Sample records for early innate responses

  1. The innate and adaptive immune response to avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  2. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  3. Immune system development during early childhood in tropical Latin America: evidence for the age-dependent down regulation of the innate immune response.

    PubMed

    Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J

    2011-03-01

    The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Habitat odor can alleviate innate stress responses in mice.

    PubMed

    Matsukawa, Mutsumi; Imada, Masato; Aizawa, Shin; Sato, Takaaki

    2016-01-15

    Predatory odors, which can induce innate fear and stress responses in prey species, are frequently used in the development of animal models for several psychiatric diseases including post-traumatic stress disorder (PTSD) following a life-threatening event. We have previously shown that odors can be divided into at least three types; odors that act as (1) innate stressors, (2) as innate relaxants, or (3) have no innate effects on stress responses. Here, we attempted to verify whether an artificial odor, which had no innate effect on predatory odor-induced stress, could alleviate stress if experienced in early life as a habitat odor. In the current study, we demonstrated that the innate responses were changed to counteract stress following a postnatal experience. Moreover, we suggest that inhibitory circuits involved in stress-related neuronal networks and the concentrations of norepinephrine in the hippocampus may be crucial in alleviating stress induced by the predatory odor. Overall, these findings may be important for understanding the mechanisms involved in differential odor responses and also for the development of pharmacotherapeutic interventions that can alleviate stress in illnesses like PTSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Innate Immunity to Respiratory Infection in Early Life

    PubMed Central

    Lambert, Laura; Culley, Fiona J.

    2017-01-01

    Early life is a period of particular susceptibility to respiratory infections and symptoms are frequently more severe in infants than in adults. The neonatal immune system is generally held to be deficient in most compartments; responses to innate stimuli are weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lymphocyte responses are limited, leading to poor immune memory and ineffective vaccine responses. For mucosal surfaces such as the lung, which is continuously exposed to airborne antigen and to potential pathogenic invasion, the ability to discriminate between harmless and potentially dangerous antigens is essential, to prevent inflammation that could lead to loss of gaseous exchange and damage to the developing lung tissue. We have only recently begun to define the differences in respiratory immunity in early life and its environmental and developmental influences. The innate immune system may be of relatively greater importance than the adaptive immune system in the neonatal and infant period than later in life, as it does not require specific antigenic experience. A better understanding of what constitutes protective innate immunity in the respiratory tract in this age group and the factors that influence its development should allow us to predict why certain infants are vulnerable to severe respiratory infections, design treatments to accelerate the development of protective immunity, and design age specific adjuvants to better boost immunity to infection in the lung. PMID:29184555

  6. Mechanistic Modelling of Drug-Induced Liver Injury: Investigating the Role of Innate Immune Responses.

    PubMed

    Shoda, Lisl Km; Battista, Christina; Siler, Scott Q; Pisetsky, David S; Watkins, Paul B; Howell, Brett A

    2017-01-01

    Drug-induced liver injury (DILI) remains an adverse event of significant concern for drug development and marketed drugs, and the field would benefit from better tools to identify liver liabilities early in development and/or to mitigate potential DILI risk in otherwise promising drugs. DILIsym software takes a quantitative systems toxicology approach to represent DILI in pre-clinical species and in humans for the mechanistic investigation of liver toxicity. In addition to multiple intrinsic mechanisms of hepatocyte toxicity (ie, oxidative stress, bile acid accumulation, mitochondrial dysfunction), DILIsym includes the interaction between hepatocytes and cells of the innate immune response in the amplification of liver injury and in liver regeneration. The representation of innate immune responses, detailed here, consolidates much of the available data on the innate immune response in DILI within a single framework and affords the opportunity to systematically investigate the contribution of the innate response to DILI.

  7. Innate immune response to Burkholderia mallei.

    PubMed

    Saikh, Kamal U; Mott, Tiffany M

    2017-06-01

    Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.

  8. Innate immune response to Burkholderia mallei

    PubMed Central

    Saikh, Kamal U.; Mott, Tiffany M.

    2017-01-01

    Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei. PMID:28177960

  9. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    PubMed Central

    Lai, Chih-Yun; Strange, Daniel P.; Wong, Teri Ann S.; Lehrer, Axel T.; Verma, Saguna

    2017-01-01

    Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are

  10. Innate immune sensing and response to influenza.

    PubMed

    Pulendran, Bali; Maddur, Mohan S

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.

  11. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  12. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    PubMed

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  13. Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana.

    PubMed

    Luzuriaga-Loaiza, W Patricio; Schellenberger, Romain; De Gaetano, Yannick; Obounou Akong, Firmin; Villaume, Sandra; Crouzet, Jérôme; Haudrechy, Arnaud; Baillieul, Fabienne; Clément, Christophe; Lins, Laurence; Allais, Florent; Ongena, Marc; Bouquillon, Sandrine; Deleu, Magali; Dorey, Stephan

    2018-06-04

    Stimulation of plant innate immunity by natural and synthetic elicitors is a promising alternative to conventional pesticides for a more sustainable agriculture. Sugar-based bolaamphiphiles are known for their biocompatibility, biodegradability and low toxicity. In this work, we show that Synthetic Rhamnolipid Bolaforms (SRBs) that have been synthesized by green chemistry trigger Arabidopsis innate immunity. Using structure-function analysis, we demonstrate that SRBs, depending on the acyl chain length, differentially activate early and late immunity-related plant defense responses and provide local increase in resistance to plant pathogenic bacteria. Our biophysical data suggest that SRBs can interact with plant biomimetic plasma membrane and open the possibility of a lipid driven process for plant-triggered immunity by SRBs.

  14. Innate T cell responses in human gut.

    PubMed

    Meresse, Bertrand; Cerf-Bensussan, Nadine

    2009-06-01

    One arm of the gut-associated immune system is represented by a vast collection of T lymphocytes which participate in the subtle interplay between innate and adaptive immune mechanisms and maintain homeostasis at the main body external surface. Mounting data are providing exciting new insight into the innate-like mechanisms which enable intestinal T cells to rapidly sense local conditions and which broaden the spectrum of their functions and regulation at this strategic location. Herein we discuss how innate-like T cell recognition by unconventional T cell subsets and expression of innate NK receptors might modulate immune T cell responses in the human normal or diseased intestine.

  15. Innate immune response development in nestling tree swallows

    USGS Publications Warehouse

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  16. Early adaption to the antarctic environment at dome C: consequences on stress-sensitive innate immune functions.

    PubMed

    Feuerecker, Matthias; Crucian, Brian; Salam, Alex P; Rybka, Ales; Kaufmann, Ines; Moreels, Marjan; Quintens, Roel; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Sams, Clarence; Choukèr, Alexander

    2014-09-01

    Abstract Feuerecker, Matthias, Brian Crucian, Alex P. Salam, Ales Rybka, Ines Kaufmann, Marjan Moreels, Roel Quintens, Gustav Schelling, Manfred Thiel, Sarah Baatout, Clarence Sams, and Alexander Choukèr. Early adaption in the Antarctic environment at Dome C: Consequences on stress-sensitive innate immune functions. High Alt Med Biol 15:341-348, 2014.-Purpose/Aims: Medical reports of Antarctic expeditions indicate that health is affected under these extreme conditions. The present study at CONCORDIA-Station (Dome C, 3233 m) seeks to investigate the early consequences of confinement and hypobaric hypoxia on the human organism. Nine healthy male participants were included in this study. Data collection occurred before traveling to Antarctica (baseline), and at 1 week and 1 month upon arrival. Investigated parameters included basic physiological variables, psychological stress tests, cell blood count, stress hormones, and markers of innate immune functions in resting and stimulated immune cells. By testing for the hydrogen peroxide (H2O2) production of stimulated polymorphonuclear leukocytes (PMNs), the effects of the hypoxia-adenosine-sensitive immune modulatory pathways were examined. As compared to baseline data, reduced oxygen saturation, hemoconcentration, and an increase of secreted catecholamines was observed, whereas no psychological stress was seen. Upon stimulation, the activity of PMNs and L-selectin shedding was mitigated after 1 week. Endogenous adenosine concentration was elevated during the early phase. In summary, living conditions at high altitude influence the innate immune system's response. After 1 month, some of the early effects on the human organism were restored. As this early adaptation is not related to psychological stress, the changes observed are likely to be induced by environmental stressors, especially hypoxia. As hypoxia is triggering ATP-catabolism, leading to elevated endogenous adenosine concentrations, this and the increased

  17. Different Adjuvants Induce Common Innate Pathways That Are Associated with Enhanced Adaptive Responses against a Model Antigen in Humans

    PubMed Central

    Burny, Wivine; Callegaro, Andrea; Bechtold, Viviane; Clement, Frédéric; Delhaye, Sophie; Fissette, Laurence; Janssens, Michel; Leroux-Roels, Geert; Marchant, Arnaud; van den Berg, Robert A.; Garçon, Nathalie; van der Most, Robbert; Didierlaurent, Arnaud M.; Bechtold, Viviane

    2017-01-01

    To elucidate the role of innate responses in vaccine immunogenicity, we compared early responses to hepatitis B virus (HBV) surface antigen (HBsAg) combined with different Adjuvant Systems (AS) in healthy HBV-naïve adults, and included these parameters in multi-parametric models of adaptive responses. A total of 291 participants aged 18–45 years were randomized 1:1:1:1:1 to receive HBsAg with AS01B, AS01E, AS03, AS04, or Alum/Al(OH)3 at days 0 and 30 (ClinicalTrials.gov: NCT00805389). Blood protein, cellular, and mRNA innate responses were assessed at early time-points and up to 7 days after vaccination, and used with reactogenicity symptoms in linear regression analyses evaluating their correlation with HBs-specific CD4+ T-cell and antibody responses at day 44. All AS induced transient innate responses, including interleukin (IL)-6 and C-reactive protein (CRP), mostly peaking at 24 h post-vaccination and subsiding to baseline within 1–3 days. After the second but not the first injection, median interferon (IFN)-γ levels were increased in the AS01B group, and IFN-γ-inducible protein-10 levels and IFN-inducible genes upregulated in the AS01 and AS03 groups. No distinct marker or signature was specific to one particular AS. Innate profiles were comparable between AS01B, AS01E, and AS03 groups, and between AS04 and Alum groups. AS group rankings within adaptive and innate response levels and reactogenicity prevalence were similar (AS01B ≥ AS01E > AS03 > AS04 > Alum), suggesting an association between magnitudes of inflammatory and vaccine responses. Modeling revealed associations between adaptive responses and specific traits of the innate response post-dose 2 (activation of the IFN-signaling pathway, CRP and IL-6 responses). In conclusion, the ability of AS01 and AS03 to enhance adaptive responses to co-administered HBsAg is likely linked to their capacity to activate innate immunity, particularly the IFN-signaling pathway. PMID

  18. Lamellar pro-inflammatory cytokine expression patterns in laminitis at the developmental stage and at the onset of lameness: innate vs. adaptive immune response.

    PubMed

    Belknap, J K; Giguère, S; Pettigrew, A; Cochran, A M; Van Eps, A W; Pollitt, C C

    2007-01-01

    Recent research has indicated that inflammation plays a role in the early stages of laminitis and that, similar to organ failure in human sepsis, early inflammatory mechanisms may lead to downstream events resulting in lamellar failure. Characterisation of the type of immune response (i.e. innate vs. adaptive) is essential in order to develop therapeutic strategies to counteract these deleterious events. To quantitate gene expression of pro-inflammatory cytokines known to be important in the innate and adaptive immune response during the early stages of laminitis, using both the black walnut extract (BWE) and oligofructose (OF) models of laminitis. Real-time qPCR was used to assess lamellar mRNA expression of interleukins-1beta, 2, 4, 6, 8, 10, 12 and 18, and tumour necrosis factor alpha and interferon gamma at the developmental stage and at the onset of lameness. Significantly increased lamellar mRNA expression of cytokines important in the innate immune response were present at the developmental stage of the BWE model, and at the onset of acute lameness in both the BWE model and OF model. Of the cytokines characteristic of the Th1 and Th2 arms of the adaptive immune response, a mixed response was noted at the onset of acute lameness in the BWE model, whereas the response was skewed towards a Th1 response at the onset of lameness in the OF model. Lamellar inflammation is characterised by strong innate immune response in the developmental stages of laminitis; and a mixture of innate and adaptive immune responses at the onset of lameness. These results indicate that anti-inflammatory treatment of early stage laminitis (and the horse at risk of laminitis) should include not only therapeutic drugs that address prostanoid activity, but should also address the marked increases in lamellar cytokine expression.

