicholas L; Strauss-Albee, Dara M; Kubo, Jessica; Grant, Philip M; Furman, David; Desai, Manisha; Katzenstein, David A; Davis, Mark M; Zolopa, Andrew R; Blish, Catherine A

    2014-08-01

    Generalized immune activation during HIV infection is associated with an increased risk of cardiovascular disease, neurocognitive disease, osteoporosis, metabolic disorders, and physical frailty. The mechanisms driving this immune activation are poorly understood, particularly for individuals effectively treated with antiretroviral medications. We hypothesized that viral characteristics such as sequence diversity may play a role in driving HIV-associated immune activation. We therefore sequenced proviral DNA isolated from peripheral blood mononuclear cells from HIV-infected individuals on fully suppressive antiretroviral therapy. We performed phylogenetic analyses, calculated viral diversity and divergence in the env and pol genes, and determined coreceptor tropism and the frequency of drug resistance mutations. Comprehensive immune profiling included quantification of immune cell subsets, plasma cytokine levels, and intracellular signaling responses in T cells, B cells, and monocytes. These antiretroviral therapy-treated HIV-infected individuals exhibited a wide range of diversity and divergence in both env and pol genes. However, proviral diversity and divergence in env and pol, coreceptor tropism, and the level of drug resistance did not significantly correlate with markers of immune activation. A clinical history of virologic failure was also not significantly associated with levels of immune activation, indicating that a history of virologic failure does not inexorably lead to increased immune activation as long as suppressive antiretroviral medications are provided. Overall, this study demonstrates that latent viral diversity is unlikely to be a major driver of persistent HIV-associated immune activation. Chronic immune activation, which is associated with cardiovascular disease, neurologic disease, and early aging, is likely to be a major driver of morbidity and mortality in HIV-infected individuals. Although treatment of HIV with antiretroviral medications

  3. Association between immune activation and early depressive symptoms in cancer patients treated with interleukin-2-based therapy.

    PubMed

    Capuron, L; Ravaud, A; Gualde, N; Bosmans, E; Dantzer, R; Maes, M; Neveu, P J

    2001-11-01

    The relationship between immune activation and the development of early depressive symptoms were studied in 33 cancer patients undergoing cytokine therapy. Patients were treated either with subcutaneous IL-2 administered alone (n=13) or in association with IFN-alpha (n=5), or with IFN-alpha alone administered subcutaneously at low doses (n=5) or intravenously at high doses (n=10). The intensity of depressive symptoms was assessed during a clinical interview carried out before the start of cytokine therapy and five days later using the Montgomery and Asberg Depression Rating Scale (MADRS). On the same days, blood samples were collected for each patient to measure serum concentrations of cytokines (IL-6, IL-10, IL-1ra) and cytokine-receptors (sIL-2R, LIF-R). Results showed that patients treated with IL-2 or IL-2+IFN-alpha displayed concomitant mood symptoms and increased serum cytokine levels during treatment. In these patients, the intensity of depressive symptoms at endpoint was positively correlated with the increases measured in serum levels of IL-10 between baseline and endpoint. IL-10 is an anti-inflammatory cytokine that is produced in response to the production of pro-inflammatory cytokines, and thereby reflects an inflammatory response. These results support the hypothesis of close relationship between depressive symptoms and the activation of the cytokine network.

  4. Extracorporeal Shock Wave Therapy Suppresses the Early Proinflammatory Immune Response to a Severe Cutaneous Burn Injury

    DTIC Science & Technology

    2009-02-01

    Burn wound model Mice were anaesthetised using isoflurane inha- lation. After shaving the dorsum, the exposed skin was washed gently with room...Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury* Thomas A Davis, Alexander...S, Peoples GE, Tadaki D, Elster EA. Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn

  5. Early Nutrition as a Major Determinant of 'Immune Health': Implications for Allergy, Obesity and Other Noncommunicable Diseases.

    PubMed

    Prescott, Susan L

    2016-01-01

    Early-life nutritional exposures are significant determinants of the development and future health of all organ systems. The dramatic rise in infant immune diseases, most notably allergy, indicates the specific vulnerability of the immune system to early environmental changes. Dietary changes are at the center of the emerging epigenetic paradigms that underpin the rise in many modern inflammatory and metabolic diseases. There is growing evidence that exposures in pregnancy and the early postnatal period can modify gene expression and disease susceptibility. Although modern dietary changes are complex and involve changing patterns of many nutrients, there is also interest in the developmental effects of specific nutrients. Oligosaccharides (soluble fiber), antioxidants, polyunsaturated fatty acids, folate and other vitamins have documented effects on immune function as well as metabolism. Some have also been implicated in modified risk of allergic diseases in observational studies. Intervention studies are largely limited to trials with polyunsaturated fatty acids and oligosaccharides, showing preliminary but yet unconfirmed benefits in allergy prevention. Understanding how environmental influences disrupt the finely balanced development of immune and metabolic programming is of critical importance. Diet-sensitive pathways are likely to be crucial in these processes. While an epigenetic mechanism provides a strong explanation of how nutritional exposures can affect fetal gene expression and subsequent disease risk, other diet-induced tissue compositional changes may also contribute directly to altered immune and metabolic function--including diet-induced changes in the microbiome. A better understanding of nutritional programming of immune health, nutritional epigenetics and the biological processes sensitive to nutritional exposures early in life may lead to dietary strategies that provide more tolerogenic conditions during early immune programming and reduce the

  6. Activation of cellular immune response in acute pancreatitis.

    PubMed Central

    Mora, A; Pérez-Mateo, M; Viedma, J A; Carballo, F; Sánchez-Payá, J; Liras, G

    1997-01-01

    BACKGROUND: Inflammatory mediators have recently been implicated as potential markers of severity in acute pancreatitis. AIMS: To determine the value of neopterin and polymorphonuclear (PMN) elastase as markers of activation of cellular immunity and as early predictors of disease severity. PATIENTS: Fifty two non-consecutive patients classified according to their clinical outcome into mild (n = 26) and severe pancreatitis (n = 26). METHODS: Neopterin in serum and the PMN elastase/A1PI complex in plasma were measured during the first three days of hospital stay. RESULTS: Within three days after the onset of acute pancreatitis, PMN elastase was significantly higher in the severe pancreatitis group. Patients with severe disease also showed significantly higher values of neopterin on days 1 and 2 but not on day 3 compared with patients with mild disease. There was a significant correlation between PMN elastase and neopterin values on days 1 and 2. PMN elastase on day 1 predicted disease severity with a sensitivity of 76.7% and a specificity of 91.6%. Neopterin did not surpass PMN elastase in the probability of predicting disease severity. CONCLUSIONS: These data show that activation of cellular immunity is implicated in the pathogenesis of acute pancreatitis and may be a main contributory factor to disease severity. Neopterin was not superior to PMN elastase in the prediction of severity. PMID:9245935

  7. Association of sex work with reduced activation of the mucosal immune system.

    PubMed

    Lajoie, Julie; Kimani, Makubo; Plummer, Francis A; Nyamiobo, Francis; Kaul, Rupert; Kimani, Joshua; Fowke, Keith R

    2014-07-15

    Unprotected intercourse and seminal discharge are powerful activators of the mucosal immune system and are important risk factors for transmission of human immunodeficiency virus (HIV). This study was designed to determine if female sex work is associated with changes in the mucosal immunity. Cervicovaginal lavage and plasma from 122 HIV-uninfected female sex workers (FSW) and 44 HIV-uninfected low-risk non-FSW from the same socioeconomic district of Nairobi were analyzed for evidence of immune activation (IA). The cervico-mononuclear cells (CMC) were analyzed for cellular activation by flow cytometry. Lower IA was observed in FSW compared to the low-risk women as demonstrated by the lower level of MIP-3α (P < .001), ITAC (P < .001), MIG (p.0001), IL-1α (P < .001), IL-1β (P < .001), IL-1Rα (P = .0002), IL-6 (P < .001), IL-8 (P < .001), IL-10 (P = .01), IP-10 (P = .0001), MDC (P < .001), MIP-1α, (P < .001), MIP-1β (P = .005), MCP-1 (P = .03), and TNF-α (P = .006). Significant differences were noted as early as 1 year following initiation of sex work and increased with duration of sex work. This study showed that sex work is associated with important changes in the mucosal immune system. By analyzing chemokine/cytokine levels and CMC activation, we observed a lower mucosal IA in HIV-uninfected FSW compared to low-risk women. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity

    PubMed Central

    Guo, Gang; Yu, Miao; Xiao, Wei; Celis, Esteban; Cui, Yan

    2017-01-01

    Mutations in tumor suppressor p53 remain a vital mechanism of tumor escape from apoptosis and senescence. Emerging evidence suggests that p53 dysfunction also fuels inflammation and supports tumor immune evasion, thereby serving as an immunological driver of tumorigenesis. Therefore, targeting p53 in the tumor microenvironment (TME) also represents an immunologically desirable strategy for reversing immunosuppression and enhancing antitumor immunity. Using a pharmacological p53 activator nutlin-3a, we show that local p53 activation in TME comprising overt tumor infiltrating leukocytes (TILeus) induces systemic antitumor immunity and tumor regression, but not in TME with scarce TILeus, such as B16 melanoma. Maneuvers that recruit leukocytes to TME, such as TLR3 ligand in B16 tumors, greatly enhanced nutlin-induced antitumor immunity and tumor control. Mechanistically, nutlin-3a-induced antitumor immunity was contingent on two non-redundant but immunologically synergistic p53-dependent processes: reversal of immunosuppression in TME and induction of tumor immunogenic cell death (ICD), leading to activation and expansion of polyfunctional CD8 CTLs and tumor regression. Our study demonstrates that unlike conventional tumoricidal therapies, which rely on effective p53 targeting in each tumor cell and often associate with systemic toxicity, this immune-based strategy requires only limited local p53 activation to alter the immune landscape of TME and subsequently amplify immune response to systemic antitumor immunity. Hence, targeting the p53 pathway in TME can be exploited to reverse immunosuppression and augment therapeutic benefits beyond tumoricidal effects to harness tumor-specific, durable, and systemic antitumor immunity with minimal toxicity. PMID:28280037

  9. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring.

    PubMed

    Corradini, Irene; Focchi, Elisa; Rasile, Marco; Morini, Raffaella; Desiato, Genni; Tomasoni, Romana; Lizier, Michela; Ghirardini, Elsa; Fesce, Riccardo; Morone, Diego; Barajon, Isabella; Antonucci, Flavia; Pozzi, Davide; Matteoli, Michela

    2018-04-15

    The association between maternal infection and neurodevelopmental defects in progeny is well established, although the biological mechanisms and the pathogenic trajectories involved have not been defined. Pregnant dams were injected intraperitoneally at gestational day 9 with polyinosinic:polycytidylic acid. Neuronal development was assessed by means of electrophysiological, optical, and biochemical analyses. Prenatal exposure to polyinosinic:polycytidylic acid causes an imbalanced expression of the Na + -K + -2Cl - cotransporter 1 and the K + -Cl - cotransporter 2 (KCC2). This results in delayed gamma-aminobutyric acid switch and higher susceptibility to seizures, which endures up to adulthood. Chromatin immunoprecipitation experiments reveal increased binding of the repressor factor RE1-silencing transcription (also known as neuron-restrictive silencer factor) to position 509 of the KCC2 promoter that leads to downregulation of KCC2 transcription in prenatally exposed offspring. Interleukin-1 receptor type I knockout mice, which display braked immune response and no brain cytokine elevation upon maternal immune activation, do not display KCC2/Na + -K + -2Cl - cotransporter 1 imbalance when implanted in a wild-type dam and prenatally exposed. Notably, pretreatment of pregnant dams with magnesium sulfate is sufficient to prevent the early inflammatory state and the delay in excitatory-to-inhibitory switch associated to maternal immune activation. We provide evidence that maternal immune activation hits a key neurodevelopmental process, the excitatory-to-inhibitory gamma-aminobutyric acid switch; defects in this switch have been unequivocally linked to diseases such as autism spectrum disorder or epilepsy. These data open the avenue for a safe pharmacological treatment that may prevent the neurodevelopmental defects caused by prenatal immune activation in a specific pregnancy time window. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc

  10. Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster

    PubMed Central

    Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros

    2017-01-01

    Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota. PMID:28413160

  11. Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora

    PubMed Central

    Puill-Stephan, Eneour; Seneca, François O.; Miller, David J.; van Oppen, Madeleine J. H.; Willis, Bette L.

    2012-01-01

    Background Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Methodology/Principal Findings Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A.millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Conclusions/Significance Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of

  12. γδ T Cells Are a Component of Early Immunity against Preerythrocytic Malaria Parasites

    PubMed Central

    McKenna, Kyle C.; Tsuji, Moriya; Sarzotti, Marcella; Sacci, John B.; Witney, Adam A.; Azad, Abdu F.

    2000-01-01

    We tested the hypothesis that γδ T cells are a component of an early immune response directed against preerythrocytic malaria parasites that are required for the induction of an effector αβ T-cell immune response generated by irradiated-sporozoite (irr-spz) immunization. γδ T-cell-deficient (TCRδ−/−) mice on a C57BL/6 background were challenged with Plasmodium yoelii (17XNL strain) sporozoites, and then liver parasite burden was measured at 42 h postchallenge. Liver parasite burden was measured by quantification of parasite-specific 18S rRNA in total liver RNA by quantitative-competitive reverse transcription-PCR and by an automated 5′ exonuclease PCR. Sporozoite-challenged TCRδ−/− mice showed a significant (P < 0.01) increase in liver parasite burden compared to similarly challenged immunocompetent mice. In support of this result, TCRδ−/− mice were also found to be more susceptible than immunocompetent mice to a sporozoite challenge when blood-stage parasitemia was used as a readout. A greater percentage of TCRδ−/− mice than of immunocompetent mice progressed to a blood-stage infection when challenged with five or fewer sporozoites (odds ratio = 2.35, P = 0.06). TCRδ−/− mice receiving a single irr-spz immunization showed percent inhibition of liver parasites comparable to that of immunized immunocompetent mice following a sporozoite challenge. These data support the hypothesis that γδ T cells are a component of early immunity directed against malaria preerythrocytic parasites and suggest that γδ T cells are not required for the induction of an effector αβ T-cell immune response generated by irr-spz immunization. PMID:10722623

  13. Active targeted delivery of immune therapeutics to lymph nodes.

    PubMed

    Bahmani, Baharak; Vohra, Ishaan; Kamaly, Nazila; Abdi, Reza

    2018-02-01

    Organ transplantation is a life-saving procedure and the only option for patients with end-organ failure. Immune therapeutics have been key to the success of organ transplantation. However, immune therapeutics are still unable to eliminate graft rejection and their toxicity has been implicated in poorer long-term transplant outcomes. Targeted nanodelivery has the potential to enhance not only the therapeutic index but also the bioavailability of the immune therapeutics. One of the key sites of immune therapeutics delivery is lymph node where the priming of immune cells occur. The focus of this review is on nanomedicine research to develop the targeted delivery of immune therapeutics to lymph nodes for controlling immune activation. As nanomedicine creates its niche in clinical care, it provides novel immunotherapy platforms for transplant recipients. Draining lymph nodes are the primary loci of immune activation and represent a formidable site for delivery of wide variety of immune therapeutics. There have been relentless efforts to improve the properties of nanomedicines, to have in-depth knowledge of antigen and drug loading, and, finally, to explore various routes of passive and active targeted delivery to lymph nodes. The application of nanotechnology principles in the delivery of immune therapeutics to the lymph node has created enormous excitement as a paradigm shifting approach that enables targeted delivery of a gamut of molecules to achieve a desired immune response. Therefore, innovative strategies that improve their efficacy while reducing their toxicity are among the highest unmet needs in transplantation.

  14. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  15. Activating the innate immune response to counter chronic hepatitis B virus infection.

    PubMed

    Lamb, Camilla; Arbuthnot, Patrick

    2016-12-01

    Chronic infection with hepatitis B virus (HBV) is endemic to several populous parts of the world, where resulting complicating cirrhosis and hepatocellular carcinoma occur commonly. Licensed drugs to treat the infection have limited curative efficacy, and development of therapies that eliminate all replication intermediates of HBV is a priority. Areas covered: The recent demonstration that the activation of the innate immune response may eradicate HBV from infected hepatocytes has a promising therapeutic application. Small molecule stimulators of Toll-like receptors (TLRs) inhibit replication of woodchuck hepatitis virus in woodchucks and HBV in chimpanzees and mice. Early stage clinical trials using GS-9620, a TLR7 agonist, indicate that this candidate antiviral is well tolerated in humans. Using an alternative approach, triggering the innate immune response with agonists of lymphotoxin-β receptor caused efficient APOBEC-mediated deamination and degradation of viral covalently closed circular DNA. Expert opinion: Eliminating HBV cccDNA from infected individuals would constitute a cure, and has become the focus of intensive research that employs various therapeutic approaches, including gene therapy. Immunomodulation through innate immune activation shows promise for the treatment of chronic infection of HBV (CHB) and, used in combination with other therapeutics, may contribute to the global control of infections and ultimately to the eradication of HBV.

  16. Effects of Moderate Prenatal Alcohol Exposure during Early Gestation in Rats on Inflammation across the Maternal-Fetal-Immune Interface and Later-Life Immune Function in the Offspring

    PubMed Central

    Terasaki, Laurne S.; Schwarz, Jaclyn M.

    2017-01-01

    During early brain development, microglial activation can negatively impact long-term neuroimmune and cognitive outcomes. It is well-known that significant alcohol exposure during early gestation results in a number of cognitive deficits associated with fetal alcohol spectrum disorders (FASD). Additionally, microglia are activated following high levels of alcohol exposure in rodent models of FASD. We sought to examine whether moderate prenatal alcohol exposure (70 mg/dL blood alcohol concentration) activates microglia in the fetal rat brain, and whether moderate fetal alcohol exposure has long-term negative consequences for immune function and cognitive function in the rat. We also measured inflammation within the placenta and maternal serum following moderate alcohol exposure to determine whether either could be a source of cytokine production in the fetus. One week of moderate prenatal alcohol exposure produced a sex-specific increase in cytokines and chemokines within the fetal brain. Cytokines were also increased within the placenta, regardless of the sex of the fetus, and independent of the low levels of circulating cytokines within the maternal serum. Adult offspring exposed to alcohol prenatally had exaggerated cytokine production in the brain and periphery in response to lipopolysaccharide (25 μg/kg), as well as significant memory deficits precipitated by this low-level of inflammation. Thus the immune system, including microglia, may be a key link to understanding the etiology of fetal alcohol spectrum disorders and other unexplored cognitive or health risks associated with even low levels of fetal alcohol exposure. PMID:27318824

  17. Gender-Dependent Effects of Maternal Immune Activation on the Behavior of Mouse Offspring

    PubMed Central

    Xuan, Ingrid C. Y.; Hampson, David R.

    2014-01-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the “maternal immune activation” model, whereby the offspring from female rodents who were subjected to an immune stimulus during early or mid-pregnancy are studied. Here, C57BL/6 mouse dams were treated mid-gestation with saline, lipopolysaccharide (LPS) to mimic a bacterial infection, or polyinosinic:polycytidylic acid (Poly IC) to mimic a viral infection. Autism-associated behaviors were examined in the adult offspring of the treated dams. Behavioral tests were conducted to assess motor activity, exploration in a novel environment, sociability, and repetitive behaviors, and data analyses were carried independently on male and female mice. We observed a main treatment effect whereby male offspring from Poly IC-treated dams showed reduced motor activity. In the marble burying test of repetitive behavior, male offspring but not female offspring from both LPS and Poly IC-treated mothers showed increased marble burying. Our findings indicate that offspring from mothers subjected to immune stimulation during gestation show a gender-specific increase in stereotyped repetitive behavior. PMID:25111339

  18. Innate Immune Activation in Obesity

    PubMed Central

    Lumeng, Carey N.

    2014-01-01

    The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases. PMID:23068074

  19. To Give or Not to Give: Approaches to Early Childhood Immunization Delivery in Oregon Rural Primary Care Practices

    ERIC Educational Resources Information Center

    Fagnan, Lyle J.; Shipman, Scott A.; Gaudino, James A.; Mahler, Jo; Sussman, Andrew L.; Holub, Jennifer

    2011-01-01

    Context: Little is known about rural clinicians' perspectives regarding early childhood immunization delivery, their adherence to recommended best immunization practices, or the specific barriers they confront. Purpose: To examine immunization practices, beliefs, and barriers among rural primary care clinicians for children in Oregon and compare…

  20. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  1. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE.

    PubMed

    Christy, Alison L; Walker, Margaret E; Hessner, Martin J; Brown, Melissa A

    2013-05-01

    The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Colorectal cancer prevention: Immune modulation taking the stage.

    PubMed

    Fletcher, Rochelle; Wang, Yi-Jun; Schoen, Robert E; Finn, Olivera J; Yu, Jian; Zhang, Lin

    2018-04-01

    Prevention or early detection is one of the most promising strategies against colorectal cancer (CRC), the second leading cause of cancer death in the US. Recent studies indicate that antitumor immunity plays a key role in CRC prevention. Accumulating evidence suggests that immunosurveillance represents a critical barrier that emerging tumor cells have to overcome in order to sustain the course of tumor development. Virtually all of the agents with cancer preventive activity have been shown to have an immune modulating effect. A number of immunoprevention studies aimed at triggering antitumor immune response against early lesions have been performed, some of which have shown promising results. Furthermore, the recent success of immune checkpoint blockade therapy reinforces the notion that cancers including CRC can be effectively intervened via immune modulation including immune normalization, and has stimulated various immune-based combination prevention studies. This review summarizes recent advances to help better harness the immune system in CRC prevention. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. [Protective immunity against Mycobacterium tuberculosis].

    PubMed

    Kawamura, Ikuo

    2006-11-01

    Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen with which over a billion people have been infected and 3 million people die annually. The bacterium induces vigorous immune responses, yet evades host immunity, persisting within phagosomes of the infected macrophages. Thus, it is necessary to delineate that the virulence-related intracellular survival mechanism and the host immune responses to eradicate M. tuberculosis on the molecular basis. In this regard, recent findings clearly indicated that Toll-like receptors (TLRs) play an essential role in the recognition of MTB components by macrophages and dendritic cells, resulting in not only activation of innate immunity but also development of antigen-specific adaptive immunity. It has been also reported that induction of early death of the infected cells may be one of the strategy of host defense against MTB because macrophages go into apoptosis upon infection with MTB, resulting in suppression of the intracellular replication. Furthermore, recent report has shown that autophagy is induced by IFN-gamma and suppress intracellular survival of mycobacteria, suggesting that activation of autophagy pathway is required to overcome phagosome maturation arrest induced by MTB. In addition, it is known that IFN-gamma plays an important role in protection. The cytokine that is produced from NK cells and dendritic cells at the early period of infection strongly induces not only macrophage activation but also development of antigen-specific IFN-gamma-producing CD4+T cells. Since antigen-specific CD8+ T cells and CD1-restricted T cells are also reported to contribute to the protective immunity, cooperation of these T cells is essential for the host resistance. In this paper, I am going to summarize the recent progress of the understanding of protective immunity against MTB.

  4. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  5. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  6. Hygiene and other early childhood influences on the subsequent function of the immune system.

    PubMed

    Rook, Graham A W; Lowry, Christopher A; Raison, Charles L

    2015-08-18

    The immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia and autism. The immune system also acts indirectly by "farming" the intestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparent inflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights

  7. Immune-Based Approaches to the Prevention of Mother-to-child-Transmission of HIV-1: Active and Passive Immunization

    PubMed Central

    Lohman-Payne, Barb; Slyker, Jennifer; Rowland-Jones, Sarah L.

    2010-01-01

    Synopsis Despite more than two decades of research, an effective vaccine that can prevent HIV-1 infection in populations exposed to the virus remains elusive. In the pursuit of an HIV-1 vaccine, does prevention of exposure to maternal HIV-1 in utero, at birth or in early life through breast-milk require special consideration? In this article we will review what is known about the immune mechanisms of susceptibility and resistance to mother-to-child transmission (MTCT) of HIV-1 and will summarise studies that have used passive or active immunisation strategies to interrupt -MTCT of HIV-1. We will also describe potentially modifiable infectious co-factors that may enhance transmission and/or disease progression (especially in the developing world). Ultimately an effective prophylactic vaccine against HIV-1 infection will need to be deployed as part of the Extended Programme of Immunisation (EPI) recommended by the World Health Organisation (WHO) for use in developing countries, so it is important to understand how the infant immune system responds to HIV-1 antigens, both in natural infection and presented by candidate vaccines. PMID:21078451

  8. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches

    NASA Astrophysics Data System (ADS)

    de Coster, Greet; Verhulst, Simon; Koetsier, Egbert; de Neve, Liesbeth; Briga, Michael; Lens, Luc

    2011-12-01

    Long-term effects of unfavourable conditions during development can be expected to depend on the quality of the environment experienced by the same individuals during adulthood. Yet, in the majority of studies, long-term effects of early developmental conditions have been assessed under favourable adult conditions only. The immune system might be particularly vulnerable to early environmental conditions as its development, maintenance and use are thought to be energetically costly. Here, we studied the interactive effects of favourable and unfavourable conditions during nestling and adult stages on innate immunity (lysis and agglutination scores) of captive male and female zebra finches ( Taeniopygia guttata). Nestling environmental conditions were manipulated by a brood size experiment, while a foraging cost treatment was imposed on the same individuals during adulthood. This combined treatment showed that innate immunity of adult zebra finches is affected by their early developmental conditions and varies between both sexes. Lysis scores, but not agglutination scores, were higher in individuals raised in small broods and in males. However, these effects were only present in birds that experienced low foraging costs. This study shows that the quality of the adult environment may shape the long-term consequences of early developmental conditions on innate immunity, as long-term effects of nestling environment were only evident under favourable adult conditions.

  9. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.

    PubMed

    LaMontagne, Erica D; Heese, Antje

    2017-12-01

    In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.

  10. Hyperactive immune cells (T cells) may be responsible for acute lung injury in influenza virus infections: a need for early immune-modulators for severe cases.

    PubMed

    Lee, Kyung-Yil; Rhim, Jung-Woo; Kang, Jin-Han

    2011-01-01

    It has been believed that acute lung injury in influenza virus infections is caused by a virus-induced cytopathy; viruses that have multiplied in the upper respiratory tract spread to lung tissues along the lower respiratory tract. However, some experimental and clinical studies have suggested that the pathogenesis of acute lung injury in influenza virus infections is associated with excessive host response including a cell-mediated immune reaction. During the pandemic H1N1 2009 influenza A virus infections in Korea, we experienced a dramatic effect of immune-modulators (corticosteroids) on the patients with severe pneumonia who had significant respiratory distress at presentation and those who showed rapidly progressive pneumonia during oseltamivir treatment. We also found that the pneumonia patients treated with corticosteroids showed the lowest lymphocyte differential and that the severity of pneumonia was associated with the lymphocyte count at presentation. From our findings and previous experimental and clinical studies, we postulated that hyperactive immune cells (T cells) may be involved in the acute lung injury of influenza virus infections, using a hypothesis of 'protein homeostasis system'; the inducers of the cell-mediated immune response are initially produced at the primary immune sites by the innate immune system. These substances reach the lung cells, the main target organ, via the systemic circulation, and possibly the cells of other organs, including myocytes or central nerve system cells, leading to extrapulmonary symptoms (e.g., myalgia and rhabdomyolysis, and encephalopathy). To control these substances that may be possibly toxic to host cells, the adaptive immune reaction may be operated by immune cells, mainly lymphocytes. Hyperimmune reaction of immune cells produces higher levels of cytokines which may be associated with acute lung injury, and may be controlled by early use of immune-modulators. Early initiation and proper dosage of immune

  11. Immune Components in Human Milk Are Associated with Early Infant Immunological Health Outcomes: A Prospective Three-Country Analysis

    PubMed Central

    Munblit, Daniel; Treneva, Marina; Peroni, Diego G.; Colicino, Silvia; Chow, Li Yan; Dissanayeke, Shobana; Pampura, Alexander; Boner, Attilio L.; Geddes, Donna T.; Boyle, Robert J.; Warner, John O.

    2017-01-01

    The role of breastfeeding in improving allergy outcomes in early childhood is still unclear. Evidence suggests that immune mediators in human milk (HM) play a critical role in infant immune maturation as well as protection against atopy/allergy development. We investigated relationships between levels of immune mediators in colostrum and mature milk and infant outcomes in the first year of life. In a large prospective study of 398 pregnant/lactating women in the United Kingdom, Russia and Italy, colostrum and mature human milk (HM) samples were analysed for immune active molecules. Statistical analyses used models adjusting for the site of collection, colostrum collection time, parity and maternal atopic status. Preliminary univariate analysis showed detectable interleukin (IL) 2 and IL13 in HM to be associated with less eczema. This finding was further confirmed in multivariate analysis, with detectable HM IL13 showing protective effect OR 0.18 (95% CI 0.04–0.92). In contrast, a higher risk of eczema was associated with higher HM concentrations of transforming growth factor β (TGFβ) 2 OR 1.04 (95% CI 1.01–1.06) per ng/mL. Parental-reported food allergy was reported less often when IL13 was detectable in colostrum OR 0.10 (95% CI 0.01–0.83). HM hepatocyte growth factor (HGF) was protective for common cold incidence at 12 months OR 0.19 (95% CI 0.04–0.92) per ng/mL. Data from this study suggests that differences in the individual immune composition of HM may have an influence on early life infant health outcomes. Increased TGFβ2 levels in HM are associated with a higher incidence of reported eczema, with detectable IL13 in colostrum showing protective effects for food allergy and sensitization. HGF shows some protective effect on common cold incidence at one year of age. Future studies should be focused on maternal genotype, human milk microbiome and diet influence on human milk immune composition and both short- and long-term health outcomes in the

  12. Immune Components in Human Milk Are Associated with Early Infant Immunological Health Outcomes: A Prospective Three-Country Analysis.

    PubMed

    Munblit, Daniel; Treneva, Marina; Peroni, Diego G; Colicino, Silvia; Chow, Li Yan; Dissanayeke, Shobana; Pampura, Alexander; Boner, Attilio L; Geddes, Donna T; Boyle, Robert J; Warner, John O

    2017-05-24

    The role of breastfeeding in improving allergy outcomes in early childhood is still unclear. Evidence suggests that immune mediators in human milk (HM) play a critical role in infant immune maturation as well as protection against atopy/allergy development. We investigated relationships between levels of immune mediators in colostrum and mature milk and infant outcomes in the first year of life. In a large prospective study of 398 pregnant/lactating women in the United Kingdom, Russia and Italy, colostrum and mature human milk (HM) samples were analysed for immune active molecules. Statistical analyses used models adjusting for the site of collection, colostrum collection time, parity and maternal atopic status. Preliminary univariate analysis showed detectable interleukin (IL) 2 and IL13 in HM to be associated with less eczema. This finding was further confirmed in multivariate analysis, with detectable HM IL13 showing protective effect OR 0.18 (95% CI 0.04-0.92). In contrast, a higher risk of eczema was associated with higher HM concentrations of transforming growth factor β (TGFβ) 2 OR 1.04 (95% CI 1.01-1.06) per ng/mL. Parental-reported food allergy was reported less often when IL13 was detectable in colostrum OR 0.10 (95% CI 0.01-0.83). HM hepatocyte growth factor (HGF) was protective for common cold incidence at 12 months OR 0.19 (95% CI 0.04-0.92) per ng/mL. Data from this study suggests that differences in the individual immune composition of HM may have an influence on early life infant health outcomes. Increased TGFβ2 levels in HM are associated with a higher incidence of reported eczema, with detectable IL13 in colostrum showing protective effects for food allergy and sensitization. HGF shows some protective effect on common cold incidence at one year of age. Future studies should be focused on maternal genotype, human milk microbiome and diet influence on human milk immune composition and both short- and long-term health outcomes in the infant.

  13. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation

    PubMed Central

    Martinez, Emily M.; Yoshida, Miya C.; Candelario, Tara Lynne T.

    2015-01-01

    Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders. PMID:25568077

  14. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation.

    PubMed

    Martinez, Emily M; Yoshida, Miya C; Candelario, Tara Lynne T; Hughes-Fulford, Millie

    2015-03-15

    Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders.

  15. Microglia, the missing link in maternal immune activation and fetal neurodevelopment; and a possible link in preeclampsia and disturbed neurodevelopment?

    PubMed

    Prins, Jelmer R; Eskandar, Sharon; Eggen, Bart J L; Scherjon, Sicco A

    2018-04-01

    Disturbances in fetal neurodevelopment have extensively been related to neurodevelopmental disorders in early and later life. Fetal neurodevelopment is dependent on adequate functioning of the fetal immune system. During pregnancy, the maternal immune system is challenged to both tolerate the semi-allogenic fetus and to protect the mother and fetus from microbes. The fetal immune system is influenced by maternal immune disturbances; therefore, perturbations in maternal immunity likely do not only alter pregnancy outcome but also alter fetal neurodevelopment. A possible common pathway could be modulating the functioning of tissue macrophages in the placenta and brain. Maternal immune tolerance towards the fetus involves several complex adaptations. In this active maternal immune state, the fetus develops its own immunity. As cytokines and other players of the immune system -which can pass the placenta- are involved in neurodevelopment, disruptions in immune balance influence fetal neurodevelopment. Several studies reported an association between maternal immune activation, complications of pregnancy as preeclampsia, and altered neonatal neurodevelopment. A possible pathway involves dysfunctioning of microglia cells, the immune cells of the brain. Functionality of microglia cells during normal pregnancy is, however, poorly understood. The recent outbreak of ZIKA virus (ZKV), but also the literature on virus infections in general and its consequences on microglial cell function and fetal neurodevelopment show the devastating effects a virus infection during pregnancy can have. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  17. Characteristics of the early immune response following transplantation of mouse ES cell derived insulin-producing cell clusters.

    PubMed

    Boyd, Ashleigh S; Wood, Kathryn J

    2010-06-04

    The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT.

  18. PRENATAL INFECTION, MATERNAL IMMUNE ACTIVATION, AND RISK FOR SCHIZOPHRENIA

    PubMed Central

    Canetta, Sarah E.; Brown, Alan S.

    2013-01-01

    A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed. PMID:23956839

  19. PRENATAL INFECTION, MATERNAL IMMUNE ACTIVATION, AND RISK FOR SCHIZOPHRENIA.

    PubMed

    Canetta, Sarah E; Brown, Alan S

    2012-12-01

    A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed.

  20. Comparative Proteomic Analysis Reveals Activation of Mucosal Innate Immune Signaling Pathways during Cholera

    PubMed Central

    LaRocque, Regina C.; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M.; Sarracino, David; Karlsson, Elinor K.; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R.; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T.; Calderwood, Stephen B.; Qadri, Firdausi

    2015-01-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1. PMID:25561705

  1. Brugia pahangi: Immunization with early L3 ES alters parasite migration, and reduces microfilaremia and lymphatic lesion formation in gerbils (Meriones unguiculatus)

    PubMed Central

    Zipperer, Ginger R.; Arumugam, Sridhar; Chirgwin, Sharon R.; Coleman, Sharon U.; Shakya, Krishna P.; Klei, Thomas R.

    2013-01-01

    Previous studies have shown that intradermally (ID) injected B. pahangi L3s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24 hr in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early B. malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils. PMID:23981910

  2. Effect of level of chronic immune system activation on the lactational performance of sows.

    PubMed

    Sauber, T E; Stahly, T S; Nonnecke, B J

    1999-08-01

    The effect of the level of chronic immune system (IS) activation on sow lactational performance was determined in 11 pairs of littermate, primiparous sows. Sows with a low level of IS activation were created by rearing the animals via early weaning, isolated rearing schemes. During lactation, two levels of IS activation were achieved in each littermate sow pair by subcutaneous administration of either 0 (saline) or 5 microg/kg of sow BW of Escherichia coli lipopolysaccharide (LPS) in a mineral oil adjuvant emulsion on d 2 and 10 of lactation. Litters were standardized to 13 pigs by 8 h postpartum. Sows were offered daily 6.0 kg of a corn-soy diet formulated to contain a minimum of 250% of the dietary nutrient concentrations estimated to be needed by lactating sows. Based on antibody titers to LPS and serum concentrations of alpha-1 acid glycoprotein (AGP), high IS sows mounted an immune response to the LPS during lactation, and low IS sows maintained a low level of IS activation. Over an 18-d lactation, a high level of chronic activation of the sows' immune systems depressed daily sow feed intakes by .56 kg, litter weight gains by .32 kg, and daily milk by 1.4 kg, milk energy by 1.7 Mcal, and milk protein yields by 71 g, but did not alter sow body weight loss. The reductions in yields of milk and milk nutrients likely were because of proinflammatory cytokine-induced inhibition of the lactogenic hormones resulting from high chronic IS activation. Based on these data, the level of chronic IS activation alters the lactational performance of sows.

  3. Combining Active Immunization with Monoclonal Antibody Therapy to Facilitate Early Initiation of a Long-acting Anti-methamphetamine Antibody Response

    PubMed Central

    Hambuchen, Michael D.; Carroll, F. Ivy; Rüedi-Bettschen, Daniela; Hendrickson, Howard P.; Hennings, Leah J.; Blough, Bruce E.; Brieaddy, Lawrence E.; Pidaparthi, Ramakrishna R.; Owens, S. Michael

    2015-01-01

    We hypothesized that an anti-METH mAb could be used in combination with a METH-conjugate vaccine (MCV) to safely improve the overall quality and magnitude of the anti-METH immune response. The benefits would include immediate onset of action (from the mAb), timely increases in the immune responses (from the combined therapy) and duration of antibody response that could last for months (from the MCV). A novel METH-like hapten (METH-SSOO9) was synthesized and then conjugated to immunocyanin monomers of Keyhole limpet hemocyanin (ICKLH) to create the MCV, ICKLH-SOO9. The vaccine, in combination with previously discovered anti-METH mAb7F9, was then tested in rats for safety and potential efficacy. The combination antibody therapy allowed safe achievement of an early high anti-METH antibody response, which persisted throughout the study. Indeed, even after four months the METH vaccine antibodies still had the capacity to significantly reduce METH brain concentrations resulting from a 0.56 mg/kg METH dose. PMID:25973614

  4. B-cell development and pneumococcal immunity in vertically acquired HIV infection.

    PubMed

    Eisen, Sarah; Hayden, Clare; Young, Carmel J; Gilson, Richard; Jungmann, Eva; Jacobsen, Marianne C; Poulsom, Hannah; Goldblatt, David; Klein, Nigel J; Baxendale, Helen E

    2016-07-31

    Many children with HIV infection now survive into adulthood. This study explored the impact of vertically acquired HIV in the era of antiretroviral therapy on the development of humoral immunity. Natural and vaccine-related immunity to pneumococcus and B-cell phenotype was characterized and compared in three groups of young adults: those with vertically-acquired infection, those with horizontally acquired infection and healthy controls. Serotype-specific pneumococcal (Pnc) immunoglobulin M and G concentrations before and up to 1 year post-Pnc polysaccharide (Pneumovax) immunization were determined, and opsonophagocytic activity was analysed. B-cell subpopulations and dynamic markers of B-cell signalling, turnover and susceptibility to apoptosis were evaluated by flow cytometry. HIV-infected patients showed impaired natural Pnc immunity and reduced humoral responses to immunization with Pneumovax; this was greatest in those viraemic at time of the study. Early-life viral control before the age of 10 years diminished these changes. Expanded populations of abnormally activated and immature B-cells were seen in both HIV-infected cohorts. Vertically infected patients were particularly vulnerable to reductions in marginal zone and switched memory populations. These aberrations were reduced in patients with early-life viral control. In children with HIV, damage to B-cell memory populations and impaired natural and vaccine immunity to pneumococcus is evident in early adult life. Sustained viral control from early childhood may help to limit this effect and optimize humoral immunity in adult life.

  5. Interactions of Sexual Activity, Gender, and Depression with Immunity

    PubMed Central

    Lorenz, Tierney; van Anders, Sari

    2015-01-01

    Introduction Depression can suppress immune function, leading to lower resistance against infection and longer healing times in depressed individuals. Sexuality may also influence immune function, with evidence that sexual activity is associated with lowered immune function in women and mixed results in men. Immune mediators like immunoglobulin A (IgA) are immediately relevant to sexual health, since they are the first line of defense against pathogens at mucous membranes like the vagina. Aim This study aims to determine if and how depression, sexual activity, and their interaction impact salivary IgA (SIgA) in men and women. Methods In Study 1, a community-based sample of 84 women and 88 men provided saliva samples and completed questionnaires on their demographic background, level of depression, and frequency of partnered and solitary sexual activity. Study 2, conducted separately in an undergraduate student sample of 54 women and 52 men, had similar methods. Main Outcome Measures The main outcome measures were scores on the General Well-Being Schedule depression subscale, reported frequency of sexual activity, and SIgA levels as measured by enzyme immunoassay. Results Across studies, higher levels of partnered sexual activity were associated with lower SIgA for women with high depression scores, but not for women with low depression scores. In contrast, higher levels of partnered sexual activity were associated with higher SIgA for men with high depression scores, but not for men with low depression scores. Conclusion Our results show that partnered sexual activity is a risk factor for lowered immunity in women with depressive symptoms but a possible resilience factor for men with depressive symptoms. This suggests a role for sexual activity in determining the impact of depression on physical health parameters. PMID:23448297

  6. Addressing immunization registry population inflation in adolescent immunization rates.

    PubMed

    Robison, Steve G

    2015-01-01

    While U.S. adolescent immunization rates are available annually at national and state levels, finding pockets of need may require county or sub-county information. Immunization information systems (IISs) are one tool for assessing local immunization rates. However, the presence of IIS records dating back to early childhood and challenges in capturing mobility out of IIS areas typically leads to denominator inflation. We examined the feasibility of weighting adolescent immunization records by length of time since last report to produce more accurate county adolescent counts and immunization rates. We compared weighted and unweighted adolescent denominators from the Oregon ALERT IIS, along with county-level Census Bureau estimates, with school enrollment counts from Oregon's annual review of seventh-grade school immunization compliance for public and private schools. Adolescent immunization rates calculated using weighted data, for the state as a whole, were also checked against comparable National Immunization Survey (NIS) rates. Weighting individual records by the length of time since last activity substantially improved the fit of IIS data to county populations for adolescents. A nonlinear logarithmic (ogive) weight produced the best fit to the school count data of all examined estimates. Overall, the ogive weighted results matched NIS adolescent rates for Oregon. The problem of mobility-inflated counts of teenagers can be addressed by weighting individual records based on time since last immunization. Well-populated IISs can rely on their own data to produce adolescent immunization rates and find pockets of need.

  7. Early gene Broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster.

    PubMed

    Verma, Puja; Tapadia, Madhu G

    2015-08-01

    In insects, humoral response to injury is accomplished by the production of antimicrobial peptides (AMPs) which are secreted in the hemolymph to eliminate the pathogen. Drosophila Malpighian tubules (MTs), however, are unique immune organs that show constitutive expression of AMPs even in unchallenged conditions and the onset of immune response is developmental stage dependent. Earlier reports have shown ecdysone positively regulates immune response after pathogenic challenge however, a robust response requires prior potentiation by the hormone. Here we provide evidence to show that MTs do not require prior potentiation with ecdysone hormone for expression of AMPs and they respond to ecdysone very fast even without immune challenge, although the different AMPs Diptericin, Cecropin, Attacin, Drosocin show differential expression in response to ecdysone. We show that early gene Broad complex (BR-C) could be regulating the IMD pathway by activating Relish and physically interacting with it to activate AMPs expression. BR-C depletion from Malpighian tubules renders the flies susceptible to infection. We also show that in MTs ecdysone signaling is transduced by EcR-B1 and B2. In the absence of ecdysone signaling the IMD pathway associated genes are down regulated and activation and translocation of transcription factor Relish is also affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response.

    PubMed

    Liu, Dong; Uzonna, Jude E

    2012-01-01

    The complicated interactions between Leishmania and the host antigen-presenting cells (APCs) have fundamental effects on the final outcome of the disease. Two major APCs, macrophages and dendritic cells (DCs), play critical roles in mediating resistance and susceptibility during Leishmania infection. Macrophages are the primary resident cell for Leishmania: they phagocytose and permit parasite proliferation. However, these cells are also the major effector cells to eliminate infection. The effective clearance of parasites by macrophages depends on activation of appropriate immune response, which is usually initiated by DCs. Here, we review the early interaction of APCs with Leishmania parasites and how these interactions profoundly impact on the ensuing adaptive immune response. We also discuss how the current knowledge will allow further refinement of our understanding of the interplay between Leishmania and its hosts that leads to resistance or susceptibility.

  9. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response

    PubMed Central

    Liu, Dong; Uzonna, Jude E.

    2012-01-01

    The complicated interactions between Leishmania and the host antigen-presenting cells (APCs) have fundamental effects on the final outcome of the disease. Two major APCs, macrophages and dendritic cells (DCs), play critical roles in mediating resistance and susceptibility during Leishmania infection. Macrophages are the primary resident cell for Leishmania: they phagocytose and permit parasite proliferation. However, these cells are also the major effector cells to eliminate infection. The effective clearance of parasites by macrophages depends on activation of appropriate immune response, which is usually initiated by DCs. Here, we review the early interaction of APCs with Leishmania parasites and how these interactions profoundly impact on the ensuing adaptive immune response. We also discuss how the current knowledge will allow further refinement of our understanding of the interplay between Leishmania and its hosts that leads to resistance or susceptibility. PMID:22919674

  10. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera.

    PubMed

    Ellis, Crystal N; LaRocque, Regina C; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M; Sarracino, David; Karlsson, Elinor K; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T; Calderwood, Stephen B; Qadri, Firdausi; Harris, Jason B

    2015-03-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Characteristics of the Early Immune Response Following Transplantation of Mouse ES Cell Derived Insulin-Producing Cell Clusters

    PubMed Central

    Boyd, Ashleigh S.; Wood, Kathryn J.

    2010-01-01

    Background The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Methodology/Principal Findings Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Conclusions/Significance Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT. PMID:20532031

  12. Activation of the Maternal Immune System Induces Endocrine Changes in the Placenta via IL-6

    PubMed Central

    Hsiao, Elaine Y.; Patterson, Paul H.

    2011-01-01

    Activation of the maternal immune system in rodent models sets in motion a cascade of molecular pathways that ultimately result in autism- and schizophrenia-related behaviors in offspring. The finding that interleukin-6 (IL-6) is a crucial mediator of these effects led us to examine the mechanism by which this cytokine influences fetal development in vivo. Here we focus on the placenta as the site of direct interaction between mother and fetus and as a principal modulator of fetal development. We find that maternal immune activation (MIA) with a viral mimic, synthetic double-stranded RNA (poly(I:C)), increases IL-6 mRNA as well as maternally-derived IL-6 protein in the placenta. Placentas from MIA mothers exhibit increases in CD69+ decidual macrophages, granulocytes and uterine NK cells, indicating elevated early immune activation. Maternally-derived IL-6 mediates activation of the JAK/STAT3 pathway specifically in the spongiotrophoblast layer of the placenta, which results in expression of acute phase genes. Importantly, this parallels an IL-6-dependent disruption of the growth hormone-insulin-like growth factor (GH-IGF) axis that is characterized by decreased GH, IGFI and IGFBP3 levels. In addition, we observe an IL-6-dependent induction in pro-lactin-like protein-K (PLP-K) expression as well as MIA-related alterations in other placental endocrine factors. Together, these IL-6-mediated effects of MIA on the placenta represent an indirect mechanism by which MIA can alter fetal development. PMID:21195166

  13. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE PAGES

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; ...

    2016-06-01

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  14. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  15. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    PubMed

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Injury-induced immune responses in Hydra.