  19. Innate immunity and HIV-1 infection.

    PubMed

    Lehner, T; Wang, Y; Whittall, T; Seidl, T

    2011-04-01

    HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.

  20. Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies.

    PubMed

    Piret, Jocelyne; Boivin, Guy

    2015-09-01

    Herpes simplex viruses are large double-stranded DNA viruses. These viruses have the ability to establish a lifelong latency in sensory ganglia and to invade and replicate in the CNS. Apart from relatively benign mucosal infections, HSV is responsible for severe illnesses including HSV encephalitis (HSE). HSE is the most common cause of sporadic, potentially fatal viral encephalitis in Western countries. If left untreated, the mortality rate associated with HSE is approximately 70%. Despite antiviral therapy, the mortality is still higher than 30%, and almost 60% of surviving individuals develop neurological sequelae. It is suggested that direct virus-related and indirect immune-mediated mechanisms contribute to the damages occurring in the CNS during HSE. In this manuscript, we describe the innate immune response to HSV, the development of HSE in mice knock-out for proteins of the innate immune system as well as inherited deficiencies in key components of the signaling pathways involved in the production of type I interferon that could predispose individuals to develop HSE. Finally, we review several immunomodulatory strategies aimed at modulating the innate immune response at a critical time after infection that were evaluated in mouse models and could be combined with antiviral therapy to improve the prognosis of HSE. In conclusion, the cerebral innate immune response that develops during HSE is a "double-edged sword" as it is critical to control viral replication in the brain early after infection, but, if left uncontrolled, may also result in an exaggerated inflammatory response that could be detrimental to the host. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Mucosal innate response stimulation induced by lipopolysaccharide protects against Bordetella pertussis colonization.

    PubMed

    Errea, A; Moreno, G; Sisti, F; Fernández, J; Rumbo, M; Hozbor, Daniela Flavia

    2010-05-01

    Non-specific enhancement of the airways innate response has been shown to impair lung infections in several models of infection such diverse as influenza A, Streptococcus pneumoniae, and Aspergillus niger. Our aim was to evaluate whether a similar event could operate in the context of Bordetella pertussis respiratory infection, not only to enrich the knowledge of host-bacteria interaction but also to establish immunological basis for the development of new control strategies against the pathogen. Using a B. pertussis intranasal infection model and coadministration of different TLR agonists at the moment of the infection, we observed that the enhancement of innate response activation, in a TLR4-dependent way, could efficiently impair B. pertussis colonization (P < 0.001). While LPS from different microbial sources were equally effective in promoting this effect, flagellin and poly I:C coadministration, in spite of inducing expression of innate response markers TNFalpha, CXCL2, CXCL10 and IL6, was not effective to prevent B. pertussis colonization. Our results indicate that during the early stage of infection, specific anti-microbial mechanisms triggered by TLR4 stimulation are able to impair B. pertussis colonization. These findings could complement our current view of the role of TLR4-dependent processes that contribute to anti-pertussis immunity.

  2. Super-resolution microscopy reveals protein spatial reorganization in early innate immune responses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, Bryan D.; Aaron, Jesse S.; Timlin, Jerilyn Ann

    2010-10-01

    Over the past decade optical approaches were introduced that effectively break the diffraction barrier. Of particular note were introductions of Stimulated Emission/Depletion (STED) microscopy, Photo-Activated Localization Microscopy (PALM), and the closely related Stochastic Optical Reconstruction Microscopy (STORM). STORM represents an attractive method for researchers, as it does not require highly specialized optical setups, can be implemented using commercially available dyes, and is more easily amenable to multicolor imaging. We implemented a simultaneous dual-color, direct-STORM imaging system through the use of an objective-based TIRF microscope and filter-based image splitter. This system allows for excitation and detection of two fluorophors simultaneously, viamore » projection of each fluorophor's signal onto separate regions of a detector. We imaged the sub-resolution organization of the TLR4 receptor, a key mediator of innate immune response, after challenge with lipopolysaccharide (LPS), a bacteria-specific antigen. While distinct forms of LPS have evolved among various bacteria, only some LPS variations (such as that derived from E. coli) typically result in significant cellular immune response. Others (such as from the plague bacteria Y. pestis) do not, despite affinity to TLR4. We will show that challenge with LPS antigens produces a statistically significant increase in TLR4 receptor clusters on the cell membrane, presumably due to recruitment of receptors to lipid rafts. These changes, however, are only detectable below the diffraction limit and are not evident using conventional imaging methods. Furthermore, we will compare the spatiotemporal behavior of TLR4 receptors in response to different LPS chemotypes in order to elucidate possible routes by which pathogens such as Y. pestis are able to circumvent the innate immune system. Finally, we will exploit the dual-color STORM capabilities to simultaneously image LPS and TLR4 receptors in the

  3. Early innate immune responses to Sin Nombre hantavirus occur independently of IFN regulatory factor 3, characterized pattern recognition receptors, and viral entry.

    PubMed

    Prescott, Joseph B; Hall, Pamela R; Bondu-Hawkins, Virginie S; Ye, Chunyan; Hjelle, Brian

    2007-08-01

    Sin Nombre virus (SNV) is a highly pathogenic New World virus and etiologic agent of hantavirus cardiopulmonary syndrome. We have previously shown that replication-defective virus particles are able to induce a strong IFN-stimulated gene (ISG) response in human primary cells. RNA viruses often stimulate the innate immune response by interactions between viral nucleic acids, acting as a pathogen-associated molecular pattern, and cellular pattern-recognition receptors (PRRs). Ligand binding to PRRs activates transcription factors which regulate the expression of antiviral genes, and in all systems examined thus far, IFN regulatory factor 3 (IRF3) has been described as an essential intermediate for induction of ISG expression. However, we now describe a model in which IRF3 is dispensable for the induction of ISG transcription in response to viral particles. IRF3-independent ISG transcription in human hepatoma cell lines is initiated early after exposure to SNV virus particles in an entry- and replication-independent fashion. Furthermore, using gene knockdown, we discovered that this activation is independent of the best-characterized RNA- and protein-sensing PRRs including the cytoplasmic caspase recruitment domain-containing RNA helicases and the TLRs. SNV particles engage a heretofore unrecognized PRR, likely located at the cell surface, and engage a novel IRF3-independent pathway that activates the innate immune response.

  4. Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-like Lymphocyte Populations.

    PubMed

    Mpina, Maxmillian; Maurice, Nicholas J; Yajima, Masanao; Slichter, Chloe K; Miller, Hannah W; Dutta, Mukta; McElrath, M Juliana; Stuart, Kenneth D; De Rosa, Stephen C; McNevin, John P; Linsley, Peter S; Abdulla, Salim; Tanner, Marcel; Hoffman, Stephen L; Gottardo, Raphael; Daubenberger, Claudia A; Prlic, Martin

    2017-07-01

    Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αβ-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Activating the innate immune response to counter chronic hepatitis B virus infection.

    PubMed

    Lamb, Camilla; Arbuthnot, Patrick

    2016-12-01

    Chronic infection with hepatitis B virus (HBV) is endemic to several populous parts of the world, where resulting complicating cirrhosis and hepatocellular carcinoma occur commonly. Licensed drugs to treat the infection have limited curative efficacy, and development of therapies that eliminate all replication intermediates of HBV is a priority. Areas covered: The recent demonstration that the activation of the innate immune response may eradicate HBV from infected hepatocytes has a promising therapeutic application. Small molecule stimulators of Toll-like receptors (TLRs) inhibit replication of woodchuck hepatitis virus in woodchucks and HBV in chimpanzees and mice. Early stage clinical trials using GS-9620, a TLR7 agonist, indicate that this candidate antiviral is well tolerated in humans. Using an alternative approach, triggering the innate immune response with agonists of lymphotoxin-β receptor caused efficient APOBEC-mediated deamination and degradation of viral covalently closed circular DNA. Expert opinion: Eliminating HBV cccDNA from infected individuals would constitute a cure, and has become the focus of intensive research that employs various therapeutic approaches, including gene therapy. Immunomodulation through innate immune activation shows promise for the treatment of chronic infection of HBV (CHB) and, used in combination with other therapeutics, may contribute to the global control of infections and ultimately to the eradication of HBV.

  6. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    PubMed

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success

  7. Epithelium-Innate Immune Cell Axis in Mucosal Responses to SIV

    PubMed Central

    Shang, L.; Duan, L.; Perkey, K. E.; Wietgrefe, S.; Zupancic, M.; Smith, A. J.; Southern, P. J.; Johnson, R. P.; Haase, A. T.

    2016-01-01

    In the SIV-rhesus macaque model of HIV-1 transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses. PMID:27435105

  8. Epithelium-innate immune cell axis in mucosal responses to SIV.

    PubMed

    Shang, L; Duan, L; Perkey, K E; Wietgrefe, S; Zupancic, M; Smith, A J; Southern, P J; Johnson, R P; Haase, A T

    2017-03-01

    In the SIV (simian immunodeficiency virus)-rhesus macaque model of HIV-1 (human immunodeficiency virus type I) transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T-cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T-cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T-cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment, and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses.

  9. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines

    PubMed Central

    Levy, Ofer; Netea, Mihai G.

    2014-01-01

    Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named “trained immunity”. Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases. PMID:24352476

  10. Innate immune responses against foot-and-mouth disease virus: current understanding and future directions.

    PubMed

    Summerfield, Artur; Guzylack-Piriou, Laurence; Harwood, Lisa; McCullough, Kenneth C

    2009-03-15

    Foot-and-mouth disease (FMD) represents one of the most economically important diseases of farm animals. The basis for the threat caused by this virus is the high speed of replication, short incubation time, high contagiousness, and high mutation rate resulting in constant antigenic changes. Thus, although protective immune responses against FMD virus (FMDV) can be efficacious, the rapidity of virus replication and spread can outpace immune defence development and overrun the immune system. FMDV can also evade innate immune responses through its ability to shut down cellular protein synthesis, including IFN type I, in susceptible epithelial cells. This is important for virus evolution, as FMDV is quite sensitive to the action of IFN. Despite this, innate immune responses are probably induced in vivo, although detailed studies on this subject are lacking. Accordingly, this interaction of FMDV with cells of the innate immune system is of particular interest. Dendritic cells (DC) can be infected by FMDV and support viral RNA replication, and viral protein synthesis but the latter is inefficient or abortive, leading most often to incomplete replication and progeny virus release. As a result DC can be activated, and particularly in the case of plasmacytoid DC (pDC), this is manifest in terms of IFN-alpha release. Our current state of knowledge on innate immune responses induced by FMDV is still only at a relatively early stage of understanding. As we progress, the investigations in this area will help to improve the design of current vaccines and the development of novel control strategies against FMD.

  11. Postnatal Innate Immune Development: From Birth to Adulthood

    PubMed Central

    Georgountzou, Anastasia; Papadopoulos, Nikolaos G.

    2017-01-01

    It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed. PMID:28848557

  12. Effect of hen age and maternal vitamin D source on performance, hatchability, bone mineral density, and progeny in vitro early innate immune function.