    PubMed

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights

  17. Experimental murine fascioliasis derives early immune suppression with increased levels of TGF-β and IL-4.

    PubMed

    Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon

    2012-12-01

    In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.

  18. Regulatory dendritic cells: there is more than just immune activation.

    PubMed

    Schmidt, Susanne V; Nino-Castro, Andrea C; Schultze, Joachim L

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic

  19. Regulatory dendritic cells: there is more than just immune activation

    PubMed Central

    Schmidt, Susanne V.; Nino-Castro, Andrea C.; Schultze, Joachim L.

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic

  20. Experimental verification and molecular basis of active immunization against fungal pathogens in termites.

    PubMed

    Liu, Long; Li, Ganghua; Sun, Pengdong; Lei, Chaoliang; Huang, Qiuying

    2015-10-13

    Termites are constantly exposed to many pathogens when they nest and forage in the field, so they employ various immune strategies to defend against pathogenic infections. Here, we demonstrate that the subterranean termite Reticulitermes chinensis employs active immunization to defend against the entomopathogen Metarhizium anisopliae. Our results showed that allogrooming frequency increased significantly between fungus-treated termites and their nestmates. Through active social contact, previously healthy nestmates only received small numbers of conidia from fungus-treated individuals. These nestmates experienced low-level fungal infections, resulting in low mortality and apparently improved antifungal defences. Moreover, infected nestmates promoted the activity of two antioxidant enzymes (SOD and CAT) and upregulated the expression of three immune genes (phenoloxidase, transferrin, and termicin). We found 20 differentially expressed proteins associated with active immunization in R. chinensis through iTRAQ proteomics, including 12 stress response proteins, six immune signalling proteins, and two immune effector molecules. Subsequently, two significantly upregulated (60S ribosomal protein L23 and isocitrate dehydrogenase) and three significantly downregulated (glutathione S-transferase D1, cuticle protein 19, and ubiquitin conjugating enzyme) candidate immune proteins were validated by MRM assays. These findings suggest that active immunization in termites may be regulated by different immune proteins.

  1. Safety, Antitumor Activity, and Immune Activation of Pegylated Recombinant Human Interleukin-10 (AM0010) in Patients With Advanced Solid Tumors.

    PubMed

    Naing, Aung; Papadopoulos, Kyriakos P; Autio, Karen A; Ott, Patrick A; Patel, Manish R; Wong, Deborah J; Falchook, Gerald S; Pant, Shubham; Whiteside, Melinda; Rasco, Drew R; Mumm, John B; Chan, Ivan H; Bendell, Johanna C; Bauer, Todd M; Colen, Rivka R; Hong, David S; Van Vlasselaer, Peter; Tannir, Nizar M; Oft, Martin; Infante, Jeffrey R

    2016-10-10

    Purpose Interleukin-10 (IL-10) stimulates the expansion and cytotoxicity of tumor-infiltrating CD8+ T cells and inhibits inflammatory CD4+ T cells. Pegylation prolongs the serum concentration of IL-10 without changing the immunologic profile. This phase I study sought to determine the safety and antitumor activity of AM0010. Patients and Methods Patients with selected advanced solid tumors were treated with AM0010 in a dose-escalation study, which was followed by a renal cell cancer (RCC) dose-expansion cohort. AM0010 was self-administered subcutaneously at doses of 1 to 40 μg/kg once per day. Primary end points were safety and tolerability; clinical activity and immune activation were secondary end points. Results In the dose-escalation and -expansion cohorts, 33 and 18 patients, respectively, were treated with daily subcutaneous injection of AM0010. AM0010 was tolerated in a heavily pretreated patient population. Treatment-related adverse events (AEs) included anemia, fatigue, thrombocytopenia, fever, and injection site reactions. Grade 3 to 4 nonhematopoietic treatment-related AEs, including rash (n = 2) and transaminitis (n = 1), were observed in five of 33 patients. Grade 3 to 4 anemia or thrombocytopenia was observed in five patients. Most treatment-related AEs were transient or reversible. AM0010 led to systemic immune activation with elevated immune-stimulatory cytokines and reduced transforming growth factor beta in the serum. Partial responses were observed in one patient with uveal melanoma and four of 15 evaluable patients with RCC treated at 20 μg/kg (overall response rate, 27%). Prolonged stable disease of at least 4 months was observed in four patients, including one with colorectal cancer with disease stabilization for 20 months. Conclusion AM0010 has an acceptable toxicity profile with early evidence of antitumor activity, particularly in RCC. These data support the further evaluation of AM0010 both alone and in combination with other immune

  2. Photodynamic therapy for cancer and activation of immune response

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  3. Differential regulation of innate immune cytokine production through pharmacological activation of Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) in burn patient immune cells and monocytes

    PubMed Central

    Stepp, Wesley; Sjeklocha, Lucas; Long, Clayton; Riley, Caitlin; Callahan, James; Sanchez, Yolanda; Gough, Peter; Knowlin, Laquanda; van Duin, David; Ortiz-Pujols, Shiara; Jones, Samuel; Maile, Robert; Hong, Zhi; Berger, Scott; Cairns, Bruce

    2017-01-01

    Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0–48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells. PMID:28886135

  4. Differential regulation of innate immune cytokine production through pharmacological activation of Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) in burn patient immune cells and monocytes.

    PubMed

    Eitas, Timothy K; Stepp, Wesley H; Sjeklocha, Lucas; Long, Clayton V; Riley, Caitlin; Callahan, James; Sanchez, Yolanda; Gough, Peter; Knowlin, Laquanda; van Duin, David; Ortiz-Pujols, Shiara; Jones, Samuel W; Maile, Robert; Hong, Zhi; Berger, Scott; Cairns, Bruce A

    2017-01-01

    Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0-48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells.

  5. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    PubMed Central

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Objective The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. Methods In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Results Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. Conclusion The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls

  6. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro.

    PubMed

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3 + CD56 - T lymphocytes, CD3 + CD56 + NKT cells, CD3 - CD56 + NK cells, and also some cells within the CD3 - CD56 - non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086

  7. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    PubMed Central

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas. PMID:24202450

  8. Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation

    PubMed Central

    Khadilkar, Rohan J; Vogl, Wayne; Goodwin, Katharine

    2017-01-01

    Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection. PMID:28841136

  9. The Ustilago maydis Effector Pep1 Suppresses Plant Immunity by Inhibition of Host Peroxidase Activity

    PubMed Central

    Zechmann, Bernd; Hillmer, Morten; Doehlemann, Gunther

    2012-01-01

    The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1) as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H2O2 strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction. PMID:22589719

  10. A tetravalent alphavirus-vector based Dengue vaccine provides effective immunity in an early life mouse model

    PubMed Central

    Khalil, Syed Muaz; Tonkin, Daniel R.; Mattocks, Melissa D.; Snead, Andrew T.; Johnston, Robert E.; White, Laura J.

    2014-01-01

    Dengue viruses (DENV1-4) cause 390 million clinical infections every year, several hundred thousand of which progress to severe hemorrhagic and shock syndromes. Preexisting immunity resulting from a previous DENV infection is the major risk factor for severe dengue during secondary heterologous infections. During primary infections in infants, maternal antibodies pose an analogous risk. At the same time, maternal antibodies are likely to prevent induction of endogenous anti-DENV antibodies in response to current live, attenuated virus (LAV) vaccine candidates. Any effective early life dengue vaccine has to overcome maternal antibody interference (leading to ineffective vaccination) and poor induction of antibody responses (increasing the risk of severe dengue disease upon primary infection). In a previous study, we demonstrated that a non-propagating Venezuelan equine encephalitis virus replicon expression vector (VRP), expressing the ectodomain of DENV E protein (E85), overcomes maternal interference in a BALB/c mouse model. We report here that a single immunization with a tetravalent VRP vaccine induced NAb and T-cell responses to each serotype at a level equivalent to the monovalent vaccine components, suggesting that this vaccine modality can overcome serotype interference. Furthermore, neonatal immunization was durable and could be boosted later in life to further increase NAb and T-cell responses. Although the neonatal immune response was lower in magnitude than responses in adult BALB/c mice, we demonstrate that VRP vaccines generated protective immunity from a lethal challenge after a single neonatal immunization. In summary, VRP vaccines expressing DENV antigens were immunogenic and protective in neonates, and hence are promising candidates for safe and effective vaccination in early life. PMID:24882043

  11. Simultaneous Presence of Non- and Highly Mutated Keyhole Limpet Hemocyanin (KLH)-Specific Plasmablasts Early after Primary KLH Immunization Suggests Cross-Reactive Memory B Cell Activation.

    PubMed

    Giesecke, Claudia; Meyer, Tim; Durek, Pawel; Maul, Jochen; Preiß, Jan; Jacobs, Joannes F M; Thiel, Andreas; Radbruch, Andreas; Ullrich, Reiner; Dörner, Thomas

    2018-06-15

    There are currently limited insights into the progression of human primary humoral immunity despite numerous studies in experimental models. In this study, we analyzed a primary and related secondary parenteral keyhole limpet hemocyanin (KLH) immunization in five human adults. The primary challenge elicited discordant KLH-specific serum and blood effector B cell responses (i.e., dominant serum KLH-specific IgG and IgM levels versus dominant KLH-specific IgA plasmablast frequencies). Single-cell IgH sequencing revealed early appearance of highly (>15 mutations) mutated circulating KLH-specific plasmablasts 2 wk after primary KLH immunization, with simultaneous KLH-specific plasmablasts carrying non- and low-mutated IgH sequences. The data suggest that the highly mutated cells might originate from cross-reactive memory B cells (mBCs) rather than from the naive B cell repertoire, consistent with previous reported mutation rates and the presence of KLH-reactive mBCs in naive vaccinees prior to immunization. Whereas upon secondary immunization, serum Ab response kinetics and plasmablast mutation loads suggested the exclusive reactivation of KLH-specific mBCs, we, however, detected only little clonal overlap between the peripheral KLH-specific secondary plasmablast IgH repertoire and the primary plasmablast and mBC repertoire, respectively. Our data provide novel mechanistic insights into human humoral immune responses and suggest that primary KLH immunization recruits both naive B cells and cross-reactive mBCs, whereas secondary challenge exclusively recruits from a memory repertoire, with little clonal overlap with the primary response. Copyright © 2018 by The American Association of Immunologists, Inc.

  12. Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation

    PubMed Central

    Deloch, Lisa; Derer, Anja; Hartmann, Josefin; Frey, Benjamin; Fietkau, Rainer; Gaipl, Udo S.

    2016-01-01

    Even though there is extensive research carried out in radiation oncology, most of the clinical studies focus on the effects of radiation on the local tumor tissue and deal with normal tissue side effects. The influence of dose fractionation and timing particularly with regard to immune activation is not satisfactorily investigated so far. This review, therefore, summarizes current knowledge on concepts of modern radiotherapy (RT) and evaluates the potential of RT for immune activation. Focus is set on radiation-induced forms of tumor cell death and consecutively the immunogenicity of the tumor cells. The so-called non-targeted, abscopal effects can contribute to anti-tumor responses in a specific and systemic manner and possess the ability to target relapsing tumor cells as well as metastases. The impact of distinct RT concepts on immune activation is outlined and pre-clinical evidence and clinical observations on RT-induced immunity will be discussed. Knowledge on the radiosensitivity of immune cells as well as clinical evidence for enhanced immunity after RT will be considered. While stereotactic ablative body radiotherapy seem to have a beneficial outcome over classical RT fractionation in pre-clinical animal models, in vitro model systems suggest an advantage for classical fractionated RT for immune activation. Furthermore, the optimal approach may differ based on the tumor site and/or genetic signature. These facts highlight that clinical trials are urgently needed to identify whether high-dose RT is superior to induce anti-tumor immune responses compared to classical fractionated RT and in particular how the outcome is when RT is combined with immunotherapy in selected tumor entities. PMID:27379203

  13. A plant effector-triggered immunity signaling sector is inhibited by pattern-triggered immunity.

    PubMed

    Hatsugai, Noriyuki; Igarashi, Daisuke; Mase, Keisuke; Lu, You; Tsuda, Yayoi; Chakravarthy, Suma; Wei, Hai-Lei; Foley, Joseph W; Collmer, Alan; Glazebrook, Jane; Katagiri, Fumiaki

    2017-09-15

    Since signaling machineries for two modes of plant-induced immunity, pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), extensively overlap, PTI and ETI signaling likely interact. In an Arabidopsis quadruple mutant, in which four major sectors of the signaling network, jasmonate, ethylene, PAD4, and salicylate, are disabled, the hypersensitive response (HR) typical of ETI is abolished when the Pseudomonas syringae effector AvrRpt2 is bacterially delivered but is intact when AvrRpt2 is directly expressed in planta These observations led us to discovery of a network-buffered signaling mechanism that mediates HR signaling and is strongly inhibited by PTI signaling. We named this mechanism the ETI-Mediating and PTI-Inhibited Sector (EMPIS). The signaling kinetics of EMPIS explain apparently different plant genetic requirements for ETI triggered by different effectors without postulating different signaling machineries. The properties of EMPIS suggest that information about efficacy of the early immune response is fed back to the immune signaling network, modulating its activity and limiting the fitness cost of unnecessary immune responses. © 2017 The Authors.

  14. Therapeutic Immunization with HIV-1 Tat Reduces Immune Activation and Loss of Regulatory T-Cells and Improves Immune Function in Subjects on HAART

    PubMed Central

    Ensoli, Barbara; Bellino, Stefania; Tripiciano, Antonella; Longo, Olimpia; Francavilla, Vittorio; Marcotullio, Simone; Cafaro, Aurelio; Picconi, Orietta; Paniccia, Giovanni; Scoglio, Arianna; Arancio, Angela; Ariola, Cristina; Ruiz Alvarez, Maria J.; Campagna, Massimo; Scaramuzzi, Donato; Iori, Cristina; Esposito, Roberto; Mussini, Cristina; Ghinelli, Florio; Sighinolfi, Laura; Palamara, Guido; Latini, Alessandra; Angarano, Gioacchino; Ladisa, Nicoletta; Soscia, Fabrizio; Mercurio, Vito S.; Lazzarin, Adriano; Tambussi, Giuseppe; Visintini, Raffaele; Mazzotta, Francesco; Di Pietro, Massimo; Galli, Massimo; Rusconi, Stefano; Carosi, Giampiero; Torti, Carlo; Di Perri, Giovanni; Bonora, Stefano; Ensoli, Fabrizio; Garaci, Enrico

    2010-01-01

    Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4+ and CD8+ cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4+ T cells and B cells with reduction of CD8+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4+ and CD8+ T cells were accompanied by increases of CD4+ and CD8+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the

  15. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    PubMed

    Ensoli, Barbara; Bellino, Stefania; Tripiciano, Antonella; Longo, Olimpia; Francavilla, Vittorio; Marcotullio, Simone; Cafaro, Aurelio; Picconi, Orietta; Paniccia, Giovanni; Scoglio, Arianna; Arancio, Angela; Ariola, Cristina; Ruiz Alvarez, Maria J; Campagna, Massimo; Scaramuzzi, Donato; Iori, Cristina; Esposito, Roberto; Mussini, Cristina; Ghinelli, Florio; Sighinolfi, Laura; Palamara, Guido; Latini, Alessandra; Angarano, Gioacchino; Ladisa, Nicoletta; Soscia, Fabrizio; Mercurio, Vito S; Lazzarin, Adriano; Tambussi, Giuseppe; Visintini, Raffaele; Mazzotta, Francesco; Di Pietro, Massimo; Galli, Massimo; Rusconi, Stefano; Carosi, Giampiero; Torti, Carlo; Di Perri, Giovanni; Bonora, Stefano; Ensoli, Fabrizio; Garaci, Enrico

    2010-11-11

    Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+) T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+) and CD8(+) cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+) T cells and B cells with reduction of CD8(+) T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+) and CD8(+) T cells were accompanied by increases of CD4(+) and CD8(+) T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent

  16. Successful passive and active immunization of cynomolgus monkeys against hepatitis E.

    PubMed Central

    Tsarev, S A; Tsareva, T S; Emerson, S U; Govindarajan, S; Shapiro, M; Gerin, J L; Purcell, R H

    1994-01-01

    Virtually full protection against hepatitis E and partial or complete protection against infection with hepatitis E virus (HEV) were achieved in passively or actively immunized cynomolgus monkeys. Hepatitis, viremia, and shedding of the virus in feces were detected in all nonimmunized animals that were challenged with HEV. HEV titers detected by reverse transcriptase PCR were higher in feces than in serum of nonimmunized animals. Anti-HEV antibody titers at the time of challenge ranged between 1:40 and 1:200 in animals passively immunized with convalescent plasma from a cynomolgus monkey previously infected with HEV and between 1:100 and 1:10,000 in animals actively immunized with a recombinant 55-kDa open reading frame 2 protein. The estimated 50% protective titer of passively acquired anti-HEV antibodies was 1:40. Although only one of four passively immunized animals showed histopathologic evidence of hepatitis, all four were infected after challenge; however, the titers of HEV in serum and feces were lower in the passively immunized animals than in the nonimmunized group. The actively immunized animals developed neither hepatitis nor viremia when challenged with HEV and virus was either not detected or was present in low titer in feces. The protective response was a function of the ELISA anti-HEV antibody titer at the time of challenge and the immunization schedule. PMID:7937861

  17. Immunosuppression in Early Postnatal Days Induces Persistent and Allergen-Specific Immune Tolerance to Asthma in Adult Mice

    PubMed Central

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  18. Customizing laboratory mice by modifying gut microbiota and host immunity in an early "window of opportunity".

    PubMed

    Hansen, Camilla H F; Metzdorff, Stine B; Hansen, Axel K

    2013-01-01

    We recently investigated how post-natal microbial gut colonization is important for the development of the immune system, especially in the systemic compartments. This addendum presents additional data which in accordance with our previous findings show that early life microbial colonization is critical for a fine-tuned immune homeostasis to develop also in the intestinal environment. A generalized reduction in the expression of immune signaling related genes in the small intestine may explain previously shown increased systemic adaptive immune reactivity, if the regulatory cross-talk between intra- and extra-intestinal immune cells is immature following a neonatal germ-free period. These findings are furthermore discussed in the context of recently published results on how lack of microbial exposure in the neonatal life modifies disease expression in rodents used as models mimicking human inflammatory diseases. In particular, with a focus on how these interesting findings could be used to optimize the use of rodent models.

  19. PERIPHERAL IMMUNE SYSTEM SUPPRESSION IN EARLY ABSTINENT ALCOHOL DEPENDENT INDIVIDUALS: LINKS TO STRESS AND CUE-RELATED CRAVING

    PubMed Central

    Fox, Helen C; Milivojevic, Verica; Angarita, Gustavo A; Stowe, Raymond; Sinha, Rajita

    2017-01-01

    Background Peripheral immune system cytokines may play an integral role in underlying sensitized stress response and alcohol craving during early withdrawal. To date, the nature of these immune changes during early abstinence have not been examined. Methods Thirty-nine early abstinent, treatment-seeking alcohol dependent individuals and 46 socially drinking controls were exposed to three guided imageries: stress, alcohol cue and neutral. These were presented randomly across consecutive days. Plasma measures of tumor necrosis factor alpha (TNFα), tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and interleukin-10 (IL-10), were collected at baseline, immediately after imagery and at various recovery time-points. Ratings of alcohol craving, negative mood and anxiety were also obtained at the same time-points. Results The alcohol group demonstrated decreased basal IL-10 compared with controls particularly following exposure to alcohol cue. They also showed a dampened TNFα and TNFR1 response to stress and cue, respectively, and a generalized suppression of IL-6. In the alcohol group, these immune system adaptations occurred alongside significant elevations in anxiety, negative mood and alcohol craving. Conclusions Findings demonstrate that broad immuno-suppression is still observed in alcohol dependent individuals after three weeks of abstinence and may be linked to motivation for alcohol. PMID:28675117

  20. Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells.

    PubMed

    Cao, Qi; Wang, Li; Du, Fang; Sheng, Huiming; Zhang, Yan; Wu, Juanjuan; Shen, Baihua; Shen, Tianwei; Zhang, Jingwu; Li, Dangsheng; Li, Ningli

    2007-07-01

    Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Th1 immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Th1 responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naïve mice. Further analysis showed that the serum of immunized mice contains a high level of anti-CD25 antibody (about 30 ng/ml, p<0.01 vs controls). Consistent with a role of anti-CD25 response in the downregulation of Treg, adoptive transfer of serum from immunized mice to naïve mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Th1 response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.

  1. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    PubMed

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  2. Active Immunization with Pneumolysin versus 23-Valent Polysaccharide Vaccine for Streptococcus pneumoniae Keratitis

    PubMed Central

    Norcross, Erin W.; Sanders, Melissa E.; Moore, Quincy C.; Taylor, Sidney D.; Tullos, Nathan A.; Caston, Rhonda R.; Dixon, Sherrina N.; Nahm, Moon H.; Burton, Robert L.; Thompson, Hilary; McDaniel, Larry S.

    2011-01-01

    Purpose. The purpose of this study was to determine whether active immunization against pneumolysin (PLY), or polysaccharide capsule, protects against the corneal damage associated with Streptococcus pneumoniae keratitis. Methods. New Zealand White rabbits were actively immunized with Freund's adjuvant mixed with pneumolysin toxoid (ψPLY), Pneumovax 23 (PPSV23; Merck, Whitehouse Station, NJ), or phosphate-buffered saline (PBS), before corneal infection with 105 colony-forming units (CFU) of S. pneumoniae. Serotype-specific rabbit polyclonal antisera or mock antisera were passively administered to rabbits before either intravenous infection with 1011 CFU S. pneumoniae or corneal infection with 105 CFU of S. pneumoniae. Results. After active immunization, clinical scores of corneas of the rabbits immunized with ψPLY and Freund's adjuvant were significantly lower than scores of the rabbits that were mock immunized with PBS and Freund's adjuvant or with PPSV23 and Freund's adjuvant at 48 hours after infection (P ≤ 0.0010), whereas rabbits immunized with PPSV23 and Freund's adjuvant failed to show differences in clinical scores compared with those in mock-immunized rabbits (P = 1.00) at 24 and 48 hours after infection. Antisera from rabbits actively immunized with PPSV23 and Freund's adjuvant were nonopsonizing. Bacterial loads recovered from infected corneas were higher for the ψPLY- and PPSV23-immunized rabbits after infection with WU2, when compared with the mock-immunized rabbits (P ≤ 0.007). Conversely, after infection with K1443, the ψPLY-immunized rabbits had lower bacterial loads than the control rabbits (P = 0.0008). Quantitation of IgG, IgA, and IgM in the sera of ψPLY-immunized rabbits showed high concentrations of PLY-specific IgG. Furthermore, anti-PLY IgG purified from ψPLY-immunized rabbits neutralized the cytolytic effects of PLY on human corneal epithelial cells. Passive administration of serotype-specific antisera capable of opsonizing and

  3. Early ART After Cryptococcal Meningitis Is Associated With Cerebrospinal Fluid Pleocytosis and Macrophage Activation in a Multisite Randomized Trial

    PubMed Central

    Scriven, James E.; Rhein, Joshua; Hullsiek, Katherine Huppler; von Hohenberg, Maximilian; Linder, Grace; Rolfes, Melissa A.; Williams, Darlisha A.; Taseera, Kabanda; Meya, David B.; Meintjes, Graeme; Boulware, David R.

    2015-01-01

    Introduction. Earlier antiretroviral therapy (ART) initiation in cryptococcal meningitis resulted in higher mortality compared with deferred ART initiation (1–2 weeks vs 5 weeks postmeningitis diagnosis). We hypothesized this was due to ART-associated immune pathology, without clinically recognized immune reconstitution inflammatory syndrome. Methods. Three macrophage activation markers and 19 cytokines/chemokines were measured from cryopreserved cerebrospinal fluid (CSF) and serum during the Cryptococcal Optimal ART Timing (COAT) trial. Comparisons were made between trial arms (early vs deferred) at 1, 8, 14, and 21 days following meningitis diagnosis. Results. More participants with early ART initiation had CSF white cell count (WCC) ≥5/µL at day 14 (58% vs 40%; P = .047), after a median of 6-days ART. Differences were mainly driven by participants with CSF WCC <5/µL at meningitis diagnosis: 28% (10/36) of such persons in the early ART group had CSF WCC ≥5/µL by day 14, compared with 0% (0/27) in the deferred arm (P = .002). Furthermore, Kampala participants (the largest site) receiving early ART had higher day-14 CSF levels of interleukin-13 (P = .04), sCD14 (P = .04), sCD163 (P = .02), and CCL3/MIP-1α (P = .02), suggesting increased macrophage/microglial activation. Conclusions. Early ART initiation in cryptococcal meningitis increased CSF cellular infiltrate, macrophage/microglial activation, and T helper 2 responses within the central nervous system. This suggests that increased mortality from early ART in the COAT trial was immunologically mediated. PMID:25651842

  4. Effect of hen age and maternal vitamin D source on performance, hatchability, bone mineral density, and progeny in vitro early innate immune function.

    PubMed

    Saunders-Blades, J L; Korver, D R

    2015-06-01

    The metabolite 25-hydroxy vitamin D3 (25-OHD) can complement or replace vitamin D3 in poultry rations, and may influence broiler production and immune function traits. The effect of broiler breeder dietary 25-OHD on egg production, hatchability, and chick early innate immune function was studied. We hypothesized that maternal dietary 25-OHD would support normal broiler breeder production and a more mature innate immune system of young chicks. Twenty-three-week-old Ross 308 hens (n=98) were placed in 4 floor pens and fed either 2,760 IU vitamin D3 (D) or 69 μg 25-OHD/kg feed. Hen weights were managed according to the primary breeder management guide. At 29 to 31 wk (Early), 46 to 48 wk (Mid), and 61 to 63 wk (Late), hens were artificially inseminated and fertile eggs incubated and hatched. Chicks were placed in cages based on maternal treatment and grown to 7 d age. Innate immune function and plasma 25-OHD were assessed at 1 and 4 d post-hatch on 15 chicks/treatment. Egg production, hen BW, and chick hatch weight were not affected by diet (P>0.05). Total in vitro Escherichia coli (E. coli) killing by 25-OHD chicks was greater than the D chicks at 4 d for the Early and Mid hatches, and 1 and 4 d for the Late hatch. This can be partly explained by the 25-OHD chicks from the Late hatch also having a greater E. coli phagocytic capability. No consistent pattern of oxidative burst response was observed. Chicks from the Mid hatch had greater percent phagocytosis, phagocytic capability, and E. coli killing than chicks from Early and Late hatches. Overall, maternal 25-OHD increased hatchability and in vitro chick innate immunity towards E. coli. Regardless of treatment, chicks from Late and Early hens had weaker early innate immune responses than chicks from Mid hens. The hen age effect tended to be the greatest factor influencing early chick innate immunity, but maternal 25-OHD also increased several measures relative to D. © 2015 Poultry Science Association Inc.

  5. α-Synuclein Activates Innate Immunity but Suppresses Interferon-γ Expression in Murine Astrocytes.

    PubMed

    Wang, Jintang; Chen, Zheng; Walston, Jeremy; Gao, Peisong; Gao, Maolong; Leng, Sean X

    2018-05-19

    Glial activation and neuroinflammation contribute to pathogenesis of neurodegenerative diseases, linked to neuron loss and dysfunction. α-Synuclein (α-syn), as a metabolite of neuron, can induce microglia activation to trigger innate immune response. However, whether α-syn, as well as its mutants (A53T, A30P and E46K), induces astrocyte activation and inflammatory response is not fully elucidated. In this study, we used A53T mutant and wildtype α-syns to stimulate primary astrocytes in dose- and time-dependent manners (0.5, 2, 8 and 20 μg/mL for 24 hour or 3, 12, 24 and 48 hour at 2 μg/mL), and evaluated activation of several canonical inflammatory pathway components. The results showed that A53T mutant or wildtype α-syn significantly upregulated mRNA expression of toll-like receptor (TLR)2, TLR3, nuclear factor-κB and interleukin (IL)-1β, displaying a pattern of positive dose-effect correlation or negative time-effect correlation. Such upregulation was confirmed at protein levels of TLR2 (at 20 μg/mL), TLR3 (at most doses) and IL-1β (at 3 hour) by western blotting. Blockage of TLR2 other than TLR4 inhibited TLR3 and IL-1β mRNA expressions. By contrast, interferon (IFN)-γ was significantly downregulated at mRNA, protein and protein release levels, especially at high concentrations of α-syns or early time-points. These findings indicate that α-syn was a TLRs-mediated immunogenic agent (A53T mutant stronger than wildtype α-syn). The stimulation patterns suggest that persistent release and accumulation of α-syn is required for maintenance of innate immunity activation, and IFN-γ expression inhibition by α-syn suggests a novel immune molecule interaction mechanism underlying pathogenesis of neurodegenerative diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Protective antitumor activity through dendritic cell immunization is mediated by NK cell as well as CTL activation.

    PubMed

    Kim, K D; Kim, J K; Kim, S J; Choe, I S; Chung, T H; Choe, Y K; Lim, J S

    1999-08-01

    Dendritic cells (DCs) are potent professional antigen-presenting cells (APC) capable of inducing the primary T cell response to antigen. Although tumor cells express target antigens, they are incapable of stimulating a tumor-specific immune response due to a defect in the costimulatory signal that is required for optimal activation of T cells. In this work, we describe a new approach using tumor-DC coculture to improve the antigen presenting capacity of tumor cells, which does not require a source of tumor-associated antigen. Immunization of a weakly immunogenic and progressive tumor cocultured with bone marrow-derived DCs generated an effective tumor vaccine. Immunization with the cocultured DCs was able to induce complete protective immunity against tumor challenges and was effective for the induction of tumor-specific CTL (cytotoxic T lymphocyte) activity. Furthermore, high NK cell activity was observed in mice in which tumors were rejected. In addition, immunization with tumor-pulsed DCs induced delayed tumor growth, but not tumor eradication in tumor-bearing mice. Our results demonstrate that coculture of DCs with tumors generated antitumor immunity due to the NK cell activation as well as tumor-specific T cell. This approach would be useful for designing tumor vaccines using DCs when the information about tumor antigens is limited.

  7. [Indicators of the persistent pro-inflammatory activation of the immune system in depression].

    PubMed

    Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy

    2006-01-01

    The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.

  8. Age-dependent trade-offs between immunity and male, but not female, reproduction.

    PubMed

    McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W

    2013-01-01

    Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the

  9. Recent advances targeting innate immunity-mediated therapies against HIV-1 infection.

    PubMed

    Shankar, Esaki Muthu; Velu, Vijayakumar; Vignesh, Ramachandran; Vijayaraghavalu, Sivakumar; Rukumani, Devi Velayuthan; Sabet, Negar Shafiei

    2012-08-01

    Early defence mechanisms of innate immunity respond rapidly to infection against HIV-1 in the genital mucosa. Additionally, innate immunity optimises effective adaptive immune responses against persistent HIV infection. Recent research has highlighted the intrinsic roles of apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G, tripartite motif-containing protein 5, tetherin, sterile α-motif and histidine/aspartic acid domain-containing protein 1 in restricting HIV-1 replication. Likewise, certain endogenously secreted antimicrobial peptides, namely α/β/θ-defensins, lactoferrins, secretory leukocyte protease inhibitor, trappin-2/elafin and macrophage inflammatory protein-3α are reportedly protective. Whilst certain factors directly inhibit HIV, others can be permissive. Interferon-λ3 exerts an anti-HIV function by activating Janus kinase-signal transducer and activator of transcription-mediated innate responses. Morphine has been found to impair intracellular innate immunity, contributing to HIV establishment in macrophages. Interestingly, protegrin-1 could be used therapeutically to inhibit early HIV-1 establishment. Moreover, chloroquine inhibits plasmacytoid dendritic cell activation and improves effective T-cell responses. This minireview summarizes the recently identified targets for innate immunity-mediated therapies and outlines the challenges that lie ahead in improving treatment of HIV infection. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  10. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity

    PubMed Central

    Kanayama, Masashi; Inoue, Makoto; Danzaki, Keiko; Hammer, Gianna; He, You-Wen; Shinohara, Mari L.

    2014-01-01

    Immune responses must be well restrained in a steady state to avoid excessive inflammation. However, such restraints are quickly removed to exert anti-microbial responses. Here, we report a role of autophagy in an early host anti-fungal response by enhancing NFκB activity through A20 sequestration. Enhancement of NFκB activation is achieved by autophagic depletion of A20, an NFκB inhibitor, in F4/80hi macrophages in the spleen, peritoneum, and kidney. We show that p62, an autophagic adaptor protein, captures A20 to sequester it in the autophagosome. This allows the macrophages to release chemokines to recruit neutrophils. Indeed, mice lacking autophagy in myeloid cells show higher susceptibility to Candida albicans infection due to impairment in neutrophil recruitment. Thus, at least in the specific aforementioned tissues, autophagy appears to break A20-dependent suppression in F4/80hi macrophages, which express abundant A20 and contribute to the initiation of efficient innate immune responses. PMID:25609235

  11. Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa.

    PubMed

    Blank, Thomas; Goldmann, Tobias; Koch, Mirja; Amann, Lukas; Schön, Christian; Bonin, Michael; Pang, Shengru; Prinz, Marco; Burnet, Michael; Wagner, Johanna E; Biel, Martin; Michalakis, Stylianos

    2017-01-01

    Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of the central nervous system, are activated in retinas of RP patients and in several RP mouse models. However, it is still a matter of debate whether activated microglial cells may be responsible for the amplification of the typical degenerative processes. Here, we used Cngb1 -/- mice, which represent a slow degenerative mouse model of RP, to investigate the extent of microglia activation in retinal degeneration. With a combination of FACS analysis, immunohistochemistry and gene expression analysis we established that microglia in the Cngb1 -/- retina were already activated in an early, predegenerative stage of the disease. The evidence available so far suggests that early retinal microglia activation represents a first step in RP, which might initiate or accelerate photoreceptor degeneration.

  12. Immune Gate” of Psychopathology—The Role of Gut Derived Immune Activation in Major Psychiatric Disorders

    PubMed Central

    Rudzki, Leszek; Szulc, Agata

    2018-01-01

    Interaction between the gastrointestinal tract (GI) and brain functions has recently become a topic of growing interest in psychiatric research. These multidirectional interactions take place in the so-called gut-brain axis or more precisely, the microbiota-gut-brain axis. The GI tract is the largest immune organ in the human body and is also the largest surface of contact with the external environment. Its functions and permeability are highly influenced by psychological stress, which are often a precipitating factor in the first episode, reoccurrence and/or deterioration of symptoms of psychiatric disorders. In recent literature there is growing evidence that increased intestinal permeability with subsequent immune activation has a major role in the pathophysiology of various psychiatric disorders. Numerous parameters measured in this context seem to be aftermaths of those mechanisms, yet at the same time they may be contributing factors for immune mediated psychopathology. For example, immune activation related to gut-derived bacterial lipopolysaccharides (LPS) or various food antigens and exorphins were reported in major depression, schizophrenia, bipolar disorder, alcoholism and autism. In this review the authors will summarize the evidence and roles of such parameters and their assessment in major psychiatric disorders. PMID:29896124

  13. Adolescent fluoxetine treatment decreases the effects of neonatal immune activation on anxiety-like behavior in mice.

    PubMed

    Majidi-Zolbanin, Jafar; Azarfarin, Maryam; Samadi, Hanieh; Enayati, Mohsen; Salari, Ali-Akbar

    2013-08-01

    Experimental studies have shown conflicting effects of neonatal infection on anxiety-like behaviors and hypothalamic-pituitary-adrenal (HPA) axis activity in adult rats. We investigated for the first time whether neonatal exposure to lipopolysaccharide (LPS) is associated with increased levels of anxiety-like behaviors in mice. Moreover, there have been several studies showing that adolescent fluoxetine (FLX) treatment can influence HPA axis development and prevent occurrence of psychiatric disorders induced by common early-life insults. In the present study, we also investigated the effects of adolescent FLX exposure following neonatal immune activation on anxiety-like behavior in mice. Neonatal mice were treated to LPS (50μg/kg) or saline on postnatal days (PND) 3 and 5, then male and female mice of both neonatal intervention groups received oral administration of FLX (5 and 10mg/kg/day) or water via regular drinking bottles during the adolescent period (PNDs 35-65). The results showed that postnatal immune challenge increased anxiety-like behavior in the open field, elevated plus-maze and light-dark box in adult mice (PND 90). Furthermore, the adolescent FLX treatment inhibited the anxiety-like behavior induced by neonatal infection in both sexes. However, this study indicates the negative effects of the FLX on normal behavioral symptoms in male control mice. Taken together, the current data provide experimental evidence that neonatal infection increases anxiety levels in male and female mice in adulthood. Additionally, the findings of this study support the hypothesis that an early pharmacological intervention with FLX may be an effective treatment for reducing the behavioral abnormalities induced by common early-life insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1.

    PubMed

    Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha

    2013-10-29

    Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers

  15. Limited Colonization Undermined by Inadequate Early Immune Responses Defines the Dynamics of Decidual Listeriosis.

    PubMed

    Rizzuto, Gabrielle; Tagliani, Elisa; Manandhar, Priyanka; Erlebacher, Adrian; Bakardjiev, Anna I

    2017-08-01

    The bacterial pathogen Listeria monocytogenes causes foodborne systemic disease in pregnant women, which can lead to preterm labor, stillbirth, or severe neonatal disease. Colonization of the maternal decidua appears to be an initial step in the maternal component of the disease as well as bacterial transmission to the placenta and fetus. Host-pathogen interactions in the decidua during this early stage of infection remain poorly understood. Here, we assessed the dynamics of L. monocytogenes infection in primary human decidual organ cultures and in the murine decidua in vivo A high inoculum was necessary to infect both human and mouse deciduas, and the data support the existence of a barrier to initial colonization of the murine decidua. If successful, however, colonization in both species was followed by significant bacterial expansion associated with an inability of the decidua to mount appropriate innate cellular immune responses. The innate immune deficits included the failure of bacterial foci to attract macrophages and NK cells, cell types known to be important for early defenses against L. monocytogenes in the spleen, as well as a decrease in the tissue density of inflammatory Ly6C hi monocytes in vivo These results suggest that the infectivity of the decidua is not the result of an enhanced recruitment of L. monocytogenes to the gestational uterus but rather is due to compromised local innate cellular immune responses. Copyright © 2017 American Society for Microbiology.

  16. Innate immunity of fish (overview).

    PubMed

    Magnadóttir, Bergljót

    2006-02-01

    The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.

  17. Paramyxovirus activation and inhibition of innate immune responses.

    PubMed

    Parks, Griffith D; Alexander-Miller, Martha A

    2013-12-13

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells. © 2013.

  18. Paramyxovirus Activation and Inhibition of Innate Immune Responses

    PubMed Central

    Parks, Griffith D.; Alexander-Miller, Martha A.

    2014-01-01

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells. PMID:24056173

  19. Jungle Honey Enhances Immune Function and Antitumor Activity

    PubMed Central

    Fukuda, Miki; Kobayashi, Kengo; Hirono, Yuriko; Miyagawa, Mayuko; Ishida, Takahiro; Ejiogu, Emenike C.; Sawai, Masaharu; Pinkerton, Kent E.; Takeuchi, Minoru

    2011-01-01

    Jungle honey (JH) is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal). After seven injections, peritoneal cells (PC) were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2) cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS) producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW) of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261. PMID:19141489

  20. Childhood acute lymphoblastic leukaemia and indicators of early immune stimulation: the Estelle study (SFCE)

    PubMed Central

    Ajrouche, R; Rudant, J; Orsi, L; Petit, A; Baruchel, A; Lambilliotte, A; Gambart, M; Michel, G; Bertrand, Y; Ducassou, S; Gandemer, V; Paillard, C; Saumet, L; Blin, N; Hémon, D; Clavel, J

    2015-01-01

    Background: Factors related to early stimulation of the immune system (breastfeeding, proxies for exposure to infectious agents, normal delivery, and exposure to animals in early life) have been suggested to decrease the risk of childhood acute lymphoblastic leukaemia (ALL). Methods: The national registry-based case–control study, ESTELLE, was carried out in France in 2010–2011. Population controls were frequency matched with cases on age and gender. The participation rates were 93% for cases and 86% for controls. Data were obtained from structured telephone questionnaires administered to mothers. Odds ratios (OR) were estimated using unconditional regression models adjusted for age, gender, and potential confounders. Results: In all, 617 ALL and 1225 controls aged ⩾1 year were included. Inverse associations between ALL and early common infections (OR=0.8, 95% confidence interval (CI): 0.6, 1.0), non-first born (⩾3 vs 1; OR=0.7, 95% CI: 0.5, 1.0), attendance of a day-care centre before age 1 year (OR=0.7, 95% CI: 0.5, 1.0), breastfeeding (OR=0.8, 95% CI: 0.7, 1.0), and regular contact with pets (OR=0.8, 95% CI: 0.7, 1.0) in infancy were observed. Conclusions: The results support the hypothesis that conditions promoting the maturation of the immune system in infancy have a protective role with respect to ALL. PMID:25675150

  1. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  2. Immune Activity, Body Condition and Human-Associated Environmental Impacts in a Wild Marine Mammal

    PubMed Central

    Brock, Patrick M.; Hall, Ailsa J.; Goodman, Simon J.; Cruz, Marilyn; Acevedo-Whitehouse, Karina

    2013-01-01

    Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which

  3. Active Immunization Against hIAPP Oligomers Ameliorates the Diabetes- Associated Phenotype in a Transgenic Mice Model.

    PubMed

    Bram, Yaron; Peled, Sivan; Brahmachari, Sayanti; Harlev, Michael; Gazit, Ehud

    2017-10-25

    Type 2 diabetes is characterized by insulin tolerance in target cells followed by a reduction of pancreatic β-cell mass. Islet amyloid polypeptide oligomeric assemblies were shown to contribute to β-cell apoptosis by forming discrete pores that destabilize the cellular membrane. We previously characterized α-helical cytotoxic islet amyloid polypeptide oligomers which interact with cell membranes, following a complete internalization that leads to cellular apoptosis. Moreover, antibodies which bind the oligomers and neutralize the cytotoxicity were exclusively identified in the serum of type 2 diabetes patients. Here, we examined the usage of the newly characterized oligomers as an active immunization agent targeting amyloid self- assembly in a diabetes-associated phenotype transgenic mice model. Immunized transgenic mice showed an increase in hIAPP-antibody serum titer as well as improvement in diabetes-associated parameters. Lower fasting blood glucose levels, higher insulin, and lower islet amyloid polypeptide accumulation were observed. Furthermore, antibodies derived from the immunized mice reduced hIAPP oligomers cytotoxicity towards β-cells in a dose-dependent manner. This study highlights the significance of targeting the early amyloid self-assembly events for potential disease management. Furthermore, it demonstrates that α-helical oligomers conformers are valid epitope for the development of future immunization therapy.

  4. Low-grade disease activity in early life precedes childhood asthma and allergy.

    PubMed

    Chawes, Bo Lund Krogsgaard

    2016-08-01

    Asthma and allergies are today the most common chronic diseases in children and the leading causes of school absences, chronic medication usage, emergency department visits and hospitalizations, which affect all members of the family and represent a significant societal and scientific challenge. These highly prevalent disorders are thought to originate from immune distortion in early childhood, but the etiology and heterogeneity of the disease mechanisms are not understood, which hampers preventive initiatives and makes treatment inadequate. The objective of this thesis is to investigate the presence of an early life disease activity prior to clinical symptoms to understand the anteceding pathophysiological steps towards childhood asthma and allergy. The thesis is built on seven studies from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2000) birth cohort examining biomarkers of disease activity in 411 asymptomatic neonates in cord blood (I-II), urine (III), exhaled breath (IV-V) and infant lung function (VI-VII) in relation to the subsequent development of asthma and allergy during the first seven years of life. In papers I-II, we studied cord blood chemokines and 25(OH)-vitamin D, which represent a proxy of the inborn immature immune system, the intrauterine milieu, and the maternal immune health during pregnancy. High levels of the Th2-related chemokine CCL22 and high CCL22/CXCL11 ratio were positively correlated with total IgE level during preschool age (II). This suggests an inborn Th2 skewing of the immune system in healthy newborns subsequently developing elevated total IgE antibodies, which is considered to increase the risk of asthma and allergies later in life. Additionally, deficient cord blood 25(OH)-vitamin D levels were associated with a 2.7-fold increased risk of recurrent wheeze at age 0-7 years (I). Together, these findings support the concept that early life immune programming in the pre-symptomatic era plays an essential role

  5. Visceral Inflammation and Immune Activation Stress the Brain

    PubMed Central

    Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian

    2017-01-01

    Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience

  6. Immune biomarkers in older adults: Role of physical activity.

    PubMed

    Valdiglesias, Vanessa; Sánchez-Flores, María; Maseda, Ana; Lorenzo-López, Laura; Marcos-Pérez, Diego; López-Cortón, Ana; Strasser, Barbara; Fuchs, Dietmar; Laffon, Blanca; Millán-Calenti, José C; Pásaro, Eduardo

    2017-01-01

    Aging is associated with a decline in the normal functioning of the immune system. Several studies described the relationship between immunological alterations, including immunosenescence and inflammation, and aging or age-related outcomes, such as sarcopenia, depression, and neurodegenerative disorders. Physical activity is known to improve muscle function and to exert a number of benefits on older adult health, including reduced risk for heart and metabolic system chronic diseases. However, the positive influence of physical activity on the immune system has not been elucidated. In order to shed light on the role of physical activity in immune responses of older individuals, a number of immunological parameters comprising % lymphocyte subsets (CD3 + , CD4 + , CD8 + , CD19 + , and CD16 + 56 + ) and serum levels of neopterin and tryptophan metabolism products were evaluated in peripheral blood samples of older adults performing normal (N = 170) or reduced (N = 89) physical activity. In addition, the potential influence of other clinical and epidemiological factors was also considered. Results showed that subjects with reduced physical activity displayed significantly higher levels of CD4 + /CD8 + ratio, kynurenine/tryptophan ratio, and serum neopterin, along with lower %CD19 + cells and tryptophan concentrations. Further, some immunological biomarkers were associated with cognitive impairment and functional status. These data contribute to reinforce the postulation that physical activity supports healthy aging, particularly by helping to protect the immunological system from aging-related changes.

  7. Prenatal Exposure to Respiratory Syncytial Virus Alters Postnatal Immunity and Airway Smooth Muscle Contractility during Early-Life Reinfections

    PubMed Central

    Harford, Terri J.; Agrawal, Vandana; Yen-Lieberman, Belinda; Rezaee, Fariba; Piedimonte, Giovanni

    2017-01-01

    Maternal viral infections can have pathological effects on the developing fetus which last long after birth. Recently, maternal-fetal transmission of respiratory syncytial virus (RSV) was shown to cause postnatal airway hyperreactivity (AHR) during primary early-life reinfection; however, the influence of prenatal exposure to RSV on offspring airway immunity and smooth muscle contractility during recurrent postnatal reinfections remains unknown. Therefore, we sought to determine whether maternal RSV infection impairs specific aspects of cell-mediated offspring immunity during early-life reinfections and the mechanisms leading to AHR. Red fluorescent protein-expressing recombinant RSV (rrRSV) was inoculated into pregnant rat dams at midterm, followed by primary and secondary postnatal rrRSV inoculations of their offspring at early-life time points. Pups and weanlings were tested for specific lower airway leukocyte populations by flow cytometry; serum cytokine/chemokine concentrations by multiplex ELISA and neurotrophins concentrations by standard ELISA; and ex vivo lower airway smooth muscle (ASM) contraction by physiological tissue bath. Pups born to RSV-infected mothers displayed elevated total CD3+ T cells largely lacking CD4+ and CD8+ surface expression after both primary and secondary postnatal rrRSV infection. Cytokine/chemokine analyses revealed reduced IFN-γ, IL-2, IL-12, IL-17A, IL-18, and TNF-α, as well as elevated nerve growth factor (NGF) expression. Prenatal exposure to RSV also increased ASM reactivity and contractility during early-life rrRSV infection compared to non-exposed controls. We conclude that maternal RSV infection can predispose offspring to postnatal lower airways dysfunction by altering immunity development, NGF signaling, and ASM contraction during early-life RSV reinfections. PMID:28178290

  8. Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies.

    PubMed

    Rockenstein, Edward; Ostroff, Gary; Dikengil, Fusun; Rus, Florentina; Mante, Michael; Florio, Jazmin; Adame, Anthony; Trinh, Ivy; Kim, Changyoun; Overk, Cassia; Masliah, Eliezer; Rissman, Robert A

    2018-01-24

    Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-β1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies. SIGNIFICANCE STATEMENT We

  9. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.

    PubMed

    Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T

    2015-04-01

    Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.

  10. Posttransplant Immune Activation: Innocent Bystander or Insidious Culprit of Posttransplant Accelerated Atherosclerosis.

    PubMed

    Ducloux, Didier; Bamoulid, Jamal; Crepin, Thomas; Rebibou, Jean-Michel; Courivaud, Cecile; Saas, Philippe

    2017-09-01

    Cardiovascular disease is a major cause of morbidity, disability, and mortality in kidney transplant patients. Cumulative reports indicate that the excessive risk of cardiovascular events is not entirely explained by the increased prevalence of traditional cardiovascular risk factors. Atherosclerosis is a chronic inflammatory disease, and it has been postulated that posttransplant immune disturbances may explain the gap between the predicted and observed risks of cardiovascular events. Although concordant data suggest that innate immunity contributes to the posttransplant accelerated atherosclerosis, only few arguments plead for a role of adaptive immunity. We report and discuss here consistent data demonstrating that CD8 + T cell activation is a frequent posttransplant immune feature that may have pro-atherogenic effects. Expansion of exhausted/activated CD8 + T cells in kidney transplant recipients is stimulated by several factors including cytomegalovirus infections, lymphodepletive therapy (e.g., antithymocyte globulins), chronic allogeneic stimulation, and a past history of renal insufficiency. This is observed in the setting of decreased thymic activity, a process also found in elderly individuals and reflecting accelerated immune senescence.

  11. Independent and interactive effects of immune activation and larval diet on adult immune function, growth and development in the greater wax moth (Galleria mellonella).

    PubMed

    Kangassalo, Katariina; Valtonen, Terhi M; Sorvari, Jouni; Kecko, Sanita; Pölkki, Mari; Krams, Indrikis; Krama, Tatjana; Rantala, Markus J

    2018-06-29

    Organisms in the wild are likely to face multiple immune challenges as well as additional ecological stressors, yet their interactive effects on immune function are poorly understood. Insects are found to respond to cues of increased infection risk by enhancing their immune capacity. However, such adaptive plasticity in immune function may be limited by physiological and environmental constraints. Here, we investigated the effects of two environmental stressors - poor larval diet and an artificial parasite-like immune challenge at the pupal stage - on adult immune function, growth and development in the greater wax moth (Galleria mellonella). Males whose immune system was activated with an artificial parasite-like immune challenge had weaker immune response - measured as strength of encapsulation response - as adults compared to the control groups, but only when raised in high-nutrition larval diet. Immune activation did not negatively affect adult immune response in males reared in low-nutrition larval diet, indicating that poor larval diet improved the capacity of the insects to respond to repeated immune challenges. Low-nutrition larval diet also had a positive independent effect on immune capacity in females, yet it negatively affected development time and adult body mass in both sexes. As in the nature immune challenges are rarely isolated, and adverse nutritional environment may indicate an elevated risk of infection, resilience to repeated immune challenges as a response to poor nutritional environment could provide a significant fitness advantage. The present study highlights the importance of considering environmental context when investigating effects of immune activation in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during Salmonella typhimurium infection.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo

    2012-12-01

    It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.

  13. Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs?

    PubMed Central

    Martin, Lynn B; Scheuerlein, Alex; Wikelski, Martin

    2003-01-01

    The activation of an immune response is beneficial for organisms but may also have costs that affect fitness. Documented immune costs include those associated with acquisition of special nutrients, as well as immunopathology or autoimmunity. Here, we test whether an experimental induction of the immune system with a non-pathological stimulant can elevate energy turnover in passerine birds. We injected phytohaemagglutinin (PHA), a commonly used mitogen that activates the cell-mediated immune response, into the wing web of house sparrows, Passer domesticus. We then examined energetic costs resulting from this immune activity and related those costs to other physiological activities. We found that PHA injection significantly elevated resting metabolic rate (RMR) of challenged sparrows relative to saline controls. We calculated the total cost of this immune activity to be ca. 4.20 kJ per day (29% RMR), which is equivalent to the cost of production of half of an egg (8.23 kJ egg(-1)) in this species. We suggest that immune activity in wild passerines increases energy expenditure, which in turn may influence important life-history characteristics such as clutch size, timing of breeding or the scheduling of moult. PMID:12590753

  14. Immunity profile in breast cancer patients.

    PubMed

    Hrubisko, M; Sanislo, L; Zuzulova, M; Michalickova, J; Zeleznikova, T; Sedlak, J; Bella, V

    2010-01-01

    Despite the multifactorial pathogenesis of malignant transformation, it is assumed that deficiency in some immune mechanisms plays a considerable role in its development. Chronically activated immune cells exert tumour-promoting effects directly by influencing the proliferation and survival of neoplastic cells, as well as by indirect modulation of neoplastic microenvironments in favour of tumour progression. We refer to results of two separate investigations that aim to monitor the immune functions in patients with breast cancer. In the first investigation, we compare the picture of basic cellular immunity profile of patients in early stage of breast cancer with those suffering from advanced disease; in the second one, we compare the production of Th1-cytokines in patients in different stages of breast cancer and atopic healthy controls. We recognized that the totals of T-lymphocytes and T-helpers were lower and the expression of HLADR on T-lymphocytes were higher in patients with advanced disease; the expression of IL-2 and LFN-gamma by T-lymphocytes was decreased in metastatic breast cancer patients, however IL-2 production was increased in patients in early stage of disease. We conclude that the role of immune system in cancer development is ambivalent as it may be not only protective, but also harmful (Tab. 1, Fig. 3, Ref. 22). Full Text (Free, PDF) www.bmj.sk.

  15. Vaginal Immunization to Elicit Primary T-Cell Activation and Dissemination

    PubMed Central

    Pettini, Elena; Prota, Gennaro; Ciabattini, Annalisa; Boianelli, Alessandro; Fiorino, Fabio; Pozzi, Gianni; Vicino, Antonio; Medaglini, Donata

    2013-01-01

    Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs. PMID:24349003

  16. Influence of Physical Activity and Nutrition on Obesity-Related Immune Function

    PubMed Central

    Zourdos, Michael C.; Jo, Edward; Ormsbee, Michael J.

    2013-01-01

    Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF-α, CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation. PMID:24324381

  17. Cytolytic Activity Score to Assess Anticancer Immunity in Colorectal Cancer.

    PubMed

    Narayanan, Sumana; Kawaguchi, Tsutomu; Yan, Li; Peng, Xuan; Qi, Qianya; Takabe, Kazuaki

    2018-05-16

    Elevated tumor-infiltrating lymphocytes (TILs) within the tumor microenvironment is a known positive prognostic factor in colorectal cancer (CRC). We hypothesized that since cytotoxic T cells release cytolytic proteins such as perforin (PRF1) and pro-apoptotic granzymes (GZMA) to attack cancer cells, a cytolytic activity score (CYT) would be a useful tool to assess anticancer immunity. Genomic expression data were obtained from 456 patients from The Cancer Genome Atlas (TCGA). CYT was defined by GZMA and PRF1 expression, and CIBERSORT was used to evaluate intratumoral immune cell composition. High CYT was associated with high microsatellite instability (MSI-H), as well as high levels of activated memory CD4+T cells, gamma-delta T cells, and M1 macrophages. CYT-high CRC patients had improved overall survival (p = 0.019) and disease-free survival (p = 0.016) compared with CYT-low CRC patients, especially in TIL-positive tumors. Multivariate analysis demonstrated that CYT- high associates with improved survival independently after controlling for age, lymphovascular invasion, colonic location, microsatellite instability, and TIL positivity. The levels of immune checkpoint molecules (ICMs)-programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), lymphocyte-activation gene 3 (LAG3), T cell immunoglobulin and mucin domain 3 (TIM3), and indoleamine 2,3-dioxygenase 1 (IDO1)-correlated significantly with CYT (p < 0.0001); with improved survival in CYT-high and ICM-low patients, and poorer survival in ICM-high patients. High CYT within CRC is associated with improved survival, likely due to increased immunity and cytolytic activity of T cells and M1 macrophages. High CYT is also associated with high expression of ICMs; thus, further studies to elucidate the role of CYT as a predictive biomarker of the efficacy of immune checkpoint blockade are warranted.

  18. Biophysical Aspects of T Lymphocyte Activation at the Immune Synapse

    PubMed Central

    Hivroz, Claire; Saitakis, Michael

    2016-01-01

    T lymphocyte activation is a pivotal step of the adaptive immune response. It requires the recognition by T-cell receptors (TCR) of peptides presented in the context of major histocompatibility complex molecules (pMHC) present at the surface of antigen-presenting cells (APCs). T lymphocyte activation also involves engagement of costimulatory receptors and adhesion molecules recognizing ligands on the APC. Integration of these different signals requires the formation of a specialized dynamic structure: the immune synapse. While the biochemical and molecular aspects of this cell–cell communication have been extensively studied, its mechanical features have only recently been addressed. Yet, the immune synapse is also the place of exchange of mechanical signals. Receptors engaged on the T lymphocyte surface are submitted to many tensile and traction forces. These forces are generated by various phenomena: membrane undulation/protrusion/retraction, cell mobility or spreading, and dynamic remodeling of the actomyosin cytoskeleton inside the T lymphocyte. Moreover, the TCR can both induce force development, following triggering, and sense and convert forces into biochemical signals, as a bona fide mechanotransducer. Other costimulatory molecules, such as LFA-1, engaged during immune synapse formation, also display these features. Moreover, T lymphocytes themselves are mechanosensitive, since substrate stiffness can modulate their response. In this review, we will summarize recent studies from a biophysical perspective to explain how mechanical cues can affect T lymphocyte activation. We will particularly discuss how forces are generated during immune synapse formation; how these forces affect various aspects of T lymphocyte biology; and what are the key features of T lymphocyte response to stiffness. PMID:26913033

  19. Neonatal immune activation by lipopolysaccharide causes inadequate emotional responses to novel situations but no changes in anxiety or cognitive behavior in Wistar rats.

    PubMed

    Vojtechova, Iveta; Petrasek, Tomas; Maleninska, Kristyna; Brozka, Hana; Tejkalova, Hana; Horacek, Jiri; Stuchlik, Ales; Vales, Karel

    2018-05-02

    Infection during the prenatal or neonatal stages of life is considered one of the major risk factors for the development of mental diseases such as schizophrenia or autism. However, the impacts of such an immune challenge on adult behavior are still not clear. In our study, we used a model of early postnatal immune activation by the application of bacterial endotoxin lipopolysaccharide (LPS) to rat pups at a dose of 2 mg/kg from postnatal day (PD) 5 to PD 9. In adulthood, the rats were tested in a battery of tasks probing various aspects of behavior: spontaneous activity (open field test), social behavior (social interactions and female bedding exploration), anxiety (elevated plus maze), cognition (active place avoidance in Carousel) and emotional response (ultrasonic vocalization recording). Moreover, we tested sensitivity to acute challenge with MK-801, a psychotomimetic drug. Our results show that the application of LPS led to increased self-grooming in the female bedding exploration test and inadequate emotional reactions in Carousel maze displayed by ultrasonic vocalizations. However, it did not have serious consequences on exploration, locomotion, social behavior or cognition. Furthermore, exposition to MK-801 did not trigger social or cognitive deficits in the LPS-treated rats. We conclude that the emotional domain is the most sensitive to the changes induced by neonatal immune activation in rats, including a disrupted response to novel and stressful situations in early adulthood (similar to that observed in human patients suffering from schizophrenia or autism), while other aspects of tested behavior remain unaffected. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. To give or not to give: Approaches to early childhood immunization delivery in Oregon rural primary care practices.

    PubMed

    Fagnan, Lyle J; Shipman, Scott A; Gaudino, James A; Mahler, Jo; Sussman, Andrew L; Holub, Jennifer

    2011-01-01

    Little is known about rural clinicians' perspectives regarding early childhood immunization delivery, their adherence to recommended best immunization practices, or the specific barriers they confront. To examine immunization practices, beliefs, and barriers among rural primary care clinicians for children in Oregon and compare those who deliver all recommended immunizations in their practices with those who do not. A mailed questionnaire was sent to all physicians, nurse practitioners, and physician assistants practicing primary care in rural communities throughout Oregon. While 39% of rural clinicians reported delivering all childhood immunizations in their clinic, 43% of clinicians reported that they refer patients elsewhere for some vaccinations, and 18% provided no immunizations in the clinic whatsoever. Leading reasons for referral include inadequate reimbursement, parental request, and storage and stocking difficulties. Nearly a third of respondents reported that they had some level of concern about the safety of immunizations, and 14% reported that concerns about safety were a specific reason for referring. Clinicians who delivered only some of the recommended immunizations were less likely than nonreferring clinicians to have adopted evidence-based best immunization practices. This study of rural clinicians in Oregon demonstrates the prevalence of barriers to primary care based immunization delivery in rural regions. While some barriers may be difficult to overcome, others may be amenable to educational outreach and support. Thus, efforts to improve population immunization rates should focus on promoting immunization "best practices" and enhancing the capacity of practices to provide immunizations and ensuring that any alternative means of delivering immunizations are effective. © 2011 National Rural Health Association.

  1. To Give or Not to Give: Approaches to Early Childhood Immunization Delivery in Oregon Rural Primary Care Practices

    PubMed Central

    Fagnan, Lyle J.

    2010-01-01

    Context Little is known about rural clinicians’ perspectives regarding early childhood immunization delivery, their adherence to recommended best immunization practices, or the specific barriers they confront. Purpose To examine immunization practices, beliefs, and barriers among rural primary care clinicians for children in Oregon and compare those who deliver all recommended immunizations in their practices with those who do not. Methods A mailed questionnaire sent to all physicians, nurse practitioners, and physician assistants practicing primary care in rural communities throughout Oregon. Findings While 39% of rural clinicians reported delivering all childhood immunizations in their clinic, 43% of clinicians reported that they refer patients elsewhere for some vaccinations and 18% provided no immunizations in the clinic whatsoever. Leading reasons for referral include inadequate reimbursement, parental request, and storage and stocking difficulties. Nearly a third of respondents reported that they had some level of concern about the safety of immunizations, and 14% reported that concerns about safety were a specific reason for referring. Clinicians who delivered only some of the recommended immunizations were less likely than non-referring clinicians to have adopted evidence-based best immunization practices. Conclusions This study of rural clinicians in Oregon demonstrates the prevalence of barriers to primary-care-based immunization delivery in rural regions. While some barriers may be difficult to overcome, others may be amenable to educational outreach and support. Thus, efforts to improve population immunization rates should focus on promoting immunization “best practices” and enhancing the capacity of practices to provide immunizations and assuring that any alternative means of delivering immunizations are effective. PMID:21967382

  2. Systemic Immune Activation and HIV Shedding in the Female Genital Tract.

    PubMed

    Spencer, LaShonda Y; Christiansen, Shawna; Wang, Chia-Hao H; Mack, Wendy J; Young, Mary; Strickler, Howard D; Anastos, Kathryn; Minkoff, Howard; Cohen, Mardge; Geenblatt, Ruth M; Karim, Roksana; Operskalski, Eva; Frederick, Toni; Homans, James D; Landay, Alan; Kovacs, Andrea

    2016-02-01

    Plasma HIV RNA is the most significant determinant of cervical HIV shedding. However, shedding is also associated with sexually transmitted infections (STIs) and cervical inflammation. The mechanism by which this occurs is poorly understood. There is evidence that systemic immune activation promotes viral entry, replication, and HIV disease progression. We hypothesized that systemic immune activation would be associated with an increase in HIV genital shedding. Clinical assessments, HIV RNA in plasma and genital secretions, and markers of immune activation (CD38(+)DR(+) and CD38(-)DR(-)) on CD4(+) and CD8(+) T cells in blood were evaluated in 226 HIV+ women enrolled in the Women's Interagency HIV Study. There were 569 genital evaluations of which 159 (28%) exhibited HIV RNA shedding, defined as HIV viral load >80 copies per milliliter. We tested associations between immune activation and shedding using generalized estimating equations with logit link function. In the univariate model, higher levels of CD4(+) and CD8(+) T-cell activation in blood were significantly associated with genital tract shedding. However, in the multivariate model adjusting for plasma HIV RNA, STIs, and genital tract infections, only higher levels of resting CD8(+) T cells (CD38(-)DR(-)) were significantly inversely associated with HIV shedding in the genital tract (odds ratios = 0.44, 95% confidence interval: 0.21 to 0.9, P = 0.02). The association of systemic immune activation with genital HIV shedding is multifactorial. Systemic T-cell activation is associated with genital tract shedding in univariate analysis but not when adjusting for plasma HIV RNA, STIs, and genital tract infections. In addition, women with high percentage of resting T cells are less likely to have HIV shedding compared with those with lower percentages. These findings suggest that a higher percentage of resting cells, as a result of maximal viral suppression with treatment, may decrease local genital activation, HIV

  3. Primate lentiviruses use at least three alternative strategies to suppress NF-κB-mediated immune activation

    PubMed Central

    Gawanbacht, Ali; Van Driessche, Benoît; Van Lint, Carine; Peeters, Martine; Kirchhoff, Frank

    2017-01-01

    Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNβ promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses

  4. Functionally Redundant RXLR Effectors from Phytophthora infestans Act at Different Steps to Suppress Early flg22-Triggered Immunity

    PubMed Central

    Fraiture, Malou; Liu, Xiaoyu; Boevink, Petra C.; Gilroy, Eleanor M.; Chen, Ying; Kandel, Kabindra; Sessa, Guido; Birch, Paul R. J.; Brunner, Frédéric

    2014-01-01

    Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular

  5. Vaccine therapy for HIV: a historical review of the treatment of infectious diseases by active specific immunization with microbe-derived antigens.

    PubMed

    Burke, D S

    1993-01-01

    A review of the history of 'vaccine therapy' for infectious diseases is presented. The concept originated when Auzias-Turenne introduced 'syphilitic vaccination' or 'syphilization' as a treatment for syphilis in Paris in the mid-1800s; his clinical studies probably influenced Pasteur's successful rabies postexposure vaccine trials. Robert Koch in Berlin in the 1890s observed that inoculation of tuberculin into patients with tuberculosis induced an inflammatory response in affected tissues, and advocated 'tuberculin therapy'. Sir Almroth Wright in London in the early 20th century devised methods to measure changes in serum 'opsonizing' activity in response to therapeutic inoculations with microbe-derived vaccines. Since the advent of antibiotics, active specific immunization with microbe-derived antigens (vaccine therapy) has been largely forgotten as a strategy for treatment of infectious diseases. Advances in antigen production and in molecular immunology now permit new tactics to probe, analyse and selectively alter in vivo human immune responses to infectious microbes. Our recent demonstration that vaccine therapy can boost natural immunity to HIV in infected patients should rekindle interest in this approach.

  6. Immune thrombocytopenic purpura might be an early hematologic manifestation of undiagnosed human immunodeficiency virus infection.

    PubMed

    Lai, Shih-Wei; Lin, Hsien-Feng; Lin, Cheng-Li; Liao, Kuan-Fu

    2017-03-01

    Little research focuses on the association between immune thrombocytopenic purpura and human immunodeficiency virus infection in Taiwan. This study investigated whether immune thrombocytopenic purpura might be an early hematologic manifestation of undiagnosed human immunodeficiency virus infection in Taiwan. We conducted a retrospective population-based cohort study using data of individuals enrolled in Taiwan National Health Insurance Program. There were 5472 subjects aged 1-84 years with a new diagnosis of immune thrombocytopenic purpura as the purpura group since 1998-2010 and 21,887 sex-matched and age-matched, randomly selected subjects without immune thrombocytopenic purpura as the non-purpura group. The incidence of human immunodeficiency virus infection at the end of 2011 was measured in both groups. We used the multivariable Cox proportional hazards regression model to measure the hazard ratio and 95 % confidence interval (CI) for the association between immune thrombocytopenic purpura and human immunodeficiency virus infection. The overall incidence of human immunodeficiency virus infection was 6.47-fold higher in the purpura group than that in the non-purpura group (3.78 vs. 0.58 per 10,000 person-years, 95 % CI 5.83-7.18). After controlling for potential confounding factors, the adjusted HR of human immunodeficiency virus infection was 6.3 (95 % CI 2.58-15.4) for the purpura group, as compared with the non-purpura group. We conclude that individuals with immune thrombocytopenic purpura are 6.47-fold more likely to have human immunodeficiency virus infection than those without immune thrombocytopenic purpura. We suggest not all patients, but only those who have risk factors for human immunodeficiency virus infection should receive testing for undiagnosed human immunodeficiency virus infection when they develop immune thrombocytopenic purpura.

  7. [Effects of Early Enteral Immunonutrition on Postoperative Immune Function and Rehabilitation of Patients with Gastric Cancer and Nutritional Risk].

    PubMed

    Peng, Chang-Bing; Li, Wen-Zhong; Xu, Rui; Zhuang, Wen

    2017-05-01

    To investigate the effects of early enteral immunonutrition on postoperative immune function and rehabilitation of gastric cancer patients with nutritional risk. New hospitalized patients with gastric cancer were evaluated the nutrient status based on NRS 2002. The patients who scored between 3 to 5 points were randomized into two groups(30 cases for each group), and those in experimental group were given 7-d early postoperative enteral immune nutrition, those in control group were given normal nutrition. The immune indexes (CD3 + , CD4 + , CD8 + and CD4 + /CD8 + ) and nutritional indexes(transferrin, pre-albumin, albumin) were measured before operation and at the 3 rd and 7 th day postoperatively. In addition, the first flatus time, gastrointestinal adverse reactions and complications, length of hospital stays were compared between the two groups. The level of CD4 + /CD8 + and transferrin, pre-albumin, albumin in experimental group were significantly higher than those in control group at the third and seventh day postoperatively ( P <0.05).Compared with the control group, the experimental group had shorter first flatus time after surgery, which were (63.5±7.3) h vs. (72.8±8.6 ) h respectively ( P <0.05).There were no statistically difference on pneumonia, anastomosis leakage, severe abdominal distension, inflammatory bowel obstruction and total postoperative hospitalization time between the two groups ( P >0.05). Early enteral immunonutrition can effectively promote the recovery of nutritional status and immune function in gastric cancer patients with nutrition risk.

  8. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    PubMed

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  9. Proinflammatory T Cell Status Associated with Early Life Adversity.

    PubMed

    Elwenspoek, Martha M C; Hengesch, Xenia; Leenen, Fleur A D; Schritz, Anna; Sias, Krystel; Schaan, Violetta K; Mériaux, Sophie B; Schmitz, Stephanie; Bonnemberger, Fanny; Schächinger, Hartmut; Vögele, Claus; Turner, Jonathan D; Muller, Claude P

    2017-12-15

    Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA ( n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69 + CD8 + T cells ( p = 0.022), increased numbers of HLA-DR + CD4 and HLA-DR + CD8 T cells ( p < 0.001), as well as increased numbers of CD25 + CD8 + T cells ( p = 0.036). ELA also showed a trend toward higher numbers of CCR4 + CXCR3 - CCR6 + CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system.

    PubMed

    Lin, Borong; Zhuo, Kan; Chen, Shiyan; Hu, Lili; Sun, Longhua; Wang, Xiaohong; Zhang, Lian-Hui; Liao, Jinling

    2016-02-01

    Evidence is emerging that plant-parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response. Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up-regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild-type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica. Yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species-scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection. Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant-parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity

    PubMed Central

    Birkenbihl, Rainer P.; Kracher, Barbara; Roccaro, Mario

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. PMID:28011690

  12. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.

    PubMed

    Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R

    2016-09-01

    There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy.

  13. Human Ebola virus infection results in substantial immune activation.

    PubMed

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  14. [AVIAN RECOMBINANT VIRUS H5N1 INFLUENZA (A/VIETNAM/1203/04) AND ITS ESCAPE-MUTANT m13(13) INDUCE EARLY SIGNALING REACTIONS OF THE IMMUNITY IN HUMAN LYMPHOCYTES].

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Ershov, F I

    2016-01-01

    The innate immune receptors TLR4, TLR7, TLR8, and RIG1 recognized the structures of the influenza viruses in human lymphocytes and were activated by the recombinant avian influenza virus A/Vietnam/1203/04 and its escape-mutant m13(13) during early period of interaction. The stimulated levels are not connected with viral reproduction. Donor cells with the low constitutive immune receptors gene expression levels showed higher stimulation. Inflammation virus effects resulted in. increasing production of TNF-alpha and IFN-gamma by lymphocytes. Signaling gene reactions of the parent and mutant viruses endosomal as well as cytoplasmic receptors are very similar. The mutant virus A/Vietnam/1203/04 (HA S145F), stimulated an increase in the transcription level of the membrane receptor gene TLR4 and a decrease in the level of activation of TNF-alpha gene. Further studies of natural influenza virus isolates are necessary to estimate the role of HA antigenic changes on immune reactions in humans.

  15. Self-reported parenting style is associated with children's inflammation and immune activation.

    PubMed

    Byrne, Michelle L; Badcock, Paul B; Simmons, Julian G; Whittle, Sarah; Pettitt, Adam; Olsson, Craig A; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2017-04-01

    Family environments and parenting have been associated with inflammation and immune activation in children and adolescents; however, it remains unclear which specific aspects of parenting drive this association. In this study, we cross-sectionally examined the association between 5 discrete parenting styles and inflammation and immune activation in late childhood. Data were drawn from 102 families (55 with female children, mean age 9.50 years, SD = 0.34) participating in the Imaging Brain Development in the Childhood to Adolescence Transition Study. Children provided saliva samples from which inflammation (C-reactive protein) and immune competence/activation (secretory immunoglobulin A) were measured. Parents completed the Alabama Parenting Questionnaire, which measures 5 aspects of parenting style-positive parental involvement, positive disciplinary techniques, consistency in disciplinary techniques, corporal punishment, and monitoring and supervision. Results showed that higher scores on the poor parental monitoring scale were associated with higher levels of both inflammation and immune activation in children. This study highlights parental monitoring and supervision as a specific aspect of parenting behavior that may be important for children's physical and mental health. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    PubMed Central

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  17. Early High-dosage Atorvastatin Treatment Improved Serum Immune-inflammatory Markers and Functional Outcome in Acute Ischemic Strokes Classified as Large Artery Atherosclerotic Stroke

    PubMed Central

    Tuttolomondo, Antonino; Di Raimondo, Domenico; Pecoraro, Rosaria; Maida, Carlo; Arnao, Valentina; Corte, Vittoriano Della; Simonetta, Irene; Corpora, Francesca; Di Bona, Danilo; Maugeri, Rosario; Iacopino, Domenico Gerardo; Pinto, Antonio

    2016-01-01

    Abstract Statins have beneficial effects on cerebral circulation and brain parenchyma during ischemic stroke and reperfusion. The primary hypothesis of this randomized parallel trial was that treatment with 80 mg/day of atorvastatin administered early at admission after acute atherosclerotic ischemic stroke could reduce serum levels of markers of immune-inflammatory activation of the acute phase and that this immune-inflammatory modulation could have a possible effect on prognosis of ischemic stroke evaluated by some outcome indicators. We enrolled 42 patients with acute ischemic stroke classified as large arteries atherosclerosis stroke (LAAS) randomly assigned in a randomized parallel trial to the following groups: Group A, 22 patients treated with atorvastatin 80 mg (once-daily) from admission day until discharge; Group B, 20 patients not treated with atorvastatin 80 mg until discharge, and after discharge, treatment with atorvastatin has been started. At 72 hours and at 7 days after acute ischemic stroke, subjects of group A showed significantly lower plasma levels of tumor necrosis factor-α, interleukin (IL)-6, vascular cell adhesion molecule-1, whereas no significant difference with regard to plasma levels of IL-10, E-Selectin, and P-Selectin was observed between the 2 groups. At 72 hours and 7 days after admission, stroke patients treated with atorvastatin 80 mg in comparison with stroke subjects not treated with atorvastatin showed a significantly lower mean National Institutes of Health Stroke Scale and modified Rankin scores. Our findings provide the first evidence that atorvastatin acutely administered immediately after an atherosclerotic ischemic stroke exerts a lowering effect on immune-inflammatory activation of the acute phase of stroke and that its early use is associated to a better functional and prognostic profile. PMID:27043681

  18. The lymphocytic cholinergic system and its contribution to the regulation of immune activity.

    PubMed

    Kawashima, Koichiro; Fujii, Takeshi

    2003-12-26

    Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.

  19. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  20. The role of rare innate immune cells in Type 2 immune activation against parasitic helminths.

    PubMed

    Webb, Lauren M; Tait Wojno, Elia D

    2017-09-01

    The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles - located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.

  1. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia

    2010-10-10

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses,more » as measured by the breadth of the Gag peptide-specific IFN-{gamma}, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.« less

  2. Vaccination Enhances Early Immune Responses in White Shrimp Litopenaeus vannamei after Secondary Exposure to Vibrio alginolyticus

    PubMed Central

    Lin, Yong-Chin; Chen, Jiann-Chu; Morni, Wan Zabidii W.; Putra, Dedi Fazriansyah; Huang, Chien-Lun; Li, Chang-Che; Hsieh, Jen-Fang

    2013-01-01

    Background Recent work suggested that the presence of specific memory or some form of adaptive immunity occurs in insects and shrimp. Hypervariable pattern recognition molecules, known as Down syndrome cell adhesion molecules, are able to mount specific recognition, and immune priming in invertebrates. In the present study, we attempted to understand the immune response pattern of white shrimp Litopenaeus vannamei which received primary (PE) and secondary exposure (SE) to Vibrio alginolyticus. Methodology Immune parameters and proliferation of haematopoietic tissues (HPTs) of shrimp which had received PE and SE to V. alginolyticus were measured. In the PE trial, the immune parameters and proliferation of HPTs of shrimp that received heat-killed V. alginolyticus (HVa) and formalin-inactivated V. alginolyticus (FVa) were measured. Mortality, immune parameters and proliferation of HPTs of 7-day-HVa-PE shrimp (shrimp that received primary exposure to HVa after 7 days) and 7-day-FVa-PE shrimp (shrimp that received primary exposure to FVa after 7 days) following SE to live V. alginolyticus (LVa) were measured. Phagocytic activity and clearance efficiency were examined for the 7∼35-day-HVa-PE and FVa-PE shrimp. Results HVa-receiving shrimp showed an earlier increase in the immune response on day 1, whereas FVa-receiving shrimp showed a late increase in the immune response on day 5. The 7-day-FVa-PE shrimp showed enhancement of immunity when encountering SE to LVa, whereas 7-day-HVa-PE shrimp showed a minor enhancement in immunity. 7-day-FVa-PE shrimp showed higher proliferation and an HPT mitotic index. Both phagocytic activity and clearance maintained higher for both HVa-PE and FVa-PE shrimp after 28 days. Conclusions HVa- and FVa-receiving shrimp showed the bacteria agglutinated prior to being phagocytised. FVa functions as a vaccine, whereas HVa functions as an inducer and can be used as an immune adjuvant. A combined mixture of FVa and HVa can serve as a

  3. Immune defense of wild-caught Norway rats is characterized by increased levels of basal activity but reduced capability to respond to further immune stimulation.

    PubMed

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Subota, Vesna; Kataranovski, Dragan; Kataranovski, Milena

    2018-03-01

    Studies of wild animals' immunity often use comparison with laboratory-raised individuals. Using such an approach, various data were obtained concerning wild Norway rat's immunity. Lower or higher potential of immune system cells to respond to activation stimuli were shown, because of analysis of disparate parameters and/ or small number of analyzed individuals. Inconsistent differences between laboratory and wild rats were shown too, owing to great response variability in wild rats. We hypothesized that wild rats will express more intense immune activity compared to their laboratory counterparts which live in a less demanding environment. To test this, we analyzed the circulating levels of inflammatory cytokine interleukin-6 (IL-6), a mediator which has a central role in host immune defense. In addition, we examined the activity of the central immune organ, the spleen, including cell proliferation and production of pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17), which are major effectors of cellular adaptive immune response. In order to obtain reasonable insight into the immunity of wild Norway rats, analysis was conducted on a much larger number of individuals compared to other studies. Higher levels of plasma IL-6, higher spleen mass, cellularity and basal IFN-γ production concomitantly with lower basal production of anti-inflammatory cytokine interleukin-10 (IL-10) revealed more intense immune activity in the wild compared to laboratory rats. However, lower responsiveness of their spleen cells' proinflammatory cytokine production to concanavalin A (ConA) stimulation, along with preserved capacity of IL-10 response, might be perceived as an indication of wild rats' reduced capability to cope with incoming environmental stimuli, but also as a means to limit tissue damage. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  4. Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood.

    PubMed

    Pennings, Jeroen L A; Jennen, Danyel G J; Nygaard, Unni C; Namork, Ellen; Haug, Line S; van Loveren, Henk; Granum, Berit

    2016-01-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds that have widespread use in consumer and industrial applications. PFAS are considered environmental pollutants that have various toxic properties, including effects on the immune system. Recent human studies indicate that prenatal exposure to PFAS leads to suppressed immune responses in early childhood. In this study, data from the Norwegian BraMat cohort was used to investigate transcriptomics profiles in neonatal cord blood and their association with maternal PFAS exposure, anti-rubella antibody levels at 3 years of age and the number of common cold episodes until 3 years. Genes associated with PFAS exposure showed enrichment for immunological and developmental functions. The analyses identified a toxicogenomics profile of 52 PFAS exposure-associated genes that were in common with genes associated with rubella titers and/or common cold episodes. This gene set contains several immunomodulatory genes (CYTL1, IL27) as well as other immune-associated genes (e.g. EMR4P, SHC4, ADORA2A). In addition, this study identified PPARD as a PFAS toxicogenomics marker. These markers can serve as the basis for further mechanistic or epidemiological studies. This study provides a transcriptomics connection between prenatal PFAS exposure and impaired immune function in early childhood and supports current views on PPAR- and NF-κB-mediated modes of action. The findings add to the available evidence that PFAS exposure is immunotoxic in humans and support regulatory policies to phase out these substances.

  5. Evaluation of the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay.

    PubMed

    Maruki-Uchida, Hiroko; Sai, Masahiko; Sekimizu, Kazuhisa

    2017-11-22

    We evaluated the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay. Sake cake, a raw material used to make amazake, had high innate immunity-stimulating activity, whereas rice malt, another raw material used to make amazake, did not, even after fermentation. These results suggest that the silkworm muscle contraction assay is a useful tool to screen foods with high innate immune-stimulating activity and that amazake made from sake cake has immunomodulatory potential.

  6. Phenoloxidase activity in the infraorder Isoptera: unraveling life-history correlates of immune investment

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Reichheld, Jennifer L.

    2016-02-01

    Within the area of ecological immunology, the quantification of phenoloxidase (PO) activity has been used as a proxy for estimating immune investment. Because termites have unique life-history traits and significant inter-specific differences exist regarding their nesting and foraging habits, comparative studies on PO activity can shed light on the general principles influencing immune investment against the backdrop of sociality, reproductive potential, and gender. We quantified PO activity across four termite species ranging from the phylogenetically basal to the most derived, each with their particular nesting/foraging strategies. Our data indicate that PO activity varies across species, with soil-dwelling termites exhibiting significantly higher PO levels than the above-ground wood nester species which in turn have higher PO levels than arboreal species. Moreover, our comparative approach suggests that pathogenic risks can override reproductive potential as a more important driver of immune investment. No gender-based differences in PO activities were recorded. Although termite PO activity levels vary in accordance with a priori predictions made from life-history theory, our data indicate that nesting and foraging strategies (and their resulting pathogenic pressures) can supersede reproductive potential and other life-history traits in influencing investment in PO. Termites, within the eusocial insects, provide a unique perspective for inferring how different ecological pressures may have influenced immune function in general and their levels of PO activity, in particular.

  7. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  8. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    PubMed

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  9. Early life exposure to 2.45GHz WiFi-like signals: effects on development and maturation of the immune system.

    PubMed

    Sambucci, Manolo; Laudisi, Federica; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Lopresto, Vanni; Altavista, Pierluigi; Marino, Carmela; Pioli, Claudio

    2011-12-01

    The development of the immune system begins during embryogenesis, continues throughout fetal life, and completes its maturation during infancy. Exposure to immune-toxic compounds at levels producing limited/transient effects in adults, results in long-lasting or permanent immune deficits when it occurs during perinatal life. Potentially harmful radiofrequency (RF) exposure has been investigated mainly in adult animals or with cells from adult subjects, with most of the studies showing no effects. Is the developing immune system more susceptible to the effects of RF exposure? To address this question, newborn mice were exposed to WiFi signals at constant specific absorption rates (SAR) of 0.08 or 4 W/kg, 2h/day, 5 days/week, for 5 consecutive weeks, starting the day after birth. The experiments were performed with a blind procedure using sham-exposed groups as controls. No differences in body weight and development among the groups were found in mice of both sexes. For the immunological analyses, results on female and male newborn mice exposed during early post-natal life did not show any effects on all the investigated parameters with one exception: a reduced IFN-γ production in spleen cells from microwaves (MW)-exposed (SAR 4 W/kg) male (not in female) mice compared with sham-exposed mice. Altogether our findings do not support the hypothesis that early post-natal life exposure to WiFi signals induces detrimental effects on the developing immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. New activity of yamamarin, an insect pentapeptide, on immune system of mealworm, Tenebrio molitor.

    PubMed

    Walkowiak-Nowicka, K; Nowicki, G; Kuczer, M; Rosiński, G

    2017-09-12

    In insects, two types of the immune responses, cellular and humoral, constitute a defensive barrier against various parasites and pathogens. In response to pathogens, insects produce a wide range of immune agents that act on pathogens directly, such as cecropins or lysozyme, or indirectly by the stimulation of hemocyte migration or by increasing phenoloxidase (PO) activity. Recently, many new immunologically active substances from insects, such as peptides and polypeptides, have been identified. Nevertheless, in the most cases, their physiological functions are not fully known. One such substance is yamamarin - a pentapeptide isolated from the silk moth Antheraea yamamai. This yamamarin possesses strong antiproliferative properties and is probably involved in diapause regulation. Here, we examined the immunotropic activity of yamamarin by testing its impact on selected functions of the immune system in heterologous bioassays with the beetle Tenebrio molitor, commonly known as a stored grains pest. Our results indicate that the pentapeptide affects the activity of immune processes in the beetle. We show that yamamarin induces changes in both humoral and cellular responses. The yamamarin increases the activity of PO, as well as causes changes in the hemocyte cytoskeleton and stimulates phagocytic activity. We detected an increased number of apoptotic hemocytes, however after the yamamarin injection, no significant variations in the antibacterial activity in the hemolymph were observed. The obtained data suggest that yamamarin could be an important controller of the immune system in T. molitor.

  11. Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma.

    PubMed

    Dhabhar, Firdaus S; Saul, Alison N; Daugherty, Christine; Holmes, Tyson H; Bouley, Donna M; Oberyszyn, Tatiana M

    2010-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposure would enhance protective immunity and increase resistance to SCC. Control and short-term stress groups were treated identically except that the short-term stress group was restrained (2.5h) before each of nine UV-exposure sessions (minimum erythemal dose, 3-times/week) during weeks 4-6 of the 10-week UV exposure protocol. Tumors were measured weekly, and tissue collected at weeks 7, 20, and 32. Chemokine and cytokine gene expression was quantified by real-time PCR, and CD4+ and CD8+ T cells by flow cytometry and immunohistochemistry. Compared to controls, the short-term stress group showed greater cutaneous T-cell attracting chemokine (CTACK)/CCL27, RANTES, IL-12, and IFN-gamma gene expression at weeks 7, 20, and 32, higher skin infiltrating T cell numbers (weeks 7 and 20), lower tumor incidence (weeks 11-20) and fewer tumors (weeks 11-26). These results suggest that activation of short-term stress physiology increased chemokine expression and T cell trafficking and/or function during/following UV exposure, and enhanced Type 1 cytokine-driven cell-mediated immunity that is crucial for resistance to SCC. Therefore, the physiological fight-or-flight stress response and its adjuvant-like immuno-enhancing effects, may provide a novel and important mechanism for enhancing immune system mediated tumor-detection/elimination that merits further investigation.

  12. The innate and adaptive immune response to avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  13. Pathophysiology of infectious hematopoietic necrosis virus disease in rainbow trout (Salmo gairdneri): early changes in blood and aspects of the immune Response after Injection of IHN Virus

    USGS Publications Warehouse

    Amend, Donald F.; Smith, Lynnwood

    1974-01-01

    Juvenile rainbow trout (Salmo gairdneri) were injected with infectious hematopoietic necrosis (IHN) virus and various hematological and blood chemical changes were monitored over 9 days. The packed cell volume, hemoglobin, red blood cell count, and plasma bicarbonate were significantly depressed by day 4. Plasma chloride, calcium, phosphorus, total protein, and blood cell types did not change during the 9 days. Furthermore, plasma  LDH isozyme was significantly increased by the fourth day, and fish infected with infectious pancreatic necrosis virus, Vibrio anguillarum, Aeromonas salmonicida, and redmouth bacterium did not show specific LDH isozyme alterations. Acid-base alterations occurred at 10 C but not at 18 C. The acid-base imbalance and elevation of the  LDH isozyme were consistently associated with the early development of the disease.The immune response after injection of IHN virus was determined and protection from disease was tested by passive immunization. Actively immunized fish developed IHN-neutralizing antibodies within 54 days after injection of virus, and the antibodies were protective when juvenile fish were passively immunized and experimentally challenged with IHN virus.

  14. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    PubMed

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  15. Immunosuppressive activity of tilmicosin on the immune responses in mice.

    PubMed

    Guan, Shuang; Song, Yu; Guo, Weixiao; Chu, Xiao; Zhang, Xiaozhe; Wang, Dacheng; Lu, Jing; Deng, Xuming

    2011-06-01

    Tilmicosin, a semi-synthetic macrolide antibiotic that is only used in the veterinary clinic, was evaluated for its immunosuppressive activity on the immune responses to ovalbumin (OVA) in mice. Tilmicosin suppressed concanavalin A (Con A)- and lipopolysaccharide (LPS)-stimulated splenocyte proliferation in vitro. BALB/c mice were immunized subcutaneously with OVA on day 1 and 4. Beginning on the day of boosting immunization, the mice were administered intraperitoneally with tilmicosin at a single dose of 10, 30, and 90 mg/kg for 10 consecutive days. On day 14, blood samples were collected for measuring specific total-immunoglobulin G (total-IgG), IgG1, IgG2b, and splenocytes were harvested for determining lymphocyte proliferation and interleukin-2 (IL-2), interferon-γ (IFN-γ), IL-4 production. The results demonstrated that tilmicosin could significantly suppress Con A-induced splenocyte proliferation in a dose-dependent manner, decrease LPS-and OVA-induced splenocyte proliferation only at high concentration, produced less IL-2, IL-4, and IFN-γ as compared to the control in the OVA-immunized mice. Moreover, the OVA-specific IgG, IgG1, and IgG2b levels in the OVA-immunized mice were reduced by tilmicosin. These results suggest that tilmicosin could suppress the cellular and humoral immune response in mice.

  16. Role of immune activation in CD4+ T-cell depletion in HIV-1 infected Indian patients.

    PubMed

    Vajpayee, M; Kaushik, S; Sreenivas, V; Mojumdar, K; Mendiratta, S; Chauhan, N K

    2009-01-01

    The correlation of immune activation with CD4(+) depletion and HIV-1 disease progression has been evidenced by several studies involving mainly clade B virus. However, this needs to be investigated in developing countries such as India predominately infected with clade C virus. In a cross-sectional study of 68 antiretroviral treatment naïve, HIV-1 infected Indian patients, we studied the association between CD4(+) T cells, plasma HIV-1 RNA levels, and immune activation markers using unadjusted and adjusted correlative analyses. Significant negative correlations of higher magnitude were observed between the CD4(+) T cell percentages and plasma HIV-1 RNA levels in the study population when adjusted for the effects of immune activation markers. However, the negative association of CD4(+) T cells with immune activation markers remained unaffected when controlled for the effects of plasma HIV-1 RNA levels. Our results support the important role of immune activation in CD4(+) T cell depletion and disease progression during untreated HIV-1 infection.

  17. Activation of cellular immunity and marked inhibition of liver cancer in a mouse model following gene therapy and tumor expression of GM-SCF, IL-21, and Rae-1.

    PubMed

    Cheng, Mingrong; Zhi, Kangkang; Gao, Xiaoyan; He, Bing; Li, Yingchun; Han, Jiang; Zhang, Zhiping; Wu, Yan

    2013-12-18

    Cancer is both a systemic and a genetic disease. The pathogenesis of cancer might be related to dampened immunity. Host immunity recognizes nascent malignant cells - a process referred to as immune surveillance. Augmenting immune surveillance and suppressing immune escape are crucial in tumor immunotherapy. A recombinant plasmid capable of co-expressing granulocyte-macrophage colony- stimulating factor (GM-SCF), interleukin-21 (IL-21), and retinoic acid early transcription factor-1 (Rae-1) was constructed, and its effects determined in a mouse model of subcutaneous liver cancer. Serum specimens were assayed for IL-2 and INF-γ by ELISA. Liver cancer specimens were isolated for Rae-1 expression by RT-PCR and Western blot, and splenocytes were analyzed by flow cytometry. The recombinant plasmid inhibited the growth of liver cancer and prolonged survival of tumor-loaded mice. Activation of host immunity might have contributed to this effect by promoting increased numbers and cytotoxicity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) following expression of GM-SCF, IL-21, and Rae-1. By contrast, the frequency of regulatory T cells was decreased, Consequently, activated CTL and NK cells enhanced their secretion of INF-γ, which promoted cytotoxicity of NK cells and CTL. Moreover, active CTL showed dramatic secretion of IL-2, which stimulates CTL. The recombinant expression plasmid also augmented Rae-1 expression by liver cancer cells. Rae-1 receptor expressing CTL and NK cells removed liver cancer. The recombinant expression plasmid inhibited liver cancer by a mechanism that involved activation of cell-mediated immunity and Rae-1 in liver cancer.