    PubMed

    Saunders-Blades, J L; Korver, D R

    2015-06-01

    The metabolite 25-hydroxy vitamin D3 (25-OHD) can complement or replace vitamin D3 in poultry rations, and may influence broiler production and immune function traits. The effect of broiler breeder dietary 25-OHD on egg production, hatchability, and chick early innate immune function was studied. We hypothesized that maternal dietary 25-OHD would support normal broiler breeder production and a more mature innate immune system of young chicks. Twenty-three-week-old Ross 308 hens (n=98) were placed in 4 floor pens and fed either 2,760 IU vitamin D3 (D) or 69 μg 25-OHD/kg feed. Hen weights were managed according to the primary breeder management guide. At 29 to 31 wk (Early), 46 to 48 wk (Mid), and 61 to 63 wk (Late), hens were artificially inseminated and fertile eggs incubated and hatched. Chicks were placed in cages based on maternal treatment and grown to 7 d age. Innate immune function and plasma 25-OHD were assessed at 1 and 4 d post-hatch on 15 chicks/treatment. Egg production, hen BW, and chick hatch weight were not affected by diet (P>0.05). Total in vitro Escherichia coli (E. coli) killing by 25-OHD chicks was greater than the D chicks at 4 d for the Early and Mid hatches, and 1 and 4 d for the Late hatch. This can be partly explained by the 25-OHD chicks from the Late hatch also having a greater E. coli phagocytic capability. No consistent pattern of oxidative burst response was observed. Chicks from the Mid hatch had greater percent phagocytosis, phagocytic capability, and E. coli killing than chicks from Early and Late hatches. Overall, maternal 25-OHD increased hatchability and in vitro chick innate immunity towards E. coli. Regardless of treatment, chicks from Late and Early hens had weaker early innate immune responses than chicks from Mid hens. The hen age effect tended to be the greatest factor influencing early chick innate immunity, but maternal 25-OHD also increased several measures relative to D. © 2015 Poultry Science Association Inc.

  13. Dissociation of Innate Immune Responses in Microglia Infected with Listeria monocytogenes

    PubMed Central

    Frande-Cabanes, Elisabet; Fernandez-Prieto, Lorena; Calderon-Gonzalez, Ricardo; Rodríguez-Del Río, Estela; Yañez-Diaz, Sonsoles; López-Fanarraga, Monica; Alvarez-Domínguez, Carmen

    2014-01-01

    Microglia, the innate immune cells of the brain, plays a central role in cerebral listeriosis. Here, we present evidence that microglia control Listeria infection differently than macrophages. Infection of primary microglial cultures and murine cell lines with Listeria resulted in a dual function of the two gene expression programmes involved in early and late immune responses in macrophages. Whereas the bacterial gene hly seems responsible for both transcriptional programmes in macrophages, Listeria induces in microglia only the tumor necrosis factor (TNF)-regulated transcriptional programme. Listeria also represses in microglia the late immune response gathered in two clusters, microbial degradation, and interferon (IFN)-inducible genes. The bacterial gene actA was required in microglia to induce TNF-regulated responses and to repress the late response. Isolation of microglial phagosomes revealed a phagosomal environment unable to destroy Listeria. Microglial phagosomes were also defective in several signaling and trafficking components reported as relevant for Listeria innate immune responses. This transcriptional strategy in microglia induced high levels of TNF-α and monocyte chemotactic protein-1 and low production of other neurotoxic compounds such as nitric oxide, hydrogen peroxide, and Type I IFNs. These cytokines and toxic microglial products are also released by primary microglia, and this cytokine and chemokine cocktail display a low potential to trigger neuronal apoptosis. This overall bacterial strategy strongly suggests that microglia limit Listeria inflammation pattern exclusively through TNF-mediated responses to preserve brain integrity. GLIA 2014;62:233–246 PMID:24311463

  14. Innate Immune Responses in Leprosy

    PubMed Central

    Pinheiro, Roberta Olmo; Schmitz, Veronica; Silva, Bruno Jorge de Andrade; Dias, André Alves; de Souza, Beatriz Junqueira; de Mattos Barbosa, Mayara Garcia; de Almeida Esquenazi, Danuza; Pessolani, Maria Cristina Vidal; Sarno, Euzenir Nunes

    2018-01-01

    Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management. PMID:29643852

  15. Innate immune responses in central nervous system inflammation.

    PubMed

    Finsen, Bente; Owens, Trevor

    2011-12-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Budesonide and Formoterol Reduce Early Innate Anti-Viral Immune Responses In Vitro

    PubMed Central

    Davies, Janet M.; Carroll, Melanie L.; Li, Hongzhuo; Poh, Alisa M.; Kirkegard, Darren; Towers, Michelle; Upham, John W.

    2011-01-01

    Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10−6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2′, 5′ oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance

  17. Neonatal innate TLR-mediated responses are distinct from those of adults.

    PubMed

    Kollmann, Tobias R; Crabtree, Juliet; Rein-Weston, Annie; Blimkie, Darren; Thommai, Francis; Wang, Xiu Yu; Lavoie, Pascal M; Furlong, Jeff; Fortuno, Edgardo S; Hajjar, Adeline M; Hawkins, Natalie R; Self, Steven G; Wilson, Christopher B

    2009-12-01

    The human neonate and infant are unduly susceptible to infection with a wide variety of microbes. This susceptibility is thought to reflect differences from adults in innate and adaptive immunity, but the nature of these differences is incompletely characterized. The innate immune response directs the subsequent adaptive immune response after integrating information from TLRs and other environmental sensors. We set out to provide a comprehensive analysis defining differences in response to TLR ligation between human neonates and adults. In response to most TLR ligands, neonatal innate immune cells, including monocytes and conventional and plasmacytoid dendritic cells produced less IL-12p70 and IFN-alpha (and consequently induced less IFN-gamma), moderately less TNF-alpha, but as much or even more IL-1beta, IL-6, IL-23, and IL-10 than adult cells. At the single-cell level, neonatal innate cells generally were less capable of producing multiple cytokines simultaneously, i.e., were less polyfunctional. Overall, our data suggest a robust if not enhanced capacity of the neonate vs the adult white-blood cell TLR-mediated response to support Th17- and Th2-type immunity, which promotes defense against extracellular pathogens, but a reduced capacity to support Th1-type responses, which promote defense against intracellular pathogens.

  18. The antiviral innate immune response in fish: evolution and conservation of the IFN system.

    PubMed

    Langevin, Christelle; Aleksejeva, Elina; Passoni, Gabriella; Palha, Nuno; Levraud, Jean-Pierre; Boudinot, Pierre

    2013-12-13

    Innate immunity constitutes the first line of the host defense after pathogen invasion. Viruses trigger the expression of interferons (IFNs). These master antiviral cytokines induce in turn a large number of interferon-stimulated genes, which possess diverse effector and regulatory functions. The IFN system is conserved in all tetrapods as well as in fishes, but not in tunicates or in the lancelet, suggesting that it originated in early vertebrates. Viral diseases are an important concern of fish aquaculture, which is why fish viruses and antiviral responses have been studied mostly in species of commercial value, such as salmonids. More recently, there has been an interest in the use of more tractable model fish species, notably the zebrafish. Progress in genomics now makes it possible to get a relatively complete image of the genes involved in innate antiviral responses in fish. In this review, by comparing the IFN system between teleosts and mammals, we will focus on its evolution in vertebrates. © 2013 Elsevier Ltd. All rights reserved.

  19. Dissecting innate immune responses with the tools of systems biology.

    PubMed

    Smith, Kelly D; Bolouri, Hamid

    2005-02-01

    Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.

  20. Viral evasion of DNA-stimulated innate immune responses

    PubMed Central

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769

  1. Innate immunity of fish (overview).

    PubMed

    Magnadóttir, Bergljót

    2006-02-01

    The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.

  2. Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice.

    PubMed

    Demeure, Christian E; Blanchet, Charlène; Fitting, Catherine; Fayolle, Corinne; Khun, Huot; Szatanik, Marek; Milon, Geneviève; Panthier, Jean-Jacques; Jaubert, Jean; Montagutelli, Xavier; Huerre, Michel; Cavaillon, Jean-Marc; Carniel, Elisabeth

    2012-01-01

    Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance. The kinetics of infection, circulating blood cells, granulopoiesis, lesions, and cellular populations in the spleen, and cytokine production in various tissues were compared in SEG and susceptible C57BL/6J mice after subcutaneous infection with the virulent Y. pestis CO92. Bacterial invasion occurred early (day 2) but was transient in SEG/Pas mice, whereas in C57BL/6J mice it was delayed but continuous until death. The bacterial load in all organs significantly correlated with the production of 5 cytokines (granulocyte colony-stimulating factor, keratinocyte-derived chemokine (KC), macrophage cationic peptide-1 (MCP-1), interleukin 1α, and interleukin 6) involved in monocyte and neutrophil recruitment. Indeed, higher proportions of these 2 cell types in blood and massive recruitment of F4/80(+)CD11b(-) macrophages in the spleen were observed in SEG/Pas mice at an early time point (day 2). Later times after infection (day 4) were characterized in C57BL/6J mice by destructive lesions of the spleen and impaired granulopoiesis. A fast and efficient Y. pestis dissemination in SEG mice may be critical for the triggering of an early and effective innate immune response necessary for surviving plague.

  3. RNA Editing, ADAR1, and the Innate Immune Response.

    PubMed

    Wang, Qingde; Li, Xiaoni; Qi, Ruofan; Billiar, Timothy

    2017-01-18

    RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1-3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field.

  4. Paramyxovirus activation and inhibition of innate immune responses.

    PubMed

    Parks, Griffith D; Alexander-Miller, Martha A

    2013-12-13

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells. © 2013.

  5. Paramyxovirus Activation and Inhibition of Innate Immune Responses

    PubMed Central

    Parks, Griffith D.; Alexander-Miller, Martha A.

    2014-01-01

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells. PMID:24056173

  6. Innate immune responses following Kawasaki disease and toxic shock syndrome

    PubMed Central

    Messina, Nicole; Germano, Susie; Bonnici, Rhian; Freyne, Bridget; Cheung, Michael; Goldsmith, Greta; Kollmann, Tobias R.; Levin, Michael; Burgner, David; Curtis, Nigel

    2018-01-01

    The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating evidence for the importance of the innate immune system in initiating and mediating the host inflammatory response. We compared innate immune responses in KD and toxic shock syndrome (TSS) participants more than two years after their acute illness with control participants to investigate differences in their immune phenotype. Toxic shock syndrome shares many clinical features with KD; by including both disease groups we endeavoured to explore changes in innate immune responses following acute inflammatory illnesses more broadly. We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 control participants in a case-control study. Analyses were adjusted for age, sex, and unstimulated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra production in response to stimulation with double stranded RNA (geometric mean ratio (GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incubation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls, TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01), and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01). Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflammatory innate immune phenotype suggesting a possible underlying immunological susceptibility or innate immune memory. PMID:29447181

  7. Innate immune responses following Kawasaki disease and toxic shock syndrome.

    PubMed

    Chen, Katherine Y H; Messina, Nicole; Germano, Susie; Bonnici, Rhian; Freyne, Bridget; Cheung, Michael; Goldsmith, Greta; Kollmann, Tobias R; Levin, Michael; Burgner, David; Curtis, Nigel

    2018-01-01

    The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating evidence for the importance of the innate immune system in initiating and mediating the host inflammatory response. We compared innate immune responses in KD and toxic shock syndrome (TSS) participants more than two years after their acute illness with control participants to investigate differences in their immune phenotype. Toxic shock syndrome shares many clinical features with KD; by including both disease groups we endeavoured to explore changes in innate immune responses following acute inflammatory illnesses more broadly. We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 control participants in a case-control study. Analyses were adjusted for age, sex, and unstimulated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra production in response to stimulation with double stranded RNA (geometric mean ratio (GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incubation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls, TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01), and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01). Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflammatory innate immune phenotype suggesting a possible underlying immunological susceptibility or innate immune memory.