  18. The Canadian Immunization Monitoring Program, ACTive (IMPACT): Active surveillance for vaccine adverse events and vaccine-preventable diseases

    PubMed Central

    Bettinger, JA; Halperin, SA; Vaudry, W; Law, BJ; Scheifele, DW

    2014-01-01

    For almost 25 years the Canadian Immunization Monitoring Program, ACTive (IMPACT) has been conducting active surveillance for severe adverse events following immunization (AEFIs) and vaccine-preventable diseases in children. The network, which consists of volunteer paediatric infectious diseases investigators at 12 tertiary care paediatric hospitals, is an important component of Canada’s AEFI monitoring. The network employs nurses at each of the sites to search for and report possible AEFIs to local, provincial and national public health authorities. The active nature of the surveillance ensures a high level of vigilance for severe AEFIs in children. PMID:29769912

  19. A modified live canine parvovirus vaccine. II. Immune response.

    PubMed

    Carmichael, L E; Joubert, J C; Pollock, R V

    1983-01-01

    The safety and efficacy of an attenuated canine parvovirus (A-CPV) vaccine was evaluated in both experimental and in field dogs. After parenteral vaccination, seronegative dogs developed hemagglutination-inhibition (HI) antibody titers as early as postvaccination (PV) day 2. Maximal titers occurred within 1 week. Immunity was associated with the persistence of HI antibody titers (titers greater than 80) that endured at least 2 years. Immune dogs challenged with virulent CPV did not shed virus in their feces. The A-CPV vaccine did not cause illness alone or in combination with living canine distemper (CD) and canine adenovirus type-2 (CAV-2) vaccines, nor did it interfere with the immune response to the other viruses. A high rate (greater than 98%) of immunity was engendered in seronegative pups. In contrast, maternal antibody interfered with the active immune response to the A-CPV. More than 95% of the dogs with HI titers less than 10 responded to the vaccine, but only 50% responded when titers were approximately 20. No animal with a titer greater than 80 at the time of vaccination became actively immunized. Susceptibility to virulent CPV during that period when maternal antibody no longer protects against infection, but still prevents active immunization, is the principal cause of vaccinal failure in breeding kennels where CPV is present. Reduction, but not complete elimination, of CPV disease in large breeding kennels occurred within 1-2 months of instituting an A-CPV vaccination program.

  20. Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus

    PubMed Central

    2012-01-01

    Background There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood–brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. Methods To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.). To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund’s adjuvant (CFA) and pertussis toxin (PTX) included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. Results The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion molecules, cytokines

  1. Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell Lung Cancer.

    PubMed

    Li, Bailiang; Cui, Yi; Diehn, Maximilian; Li, Ruijiang

    2017-11-01

    The prevalence of early-stage non-small cell lung cancer (NSCLC) is expected to increase with recent implementation of annual screening programs. Reliable prognostic biomarkers are needed to identify patients at a high risk for recurrence to guide adjuvant therapy. To develop a robust, individualized immune signature that can estimate prognosis in patients with early-stage nonsquamous NSCLC. This retrospective study analyzed the gene expression profiles of frozen tumor tissue samples from 19 public NSCLC cohorts, including 18 microarray data sets and 1 RNA-Seq data set for The Cancer Genome Atlas (TCGA) lung adenocarcinoma cohort. Only patients with nonsquamous NSCLC with clinical annotation were included. Samples were from 2414 patients with nonsquamous NSCLC, divided into a meta-training cohort (729 patients), meta-testing cohort (716 patients), and 3 independent validation cohorts (439, 323, and 207 patients). All patients underwent surgery with a negative surgical margin, received no adjuvant or neoadjuvant therapy, and had publicly available gene expression data and survival information. Data were collected from July 22 through September 8, 2016. Overall survival. Of 2414 patients (1205 men [50%], 1111 women [46%], and 98 of unknown sex [4%]; median age [range], 64 [15-90] years), a prognostic immune signature of 25 gene pairs consisting of 40 unique genes was constructed using the meta-training data set. In the meta-testing and validation cohorts, the immune signature significantly stratified patients into high- vs low-risk groups in terms of overall survival across and within subpopulations with stage I, IA, IB, or II disease and remained as an independent prognostic factor in multivariate analyses (hazard ratio range, 1.72 [95% CI, 1.26-2.33; P < .001] to 2.36 [95% CI, 1.47-3.79; P < .001]) after adjusting for clinical and pathologic factors. Several biological processes, including chemotaxis, were enriched among genes in the immune signature. The

  2. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila.

    PubMed

    Petersen, Andrew J; Rimkus, Stacey A; Wassarman, David A

    2012-03-13

    To investigate the mechanistic basis for central nervous system (CNS) neurodegeneration in the disease ataxia-telangiectasia (A-T), we analyzed flies mutant for the causative gene A-T mutated (ATM). ATM encodes a protein kinase that functions to monitor the genomic integrity of cells and control cell cycle, DNA repair, and apoptosis programs. Mutation of the C-terminal amino acid in Drosophila ATM inhibited the kinase activity and caused neuron and glial cell death in the adult brain and a reduction in mobility and longevity. These data indicate that reduced ATM kinase activity is sufficient to cause neurodegeneration in A-T. ATM kinase mutant flies also had elevated expression of innate immune response genes in glial cells. ATM knockdown in glial cells, but not neurons, was sufficient to cause neuron and glial cell death, a reduction in mobility and longevity, and elevated expression of innate immune response genes in glial cells, indicating that a non-cell-autonomous mechanism contributes to neurodegeneration in A-T. Taken together, these data suggest that early-onset CNS neurodegeneration in A-T is similar to late-onset CNS neurodegeneration in diseases such as Alzheimer's in which uncontrolled inflammatory response mediated by glial cells drives neurodegeneration.

  3. Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation

    PubMed Central

    Ho, Vincent T.; Vanneman, Matthew; Kim, Haesook; Sasada, Tetsuro; Kang, Yoon Joong; Pasek, Mildred; Cutler, Corey; Koreth, John; Alyea, Edwin; Sarantopoulos, Stefanie; Antin, Joseph H.; Ritz, Jerome; Canning, Christine; Kutok, Jeffery; Mihm, Martin C.; Dranoff, Glenn; Soiffer, Robert

    2009-01-01

    Through an immune-mediated graft-versus-leukemia effect, allogeneic hematopoietic stem cell transplantation (HSCT) affords durable clinical benefits for many patients with hematologic malignancies. Nonetheless, subjects with high-risk acute myeloid leukemia or advanced myelodysplasia often relapse, underscoring the need to intensify tumor immunity within this cohort. In preclinical models, allogeneic HSCT followed by vaccination with irradiated tumor cells engineered to secrete GM-CSF generates a potent antitumor effect without exacerbating the toxicities of graft-versus-host disease (GVHD). To test whether this strategy might be similarly active in humans, we conducted a Phase I clinical trial in which high-risk acute myeloid leukemia or myelodysplasia patients were immunized with irradiated, autologous, GM-CSF-secreting tumor cells early after allogeneic, nonmyeloablative HSCT. Despite the administration of a calcineurin inhibitor as prophylaxis against GVHD, vaccination elicited local and systemic reactions that were qualitatively similar to those previously observed in nontransplanted, immunized solid-tumor patients. While the frequencies of acute and chronic GVHD were not increased, 9 of 10 subjects who completed vaccination achieved durable complete remissions, with a median follow-up of 26 months (range 12–43 months). Six long-term responders showed marked decreases in the levels of soluble NKG2D ligands, and 3 demonstrated normalization of cytotoxic lymphocyte NKG2D expression as a function of treatment. Together, these results establish the safety and immunogenicity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic HSCT, and raise the possibility that this combinatorial immunotherapy might potentiate graft-versus-leukemia in patients. PMID:19717467

  4. Combined Chromatin and Expression Analysis Reveals Specific Regulatory Mechanisms within Cytokine Genes in the Macrophage Early Immune Response

    PubMed Central

    Emanuelsson, Olof; Sennblad, Bengt; Pirmoradian Najafabadi, Mohammad; Folkersen, Lasse; Mälarstig, Anders; Lagergren, Jens; Eriksson, Per; Hamsten, Anders; Odeberg, Jacob

    2012-01-01

    Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS). To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches - gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac) and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII), which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF), was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines), was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/−LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40%) was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at the

  5. Influence of physical activity on the immune system in breast cancer patients during chemotherapy.

    PubMed

    Schmidt, Thorsten; Jonat, Walter; Wesch, Daniela; Oberg, Hans-Heinrich; Adam-Klages, Sabine; Keller, Lisa; Röcken, Christoph; Mundhenke, Christoph

    2018-03-01

    Physical activity can impact the immune system in different ways, e.g. by alteration of the humoral and cellular immune response. Physical activity at medium intensity enhances numbers of cytotoxic T cells, NK cells and macrophages in healthy people. The aim of this study was to compare the effects of endurance and resistance training on the immune system in breast cancer patients during adjuvant chemotherapy. In a prospective, controlled and randomized intervention exploratory trial, 12-week supervised endurance or resistance training were compared with usual care twice a week. Endpoints were the absolute numbers of the immune cells such as CD3 + T lymphocytes including CD4 + - and CD8 + , αβ T cells, γδT cells, CD3 - /CD16 + /56 + NK cells and CD19 + B cells, before and after 12 weeks of treatment. Cell numbers were analyzed using fluorescence-activated cell sorting. Despite different physical interventions in all groups immune cell count decreased in CD3 T cells including TCR αβ and CD4 T cells, NK cells and CD19 B cells 12 weeks after initiation of chemotherapy and start of the physical intervention program, while the reduction of γδ T cells and CD8 T cells is less prominent in the RT and UC group. Chemotherapy led to a decrease in nearly all measured immune cells. In this study, physical intervention with endurance or resistance training did not suppress cellular immunity any further. Larger multicenter trials are needed to evaluate the exact impact of sports intervention on immune cell subpopulations.

  6. Simultaneous and Dose Dependent Melanoma Cytotoxic and Immune Stimulatory Activity of Betulin

    PubMed Central

    Arlt, Olga; Neske, Christina; Dehelean, Cristina; Pfeilschifter, Josef M.; Radeke, Heinfried H.

    2015-01-01

    Conventional cytostatic cancer treatments rarely result in the complete eradication of tumor cells. Therefore, new therapeutic strategies focus on antagonizing the immunosuppressive activity of established tumors. In particular, recent studies of antigen-loaded dendritic cells (DCs) eliciting a specific antitumor immune response has raised the hopes of achieving the complete elimination of tumor tissue. Genistein, fingolimod and betulin have already been described as active compounds in different types of cancer. Herein, we applied an integrated screening approach to characterize both their cytostatic and their immune-modulating properties side-by-side. As will be described in detail, our data confirmed that all three compounds exerted proapoptotic and antiproliferative activity in different B16 melanoma cell lines to a given extent, as revealed by an MTT assay, CFSE and DAPI staining. However, while genistein and fingolimod also affected the survival of primary bone marrow (BM) derived DCs of C57BL/6 mice, betulin exhibited a lower cytotoxicity for BMDCs in comparison to the melanoma cells. Moreover, we could show for the first time, that only betulin caused a simultaneous, highly specific immune-stimulating activity, as measured by the IL-12p70 release of Toll-like receptor 4-stimulated BMDCs by ELISA, which was due to increased IL-12p35 mRNA expression. Interestingly, the activation of DCs resulted in enhanced T lymphocyte stimulation, indicated by increased IL-2 and IFN-γ production of cytotoxic T cells in spleen cell co-culture assays which led to a decreased viability of B16 cells in an antigen specific model system. This may overcome the immunosuppressive environment of a tumor and destroy tumor cells more effectively in vivo if the immune response is specific targeted against the tumor tissue by antigen-loaded dendritic cells. In summary, cytostatic agents, such as betulin, that simultaneously exhibit immune stimulatory activity may serve as lead compounds

  7. Breastmilk-Saliva Interactions Boost Innate Immunity by Regulating the Oral Microbiome in Early Infancy

    PubMed Central

    Al-Shehri, Saad S.; Knox, Christine L.; Liley, Helen G.; Cowley, David M.; Wright, John R.; Henman, Michael G.; Hewavitharana, Amitha K.; Charles, Bruce G.; Shaw, Paul N.; Sweeney, Emma L.; Duley, John A.

    2015-01-01

    Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity. PMID:26325665

  8. Early-life experience affects honey bee aggression and resilience to immune challenge

    PubMed Central

    Rittschof, Clare C.; Coombs, Chelsey B.; Frazier, Maryann; Grozinger, Christina M.; Robinson, Gene E.

    2015-01-01

    Early-life social experiences cause lasting changes in behavior and health for a variety of animals including humans, but it is not well understood how social information ‘‘gets under the skin’’ resulting in these effects. Adult honey bees (Apis mellifera) exhibit socially coordinated collective nest defense, providing a model for social modulation of aggressive behavior. Here we report for the first time that a honey bee’s early-life social environment has lasting effects on individual aggression: bees that experienced high-aggression environments during pre-adult stages showed increased aggression when they reached adulthood relative to siblings that experienced low-aggression environments, even though all bees were kept in a common environment during adulthood. Unlike other animals including humans however, high-aggression honey bees were more, rather than less, resilient to immune challenge, assessed as neonicotinoid pesticide susceptibility. Moreover, aggression was negatively correlated with ectoparasitic mite presence. In honey bees, early-life social experience has broad effects, but increased aggression is decoupled from negative health outcomes. Because honey bees and humans share aspects of their physiological response to aggressive social encounters, our findings represent a step towards identifying ways to improve individual resiliency. Pre-adult social experience may be crucial to the health of the ecologically threatened honey bee. PMID:26493190

  9. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    PubMed

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Rational modulation of the innate immune system for neuroprotection in ischemic stroke

    PubMed Central

    Amantea, Diana; Micieli, Giuseppe; Tassorelli, Cristina; Cuartero, María I.; Ballesteros, Iván; Certo, Michelangelo; Moro, María A.; Lizasoain, Ignacio; Bagetta, Giacinto

    2015-01-01

    The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction. PMID:25972779

  11. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function.

    PubMed

    Choi, M; Kadara, H; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Kim, K; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Herbst, R S; Wistuba, I I

    2017-01-01

    Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.

  12. The Immune System and Developmental Programming of Brain and Behavior

    PubMed Central

    Bilbo, Staci D.; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535

  13. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    NASA Astrophysics Data System (ADS)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  14. Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana.

    PubMed

    Luzuriaga-Loaiza, W Patricio; Schellenberger, Romain; De Gaetano, Yannick; Obounou Akong, Firmin; Villaume, Sandra; Crouzet, Jérôme; Haudrechy, Arnaud; Baillieul, Fabienne; Clément, Christophe; Lins, Laurence; Allais, Florent; Ongena, Marc; Bouquillon, Sandrine; Deleu, Magali; Dorey, Stephan

    2018-06-04

    Stimulation of plant innate immunity by natural and synthetic elicitors is a promising alternative to conventional pesticides for a more sustainable agriculture. Sugar-based bolaamphiphiles are known for their biocompatibility, biodegradability and low toxicity. In this work, we show that Synthetic Rhamnolipid Bolaforms (SRBs) that have been synthesized by green chemistry trigger Arabidopsis innate immunity. Using structure-function analysis, we demonstrate that SRBs, depending on the acyl chain length, differentially activate early and late immunity-related plant defense responses and provide local increase in resistance to plant pathogenic bacteria. Our biophysical data suggest that SRBs can interact with plant biomimetic plasma membrane and open the possibility of a lipid driven process for plant-triggered immunity by SRBs.

  15. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    PubMed

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  16. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine

    PubMed Central

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S.; Rowe, Dawne K.; Smith, Michaela J.; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H.; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K.; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie

    2014-01-01

    Background. Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. Methods. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. Results. We showed that YF-17D–induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D–neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Conclusion. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Trial registration. Registration is not required for observational studies. Funding. This study was funded by Canada’s Global Health Research Initiative, Defense

  17. Supplementary polio immunization activities and prior use of routine immunization services in non-polio-endemic sub-Saharan Africa.

    PubMed

    Helleringer, Stephane; Frimpong, Jemima A; Abdelwahab, Jalaa; Asuming, Patrick; Touré, Hamadassalia; Awoonor-Williams, John Koku; Abachie, Thomas; Guidetti, Flavia

    2012-07-01

    To determine participation in polio supplementary immunization activities (SIAs) in sub-Saharan Africa among users and non-users of routine immunization services and among users who were compliant or non-compliant with the routine oral poliovirus vaccine (OPV) immunization schedule. Data were obtained from household-based surveys in non-polio-endemic sub-Saharan African countries. Routine immunization service users were children (aged < 5 years) who had ever had a health card containing their vaccination history; non-users were children who had never had a health card. Users were considered compliant with the OPV routine immunization schedule if, by the SIA date, their health card reflected receipt of required OPV doses. Logistic regression measured associations between SIA participation and use of both routine immunization services and compliance with routine OPV among users. Data from 21 SIAs conducted between 1999 and 2010 in 15 different countries met inclusion criteria. Overall SIA participation ranged from 70.2% to 96.1%. It was consistently lower among infants than among children aged 1-4 years. In adjusted analyses, participation among routine immunization services users was > 85% in 12 SIAs but non-user participation was >85% in only 5 SIAs. In 18 SIAs, participation was greater among users (P < 0.01 in 16, 0.05 in 1 and < 0.10 in 1) than non-users. In 14 SIAs, adjusted analyses revealed lower participation among non-compliant users than among compliant users (P < 0.01 in 10, < 0.05 in 2 and < 0.10 in 2). Large percentages of children participated in SIAs. Prior use of routine immunization services and compliance with the routine OPV schedule showed a strong positive association with SIA participation.

  18. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores.

    PubMed

    Aznar, Aude; Chen, Nicolas W G; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-04-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H₂O₂ staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity.

  19. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    PubMed Central

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  20. Natural killer cells and regulatory T cells in early pregnancy loss

    PubMed Central

    SHARMA, SURENDRA

    2015-01-01

    Survival of the allogeneic embryo in the uterus depends on the maintenance of immune tolerance at the maternal-fetal interface. The pregnant uterus is replete with activated maternal immune cells. How this immune tolerance is acquired and maintained has been a topic of intense investigation. The key immune cells that predominantly populate the pregnant uterus are natural killer (NK) cells. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation. In placental mammals, an array of highly orchestrated immune elements to support successful pregnancy outcome has been incorporated. This includes active cooperation between maternal immune cells, particularly NK cells, and trophoblast cells. This intricate process is required for placentation, immune regulation and to remodel the blood supply to the fetus. During the past decade, various types of maternal immune cells have been thought to be involved in cross-talk with trophoblasts and in programming immune tolerance. RegulatoryT cells (Tregs) have attracted a great deal of attention in promoting implantation and immune tolerance beyond implantation. However, what has not been fully addressed is how this immune-trophoblast axis breaks down during adverse pregnancy outcomes, particularly early pregnancy loss, and in response to unscheduled inflammation. Intense research efforts have begun to shed light on the roles of NK cells and Tregs in early pregnancy loss, although much remains to be unraveled in order to fully characterize the mechanisms underlying their detrimental activity. An increased understanding of host-environment interactions that lead to the cytotoxic phenotype of these otherwise pregnancy compatible maternal immune cells is important for prediction, prevention and treatment of pregnancy maladies, particularly recurrent pregnancy loss. In this review, we discuss relevant information from experimental and human

  1. Identifying risk factors of immune reconstitution inflammatory syndrome in AIDS patients receiving highly active anti-retroviral therapy.

    PubMed

    He, Bo; Zheng, Yuhuang; Liu, Meng; Zhou, Guoqiang; Chen, Xia; Mamadou, Diallo; He, Yan; Zhou, Huaying; Chen, Zi

    2013-01-01

    Immune reconstitution inflammation syndrome typically occurs within days after patients undergo highly active anti-retroviral therapy and is a big hurdle for effective treatment of AIDS patients. In this study, we monitored immune reconstitution inflammation syndrome occurrence in 238 AIDS patients treated with highly active anti-retroviral therapy. Among them, immune reconstitution inflammation syndrome occurred in 47 cases (19.7%). Immune reconstitution inflammation syndrome patients had significantly higher rate of opportunistic infection (p<0.001) and persistently lower CD4(+) cell count (p<0.001) compared to the non-immune reconstitution inflammation syndrome patients. In contrast, no significant differences in HIV RNA loads were observed between the immune reconstitution inflammation syndrome group and non-immune reconstitution inflammation syndrome group. These data suggest that a history of opportunistic infection and CD4(+) cell counts at baseline may function as risk factors for immune reconstitution inflammation syndrome occurrence in AIDS patients as well as potential prognostic markers. These findings will improve the management of AIDS with highly active anti-retroviral therapy. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  2. Early innate immune responses to Sin Nombre hantavirus occur independently of IFN regulatory factor 3, characterized pattern recognition receptors, and viral entry.

    PubMed

    Prescott, Joseph B; Hall, Pamela R; Bondu-Hawkins, Virginie S; Ye, Chunyan; Hjelle, Brian

    2007-08-01

    Sin Nombre virus (SNV) is a highly pathogenic New World virus and etiologic agent of hantavirus cardiopulmonary syndrome. We have previously shown that replication-defective virus particles are able to induce a strong IFN-stimulated gene (ISG) response in human primary cells. RNA viruses often stimulate the innate immune response by interactions between viral nucleic acids, acting as a pathogen-associated molecular pattern, and cellular pattern-recognition receptors (PRRs). Ligand binding to PRRs activates transcription factors which regulate the expression of antiviral genes, and in all systems examined thus far, IFN regulatory factor 3 (IRF3) has been described as an essential intermediate for induction of ISG expression. However, we now describe a model in which IRF3 is dispensable for the induction of ISG transcription in response to viral particles. IRF3-independent ISG transcription in human hepatoma cell lines is initiated early after exposure to SNV virus particles in an entry- and replication-independent fashion. Furthermore, using gene knockdown, we discovered that this activation is independent of the best-characterized RNA- and protein-sensing PRRs including the cytoplasmic caspase recruitment domain-containing RNA helicases and the TLRs. SNV particles engage a heretofore unrecognized PRR, likely located at the cell surface, and engage a novel IRF3-independent pathway that activates the innate immune response.

  3. How Numbers, Nature, and Immune Status of Foxp3+ Regulatory T-Cells Shape the Early Immunological Events in Tumor Development

    PubMed Central

    Darrasse-Jèze, Guillaume; Podsypanina, Katrina

    2013-01-01

    The influence of CD4+CD25+Foxp3+ regulatory T-cells (Tregs) on cancer progression has been demonstrated in a large number of preclinical models and confirmed in several types of malignancies. Neoplastic processes trigger an increase of Treg numbers in draining lymph nodes, spleen, blood, and tumors, leading to the suppression of anti-tumor responses. Treg-depletion before or early in tumor development may lead to complete tumor eradication and extends survival of mice and humans. However this strategy is ineffective in established tumors, highlighting the critical role of the early Treg-tumor encounters. In this review, after discussing old and new concepts of immunological tumor tolerance, we focus on the nature (thymus-derived vs. peripherally derived) and status (naïve or activated/memory) of the regulatory T-cells at tumor emergence. The recent discoveries in this field suggest that the activation status of Tregs and effector T-cells (Teffs) at the first encounter with the tumor are essential to shape the fate and speed of the immune response across a variety of tumor models. The relative timing of activation/recruitment of anti-tumor cells vs. tolerogenic cells at tumor emergence appears to be crucial in the identification of tumor cells as friend or foe, which has broad implications for the design of cancer immunotherapies. PMID:24133490

  4. Immune endophenotypes in children with Autism Spectrum Disorder

    PubMed Central

    Careaga, Milo; Rogers, Sally; Hansen, Robin L.; Amaral, David G.; de Water, Judy Van; Ashwood, Paul

    2015-01-01

    Background Autism Spectrum Disorder (ASD) is characterized by social communication deficits and restricted, repetitive patterns of behavior. Varied immunological findings have been reported in children with ASD. To address the question of heterogeneity in immune responses, we sought to examine the diversity of immune profiles within a representative cohort of boys with ASD. Methods Peripheral blood mononuclear cells (PBMC) from male children with ASD (n=50) and from typically developing (TD) age-matched male controls (n=16) were stimulated with either lipopolysaccharide (LPS) or phytohaemagglutinin (PHA). Cytokine production was assessed after stimulation. The ASD study population was clustered into subgroups based on immune responses and assessed for behavioral outcomes. Results Children with ASD who had a pro-inflammatory profile based on LPS stimulation were more developmentally impaired as assessed by the Mullen's Scale of Early Learning (MSEL). They also had greater impairments in social affect as measured by the Autism Diagnostic Observation Schedule (ADOS). These children also displayed more frequent sleep disturbances and episodes of aggression. Similarly, children with ASD and a more activated T cell cytokine profile after PHA stimulation were more developmentally impaired as measured by the MSEL. Conclusions Children with ASD may be phenotypically characterized based upon their immune profile. Those showing either a pro-inflammatory response or increased T cell activation/skewing display a more impaired behavioral profile than children with non-inflamed or non-T cell activated immune profiles. These data suggest that there may be several possible immune subphenotypes within the ASD population that correlate with more severe behavioral impairments. PMID:26493496

  5. Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster.

    PubMed

    Herren, Jeremy K; Lemaitre, Bruno

    2011-09-01

    Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts harboured by several Drosophila species. Their long-term survival requires not only evasion of host immunity, but also that Spiroplasma does not have a net detrimental effect on host fitness. These requirements provide the central framework for interactions between host and endosymbiont. We use Drosophila melaogaster as a model to unravel aspects of the mechanistic basis of endosymbiont-host immune interactions. Here we show that Spiroplasma does not activate an immune response in Drosophila and is not susceptible to either the cellular or humoral arms of the Drosophila immune system. We gain unexpected insight into host factors that can promote Spiroplasma growth by showing that activation of Toll and Imd immune pathways actually increases Sprioplasma titre. Spiroplasma-mediated protection is not observed for variety of fungal and bacterial pathogens and Spiroplasma actually increases susceptibility of Drosophila to certain Gram-negative pathogens. Finally, we show that the growth of endosymbiotic Spiroplasma is apparently self-regulated, as suggested by the unhindered proliferation of non-endosymbiotic Spiroplasma citri in fly haemolymph. © 2011 Blackwell Publishing Ltd.

  6. Immune complex-induced human monocyte procoagulant activity. I. a rapid unidirectional lymphocyte-instructed pathway.

    PubMed

    Schwartz, B S; Edgington, T S

    1981-09-01

    It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune

  7. Molecular Steps in the Immune Signaling Pathway Evoked by Plant Elicitor Peptides: Ca2+-Dependent Protein Kinases, Nitric Oxide, and Reactive Oxygen Species Are Downstream from the Early Ca2+ Signal1[OPEN

    PubMed Central

    Ma, Yi; Zhao, Yichen; Walker, Robin K.; Berkowitz, Gerald A.

    2013-01-01

    Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca2+ elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca2+ signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca2+-dependent protein kinases (CPKs) decode the Ca2+ signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca2+ signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca2+-conducting channel in the Pep immune signaling pathway. PMID:24019427

  8. Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma.

    PubMed

    Chew, Valerie; Lee, Yun Hua; Pan, Lu; Nasir, Nurul J M; Lim, Chun Jye; Chua, Camillus; Lai, Liyun; Hazirah, Sharifah Nur; Lim, Tony Kiat Hon; Goh, Brian K P; Chung, Alexander; Lo, Richard H G; Ng, David; Filarca, Rene L F; Albani, Salvatore; Chow, Pierce K H

    2018-02-13

    Yttrium-90 (Y90)-radioembolisation (RE) significantly regresses locally advanced hepatocellular carcinoma and delays disease progression. The current study is designed to deeply interrogate the immunological impact of Y90-RE, which elicits a sustained therapeutic response. Time-of-flight mass cytometry and next-generation sequencing (NGS) were used to analyse the immune landscapes of tumour-infiltrating leucocytes (TILs), tumour tissues and peripheral blood mononuclear cells (PBMCs) at different time points before and after Y90-RE. TILs isolated after Y90-RE exhibited signs of local immune activation: higher expression of granzyme B (GB) and infiltration of CD8 + T cells, CD56 + NK cells and CD8 + CD56 + NKT cells. NGS confirmed the upregulation of genes involved in innate and adaptive immune activation in Y90-RE-treated tumours. Chemotactic pathways involving CCL5 and CXCL16 correlated with the recruitment of activated GB + CD8 + T cells to the Y90-RE-treated tumours. When comparing PBMCs before and after Y90-RE, we observed an increase in tumour necrosis factor-α on both the CD8 + and CD4 + T cells as well as an increase in percentage of antigen-presenting cells after Y90-RE, implying a systemic immune activation. Interestingly, a high percentage of PD-1 + /Tim-3 + CD8 + T cells coexpressing the homing receptors CCR5 and CXCR6 denoted Y90-RE responders. A prediction model was also built to identify sustained responders to Y90-RE based on the immune profiles from pretreatment PBMCs. High-dimensional analysis of tumour and systemic immune landscapes identified local and systemic immune activation that corresponded to the sustained response to Y90-RE. Potential biomarkers associated with a positive clinical response were identified and a prediction model was built to identify sustained responders prior to treatment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  9. CD81 controls immunity to Listeria infection through rac-dependent inhibition of proinflammatory mediator release and activation of cytotoxic T cells.

    PubMed

    Martínez del Hoyo, Gloria; Ramírez-Huesca, Marta; Levy, Shoshana; Boucheix, Claude; Rubinstein, Eric; Minguito de la Escalera, María; González-Cintado, Leticia; Ardavín, Carlos; Veiga, Esteban; Yáñez-Mó, María; Sánchez-Madrid, Francisco

    2015-06-15

    Despite recent evidence on the involvement of CD81 in pathogen binding and Ag presentation by dendritic cells (DCs), the molecular mechanism of how CD81 regulates immunity during infection remains to be elucidated. To investigate the role of CD81 in the regulation of defense mechanisms against microbial infections, we have used the Listeria monocytogenes infection model to explore the impact of CD81 deficiency in the innate and adaptive immune response against this pathogenic bacteria. We show that CD81(-/-) mice are less susceptible than wild-type mice to systemic Listeria infection, which correlates with increased numbers of inflammatory monocytes and DCs in CD81(-/-) spleens, the main subsets controlling early bacterial burden. Additionally, our data reveal that CD81 inhibits Rac/STAT-1 activation, leading to a negative regulation of the production of TNF-α and NO by inflammatory DCs and the activation of cytotoxic T cells by splenic CD8α(+) DCs. In conclusion, this study demonstrates that CD81-Rac interaction exerts an important regulatory role on the innate and adaptive immunity against bacterial infection and suggests a role for CD81 in the development of novel therapeutic targets during infectious diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. A sestrin-dependent Erk/Jnk/p38 MAPK activation complex inhibits immunity during ageing

    PubMed Central

    Lanna, Alessio; Gomes, Daniel C O; Muller-Durovic, Bojana; McDonnell, Thomas; Escors, David; Gilroy, Derek W; Lee, Jun Hee; Karin, Michael; Akbar, Arne N

    2016-01-01

    Mitogen activated protein kinases (MAPKs) including Erk, Jnk and p38 regulate diverse cellular functions, and are thought to be controlled by independent upstream activation cascades. Here we show that the sestrins bind to and co-ordinate simultaneous Erk, Jnk and p38 MAPK activation in T lymphocytes within a new immune-inhibitory complex (sestrin-MAPK Activation Complex; sMAC). Whereas sestrin ablation resulted in broad reconstitution of immune function in stressed T cells, inhibition of individual MAPKs only allowed partial functional recovery. T cells from old humans and mice were more likely to form the sMAC, and disruption of this complex restored antigen-specific functional responses in these cells. Correspondingly, sestrin deficiency or simultaneous inhibition of all three MAPKs enhanced vaccine responsiveness in old mice. Thus, disruption of sMAC provides a foundation for rejuvenating immunity during ageing. PMID:28114291

  11. Immune modulation following immunization with polyvalent vaccines in dogs.

    PubMed

    Strasser, Alois; May, Bettina; Teltscher, Andrea; Wistrela, Eva; Niedermüller, Hans

    2003-08-15

    A decline in T-cell-mediated immunity and transient state of immunosuppression after immunization has been reported in dogs. Nevertheless, dogs are still routinely vaccinated with polyvalent live vaccines and severe disease does not generally occur. In order to investigate these effects on the canine immune system and to elucidate possible mechanisms we determined the following immune parameters in the blood of 33 clinically sound German shepherd dogs before and after standard vaccination with a polyvalent vaccine against distemper, parvovirus, viral hepatitis, leptospirosis, kennel cough and rabies: white and differential blood cell count, the serum concentrations and/or activities of IL-1, IL-2, IFN-gamma, TNF-alpha, neopterin and IgG, natural killer (NK) cell activity, bactericidal activity and complement hemolytic activity, lymphocyte proliferation test (LPT) and nitroblue tetrazolium test (NBT). Our major findings were that significant postvaccinal decreases in T-cell mitogenic response to PHA and in neutrophil function and neopterin serum concentration were accompanied by simultaneous increase in plasma IgG and hemolytic complement activity. This suggests a transient shift in the balance between cell-mediated and humoral (T(H)1/T(H)2) immunity rather than immunosuppression. These results do not imply that dogs should not receive live vaccines, as the response to vaccines just seems to create a state of altered homeostasis when immunization elicits protection by humoral and cell-mediated immunity. However, these recognized compromises of immune function should be considered and vaccines still be applied only in healthy animals and strictly according to the rules and regulations given by the manufacturer.

  12. Is chronic AhR activation by rapidly metabolized ligands safe for the treatment of immune-mediated diseases?

    PubMed

    Ehrlich, Allison K; Kerkvliet, Nancy I

    2017-02-01

    There is a long standing perception that AhR ligands are automatically disqualified from pharmaceutical development due to their induction of Cyp1a1 as well as their potential for causing "dioxin-like" toxicities. However, recent discoveries of new AhR ligands with potential therapeutic applications have been reported, inviting reconsideration of this policy. One area of exploration is focused on the activation of AhR to promote the generation of regulatory T cells, which control the intensity and duration of immune responses. Rapidly metabolized AhR ligands (RMAhRLs), which do not bioaccumulate in the same manner as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) have been discovered that induce Tregs and display impressive therapeutic efficacy in a broad range of preclinical models of immune-mediated diseases. Given the promise of these RMAhRLs, is the bias against AhR activators still valid? Can RMAhRLs be given chronically to maintain therapeutic levels of AhR activation without producing the same toxicity profile as dioxin-like compounds? Based on our review of the data, there is little evidence to support the indiscriminate exclusion of AhR activators/Cyp1a1 inducers from early drug developmental pipelines. We also found no evidence that short-term treatment with RMAhRLs produce "dioxin-like toxicity" and, in fact, were well tolerated. However, safety testing of individual RMAhRLs under therapeutic conditions, as performed with all promising new drugs, will be needed to reveal whether or not chronic activation of AhR leads to unacceptable adverse outcomes.

  13. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity.

    PubMed

    Peng, Yujun; van Wersch, Rowan; Zhang, Yuelin

    2018-04-01

    Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane-localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane-localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.

  14. Alzheimer's disease: Innate immunity gone awry?

    PubMed

    VanItallie, Theodore B

    2017-04-01

    Inflammation is an immune activity designed to protect the host from pathogens and noxious agents. In its low-intensity form, presence of an inflammatory process must be inferred from appropriate biomarkers. Occult neuroinflammation is not just secondary to Alzheimer's disease (AD) but may contribute to its pathogenesis and promote its progression. A leaky blood-brain barrier (BBB) has been observed in early AD and may play a role in its initiation and development. Studies of the temporal evolution of AD's biomarkers have shown that, in AD, the brain's amyloid burden correlates poorly with cognitive decline. In contrast, cognitive deficits in AD correlate well with synapse loss. Oligomeric forms of amyloid-beta (oAβs) can be synaptotoxic and evidence of their deposition inside synaptic terminals of cognition-associated neurons explains early memory loss in AD better than formation of extracellular Aβ plaques. Among innate immune cells that reside in the brain, microglia sense danger signals represented by proteins like oAβ and become activated by neuronal damage such as that caused by bacterial endotoxins. The resulting reactive microgliosis has been implicated in generating the chronic form of microglial activation believed to promote AD's development. Genome-wide association studies (GWASs) have yielded data from patients with sporadic AD indicating that its causes include genetic variation in the innate immune system. Recent preclinical studies have reported that β-hydroxybutyrate (βOHB) may protect the brain from the adverse effects of both the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and the deacetylation of histone. Consequently, there is an urgent need for clinical investigations designed to test whether an orally administered βOHB preparation, such as a ketone ester, can have a similar beneficial effect in human subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Auto-immune hepatitis following delivery.

    PubMed

    Saini, Vandana; Gupta, Mamta; Mishra, S K

    2013-05-01

    Auto-immune hepatitis first presenting in the early postpartum period is rare. Immunosuppressive effects of pregnancy result in delayed manifestation of auto-immune hepatitis, and in established cases, the spontaneous improvements are there. Auto-immune hepatitis should be considered in the differential diagnosis of liver dysfunction first presenting in the early postpartum period. A case of postpartum hepatitis of auto-immune aetiology is being presented here. It is disease of unknown aetiology, characterised by inflammation of liver (as evidenced by raised serum transaminases, presence of interface hepatitis on histological examination), hypergammaglobulinaemia (> 1.5 times normal), presence of auto-antibodies [(antinuclear antibodies (ANA)], smooth muscle antibody (SMA) and antibody to liver-kidney microsome type 1 (LKM1) in the absence of viral markers ie, hepatitis B (HBsAg) and C (AntiHCV) and excellent response to corticosteroid therapy.

  16. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    PubMed

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  17. Activation/modulation of adaptive immunity emerges simultaneously after 17DD yellow fever first-time vaccination: is this the key to prevent severe adverse reactions following immunization?

    PubMed

    Martins, M A; Silva, M L; Marciano, A P V; Peruhype-Magalhães, V; Eloi-Santos, S M; Ribeiro, j G L; Correa-Oliveira, R; Homma, A; Kroon, E G; Teixeira-Carvalho, A; Martins-Filho, O A

    2007-04-01

    Over past decades the 17DD yellow fever vaccine has proved to be effective in controlling yellow fever and promises to be a vaccine vector for other diseases, but the cellular and molecular mechanisms by which it elicits such broad-based immunity are still unclear. In this study we describe a detailed phenotypic investigation of major and minor peripheral blood lymphocyte subpopulations aimed at characterizing the kinetics of the adaptive immune response following primary 17DD vaccination. Our major finding is a decreased frequency of circulating CD19+ cells at day 7 followed by emerging activation/modulation phenotypic features (CD19+interleukin(IL)10R+/CD19+CD32+) at day 15. Increased frequency of CD4+human leucocyte antigen D-related(HLA-DR+) at day 7 and CD8+HLA-DR+ at day 30 suggest distinct kinetics of T cell activation, with CD4+ T cells being activated early and CD8+ T cells representing a later event following 17DD vaccination. Up-regulation of modulatory features on CD4+ and CD8+ cells at day 15 seems to be the key event leading to lower frequency of CD38+ T cells at day 30. Taken together, our findings demonstrate the co-existence of phenotypic features associated with activation events and modulatory pathways. Positive correlations between CD4+HLA-DR+ cells and CD4+CD25high regulatory T cells and the association between the type 0 chemokine receptor CCR2 and the activation status of CD4+ and CD8+ cells further support this hypothesis. We hypothesize that this controlled microenviroment seems to be the key to prevent the development of serious adverse events, and even deaths, associated with the 17DD vaccine reported in the literature.

  18. Supplementary polio immunization activities and prior use of routine immunization services in non-polio-endemic sub-Saharan Africa

    PubMed Central

    Frimpong, Jemima A; Abdelwahab, Jalaa; Asuming, Patrick; Touré, Hamadassalia; Awoonor-Williams, John Koku; Abachie, Thomas; Guidetti, Flavia

    2012-01-01

    Abstract Objective To determine participation in polio supplementary immunization activities (SIAs) in sub-Saharan Africa among users and non-users of routine immunization services and among users who were compliant or non-compliant with the routine oral poliovirus vaccine (OPV) immunization schedule. Methods Data were obtained from household-based surveys in non-polio-endemic sub-Saharan African countries. Routine immunization service users were children (aged < 5 years) who had ever had a health card containing their vaccination history; non-users were children who had never had a health card. Users were considered compliant with the OPV routine immunization schedule if, by the SIA date, their health card reflected receipt of required OPV doses. Logistic regression measured associations between SIA participation and use of both routine immunization services and compliance with routine OPV among users. Findings Data from 21 SIAs conducted between 1999 and 2010 in 15 different countries met inclusion criteria. Overall SIA participation ranged from 70.2% to 96.1%. It was consistently lower among infants than among children aged 1–4 years. In adjusted analyses, participation among routine immunization services users was > 85% in 12 SIAs but non-user participation was > 85% in only 5 SIAs. In 18 SIAs, participation was greater among users (P < 0.01 in 16, 0.05 in 1 and < 0.10 in 1) than non-users. In 14 SIAs, adjusted analyses revealed lower participation among non-compliant users than among compliant users (P < 0.01 in 10, < 0.05 in 2 and < 0.10 in 2). Conclusion Large percentages of children participated in SIAs. Prior use of routine immunization services and compliance with the routine OPV schedule showed a strong positive association with SIA participation. PMID:22807595

  19. Spätzle-Processing Enzyme-independent Activation of the Toll Pathway in Drosophila Innate Immunity.

    PubMed

    Yamamoto-Hino, Miki; Goto, Satoshi

    2016-05-07

    The Toll pathway regulates innate immunity in insects and vertebrates. The Drosophila Toll receptor is activated by a processed form of a ligand, Spätzle. Spätzle-processing enzyme (SPE) is the only enzyme identified to date that functions in converting Spätzle to an active form during the immune response. In the present study, Toll activation induced by immune challenge was almost suppressed in spätzle mutant larvae and adults, whereas it was present in SPE mutant larvae challenged with Micrococcus luteus and adults challenged with Bacillus subtilis. Our data suggest that an unidentified protease besides SPE processes Spätzle under conditions of microbial challenge.

  20. Low-dose radiation induces Drosophila innate immunity through Toll pathway activation.

    PubMed

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Park, Joong-Jean; Min, Kyung-Jin; Jin, Young-Woo

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and JNK. These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila.

  1. Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities.

    PubMed

    Dai, Wen-Fang; Zhang, Jin-Jie; Qiu, Qiong-Fen; Chen, Jiong; Yang, Wen; Ni, Sui; Xiong, Jin-Bo

    2018-05-24

    Aquatic animals are frequently suffered from starvation due to restricted food availability or deprivation. It is currently known that gut microbiota assists host in nutrient acquisition. Thus, exploring the gut microbiota responses would improve our understanding on physiological adaptation to starvation. To achieve this, we investigated how the gut microbiota and shrimp digestion and immune activities were affected under starvation stress. The results showed that the measured digestion activities in starved shrimp were significantly lower than in normal cohorts; while the measured immune activities exhibited an opposite trend. A structural equation modeling (SEM) revealed that changes in the gut bacterial community were directly related to digestive and immune enzyme activities, which in turn markedly affected shrimp growth traits. Notably, several gut bacterial indicators that characterized the shrimp nutrient status were identified, with more abundant opportunistic pathogens in starved shrimp, although there were no statistical differences in the overall diversity and the structures of gut bacterial communities between starved and normal shrimp. Starved shrimp exhibited less connected and cooperative interspecies interaction as compared with normal cohorts. Additionally, the functional pathways involved in carbohydrate and protein digestion, glycan biosynthesis, lipid and enzyme metabolism remarkably decreased in starved shrimp. These attenuations could increase the susceptibility of starved shrimp to pathogens infection. In summary, this study provides novel insights into the interplay among shrimp digestion, immune activities and gut microbiota in response to starvation stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Early High-dosage Atorvastatin Treatment Improved Serum Immune-inflammatory Markers and Functional Outcome in Acute Ischemic Strokes Classified as Large Artery Atherosclerotic Stroke: A Randomized Trial.

    PubMed

    Tuttolomondo, Antonino; Di Raimondo, Domenico; Pecoraro, Rosaria; Maida, Carlo; Arnao, Valentina; Della Corte, Vittoriano; Simonetta, Irene; Corpora, Francesca; Di Bona, Danilo; Maugeri, Rosario; Iacopino, Domenico Gerardo; Pinto, Antonio

    2016-03-01

    Statins have beneficial effects on cerebral circulation and brain parenchyma during ischemic stroke and reperfusion. The primary hypothesis of this randomized parallel trial was that treatment with 80 mg/day of atorvastatin administered early at admission after acute atherosclerotic ischemic stroke could reduce serum levels of markers of immune-inflammatory activation of the acute phase and that this immune-inflammatory modulation could have a possible effect on prognosis of ischemic stroke evaluated by some outcome indicators. We enrolled 42 patients with acute ischemic stroke classified as large arteries atherosclerosis stroke (LAAS) randomly assigned in a randomized parallel trial to the following groups: Group A, 22 patients treated with atorvastatin 80 mg (once-daily) from admission day until discharge; Group B, 20 patients not treated with atorvastatin 80 mg until discharge, and after discharge, treatment with atorvastatin has been started. At 72 hours and at 7 days after acute ischemic stroke, subjects of group A showed significantly lower plasma levels of tumor necrosis factor-α, interleukin (IL)-6, vascular cell adhesion molecule-1, whereas no significant difference with regard to plasma levels of IL-10, E-Selectin, and P-Selectin was observed between the 2 groups. At 72 hours and 7 days after admission, stroke patients treated with atorvastatin 80 mg in comparison with stroke subjects not treated with atorvastatin showed a significantly lower mean National Institutes of Health Stroke Scale and modified Rankin scores. Our findings provide the first evidence that atorvastatin acutely administered immediately after an atherosclerotic ischemic stroke exerts a lowering effect on immune-inflammatory activation of the acute phase of stroke and that its early use is associated to a better functional and prognostic profile.

  3. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Innate immunity and HIV-1 infection.

    PubMed

    Lehner, T; Wang, Y; Whittall, T; Seidl, T

    2011-04-01

    HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.

  5. Phagocytosis-dependent activation of a TLR9–BTK–calcineurin–NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus

    PubMed Central

    Herbst, Susanne; Shah, Anand; Mazon Moya, Maria; Marzola, Vanessa; Jensen, Barbara; Reed, Anna; Birrell, Mark A; Saijo, Shinobu; Mostowy, Serge; Shaunak, Sunil; Armstrong-James, Darius

    2015-01-01

    Transplant recipients on calcineurin inhibitors are at high risk of invasive fungal infection. Understanding how calcineurin inhibitors impair fungal immunity is a key priority for defining risk of infection. Here, we show that the calcineurin inhibitor tacrolimus impairs clearance of the major mould pathogen Aspergillus fumigatus from the airway, by inhibiting macrophage inflammatory responses. This leads to defective early neutrophil recruitment and fungal clearance. We confirm these findings in zebrafish, showing an evolutionarily conserved role for calcineurin signalling in neutrophil recruitment during inflammation. We find that calcineurin–NFAT activation is phagocytosis dependent and collaborates with NF-κB for TNF-α production. For yeast zymosan particles, activation of macrophage calcineurin–NFAT occurs via the phagocytic Dectin-1–spleen tyrosine kinase pathway, but for A. fumigatus, activation occurs via a phagosomal TLR9-dependent and Bruton's tyrosine kinase-dependent signalling pathway that is independent of MyD88. We confirm the collaboration between NFAT and NF-κB for TNF-α production in primary alveolar macrophages. These observations identify inhibition of a newly discovered macrophage TLR9–BTK–calcineurin–NFAT signalling pathway as a key immune defect that leads to organ transplant-related invasive aspergillosis. PMID:25637383

  6. [Inflammasome and its role in immunological and inflammatory response at early stage of burns].

    PubMed

    Zhang, Fang; Li, Jiahui; Xia, Zhaofan

    2014-06-01

    Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.

  7. A randomized trial to investigate the effects of pre-natal and infant nutritional supplementation on infant immune development in rural Gambia: the ENID trial: Early Nutrition and Immune Development.

    PubMed

    Moore, Sophie E; Fulford, Anthony Jc; Darboe, Momodou K; Jobarteh, Modou Lamin; Jarjou, Landing M; Prentice, Andrew M

    2012-10-11

    Recent observational research indicates that immune development may be programmed by nutritional exposures early in life. Such findings require replication from trials specifically designed to assess the impact of nutritional intervention during pregnancy on infant immune development. The current trial seeks to establish: (a) which combination of protein-energy (PE) and multiple-micronutrient (MMN) supplements would be most effective; and (b) the most critical periods for intervention in pregnancy and infancy, for optimal immune development in infancy. The ENID Trial is a 2 x 2 x 2 factorial randomized, partially blind trial to assess whether nutritional supplementation to pregnant women (from < 20 weeks gestation to term) and their infants (from 6 to 12 months of age) can enhance infant immune development. Eligible pregnant women from the West Kiang region of The Gambia (pregnancy dated by ultrasound examination) are randomized on entry to 4 intervention groups (Iron-folate (FeFol = standard care), multiple micronutrients (MMN), protein-energy (PE), PE + MMN). Women are visited at home weekly for supplement administration and morbidity assessment and seen at MRC Keneba at 20 and 30 weeks gestation for a detailed antenatal examination, including ultrasound. At delivery, cord blood and placental samples are collected, with detailed infant anthropometry collected within 72 hours. Infants are visited weekly thereafter for a morbidity questionnaire. From 6 to 12 months of age, infants are further randomized to a lipid-based nutritional supplement, with or without additional MMN. The primary outcome measures of this study are thymic development during infancy, and antibody response to vaccination. Measures of cellular markers of immunity will be made in a selected sub-cohort. Subsidiary studies to the main trial will additionally assess the impact of supplementation on infant growth and development to 24 months of age. The proposed trial is designed to test whether

  8. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    PubMed

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  9. Drosophila immunity: analysis of PGRP-SB1 expression, enzymatic activity and function.

    PubMed

    Zaidman-Rémy, Anna; Poidevin, Mickael; Hervé, Mireille; Welchman, David P; Paredes, Juan C; Fahlander, Carina; Steiner, Hakan; Mengin-Lecreulx, Dominique; Lemaitre, Bruno

    2011-02-18

    Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed.

  10. Mice are actively immunized after passive monoclonal antibody prophylaxis and ricin toxin challenge. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemley, P.V.; Wright, D.C.

    1992-12-31

    Mice passively immunized by a protective, anti-ricin A-chain monoclonal antibody, then challenged intravenously with ricin, were protected from a subsequent ricin challenge, and were actively immunized. Two significant advantages accrued from this experiment: the monoclonal antibody neutralized the toxicity of the ricin immunogen, and active immunization was achieved with very low antigen load (approx. 0.5 micrograms/mouse). We ruled out the possibility that residual monoclonal antibody provided the protection by using three independent criteria. There was significant (four orders of magnitude) enhancement of the immune response in the presence of the monoclonal antibody; control immunizations of mice with ricin A-chain, ricinmore » B-chain or either chain with the monoclonal antibody did not induce active immunity; and the active immunization could not be replicated when protective goat polyclonal antibody was substituted for the monoclonal antibody. Because high titers were achieved rapidly without any adjuvant, we are currently investigating haptenized ricin to determine if anti-hapten monoclonal antibodies can be produced by this refined procedure.« less

  11. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  12. Prenatal Immune Challenge Is an Environmental Risk Factor for Brain and Behavior Change Relevant to Schizophrenia: Evidence from MRI in a Mouse Model

    PubMed Central

    Wei, Ran; Hui, Edward S.; Feldon, Joram; Meyer, Urs; Chung, Sookja; Chua, Siew E.; Sham, Pak C.; Wu, Ed X.; McAlonan, Grainne M.

    2009-01-01

    Objectives Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood. Method We used an established mouse model of maternal immune activation (MIA) by the viral mimic PolyI:C administered in early (day 9) or late (day 17) gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities. Results PolyI:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4th ventricle volume but did not disrupt sensorimotor gating. Conclusions Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life. PMID:19629183

  13. The flip side of immune surveillance: immune dependency.

    PubMed

    Prehn, Richmond T; Prehn, Liisa M

    2008-04-01

    The growths of many and perhaps all tumors may be stimulated rather than inhibited by a quantitatively low level of immunity. The reason tumors have antigens may be that tumors do not develop in vivo in the absence of at least a minimal immune reaction; in this sense, cancer may be considered an autoimmune disease. This review, based largely on the work of our own laboratory, outlines the data showing that the titration of anti-tumor immunity exhibits the phenomenon of hormesis, i.e. the dose-response curve is non-linear such that low levels of immunity are generally stimulatory but larger quantities of the same immune reactants may inhibit tumor growth. Evidence is also reviewed that suggests that the immune response may vary qualitatively and quantitatively during progression, such that there seems to be, during oncogenesis, a very low level of immune reaction that aids initial tumor growth, followed by a larger reaction that may cause remission of early neoplasms, followed, if the neoplasm survives, by a relative immunologic tolerance to the tumor that may be dependent, at least in part, on suppressor cells. This knowledge may help to explain some clinical observations concerning the relationships among tumor types and the organ distribution of metastases.

  14. Antibodies against viruses: passive and active immunization

    PubMed Central

    Law, Mansun; Hangartner, Lars

    2008-01-01

    Summary of recent advances Antibodies, through passive or active immunization, play a central role in prophylaxis against many infectious agents. While neutralization is a primary function of antibodies in protection against most viruses, the relative contribution of Fc-dependent and complement-dependent antiviral activities of antibodies was found to vary between different viruses in recent studies. The multiple hit model explains how antibodies neutralize viruses and recent data on the stoichiometry of antibody neutralization suggest that the organization of viral surface proteins on viruses, in addition to virus size, influences the level of antibody occupancy required for neutralization. These new findings will improve our strategies in therapeutic antibody engineering and rational vaccine design. PMID:18577455

  15. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    PubMed Central

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-01-01

    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches. PMID:26054597

  16. Serious Non-AIDS Conditions in HIV: Benefit of Early ART.

    PubMed

    Lundgren, Jens D; Borges, Alvaro H; Neaton, James D

    2018-04-01

    Optimal control of HIV can be achieved by early diagnosis followed by the initiation of antiretroviral therapy (ART). Two large randomised trials (TEMPRANO and START) have recently been published documenting the clinical benefits to HIV-positive adults of early ART initiation. Main findings are reviewed with a focus on serious non-AIDS (SNA) conditions. Data from the two trials demonstrated that initiating ART early in the course of HIV infection resulted in marked reductions in the risk of opportunistic diseases and invasive bacterial infections. This indicates that HIV causes immune impairment in early infection that is remedied by controlling viral replication. Intriguingly, in START, a marked reduction in risk of cancers, both infection-related and unrelated types of cancers, was observed. Like the findings for opportunistic infections, this anti-cancer effect of early ART shows how the immune system influences important pro-oncogenic processes. In START, there was also some evidence suggesting that early ART initiation preserved kidney function, although the clinical consequence of this remains unclear. Conversely, while no adverse effects were evident, the trials did not demonstrate a clear effect on metabolic-related disease outcomes, pulmonary disease, or neurocognitive function. HIV causes immune impairment soon after acquisition of infection. ART reverses this harm at least partially. The biological nature of the immune impairment needs further elucidation, as well as mechanisms and clinical impact of innate immune activation. Based on the findings from TEMPRANO and START, and because ART lowers the risk of onward transmission, ART initiation should be offered to all persons following their diagnosis of HIV.

  17. Effector-triggered immunity: from pathogen perception to robust defense.

    PubMed

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  18. An exposome perspective: Early-life events and immune development in a changing world.

    PubMed

    Renz, Harald; Holt, Patrick G; Inouye, Michael; Logan, Alan C; Prescott, Susan L; Sly, Peter D

    2017-07-01

    Advances in metagenomics, proteomics, metabolomics, and systems biology are providing a new emphasis in research; interdisciplinary work suggests that personalized medicine is on the horizon. These advances are illuminating sophisticated interactions between human-associated microbes and the immune system. The result is a transformed view of future prevention and treatment of chronic noncommunicable diseases, including allergy. Paradigm-shifting gains in scientific knowledge are occurring at a time of rapid global environmental change, urbanization, and biodiversity losses. Multifactorial and multigenerational implications of total environmental exposures, the exposome, require coordinated interdisciplinary efforts. It is clear that the genome alone cannot provide answers to urgent questions. Here we review the historical origins of exposome research and define a new concept, the metaexposome, which considers the bidirectional effect of the environment on human subjects and the human influence on all living systems and their genomes. The latter is essential for human health. We place the metaexposome in the context of early-life immune functioning and describe how various aspects of a changing environment, especially through microbiota exposures, can influence health and disease over the life course. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth.

    PubMed

    Lozano-Durán, Rosa; Macho, Alberto P; Boutrot, Freddy; Segonzac, Cécile; Somssich, Imre E; Zipfel, Cyril

    2013-12-31

    The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues. DOI: http://dx.doi.org/10.7554/eLife.00983.001.

  20. Huntingtons Disease Mice Infected with Toxoplasma gondii Demonstrate Early Kynurenine Pathway Activation, Altered CD8+ T-Cell Responses, and Premature Mortality.

    PubMed

    Donley, David W; Olson, Andrew R; Raisbeck, Merl F; Fox, Jonathan H; Gigley, Jason P

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-repeat expansion in the huntingtin protein. Activation of the kynurenine pathway of tryptophan degradation is implicated in the pathogenesis of HD. Indoleamine-2,3-dioxygenase (IDO) catalyzes the oxidation of tryptophan to kynurenine, the first step in this pathway. The prevalent, neuroinvasive protozoal pathogen Toxoplasma gondii (T. gondii) results in clinically silent life-long infection in immune-competent individuals. T. gondii infection results in activation of IDO which provides some protection against the parasite by depleting tryptophan which the parasite cannot synthesize. The kynurenine pathway may therefore represent a point of synergism between HD and T. gondii infection. We show here that IDO activity is elevated at least four-fold in frontal cortex and striata of non-infected N171-82Q HD mice at 14-weeks corresponding to early-advanced HD. T. gondii infection at 5 weeks resulted in elevation of cortical IDO activity in HD mice. HD-infected mice died significantly earlier than wild-type infected and HD control mice. Prior to death, infected HD mice demonstrated decreased CD8+ T-lymphocyte proliferation in brain and spleen compared to wild-type infected mice. We demonstrate for the first time that HD mice have an altered response to an infectious agent that is characterized by premature mortality, altered immune responses and early activation of IDO. Findings are relevant to understanding how T. gondii infection may interact with pathways mediating neurodegeneration in HD.

  1. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    PubMed

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Immune mechanisms of the active ingredients of Chinese medicinal herbs for chronic prostatitis].

    PubMed

    Wang, Hao; Zhou, Yu-chun; Xue, Jian-guo

    2016-01-01

    Chronic prostatitis is a common male disease, and its pathogenesis is not yet clear. Most scholars believe that oxidative stress and immune imbalance are the keys to the occurrence and progression of chronic prostatitis. Currently immunotherapy of chronic prostatitis remains in the exploratory stage. This article relates the active ingredients of 5 Chinese medicinal herbs (total glucosides of paeony, tripterigium wilfordii polglycosidium, curcumin, geniposide, and quercetin) for the treatment of chronic prostatitis and their possible action mechanisms as follows: 1) inhibiting the immune response and activation and proliferation of T-cells, and adjusting the proportion of Th1/Th2 cells; 2) upregulating the expression of Treg and enhancing the patient's tolerability; 3) suppressing the activation of the NF-kB factor, reducing the release of iNOS, and further decreasing the release of NO, IL-2 and other inflammatory cytokines, which contribute to the suppression of the immune response; 4) inhibiting the production of such chemokines as MCP-1 and MIP-1α in order to reduce their induction of inflammatory response. Studies on the immune mechanisms of Chinese medicinal herbs in the treatment of chronic prostatitis are clinically valuable for the development of new drugs for this disease.

  3. Prenatal maternal immune activation increases anxiety- and depressive-like behaviors in offspring with experimental autoimmune encephalomyelitis.

    PubMed

    Majidi-Zolbanin, J; Doosti, M-H; Kosari-Nasab, M; Salari, A-A

    2015-05-21

    Multiple sclerosis (MS) is thought to result from a combination of genetics and environmental factors. Several lines of evidence indicate that significant prevalence of anxiety and depression-related disorders in MS patients can influence the progression of the disease. Although we and others have already reported the consequences of prenatal maternal immune activation on anxiety and depression, less is known about the interplay between maternal inflammation, MS and gender. We here investigated the effects of maternal immune activation with Poly I:C during mid-gestation on the progression of clinical symptoms of experimental autoimmune encephalomyelitis (EAE; a mouse model of MS), and then anxiety- and depressive-like behaviors in non-EAE and EAE-induced offspring were evaluated. Stress-induced corticosterone and tumor necrosis factor-alpha (TNF-α) levels in EAE-induced offspring were also measured. Maternal immune activation increased anxiety and depression in male offspring, but not in females. This immune challenge also resulted in an earlier onset of the EAE clinical signs in male offspring and enhanced the severity of the disease in both male and female offspring. Interestingly, the severity of the disease was associated with increased anxiety/depressive-like behaviors and elevated corticosterone or TNF-α levels in both sexes. Overall, these data suggest that maternal immune activation with Poly I:C during mid-pregnancy increases anxiety- and depressive-like behaviors, and the clinical symptoms of EAE in a sex-dependent manner in non-EAE or EAE-induced offspring. Finally, the progression of EAE in offspring seems to be linked to maternal immune activation-induced dysregulation in neuro-immune-endocrine system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity

    PubMed Central

    Rosado, Maria Manuela; Simkó, Myrtill; Mattsson, Mats-Olof; Pioli, Claudio

    2018-01-01

    In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing. PMID:29632855

  5. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity.

    PubMed

    Rosado, Maria Manuela; Simkó, Myrtill; Mattsson, Mats-Olof; Pioli, Claudio

    2018-01-01

    In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while "respecting" the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.

  6. Protective Effect of Active Immunization with Purified Escherichia coli Heat-Labile Enterotoxin in Rats

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.

    1979-01-01

    The protective effect of active immunization by different routes with a purified preparation of the polymyxin-release form of Escherichia coli heat-labile toxin was evaluated in rats. Immunized animals were challenged by placing toxin into ligated ileal loops at dosages which produced either 50% or the maximum secretory response in unimmunized rats. Immunization exclusively by the parenteral route yielded significant protection. Rats were also protected when parenteral priming was followed by boosting given either directly into the duodenum or perorally 2 h after intragastric cimetidine, but not when the peroral boosts were given with bicarbonate. Immunization administered entirely by the peroral route with cimetidine yielded protection but only when the immunizing dosage was fivefold greater than that found effective in the parenteral-peroral approach. Rats immunized exclusively by the parenteral route and those boosted perorally with cimetidine were also tested, and found to be protected, against challenge with viable organisms of strains that produce either heat-labile toxin alone or both heat-labile and heat-stable toxin, but they were not protected against a strain which produces just heat-stable toxin. Geometric mean serum antibody titers were increased by 16-fold or more over control values in those groups of rats in which protection was achieved, with the exception of those immunized exclusively by the peroral route. These observations demonstrate that (i) active immunization with purified E. coli heat-labile toxin results in significant protection against both this toxin as well as viable organisms which produce it, but not against viable strains which produce heat-stable toxin only, and (ii) concomitant ablation of gastric secretion by the use of cimetidine renders the peroral route of immunization effective. They suggest that prophylactic immunization against diarrheal disease caused by heat-labile toxin-producing strains of E. coli may be feasible in

  7. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up

    PubMed Central

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Abstract Background Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. Methods We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher’s exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. Results LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Conclusion(s) Our study highlights molecular and immune phenotypes that warrant further analysis for their

  8. The Fungal Quorum-Sensing Molecule Farnesol Activates Innate Immune Cells but Suppresses Cellular Adaptive Immunity

    PubMed Central

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin

    2015-01-01

    ABSTRACT Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. PMID:25784697

  9. The early stages of the immune response of the European abalone Haliotis tuberculata to a Vibrio harveyi infection.

    PubMed

    Cardinaud, Marion; Dheilly, Nolwenn M; Huchette, Sylvain; Moraga, Dario; Paillard, Christine

    2015-08-01

    Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone mortalities in France, Japan and Australia. In the European abalone, V. harveyi invades the circulatory system in a few hours after exposure and is lethal after 2 days of infection. In this study, we investigated the responses of European abalone immune cells over the first 24 h of infection. Results revealed an initial induction of immune gene expression including Rel/NF-kB, Mpeg and Clathrin. It is rapidly followed by a significant immuno-suppression characterized by reduced cellular hemocyte parameters, immune response gene expressions and enzymatic activities. Interestingly, Ferritin was overexpressed after 24 h of infection suggesting that abalone attempt to counter V. harveyi infection using soluble effectors. Immune function alteration was positively correlated with V. harveyi concentration. This study provides the evidence that V. harveyi has a hemolytic activity and an immuno-suppressive effect in the European abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines

    PubMed Central

    Levy, Ofer; Netea, Mihai G.

    2014-01-01

    Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named “trained immunity”. Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases. PMID:24352476

  11. Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909).

    PubMed

    Minang, Jacob T; Inglefield, Jon R; Harris, Andrea M; Lathey, Janet L; Alleva, David G; Sweeney, Diane L; Hopkins, Robert J; Lacy, Michael J; Bernton, Edward W

    2014-11-28

    NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity. Copyright © 2014 The Authors

  12. A Novel Three-Dimensional Immune Oncology Model for High-Throughput Testing of Tumoricidal Activity.

    PubMed

    Sherman, Hilary; Gitschier, Hannah J; Rossi, Ann E

    2018-01-01

    The latest advancements in oncology research are focused on autologous immune cell therapy. However, the effectiveness of this type of immunotherapy for cancer remediation is not equivalent for all patients or cancer types. This suggests the need for better preclinical screening models that more closely recapitulate in vivo tumor biology. The established method for investigating tumoricidal activity of immunotherapies has been study of two-dimensional (2D) monolayer cultures of immortalized cancer cell lines or primary tumor cells in standard tissue culture vessels. Indeed, a proven means to examine immune cell migration and invasion are 2D chemotaxis assays in permeabilized supports or Boyden chambers. Nevertheless, the more in vivo -like three-dimensional (3D) multicellular tumor spheroids are quickly becoming the favored model to examine immune cell invasion and tumor cell cytotoxicity. Accordingly, we have developed a 3D immune oncology model by combining 96-well permeable support systems and 96-well low-attachment microplates. The use of the permeable support system enables assessment of immune cell migration, which was tested in this study as chemotactic response of natural killer NK-92MI cells to human stromal-cell derived factor-1 (SDF-1α). Immune invasion was assessed by measuring NK-92MI infiltration into lung carcinoma A549 cell spheroids that were formed in low-attachment microplates. The novel pairing of the permeable support system with low-attachment microplates permitted simultaneous investigation of immune cell homing, immune invasion of tumor spheroids, and spheroid cytotoxicity. In effect, the system represents a more comprehensive and in vivo -like immune oncology model that can be utilized for high-throughput study of tumoricidal activity.

  13. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  14. White Shrimp Litopenaeus vannamei That Have Received Gracilaria tenuistipitata Extract Show Early Recovery of Immune Parameters after Ammonia Stressing.

    PubMed

    Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Yeh, Su-Tuen; Huang, Chien-Lun

    2015-06-05

    White shrimp Litopenaeus vannamei immersed in seawater (35‰) containing Gracilaria tenuistipitata extract (GTE) at 0 (control), 400, and 600 mg/L for 3 h were exposed to 5 mg/L ammonia-N (ammonia as nitrogen), and immune parameters including hyaline cells (HCs), granular cells (GCs, including semi-granular cells), total hemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, lysozyme activity, and hemolymph protein level were examined 24~120 h post-stress. The immune parameters of shrimp immersed in 600 mg/L GTE returned to original values earlier, at 96~120 h post-stress, whereas in control shrimp they did not. In another experiment, shrimp were immersed in seawater containing GTE at 0 and 600 mg/L for 3 h and examined for transcript levels of immune-related genes at 24 h post-stress. Transcript levels of lipopolysaccharide and β-1,3-glucan binding protein (LGBP), peroxinectin (PX), cytMnSOD, mtMnSOD, and HSP70 were up-regulated at 24 h post-stress in GTE receiving shrimp. We concluded that white shrimp immersed in seawater containing GTE exhibited a capability for maintaining homeostasis by regulating cellular and humoral immunity against ammonia stress as evidenced by up-regulated gene expression and earlier recovery of immune parameters.

  15. White Shrimp Litopenaeus vannamei That Have Received Gracilaria tenuistipitata Extract Show Early Recovery of Immune Parameters after Ammonia Stressing

    PubMed Central

    Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Yeh, Su-Tuen; Huang, Chien-Lun

    2015-01-01

    White shrimp Litopenaeus vannamei immersed in seawater (35‰) containing Gracilaria tenuistipitata extract (GTE) at 0 (control), 400, and 600 mg/L for 3 h were exposed to 5 mg/L ammonia-N (ammonia as nitrogen), and immune parameters including hyaline cells (HCs), granular cells (GCs, including semi-granular cells), total hemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, lysozyme activity, and hemolymph protein level were examined 24~120 h post-stress. The immune parameters of shrimp immersed in 600 mg/L GTE returned to original values earlier, at 96~120 h post-stress, whereas in control shrimp they did not. In another experiment, shrimp were immersed in seawater containing GTE at 0 and 600 mg/L for 3 h and examined for transcript levels of immune-related genes at 24 h post-stress. Transcript levels of lipopolysaccharide and β-1,3-glucan binding protein (LGBP), peroxinectin (PX), cytMnSOD, mtMnSOD, and HSP70 were up-regulated at 24 h post-stress in GTE receiving shrimp. We concluded that white shrimp immersed in seawater containing GTE exhibited a capability for maintaining homeostasis by regulating cellular and humoral immunity against ammonia stress as evidenced by up-regulated gene expression and earlier recovery of immune parameters. PMID:26058012

  16. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    PubMed

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  17. Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction.

    PubMed

    Shao, Wenwei; Earley, Lauriel F; Chai, Zheng; Chen, Xiaojing; Sun, Junjiang; He, Ting; Deng, Meng; Hirsch, Matthew L; Ting, Jenny; Samulski, R Jude; Li, Chengwen

    2018-06-21

    Data from clinical trials for hemophilia B using adeno-associated virus (AAV) vectors have demonstrated decreased transgenic coagulation factor IX (hFIX) expression 6-10 weeks after administration of a high vector dose. While it is likely that capsid-specific cytotoxic T lymphocytes eliminate vector-transduced hepatocytes, thereby resulting in decreased hFIX, this observation is not intuitively consistent with restored hFIX levels following prednisone application. Although the innate immune response is immediately activated following AAV vector infection via TLR pathways, no studies exist regarding the role of the innate immune response at later time points after AAV vector transduction. Herein, activation of the innate immune response in cell lines, primary human hepatocytes, and hepatocytes in a human chimeric mouse model was observed at later time points following AAV vector transduction. Mechanistic analysis demonstrated that the double-stranded RNA (dsRNA) sensor MDA5 was necessary for innate immune response activation and that transient knockdown of MDA5, or MAVS, decreased IFN-β expression while increasing transgene production in AAV-transduced cells. These results both highlight the role of the dsRNA-triggered innate immune response in therapeutic transgene expression at later time points following AAV transduction and facilitate the execution of effective strategies to block the dsRNA innate immune response in future clinical trials.

  18. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways

    PubMed Central

    2018-01-01

    ABSTRACT The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection. PMID:29436902

  19. Stress Proteins and Initiation of Immune Response: Chaperokine activity of Hsp72

    PubMed Central

    Asea, Alexzander

    2006-01-01

    From its original description as solely an intracellular molecular chaperone, heat shock proteins have now been shown to function as initiators of the host's immune response. Although the exact mechanism by which intracellular heat shock proteins leave cells is still incompletely understood, recent work from several labs suggest that heat shock proteins are released by both passive (necrotic) and active (physiological) mechanisms. Binding to specific surface receptors is a prerequisite for the initiation of an immune response. To date, several cell surface proteins have been described as the receptor for seventy kilo-Dalton heat shock protein (Hsp70) including Toll-like receptors 2 and 4 with their cofactor CD14, the scavenger receptor CD36, the low-density lipoprotein receptor-related protein CD91, the C-type lectin receptor LOX-1, and another member of the scavenger super-family SR-A plus the co-stimulatory molecule, CD40. Binding of Hsp70 to these surface receptors specifically activates intracellular signaling cascades, which in turn exert immunoregulatory effector functions; a process known as the chaperokine activity of Hsp70. This review will highlight recent advances in understanding the mechanism by which Hsp70 initiates the host's immune response. PMID:16385842

  20. Stress proteins and initiation of immune response: chaperokine activity of hsp72.

    PubMed

    Asea, Alexzander

    2005-01-01

    From its original description as solely an intracellular molecular chaperone, heat shock proteins have now been shown to function as initiators of the host's immune response. Although the exact mechanism by which intracellular heat shock proteins leave cells is still incompletely understood, recent work from several labs suggest that heat shock proteins are released by both passive (necrotic) and active (physiological) mechanisms. Binding to specific surface receptors is a prerequisite for the initiation of an immune response. To date, several cell surface proteins have been described as the receptor for seventy kilo-Dalton heat shock protein (Hsp70) including Toll-like receptors 2 and 4 with their cofactor CD14, the scavenger receptor CD36, the low-density lipoprotein receptor-related protein CD91, the C-type lectin receptor LOX-1, and another member of the scavenger super-family SR-A plus the co-stimulatory molecule, CD40. Binding of Hsp70 to these surface receptors specifically activates intracellular signaling cascades, which in turn exert immunoregulatory effector functions; a process known as the chaperokine activity of Hsp70. This review will highlight recent advances in understanding the mechanism by which Hsp70 initiates the host's immune response.

  1. Immunity by equilibrium.

    PubMed

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  2. Early life allergen and air pollutant exposures alter longitudinal blood immune profiles in infant rhesus monkeys.

    PubMed

    Crowley, Candace M; Fontaine, Justin H; Gerriets, Joan E; Schelegle, Edward S; Hyde, Dallas M; Miller, Lisa A

    2017-08-01

    Early life is a critical period for the progressive establishment of immunity in response to environmental stimuli; the impact of airborne challenges on this process is not well defined. In a longitudinal fashion, we determined the effect of episodic house dust mite (HDM) aerosol and ozone inhalation, both separately and combined, on peripheral blood immune cell phenotypes and cytokine expression from 4 to 25weeks of age in an infant rhesus monkey model of childhood development. Immune profiles in peripheral blood were compared with lung lavage at 25weeks of age. Independent of exposure, peripheral blood cell counts fluctuated with chronologic age of animals, while IFNγ and IL-4 mRNA levels increased over time in a linear fashion. At 12weeks of age, total WBC, lymphocyte numbers, FoxP3 mRNA and IL-12 mRNA were dramatically reduced relative to earlier time points, but increased to a steady state with age. Exposure effects were observed for monocyte numbers, as well as CCR3, FoxP3, and IL-12 mRNA levels in peripheral blood. Significant differences in cell surface marker and cytokine expression were detected following in vitro HDM or PMA/ionomycin stimulation of PBMC isolated from animals exposed to either HDM or ozone. Lavage revealed a mixed immune phenotype of FoxP3, IFNγ and eosinophilia in association with combined HDM plus ozone exposure, which was not observed in blood. Collectively, our findings show that airborne challenges during postnatal development elicit measureable cell and cytokine changes in peripheral blood over time, but exposure-induced immune profiles are not mirrored in the lung. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Changes in T Cell and Dendritic Cell Phenotype from Mid to Late Pregnancy Are Indicative of a Shift from Immune Tolerance to Immune Activation

    PubMed Central

    Shah, Nishel Mohan; Herasimtschuk, Anna A.; Boasso, Adriano; Benlahrech, Adel; Fuchs, Dietmar; Imami, Nesrina; Johnson, Mark R.

    2017-01-01

    During pregnancy, the mother allows the immunologically distinct fetoplacental unit to develop and grow. Opinions are divided as to whether this represents a state of fetal-specific tolerance or of a generalized suppression of the maternal immune system. We hypothesized that antigen-specific T cell responses are modulated by an inhibitory T cell phenotype and modified dendritic cell (DC) phenotype in a gestation-dependent manner. We analyzed changes in surface markers of peripheral blood T cells, ex vivo antigen-specific T cell responses, indoleamine 2,3-dioxygenase (IDO) activity (kynurenine/tryptophan ratio, KTR), plasma neopterin concentration, and the in vitro expression of progesterone-induced blocking factor (PIBF) in response to peripheral blood mononuclear cell culture with progesterone. We found that mid gestation is characterized by reduced antigen-specific T cell responses associated with (1) predominance of effector memory over other T cell subsets; (2) upregulation of inhibitory markers (programmed death ligand 1); (3) heightened response to progesterone (PIBF); and (4) reduced proportions of myeloid DC and concurrent IDO activity (KTR). Conversely, antigen-specific T cell responses normalized in late pregnancy and were associated with increased markers of T cell activation (CD38, neopterin). However, these changes occur with a simultaneous upregulation of immune suppressive mechanisms including apoptosis (CD95), coinhibition (TIM-3), and immune regulation (IL-10) through the course of pregnancy. Together, our data suggest that immune tolerance dominates in the second trimester and that it is gradually reversed in the third trimester in association with immune activation as the end of pregnancy approaches. PMID:28966619

  4. Early Immune Responses in Rainbow Trout Liver upon Viral Hemorrhagic Septicemia Virus (VHSV) Infection

    PubMed Central

    Castro, Rosario; Abós, Beatriz; Pignatelli, Jaime; von Gersdorff Jørgensen, Louise; González Granja, Aitor; Buchmann, Kurt; Tafalla, Carolina

    2014-01-01

    Among the essential metabolic functions of the liver, in mammals, a role as mediator of systemic and local innate immunity has also been reported. Although the presence of an important leukocyte population in mammalian liver is well documented, the characterization of leukocyte populations in the teleost liver has been only scarcely addressed. In the current work, we have confirmed the presence of IgM+, IgD+, IgT+, CD8α+, CD3+ cells, and cells expressing major histocompatibility complex (MHC-II) in rainbow trout (Oncorhynchus mykiss) liver by flow cytometry and/or immunohistochemistry analysis. Additionally, the effect of viral hemorrhagic septicemia virus (VHSV) on the liver immune response was assessed. First, we studied the effect of viral intraperitoneal injection on the transcription of a wide selection of immune genes at days 1, 2 and 5 post-infection. These included a group of leukocyte markers genes, pattern recognition receptors (PRRs), chemokines, chemokine receptor genes, and other genes involved in the early immune response and in acute phase reaction. Our results indicate that T lymphocytes play a key role in the initial response to VHSV in the liver, since CD3, CD8, CD4, perforin, Mx and interferon (IFN) transcription levels were up-regulated in response to VHSV. Consequently, flow cytometry analysis of CD8α+ cells in liver and spleen at day 5 post-infection revealed a decrease in the number of CD8α+ cells in the spleen and an increased population in the liver. No differences were found however in the percentages of B lymphocyte (IgM+ or IgD+) populations. In addition, a strong up-regulation in the transcription levels of several PRRs and chemokines was observed from the second day of infection, indicating an important role of these factors in the response of the liver to viral infections. PMID:25338079

  5. Hepatitis B Virus Lacks Immune Activating Capacity, but Actively Inhibits Plasmacytoid Dendritic Cell Function

    PubMed Central

    Woltman, Andrea M.; Shi, Cui C.; Janssen, Harry L. A.

    2011-01-01

    Chronic hepatitis B virus (HBV) infection is caused by inadequate anti-viral immunity. Activation of plasmacytoid dendritic cells (pDC) leading to IFNα production is important for effective anti-viral immunity. Hepatitis B virus (HBV) infection lacks IFNα induction in animal models and patients and chronic HBV patients display impaired IFNα production by pDC. Therefore, HBV and HBV-derived proteins were examined for their effect on human pDC in vitro. In addition, the in vitro findings were compared to the function of pDC derived from chronic HBV patients ex vivo. In contrast to other viruses, HBV did not activate pDC. Moreover, HBV and HBsAg abrogated CpG-A/TLR9-induced, but not Loxoribine/TLR7-induced, mTOR-mediated S6 phosphorylation, subsequent IRF7 phosphorylation and IFNα gene transcription. HBV/HBsAg also diminished upregulation of co-stimulatory molecules, production of TNFα, IP-10 and IL-6 and pDC-induced NK cell function, whereas TLR7-induced pDC function was hardly affected. In line, HBsAg preferentially bound to TLR9-triggered pDC demonstrating that once pDC are able to bind HBV/HBsAg, the virus exerts its immune regulatory effect. HBV not only directly interfered with pDC function, but also indirectly by interfering with monocyte-pDC interaction. Also HBeAg diminished pDC function to a certain extent, but via another unknown mechanism. Interestingly, patients with HBeAg-positive chronic hepatitis B displayed impaired CpG-induced IFNα production by pDC without significant alterations in Loxoribine-induced pDC function compared to HBeAg-negative patients and healthy controls. The lack of activation and the active inhibition of pDC by HBV may both contribute to HBV persistence. The finding that the interaction between pDC and HBV may change upon activation may aid in the identification of a scavenging receptor supporting immunosuppressive effects of HBV and also in the design of novel treatment strategies for chronic HBV. PMID:21246041

  6. Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Vartanian, Keri B.; Mitchell, Hugh D.

    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controllingmore » innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.« less

  7. Modified Da Chengqi granules improvement in immune function in early severe acute pancreatitis patients.

    PubMed

    Jiang, D-L; Yang, J; Jiang, S-Y; Yuan, F-L; Gu, Y-L; Li, J-P; Pei, Z-J

    2016-06-24

    We investigated the role of modified Da Chengqi granules in improving immune function in early severe acute pancreatitis patients. Early severe acute pancreatitis patients who agreed to receive combined treatment of traditional Chinese and Western medicine were randomly assigned to the experimental or control group. All subjects received conventional therapy to support organ function. The experimental group also received modified Da Chengqi granules. Cytokine (interleukin-6, interleukin-10, and tumor necrosis factor-α) levels, immunological markers (HLA-DR, Treg, and Th1/Th2), urinary lactulose/mannitol ratio, and endotoxin levels were measured at 1, 3, 7, and 14 days after hospital admission. The total mortality rate was 11.69% (9/77), which was significantly lower in the experimental group [4.88% (2/41)] than in the control group [19.44% (7/36); χ(2) = 3.940, P < 0.05]. Serum interleukin-6, interleukin-10, tumor necrosis factor-α and endotoxin levels and the lactulose/mannitol ratio were significantly lower on day 7 and day 14 than on day 1 in experimental and control groups (P < 0.01). Immunological indices were significantly lower in the experimental group than in the control group on day 14 (all P < 0.01 or 0.05). HLA-DR-positive cell ratio gradually increased over 14 days in experimental and control groups (P < 0.01 vs day 1), but was higher in the experimental group than in the control group by day 14 (P < 0.05). Notably, Treg cell prevalence and Th1/Th2 cell ratio deteriorated within 7 days in both groups (P < 0.01 vs day 1), but then returned to day 1 levels (P < 0.01 or 0.05 vs day 1). Significant differences in Treg levels and Th1/Th2 cell ratio between experimental and control groups were observed on day 14 (P < 0.01). These results show that modified Da Chengqi granules can improve immune function in early severe acute pancreatitis patients.

  8. Active Early: one-year policy intervention to increase physical activity among early care and education programs in Wisconsin.

    PubMed

    LaRowe, Tara L; Tomayko, Emily J; Meinen, Amy M; Hoiting, Jill; Saxler, Courtney; Cullen, Bridget

    2016-07-20

    Early childcare and education (ECE) is a prime setting for obesity prevention and the establishment of healthy behaviors. The objective of this quasi-experimental study was to examine the efficacy of the Active Early guide, which includes evidenced-based approaches, provider resources, and training, to improve physical activity opportunities through structured (i.e. teacher-led) activity and environmental changes thereby increasing physical activity among children, ages 2-5 years, in the ECE setting. Twenty ECE programs in Wisconsin, 7 family and 13 group, were included. An 80-page guide, Active Early, was developed by experts and statewide partners in the fields of ECE, public health, and physical activity and was revised by ECE providers prior to implementation. Over 12 months, ECE programs received on-site training and technical assistance to implement the strategies and resources provided in the Active Early guide. Main outcome measures included observed minutes of teacher-led physical activity, physical activity environment measured by the Environment and Policy Assessment and Observation (EPAO) instrument, and child physical activity levels via accelerometry. All measures were collected at baseline, 6 months, and 12 months and were analyzed for changes over time. Observed teacher-led physical activity significantly increased from 30.9 ± 22.7 min at baseline to 82.3 ± 41.3 min at 12 months. The change in percent time children spent in sedentary activity decreased significantly after 12 months (-4.4 ± 14.2 % time, -29.2 ± 2.6 min, p < 0.02). Additionally, as teacher led-activity increased, percent time children were sedentary decreased (r = -0.37, p < 0.05) and percent time spent in light physical activity increased (r = 0.35, p < 0.05). Among all ECE programs, the physical activity environment improved significantly as indicated by multiple sub-scales of the EPAO; scores showing the greatest increases were the

  9. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function

    PubMed Central

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J.; He, Wei; Voss, Oliver H.; Gonzalez-Mejia, M. Elba; Guttridge, Denis C.; Grotewold, Erich; Doseff, Andrea I.

    2016-01-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors’ accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo. PMID:26938530

  10. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function.

    PubMed

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J; He, Wei; Voss, Oliver H; Gonzalez-Mejia, M Elba; Guttridge, Denis C; Grotewold, Erich; Doseff, Andrea I

    2016-03-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors' accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo.

  11. HIV-1 Reservoir Association with Immune Activation.

    PubMed

    Vallejo, Alejandro

    2015-09-01

    In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART). It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive) to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  12. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    PubMed

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  13. Evaluation of innate immune stimulating activity of polysaccharides using a silkworm (Bombyx mori) muscle contraction assay.

    PubMed

    Fujiyuki, T; Hamamoto, H; Ishii, K; Urai, M; Kataoka, K; Takeda, T; Shibata, S; Sekimizu, K

    2012-04-01

    In silkworm larvae, the mature form of paralytic peptide (PP), an insect cytokine, is produced from pro-PP in association with activation of innate immune responses, resulting in slow muscle contraction. We utilized this reaction, muscle contraction in silkworms coupled with innate immunity stimulation, to quantitatively measure the innate immune stimulating activity of various natural polysaccharides. β-Glucan of Gyrophora esculenta (GE-3), fucoidan from sporophyll of Undaria pinnatifida, and curldan induced silkworm muscle contraction. We further demonstrated that GE-3 had therapeutic effects on silkworms infected by baculovirus. Based on these findings, we propose that the silkworm muscle contraction assay is useful for screening substances that stimulate innate immunity before evaluating therapeutic effectiveness in mammals.

  14. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    PubMed

    Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M

    2013-01-01

    Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  15. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    PubMed Central

    Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-01-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799

  16. Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila.

    PubMed

    Gendrin, Mathilde; Welchman, David P; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-12-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient Relish(E20) flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that Relish(E20) flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila.

  17. Mechanisms of innate immune evasion in re-emerging RNA viruses.

    PubMed

    Ma, Daphne Y; Suthar, Mehul S

    2015-06-01

    Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Leptin Metabolically Licenses T Cells for Activation to Link Nutrition and Immunity

    PubMed Central

    Saucillo, Donte C.; Gerriets, Valerie A.; Sheng, John; Rathmell, Jeffrey C.; MacIver, Nancie J.

    2013-01-01

    Immune responses are highly energy dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. While it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show here that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell-intrinsic and specific to activated effector T cells, as naïve T cells and Treg did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency. PMID:24273001

  19. Active antitumor immunity elicited by vaccine based on recombinant form of epidermal growth factor receptor.

    PubMed

    Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing

    2005-01-01

    Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.

  20. Active immunity induced by passive IgG post-exposure protection against ricin.

    PubMed

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W; Hu, Wei-Gang

    2014-01-21

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab')2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab')2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab')2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab')2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection.

  1. Active Immunity Induced by Passive IgG Post-Exposure Protection against Ricin

    PubMed Central

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W.; Hu, Wei-Gang

    2014-01-01

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab’)2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab’)2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab’)2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab’)2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection. PMID:24451844

  2. Activation of cell-mediated immunity by Morinda citrifolia fruit extract and its constituents.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masudaa, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2014-04-01

    Morinda citrifolia, commonly known as noni, is a traditional natural medicine in French Polynesia and Hawaii. Functional foods derived from M. citrifolia fruit have been marketed to help prevent diseases and promote good health. The objective of this study was to assess the effects of M. citrifolia fruit on cell-mediated immunity. In the picryl chloride-induced contact dermatitis test, M. citrifolia fruit extract (Noni-ext) inhibited the suppression of cell-mediated immunity by immunosuppressive substances isolated from freeze-dried ascites of Ehrlich carcinoma-bearing mice (EC-sup). In addition, Noni-ext inhibited reduction of IL-2 production in EC-sup-treated mice and activated natural killer cells in normal mice. These results suggest that Noni-ext has multiple effects on the recovery of cell-mediated immunity. Furthermore, we investigated the active principles of Noni-ext and identified an iridoid glycoside, deacetylasperulosidic acid. Oral administration of deacetylasperulosidic acid inhibited the reduction of ear swelling, and also cancelled the suppression of IL-2 production along with the activation of natural killer cells in the same manner as that of Noni-ext.

  3. Innate immune activation by the viral PAMP poly I:C potentiates pulmonary graft-versus-host disease after allogeneic hematopoietic cell transplant.

    PubMed

    Kinnier, Christine V; Martinu, Tereza; Gowdy, Kymberly M; Nugent, Julia L; Kelly, Francine L; Palmer, Scott M

    2011-01-15

    Respiratory viral infections cause significant morbidity and increase the risk for chronic pulmonary graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT). Our overall hypothesis is that local innate immune activation potentiates adaptive alloimmunity. In this study, we hypothesized that a viral pathogen-associated molecular pattern (PAMP) alone can potentiate pulmonary GVHD after allogeneic HCT. We, therefore, examined the effect of pulmonary exposure to polyinosinic:polycytidylic acid (poly I:C), a viral mimetic that activates innate immunity, in an established murine HCT model. Poly I:C-induced a marked pulmonary T cell response in allogeneic HCT mice as compared to syngeneic HCT, with increased CD4+ cells in the lung fluid and tissue. This lymphocytic inflammation persisted at 2 weeks post poly I:C exposure in allogeneic mice and was associated with CD3+ cell infiltration into the bronchiolar epithelium and features of epithelial injury. In vitro, poly I:C enhanced allospecific proliferation in a mixed lymphocyte reaction. In vivo, poly I:C exposure was associated with an early increase in pulmonary monocyte recruitment and activation as well as a decrease in CD4+FOXP3+ regulatory T cells in allogeneic mice as compared to syngeneic. In contrast, intrapulmonary poly I:C did not alter the extent of systemic GVHD in either syngeneic or allogeneic mice. Collectively, our results suggest that local activation of pulmonary innate immunity by a viral molecular pattern represents a novel pathway that contributes to pulmonary GVHD after allogeneic HCT, through a mechanism that includes increased recruitment and maturation of intrapulmonary monocytes. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity.

    PubMed

    Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo

    2004-01-26

    Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.

  5. Innate and adaptive immunity in experimental glomerulonephritis: a pathfinder tale.

    PubMed

    Artinger, Katharina; Kirsch, Alexander H; Aringer, Ida; Moschovaki-Filippidou, Foteini; Eller, Philipp; Rosenkranz, Alexander R; Eller, Kathrin

    2017-06-01

    The role of innate and adaptive immune cells in the experimental model of nephrotoxic serum nephritis (NTS) has been rigorously studied in recent years. The model is dependent on kidney-infiltrating T helper (TH) 17 and TH1 cells, which recruit neutrophils and macrophages, respectively, and cause sustained kidney inflammation. In a later phase of disease, regulatory T cells (Tregs) infiltrate the kidney in an attempt to limit disease activity. In the early stage of NTS, lymph node drainage plays an important role in disease initiation since dendritic cells present the antigen to T cells in the T cell zones of the draining lymph nodes. This results in the differentiation and proliferation of TH17 and TH1 cells. In this setting, immune regulatory cells (Tregs), namely, CCR7-expressing Tregs and mast cells (MCs), which are recruited by Tregs via the production of interleukin-9, exert their immunosuppressive capacity. Together, these two cell populations inhibit T cell differentiation and proliferation, thereby limiting disease activity by as yet unknown mechanisms. In contrast, the spleen plays no role in immune activation in NTS, but constitutes a place of extramedullary haematopoiesis. The complex interactions of immune cells in NTS are still under investigation and might ultimately lead to targeted therapies in glomerulonephritis.

  6. Systemic Immune Activation Profiles of HIV-1 Subtype C-Infected Children and Their Mothers.

    PubMed

    Makhubele, Tinyiko G; Steel, Helen C; Anderson, Ronald; van Dyk, Gisela; Theron, Annette J; Rossouw, Theresa M

    2016-01-01

    Little is known about immune activation profiles of children infected with HIV-1 subtype C. The current study compared levels of selected circulating biomarkers of immune activation in HIV-1 subtype C-infected untreated mothers and their children with those of healthy controls. Multiplex bead array, ELISA, and immunonephelometric procedures were used to measure soluble CD14 (sCD14), beta-2 microglobulin (β2M), CRP, MIG, IP-10, and transforming growth factor beta 1 (TGF-β1). Levels of all 6 biomarkers were significantly elevated in the HIV-infected mothers and, with the exception of MIG, in their children (P < 0.01-P < 0.0001). The effects of antiretroviral therapy (ART) and maternal smoking on these biomarkers were also assessed. With the exception of TGF-β1, which was unchanged in the children 12 months after therapy, initiation of ART was accompanied by decreases in the other biomarkers. Regression analysis revealed that although most biomarkers were apparently unaffected by smoking, exposure of children to maternal smoking was associated with a significant increase in IP-10. These findings demonstrate that biomarkers of immune activation are elevated in HIV-infected children pre-ART and decline, with the exception of TGF-β1, after therapy. Although preliminary, elevation of IP-10 in smoke-exposed infants is consistent with a higher level of immune activation in this group.

  7. A Conserved p38 Mitogen-Activated Protein Kinase Pathway Regulates Drosophila Immunity Gene Expression

    PubMed Central

    Han, Zhiqiang Stanley; Enslen, Hervé; Hu, Xiaodi; Meng, Xiangjun; Wu, I-Huan; Barrett, Tamera; Davis, Roger J.; Ip, Y. Tony

    1998-01-01

    Accumulating evidence suggests that the insect and mammalian innate immune response is mediated by homologous regulatory components. Proinflammatory cytokines and bacterial lipopolysaccharide stimulate mammalian immunity by activating transcription factors such as NF-κB and AP-1. One of the responses evoked by these stimuli is the initiation of a kinase cascade that leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase on Thr and Tyr within the motif Thr-Gly-Tyr, which is located within subdomain VIII. We have investigated the possible involvement of the p38 MAP kinase pathway in the Drosophila immune response. Two genes that are highly homologous to the mammalian p38 MAP kinase were molecularly cloned and characterized. Furthermore, genes that encode two novel Drosophila MAP kinase kinases, D-MKK3 and D-MKK4, were identified. D-MKK3 is an efficient activator of both Drosophila p38 MAP kinases, while D-MKK4 is an activator of D-JNK but not D-p38. These data establish that Drosophila indeed possesses a conserved p38 MAP kinase signaling pathway. We have examined the role of the D-p38 MAP kinases in the regulation of insect immunity. The results revealed that one of the functions of D-p38 is to attenuate antimicrobial peptide gene expression following exposure to lipopolysaccharide. PMID:9584193

  8. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    PubMed

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2017-07-01

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine

    PubMed Central

    Woodruff, Matthew C.; Heesters, Balthasar A.; Herndon, Caroline N.; Groom, Joanna R.; Thomas, Paul G.; Luster, Andrew D.; Turley, Shannon J.