  8. Aspergillus-Associated Airway Disease, Inflammation, and the Innate Immune Response

    PubMed Central

    Chotirmall, Sanjay H.; Al-Alawi, Mazen; Logan, P. Mark; Greene, Catherine M.; McElvaney, Noel G.

    2013-01-01

    Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit. PMID:23971044

  9. γ-Oryzanol-Rich Black Rice Bran Extract Enhances the Innate Immune Response.

    PubMed

    Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Lim, Yoongho; Kim, Jung-Bong; Lee, Young Han

    2017-09-01

    The innate immune response is an important host primary defense system against pathogens. γ-Oryzanol is one of the nutritionally important phytoceutical components in rice bran oil. The goal of this study was to investigate the effect of γ-oryzanol-rich extract from black rice bran (γORE) on the activation of the innate immune system. In this study, we show that γORE increased the expression of CD14 and Toll-like receptor 4 and enhanced the phagocytic activity of RAW264.7 macrophages. Furthermore, γORE and its active ingredient γ-oryzanol promoted the secretion of innate cytokines, interleukin-8, and CCL2, which facilitate phagocytosis by RAW264.7 cells. These findings suggest that γ-oryzanol in the γORE enhances innate immune responses.

  10. Early life programming of innate fear and fear learning in adult female rats.

    PubMed

    Stevenson, Carl W; Meredith, John P; Spicer, Clare H; Mason, Rob; Marsden, Charles A

    2009-03-02

    The early rearing environment can impact on emotional reactivity and learning later in life. In this study the effects of neonatal maternal separation (MS) on innate fear and fear learning were assessed in the adult female rat. Pups were subjected to MS (360 min), brief handling (H; 15 min), or animal facility rearing (AFR) on post-natal days 2-14. In the first experiment, innate fear was tested in the open field. No differences between the early rearing groups were observed in unconditioned fear. In the second experiment, separate cohorts were used in a 3-day fear learning paradigm which tested the acquisition (Day 1), expression and extinction (both Day 2) of conditioning to an auditory cue; extinction recall was determined as well (Day 3). Contextual fear conditioning was also assessed prior to cue presentations on Days 2 and 3. Whereas MS attenuated the acquisition and expression of fear conditioning to the cue, H potentiated extinction learning. Cue-induced fear was reduced on Day 3, compared to Day 2, indicating that the recall of extinction learning was evident; however, no early rearing group differences in extinction recall were observed. Similarly, while contextual fear was decreased on Day 3, compared to Day 2, there were no differences between the early rearing groups on either day tested. The present findings of altered cue-conditioned fear learning, in the absence of innate fear changes, lend further support for the important role of the early rearing environment in mediating cognition in adulthood.

  11. Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses

    PubMed Central

    van de Sandt, Carolien E.; Kreijtz, Joost H. C. M.; Rimmelzwaan, Guus F.

    2012-01-01

    The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies. PMID:23170167

  12. The innate immune response during urinary tract infection and pyelonephritis

    PubMed Central

    Spencer, John David; Schwaderer, Andrew L.; Becknell, Brian; Watson, Joshua; Hains, David S.

    2013-01-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides – a ubiquitous component of the innate immune response. PMID:23732397

  13. The innate immune response during urinary tract infection and pyelonephritis.

    PubMed

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  14. Recent advances targeting innate immunity-mediated therapies against HIV-1 infection.

    PubMed

    Shankar, Esaki Muthu; Velu, Vijayakumar; Vignesh, Ramachandran; Vijayaraghavalu, Sivakumar; Rukumani, Devi Velayuthan; Sabet, Negar Shafiei

    2012-08-01

    Early defence mechanisms of innate immunity respond rapidly to infection against HIV-1 in the genital mucosa. Additionally, innate immunity optimises effective adaptive immune responses against persistent HIV infection. Recent research has highlighted the intrinsic roles of apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G, tripartite motif-containing protein 5, tetherin, sterile α-motif and histidine/aspartic acid domain-containing protein 1 in restricting HIV-1 replication. Likewise, certain endogenously secreted antimicrobial peptides, namely α/β/θ-defensins, lactoferrins, secretory leukocyte protease inhibitor, trappin-2/elafin and macrophage inflammatory protein-3α are reportedly protective. Whilst certain factors directly inhibit HIV, others can be permissive. Interferon-λ3 exerts an anti-HIV function by activating Janus kinase-signal transducer and activator of transcription-mediated innate responses. Morphine has been found to impair intracellular innate immunity, contributing to HIV establishment in macrophages. Interestingly, protegrin-1 could be used therapeutically to inhibit early HIV-1 establishment. Moreover, chloroquine inhibits plasmacytoid dendritic cell activation and improves effective T-cell responses. This minireview summarizes the recently identified targets for innate immunity-mediated therapies and outlines the challenges that lie ahead in improving treatment of HIV infection. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  15. Pathogen recognition in the innate immune response.

    PubMed

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  16. Dual function of CD70 in viral infection: modulator of early cytokine responses and activator of adaptive responses1

    PubMed Central

    Allam, Atef; Swiecki, Melissa; Vermi, William; Ashwell, Jonathan D.; Colonna, Marco

    2014-01-01

    The role of the tumor necrosis factor family member CD70 in adaptive T cell responses has been intensively studied but its function in innate responses is still under investigation. Here we show that CD70 inhibits the early innate response to murine cytomegalovirus (MCMV) but is essential for the optimal generation of virus-specific CD8 T cells. CD70-/- mice reacted to MCMV infection with a robust type I interferon and proinflammatory cytokine response. This response was sufficient for initial control of MCMV, although at later time points, CD70-/- mice became more susceptible to MCMV infection. The heightened cytokine response during the early phase of MCMV infection in CD70-/- mice was paralleled by a reduction in regulatory T cells (Treg). Treg from naïve CD70-/- mice were not as efficient at suppressing T cell proliferation compared to Treg from naïve WT mice and depletion of Treg during MCMV infection in Foxp3-DTR mice or in WT mice recapitulated the phenotype observed in CD70-/- mice. Our study demonstrates that while CD70 is required for the activation of the antiviral adaptive response, it has a regulatory role in early cytokine responses to viruses such as MCMV, possibly through maintenance of Treg survival and function. PMID:24913981

  17. Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses.

    PubMed

    Wolferstätter, Michael; Schweneker, Marc; Späth, Michaela; Lukassen, Susanne; Klingenberg, Marieken; Brinkmann, Kay; Wielert, Ursula; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2014-12-01

    Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral

  18. Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909).

    PubMed

    Minang, Jacob T; Inglefield, Jon R; Harris, Andrea M; Lathey, Janet L; Alleva, David G; Sweeney, Diane L; Hopkins, Robert J; Lacy, Michael J; Bernton, Edward W

    2014-11-28

    NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity. Copyright © 2014 The Authors

  19. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    PubMed Central

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  20. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation.

    PubMed

    West, A Phillip

    2017-11-01

    A growing literature indicates that mitochondria are key participants in innate immune pathways, functioning as both signaling platforms and contributing to effector responses. In addition to regulating antiviral signaling and antibacterial immunity, mitochondria are also important drivers of inflammation caused by sterile injury. Much research on mitochondrial control of immunity now centers on understanding how mitochondrial constituents released during cellular damage simulate the innate immune system. When mitochondrial integrity is compromised, mitochondrial damage-associated molecular patterns engage pattern recognition receptors, trigger inflammation, and promote pathology in an expanding list of diseases. Here, I review the emerging knowledge of mitochondrial dysfunction in innate immune responses and discuss how environmental exposures may induce mitochondrial damage to potentiate inflammation and human disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bench-to-bedside review: Functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis

    PubMed Central

    Opal, Steven M; Esmon, Charles T

    2003-01-01

    The innate immune response system is designed to alert the host rapidly to the presence of an invasive microbial pathogen that has breached the integument of multicellular eukaryotic organisms. Microbial invasion poses an immediate threat to survival, and a vigorous defense response ensues in an effort to clear the pathogen from the internal milieu of the host. The innate immune system is able to eradicate many microbial pathogens directly, or innate immunity may indirectly facilitate the removal of pathogens by activation of specific elements of the adaptive immune response (cell-mediated and humoral immunity by T cells and B cells). The coagulation system has traditionally been viewed as an entirely separate system that has arisen to prevent or limit loss of blood volume and blood components following mechanical injury to the circulatory system. It is becoming increasingly clear that coagulation and innate immunity have coevolved from a common ancestral substrate early in eukaryotic development, and that these systems continue to function as a highly integrated unit for survival defense following tissue injury. The mechanisms by which these highly complex and coregulated defense strategies are linked together are the focus of the present review. PMID:12617738

  2. Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction.

    PubMed

    Shao, Wenwei; Earley, Lauriel F; Chai, Zheng; Chen, Xiaojing; Sun, Junjiang; He, Ting; Deng, Meng; Hirsch, Matthew L; Ting, Jenny; Samulski, R Jude; Li, Chengwen

    2018-06-21

    Data from clinical trials for hemophilia B using adeno-associated virus (AAV) vectors have demonstrated decreased transgenic coagulation factor IX (hFIX) expression 6-10 weeks after administration of a high vector dose. While it is likely that capsid-specific cytotoxic T lymphocytes eliminate vector-transduced hepatocytes, thereby resulting in decreased hFIX, this observation is not intuitively consistent with restored hFIX levels following prednisone application. Although the innate immune response is immediately activated following AAV vector infection via TLR pathways, no studies exist regarding the role of the innate immune response at later time points after AAV vector transduction. Herein, activation of the innate immune response in cell lines, primary human hepatocytes, and hepatocytes in a human chimeric mouse model was observed at later time points following AAV vector transduction. Mechanistic analysis demonstrated that the double-stranded RNA (dsRNA) sensor MDA5 was necessary for innate immune response activation and that transient knockdown of MDA5, or MAVS, decreased IFN-β expression while increasing transgene production in AAV-transduced cells. These results both highlight the role of the dsRNA-triggered innate immune response in therapeutic transgene expression at later time points following AAV transduction and facilitate the execution of effective strategies to block the dsRNA innate immune response in future clinical trials.

  3. Transcriptomics of the Vaccine Immune Response: Priming With Adjuvant Modulates Recall Innate Responses After Boosting.

    PubMed

    Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2018-01-01

    Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream

  4. Estradiol and Progesterone Strongly Inhibit the Innate Immune Response of Mononuclear Cells in Newborns ▿

    PubMed Central

    Giannoni, Eric; Guignard, Laurence; Knaup Reymond, Marlies; Perreau, Matthieu; Roth-Kleiner, Matthias; Calandra, Thierry; Roger, Thierry

    2011-01-01

    Newborns are particularly susceptible to bacterial infections due to qualitative and quantitative deficiencies of the neonatal innate immune system. However, the mechanisms underlying these deficiencies are poorly understood. Given that fetuses are exposed to high concentrations of estradiol and progesterone during gestation and at time of delivery, we analyzed the effects of these hormones on the response of neonatal innate immune cells to endotoxin, bacterial lipopeptide, and Escherichia coli and group B Streptococcus, the two most common causes of early-onset neonatal sepsis. Here we show that at concentrations present in umbilical cord blood, estradiol and progesterone are as powerful as hydrocortisone for inhibition of cytokine production by cord blood mononuclear cells (CBMCs) and newborn monocytes. Interestingly, CBMCs and newborn monocytes are more sensitive to the effects of estradiol and progesterone than adult peripheral blood mononuclear cells and monocytes. This increased sensitivity is associated with higher expression levels of estrogen and membrane progesterone receptors but is independent of a downregulation of Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response gene 88 in newborn cells. Estradiol and progesterone mediate their anti-inflammatory activity through inhibition of the NF-κB pathway but not the mitogen-activated protein kinase pathway in CBMCs. Altogether, these results suggest that elevated umbilical cord blood concentrations of estradiol and progesterone acting on mononuclear cells expressing high levels of steroid receptors contribute to impair innate immune responses in newborns. Therefore, intrauterine exposure to estradiol and progesterone may participate in increasing susceptibility to infection during the neonatal period. PMID:21518785

  5. Innate Immune Responses to Cryptococcus.

    PubMed

    Heung, Lena J

    2017-09-01

    Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus , primarily the species C. neoformans , is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.