    2014-01-01

    Dendritic cells (DCs) are well established as potent antigen-presenting cells critical to adaptive immunity. In vaccination approaches, appropriately stimulating lymph node–resident DCs (LNDCs) is highly relevant to effective immunization. Although LNDCs have been implicated in immune response, their ability to directly drive effective immunity to lymph-borne antigen remains unclear. Using an inactive influenza vaccine model and whole node imaging approaches, we observed surprising responsiveness of LNDC populations to vaccine arrival resulting in a transnodal repositioning into specific antigen collection sites within minutes after immunization. Once there, LNDCs acquired viral antigen and initiated activation of viral specific CD4+ T cells, resulting in germinal center formation and B cell memory in the absence of skin migratory DCs. Together, these results demonstrate an unexpected stimulatory role for LNDCs where they are capable of rapidly locating viral antigen, driving early activation of T cell populations, and independently establishing functional immune response. PMID:25049334

  10. Inflammation and immune system activation in aging: a mathematical approach.

    PubMed

    Nikas, Jason B

    2013-11-19

    Memory and learning declines are consequences of normal aging. Since those functions are associated with the hippocampus, I analyzed the global gene expression data from post-mortem hippocampal tissue of 25 old (age ≥ 60 yrs) and 15 young (age ≤ 45 yrs) cognitively intact human subjects. By employing a rigorous, multi-method bioinformatic approach, I identified 36 genes that were the most significant in terms of differential expression; and by employing mathematical modeling, I demonstrated that 7 of the 36 genes were able to discriminate between the old and young subjects with high accuracy. Remarkably, 90% of the known genes from those 36 most significant genes are associated with either inflammation or immune system activation. This suggests that chronic inflammation and immune system over-activity may underlie the aging process of the human brain, and that potential anti-inflammatory treatments targeting those genes may slow down this process and alleviate its symptoms.

  11. TRIM25 in the Regulation of the Antiviral Innate Immunity.

    PubMed

    Martín-Vicente, María; Medrano, Luz M; Resino, Salvador; García-Sastre, Adolfo; Martínez, Isidoro

    2017-01-01

    TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5-mitochondrial antiviral signaling protein-TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.

  12. TRIM25 in the Regulation of the Antiviral Innate Immunity

    PubMed Central

    Martín-Vicente, María; Medrano, Luz M.; Resino, Salvador; García-Sastre, Adolfo; Martínez, Isidoro

    2017-01-01

    TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication. PMID:29018447

  13. Zinc in innate and adaptive tumor immunity

    PubMed Central

    2010-01-01

    Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493

  14. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    PubMed Central

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  15. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    PubMed

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  16. Maternal Immune Activation Alters Nonspatial Information Processing in the Hippocampus of the Adult Offspring

    PubMed Central

    Ito, Hiroshi T.; Smith, Stephen E. P.; Hsiao, Elaine; Patterson, Paul H.

    2010-01-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. PMID:20227486

  17. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring.

    PubMed

    Ito, Hiroshi T; Smith, Stephen E P; Hsiao, Elaine; Patterson, Paul H

    2010-08-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate-early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants.

    PubMed

    Gouveia, Bianca C; Calil, Iara P; Machado, João Paulo B; Santos, Anésia A; Fontes, Elizabeth P B

    2016-01-01

    Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of

  19. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory

    PubMed Central

    Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit

    2004-01-01

    The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408

  20. Variola virus immune evasion proteins.

    PubMed

    Dunlop, Lance R; Oehlberg, Katherine A; Reid, Jeremy J; Avci, Dilek; Rosengard, Ariella M

    2003-09-01

    Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.

  1. Trade-offs between acquired and innate immune defenses in humans

    PubMed Central

    McDade, Thomas W.; Georgiev, Alexander V.; Kuzawa, Christopher W.

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  2. 22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Certain aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25 Foreign Relations... Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

  3. 22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Certain aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25 Foreign Relations... Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

  4. 22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Certain aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25 Foreign Relations... Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

  5. 22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Certain aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25 Foreign Relations... Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

  6. 22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Certain aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25 Foreign Relations... Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...

  7. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" - Meeting report.

    PubMed

    Boggiano, Cesar; Eichelberg, Katrin; Ramachandra, Lakshmi; Shea, Jaqueline; Ramakrishnan, Lalita; Behar, Samuel; Ernst, Joel D; Porcelli, Steven A; Maeurer, Markus; Kornfeld, Hardy

    2017-06-14

    Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guérin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission. Copyright © 2017.

  8. Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice.

    PubMed

    Demeure, Christian E; Blanchet, Charlène; Fitting, Catherine; Fayolle, Corinne; Khun, Huot; Szatanik, Marek; Milon, Geneviève; Panthier, Jean-Jacques; Jaubert, Jean; Montagutelli, Xavier; Huerre, Michel; Cavaillon, Jean-Marc; Carniel, Elisabeth

    2012-01-01

    Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance. The kinetics of infection, circulating blood cells, granulopoiesis, lesions, and cellular populations in the spleen, and cytokine production in various tissues were compared in SEG and susceptible C57BL/6J mice after subcutaneous infection with the virulent Y. pestis CO92. Bacterial invasion occurred early (day 2) but was transient in SEG/Pas mice, whereas in C57BL/6J mice it was delayed but continuous until death. The bacterial load in all organs significantly correlated with the production of 5 cytokines (granulocyte colony-stimulating factor, keratinocyte-derived chemokine (KC), macrophage cationic peptide-1 (MCP-1), interleukin 1α, and interleukin 6) involved in monocyte and neutrophil recruitment. Indeed, higher proportions of these 2 cell types in blood and massive recruitment of F4/80(+)CD11b(-) macrophages in the spleen were observed in SEG/Pas mice at an early time point (day 2). Later times after infection (day 4) were characterized in C57BL/6J mice by destructive lesions of the spleen and impaired granulopoiesis. A fast and efficient Y. pestis dissemination in SEG mice may be critical for the triggering of an early and effective innate immune response necessary for surviving plague.

  9. Activation of VIP signaling enhances immunosuppressive effect of MDSCs on CMV-induced adaptive immunity.

    PubMed

    Forghani, Parvin; Petersen, Christopher T; Waller, Edmund K

    2017-10-10

    Vasoactive intestinal peptide (VIP) is recognized as a potent anti-inflammatory factor which affects both the innate and adaptive arms of the immune system. These effects include, but are not limited to, inhibition of T cell proliferation and disruption of immune homeostasis. Myeloid-derived suppressor cells (MDSC) are an immune regulatory cell type that has been described in settings of cancer and infectious disease._Here we demonstrate a reduced circulating monocytic MDSCs in the VIP -/- vs. wild type MCMV. VIP-/- MDSCs secretes less NO upon stimulation with LPS and interferon that relatively lose the ability to suppress T cells activation in vitro compared to wild type MDSCs._Considering the importance of VIP in immunomodulation, the possible effect of VIP in the suppressive function of MDSC populations following CMV infection remains unknown. We describe the possible role of VIP in the regulation of anti-CMV activity of T cells through the activation of MDSCs.

  10. The Chemical Characteristics and Immune-Modulating Activity of Polysaccharides Isolated from Cold-Brew Coffee.

    PubMed

    Shin, Kwang-Soon

    2017-06-01

    To elucidate new biological ingredients in cold-brew coffee extracted with cold water, crude polysaccharide (CCP-0) was isolated by ethanol precipitation, and its immune-stimulating activities were assayed. CCP-0 mainly comprised galactose (53.6%), mannose (15.7%), arabinose (11.9%), and uronic acid (12.4%), suggesting that it might exist as a mixture of galactomannan and arabinogalactan. CCP-0 significantly increased cell proliferation on both murine peritoneal macrophages and splenocytes in a dose dependent manner. CCP-0 also significantly augmented nitric oxide and reactive oxygen species production by murine peritoneal macrophages. In addition, macrophages stimulated by CCP-0 enhanced production of various cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-12. In an in vitro assay for intestinal immune-modulating activity, CCP-0 showed higher bone-marrow cell-proliferation activity through Peyer's patch cells at 100 μg/mL than the negative control. These results suggest that CCP-0 may potentially enhance macrophage functions and the intestinal immune system.

  11. Muramyl peptides activate innate immunity conjointly via YB1 and NOD2.

    PubMed

    Laman, Alexander G; Lathe, Richard; Shepelyakovskaya, Anna O; Gartseva, Alexandra; Brovko, Feodor A; Guryanova, Svetlana; Alekseeva, Ludmila; Meshcheryakova, Elena A; Ivanov, Vadim T

    2016-11-01

    Bacterial cell wall muramyl dipeptide (MDP) and glucosaminyl-MDP (GMDP) are potent activators of innate immunity. Two receptor targets, NOD2 and YB1, have been reported; we investigated potential overlap of NOD2 and YB1 pathways. Separate knockdown of NOD2 and YB1 demonstrates that both contribute to GMDP induction of NF-κB expression, a marker of innate immunity, although excess YB1 led to induction in the absence of NOD2. YB1 and NOD2 co-migrated on sucrose gradient centrifugation, and GMDP addition led to the formation of higher molecular mass complexes containing both YB1 and NOD2. Co-immunoprecipitation demonstrated a direct interaction between YB1 and NOD2, a major recombinant fragment of NOD2 (NACHT-LRR) bound to YB1, and complex formation was stimulated by GMDP. We also report subcellular colocalization of NOD2 and YB1. Although YB1 may have other binding partners in addition to NOD2, maximal innate immunity activation by muramyl peptides is mediated via an interaction between YB1 and NOD2.

  12. Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study.

    PubMed

    Loss, Georg; Bitter, Sondhja; Wohlgensinger, Johanna; Frei, Remo; Roduit, Caroline; Genuneit, Jon; Pekkanen, Juha; Roponen, Marjut; Hirvonen, Maija-Riitta; Dalphin, Jean-Charles; Dalphin, Marie-Laure; Riedler, Josef; von Mutius, Erika; Weber, Juliane; Kabesch, Michael; Michel, Sven; Braun-Fahrländer, Charlotte; Lauener, Roger

    2012-08-01

    There is evidence that gene expression of innate immunity receptors is upregulated by farming-related exposures. We sought to determine environmental and nutritional exposures associated with the gene expression of innate immunity receptors during pregnancy and the first year of a child's life. For the Protection Against Allergy: Study in Rural Environments (PASTURE) birth cohort study, 1133 pregnant women were recruited in rural areas of Austria, Finland, France, Germany, and Switzerland. mRNA expression of the Toll-like receptor (TLR) 1 through TLR9 and CD14 was assessed in blood samples at birth (n= 938) and year 1 (n= 752). Environmental exposures, as assessed by using questionnaires and a diary kept during year 1, and polymorphisms in innate receptor genes were related to gene expression of innate immunity receptors by using ANOVA and multivariate regression analysis. Gene expression of innate immunity receptors in cord blood was overall higher in neonates of farmers (P for multifactorial multivariate ANOVA= .041), significantly so for TLR7 (adjusted geometric means ratio [aGMR], 1.15; 95% CI, 1.02-1.30) and TLR8 (aGMR, 1.15; 95% CI, 1.04-1.26). Unboiled farm milk consumption during the first year of life showed the strongest association with mRNA expression at year 1, taking the diversity of other foods introduced during that period into account: TLR4 (aGMR, 1.22; 95% CI, 1.03-1.45), TLR5 (aGMR, 1.19; 95% CI, 1.01-1.41), and TLR6 (aGMR, 1.20; 95% CI, 1.04-1.38). A previously described modification of the association between farm milk consumption and CD14 gene expression by the single nucleotide polymorphism CD14/C-1721T was not found. Farming-related exposures, such as raw farm milk consumption, that were previously reported to decrease the risk for allergic outcomes were associated with a change in gene expression of innate immunity receptors in early life. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All

  13. Neonatal Immunization: Rationale, Current State, and Future Prospects.

    PubMed

    Whittaker, Elizabeth; Goldblatt, David; McIntyre, Peter; Levy, Ofer

    2018-01-01

    Infections take their greatest toll in early life necessitating robust approaches to protect the very young. Here, we review the rationale, current state, and future research directions for one such approach: neonatal immunization. Challenges to neonatal immunization include natural concern about safety as well as a distinct neonatal immune system that is generally polarized against Th1 responses to many stimuli such that some vaccines that are effective in adults are not in newborns. Nevertheless, neonatal immunization could result in high-population penetration as birth is a reliable point of healthcare contact, and offers an opportunity for early protection of the young, including preterm newborns who are deficient in maternal antibodies. Despite distinct immunity and reduced responses to some vaccines, several vaccines have proven safe and effective at birth. While some vaccines such as polysaccharide vaccines have little effectiveness at birth, hepatitis B vaccine can prime at birth and requires multiple doses to achieve protection, whereas the live-attenuated Bacille Calmette-Guérin (BCG), may offer single shot protection, potentially in part via heterologous ("non-specific") beneficial effects. Additional vaccines have been studied at birth including those directed against pertussis, pneumococcus, Haemophilus influenza type B and rotavirus providing important lessons. Current areas of research in neonatal vaccinology include characterization of early life immune ontogeny, heterogeneity in and heterologous effects of BCG vaccine formulations, applying systems biology and systems serology, in vitro platforms that model age-specific human immunity and discovery and development of novel age-specific adjuvantation systems. These approaches may inform, de-risk, and accelerate development of novel vaccines for use in early life. Key stakeholders, including the general public, should be engaged in assessing the opportunities and challenges inherent to neonatal

  14. Neonatal Immunization: Rationale, Current State, and Future Prospects

    PubMed Central

    Whittaker, Elizabeth; Goldblatt, David; McIntyre, Peter; Levy, Ofer

    2018-01-01

    Infections take their greatest toll in early life necessitating robust approaches to protect the very young. Here, we review the rationale, current state, and future research directions for one such approach: neonatal immunization. Challenges to neonatal immunization include natural concern about safety as well as a distinct neonatal immune system that is generally polarized against Th1 responses to many stimuli such that some vaccines that are effective in adults are not in newborns. Nevertheless, neonatal immunization could result in high-population penetration as birth is a reliable point of healthcare contact, and offers an opportunity for early protection of the young, including preterm newborns who are deficient in maternal antibodies. Despite distinct immunity and reduced responses to some vaccines, several vaccines have proven safe and effective at birth. While some vaccines such as polysaccharide vaccines have little effectiveness at birth, hepatitis B vaccine can prime at birth and requires multiple doses to achieve protection, whereas the live-attenuated Bacille Calmette–Guérin (BCG), may offer single shot protection, potentially in part via heterologous (“non-specific”) beneficial effects. Additional vaccines have been studied at birth including those directed against pertussis, pneumococcus, Haemophilus influenza type B and rotavirus providing important lessons. Current areas of research in neonatal vaccinology include characterization of early life immune ontogeny, heterogeneity in and heterologous effects of BCG vaccine formulations, applying systems biology and systems serology, in vitro platforms that model age-specific human immunity and discovery and development of novel age-specific adjuvantation systems. These approaches may inform, de-risk, and accelerate development of novel vaccines for use in early life. Key stakeholders, including the general public, should be engaged in assessing the opportunities and challenges inherent to

  15. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up.

    PubMed

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher's exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune

  16. Activity of Fusion Prophenoloxidase-GFP and Its Potential Applications for Innate Immunity Study

    PubMed Central

    Yang, Bing; Lu, Anrui; Peng, Qin; Ling, Qing-Zhi; Ling, Erjun

    2013-01-01

    Insect prophenoloxidase (PPO) is essential for physiological functions such as melanization of invading pathogens, wound healing and cuticle sclerotization. The insect PPO activation pathway is well understood. However, it is not very clear how PPO is released from hemocytes and how PPO takes part in cellular immunity. To begin to assess this, three Drosophila melanogaster PPO genes were separately fused with GFP at the C-terminus (rPPO-GFP) and were over-expressed in S2 cells. The results of staining and morphological observation show that rPPO-GFP expressed in S2 cells has green fluorescence and enzyme activity if Cu2+ was added during transfection. Each rPPO-GFP has similar properties as the corresponding rPPO. However, cells with rPPO-GFP over-expressed are easier to trace without PO activation and staining. Further experiments show that rPPO1-GFP is cleaved and activated by Drosophila serine protease, and rPPO1-GFP binds to Micrococcus luteus and Beauveria bassiana spores as silkworm plasma PPO. The above research indicates that the GFP-tag has no influence on the fusion enzyme activation and PPO-involved innate immunity action in vitro. Thus, rPPO-GFP may be a convenient tool for innate immunity study in the future if it can be expressed in vivo. PMID:23717543

  17. IN VITRO AND IN VIVO ACTIVITY OF A LYMPHOCYTE AND IMMUNE COMPLEX-DEPENDENT CHEMOTACTIC FACTOR FOR EOSINOPHILS

    PubMed Central

    Cohen, Stanley; Ward, Peter A.

    1971-01-01

    When cultured in the presence of specific antigen, lymphocytes from delayed-hypersensitive guinea pigs release a number of biologically active substances into the culture medium. Such active supernatants can react with immune complexes in vitro to generate a factor which is chemotactic for eosinophils. The factor involved is unique, since previously described chemotactic factors for other cell types require for their generation either immune complexes or substances released into lymphocyte culture, but not both. In the case of the eosinophil chemotactic factor, the interaction between the substance elaborated by the lymphocytes and the immune complexes appears to be specific in that the immune complexes must contain the same antigen as that used to activate the lymphocyte cultures. Although this factor was generated in an in vitro system, it has been shown to possess in vivo as well as in vitro activity. It is therefore possible that this factor may be of biological significance in situations where eosinophils are participants in inflammatory or immunologic reactions. PMID:5099667

  18. The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles.

    PubMed

    Carpenter, Victoria; Chen, Yi-Shan; Dolat, Lee; Valdivia, Raphael H

    2017-01-01

    Chlamydia trachomatis delivers multiple type 3 secreted effector proteins to host epithelial cells to manipulate cytoskeletal functions, membrane dynamics, and signaling pathways. TepP is the most abundant effector protein secreted early in infection, but its molecular function is poorly understood. In this report, we provide evidence that TepP is important for bacterial replication in cervical epithelial cells, activation of type I IFN genes, and recruitment of class I phosphoinositide 3-kinases (PI3K) and signaling adaptor protein CrkL to nascent pathogen-containing vacuoles (inclusions). We also show that TepP is a target of tyrosine phosphorylation by Src kinases but that these modifications do not appear to influence the recruitment of PI3K or CrkL. The translocation of TepP correlated with an increase in the intracellular pools of phosphoinositide-(3,4,5)-triphosphate but not the activation of the prosurvival kinase Akt, suggesting that TepP-mediated activation of PI3K is spatially restricted to early inclusions. Furthermore, we linked PI3K activity to the dampening of transcription of type I interferon (IFN)-induced genes early in infection. Overall, these findings indicate that TepP can modulate cell signaling and, potentially, membrane trafficking events by spatially restricted activation of PI3K. IMPORTANCE This article shows that Chlamydia recruits PI3K, an enzyme important for host cell survival and internal membrane functions, to the pathogens inside cells by secreting a scaffolding protein called TepP. TepP enhances Chlamydia replication and dampens the activation of immune responses.

  19. Prenatal programing: At the intersection of maternal stress and immune activation

    PubMed Central

    Howerton, Christopher L.; Bale, Tracy L.

    2013-01-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. PMID:22465455

  20. Prenatal immune activation in mice blocks the effects of environmental enrichment on exploratory behavior and microglia density.

    PubMed

    Buschert, Jens; Sakalem, Marna E; Saffari, Roja; Hohoff, Christa; Rothermundt, Matthias; Arolt, Volker; Zhang, Weiqi; Ambrée, Oliver

    2016-06-03

    Adverse environmental factors including prenatal maternal infection are capable of inducing long-lasting behavioral and neural alterations which can enhance the risk to develop schizophrenia. It is so far not clear whether supportive postnatal environments are able to modify such prenatally-induced alterations. In rodent models, environmental enrichment influences behavior and cognition, for instance by affecting endocrinologic, immunologic, and neuroplastic parameters. The current study was designed to elucidate the influence of postnatal environmental enrichment on schizophrenia-like behavioral alterations induced by prenatal polyI:C immune stimulation at gestational day 9 in mice. Adult offspring were tested for amphetamine-induced locomotion, social interaction, and problem-solving behavior as well as expression of dopamine D1 and D2 receptors and associated molecules, microglia density and adult neurogenesis. Prenatal polyI:C treatment resulted in increased dopamine sensitivity and dopamine D2 receptor expression in adult offspring which was not reversed by environmental enrichment. Prenatal immune activation prevented the effects of environmental enrichment which increased exploratory behavior and microglia density in NaCl treated mice. Problem-solving behavior as well as the number of immature neurons was affected by neither prenatal immune stimulation nor postnatal environmental enrichment. The behavioral and neural alterations that persist into adulthood could not generally be modified by environmental enrichment. This might be due to early neurodevelopmental disturbances which could not be rescued or compensated for at a later developmental stage. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice.

    PubMed

    Deslauriers, Jessica; van Wijngaarde, Myrthe; Geyer, Mark A; Powell, Susan; Risbrough, Victoria B

    2017-04-14

    The prevalence of posttraumatic stress disorder (PTSD) is high in the armed services, with a rate up to 20%. Multiple studies have associated markers of inflammatory signaling prior to trauma with increased risk of PTSD, suggesting a potential role of the immune system in the development of this psychiatric disorder. One question that arises is if "priming" the immune system before acute trauma alters the stress response and increases enduring effects of trauma. We investigated the time course of inflammatory response to predator stress, a robust stressor that induces enduring PTSD-like behaviors, and the modulation of these effects via prior immune activation with the bacterial endotoxin, lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist. Mice exposed to predator stress exhibited decreased pro-/anti-inflammatory balance in the brain 6h after stress, suggesting that predator exposure acutely suppressed the immune system by increasing anti-inflammatory cytokines levels. Acute immune activation with LPS before a single predator stress did not alter the enduring avoidance behavior in stressed mice. Our findings suggest that acute inflammation, at least via TLR4 activation, is not sufficient to increase susceptibility for PTSD-like behaviors in this model. Future studies will examine if chronic inflammation is required to induce similar immune changes to those observed in PTSD patients in this model. Published by Elsevier B.V.

  2. Targeting the immune system in cancer.

    PubMed

    Chaudhuri, Devyani; Suriano, Robert; Mittelman, Abraham; Tiwari, Raj K

    2009-02-01

    The concept of cancer immunotherapy provides a fresh perspective as it is not associated with many of the drawbacks of conventional therapies such as chemotherapy, radiotherapy and surgery. When fully activated the immune system has immense potential as is evident from mis-matched transplanted organs undergoing rapid immunological attack and rejection. However, the development of immune strategies for cancer therapy has been associated with challenges of their own. Early attempts at cancer vaccination were carried out in an empirical manner that did not always lead to reproducibility. This led to a search of tumor associated antigens with the belief that specific targeting of these antigens would lead to successful tumor elimination. Active vaccination with TAA peptides or passive vaccination with specific lymphocytes against these TAAs did not however demonstrate encouraging results in clinical trials. This was mainly because of the lack of an activating immune response which is required for continuous stimulation of lymphocytes and also because of the selection of tumor escape variants that did not express the particular TAA. On the positive side, attempts at characterizing TAAs illuminated the molecular changes that attribute a malignant phenotype to cancer cells. Attempts at cytokine therapy were also met with challenges of high systemic toxicity and a lack of specific lymphocyte activation. It was therefore realized that an ideal vaccinating agent should be able to combine the effects of both these therapeutic strategies, i.e., it should be able to induce an innate immune response which can be tailored to a tumor specific adaptive immune response. By this, the immunosuppressive tumor environment can be altered to become immune activating, thus facilitating the infiltration of myeloid and lymphoid cells that can act in concert leading to tumor regression. In this regard, immunotherapeutic approaches such as DNA vaccines, dendritic cell based vaccines, HSP based

  3. Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology.

    PubMed

    Arad, Michal; Piontkewitz, Yael; Albelda, Noa; Shaashua, Lee; Weiner, Ina

    2017-07-01

    Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is

  4. Production of interferon-gamma by in vivo tumor-sensitized T cells: Association with active antitumor immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bursuker, I.; Pearce, M.T.

    1990-02-01

    The state of active immunity to Meth A fibrosarcoma in mice immunized with an admixture of Meth A cells and Propionibacterium acnes is associated with possession by the host of spleen cells capable of producing interferon-gamma (IFN-gamma) upon in vitro restimulation with irradiated tumor cells. The ability of spleen cells from immunized mice to produce IFN-gamma in response to irradiated Meth A cells decays as active antitumor immunity is replaced by a state of immunological memory. The IFN-producing cells are L3T4+Ly2+, cyclophosphamide-sensitive and radiosensitive T cells, as determined by their sensitivity to corresponding monoclonal antibodies and complement. The induction ofmore » IFN-gamma production by in vivo tumor-sensitized T cells is tumor specific, in that spleen cells from mice immunized against Meth A fibrosarcoma can produce IFN in response to irradiated Meth A cells but not in response to another syngeneic tumor M109 lung carcinoma.« less

  5. Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants.

    PubMed

    Larsen, Jeppe Madura; Brix, Susanne; Thysen, Anna Hammerich; Birch, Sune; Rasmussen, Morten Arendt; Bisgaard, Hans

    2014-04-01

    Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonization of neonatal airways with the pathogenic bacterial strains Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae is associated with increased risk of later childhood asthma. We hypothesized that children with asthma have an abnormal immune response to pathogenic bacteria in infancy. We aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years. The Copenhagen Prospective Studies on Asthma in Childhood birth cohort was followed prospectively, and asthma was diagnosed at age 7 years. The immune response to H influenzae, M catarrhalis, and S pneumoniae was analyzed in 292 infants using PBMCs isolated and stored since the age of 6 months. The immune response was assessed based on the pattern of cytokines produced and T-cell activation. The immune response to pathogenic bacteria was different in infants with asthma by 7 years of age (P = .0007). In particular, prospective asthmatic subjects had aberrant production of IL-5 (P = .008), IL-13 (P = .057), IL-17 (P = .001), and IL-10 (P = .028), whereas there were no differences in T-cell activation or peripheral T-cell composition. Children with asthma by school age exhibited an aberrant immune response to pathogenic bacteria in infancy. We propose that an abnormal immune response to pathogenic bacteria colonizing the airways in early life might lead to chronic airway inflammation and childhood asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. Early Events of the Reaction Elicited by CSF-470 Melanoma Vaccine Plus Adjuvants: An In Vitro Analysis of Immune Recruitment and Cytokine Release.

    PubMed

    Pampena, María B; Barrio, María M; Juliá, Estefanía P; Blanco, Paula A; von Euw, Erika M; Mordoh, José; Levy, Estrella Mariel

    2017-01-01

    In a previous work, we showed that CSF-470 vaccine plus bacillus Calmette-Guerin (BCG) and granulocyte macrophage colony-stimulating factor (GM-CSF) as adjuvants resulted in a significant benefit in the distant metastasis-free survival when comparing vaccinated vs . IFN-α2b-treated high-risk cutaneous melanoma patients in a Phase II study. Immune monitoring demonstrated an increase in anti-tumor innate and adaptive immunities of vaccinated patients, with a striking increase in IFN-γ secreting lymphocytes specific for melanoma antigens (Ags). In an effort to dissect the first steps of the immune response elicited by CSF-470 vaccine plus adjuvants, we evaluated, in an in vitro model, leukocyte migration, cytokine production, and monocyte phagocytosis of vaccine cells. Our results demonstrate that leukocytes recruitment, mostly from the innate immune system, is an early event after CSF-470 vaccine plus BCG plus GM-CSF interaction with immune cells, possibly explained by the high expression of CCL2/MCP-1 and other chemokines by vaccine cells. Early release of TNF-α and IL-1β pro-inflammatory cytokines and efficient tumor Ags phagocytosis by monocytes take place and would probably create a favorable context for Ag processing and presentation. Although the presence of the vaccine cells hampered cytokines production stimulated by BCG in a mechanism partially mediated by TGF-β and IL-10, still significant levels of TNF-α and IL-1β could be detected. Thus, BCG was required to induce local inflammation in the presence of CSF-470 vaccine cells.

  7. Adjuvant-Loaded Spiky Gold Nanoparticles for Activation of Innate Immune Cells.

    PubMed

    Nam, Jutaek; Son, Sejin; Moon, James J

    2017-10-01

    Gold nanoparticles are versatile carriers for delivery of biomacromolecules. Here, we have developed spiky gold nanoparticles (SGNPs) that can efficiently deliver immunostimulatory agents. Our goal was to develop a platform technology for co-delivery of multiple adjuvant molecules for synergistic stimulation and maturation of innate immune cells. SGNPs were synthesized by a seed-mediated, surfactant-free synthesis method and incorporated with polyinosinic-polycytidylic acid (pIC) and DNA oligonucleotide containing unmethylated CpG motif (CpG) by an electrostatic layer-by-layer approach. Adjuvant-loaded SGNP nano-complexes were examined for their biophysical and biochemical properties and studied for immune activation using bone marrow-derived dendritic cells (BMDCs). We have synthesized SGNPs with branched nano-spikes layered with pIC and/or CpG. Adjuvant-loaded SGNP nano-complexes promoted cellular uptake of the adjuvants. Importantly, we achieved spatio-temporal control over co-delivery of pIC and CpG via SGNPs, which produced synergistic enhancement in cytokine release (IL-6, TNF-α) and upregulation of co-stimulatory markers (CD40, CD80, CD86) in BMDCs, compared with pIC, CpG, or their admixtures. SGNPs serve as a versatile delivery platform that allows flexible and on-demand cargo fabrication for strong activation of innate immune cells.

  8. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination

    PubMed Central

    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian

    2002-01-01

    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853

  9. Early viral replication and induced or constitutive immunity in rainbow trout families with differential resistance to Infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    Purcell, M.K.; LaPatra, S.E.; Woodson, J.C.; Kurath, G.; Winton, J.R.

    2010-01-01

    The main objective of this study was to assess correlates of innate resistance in rainbow trout full-sibling families that differ in susceptibility to Infectious hematopoietic necrosis virus (IHNV). As part of a commercial breeding program, full-sibling families were challenged with IHNV by waterborne exposure at the 1 g size to determine susceptibility to IHNV. Progeny from select families (N = 7 families) that varied in susceptibility (ranging from 32 to 90% cumulative percent mortality (CPM)) were challenged again at the 10 g size by intra-peritoneal injection and overall mortality, early viral replication and immune responses were evaluated. Mortality challenges included 20–40 fish per family while viral replication and immune response studies included 6 fish per family at each time point (24, 48 and 72 h post-infection (hpi)). CPM at the 1 g size was significantly correlated with CPM at the 10 g size, indicating that inherent resistance was a stable trait irrespective of size. In the larger fish, viral load was measured by quantitative reverse-transcriptase PCR in the anterior kidney and was a significant predictor of family disease outcome at 48 hpi. Type I interferon (IFN) transcript levels were significantly correlated with an individual's viral load at 48 and 72 hpi, while type II IFN gene expression was significantly correlated with an individual's viral load at 24 and 48 hpi. Mean family type I but not type II IFN gene expression was weakly associated with susceptibility at 72 hpi. There was no association between mean family susceptibility and the constitutive expression of a range of innate immune genes (e.g. type I and II IFN pathway genes, cytokine and viral recognition receptor genes). The majority of survivors from the challenge had detectable serum neutralizing antibody titers but no trend was observed among families. This result suggests that even the most resistant families experienced sufficient levels of viral replication to trigger specific

  10. The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1.

    PubMed

    Jacobson, Jeffrey M; Bosinger, Steven E; Kang, Minhee; Belaunzaran-Zamudio, Pablo; Matining, Roy M; Wilson, Cara C; Flexner, Charles; Clagett, Brian; Plants, Jill; Read, Sarah; Purdue, Lynette; Myers, Laurie; Boone, Linda; Tebas, Pablo; Kumar, Princy; Clifford, David; Douek, Daniel; Silvestri, Guido; Landay, Alan L; Lederman, Michael M

    2016-07-01

    Immune activation associated with HIV-1 infection contributes to morbidity and mortality. We studied whether chloroquine, through Toll-like receptor (TLR) antagonist properties, could reduce immune activation thought to be driven by TLR ligands, such as gut-derived bacterial elements and HIV-1 RNAs. AIDS Clinical Trials Group A5258 was a randomized, double-blind, placebo-controlled study in 33 HIV-1-infected participants off antiretroviral therapy (ART) and 37 participants on ART. Study participants in each cohort were randomized 1:1 to receive chloroquine 250 mg orally for the first 12 weeks then cross over to placebo for 12 weeks or placebo first and then chloroquine. Combining the periods of chloroquine use in both arms of the on-ART cohort yielded a modest reduction in the proportions of CD8 T cells co-expressing CD38 and DR (median decrease = 3.0%, p = .003). The effect on immune activation in the off-ART cohort was likely confounded by increased plasma HIV-1 RNA during chloroquine administration (median 0.29 log10 increase, p < .001). Transcriptional analyses in the off-ART cohort showed decreased expression of interferon-stimulated genes in 5 of 10 chloroquine-treated participants and modest decreases in CD38 and CCR5 RNAs in all chloroquine-treated participants. Chloroquine modestly reduced immune activation in ART-treated HIV-infected participants. Clinical Trials Registry Number: NCT00819390.

  11. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine

    PubMed Central

    Jensen, Kara; dela Pena-Ponce, Myra Grace; Piatak, Michael; Shoemaker, Rebecca; Oswald, Kelli; Jacobs, William R.; Fennelly, Glenn; Lucero, Carissa; Mollan, Katie R.; Hudgens, Michael G.; Amedee, Angela; Kozlowski, Pamela A.; Estes, Jacob D.; Lifson, Jeffrey D.; Van Rompay, Koen K. A.; Larsen, Michelle

    2016-01-01

    ABSTRACT Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants. PMID:27655885

  12. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives.

    PubMed

    Corrao, Simona; Campanella, Claudia; Anzalone, Rita; Farina, Felicia; Zummo, Giovanni; Conway de Macario, Everly; Macario, Alberto J L; Cappello, Francesco; La Rocca, Giampiero

    2010-01-30

    This article is about Hsp10 and its intracellular and extracellular forms focusing on the relationship of the latter with Early Pregnancy Factor and on their roles in cancer and immunity. Cellular physiology and survival are finely regulated and depend on the correct functioning of the entire set of proteins. Misfolded or unfolded proteins can cause deleterious effects and even cell death. The chaperonins Hsp10 and Hsp60 act together inside the mitochondria to assist protein folding. Recent studies demonstrated that these proteins have other roles inside and outside the cell, either together or independently of each other. For example, Hsp10 was found increased in the cytosol of different tumors (although in other tumors it was found decreased). Moreover, Hsp10 localizes extracellularly during pregnancy and is often indicated as Early Pregnancy Factor (EPF), which is released during the first stages of gestation and is involved in the establishment of pregnancy. Various reports show that extracellular Hsp10 and EPF modulate certain aspects of the immune response with anti-inflammatory effects in patients with autoimmune conditions improving clinically after treatment with recombinant Hsp10. Moreover, Hsp10 and EPF are involved in embryonic development, acting as a growth factor, and in cell proliferation/differentiation mechanisms. Therefore, it becomes evident that Hsp10 is not only a co-chaperonin, but an active player in its own right in various cellular functions. In this article, we present an overview of various aspects of Hsp10 and EPF as they participate in physiological and pathological processes such as the antitumor response and autoimmune diseases. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Aryl hydrocarbon receptor and intestinal immunity.

    PubMed

    Lamas, Bruno; Natividad, Jane M; Sokol, Harry

    2018-04-07

    Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.

  14. Long-term persistence of immunity and B-cell memory following Haemophilus influenzae type B conjugate vaccination in early childhood and response to booster.

    PubMed

    Perrett, K P; John, T M; Jin, C; Kibwana, E; Yu, L-M; Curtis, N; Pollard, A J

    2014-04-01

    Protection against Haemophilus influenzae type b (Hib), a rapidly invading encapsulated bacteria, is dependent on maintenance of an adequate level of serum antibody through early childhood. In many countries, Hib vaccine booster doses have been implemented after infant immunization to sustain immunity. We investigated the long-term persistence of antibody and immunological memory in primary-school children following infant (with or without booster) Hib vaccination. Anti-polyribosylribitol phosphate (PRP) immunoglobulin G (IgG) concentration and the frequency of circulating Hib-specific memory B cells were measured before a booster of a Hib-serogroup C meningococcal (MenC) conjugate vaccine and again 1 week, 1 month, and 1 year after the booster in 250 healthy children aged 6-12 years in an open-label phase 4 clinical study. Six to 12 years following infant priming with 3 doses of Hib conjugate vaccine, anti-PRP IgG geometric mean concentrations were 3.11 µg/mL and 0.71 µg/mL and proportions with anti-PRP IgG ≥1.0 µg/mL were 79% and 43% in children who had or had not, respectively, received a fourth Hib conjugate vaccine dose (mean age, 3.9 years). Higher baseline and post-Hib-MenC booster responses (anti-PRP IgG and memory B cells) were found in younger children and in those who had received a fourth Hib dose. Sustained Hib conjugate vaccine-induced immunity in children is dependent on time since infant priming and receipt of a booster. Understanding the relationship between humoral and cellular immunity following immunization with conjugate vaccines may direct vaccine design and boosting strategies to sustain individual and population immunity against encapsulated bacteria in early childhood. Clinical Trials Registration ISRCTN728588998.

  15. Cancer immunoediting by the innate immune system in the absence of adaptive immunity

    PubMed Central

    O’Sullivan, Timothy; Saddawi-Konefka, Robert; Vermi, William; Koebel, Catherine M.; Arthur, Cora; White, J. Michael; Uppaluri, Ravi; Andrews, Daniel M.; Ngiow, Shin Foong; Teng, Michele W.L.; Smyth, Mark J.; Schreiber, Robert D.

    2012-01-01

    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3′methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2−/−, and RAG2−/−x γc−/− mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2−/−x γc−/− mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting. PMID:22927549

  16. Individual differences on immunostimulatory activity of raw and black garlic extract in human primary immune cells.

    PubMed

    Purev, Uranchimeg; Chung, Mi Ja; Oh, Deog-Hwan

    2012-08-01

    The immunostimulatory activities of garlic extract using a cell line or animal models have been reported; however, no previous studies have evaluated individual differences in regards to the immunostimulatory activities. The immunostimulatory activities such as cell proliferation, tumor necrosis factor (TNF-α) and nitric oxides (NO) production of raw garlic and black garlic extracts on individual primary lymphocytes or macrophages isolated from the blood of 21 volunteers were evaluated. The antioxidant and anticancer effects of raw garlic and black garlic ethanol extract was measured to determine the optimum conditions for extraction. The 70% ethanol black garlic extracts at 70°C for 12 h (70% BGE) showed the strongest antioxidant and anticancer activities. Immunostimulatory activities of garlic extracts extracted under optimal condition on primary immune cells obtained from 21 volunteers were analyzed. Results showed that the cell proliferation, TNF-α and NO production of primary immune cells treated with 70% raw garlic extract (70% RGE) were significantly different; however, little difference was observed for the 70% BGE treatment. BGE showed stronger immunostimulatory activities than RGE. These results indicate that the immunostimulatory activities of RGE and BGE can be strongly correlated with the antioxidant and anticancer activities. Determination of immunostimulatory activities of different types of garlic using immune cells isolated from volunteers was dependent on the individual constituents due to changes in the composition of garlic during processing. Individual primary immune cells might be used as important tools to determine individual differences in all food ingredients for the development of personalized immunostimulatory active foods.

  17. Active hexose correlated compound enhances tumor surveillance through regulating both innate and adaptive immune responses.

    PubMed

    Gao, Yunfei; Zhang, Dongqing; Sun, Buxiang; Fujii, Hajime; Kosuna, Ken-Ichi; Yin, Zhinan

    2006-10-01

    Active hexose correlated compound (AHCC) is a mixture of polysaccharides, amino acids, lipids and minerals derived from cocultured mycelia of several species of Basidiomycete mushrooms. AHCC has been implicated to modulate immune functions and plays a protective role against infection. However, the potential role of AHCC in tumor immune surveillance is unknown. In this study, C57BL/6 mice were orally administered AHCC or water, followed by tumor cell inoculation. We showed that compared to pure water-treated mice, AHCC treatment significantly delayed tumor development after inoculation of either melanoma cell line B16F0 or lymphoma cell line EL4. Treatment with AHCC enhanced both Ag-specific activation and proliferation of CD4(+) and CD8(+) T cells, increased the number of tumor Ag-specific CD8(+) T cells, and more importantly, increased the frequency of tumor Ag-specific IFN-gamma producing CD8(+) T cells. Interestingly, AHCC treatment also showed increased cell number of NK and gammadelta T cells, indicating the role of AHCC in activating these innate-like lymphocytes. In summary, our results demonstrate that AHCC can enhance tumor immune surveillance through regulating both innate and adaptive immune responses.

  18. Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity

    PubMed Central

    Verhaar, Auke P.; Hoekstra, Elmer; Tjon, Angela S. W.; Utomo, Wesley K.; Deuring, J. Jasper; Bakker, Elvira R. M.; Muncan, Vanesa; Peppelenbosch, Maikel P.

    2014-01-01

    Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease. PMID:24968806

  19. Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity.

    PubMed

    Verhaar, Auke P; Hoekstra, Elmer; Tjon, Angela S W; Utomo, Wesley K; Deuring, J Jasper; Bakker, Elvira R M; Muncan, Vanesa; Peppelenbosch, Maikel P

    2014-06-27

    Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease.

  20. Detection and Persistence of Vi Antigen in Tissues of Actively Immunized Mice1

    PubMed Central

    Gaines, Sidney; Currie, Julius A.; Tully, Joseph G.

    1965-01-01

    Gaines, Sidney (Walter Reed Army Institute of Research, Washington, D.C.), Julius A. Currie, and Joseph G. Tully. Detection and persistence of Vi antigen in tissues of actively immunized mice. J. Bacteriol. 89:776–781. 1965.—The presence, distribution, and persistence of Vi antigen in mouse tissue was determined by means of active immunization tests with tissue extracts. Mice were injected intraperitoneally with purified Vi antigen or Vi-containing bacilli. At appropriate intervals, animals were killed, and saline extracts of their tissues were prepared. Mice were immunized with these extracts and challenged 6 days later with 10 ld50 of Salmonella typhosa Ty2. Protection was afforded by tissue extracts from Vi-injected mice, but not by normal tissue extracts. That the immunizing capacity of tissue extracts from Vi-injected mice was attributable to Vi antigen was affirmed by the demonstration that these extracts stimulated the production of Vi antibody in mice, coated erythrocytes for agglutination by Vi antiserum, and inhibited agglutination of Vi-sensitized red blood cells by known Vi antisera. Vi antigen could be detected in the liver and spleen of mice injected with as little as 1 μg. In mice given 150 μg, the antigen was still present in liver tissue 231 days later. PMID:14273660

  1. The activation and suppression of plant innate immunity by parasitic nematodes.

    PubMed

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.

  2. Prenatal programing: at the intersection of maternal stress and immune activation.

    PubMed

    Howerton, Christopher L; Bale, Tracy L

    2012-08-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. [Platelet transfusion role in neonatal immune thrombocytopenia].

    PubMed

    Petermann, R

    2016-11-01

    Neonatal immune thrombocytopenia represent less than 5% of cases of early thrombocytopenia (early-onset<72hours post-delivery). As in adults, thrombocytopenia in neonates is defined as a platelet count less than 150G/L. They are either auto- or allo-immune. Thrombocytopenia resulting from transplacental passage of maternal antibodies directed to platelet membrane glycoproteins can be severe. The major complication of severe thrombocytopenia is bleeding and particularly intra-cranial haemorrhage and neurologic sequelea following. However, auto- and allo-immune thrombocytopenia have very different characteristics including the treatment management. In fact, this treatment is based on platelet transfusion associated or not to intravenous immunoglobulin administration. The purpose of this article is to remind platelet transfusion's place in neonatal immune thrombocytopenia in terms of recently published French guidelines and international practices. Copyright © 2016. Published by Elsevier SAS.

  4. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    PubMed Central

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  5. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression12

    PubMed Central

    Chen, Chong-Sheng; Doloff, Joshua C; Waxman, David J

    2014-01-01

    Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses. PMID:24563621

  6. A specific immune and lymphatic profile characterizes the pre-metastatic state of the sentinel lymph node in patients with early cervical cancer

    PubMed Central

    Balsat, Cédric; Blacher, Silvia; Herfs, Michael; Van de Velde, Maureen; Signolle, Nicolas; Sauthier, Philippe; Pottier, Charles; Gofflot, Stéphanie; De Cuypere, Marjolein; Delvenne, Philippe; Goffin, Frédéric; Noel, Agnès; Kridelka, Frédéric

    2017-01-01

    ABSTRACT The lymph node (LN) pre-metastatic niche is faintly characterized in lymphophilic human neoplasia, although LN metastasis is considered as the strongest prognostic marker of patient survival. Due to its specific dissemination through a complex bilateral pelvic lymphatic system, early cervical cancer is a relevant candidate for investigating the early nodal metastatic process. In the present study, we analyzed in-depth both the lymphatic vasculature and the immune climate of pre-metastatic sentinel LN (SLN), in 48 cases of FIGO stage IB1 cervical neoplasms. An original digital image analysis methodology was used to objectively determine whole slide densities and spatial distributions of immunostained structures. We observed a marked increase in lymphatic vessel density (LVD) and a specific capsular and subcapsular distribution in pre-metastatic SLN when compared with non-sentinel counterparts. Such features persisted in the presence of nodal metastatic colonization. The inflammatory profile attested by CD8+, Foxp3, CD20 and PD-1expression was also significantly increased in pre-metastatic SLN. Remarkably, the densities of CD20+ B cells and PD-1 expressing germinal centers were positively correlated with LVD. All together, these data strongly support the existence of a pre-metastatic dialog between the primary tumor and the first nodal relay. Both lymphatic and immune responses contribute to the elaboration of a specific pre-metastatic microenvironment in human SLN. Moreover, this work provides evidence that, in the context of early cervical cancer, a pre-metastatic lymphangiogenesis occurs within the SLN (pre-metastatic niche) and is associated with a specific humoral immune response. PMID:28344873

  7. Immune Checkpoint Blockade for Breast Cancer.

    PubMed

    Swoboda, April; Nanda, Rita

    An effective antitumor immune response requires interaction between cells of the adaptive and innate immune system. Three key elements are required: generation of activated tumor-directed T cells, infiltration of activated T cells into the tumor microenvironment, and killing of tumor cells by activated T cells. Tumor immune evasion can occur as a result of the disruption of each of these three key T cell activities, resulting in three distinct cancer-immune phenotypes. The immune inflamed phenotype, characterized by the presence of a robust tumor immune infiltrate, suggests impaired activated T cell killing of tumor cells related to the presence of inhibitory factors. Programmed death receptor-1 (PD-1) is an inhibitory transmembrane protein expressed on T cells, B cells, and NK cells. The interaction between PD-1 and its ligands (PD-L1/L2) functions as an immune checkpoint against unrestrained cytotoxic T effector cell activity-it promotes peripheral T effector cell exhaustion and conversion of T effector cells to immunosuppressive T regulatory (Treg) cells. Immune checkpoint inhibitors, which block the PD-1/PD-L1 axis and reactivate cytotoxic T effector cell function, are actively being investigated for the treatment of breast cancer.