  6. Genes of innate immunity and the biological response to inhaled ozone

    PubMed Central

    Li, Zhuowei; Tighe, Robert M.; Feng, Feifei; Ledford, Julie G.; Hollingsworth, John W.

    2013-01-01

    Ambient ozone has a significant impact on human health. We have made considerable progress in understanding the fundamental mechanisms that regulate the biological response to ozone. It is increasingly clear that genes of innate immunity play a central role in both infectious and non-infectious lung disease. The biological response to ambient ozone provides a clinically relevant environmental exposure that allows us to better understand the role of innate immunity in non-infectious airways disease. In this brief review, we focus on: (1) specific cell types in the lung modified by ozone; (2) ozone and oxidative stress; (3) the relationship between genes of innate immunity and ozone; (4) the role of extracellular matrix in reactive airways disease; and (5) the effect of ozone on the adaptive immune system. We summarize recent advances in understanding the mechanisms that ozone contributes to environmental airways disease. PMID:23169704

  7. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation

    PubMed Central

    Toki, Shinji; Goleniewska, Kasia; Reiss, Sara; Zhou, Weisong; Newcomb, Dawn C; Bloodworth, Melissa H; Stier, Matthew T; Boyd, Kelli L; Polosukhin, Vasiliy V; Subramaniam, Sriram; Peebles, R Stokes

    2016-01-01

    Background Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. Methods BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. Results We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). Conclusions These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen. PMID:27071418

  8. Plant innate immunity – sunny side up?

    PubMed Central

    Stael, Simon; Kmiecik, Przemyslaw; Willems, Patrick; Van Der Kelen, Katrien; Coll, Nuria S.; Teige, Markus; Van Breusegem, Frank

    2016-01-01

    Reactive oxygen species (ROS)- and calcium- dependent signaling pathways play well-established roles during plant innate immunity. Chloroplasts host major biosynthetic pathways and have central roles in energy production, redox homeostasis, and retrograde signaling. However, the organelle’s importance in immunity has been somehow overlooked. Recent findings suggest that the chloroplast also has an unanticipated function as a hub for ROS- and calcium-signaling that affects immunity responses at an early stage after pathogen attack. In this opinion article, we discuss a chloroplastic calcium-ROS signaling branch of plant innate immunity. We propose that this chloroplastic branch acts as a light-dependent rheostat that, through the production of ROS, influences the severity of the immune response. PMID:25457110

  9. PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1.

    PubMed

    Yoh, Sunnie M; Schneider, Monika; Seifried, Janna; Soonthornvacharin, Stephen; Akleh, Rana E; Olivieri, Kevin C; De Jesus, Paul D; Ruan, Chunhai; de Castro, Elisa; Ruiz, Pedro A; Germanaud, David; des Portes, Vincent; García-Sastre, Adolfo; König, Renate; Chanda, Sumit K

    2015-06-04

    Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell-intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response. Polyglutamine binding protein 1 (PQBP1) emerged as a strong candidate through this analysis. We found that PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response. MDDCs derived from Renpenning syndrome patients, who harbor mutations in the PQBP1 locus, possess a severely attenuated innate immune response to HIV-1 challenge, underscoring the role of PQBP1 as a proximal innate sensor of a HIV-1 infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Performance on innate behaviour during early development as a function of stress level.

    PubMed

    Ryu, Soojin; De Marco, Rodrigo J

    2017-08-10

    What is the relationship between the level of acute stress and performance on innate behaviour? The diversity of innate behaviours and lack of sufficient data gathered under the same experimental conditions leave this question unresolved. While evidence points to an inverted-U shaped relationship between the level of acute stress and various measures of learning and memory function, it is unknown the extent to which such a non-linear function applies to performance on innate behaviour, which develops without example or practice under natural circumstances. The fundamental prediction of this view is that moderate stress levels will improve performance, while higher levels will not. Testing this proposition has been difficult because it entails an overall effect that must be invariant to the nature of the stressor, the behaviour under scrutiny and the stimulus that drives it. Here, we report new experimental results showing that developing zebrafish (Danio rerio) under moderate but not higher levels of stress improved their performance on instinctive activities driven by visual, hydrodynamic and thermal inputs. Our findings reveal, for the first time, the existence of an inverted-U shaped performance function according to stress level during early development in a series of innate behaviours.

  11. Differential Antagonism of Human Innate Immune Responses by Tick-Borne Phlebovirus Nonstructural Proteins

    PubMed Central

    Rezelj, Veronica V.; Li, Ping; Chaudhary, Vidyanath; Elliott, Richard M.

    2017-01-01

    SFTS virus (SFTSV) were found to cause severe disease in humans, unlike other documented tick-borne phleboviruses such as Uukuniemi virus (UUKV). Phleboviruses encode nonstructural proteins (NSs) that enable them to counteract the human innate antiviral defenses. We assessed how these proteins interacted with the innate immune system. We found that UUKV NSs engaged with innate immune factors only weakly, at one early step. However, the viruses that cause more severe disease efficiently disabled the antiviral response by targeting multiple components at several stages across the innate immune induction and signaling pathways. Our results suggest a correlation between the efficiency of the virus protein/host interaction and severity of disease. PMID:28680969

  12. Antigen-Specific Interferon-Gamma Responses and Innate Cytokine Balance in TB-IRIS

    PubMed Central

    Goovaerts, Odin; Jennes, Wim; Massinga-Loembé, Marguerite; Ceulemans, Ann; Worodria, William; Mayanja-Kizza, Harriet; Colebunders, Robert; Kestens, Luc

    2014-01-01

    Background Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) remains a poorly understood complication in HIV-TB patients receiving antiretroviral therapy (ART). TB-IRIS could be associated with an exaggerated immune response to TB-antigens. We compared the recovery of IFNγ responses to recall and TB-antigens and explored in vitro innate cytokine production in TB-IRIS patients. Methods In a prospective cohort study of HIV-TB co-infected patients treated for TB before ART initiation, we compared 18 patients who developed TB-IRIS with 18 non-IRIS controls matched for age, sex and CD4 count. We analyzed IFNγ ELISpot responses to CMV, influenza, TB and LPS before ART and during TB-IRIS. CMV and LPS stimulated ELISpot supernatants were subsequently evaluated for production of IL-12p70, IL-6, TNFα and IL-10 by Luminex. Results Before ART, all responses were similar between TB-IRIS patients and non-IRIS controls. During TB-IRIS, IFNγ responses to TB and influenza antigens were comparable between TB-IRIS patients and non-IRIS controls, but responses to CMV and LPS remained significantly lower in TB-IRIS patients. Production of innate cytokines was similar between TB-IRIS patients and non-IRIS controls. However, upon LPS stimulation, IL-6/IL-10 and TNFα/IL-10 ratios were increased in TB-IRIS patients compared to non-IRIS controls. Conclusion TB-IRIS patients did not display excessive IFNγ responses to TB-antigens. In contrast, the reconstitution of CMV and LPS responses was delayed in the TB-IRIS group. For LPS, this was linked with a pro-inflammatory shift in the innate cytokine balance. These data are in support of a prominent role of the innate immune system in TB-IRIS. PMID:25415590

  13. Innate Immune Responses to Cryptococcus

    PubMed Central

    Heung, Lena J.

    2017-01-01

    Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system. PMID:28936464

  14. Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease

    PubMed Central

    Fox, Sarah; Leitch, Andrew E.; Duffin, Rodger; Haslett, Christopher; Rossi, Adriano G.

    2010-01-01

    Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses. PMID:20375550

  15. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    PubMed

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  16. Zika Virus Infects Early- and Midgestation Human Maternal Decidual Tissues, Inducing Distinct Innate Tissue Responses in the Maternal-Fetal Interface.

    PubMed

    Weisblum, Yiska; Oiknine-Djian, Esther; Vorontsov, Olesya M; Haimov-Kochman, Ronit; Zakay-Rones, Zichria; Meir, Karen; Shveiky, David; Elgavish, Sharona; Nevo, Yuval; Roseman, Moshe; Bronstein, Michal; Stockheim, David; From, Ido; Eisenberg, Iris; Lewkowicz, Aya A; Yagel, Simcha; Panet, Amos; Wolf, Dana G

    2017-02-15

    Zika virus (ZIKV) has emerged as a cause of congenital brain anomalies and a range of placenta-related abnormalities, highlighting the need to unveil the modes of maternal-fetal transmission. The most likely route of vertical ZIKV transmission is via the placenta. The earliest events of ZIKV transmission in the maternal decidua, representing the maternal uterine aspect of the chimeric placenta, have remained unexplored. Here, we show that ZIKV replicates in first-trimester human maternal-decidual tissues grown ex vivo as three-dimensional (3D) organ cultures. An efficient viral spread in the decidual tissues was demonstrated by the rapid upsurge and continued increase of tissue-associated ZIKV load and titers of infectious cell-free virus progeny, released from the infected tissues. Notably, maternal decidual tissues obtained at midgestation remained similarly susceptible to ZIKV, whereas fetus-derived chorionic villi demonstrated reduced ZIKV replication with increasing gestational age. A genome-wide transcriptome analysis revealed that ZIKV substantially upregulated the decidual tissue innate immune responses. Further comparison of the innate tissue response patterns following parallel infections with ZIKV and human cytomegalovirus (HCMV) revealed that unlike HCMV, ZIKV did not induce immune cell activation or trafficking responses in the maternal-fetal interface but rather upregulated placental apoptosis and cell death molecular functions. The data identify the maternal uterine aspect of the human placenta as a likely site of ZIKV transmission to the fetus and further reveal distinct patterns of innate tissue responses to ZIKV. Our unique experimental model and findings could further serve to study the initial stages of congenital ZIKV transmission and pathogenesis and evaluate the effect of new therapeutic interventions. In view of the rapid spread of the current ZIKV epidemic and the severe manifestations of congenital ZIKV infection, it is crucial to learn

  17. Expression kinetics of key genes in the early innate immune response to Great Lakes viral hemorrhagic septicemia virus IVb infection in yellow perch (Perca flavescens)

    USGS Publications Warehouse

    Olson, Wendy; Emmenegger, Eveline; Glenn, Jolene; Simchick, Crystal; Winton, Jim; Goetz, Frederick

    2013-01-01

    The recently discovered strain of viral hemorrhagic septicemia virus, VHSV-IVb, represents an example of the introduction of an extremely pathogenic rhabdovirus capable of infecting a wide variety of new fish species in a new host-environment. The goal of the present study was to delineate the expression kinetics of key genes in the innate immune response relative to the very early stages of VHSV-IVb infection using the yellow perch (Perca flavescens) as a model. Administration of VHSV-IVb by IP-injection into juvenile yellow perch resulted in 84% cumulative mortality, indicating their high susceptibility to this disease. In fish sampled in the very early stages of infection, a significant up-regulation of Mx gene expression in the liver, as well as IL-1β and SAA activation in the head kidney, spleen, and liver was directly correlated to viral load. The potential down-regulation of Mx in the hematopoietic tissues, head kidney and spleen, may represent a strategy utilized by the virus to increase replication.

  18. Human innate lymphoid cells.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Interleukins 12 and 15 induce cytotoxicity and early NK-cell differentiation in type 3 innate lymphoid cells.

    PubMed

    Raykova, Ana; Carrega, Paolo; Lehmann, Frank M; Ivanek, Robert; Landtwing, Vanessa; Quast, Isaak; Lünemann, Jan D; Finke, Daniela; Ferlazzo, Guido; Chijioke, Obinna; Münz, Christian

    2017-12-26

    Type 3 innate lymphoid cells (ILC3s) fulfill protective functions at mucosal surfaces via cytokine production. Although their plasticity to become ILC1s, the innate counterparts of type 1 helper T cells, has been described previously, we report that they can differentiate into cytotoxic lymphocytes with many characteristics of early differentiated natural killer (NK) cells. This transition is promoted by the proinflammatory cytokines interleukin 12 (IL-12) and IL-15, and correlates with expression of the master transcription factor of cytotoxicity, eomesodermin (Eomes). As revealed by transcriptome analysis and flow cytometric profiling, differentiated ILC3s express CD94, NKG2A, NKG2C, CD56, and CD16 among other NK-cell receptors, and possess all components of the cytotoxic machinery. These characteristics allow them to recognize and kill leukemic cells with perforin and granzymes. Therefore, ILC3s can be harnessed for cytotoxic responses via differentiation under the influence of proinflammatory cytokines.

  20. Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen Mucor circinelloides in Innate Granulomas In Vivo

    PubMed Central

    2018-01-01

    ABSTRACT Mucormycosis is an emerging fungal infection with extremely high mortality rates in patients with defects in their innate immune response, specifically in functions mediated through phagocytes. However, we currently have a limited understanding of the molecular and cellular interactions between these innate immune effectors and mucormycete spores during the early immune response. Here, the early events of innate immune recruitment in response to infection by Mucor circinelloides spores are modeled by a combined in silico modeling approach and real-time in vivo microscopy. Phagocytes are rapidly recruited to the site of infection in a zebrafish larval model of mucormycosis. This robust early recruitment protects from disease onset in vivo. In silico analysis identified that protection is dependent on the number of phagocytes at the infection site, but not the speed of recruitment. The mathematical model highlights the role of proinflammatory signals for phagocyte recruitment and the importance of inhibition of spore germination for protection from active fungal disease. These in silico data are supported by an in vivo lack of fungal spore killing and lack of reactive oxygen burst, which together result in latent fungal infection. During this latent stage of infection, spores are controlled in innate granulomas in vivo. Disease can be reactivated by immunosuppression. Together, these data represent the first in vivo real-time analysis of innate granuloma formation during the early stages of a fungal infection. The results highlight a potential latent stage during mucormycosis that should urgently be considered for clinical management of patients. PMID:29588406

  1. Innate immune responses of temperamental and calm cattle after transportation

    USDA-ARS?s Scientific Manuscript database

    The objective was to investigate measures of cellular innate immune responses among calm and temperamental Brahman bulls in response to handling and transportation. Sixteen Brahman bulls (344 ± 37 days of age; 271.6 ± 45.5 kg BW) classified as either calm (n = 8) or temperamental (n = 8) were loaded...

  2. Cancer Immunosurveillance by Tissue-resident Innate Lymphoid Cells and Innate-like T Cells

    PubMed Central

    Dadi, Saïda; Chhangawala, Sagar; Whitlock, Benjamin M.; Franklin, Ruth A.; Luo, Chong T.; Oh, Soyoung A.; Toure, Ahmed; Pritykin, Yuri; Huse, Morgan; Leslie, Christina S.; Li, Ming O.

    2016-01-01

    Summary Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remain obscure. Here we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, TCRαβ and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a and CD103, these cells share a gene expression signature distinct from those of conventional NK cells, T cells and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15, but not Nfil3, deficiency results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type 1-like innate lymphoid cells and type 1 innate-like T cells. PMID:26806130

  3. Early handling, but not maternal separation, decreases emotional responses in two paradigms of fear without changes in mesolimbic dopamine.

    PubMed

    Madruga, Clarice; Xavier, Léder L; Achaval, Matilde; Sanvitto, Gilberto L; Lucion, Aldo B

    2006-01-30

    This study aimed at identifying the effects of neonatal handling (H) and maternal separation (MS) on two paradigms of fear, learned and innate, and on the tyrosine hydroxylase (TH) immunoreactive cells in adult life. Wistar rats were daily handled with a brief maternal separation, maternal separated for 3 h or left undisturbed during the first 10 days of life. Behavioural responses in the open-field (innate fear) and conditioned fear (learned fear) were evaluated. Moreover, a semi-quantitative analysis of TH immunoreactivity in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) was performed using optical densitometry and confirmed by planar measurements of neuronal density. Early handling decreased behaviour responses of innate and learned fear in adult life, while maternal separation had no significant long-lasting effect on these responses compared to the non-handled group. The behavioural effects of early handling could not be explained by changes in the density of midbrain dopaminergic cells, which were not affected by handling or maternal separation.

  4. Ambient ozone and pulmonary innate immunity

    PubMed Central

    Al-Hegelan, Mashael; Tighe, Robert M.; Castillo, Christian; Hollingsworth, John W.

    2013-01-01

    Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk. PMID:21132467

  5. Group 1 innate lymphoid cells in Toxoplasma gondii infection.

    PubMed

    Dunay, I R; Diefenbach, A

    2018-02-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that carry out important functions in immunity to infections and in organ homeostasis at epithelial barrier surfaces. ILCs are innate immune cells that provide an early source of cytokines to initiate immune responses against pathogens. Cytotoxic ILCs (i.e. conventional (c)NK cells) and several subsets of helper-like ILCs are the major branches of the ILC family. Conventional NK cells and group 1 ILCs share several characteristics such as surface receptors and the ability to produce IFN-γ upon activation, but they differ in their developmental paths and in their dependence on specific transcription factors. Infection of mice with the intracellular parasite Toxoplasma gondii is followed by a strong Th1-mediated immune response. Previous studies indicate that NK1.1 + cells contribute to the production of IFN-γ and TNF and cytotoxicity during acute T. gondii infection. Upon oral infection, the parasite infects intestinal enterocytes, and within the lamina propria, innate immune responses lead to initial parasite control although the infection disseminates widely and persists long-term in immune privileged sites despite adaptive immunity. Upon parasite entry into the small intestine, during the acute stage, ILC1 produce high levels of IFN-γ and TNF protecting barrier surfaces, thus essentially contributing to early parasite control. We will discuss here the role of innate lymphocytes during T. gondii infection in the context of the only recently appreciated diversity of ILC subsets. © 2018 John Wiley & Sons Ltd.

  6. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages.

    PubMed

    Feng, Min; Dai, Manman; Cao, Weisheng; Tan, Yan; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2017-01-01

    Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  7. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila.

    PubMed

    Petersen, Andrew J; Rimkus, Stacey A; Wassarman, David A

    2012-03-13

    To investigate the mechanistic basis for central nervous system (CNS) neurodegeneration in the disease ataxia-telangiectasia (A-T), we analyzed flies mutant for the causative gene A-T mutated (ATM). ATM encodes a protein kinase that functions to monitor the genomic integrity of cells and control cell cycle, DNA repair, and apoptosis programs. Mutation of the C-terminal amino acid in Drosophila ATM inhibited the kinase activity and caused neuron and glial cell death in the adult brain and a reduction in mobility and longevity. These data indicate that reduced ATM kinase activity is sufficient to cause neurodegeneration in A-T. ATM kinase mutant flies also had elevated expression of innate immune response genes in glial cells. ATM knockdown in glial cells, but not neurons, was sufficient to cause neuron and glial cell death, a reduction in mobility and longevity, and elevated expression of innate immune response genes in glial cells, indicating that a non-cell-autonomous mechanism contributes to neurodegeneration in A-T. Taken together, these data suggest that early-onset CNS neurodegeneration in A-T is similar to late-onset CNS neurodegeneration in diseases such as Alzheimer's in which uncontrolled inflammatory response mediated by glial cells drives neurodegeneration.

  8. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection

    PubMed Central

    Schilling, Megan A.; Katani, Robab; Memari, Sahar; Cavanaugh, Meredith; Buza, Joram; Radzio-Basu, Jessica; Mpenda, Fulgence N.; Deist, Melissa S.; Lamont, Susan J.; Kapur, Vivek

    2018-01-01

    Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens. PMID:29535762

  9. Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen Mucor circinelloides in Innate Granulomas In Vivo.

    PubMed

    Inglesfield, Sarah; Jasiulewicz, Aleksandra; Hopwood, Matthew; Tyrrell, James; Youlden, George; Mazon-Moya, Maria; Millington, Owain R; Mostowy, Serge; Jabbari, Sara; Voelz, Kerstin

    2018-03-27

    Mucormycosis is an emerging fungal infection with extremely high mortality rates in patients with defects in their innate immune response, specifically in functions mediated through phagocytes. However, we currently have a limited understanding of the molecular and cellular interactions between these innate immune effectors and mucormycete spores during the early immune response. Here, the early events of innate immune recruitment in response to infection by Mucor circinelloides spores are modeled by a combined in silico modeling approach and real-time in vivo microscopy. Phagocytes are rapidly recruited to the site of infection in a zebrafish larval model of mucormycosis. This robust early recruitment protects from disease onset in vivo In silico analysis identified that protection is dependent on the number of phagocytes at the infection site, but not the speed of recruitment. The mathematical model highlights the role of proinflammatory signals for phagocyte recruitment and the importance of inhibition of spore germination for protection from active fungal disease. These in silico data are supported by an in vivo lack of fungal spore killing and lack of reactive oxygen burst, which together result in latent fungal infection. During this latent stage of infection, spores are controlled in innate granulomas in vivo Disease can be reactivated by immunosuppression. Together, these data represent the first in vivo real-time analysis of innate granuloma formation during the early stages of a fungal infection. The results highlight a potential latent stage during mucormycosis that should urgently be considered for clinical management of patients. IMPORTANCE Mucormycosis is a dramatic fungal infection frequently leading to the death of patients. We know little about the immune response to the fungus causing this infection, although evidence points toward defects in early immune events after infection. Here, we dissect this early immune response to infectious fungal

  10. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses

    PubMed Central

    Barth, Kenneth; Genco, Caroline Attardo

    2016-01-01

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456

  11. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    PubMed

    Puill-Stephan, Eneour; Seneca, François O; Miller, David J; van Oppen, Madeleine J H; Willis, Bette L

    2012-01-01

    Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further

  12. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches

    NASA Astrophysics Data System (ADS)

    de Coster, Greet; Verhulst, Simon; Koetsier, Egbert; de Neve, Liesbeth; Briga, Michael; Lens, Luc

    2011-12-01

    Long-term effects of unfavourable conditions during development can be expected to depend on the quality of the environment experienced by the same individuals during adulthood. Yet, in the majority of studies, long-term effects of early developmental conditions have been assessed under favourable adult conditions only. The immune system might be particularly vulnerable to early environmental conditions as its development, maintenance and use are thought to be energetically costly. Here, we studied the interactive effects of favourable and unfavourable conditions during nestling and adult stages on innate immunity (lysis and agglutination scores) of captive male and female zebra finches ( Taeniopygia guttata). Nestling environmental conditions were manipulated by a brood size experiment, while a foraging cost treatment was imposed on the same individuals during adulthood. This combined treatment showed that innate immunity of adult zebra finches is affected by their early developmental conditions and varies between both sexes. Lysis scores, but not agglutination scores, were higher in individuals raised in small broods and in males. However, these effects were only present in birds that experienced low foraging costs. This study shows that the quality of the adult environment may shape the long-term consequences of early developmental conditions on innate immunity, as long-term effects of nestling environment were only evident under favourable adult conditions.