  8. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer.

    PubMed

    Que, Ri-Sheng; Lin, Cheng; Ding, Guo-Ping; Wu, Zheng-Rong; Cao, Li-Ping

    2016-05-01

    Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced killer cells (DC/CIKs) against pancreatic cancer (PC). PC-derived exosomes (PEs) were extracted from cultured PANC-1 cell supernatants and then ruptured; this was followed by ultrafiltered exosome lysates (UELs). DCs were stimulated with lipopolysaccharide (LPS), PE, and UEL, followed by co-culture with CIKs. The anti-tumor effects of DC/CIKs against PC were evaluated by proliferation and killing rates, tumor necrosis factor-α (TNF-α) and perforin secretion. Exosomal miRNAs were depleted after lysis and ultrafiltration, while 128 proteins were retained, including several immune-activating proteins. UEL-stimulated DC/CIKs showed a higher killing rate than LPS- and PE-stimulated DC/CIKs. miRNA-depleted exosome proteins may be promising agonists for specifically activating DC/CIKs against PC.

  9. Data-driven analysis of immune infiltrate in a large cohort of breast cancer and its association with disease progression, ER activity, and genomic complexity

    PubMed Central

    Dannenfelser, Ruth; Nome, Marianne; Tahiri, Andliena; Ursini-Siegel, Josie; Vollan, Hans Kristian Moen; Haakensen, Vilde D.; Helland, Åslaug; Naume, Bjørn; Caldas, Carlos; Børresen-Dale, Anne-Lise; Kristensen, Vessela N.; Troyanskaya, Olga G.

    2017-01-01

    The tumor microenvironment is now widely recognized for its role in tumor progression, treatment response, and clinical outcome. The intratumoral immunological landscape, in particular, has been shown to exert both pro-tumorigenic and anti-tumorigenic effects. Identifying immunologically active or silent tumors may be an important indication for administration of therapy, and detecting early infiltration patterns may uncover factors that contribute to early risk. Thus far, direct detailed studies of the cell composition of tumor infiltration have been limited; with some studies giving approximate quantifications using immunohistochemistry and other small studies obtaining detailed measurements by isolating cells from excised tumors and sorting them using flow cytometry. Herein we utilize a machine learning based approach to identify lymphocyte markers with which we can quantify the presence of B cells, cytotoxic T-lymphocytes, T-helper 1, and T-helper 2 cells in any gene expression data set and apply it to studies of breast tissue. By leveraging over 2,100 samples from existing large scale studies, we are able to find an inherent cell heterogeneity in clinically characterized immune infiltrates, a strong link between estrogen receptor activity and infiltration in normal and tumor tissues, changes with genomic complexity, and identify characteristic differences in lymphocyte expression among molecular groupings. With our extendable methodology for capturing cell type specific signal we systematically studied immune infiltration in breast cancer, finding an inverse correlation between beneficial lymphocyte infiltration and estrogen receptor activity in normal breast tissue and reduced infiltration in estrogen receptor negative tumors with high genomic complexity. PMID:28915659

  10. Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia

    PubMed Central

    Severance, Emily G.; Gressitt, Kristin; Halling, Meredith; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dupont, Didier; Dickerson, Faith B.; Yolken, Robert H.

    2012-01-01

    Immune system factors including complement pathway activation are increasingly linked to the etiology and pathophysiology of schizophrenia. Complement protein, C1q, binds to and helps to clear immune complexes composed of immunoglobulins coupled to antigens. The antigenic stimuli for C1q activation in schizophrenia are not known. Food sensitivities characterized by elevated IgG antibodies to bovine milk caseins and wheat glutens have been reported in individuals with schizophrenia. Here, we examined the extent to which these food products might comprise the antigen component of complement C1q immune complexes in individuals with recent onset schizophrenia (n=38), non-recent onset schizophrenia (n=61) and non-psychiatric controls (n=63). C1q seropositivity was significantly associated with both schizophrenia groups (recent onset, odds ratio (OR)=8.02, p≤0.008; non-recent onset, OR=3.15, p≤0.03) compared to controls (logistic regression models corrected for age, sex, race and smoking status). Casein- and/or gluten-IgG binding to C1q was significantly elevated in the non-recent onset group compared to controls (OR=4.36, p≤0.01). Significant amounts of C1q-casein/gluten-related immune complexes and C1q correlations with a marker for gastrointestinal inflammation in non-recent onset schizophrenia suggests a heightened rate of food antigens in the systemic circulation, perhaps via a disease-associated altered intestinal permeability. In individuals who are in the early stages of disease onset, C1q activation may reflect the formation of immune complexes with non-casein- or non-gluten-related antigens, the presence of C1q autoantibodies, and/or a dissociated state of immune complex components. In conclusion, complement activation may be a useful biomarker to diagnose schizophrenia early during the course of the disease. Future prospective studies should evaluate the impacts of casein- and gluten-free diets on C1q activation in schizophrenia. PMID:22801085

  11. Defense Against Pathogens: Structural Insights into the Mechanism of Chitin Induced Activation of Innate Immunity.

    PubMed

    Squeglia, Flavia; Berisio, Rita; Shibuya, Naoto; Kaku, Hanae

    2017-11-24

    Pattern recognition receptors on the plant cell surface mediate the recognition of microbe-associated molecular patterns, in a process which activates downstream immune signaling. These receptors are plasma membrane-localized kinases which need to be autophosphorylated to activate downstream responses. Perception of attacks from fungi occurs through recognition of chitin, a polymer of an N-acetylglucosamine which is a characteristic component of the cell walls of fungi. This process is regulated in Arabidopsis by chitin elicitor receptor kinase CERK1. A more complex process characterizes rice, in which regulation of chitin perception is operated by a complex composed of OsCERK1, a homolog of CERK1, and the chitin elicitor binding protein OsCEBiP. Recent literature has provided a mechanistic description of the complex regulation of activation of innate immunity in rice and an advance in the structural description of molecular players involved in this process. This review describes the current status of the understanding of molecular events involved in innate immunity activation in rice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions

    PubMed Central

    Hendrickx, Debbie A. E.; van Scheppingen, Jackelien; van der Poel, Marlijn; Bossers, Koen; Schuurman, Karianne G.; van Eden, Corbert G.; Hol, Elly M.; Hamann, Jörg; Huitinga, Inge

    2017-01-01

    In multiple sclerosis (MS), activated microglia and infiltrating macrophages phagocytose myelin focally in (chronic) active lesions. These demyelinating sites expand in time, but at some point turn inactive into a sclerotic scar. To identify molecular mechanisms underlying lesion activity and halt, we analyzed genome-wide gene expression in rim and peri-lesional regions of chronic active and inactive MS lesions, as well as in control tissue. Gene clustering revealed patterns of gene expression specifically associated with MS and with the presumed, subsequent stages of lesion development. Next to genes involved in immune functions, we found regulation of novel genes in and around the rim of chronic active lesions, such as NPY, KANK4, NCAN, TKTL1, and ANO4. Of note, the presence of many foamy macrophages in active rims was accompanied by a congruent upregulation of genes related to lipid binding, such as MSR1, CD68, CXCL16, and OLR1, and lipid uptake, such as CHIT1, GPNMB, and CCL18. Except CCL18, these genes were already upregulated in regions around active MS lesions, showing that such lesions are indeed expanding. In vitro downregulation of the scavenger receptors MSR1 and CXCL16 reduced myelin uptake. In conclusion, this study provides the gene expression profile of different aspects of MS pathology and indicates that early demyelination, mediated by scavenger receptors, is already present in regions around active MS lesions. Genes involved in early demyelination events in regions surrounding chronic active MS lesions might be promising therapeutic targets to stop lesion expansion. PMID:29312322

  13. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions.

    PubMed

    Hendrickx, Debbie A E; van Scheppingen, Jackelien; van der Poel, Marlijn; Bossers, Koen; Schuurman, Karianne G; van Eden, Corbert G; Hol, Elly M; Hamann, Jörg; Huitinga, Inge

    2017-01-01

    In multiple sclerosis (MS), activated microglia and infiltrating macrophages phagocytose myelin focally in (chronic) active lesions. These demyelinating sites expand in time, but at some point turn inactive into a sclerotic scar. To identify molecular mechanisms underlying lesion activity and halt, we analyzed genome-wide gene expression in rim and peri-lesional regions of chronic active and inactive MS lesions, as well as in control tissue. Gene clustering revealed patterns of gene expression specifically associated with MS and with the presumed, subsequent stages of lesion development. Next to genes involved in immune functions, we found regulation of novel genes in and around the rim of chronic active lesions, such as NPY, KANK4, NCAN, TKTL1 , and ANO4 . Of note, the presence of many foamy macrophages in active rims was accompanied by a congruent upregulation of genes related to lipid binding, such as MSR1, CD68, CXCL16 , and OLR1 , and lipid uptake, such as CHIT1, GPNMB , and CCL18 . Except CCL18 , these genes were already upregulated in regions around active MS lesions, showing that such lesions are indeed expanding. In vitro downregulation of the scavenger receptors MSR1 and CXCL16 reduced myelin uptake. In conclusion, this study provides the gene expression profile of different aspects of MS pathology and indicates that early demyelination, mediated by scavenger receptors, is already present in regions around active MS lesions. Genes involved in early demyelination events in regions surrounding chronic active MS lesions might be promising therapeutic targets to stop lesion expansion.

  14. Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection

    PubMed Central

    Ramirez, Karina; Ditamo, Yanina; Rodriguez, Liliana; Picking, Wendy L.; van Roosmalen, Maarten L.; Leenhouts, Kees; Pasetti, Marcela F.

    2010-01-01

    Safe and effective immunization of newborns and infants can significantly reduce childhood mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal immune system. We explored the capacity of a novel mucosal antigen delivery system consisting of non-living, non-genetically modified Lactococcus lactis particles, designated Gram-positive Enhancer Matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM particles activated and enhanced the maturation of neonatal dendritic cells both in vivo and in vitro. These dendritic cells showed increased capacities for secretion of pro-inflammatory and Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. These data show that mucosal immunization with L. lactis GEM particles carrying vaccine antigens represents a promising approach to prevent infectious diseases early in life. PMID:19924118

  15. Extraction optimization of polysaccharides from Chinese rice wine from the Shaoxing region and evaluation of its immunity activities.

    PubMed

    Shen, Chi; Mao, Jian; Chen, Yongquan; Meng, Xiangyong; Ji, Zhongwei

    2015-08-15

    Chinese rice wine is well known for its unique flavor and high nutritional value. It is of interest to investigate the functional components of Chinese rice wine and their health benefits. Response surface design of three factors - pH, ethanol concentration and precipitation time - at three levels was utilized to optimize the extraction of Chinese rice wine polysaccharide (CRWP). The results indicated that the CRWP yield was 77.287% at the optimal levels for pH 8.4, ethanol concentration 88% and precipitation time 23 h. In addition, immune activity of CRWP was investigated by measuring body weight, spleen index and thymus index. Furthermore, immunity activity of CRWP was investigated by measuring lymphocyte proliferation, phagocytic index and phagocytic percentage of immunosuppressed mice. Compared with the control mice and model mice, it was found that CRWP has beneficial immune activities in vivo. These findings indicate that CRWP has immune activities in vivo by modulating the immune response, and implies full development and utilization of the nutritional value of Chinese rice wine. However, further work will be conducted in the future to elucidate the structure-bioactivity relationship for CRWP. © 2014 Society of Chemical Industry.

  16. GATA-3 function in innate and adaptive immunity.

    PubMed

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Plasma levels of immune factors and sex steroids in the male seahorse Hippocampus erectus during a breeding cycle.

    PubMed

    Lin, Tingting; Liu, Xin; Xiao, Dongxue; Zhang, Dong

    2017-06-01

    To better understand the endocrine- and immune-response pattern during reproduction in a fish species having parental care behaviors and also to accumulate the endocrine- and immune-related data for future explanations of the low reproductive efficiency in seahorse species, the variations of immune factors and sex steroids in the plasma of the male lined seahorse Hippocampus erectus at different breeding stages, i.e., pre-pregnancy, pregnancy (early, middle, and late periods), and post-pregnancy, were investigated in the present study. The immune factors included monocytes/leucocytes (M/L), leucocyte phagocytic rate (LPR), immunoglobulin M (Ig M), interleukin-2 (IL-2), interferon-α (IFN-α), and lysozyme (LZM). The sex steroids included testosterone (T), 11-ketotestosterone (11-KT), 11β-hydroxytestosterone (11β-OHT), 17α-methyltestosterone (17α-MT), 17β-estradiol (E2), and 17α-hydroxy-20β-dihydroprogesterone (17α-20β-P). Moreover, the immune metabolic activity of epithelium cells in the brood pouch at different breeding stages was also analyzed through ultrastructural observations of the abundance of cytoplasmic granules, mitochondria, endoplasmic reticulum, lysosomes, and exocytosis. The results show that a higher immune level was observed during pregnancy, particularly in the early and middle periods, and a lower immune level was noted during pre-pregnancy. Correspondingly, the epithelium cells in the brood pouch also showed a stronger immune metabolic activity during pregnancy and weaker activity during pre-pregnancy. Four sex steroids of T, 11β-OHT, 17α-MT, and E2 were higher during pre-pregnancy and lower during post-pregnancy, whereas 11-KT and 17α-20β-P, which were positively correlated with part immune factors, were higher during pregnancy. No negative correlations between sex steroids and immune factors were observed. In conclusion, the higher immune competence during pregnancy may indicate that parental care could improve immunity, which may

  18. Modelling the Immune Response to Cancer: An Individual-Based Approach Accounting for the Difference in Movement Between Inactive and Activated T Cells.

    PubMed

    Macfarlane, Fiona R; Lorenzi, Tommaso; Chaplain, Mark A J

    2018-06-01

    A growing body of experimental evidence indicates that immune cells move in an unrestricted search pattern if they are in the pre-activated state, whilst they tend to stay within a more restricted area upon activation induced by the presence of tumour antigens. This change in movement is not often considered in the existing mathematical models of the interactions between immune cells and cancer cells. With the aim to fill such a gap in the existing literature, in this work we present a spatially structured individual-based model of tumour-immune competition that takes explicitly into account the difference in movement between inactive and activated immune cells. In our model, a Lévy walk is used to capture the movement of inactive immune cells, whereas Brownian motion is used to describe the movement of antigen-activated immune cells. The effects of activation of immune cells, the proliferation of cancer cells and the immune destruction of cancer cells are also modelled. We illustrate the ability of our model to reproduce qualitatively the spatial trajectories of immune cells observed in experimental data of single-cell tracking. Computational simulations of our model further clarify the conditions for the onset of a successful immune action against cancer cells and may suggest possible targets to improve the efficacy of cancer immunotherapy. Overall, our theoretical work highlights the importance of taking into account spatial interactions when modelling the immune response to cancer cells.

  19. Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging.

    PubMed

    Giovanoli, Sandra; Notter, Tina; Richetto, Juliet; Labouesse, Marie A; Vuillermot, Stéphanie; Riva, Marco A; Meyer, Urs

    2015-11-25

    Prenatal exposure to infection and/or inflammation is increasingly recognized to play an important role in neurodevelopmental brain disorders. It has recently been postulated that prenatal immune activation, especially when occurring during late gestational stages, may also induce pathological brain aging via sustained effects on systemic and central inflammation. Here, we tested this hypothesis using an established mouse model of exposure to viral-like immune activation in late pregnancy. Pregnant C57BL6/J mice on gestation day 17 were treated with the viral mimetic polyriboinosinic-polyribocytidilic acid (poly(I:C)) or control vehicle solution. The resulting offspring were first tested using cognitive and behavioral paradigms known to be sensitive to hippocampal damage, after which they were assigned to quantitative analyses of inflammatory cytokines, microglia density and morphology, astrocyte density, presynaptic markers, and neurotrophin expression in the hippocampus throughout aging (1, 5, and 22 months of age). Maternal poly(I:C) treatment led to a robust increase in inflammatory cytokine levels in late gestation but did not cause persistent systemic or hippocampal inflammation in the offspring. The late prenatal manipulation also failed to cause long-term changes in microglia density, morphology, or activation, and did not induce signs of astrogliosis in pubescent, adult, or aged offspring. Despite the lack of persistent inflammatory or glial anomalies, offspring of poly(I:C)-exposed mothers showed marked and partly age-dependent deficits in hippocampus-regulated cognitive functions as well as impaired hippocampal synaptophysin and brain-derived neurotrophic factor (BDNF) expression. Late prenatal exposure to viral-like immune activation in mice causes hippocampus-related cognitive and synaptic deficits in the absence of chronic inflammation across aging. These findings do not support the hypothesis that this form of prenatal immune activation may induce

  20. Maintenance versus growth: investigating the costs of immune activation among children in lowland Bolivia.

    PubMed

    McDade, T W; Reyes-García, V; Tanner, S; Huanca, T; Leonard, W R

    2008-08-01

    Immune function is a central component of maintenance effort, and it provides critical protection against the potentially life threatening effects of pathogens. However, immune defenses are energetically expensive, and the resources they consume are not available to support other activities related to growth and/or reproduction. In our study we use a life history theory framework to investigate tradeoffs between maintenance effort and growth among children in a remote area of Amazonian Bolivia. Baseline concentrations of C-reactive protein (CRP) were measured in 309 2- to 10-year olds as an indicator of immune activation, and height was measured at baseline and three months later. Elevated CRP at baseline predicts smaller gains in height over the subsequent three months, with the costs to growth particularly high for 2- to 4-year olds and for those with low energy reserves (in the form of body fat) at the time of immunostimulation. These results provide evidence for a significant tradeoff between investment in immunity and growth in humans, and highlight an important physiological mechanism through which maintenance effort may have lasting effects on child growth and development. Copyright 2008 Wiley-Liss, Inc.

  1. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish.

    PubMed

    Chatterjee, Arunita; Roy, Debasish; Patnaik, Esha; Nongthomba, Upendra

    2016-06-01

    Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs) as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs) through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual. © 2016. Published by The Company of Biologists Ltd.

  2. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    PubMed

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  3. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease

    PubMed Central

    Corridoni, Daniele; Chapman, Thomas; Ambrose, Tim; Simmons, Alison

    2018-01-01

    Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation. PMID:29515999

  4. Dermatophytes activate skin keratinocytes via mitogen-activated protein kinase signaling and induce immune responses.

    PubMed

    Achterman, Rebecca R; Moyes, David L; Thavaraj, Selvam; Smith, Adam R; Blair, Kris M; White, Theodore C; Naglik, Julian R

    2015-04-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. Copyright © 2015, Achterman et al.

  5. TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis.

    PubMed

    Francisco, Ngiambudulu M; Hsu, Nai-Jen; Keeton, Roanne; Randall, Philippa; Sebesho, Boipelo; Allie, Nasiema; Govender, Dhirendra; Quesniaux, Valerie; Ryffel, Bernhard; Kellaway, Lauriston; Jacobs, Muazzam

    2015-06-26

    Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. We generated neuron-specific TNF-deficient (NsTNF(-/-)) mice and compared outcomes of disease against TNF(f/f) control and global TNF(-/-) mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). Intracerebral M. tuberculosis infection of TNF(-/-) mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF(-/-) mice were resistant to infection and presented with a phenotype similar to that in TNF(f/f) control mice. Impaired immunity in TNF(-/-) mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB.

  6. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity.

    PubMed

    Bowen, David G; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W; Bertolino, Patrick

    2004-09-01

    Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for primary activation of CD8+ T cells between the liver and secondary lymphoid tissues, with the immune outcome determined by the initial site of activation. Using a transgenic mouse model in which antigen is expressed within both liver and lymph nodes, we show that while naive CD8+ T cells activated within the lymph nodes were capable of mediating hepatitis, cells undergoing primary activation within the liver exhibited defective cytotoxic function and shortened half-life and did not mediate hepatocellular injury. The implications of these novel findings may pertain not only to the normal maintenance of peripheral tolerance, but also to hepatic allograft tolerance and the immunopathogenesis of chronic viral hepatitis.

  7. Sympathetic activation during early pregnancy in humans

    PubMed Central

    Jarvis, Sara S; Shibata, Shigeki; Bivens, Tiffany B; Okada, Yoshiyuki; Casey, Brian M; Levine, Benjamin D; Fu, Qi

    2012-01-01

    Sympathetic activity has been reported to increase in normotensive pregnant women, and to be even greater in women with gestational hypertension and preeclampsia at term. Whether sympathetic overactivity develops early during pregnancy, remaining high throughout gestation, or whether it only occurs at term providing the substrate for hypertensive disorders is unknown. We tested the hypothesis that sympathetic activation occurs early during pregnancy in humans. Eleven healthy women (29 ± 3 (SD) years) without prior hypertensive pregnancies were tested during the mid-luteal phase (PRE) and early pregnancy (EARLY; 6.2 ± 1.2 weeks of gestation). Muscle sympathetic nerve activity (MSNA) and haemodynamics were measured supine, at 30 deg and 60 deg upright tilt for 5 min each. Blood samples were drawn for catecholamines, direct renin, and aldosterone. MSNA was significantly greater during EARLY than PRE (supine: 25 ± 8 vs. 14 ± 8 bursts min−1, 60 deg tilt: 49 ± 14 vs. 40 ± 10 bursts min−1; main effect, P < 0.05). Resting diastolic pressure trended lower (P = 0.09), heart rate was similar, total peripheral resistance decreased (2172 ± 364 vs. 2543 ± 352 dyne s cm−5; P < 0.05), sympathetic vascular transduction was blunted (0.10 ± 0.05 vs. 0.36 ± 0.47 units a.u.−1 min−1; P < 0.01), and both renin (supine: 27.9 ± 6.2 vs. 14.2 ± 8.7 pg ml−1, P < 0.01) and aldosterone (supine: 16.7 ± 14.1 vs. 7.7 ± 6.8 ng ml−1, P = 0.05) were higher during EARLY than PRE. These results suggest that sympathetic activation is a common characteristic of early pregnancy in humans despite reduced diastolic pressure and total peripheral resistance. These observations challenge conventional thinking about blood pressure regulation during pregnancy, showing marked sympathetic activation occurring within the first few weeks of conception, and may provide the substrate for pregnancy induced cardiovascular complications. PMID:22687610

  8. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway

    PubMed Central

    Macedo, Ana Catarina Lunz; Isaac, Lourdes

    2016-01-01

    The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) – mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients. PMID:26941740

  9. Early divergent host responses in SHIVsf162P3 and SIVmac251 infected macaques correlate with control of viremia.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Morici, Lisa A; Pahar, Bapi; Veazey, Ronald S

    2011-03-25

    We previously showed intravaginal inoculation with SHIVsf162p3 results in transient viremia followed by undetectable viremia in most macaques, and some displayed subsequent immunity to superinfection with pathogenic SIVmac251. Here we compare early T cell activation, proliferation, and plasma cytokine/chemokine responses in macaques intravaginally infected with either SHIVsf162p3 or SIVmac251 to determine whether distinct differences in host responses may be associated with early viral containment. The data show SIVmac251 infection results in significantly higher levels of T cell activation, proliferation, and a mixed cytokine/chemokine "storm" in plasma in primary infection, whereas infection with SHIVsf162p3 resulted in significantly lower levels of T cell activation, proliferation, and better preservation of memory CD4+ T cells in early infection which immediately preceded control of viremia. These results support the hypothesis that early systemic immune activation, T cell proliferation, and a more prominent and broader array of cytokine/chemokine responses facilitate SIV replication, and may play a key role in persistence of infection, and the progression to AIDS. In contrast, immune unresponsiveness may be associated with eventual clearance of virus, a concept that may have key significance for therapy and vaccine design.

  10. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    PubMed

    Sohn, Kee Hoon; Segonzac, Cécile; Rallapalli, Ghanasyam; Sarris, Panagiotis F; Woo, Joo Yong; Williams, Simon J; Newman, Toby E; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D G

    2014-10-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light

  11. The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana

    PubMed Central

    Sarris, Panagiotis F.; Woo, Joo Yong; Williams, Simon J.; Newman, Toby E.; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D. G.

    2014-01-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific “avirulent” pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new

  12. Early Complementopathy after Multiple Injuries in Humans

    PubMed Central

    Burk, Anne-Maud; Martin, Myriam; Flierl, Michael A.; Rittirsch, Daniel; Helm, Matthias; Lampl, Lorenz; Bruckner, Uwe; Stahl, Gregory L.; Blom, Anna M.; Perl, Mario; Gebhard, Florian; Huber-Lang, Markus

    2012-01-01

    After severe tissue injury, innate immunity mounts a robust systemic inflammatory response. However, little is known about the immediate impact of multiple trauma on early complement function in humans. In the present study we hypothesized that multiple trauma results in immediate activation, consumption and dysfunction of the complement cascade and that the resulting severe “complementopathy” may be associated with morbidity and mortality. Therefore a prospective multicenter study with 25 healthy volunteers and 40 polytrauma patients (mean injury severity score [ISS] = 30.3 ± 2.9) was performed. After polytrauma serum was collected as early as possible at the scene, upon admission to the emergency room and 4, 12, 24, 120 and 240 hours post trauma and analysed for the complement profile. Complement hemolytic activity (CH-50) was massively reduced within the first 24 h after injury, recovered only 5 days after trauma and discriminated between lethal and non-lethal 28-day outcome. Serum levels of the complement activation products C3a and C5a were significantly elevated throughout the entire observation period and correlated with the severity of traumatic brain injury and survival. The soluble terminal complement complex SC5b-9 and mannose-binding lectin (MBL) showed a biphasic response after trauma. Key fluid phase inhibitors of complement, such as C4b-binding protein (C4BP) and factor I, were significantly diminished early after trauma. The present data indicate an almost synchronically rapid activation and dysfunction of complement suggesting a trauma-induced “complementopathy” early after injury. These events may participate to the impairment of the innate immune response observed after severe trauma. PMID:22258234

  13. Nutritionally mediated programming of the developing immune system.

    PubMed

    Palmer, Amanda C

    2011-09-01

    A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.

  14. Immunological considerations regarding parental concerns on pediatric immunizations.

    PubMed

    Nicoli, Francesco; Appay, Victor

    2017-05-25

    Despite the fundamental role of vaccines in the decline of infant mortality, parents may decide to decline vaccination for their own children. Many factors may influence this decision, such as the belief that the infant immune system is weakened by vaccines, and concerns have been raised about the number of vaccines and the early age at which they are administered. Studies focused on the infant immune system and its reaction to immunizations, summarized in this review, show that vaccines can overcome those suboptimal features of infant immune system that render them more at risk of infections and of their severe manifestations. In addition, many vaccines have been shown to improve heterologous innate and adaptive immunity resulting in lower mortality rates for fully vaccinated children. Thus, multiple vaccinations are necessary and not dangerous, as infants can respond to several antigens as well as when responding to single stimuli. Current immunization schedules have been developed and tested to avoid vaccine interference, improve benefits and reduce side effects compared to single administrations. The infant immune system is therefore capable, early after birth, of managing several antigenic challenges and exploits them to prompt its development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Choctaw Culture Early Education Activities.

    ERIC Educational Resources Information Center

    Brescia, William, Ed.; Reeves, Carolyn, Ed.; Skinner, Linda, Ed.

    An effort to better prepare Choctaw youngsters for kindergarten, the Choctaw Culture Early Education Program developed a resource of 58 activities adapted to meet the needs of Choctaw 3- and 4-year olds. The activities are divided into four sections pertaining to getting started, relating to five project publications (How the Flowers Came to Be,…

  16. Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity

    PubMed Central

    Cao, K; Wang, G; Li, W; Zhang, L; Wang, R; Huang, Y; Du, L; Jiang, J; Wu, C; He, X; Roberts, A I; Li, F; Rabson, A B; Wang, Y; Shi, Y

    2015-01-01

    The poor efficacy of the in vivo anti-tumor immune response has been partially attributed to ineffective T-cell responses mounted against the tumor. Fas-FasL-dependent activation-induced cell death (AICD) of T cells is believed to be a major contributor to compromised anti-tumor immunity. The molecular mechanisms of AICD are well-investigated, yet the possibility of regulating AICD for cancer therapy remains to be explored. In this study, we show that histone deacetylase inhibitors (HDACIs) can inhibit apoptosis of CD4+ T cells within the tumor, thereby enhancing anti-tumor immune responses and suppressing melanoma growth. This inhibitory effect is specific for AICD through suppressing NFAT1-regulated FasL expression on activated CD4+ T cells. In gld/gld mice with mutation in FasL, the beneficial effect of HDACIs on AICD of infiltrating CD4+ T cells is not seen, confirming the critical role of FasL regulation in the anti-tumor effect of HDACIs. Importantly, we found that the co-administration of HDACIs and anti-CTLA4 could further enhance the infiltration of CD4+ T cells and achieve a synergistic therapeutic effect on tumor. Therefore, our study demonstrates that the modulation of AICD of tumor-infiltrating CD4+ T cells using HDACIs can enhance anti-tumor immune responses, uncovering a novel mechanism underlying the anti-tumor effect of HDACIs. PMID:25745993

  17. Fish oil supplementation in early infancy modulates developing infant immune responses.

    PubMed

    D'Vaz, N; Meldrum, S J; Dunstan, J A; Lee-Pullen, T F; Metcalfe, J; Holt, B J; Serralha, M; Tulic, M K; Mori, T A; Prescott, S L

    2012-08-01

    Maternal fish oil supplementation during pregnancy has been associated with altered infant immune responses and a reduced risk of infant sensitization and eczema. To examine the effect of early postnatal fish oil supplementation on infant cellular immune function at 6 months of age in the context of allergic disease. In a double-blind randomized controlled trial (ACTRN12606000281594), 420 infants of high atopic risk received fish oil [containing 280 mg docosahexaenoic acid (DHA) and 110 mg eicosapentanoic acid (EPA)] or control oil daily from birth to 6 months. One hundred and twenty infants had blood collected at 6 months of age. Fatty acid levels, induced cytokine responses, T cell subsets and monocyte HLA-DR expression were assessed at 6 months of age. Infant allergies were assessed at 6 and 12 months of age. DHA and EPA levels were significantly higher in the fish oil group and erythrocyte arachidonic acid (AA) levels were lower (all P < 0.05). Infants in the fish oil group had significantly lower IL-13 responses (P = 0.036) to house dust mite (HDM) and higher IFNγ (P = 0.035) and TNF (P = 0.017) responses to phytohaemaglutinin (PHA). Infants with relatively high DHA levels had lower Th2 responses to allergens including lower IL-13 to β-lactoglobulin (BLG) (P = 0.020), and lower IL-5 to BLG (P = 0.045). Postnatal fish oil supplementation increased infant n-3 polyunsaturated fatty acid (PUFA) levels and associated with lowered allergen-specific Th2 responses and elevated polyclonal Th1 responses. Our results add to existing evidence of n-3 PUFA having immunomodulatory properties that are potentially allergy-protective. © 2012 Blackwell Publishing Ltd.

  18. Expression kinetics of key genes in the early innate immune response to Great Lakes viral hemorrhagic septicemia virus IVb infection in yellow perch (Perca flavescens)

    USGS Publications Warehouse

    Olson, Wendy; Emmenegger, Eveline; Glenn, Jolene; Simchick, Crystal; Winton, Jim; Goetz, Frederick

    2013-01-01

    The recently discovered strain of viral hemorrhagic septicemia virus, VHSV-IVb, represents an example of the introduction of an extremely pathogenic rhabdovirus capable of infecting a wide variety of new fish species in a new host-environment. The goal of the present study was to delineate the expression kinetics of key genes in the innate immune response relative to the very early stages of VHSV-IVb infection using the yellow perch (Perca flavescens) as a model. Administration of VHSV-IVb by IP-injection into juvenile yellow perch resulted in 84% cumulative mortality, indicating their high susceptibility to this disease. In fish sampled in the very early stages of infection, a significant up-regulation of Mx gene expression in the liver, as well as IL-1β and SAA activation in the head kidney, spleen, and liver was directly correlated to viral load. The potential down-regulation of Mx in the hematopoietic tissues, head kidney and spleen, may represent a strategy utilized by the virus to increase replication.

  19. In immune defense: redefining the role of the immune system in chronic disease.

    PubMed

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  20. Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W

    PubMed Central

    Aznar, Aude; Chen, Nicolas W.G.; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-01-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H2O2 staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  1. The Changing World of Childhood Immunizations

    ERIC Educational Resources Information Center

    Graville, Iris

    2010-01-01

    Theories and practices in early childhood education continually evolve, and the same is true in the health field. Such change is especially apparent in the area of childhood immunizations. Since vaccination to prevent smallpox was first started in the late 1700s, recommendations for which immunizations to give and when to give them have been…

  2. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  3. Costs of immune responses are related to host body size and lifespan

    DOE PAGES

    Brace, Amber J.; Lajeunesse, Marc J.; Ardia, Daniel R.; ...

    2017-06-01

    A central assumption in ecological immunology is that immune responses are costly, with costs manifesting directly (e.g., increases in metabolic rate and increased amino acid usage) or as tradeoffs with other life processes (e.g., reduced growth and reproductive success). Across taxa, host longevity, timing of maturity, and reproductive effort affect the organization of immune systems. It is reasonable, therefore, to expect that these and related factors should also affect immune activation costs. Specifically, species that spread their breeding efforts over a long lifetime should experience lower immune costs than those that mature and breed quickly and die comparatively early. Likewise,more » body mass should affect immune costs, as body size affects the extent to which hosts are exposed to parasites as well as how hosts can combat infections (via its effects on metabolic rates and other factors). Here in this paper, we used phylogenetic meta-regression to reveal that, in general, animals incur costs of immune activation, but small species that are relatively long-lived incur the largest costs. These patterns probably arise because of the relative need for defense when infection risk is comparatively high and fitness can only be realized over a comparatively long period. However, given the diversity of species considered here and the overall modest effects of body mass and life history on immune costs, much more research is necessary before generalizations are appropriate.« less

  4. Costs of immune responses are related to host body size and lifespan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brace, Amber J.; Lajeunesse, Marc J.; Ardia, Daniel R.

    A central assumption in ecological immunology is that immune responses are costly, with costs manifesting directly (e.g., increases in metabolic rate and increased amino acid usage) or as tradeoffs with other life processes (e.g., reduced growth and reproductive success). Across taxa, host longevity, timing of maturity, and reproductive effort affect the organization of immune systems. It is reasonable, therefore, to expect that these and related factors should also affect immune activation costs. Specifically, species that spread their breeding efforts over a long lifetime should experience lower immune costs than those that mature and breed quickly and die comparatively early. Likewise,more » body mass should affect immune costs, as body size affects the extent to which hosts are exposed to parasites as well as how hosts can combat infections (via its effects on metabolic rates and other factors). Here in this paper, we used phylogenetic meta-regression to reveal that, in general, animals incur costs of immune activation, but small species that are relatively long-lived incur the largest costs. These patterns probably arise because of the relative need for defense when infection risk is comparatively high and fitness can only be realized over a comparatively long period. However, given the diversity of species considered here and the overall modest effects of body mass and life history on immune costs, much more research is necessary before generalizations are appropriate.« less

  5. Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody

    PubMed Central

    Gu, Luo; Ruff, Laura E.; Qin, Zhengtao; Corr, Maripat P.; Hedrick, Stephen M.; Sailor, Michael J.

    2012-01-01

    One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as selfmalignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30–40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs. PMID:22689074

  6. Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides.

    PubMed

    YouGuo, Chen; ZongJi, Shen; XiaoPing, Chen

    2009-12-01

    In this study, antioxidant and immunity-modulatory activities of Purslane polysaccharide were estimated. The results revealed that in a dose-dependent manner, Purslane polysaccharides could significantly scavenge superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH(-)), nitric oxide and hydroxyl radicals. Furthermore, the Purslane polysaccharides could still effectively inhibit the red blood cell (RBC) haemolysis, and increase spleen, thymocyte T and B lymphocyte proliferation, it could be concluded that Purslane polysaccharides could be of considerable preventive and therapeutic significance to some free radical associated health problems such as ovarian cancer, by scavenging accumulating free radicals and enhancing immunity functions.

  7. Maturation of the immune system of the male house cricket, Acheta domesticus.

    PubMed

    Piñera, Angelica V; Charles, Heather M; Dinh, Tracy A; Killian, Kathleen A

    2013-08-01

    The immune system functions to counteract the wide range of pathogens an insect may encounter during its lifespan, ultimately maintaining fitness and increasing the likelihood of survival to reproductive maturity. In this study, we describe the maturation of the innate immune system of the male house cricket Acheta domesticus during the last two nymphal stages, and during early and late adulthood. Total hemolymph phenoloxidase enzyme activity, lysozyme-like enzyme activity, the number of circulating hemocytes, and encapsulation ability were all determined for each developmental stage or age examined. The number of circulating hemocytes and lysozyme-like enzyme activity were similar for all developmental stages examined. Nymphs and newly molted adult males, however, had significantly lower total phenoloxidase activity than later adult stages, yet nymphs were able to encapsulate a nylon thread just as well as adults. Encapsulation ability would thus appear to be independent of total phenoloxidase activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration.

    PubMed

    Kounatidis, Ilias; Chtarbanova, Stanislava; Cao, Yang; Hayne, Margaret; Jayanth, Dhruv; Ganetzky, Barry; Ligoxygakis, Petros

    2017-04-25

    During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that "age well" from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain. We show that mutations in intracellular negative regulators of the IMD/NF-κB pathway predisposed flies to toxic levels of antimicrobial peptides, resulting in early locomotor defects, extensive neurodegeneration, and reduced lifespan. These phenotypes were rescued when immunity was suppressed in glia. In healthy flies, suppressing immunity in glial cells resulted in increased adipokinetic hormonal signaling with high nutrient levels in later life and an extension of active lifespan. Thus, when levels of IMD/NF-κB deviate from normal, two mechanisms are at play: lower levels derepress an immune-endocrine axis, which mobilizes nutrients, leading to lifespan extension, whereas higher levels increase antimicrobial peptides, causing neurodegeneration. Immunity in the fly brain is therefore a key lifespan determinant. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae.

    PubMed

    Miandare, Hamed Kolangi; Mirghaed, Ali Taheri; Hosseini, Marjan; Mazloumi, Nastaran; Zargar, Ashkan; Nazari, Sajad

    2017-11-01

    Pacific white shrimp Litopenaeus vannamei (Boone, 1931) is an important economical shrimp species worldwide, especially in the Middle East region, and farming activities of this species have been largely affected by diseases, mostly viral and bacterial diseases. Scientists have started to use prebiotics for bolstering the immune status of the animal. This study aimed to investigate the influence of Immunogen ® on growth, digestive enzyme activity and immune related gene expression of Litopenaeus vannamei post-larvae. All post-larvae were acclimated to the laboratory condition for 14 days. Upon acclimation, shrimps were fed on different levels of Immunogen ® (0, 0.5, 1 and 1.5 g kg -1 ) for 60 days. No significant differences were detected in weight gain, specific growth rate (SGR) and food conversion ratio (FCR) in shrimp post-larvae in which fed with different levels of Immunogen ® and control diet. The results showed that digestive enzymes activity including protease and lipase increased with different amounts of Immunogen ® in the shrimp diet. Protease activity increased with 1.5 g kg -1 Immunogen ® after 60 days and lipase activity increased with 1 and 1.5 g kg -1 Immunogen ® after 30 and 60 days of the trial respectively (P < 0.05), while amylase activity did not change in response to different levels of Immunogen ® (P > 0.05). The expression of immune related genes including, prophenoloxidase, crustin and g-type lysozyme increased with diet 1.5 g kg -1 Immunogen ® (P < 0.05) while expression of penaeidin gene increased only with experimental diet 1 g kg -1 of Immunogen ® . These results indicated that increase in digestive enzymes activity and expression of immune related genes could modulate the Immunogen ® in the innate immune system in L. vannamei in this study. Copyright © 2017. Published by Elsevier Ltd.

  10. Passive immunization of mice pups through oral immunization of dams with a plant-derived vaccine.

    PubMed

    Walmsley, Amanda M; Kirk, Dwayne D; Mason, Hugh S

    2003-03-03

    Passive immunization plays an important role in protecting young mammals against pathogens before the maturation of their own immune systems. Although many reports have shown active immunization of animals and human through the use of plant-derived vaccines, only one report has given evidence of passive immunization of offspring through oral immunization of parents using plant-derived vaccines. In this case, a challenge alone provided the evidence of passive immunization and the mechanism through which this occurred was not investigated. This report describes the first step in elucidating the mechanism of passive immunization of offspring through actively immunizing the female parent through an orally delivered, plant-derived vaccine. The authors found passive immunization of offspring was caused by transfer of antigen-specific IgG through either transplacental transfer or ingesting colostrum. Future studies will investigate the roles of transplacental antibody transfer and ingesting colostrum in passive immunization and the possible involvement of IgA in this immunization route.

  11. Does Infection-Induced Immune Activation Contribute to Dementia?

    PubMed Central

    Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe

    2015-01-01

    The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders. PMID:26425389

  12. Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3.

    PubMed

    Dang, Jason; Tiwari, Shashi Kant; Lichinchi, Gianluigi; Qin, Yue; Patil, Veena S; Eroshkin, Alexey M; Rana, Tariq M

    2016-08-04

    Emerging evidence from the current outbreak of Zika virus (ZIKV) indicates a strong causal link between Zika and microcephaly. To investigate how ZIKV infection leads to microcephaly, we used human embryonic stem cell-derived cerebral organoids to recapitulate early stage, first trimester fetal brain development. Here we show that a prototype strain of ZIKV, MR766, efficiently infects organoids and causes a decrease in overall organoid size that correlates with the kinetics of viral copy number. The innate immune receptor Toll-like-Receptor 3 (TLR3) was upregulated after ZIKV infection of human organoids and mouse neurospheres and TLR3 inhibition reduced the phenotypic effects of ZIKV infection. Pathway analysis of gene expression changes during TLR3 activation highlighted 41 genes also related to neuronal development, suggesting a mechanistic connection to disrupted neurogenesis. Together, therefore, our findings identify a link between ZIKV-mediated TLR3 activation, perturbed cell fate, and a reduction in organoid volume reminiscent of microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. IKKβ-induced inflammation impacts the kinetics but not the magnitude of the immune response to a viral vector

    PubMed Central

    Hopewell, Emily L.; Bronk, Crystina C.; Massengill, Michael; Engelman, Robert W.; Beg, Amer A.

    2012-01-01

    Microbial adjuvants in vaccines activate key transcription factors, including NF-κB and interferon response factors (IRFs). However, the individual role of these transcription factor pathways in promoting adaptive immunity by adjuvants is not clear. It is widely believed that induction of a strong inflammatory response potentiates an adaptive immune response. In this study, we sought to determine whether activation of the pro-inflammatory inhibitor of κB kinase β (IKKβ) canonical NF-κB pathway promoted vaccine-induced immune responses. An adenovirus expressing constitutively-activated IKKβ (AdIKK) induced robust DC maturation and high expression of key cytokines compared to a control virus. In vivo, AdIKK triggered rapid inflammation after pulmonary infection, increased leukocyte entry into draining LNs, and enhanced early antibody and T-cell responses. Notably, AdIKK did not influence the overall magnitude of the adaptive immune response. These results indicate that induction of inflammation by IKKβ/NF-κB in this setting impacts the kinetics but not the magnitude of adaptive immune responses. These findings therefore help define the individual role of a key pathway induced by vaccine adjuvants in promoting adaptive immunity. PMID:22161279

  14. Universal immunity to influenza must outwit immune evasion

    PubMed Central

    Quiñones-Parra, Sergio; Loh, Liyen; Brown, Lorena E.; Kedzierska, Katherine; Valkenburg, Sophie A.

    2014-01-01

    Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody (Ab) responses to the surface haemagglutinin (HA) and neuraminidase (NA) proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a great need for cross-protective or “universal” influenza vaccines to overcome the necessity for annual immunization against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1, and H7N9. The key to generating universal influenza immunity through vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive Ab responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies (bnAbs) have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been recently examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8+ T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and Abs, the mechanisms of immune evasion in influenza, and propose how to counteract

  15. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics.

    PubMed

    Smolle, Maria A; Calin, Horatiu N; Pichler, Martin; Calin, George A

    2017-07-01

    A major mechanism of tumor development and progression is silencing of the patient's immune response to cancer-specific antigens. Defects in the so-called cancer immunity cycle may occur at any stage of tumor development. Within the tumor microenvironment, aberrant expression of immune checkpoint molecules with activating or inhibitory effects on T lymphocytes induces immune tolerance and cellular immune escape. Targeting immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and its ligand PD-L1 with specific antibodies has proven to be a major advance in the treatment of several types of cancer. Another way to therapeutically influence the tumor microenvironment is by modulating the levels of microRNAs (miRNAs), small noncoding RNAs that shuttle bidirectionally between malignant and tumor microenvironmental cells. These small RNA transcripts have two features: (a) their expression is quite specific to distinct tumors, and (b) they are involved in early regulation of immune responses. Consequently, miRNAs may be ideal molecules for use in cancer therapy. Many miRNAs are aberrantly expressed in human cancer cells, opening new opportunities for cancer therapy, but the exact functions of these miRNAs and their interactions with immune checkpoint molecules have yet to be investigated. This review summarizes recently reported findings about miRNAs as modulators of immune checkpoint molecules and their potential application as cancer therapeutics in clinical practice. © 2017 Federation of European Biochemical Societies.

  16. Activation of immunity, immune response, antioxidant ability, and resistance against Vibrio alginolyticus in white shrimp Litopenaeus vannamei decrease under long-term culture at low pH.

    PubMed

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tseng, Kuei-Chi; Lin, Yong-Chin; Huang, Chien-Lun

    2015-10-01

    The growth, activation of immunity, immune parameters, and transcript levels of cytMnSOD, mtMnSOD, ecCuZnSOD, glutathione peroxidase (GPx), catalase, lysozyme, and penaeidin 3a were examined in white shrimp Litopenaeus vannamei reared at pH 6.8 and 8.1 after 24 weeks. No significant difference in growth was observed between the two groups. An in vitro study indicated that phenoloxidase activity and respiratory bursts (RB, release of the superoxide anion) were significantly higher in the haemocytes of pH 8.1 shrimp (shrimp reared at pH 8.1) than in pH 6.8 shrimp (shrimp reared at pH 6.8). An in vivo study indicated that the levels of immune parameters of pH 8.1 shrimp were significantly higher than in pH 6.8 shrimp, and the transcript levels of cytMnSOD, ecCuZnSOD, glutathione peroxidase, lysozyme, and penaeidin 3a were down-regulated in pH 6.8 shrimp. In another experiment, shrimp reared at pH 6.8 and 8.1 for 24 weeks were challenged with Vibrio alginolyticus. The mortality rate of pH 6.8 shrimp was significantly higher than in pH 8.1 shrimp over 12-168 h. Phagocytic activity, phagocytic index, and clearance efficiency to V. alginolyticus were significantly lower in pH 6.8 shrimp. We concluded that shrimp under long-term culture at pH 6.8 exhibited decreased resistance against V. alginolyticus as evidenced by reductions in the activation of immunity and immune parameters together with decreased transcript levels of cytMnSOD, ecCuZnSOD, GPx, lysozyme, and penaeidin 3a. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Active Immunization in the United States: Developments over the Past Decade

    PubMed Central

    Dennehy, Penelope H.