  13. Pathogenesis of graft-versus-host disease: innate immunity amplifying acute alloimmune responses.

    PubMed

    Maeda, Yoshinobu

    2013-09-01

    In addition to reduced-intensity conditioning, which has expanded the eligibility for hematopoietic cell transplantation (HCT) to older patients, increased availability of alternative donors, including HLA-mismatched unrelated donors, has increased access to allogeneic HCT for more patients. However, acute graft-versus-host disease (GVHD) remains a lethal complication, even in HLA-matched donor-recipient pairs. The pathophysiology of GVHD depends on aspects of adaptive immunity and interactions between donor T-cells and host dendritic cells (DCs). Recent work has revealed that the role of other immune cells and endothelial cells and components of the innate immune response are also important. Tissue damage caused by the conditioning regimen leads to the release of exogenous and endogenous "danger signals". Exogenous danger signals called pathogen-associated molecular patterns and endogenous noninfectious molecules known as damage-associated molecular patterns (DAMPs) are responsible for initiating or amplifying acute GVHD by enhancing DC maturation and alloreactive T-cell responses. A significant association of innate immune receptor polymorphisms with outcomes, including GVHD severity, was observed in patients receiving allogeneic HCT. Understanding of the role of innate immunity in acute GVHD might offer new therapeutic approaches.

  14. Inhibition of Innate Immune Responses Is Key to Pathogenesis by Arenaviruses.

    PubMed

    Meyer, Bjoern; Ly, Hinh

    2016-04-01

    Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. The innate immune response to RSV: Advances in our understanding of critical viral and host factors.

    PubMed

    Sun, Yan; López, Carolina B

    2017-01-11

    Respiratory syncytial virus (RSV) causes mild to severe respiratory illness in humans and is a major cause of hospitalizations of infants and the elderly. Both the innate and the adaptive immune responses contribute to the control of RSV infection, but despite successful viral clearance, protective immunity against RSV re-infection is usually suboptimal and infections recur. Poor understanding of the mechanisms limiting the induction of long-lasting immunity has delayed the development of an effective vaccine. The innate immune response plays a critical role in driving the development of adaptive immunity and is thus a crucial determinant of the infection outcome. Advances in recent years have improved our understanding of cellular and viral factors that influence the onset and quality of the innate immune response to RSV. These advances include the identification of a complex system of cellular sensors that mediate RSV detection and stimulate transcriptome changes that lead to virus control and the discovery that cell stress and apoptosis participate in the control of RSV infection. In addition, it was recently demonstrated that defective viral genomes (DVGs) generated during RSV replication are the primary inducers of the innate immune response. Newly discovered host pathways involved in the innate response to RSV, together with the potential generation of DVG-derived oligonucleotides, present various novel opportunities for the design of vaccine adjuvants able to induce a protective response against RSV and similar viruses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    PubMed Central

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  17. Innate Immune Responses in ALV-J Infected Chicks and Chickens with Hemangioma In Vivo.

    PubMed

    Feng, Min; Dai, Manman; Xie, Tingting; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2016-01-01

    Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression. Since the precise mechanism of the innate immune response induced by ALV-J is unknown, we investigated the antiviral innate immune responses induced by ALV-J in chicks and chickens that had developed tumors. Spleen levels of interleukin-6 (IL-6), IL-10, IL-1β, and interferon-β (IFN-β) were not significantly different between the infected chick groups and the control groups from 1 day post hatch to 7 days post hatch. However, IL-6, IL-1β, and IFN-β protein levels in the three clinical samples with hemangiomas were dramatically increased compared to the healthy samples. In addition, the anti-inflammatory cytokine IL-10 increased sharply in two of three clinical samples. We also found a more than 20-fold up-regulation of ISG12-1 mRNA at 1 day post infection (d.p.i.) and a twofold up-regulation of ZC3HAV1 mRNA at 4 d.p.i. However, there were no statistical differences in ISG12-1 and ZC3HAV1 mRNA expression levels in the tumorigenesis phase. ALV-J infection induced a significant increase of Toll-like receptor 7 (TLR-7) at 1 d.p.i. and dramatically increased the mRNA levels of melanoma differentiation-associated gene 5 (MDA5) in the tumorigenesis phase. Moreover, the protein levels of interferon regulatory factor 1 (IRF-1) and signal transducer and activator of transcription 1 (STAT1) were decreased in chickens with tumors. These results suggest that ALV-J was primarily recognized by chicken TLR7 and MDA5 at early and late in vivo infection stages, respectively. ALV-J strain SCAU-HN06 did not induce any significant antiviral innate immune response in 1 week old chicks. However, interferon-stimulated genes were not induced normally during the late phase of ALV-J infection due to a reduction of IRF1 and STAT1 expression.

  18. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  19. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  20. N-butyldeoxynojirimycin treatment restores the innate fear response and improves learning in mucopolysaccharidosis IIIA mice.

    PubMed

    Kaidonis, Xenia; Byers, Sharon; Ranieri, Enzo; Sharp, Peter; Fletcher, Janice; Derrick-Roberts, Ainslie

    2016-06-01

    Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and the secondary neuronal storage of gangliosides GM2 and GM3 in the brain. GM2 storage is associated with CNS deterioration in the GM2 gangliosidosis group of lysosomal storage disorders and may also contribute to MPS CNS disease. N-butyldeoxynojirimycin, an inhibitor of ceramide glucosyltransferase activity and therefore of ganglioside synthesis, was administered to MPS IIIA mice both prior to maximal GM2 and GM3 accumulation (early treatment) and after the maximum level of ganglioside had accumulated in the brain (late treatment) to determine if behaviour was altered by ganglioside level. Ceramide glucosyltransferase activity was decreased in both treatment groups; however, brain ganglioside levels were only decreased in the late treatment group. Learning in the water cross maze was improved in both groups and the innate fear response was also restored in both groups. A reduction in the expression of inflammatory gene Ccl3 was observed in the early treatment group, while IL1β expression was reduced in both treatment groups. Thus, it appears that NB-DNJ elicits a transient decrease in brain ganglioside levels, some modulation of inflammatory cytokines and a functional improvement in behaviour that can be elicited both before and after overt neurological changes manifest. NB-DNJ improves learning and restores the innate fear response in MPS IIIA mice by decreasing ceramide glucosyltransferase activity and transiently reducing ganglioside storage and/or modulating inflammatory signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis.

    PubMed

    Mueller, Tobias; Beutler, Claudia; Picó, Almudena Hurtado; Shibolet, Oren; Pratt, Daniel S; Pascher, Andreas; Neuhaus, Peter; Wiedenmann, Bertram; Berg, Thomas; Podolsky, Daniel K

    2011-11-01

    Pattern recognition receptors (PRRs) orchestrate the innate immune defence in human biliary epithelial cells (BECs). Tight control of PRR signalling provides tolerance to physiological amounts of intestinal endotoxins in human bile to avoid constant innate immune activation in BECs. We wanted to determine whether inappropriate innate immune responses to intestinal endotoxins contribute to the development and perpetuation of chronic biliary inflammation. We examined PRR-mediated innate immune responses and protective endotoxin tolerance in primary BECs isolated from patients with primary sclerosing cholangitis (PSC), alcoholic liver disease and patients without chronic liver disease. Expression studies comprised northern blots, RT-PCR, Western blots and immunocytochemistry. Functional studies comprised immuno-precipitation Western blots, FACS for endotoxin uptake, and NF-κB activation assays and ELISA for secreted IL-8 and tumour necrosis factor (TNF)-α. Primary BECs from explanted PSC livers showed reversibly increased TLR and NOD protein expression and activation of the MyD88/IRAK signalling complex. Consecutively, PSC BECs exhibited inappropriate innate immune responses to endotoxins and did not develop immune tolerance after repeated endotoxin exposures. This endotoxin hyper-responsiveness was probably because of the stimulatory effect of abundantly expressed IFN-γ and TNF-α in PSC livers, which stimulated TLR4-mediated endotoxin signalling in BECs, leading to increased TLR4-mediated endotoxin incorporation and impaired inactivation of the TLR4 signalling cascade. As TNF-α inhibition partly restored protective innate immune tolerance, endogenous TNF-α secretion probably contributed to inappropriate endotoxin responses in BECs. Inappropriate innate immune responses to intestinal endotoxins and subsequent endotoxin intolerance because of enhanced PRR signalling in BECs probably contribute to chronic cholangitis. © 2011 John Wiley & Sons A/S.

  2. Trade-offs between acquired and innate immune defenses in humans

    PubMed Central

    McDade, Thomas W.; Georgiev, Alexander V.; Kuzawa, Christopher W.

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  3. [Inflammasome and its role in immunological and inflammatory response at early stage of burns].

    PubMed

    Zhang, Fang; Li, Jiahui; Xia, Zhaofan

    2014-06-01

    Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.

  4. Innate immune memory in plants.

    PubMed

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection

    PubMed Central

    Xu, Zhipeng; Xu, Lei; Li, Wei; Jin, Xin; Song, Xian; Chen, Xiaojun; Zhu, Jifeng; Zhou, Sha; Li, Yong; Zhang, Weiwei; Dong, Xiaoxiao; Yang, Xiaowei; Liu, Feng; Bai, Hui; Chen, Qi; Su, Chuan

    2017-01-01

    The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses. PMID:28695899

  6. [Innate immune response to RNA virus infection].

    PubMed

    Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa

    2011-12-01

    Viral RNA is recognized by RIG-I-like receptors and Toll-like receptors. RIG-I is a cytoplasmic viral RNA sensor. High Mobility Group Box (HMGB) proteins and DExD/H box RNA helicases, such as DDX3 and 60, associate with viral RNA. Those proteins promotes the RIG-I binding to viral RNA. RIG-I triggers the signal via IPS-1 adaptor molecule to induce type I IFN. RIG-I harbors Lys63-linked polyubiquitination by Riplet and TRIM25 ubiquitin ligases. The polyubiquitination is essential for RIG-I-mediated signaling. Toll-like receptors are located in endosome. TLR3 recognizes viral double-stranded RNA, and TLR7 and 8 recognize single-strand RNA. Virus has the ability to suppress these innate immune response. For example, to inhibit RIG-I-mediated signaling, HCV core protein suppresses the function of DDX3. In addition, HCV NS3-4A protein cleaves IPS-1 to inhibit the signal. Molecular mechanism of how viral RNA is recognized by innate immune system will make great progress on our understanding of how virus escapes from host immune system.

  7. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  8. Innate immune response of channel catfish (Ictalurus punctatus) mannose-binding lectin to channel catfish virus

    USDA-ARS?s Scientific Manuscript database

    The channel catfish virus (CCV) is a pathogenic herpesvirus that infects channel catfish (Ictalurus punctatus) in pond aquaculture in the Southeast USA. The innate immune protein mannose-binding lectin (MBL) could play an important role in the innate response of channel catfish by binding to the CC...

  9. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    PubMed

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  10. Responses of innate immune cells to group A Streptococcus

    PubMed Central

    Fieber, Christina; Kovarik, Pavel

    2014-01-01

    Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies. PMID:25325020

  11. Characteristics of the early immune response following transplantation of mouse ES cell derived insulin-producing cell clusters.

    PubMed

    Boyd, Ashleigh S; Wood, Kathryn J

    2010-06-04

    The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT.

  12. Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium.

    PubMed

    Kim, Sujin; Kim, Min-Ji; Park, Do Yang; Chung, Hyo Jin; Kim, Chang-Hoon; Yoon, Joo-Heon; Kim, Hyun Jik

    2015-07-01

    The innate immune system of the nasal epithelium serves as a first line of defense against invading respiratory viruses including influenza A virus (IAV). Recently, it was verified that interferon (IFN)-related immune responses play a critical role in local antiviral innate immunity. Reactive oxygen species (ROS) generation by exogenous pathogens has also been demonstrated in respiratory epithelial cells and modulation of ROS has been reported to be important for respiratory virus-induced innate immune mechanisms. Passage-2 normal human nasal epithelial (NHNE) cells were inoculated with IAV (WS/33, H1N1) to assess the sources of IAV-induced ROS and the relationship between ROS and IFN-related innate immune responses. Both STAT1 and STAT2 phosphorylation and the mRNA levels of IFN-stimulated genes, including Mx1, 2,5-OAS1, IFIT1, and CXCL10, were induced after IAV infection up to three days post infection. Similarly, we observed that mitochondrial ROS generation increased maximally at 2 days after IAV infection. After suppression of mitochondrial ROS generation, IAV-induced phosphorylation of STAT and mRNA levels of IFN-stimulated genes were attenuated and actually, viral titers of IAV were significantly higher in cases with scavenging ROS. Our findings suggest that mitochondrial ROS might be responsible for controlling IAV infection and may be potential sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae.