    2001-01-01

    The Centers for Disease Control and Prevention has identified immunization as the most important public health advance of the 20th century. The purpose of this article is to review the changes that have taken place in active immunization in the United States over the past decade. Since 1990, new vaccines have become available to prevent five infectious diseases: varicella, rotavirus, hepatitis A, Lyme disease, and Japanese encephalitis virus infection. Improved vaccines have been developed to prevent Haemophilus influenzae type b, pneumococcus, pertussis, rabies, and typhoid infections. Immunization strategies for the prevention of hepatitis B, measles, meningococcal infections, and poliomyelitis have changed as a result of the changing epidemiology of these diseases. Combination vaccines are being developed to facilitate the delivery of multiple antigens, and improved vaccines are under development for cholera, influenza, and meningococcal disease. Major advances in molecular biology have enabled scientists to devise new approaches to the development of vaccines against diseases ranging from respiratory viral to enteric bacterial infections that continue to plague the world's population. PMID:11585789

  18. Pre-cART Elevation of CRP and CD4+ T-Cell Immune Activation Associated With HIV Clinical Progression in a Multinational Case-Cohort Study.

    PubMed

    Balagopal, Ashwin; Asmuth, David M; Yang, Wei-Teng; Campbell, Thomas B; Gupte, Nikhil; Smeaton, Laura; Kanyama, Cecilia; Grinsztejn, Beatriz; Santos, Breno; Supparatpinyo, Khuanchai; Badal-Faesen, Sharlaa; Lama, Javier R; Lalloo, Umesh G; Zulu, Fatima; Pawar, Jyoti S; Riviere, Cynthia; Kumarasamy, Nagalingeswaran; Hakim, James; Li, Xiao-Dong; Pollard, Richard B; Semba, Richard D; Thomas, David L; Bollinger, Robert C; Gupta, Amita

    2015-10-01

    Despite the success of combination antiretroviral therapy (cART), a subset of HIV-infected patients who initiate cART develop early clinical progression to AIDS; therefore, some cART initiators are not fully benefitted by cART. Immune activation pre-cART may predict clinical progression in cART initiators. A case-cohort study (n = 470) within the multinational Prospective Evaluation of Antiretrovirals in Resource-Limited Settings clinical trial (1571 HIV treatment-naive adults who initiated cART; CD4 T-cell count <300 cells/mm; 9 countries) was conducted. A subcohort of 30 participants per country was randomly selected; additional cases were added from the main cohort. Cases [n = 236 (random subcohort 36; main cohort 200)] had clinical progression (incident WHO stage 3/4 event or death) within 96 weeks after cART initiation. Immune activation biomarkers were quantified pre-cART. Associations between biomarkers and clinical progression were examined using weighted multivariable Cox-proportional hazards models. Median age was 35 years, 45% were women, 49% black, 31% Asian, and 9% white. Median CD4 T-cell count was 167 cells per cubic millimeter. In multivariate analysis, highest quartile C-reactive protein concentration [adjusted hazard ratio (aHR), 2.53; 95% confidence interval (CI): 1.02 to 6.28] and CD4 T-cell activation (aHR, 5.18; 95% CI: 1.09 to 24.47) were associated with primary outcomes, compared with lowest quartiles. sCD14 had a trend toward association with clinical failure (aHR, 2.24; 95% CI: 0.96 to 5.21). Measuring C-reactive protein and CD4 T-cell activation may identify patients with CD4 T-cell counts <300 cells per cubic millimeter at risk for early clinical progression when initiating cART. Additional vigilance and symptom-based screening may be required in this subset of patients even after beginning cART.

  19. Pre-cART Elevation of CRP and CD4+ T-cell Immune Activation Associated with HIV Clinical Progression in a Multinational Case-Cohort Study

    PubMed Central

    Balagopal, Ashwin; Asmuth, David M.; Yang, Wei-Teng; Campbell, Thomas B.; Gupte, Nikhil; Smeaton, Laura; Kanyama, Cecilia; Grinsztejn, Beatriz; Santos, Breno; Supparatpinyo, Khuanchai; Badal-Faesen, Sharlaa; Lama, Javier R.; Lalloo, Umesh G.; Zulu, Fatima; Pawar, Jyoti S; Riviere, Cynthia; Kumarasamy, Nagalingeswaran; Hakim, James; Li, Xiao-Dong; Pollard, Richard B.; Semba, Richard D.; Thomas, David L.; Bollinger, Robert C.; Gupta, Amita

    2015-01-01

    Background Despite the success of combination antiretroviral therapy (cART), a subset of HIV-infected patients who initiate cART develop early clinical progression to AIDS; therefore some cART initiators are not fully benefitted by cART. Immune activation pre-cART may predict clinical progression in cART initiators. Methods A case-cohort study (n=470) within the multinational Prospective Evaluation of Antiretrovirals in Resource-Limited Settings (PEARLS) clinical trial (1571 HIV treatment-naïve adults who initiated cART; CD4+ T cell count <300 cells/mm3; nine countries) was conducted. A subcohort of 30 participants/country was randomly selected; additional cases were added from the main cohort. Cases (n=236 [random subcohort–36; main cohort–200]) had clinical progression (incident WHO Stage 3/4 event or death) within 96 weeks following cART initiation. Immune activation biomarkers were quantified pre-cART. Associations between biomarkers and clinical progression were examined using weighted multivariable Cox-proportional hazards models. Results Median age was 35 years, 45% were women, 49% black, 31% Asian, and 9% white. Median CD4+ T-cell count was 167 cells/mm3. In multivariate analysis, highest quartile CRP concentration (adjusted hazards ratio [aHR] 2.53, 95%CI 1.02-6.28) and CD4+ T-cell activation (aHR 5.18, 95CI 1.09-24.47) were associated with primary outcomes, compared to lowest quartiles. sCD14 had a trend towards association with clinical failure (aHR 2.24, 95%CI 0.96–5.21). Conclusions Measuring CRP and CD4+ T-cell activation may identify patients with CD4+ T cell counts < 300 cells/mm3 at risk for early clinical progression when initiating cART. Additional vigilance and symptom-based screening may be required in this subset of patients even after beginning cART. PMID:26017661

  20. Review: Metabolic Control of Immune System Activation in Rheumatic Diseases.

    PubMed

    Perl, Andras

    2017-12-01

    Metabolic pathways mediate lineage specification within the immune system through the regulation of glucose utilization, a process that generates energy in the form of ATP and synthesis of amino acids, nucleotides, and lipids to enable cell growth, proliferation, and survival. CD4+ T cells, a proinflammatory cell subset, preferentially produce ATP through glycolysis, whereas cells with an antiinflammatory lineage, such as memory and regulatory T cells, favor mitochondrial ATP generation. In conditions of metabolic stress or a shortage of nutrients, cells rely on autophagy to secure amino acids and other substrates, while survival depends on the sparing of mitochondria and maintenance of a reducing environment. The pentose phosphate pathway acts as a key gatekeeper of inflammation by supplying ribose-5-phosphate for cell proliferation and NADPH for antioxidant defenses. Increased lysosomal catabolism, accumulation of branched amino acids, glutamine, kynurenine, and histidine, and depletion of glutathione and cysteine activate the mechanistic target of rapamycin (mTOR), an arbiter of lineage development within the innate and adaptive immune systems. Mapping the impact of susceptibility genes to metabolic pathways allows for better understanding and therapeutic targeting of disease-specific expansion of proinflammatory cells. Therapeutic approaches aimed at glutathione depletion and mTOR pathway activation appear to be safe and effective for treating lupus, while an opposing intervention may be of benefit in rheumatoid arthritis. Environmental sources of origin for metabolites within immune cells may include microbiota and plants. Thus, a better understanding of the pathways of immunometabolism could provide new insights into the pathogenesis and treatment of the rheumatic diseases. © 2017 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.

  1. Infliximab in active early rheumatoid arthritis

    PubMed Central

    Breedveld, F; Emery, P; Keystone, E; Patel, K; Furst, D; Kalden, J; St, C; Weisman, M; Smolen, J; Lipsky, P; Maini, R

    2004-01-01

    Objective: To examine the impact of the combination of infliximab plus methotrexate (MTX) on the progression of structural damage in patients with early rheumatoid arthritis (RA). Methods: Subanalyses were carried out on data for patients with early RA in the Anti-TNF Therapy in RA with Concomitant Therapy (ATTRACT) study, in which 428 patients with active RA despite MTX therapy received placebo with MTX (MTX-only) or infliximab 3 mg/kg or 10 mg/kg every (q) 4 or 8 weeks with MTX (infliximab plus MTX) for 102 weeks. Early RA was defined as disease duration of 3 years or less; 82 of the 428 patients (19%) met this definition. Structural damage was assessed with the modified van der Heijde-Sharp score. The changes from baseline to week 102 in total modified van der Heijde-Sharp score were compared between the infliximab plus MTX groups and the MTX-only group. Results: The erosion and joint space narrowing scores from baseline to week 102 in the cohort of patients with early RA decreased significantly in each infliximab dose regimen compared with the MTX-only regimen. Consistent benefit was seen in the joints of both hands and feet. Conclusions: Infliximab combined with MTX inhibited the progression of structural damage in patients with early RA during the 2 year period of treatment. Early intervention with infliximab in patients with active RA despite MTX therapy may provide long term benefits by preventing radiographic progression and preserving joint integrity. PMID:14722203

  2. The effect of active immunization against vasoactive intestinal peptide (VIP) and inhibin on reproductive performance of aging White Leghorn roosters.

    PubMed

    Avital-Cohen, N; Heiblum, R; Argov, N; Rosenstrauch, A; Chaiseha, Y; Mobarkey, N; Rozenboim, I

    2012-01-01

    Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters

  3. Candidate immune biomarkers for radioimmunotherapy.

    PubMed

    Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric

    2017-08-01

    Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy. Copyright © 2017. Published by Elsevier B.V.

  4. Effects of stress in early life on immune functions in rats with asthma and the effects of music therapy.

    PubMed

    Lu, Yanxia; Liu, Meng; Shi, Shousen; Jiang, Hong; Yang, Lejin; Liu, Xin; Zhang, Qian; Pan, Fang

    2010-06-01

    Although studies have shown that psychological stress has detrimental effects on bronchial asthma, there are few objective data on whether early-life stress, as early postnatal psychosocial environment, has a long-lasting effect on adult asthma and the potential pathophysiologic mechanism. This study aims to examine the effects on immune function and hypothalamic-pituitary-adrenal (HPA) axis responses in adult asthmatic rats that experienced stress in early life and the potential ameliorative effects of music therapy on these parameters. Forty male Wistar rat pups were randomly assigned to the asthma group, the adulthood-stressed asthma group, the childhood-stressed asthma group, the music group, and the control group. Restraint stress and Mozart's Sonata K.448 were applied to ovalbumin (OVA)-induced asthmatic rats to establish psychological stress and music therapy models. The levels of serum corticosterone were examined in both childhood after stress and adulthood after OVA challenge. Immune indicators in blood, lung, and brain tissues were measured after the last OVA challenge. Stress in both childhood and adulthood resulted in increases in leukocyte and eosinophil numbers and serum interleukin (IL)-4 levels. The adulthood-stressed group demonstrated increased corticosterone levels after challenge, whereas the childhood-stressed group showed increased corticosterone concentration in childhood but decreased level in adulthood. Central IL-1beta exhibited a similar tendency. Music group rats showed reduced serum IL-4 and corticosterone. Stress in childhood and adulthood resulted in different HPA axis responsiveness in the exacerbation of markers of asthma. These data provide the first evidence of the long-term normalizing effects of music on asthmatic rats.

  5. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity.

    PubMed

    Gao, Zhenzhen; Chen, Jin; Qiu, Shulei; Li, Youying; Wang, Deyun; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Li, Hongquan; Hu, Yuanliang

    2016-01-20

    Garlic polysaccharide (GPS) was modified in selenylation respectively by nitric acid-sodium selenite (NA-SS), glacial acetic acid-selenous acid (GA-SA), glacial acetic acid-sodium selenite (GA-SS) and selenium oxychloride (SOC) methods each under nine modification conditions of L9(3(4)) orthogonal design and each to obtain nine selenizing GPSs (sGPSs). Their structures were identified, yields and selenium contents were determined, selenium yields were calculated, and the immune-enhancing activities of four sGPSs with higher selenium yields were compared taking unmodified GPS as control. The results showed that among four methods the selenylation efficiency of NA-SS method were the highest, the activity of sGPS5 was the strongest and significantly stronger than that of unmodified GPS. This indicates that selenylation modification can significantly enhance the immune-enhancing activity of GPS, NA-SS method is the best method and the optimal conditions are 0.8:1 weight ratio of sodium selenite to GPS, reaction temperature of 70 °C and reaction time of 10h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    PubMed

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  7. Immune activation by medium-chain triglyceride-containing lipid emulsions is not modulated by n-3 lipids or toll-like receptor 4.

    PubMed

    Olthof, Evelyn D; Gülich, Alexandra F; Renne, Mike F; Landman, Sija; Joosten, Leo A B; Roelofs, Hennie M J; Wanten, Geert J A

    2015-10-01

    Saturated medium-chain triglycerides (MCT) as part of the parenteral lipid regimen (50% MCT and 50% long chain triglycerides (LCT)) activate the immune system in vitro. Fish oil (FO)-derived n-3 fatty acids (FA) inhibit saturated FA-induced immune activation via a toll-like receptor (TLR)-4 mediated mechanism. We hypothesized that effects of parenteral MCTs on immune cells involve TLR-4 signaling and that these effects are modulated by n-3 FA that are present in FO. To test this hypothesis we assessed effects of addition of various commercially available mixed parenteral lipid emulsions, n-3 FA and of TLR-4 inhibition on MCT-induced human immune cell activation by evaluation of the expression of leukocyte membrane activation markers and reactive oxygen species (ROS) production. All MCT-containing lipid emulsions activated leukocytes by inducing changes in expression of membrane markers and stimulus induced ROS production, whereas MCT-free lipid emulsions lacked this effect. Moreover, addition of n-3 FA to LCT/MCT did not prevent MCT-induced immune activation. TLR-4 inhibitors did not distinctly modulate MCT-induced changes in immune function. Taken together, these findings suggest that leukocyte activation by parenteral MCTs does not involve TLR-4 signaling and is not modulated by n-3 FA in FO-, but is exerted via different signaling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    PubMed

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  9. Infection Dynamic of Symbiotic Bacteria in the Pea Aphid Acyrthosiphon pisum Gut and Host Immune Response at the Early Steps in the Infection Process

    PubMed Central

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid. PMID:25811863

  10. Time-dependent mediators of HPA axis activation following live Escherichia coli

    PubMed Central

    Zimomra, Z. R.; Porterfield, V. M.; Camp, R. M.

    2011-01-01

    The hypothalamus-pituitary-adrenal (HPA) axis is activated during an immune challenge to liberate energy and modulate immune responses via feedback and regulatory mechanisms. Inflammatory cytokines and prostaglandins are known contributors to HPA activation; however, most previous studies only looked at specific time points following LPS administration. Since whole bacteria have different immune stimulatory properties compared with LPS, the aim of the present studies was to determine whether different immune products contribute to HPA activation at different times following live Escherichia coli challenge. Sprague-Dawley rats were injected intraperitoneally with E. coli (2.5 × 107 CFU) and a time course of circulating corticosterone, ACTH, inflammatory cytokines, and PGE2 was developed. Plasma corticosterone peaked 0.5 h after E. coli and steadily returned to baseline by 4 h. Plasma PGE2 correlated with the early rise in plasma corticosterone, whereas inflammatory cytokines were not detected until 2 h. Pretreatment with indomethacin, a nonselective cyclooxygenase inhibitor, completely blocked the early rise in plasma corticosterone, but not at 2 h, whereas pretreatment with IL-6 antibodies had no effect on the early rise in corticosterone but attenuated corticosterone at 2 h. Interestingly, indomethacin pretreatment did not completely block the early rise in corticosterone following a higher concentration of E. coli (2.5 × 108 CFU). Further studies revealed that only animals receiving indomethacin prior to E. coli displayed elevated plasma and liver cytokines at early time points (0.5 and 1 h), suggesting prostaglandins suppress early inflammatory cytokine production. Overall, these data indicate prostaglandins largely mediate the early rise in plasma corticosterone, while inflammatory cytokines contribute to maintaining levels of corticosterone at later time points. PMID:21917906

  11. Active immunization of prepubertal colts against estrogens: hormonal and testicular responses after puberty.

    PubMed

    Thompson, D L; Honey, P G

    1984-07-01

    Prepubertal Quarter horse colts were immunized at 6 mo of age with either estrone-17-oxime-bovine serum albumin (n = 4; treated) or with albumin only (n = 5; controls). All colts received booster injections of the appropriate antigen at 8, 10, 12, 16 and 20 mo of age. Blood samples were drawn every 20 d from 6 to 26 mo of age; body weights were determined monthly. Immunization against estrone-albumin resulted in increased binding of [3H]-estradiol in serum within 40 d that was maintained through 24 mo of age. Antisera from treated colts crossreacted equally well with estrone and estradiol and moderately with other estrogens; androgens, progesterone and glucocorticoids all cross-reacted less than .005%. Body weights were not affected by treatment. Concentrations of testosterone were generally higher (P less than .05) in estrogen-immunized colts compared with controls after immunization. Concentrations of luteinizing hormone were not affected by treatment, whereas concentrations of follicle-stimulating hormone were initially increased (P less than .05) in treated colts after immunization. At castration at 27 mo of age, estrogen-immunized colts had greater (P less than .05) testicular and parenchymal weights and produced more (P approximately equal to .055) spermatozoa per horse than did control colts. Seminal characteristics immediately before castration were not affected by treatment. It appears that estrogens are involved in the regulation of several reproductive traits in the colt. Moreover, active immunization against estrogen in the prepubertal colt may be a useful method of increasing testicular size and sperm production rates in the stallion after puberty.

  12. Advantages of laparoscopic compared to conventional surgery are not related to an innate immune response of peritoneal immune activation: an animal study in rats.

    PubMed

    Lingohr, Philipp; Dohmen, Jonas; Matthaei, Hanno; Schwandt, Timo; Stein, Kathy; Hong, Gun-Soo; Steitz, Julia; Longerich, Thomas; Bölke, Edwin; Wehner, Sven; Kalff, Jörg C

    2017-06-01

    Laparoscopic surgery (LS) has proved superior compared to conventional surgery (CS) regarding morbidity, length of hospital stay, rate of wound infection and time until recovery. An improved preservation of the postoperative immune function is assumed to contribute to these benefits though the role of the local peritoneal immune response is still poorly understood. Our study investigates the peritoneal immune response subsequent to abdominal surgery and compares it between laparoscopic and conventional surgery to find an immunological explanation for the clinically proven benefits of LS. Wistar rats (N = 140) underwent laparoscopic cecum resection (LCR; N = 28), conventional cecum resection (CCR; N = 28), laparoscopic sham operation (LSO; N = 28), conventional sham operation (CSO; N = 28), or no surgical treatment (CTRL; N = 28). Postoperatively, peritoneal lavages were performed, leukocytes isolated and analyzed regarding immune function and phagocytosis activity. Immune function was inhibited postoperatively in animals undergoing LCR or CCR compared to CTRL reflected by a lower TNF-α (CTRL 3956.65 pg/ml, LCR 2018.48 pg/ml (p = 0.023), CCR 2793.78 pg/ml (n.s.)) and IL-6 secretion (CTRL 625.84 pg/ml, LCR 142.84 pg/ml (p = 0.009), CCR 169.53 pg/ml (p = 0.01)). Phagocytosis was not affected in rats undergoing any kind of surgery compared to CTRL. Neither cytokine secretion nor phagocytosis activity differed significantly between laparoscopic and conventional surgery. According to our findings the benefits associated with LS compared to CS cannot be explained by differences in the postoperative peritoneal innate immune response. Further studies are needed to elucidate the causes for a more favorable postoperative outcome in patients after LS compared to CS.

  13. Plant immunity against viruses: antiviral immune receptors in focus

    PubMed Central

    Calil, Iara P.

    2017-01-01

    Abstract Background Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant–virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant–virus interactions that affect disease or resistance. Scope and Conclusion This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin–26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on

  14. Plant immunity against viruses: antiviral immune receptors in focus.

    PubMed

    Calil, Iara P; Fontes, Elizabeth P B

    2017-03-01

    Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing

  15. Metabolic signals and innate immune activation in obesity and exercise.

    PubMed

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  16. Differential Effects of Naja naja atra Venom on Immune Activity

    PubMed Central

    Kou, Jian-Qun; Han, Rong; Xu, Yin-Li; Ding, Xiao-Lan; Wang, Shu-Zhi; Chen, Cao-Xin; Ji, Hong-Zhang; Ding, Zhi-Hui; Qin, Zheng-Hong

    2014-01-01

    Previous studies reported that Naja naja atra venom (NNAV) inhibited inflammation and adjuvant arthritis. Here we investigated the role of NNAV in regulation of immune responses in mice. Oral administration of NNAV to normal mice showed significant increase in natural killer cell activity, B lymphocyte proliferation stimulated by lipopolysaccharides, and antibody production in response to sheep red blood cells. Meanwhile, NNAV markedly decreased T lymphocyte proliferation stimulated by concanavalin A, arrested the cell cycle at G0/G1 phase, and suppressed CD4 and CD8 T cell divisions. Furthermore, NNAV inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reaction. This modulation of immune responses may be partly attributed to the selective increase in Th1 and Th2 cytokines (IFN-γ, IL-4) secretion and inhibition of Th17 cytokine (IL-17) production. In dexamethasone-induced immunosuppressed mice, NNAV restored the concentration of serum IgG and IgM, while decreasing the percentage of CD4 and CD8 T-cell subsets. These results indicate that NNAV enhances the innate and humoral immune responses while inhibiting CD4 Th17 and CD8 T cell actions, suggesting that NNAV could be a potential therapeutic agent for autoimmune diseases. PMID:25024726

  17. Immune checkpoint inhibitor-related myocarditis.

    PubMed

    Tajiri, Kazuko; Aonuma, Kazutaka; Sekine, Ikuo

    2018-01-01

    Immune checkpoint inhibitors have demonstrated significant clinical benefit in many cancers. The clinical benefit afforded by these treatments can be accompanied by a unique and distinct spectrum of adverse events. Recently, several fatal cases of immune checkpoint inhibitor-related myocarditis were reported. Although its frequency is comparatively lower than that of other immune-related adverse events, myocarditis can lead to circulatory collapse and lethal ventricular arrhythmia. Immune checkpoints, cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), play important roles in establishing peripheral tolerance to the heart. Evidence from studies using genetically engineered mouse models suggests that CTLA-4 signaling terminates proliferation and promotes anergy during the primary response to cardiac self-peptide recognition. PD-1 signaling restrains autoreactive T cells that enter the peripheral tissues and recognize cardiac-peptide, maintaining them in an anergic state. Patients affected by immune checkpoint inhibitor-related myocarditis often experience rapid onset of profound hemodynamic compromise progressing to cardiogenic shock. Early diagnosis is mandatory to address specific therapy and correct the timing of circulatory support. However, the diagnosis of myocarditis is challenging due to the heterogeneity of clinical presentations. Owing to its early onset, nonspecific symptomatology and fulminant progression, especially when these drugs are used in combination, oncologists should be vigilant for immune checkpoint inhibitor-related myocarditis. With many questions yet to be answered, from basic immune biology to clinical management, future research should aim to optimize the use of these drugs by identifying predictive biomarkers of either a response to therapy or the risks of myocarditis development. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Bacterial-modulated host immunity and stem cell activation for gut homeostasis.

    PubMed

    Lee, Won-Jae

    2009-10-01

    Although it is widely accepted that dynamic cross-talk between gut epithelia and microorganisms must occur to achieve gut homeostasis, the critical mechanisms by which gut-microbe interactions are regulated remain uncertain. In this issue of Genes & Development, Buchon and colleagues (pp. 2333-2344) revealed that the reaction of the gut to microorganisms is not restricted to activating immune systems, but extends to integrated responses essential for gut tissue homeostasis, including self-renewal and the differentiation of stem cells. Further investigation of the connection between immune response and stem cell regulation at the molecular level in the microbe-laden mucosal epithelia will accelerate our understanding of the regulatory mechanisms of gut homeostasis and of the pathogenesis of diseases such as chronic inflammatory diseases and colorectal cancers.

  19. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  20. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro, Ruy M

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating thatmore » immune activation and T cell prolifeation are key factors in AIDS pathogenesis.« less

  1. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity

    PubMed Central

    Sohn, Kee Hoon; Hughes, Richard K.; Piquerez, Sophie J.; Jones, Jonathan D. G.; Banfield, Mark J.

    2012-01-01

    Gram-negative phytopathogenic bacteria translocate effector proteins into plant cells to subvert host defenses. These effectors can be recognized by plant nucleotide-binding–leucine-rich repeat immune receptors, triggering defense responses that restrict pathogen growth. AvrRps4, an effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant accessions of Arabidopsis. To better understand the molecular basis of AvrRps4-triggered immunity, we determined the crystal structure of processed AvrRps4 (AvrRps4C, residues 134–221), revealing that it forms an antiparallel α-helical coiled coil. Structure-informed mutagenesis reveals an electronegative surface patch in AvrRps4C required for recognition by RPS4; mutations in this region can also uncouple triggering of the hypersensitive response from disease resistance. This uncoupling may result from a lower level of defense activation, sufficient for avirulence but not for triggering a hypersensitive response. Natural variation in AvrRps4 reveals distinct recognition specificities that involve a surface-exposed residue. Recently, a direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 has been implicated in activation of immunity. However, we were unable to detect direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 after coexpression in Nicotiana benthamiana or in yeast cells. How intracellular plant immune receptors activate defense upon effector perception remains an unsolved problem. The structure of AvrRps4C, and identification of functionally important residues for its activation of plant immunity, advances our understanding of these processes in a well-defined model pathosystem. PMID:22988101

  2. Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring.

    PubMed

    Murray, Brendan G; Davies, Don A; Molder, Joel J; Howland, John G

    2017-05-01

    Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A leukocyte activation test identifies food items which induce release of DNA by innate immune peripheral blood leucocytes.

    PubMed

    Garcia-Martinez, Irma; Weiss, Theresa R; Yousaf, Muhammad N; Ali, Ather; Mehal, Wajahat Z

    2018-01-01

    Leukocyte activation (LA) testing identifies food items that induce a patient specific cellular response in the immune system, and has recently been shown in a randomized double blinded prospective study to reduce symptoms in patients with irritable bowel syndrome (IBS). We hypothesized that test reactivity to particular food items, and the systemic immune response initiated by these food items, is due to the release of cellular DNA from blood immune cells. We tested this by quantifying total DNA concentration in the cellular supernatant of immune cells exposed to positive and negative foods from 20 healthy volunteers. To establish if the DNA release by positive samples is a specific phenomenon, we quantified myeloperoxidase (MPO) in cellular supernatants. We further assessed if a particular immune cell population (neutrophils, eosinophils, and basophils) was activated by the positive food items by flow cytometry analysis. To identify the signaling pathways that are required for DNA release we tested if specific inhibitors of key signaling pathways could block DNA release. Foods with a positive LA test result gave a higher supernatant DNA content when compared to foods with a negative result. This was specific as MPO levels were not increased by foods with a positive LA test. Protein kinase C (PKC) inhibitors resulted in inhibition of positive food stimulated DNA release. Positive foods resulted in CD63 levels greater than negative foods in eosinophils in 76.5% of tests. LA test identifies food items that result in release of DNA and activation of peripheral blood innate immune cells in a PKC dependent manner, suggesting that this LA test identifies food items that result in release of inflammatory markers and activation of innate immune cells. This may be the basis for the improvement in symptoms in IBS patients who followed an LA test guided diet.

  4. Immune function in arctic mammals: Natural killer (NK) cell-like activity in polar bear, muskox and reindeer.

    PubMed

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer; Grøndahl, Carsten; Bertelsen, Mads F; Guise, Sylvain De; Sonne, Christian; Dietz, Rune; Levin, Milton

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus maritimus), muskox (Ovibos moschatus) and reindeer (Rangifer tarandus). NK cell-like activity for all three species was most effective against the mouse lymphoma cell line YAC-1, compared to the human leukemia cell line K562; NK cell response displayed the characteristic increase in cytotoxic activity when the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Persistent activation of an innate immune axis translates respiratory viral infection into chronic lung disease

    PubMed Central

    Kim, Edy Y.; Battaile, John T.; Patel, Anand C.; You, Yingjian; Agapov, Eugene; Grayson, Mitchell H.; Benoit, Loralyn A.; Byers, Derek E.; Alevy, Yael; Tucker, Jennifer; Swanson, Suzanne; Tidwell, Rose; Tyner, Jeffrey W.; Morton, Jeffrey D.; Castro, Mario; Polineni, Deepika; Patterson, G. Alexander; Schwendener, Reto A.; Allard, John D.; Peltz, Gary; Holtzman, Michael J.

    2008-01-01

    To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of a chronic lung disease that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after infection with a common type of respiratory virus is cleared to trace levels of noninfectious virus. Unexpectedly, the chronic inflammatory disease arises independently of an adaptive immune response and is driven by IL-13 produced by macrophages stimulated by CD1d-dependent TCR-invariant NKT cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a novel NKT cell-macrophage innate immune axis. PMID:18488036

  6. Nutritionally Mediated Programming of the Developing Immune System12

    PubMed Central

    Palmer, Amanda C.

    2011-01-01

    A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease. PMID:22332080

  7. Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells.

    PubMed

    Mihaylova, Ivana; DeRuyter, Marcel; Rummens, Jean-Luc; Bosmans, Eugene; Maes, Michael

    2007-08-01

    There is some evidence that patients with chronic fatigue syndrome (CFS) suffer from immune abnormalities, such as immune activation and decreased immune cell responsivity upon polyclonal stimili. This study was designed to evaluate lymphocyte activation in CFS by using a CD69 expression assay. CD69 acts as a costimulatory molecule for T- and natural killer (NK) cell activation. We collected whole blood from CFS patients, who met CDC criteria, and healthy volunteers. The blood samples were stimulated with mitogens during 18 h and the levels of activated T and NK cells expressing CD69 were measured on a Coulter Epics flow cytometer using a three color immunofluorescence staining protocol. The expression of the CD69 activation marker on T cells (CD3+, CD3+CD4+, and CD3+CD8+) and on NK cells (CD45+CD56+) was significantly lower in CFS patients than in healthy subjects. These differences were significant to the extent that a significant diagnostic performance was obtained, i.e. the area under the ROC curve was around 89%. No differences either in the number of leukocytes or in the number or percentage of lymphocytes, i.e. CD3, CD4, CD8 and CD19, could be found between CFS patients and the controls. Patients with CFS show defects in T- and NK cell activation. Since induction of CD69 surface expression is dependent on the activation of the protein kinase C (PKC) activation pathway, it is suggested that in CFS there is a disorder in the early activation of the immune system involving PKC.

  8. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice

    PubMed Central

    Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel

    2014-01-01

    More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837

  9. Lipid antigens in immunity

    PubMed Central

    Dowds, C. Marie; Kornell, Sabin-Christin

    2014-01-01

    Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity. PMID:23999493

  10. Neonatal infection produces significant changes in immune function with no associated learning deficits in juvenile rats.

    PubMed

    Osborne, Brittany F; Caulfield, Jasmine I; Solomotis, Samantha A; Schwarz, Jaclyn M

    2017-10-01

    The current experiments examined the impact of early-life immune activation and a subsequent mild immune challenge with lipopolysaccharide (LPS; 25µg/kg) on hippocampal-dependent learning, proinflammatory cytokine expression in the brain, and peripheral immune function in juvenile male and female rats at P24, an age when hippocampal-dependent learning and memory first emerges. Our results indicate that neonatal infection did not produce learning deficits in the hippocampal-dependent context pre-exposure facilitation effect paradigm in juvenile males and females, contrary to what has been observed in adults. Neonatal infection produced an increase in baseline IL-1β expression in the hippocampus (HP) and medial prefrontal cortex (mPFC) of juvenile rats. Furthermore, neonatally infected rats showed exaggerated IL-1β expression in the HP following LPS treatment as juveniles; and juvenile females, but not males, showed exaggerated IL-1β expression in the mPFC following LPS treatment. Neonatal infection attenuated the production of IL-6 expression following LPS treatment in both the brain and the spleen, and neonatal infection decreased the numbers of circulating white blood cells in juvenile males and females, an effect that was further exacerbated by subsequent LPS treatment. Together, our data indicate that the consequences of neonatal infection are detectable even early in juvenile development, though we found no concomitant hippocampal-dependent learning deficits at this young age. These findings underscore the need to consider age and associated on-going neurodevelopmental processes as important factors contributing to the emergence of cognitive and behavioral disorders linked to early-life immune activation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1221-1236, 2017. © 2017 Wiley Periodicals, Inc.

  11. Local and systemic tumor immune dynamics

    NASA Astrophysics Data System (ADS)

    Enderling, Heiko

    Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.

  12. Adaptive Immune Responses following Senecavirus A Infection in Pigs.

    PubMed

    Maggioli, Mayara F; Lawson, Steve; de Lima, Marcelo; Joshi, Lok R; Faccin, Tatiane C; Bauermann, Fernando V; Diel, Diego G

    2018-02-01

    Senecavirus A (SVA), an emerging picornavirus of swine, causes vesicular disease (VD) that is clinically indistinguishable from foot-and-mouth disease (FMD) in pigs. Many aspects of SVA interactions with the host and the host immune responses to infection, however, remain unknown. In the present study, humoral and cellular immune responses to SVA were evaluated following infection in pigs. We show that SVA infection elicited an early and robust virus-neutralizing (VN) antibody response, which coincided and was strongly correlated with VP2- and VP3-specific IgM responses. Notably, the neutralizing antibody (NA) responses paralleled the reduction of viremia and resolution of the disease. Analysis of the major porcine T-cell subsets revealed that during the acute/clinical phase of SVA infection (14 days postinfection [p.i.]), T-cell responses were characterized by an increased frequency of αβ T cells, especially CD4 + T cells, which were first detected by day 7 p.i. and increased in frequency until day 14 p.i. Additionally, the frequency of CD8 + and double-positive CD4 + CD8 + T cells (effector/memory T cells) expressing interferon gamma (IFN-γ) or proliferating in response to SVA antigen stimulation increased after day 10 p.i. Results presented here show that SVA elicits B- and T-cell activation early upon infection, with IgM antibody levels being correlated with early neutralizing activity against the virus and peak B- and T-cell responses paralleling clinical resolution of the disease. The work provides important insights into the immunological events that follow SVA infection in the natural host. IMPORTANCE Senecavirus A (SVA) has recently emerged in swine, causing outbreaks of vesicular disease (VD) in major swine-producing countries around the world, including the United States, Brazil, China, Thailand, and Colombia. Notably, SVA-induced disease is clinically indistinguishable from other high-consequence VDs of swine, such as FMD, swine vesicular disease

  13. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity1[OPEN

    PubMed Central

    Fritz, Marion

    2016-01-01

    The first layer of immunity against pathogenic microbes relies on the detection of conserved pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI). Despite the increasing knowledge of early PTI signaling mediated by PRRs and their associated proteins, many downstream signaling components remain elusive. Here, we identify the Arabidopsis (Arabidopsis thaliana) GLYCOGEN SYNTHASE KINASE3 (GSK3)/Shaggy-like kinase ASKα as a positive regulator of plant immune signaling. The perception of several unrelated PAMPs rapidly induced ASKα kinase activity. Loss of ASKα attenuated, whereas its overexpression enhanced, diverse PTI responses, ultimately affecting susceptibility to the bacterial pathogen Pseudomonas syringae. Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the oxidative pentose phosphate pathway, provides reducing equivalents important for defense responses and is a direct target of ASKα. ASKα phosphorylates cytosolic G6PD6 on an evolutionarily conserved threonine residue, thereby stimulating its activity. Plants deficient for or overexpressing G6PD6 showed a modified immune response, and the insensitivity of g6pd6 mutant plants to PAMP-induced growth inhibition was complemented by a phosphomimetic but not by a phosphonegative G6PD6 version. Overall, our data provide evidence that ASKα and G6PD6 constitute an immune signaling module downstream of PRRs, linking protein phosphorylation cascades to metabolic regulation. PMID:27208232

  14. Hypomorphic Rag1 mutations alter the pre-immune repertoire at early stages of lymphoid development.

    PubMed

    Ott de Bruin, Lisa M; Bosticardo, Marita; Barbieri, Alessandro; Lin, Sherry G; Rowe, Jared H; Poliani, Pietro L; Ching, Kimberly; Eriksson, Daniel; Landegren, Nils; Kämpe, Olle; Manis, John P; Notarangelo, Luigi D

    2018-05-09

    Hypomorphic RAG1 mutations allowing residual T and B cell development have been found in patients presenting with delayed-onset combined immune deficiency with granulomas and/or autoimmunity (CID-G/AI) and abnormalities of the peripheral T and B cell repertoire. To examine how hypomorphic Rag1 mutations affect the earliest stages of lymphocyte development, we used CRISPR/Cas9 to generate mouse models with equivalent mutations found in patients with CID-G/AI. Immunological characterization showed partial development of T and B lymphocytes, with persistence of naïve cells, preserved serum immunoglobulin, but impaired antibody responses and presence of autoantibodies, thereby recapitulating the phenotype seen in patients with CID-G/AI. By using high throughput sequencing, we identified marked skewing of Igh V and Trb V gene usage in early progenitors, with a bias for productive Igh and Trb rearrangements after selection occurred and increased apoptosis of B cell progenitors. Rearrangement at the Igk locus was impaired, and polyreactive IgM antibodies were detected. This study provides novel insights in how hypomorphic Rag1 mutations alter the primary repertoire of T and B cells, setting the stage for immune dysregulation frequently seen in patients. Copyright © 2018 American Society of Hematology.

  15. Monitoring of early humoral immunity to identify lung recipients at risk for development of serious infections: A multicenter prospective study.

    PubMed

    Sarmiento, Elizabeth; Cifrian, Jose; Calahorra, Leticia; Bravo, Carles; Lopez, Sonia; Laporta, Rosalia; Ussetti, Piedad; Sole, Amparo; Morales, Carmen; de Pablos, Alicia; Jaramillo, Maria; Ezzahouri, Ikram; García, Sandra; Navarro, Joaquin; Lopez-Hoyos, Marcos; Carbone, Javier

    2018-04-06

    Infection is still a leading cause of death during the first year after lung transplantation. We performed a multicenter study among teaching hospitals to assess monitoring of early humoral immunity as a means of identifying lung recipients at risk of serious infections. We prospectively analyzed 82 adult lung recipients at 5 centers in Spain. Data were collected before transplantation and at 7 and 30 days after transplantation. Biomarkers included IgG, IgM, IgA, complement factors C3 and C4, titers of antibodies to pneumococcal polysaccharide antigens (IgG, IgA, IgM) and antibodies to cytomegalovirus (IgG), and serum B-cell activating factor (BAFF) levels. The clinical follow-up period lasted 6 months. Clinical outcomes were bacterial infections requiring intravenous anti-microbial agents, cytomegalovirus (CMV) disease, and fungal infections requiring therapy. We found that 33 patients (40.2%) developed at least 1 serious bacterial infection, 8 patients (9.8%) had CMV disease, and 10 patients (12.2%) had fungal infections. Lower IgM antibody levels against pneumococcal polysaccharide antigens at Day 7 (defined as <5 mg/dl) were a risk factor for serious bacterial infection (adjusted odds ratio [OR] 3.96; 95% confidence interval [CI] 1.39 to 11.26; p = 0.0099). At Day 7 after transplantation, IgG hypogammaglobulinemia (defined as IgG <600 mg/dl) was associated with a higher risk of CMV disease (after adjustment for CMV mismatch: OR 8.15; 95% CI 1.27 to 52.55; p = 0.028) and fungal infection (adjusted OR 8.03, 95% CI 1.51 to 42.72; p = 0.015). Higher BAFF levels before transplantation were associated with a higher rate of development of serious bacterial infection and acute cellular rejection. Early monitoring of specific humoral immunity parameters proved useful for the identification of lung recipients who are at risk of serious infections. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights

  16. Circulating Immune Complexes in Lyme Arthritis

    PubMed Central

    Hardin, John A.; Walker, Lesley C.; Steere, Allen C.; Trumble, Thomas C.; Tung, Kenneth S. K.; Williams, Ralph C.; Ruddy, Shaun; Malawista, Stephen E.

    1979-01-01

    We have found immunoglobulin (Ig) G-containing material consistent with immune complexes in the sera of patients with Lyme arthritis. It was detected in 29 of 55 sera (55%) from 31 patients by at least one of three assays: 125I-C1q binding, C1q solid phase, or Raji cell. The presence of reactive material correlated with clinical aspects of disease activity; it was found early in the illness, was most prominent in sera from the sickest patients, was infrequent during remissions, and often fluctuated in parallel with changes in clinical status. The results in the two C1q assays showed a strong positive correlation (P<0.001). They were each elevated in 45% of the sera and were usually concordant (85%). In contrast, the Raji cell assay was less frequently positive and often discordant with the C1q assays. In sucrose density gradients, putative circulating immune complexes sedimented near 19S; they, too, were detected best by the two assays based on C1q binding. An additional 7S component was found in some sera by the 125I-C1q binding assay. Serum complement was often above the range of normal in patients with mild disease and normal in patients with severe disease but did not correlate significantly with levels of circulating immune complexes. IgM and IgG rheumatoid factors were not detectable. These findings support a role for immune complexes in the pathogenesis of Lyme arthritis. Their measurement, by either the 125I-C1q binding assay or by the C1q solid phase assay, often provides a sensitive index of disease activity. Moreover, the complexes are likely sources of disease-related antigens for further study of this new disorder. PMID:429566

  17. Molecular characteristics of Illicium verum extractives to activate acquired immune response

    PubMed Central

    Peng, Wanxi; Lin, Zhi; Wang, Lansheng; Chang, Junbo; Gu, Fangliang; Zhu, Xiangwei

    2015-01-01

    Illicium verum, whose extractives can activate the demic acquired immune response, is an expensive medicinal plant. However, the rich extractives in I. verum biomass were seriously wasted for the inefficient extraction and separation processes. In order to further utilize the biomedical resources for the good acquired immune response, the four extractives were obtained by SJYB extraction, and then the immunology moleculars of SJYB extractives were identified and analyzed by GC–MS. The result showed that the first-stage extractives contained 108 components including anethole (40.27%), 4-methoxy-benzaldehyde (4.25%), etc.; the second-stage extractives had 5 components including anethole (84.82%), 2-hydroxy-2-(4-methoxy-phenyl)-n-methyl-acetamide (7.11%), etc.; the third-stage extractives contained one component namely anethole (100%); and the fourth-stage extractives contained 5 components including cyclohexyl-benzene (64.64%), 1-(1-methylethenyl)-3-(1-methylethyl)-benzene (17.17%), etc. The SJYB extractives of I. verum biomass had a main retention time between 10 and 20 min what’s more, the SJYB extractives contained many biomedical moleculars, such as anethole, eucalyptol, [1S-(1α,4aα,10aβ)]-1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-1-phenanthrenecarboxylic acid, stigmast-4-en-3-one, γ-sitosterol, and so on. So the functional analytical results suggested that the SJYB extractives of I. verum had a function in activating the acquired immune response and a huge potential in biomedicine. PMID:27081359

  18. Immunological changes in canine peripheral blood leukocytes triggered by immunization with first or second generation vaccines against canine visceral leishmaniasis.

    PubMed

    Araújo, Márcio Sobreira Silva; de Andrade, Renata Aline; Sathler-Avelar, Renato; Magalhães, Camila Paula; Carvalho, Andréa Teixeira; Andrade, Mariléia Chaves; Campolina, Sabrina Sidney; Mello, Maria Norma; Vianna, Leonardo Rocha; Mayrink, Wilson; Reis, Alexandre Barbosa; Malaquias, Luiz Cosme Cotta; Rocha, Luciana Morais; Martins-Filho, Olindo Assis

    2011-05-15

    In this study, we summarized the major phenotypic/functional aspects of circulating leukocytes following canine immunization with Leishvaccine and Leishmune®. Our findings showed that Leishvaccine triggered early changes in the innate immunity (neutrophils and eosinophils) with late alterations on monocytes. Conversely, Leishmune(®) induced early phenotypic changes in both, neutrophils and monocytes. Moreover, Leishvaccine triggered mixed activation-related phenotypic changes on T-cells (CD4+ and CD8+ and B-lymphocytes, whereas Leishmune(®) promoted a selective response, mainly associated with CD8+ T-cell activation. Mixed cytokine profile (IFN-γ/IL-4) was observed in Leishvaccine immunized dogs whereas a selective pro-inflammatory pattern (IFN-γ/NO) was induced by Leishmune® vaccination. The distinct immunological profile triggered by Leishvaccine and Leishmune® may be a direct consequence of the distinct biochemical composition of these immunobiological, i.e. complex versus purified Leishmania antigen along with Bacillus Calmette-Guérin (BCG) versus saponin adjuvant. Both immunobiologicals are able to activate phagocytes and CD8+ T-cells and therefore could be considered as a putative vaccines against canine visceral leishmaniasis (CVL). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Comparison of the humoral and cellular immune responses between body and head lice following bacterial challenge.

    PubMed

    Kim, Ju Hyeon; Min, Jee Sun; Kang, Jae Soon; Kwon, Deok Ho; Yoon, Kyong Sup; Strycharz, Joseph; Koh, Young Ho; Pittendrigh, Barry Robert; Clark, J Marshall; Lee, Si Hyeock

    2011-05-01

    The differences in the immune response between body lice, Pediculus humanus humanus, and head lice, Pediculus humanus capitis, were investigated initially by measuring the proliferation rates of two model bacteria, a Gram-positive Staphylococcus aureus and a Gram-negative Escherichia coli, following challenge by injection. Body lice showed a significantly reduced immune response compared to head lice particularly to E. coli at the early stage of the immune challenge. Annotation of the body louse genome identified substantially fewer immune-related genes compared with other insects. Nevertheless, all required genetic components of the major immune pathways, except for the immune deficiency (Imd) pathway, are still retained in the body louse genome. Transcriptional profiling of representative genes involved in the humoral immune response, following bacterial challenge, revealed that both body and head lice, regardless of their developmental stages, exhibited an increased immune response to S. aureus but little to E. coli. Head lice, however, exhibited a significantly higher phagocytotic activity against E. coli than body lice, whereas the phagocytosis against S. aureus differed only slightly between body and head lice. These findings suggest that the greater immune response in head lice against E. coli is largely due to enhanced phagocytosis and not due to differences in the humoral immune response. The reduced phagocytotic activity in body lice could be responsible, in part, for their increased vector competence. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A pilot randomized trial assessing the effects of autogenic training in early stage cancer patients in relation to psychological status and immune system responses.

    PubMed

    Hidderley, Margaret; Holt, Martin

    2004-03-01

    Autogenic training (AT) is a type of meditation usually used for reducing stress. This pilot study describes how AT was used on a group of early stage cancer patients and the observed effect on stress-related behaviours and immune system responses. This was a randomized trial with 31 early stage breast cancer women, having received a lumpectomy and adjuvant radiotherapy. The women were randomized into two groups. Group 1 received a home visit only. Group 2 received a home visit and 2 months' weekly Autogenic training. At the beginning and end of the 2 monthly periods, the Hospital Anxiety and Depression Scale (HADS) and T and B cell markers were measured to give an indication of changes in immune system responses and measurement of anxiety and depression. At the end of the study, HADS scores and T and B cell markers remained similar in the women who did not receive AT. The women receiving AT showed a strong statistical difference for an improvement in their HADS scores and those women observed in a meditative state as opposed to a relaxed state were found to have an increase in their immune responses. This study suggests AT as a powerful self-help therapy.