    PubMed

    Knox, Benjamin P; Deng, Qing; Rood, Mary; Eickhoff, Jens C; Keller, Nancy P; Huttenlocher, Anna

    2014-10-01

    Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    PubMed

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  15. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1.

    PubMed

    Thomas, Paul G; Dash, Pradyot; Aldridge, Jerry R; Ellebedy, Ali H; Reynolds, Cory; Funk, Amy J; Martin, William J; Lamkanfi, Mohamed; Webby, Richard J; Boyd, Kelli L; Doherty, Peter C; Kanneganti, Thirumala-Devi

    2009-04-17

    Virus-induced interlukin-1beta (IL-1beta) and IL-18 production in macrophages are mediated via caspase-1 pathway. Multiple microbial components, including viral RNA, are thought to trigger assembly of the cryopyrin inflammasome resulting in caspase-1 activation. Here, we demonstrated that Nlrp3(-/-) and Casp1(-/-) mice were more susceptible than wild-type mice after infection with a pathogenic influenza A virus. This enhanced morbidity correlated with decreased neutrophil and monocyte recruitment and reduced cytokine and chemokine production. Despite the effect on innate immunity, cryopyrin-deficiency was not associated with any obvious defect in virus control or on the later emergence of the adaptive response. Early epithelial necrosis was, however, more severe in the infected mutants, with extensive collagen deposition leading to later respiratory compromise. These findings reveal a function of the cryopyrin inflammasome in healing responses. Thus, cryopyrin and caspase-1 are central to both innate immunity and to moderating lung pathology in influenza pneumonia.

  16. Yersinia type III effectors perturb host innate immune responses

    PubMed Central

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  17. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    PubMed

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  18. Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora

    PubMed Central

    Puill-Stephan, Eneour; Seneca, François O.; Miller, David J.; van Oppen, Madeleine J. H.; Willis, Bette L.

    2012-01-01

    Background Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Methodology/Principal Findings Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A.millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Conclusions/Significance Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of

  19. Opinion: Interactions of innate and adaptive lymphocytes

    PubMed Central

    Gasteiger, Georg; Rudensky, Alexander Y.

    2015-01-01

    Innate lymphocytes, including natural killer (NK) cells and the recently discovered innate lymphoid cells (ILCs) have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. Less well understood is the contribution of the adaptive immune system to the orchestration of innate lymphocyte responses. We review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a model in which adaptive T cells function as antigen-specific sensors for the activation of innate lymphocytes to amplify and instruct local immune responses. We highlight the potential role of regulatory and helper T cells in these processes and discuss major questions in the emerging area of crosstalk between adaptive and innate lymphocytes. PMID:25132095

  20. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata

    PubMed Central

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C.; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M.; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  1. Induction of innate immunity in control of mucosal transmission of HIV.

    PubMed

    Wang, Yufei; Lehner, Thomas

    2011-09-01

    To present evidence of the role of innate mucosal immunity and to harness this arm of immunity in protection against HIV infection. Dendritic cells, monocytes, natural killer (NK) cells and γδ T cells are critical in innate immunity, which is mediated by Toll-like receptor (TLR) and recently identified stress pathways. Complement factors, cytokines and chemokines have diverse functions usually affecting HIV infection indirectly. A novel group of innate intracellular HIV restriction factors has been identified - APOBEC3G, TRIM5α and tetherin - all of which are upregulated by type I interferons and some by vaccination and TLR agonists. Whereas innate immunity conventionally lacks memory, recent evidence suggests that some of the cells and intracellular factors may express immunological memory-like features. Innate mucosal immunity may provide early effective control of HIV transmission and replication. Some vaccines can enhance innate immune factors, such as APOBEC3G and control HIV during the eclipse period, allowing full weight of neutralizing and/or cytotoxic T cells to develop and prevent mucosal HIV infection. The next generation of vaccines should be designed to target both innate and adaptive immune memory responses.

  2. Innate immunity against HIV-1 infection.

    PubMed

    Altfeld, Marcus; Gale, Michael

    2015-06-01

    During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.

  3. Impairment of innate immune responses in cirrhotic patients and treatment by branched-chain amino acids

    PubMed Central

    Nakamura, Ikuo

    2014-01-01

    It has been reported that host defense responses, such as phagocytic function of neutrophils and natural killer (NK) cell activity of lymphocytes, are impaired in cirrhotic patients. This review will concentrate on the impairment of innate immune responses in decompensated cirrhotic patients and the effect of the treatment by branched-chain amino acids (BCAA) on innate immune responses. We already reported that phagocytic function of neutrophils was significantly improved by 3-mo BCAA supplementation. In addition, the changes of NK activity were also significant at 3 mo of supplementation compared with before supplementation. Also, Fisher’s ratios were reported to be significantly increased at 3 mo of BCAA supplementation compared with those before oral supplementation. Therefore, administration of BCAA could reduce the risk of bacterial and viral infection in patients with decompensated cirrhosis by restoring impaired innate immune responses of the host. In addition, it was also revealed that BCAA oral supplementation could reduce the risk of development of hepatocellular carcinoma in cirrhotic patients. The mechanisms of the effects will also be discussed in this review article. PMID:24966600

  4. The regulation of autoreactive B cells during innate immune responses.

    PubMed

    Vilen, Barbara J; Rutan, Jennifer A

    2008-01-01

    Systemic lupus erythematosus (SLE) highlights the dangers of dysregulated B cells and the importance of initiating and maintaining tolerance. In addition to central deletion, receptor editing, peripheral deletion, receptor revision, anergy, and indifference, we have described a new mechanism of B cell tolerance wherein dendritic cells (DCs) and macrophages (MPhis) regulate autoreactive B cells during innate immune responses. In part, DCs and MPhis repress autoreactive B cells by releasing IL-6 and soluble CD40L (sCD40L). This mechanism is selective in that IL-6 and sCD40L do not affect Ig secretion by naïve cells during innate immune responses, allowing immunity in the absence of autoimmunity. In lupus-prone mice, DCs and MPhis are defective in secretion of IL-6 and sCD40L and cannot effectively repress autoantibody secretion suggesting that defects in DC/MPhi-mediated tolerance may contribute to the autoimmune phenotype. Further, these studies suggest that reconstituting DCs and MPhis in SLE patients might restore regulation of autoreactive B cells and provide an alternative to immunosuppressive therapies.

  5. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses

    PubMed Central

    Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  6. Vaccine antigens modulate the innate response of monocytes to Al(OH)3

    PubMed Central

    Brummelman, Jolanda; van Els, Cécile A. C. M.; Marino, Fabio; Heck, Albert J. R.; van Riet, Elly; Metz, Bernard; Kersten, Gideon F. A.; Pennings, Jeroen L. A.; Meiring, Hugo D.

    2018-01-01

    Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level. PMID:29813132

  7. Infants with low vaccine antibody responses have altered innate cytokine response.

    PubMed

    Surendran, Naveen; Nicolosi, Ted; Pichichero, Michael

    2016-11-11

    We recently identified a population of 10% of infants who respond with sub-protective antibody levels to most routine primary pediatric vaccinations due to altered innate and adaptive immune responses. We term these infants as low vaccine responders (LVRs). Here we report new data showing that TLR7/8 agonist - R848 stimulation of PBMCs of LVR infants elicit significantly lower IFN-α, IL-12p70 and IL-1β, while inducing higher levels of CCL5 (RANTES) compared to normal vaccine responder (NVR) infants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. TRIM25 in the Regulation of the Antiviral Innate Immunity.

    PubMed

    Martín-Vicente, María; Medrano, Luz M; Resino, Salvador; García-Sastre, Adolfo; Martínez, Isidoro

    2017-01-01

    TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5-mitochondrial antiviral signaling protein-TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.

  9. TRIM25 in the Regulation of the Antiviral Innate Immunity

    PubMed Central

    Martín-Vicente, María; Medrano, Luz M.; Resino, Salvador; García-Sastre, Adolfo; Martínez, Isidoro

    2017-01-01

    TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication. PMID:29018447

  10. Mechanisms of innate immune evasion in re-emerging RNA viruses.

    PubMed

    Ma, Daphne Y; Suthar, Mehul S

    2015-06-01

    Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Post-Translational Modification Control of Innate Immunity.

    PubMed

    Liu, Juan; Qian, Cheng; Cao, Xuetao

    2016-07-19

    A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Assessment of the innate immune response in the periparturient cow.

    PubMed

    Trevisi, Erminio; Minuti, Andrea

    2018-02-01

    The transition period is the most critical phase in the life of high yielding dairy cows. Within a few weeks, cows are submitted to many challenges (physiological, nutritional, psychological, management) that require prompt and effective adaptive responses. The immune system is involved in this process, and many changes of the cow's immune system components have been observed around calving. Cows are considered to be immunosuppressed in late lactation, and available data suggest that the immune system is dysregulated around parturition. Significant attention has been focused on modification of cellular functions (e.g. the reduction of phagocytosis and diapedesis), but growing interest concerns the components of the innate immune system, which often exhibits increased responses such as susceptibility to inflammatory events and the related acute phase response (APR). Systemic inflammation plays a significant role in early lactation, affects many liver functions and has been associated with the impairment of cow performance (i.e. reduced feed intake, milk yield, fertility, welfare). The assessment of variations in immune-metabolic indices offers opportunities to predict the onset of the health troubles and to anticipate the proper therapies needed to guarantee health, good welfare and fertility in the following lactation. The frequency of diseases (metabolic and infectious) before calving is rare, but several clues suggest that various metabolic and immune variations can begin during the dry period. Interesting preliminary results encourage this perspective and possible candidates are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Rapid innate defensive responses of mice to looming visual stimuli.

    PubMed

    Yilmaz, Melis; Meister, Markus

    2013-10-21

    Much of brain science is concerned with understanding the neural circuits that underlie specific behaviors. While the mouse has become a favorite experimental subject, the behaviors of this species are still poorly explored. For example, the mouse retina, like that of other mammals, contains ∼20 different circuits that compute distinct features of the visual scene [1, 2]. By comparison, only a handful of innate visual behaviors are known in this species--the pupil reflex [3], phototaxis [4], the optomotor response [5], and the cliff response [6]--two of which are simple reflexes that require little visual processing. We explored the behavior of mice under a visual display that simulates an approaching object, which causes defensive reactions in some other species [7, 8]. We show that mice respond to this stimulus either by initiating escape within a second or by freezing for an extended period. The probability of these defensive behaviors is strongly dependent on the parameters of the visual stimulus. Directed experiments identify candidate retinal circuits underlying the behavior and lead the way into detailed study of these neural pathways. This response is a new addition to the repertoire of innate defensive behaviors in the mouse that allows the detection and avoidance of aerial predators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans.

    PubMed

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; León-Contreras, Juan C; Hernández-Pando, Rogelio; Escobedo, Dante; Torres, Martha; Sada, Eduardo

    2012-04-01

    A role for the nucleotide-binding oligomerization domain 2 (NOD2) receptor in pulmonary innate immune responses has recently been explored. In the present study, we investigated the role that NOD2 plays in human alveolar macrophage innate responses and determined its involvement in the response to infection with virulent Mycobacterium tuberculosis. Our results showed that NOD2 was expressed in human alveolar macrophages, and significant amounts of IL-1β, IL-6, and TNF-α were produced upon ligand recognition with muramyldipeptide (MDP). NOD2 ligation induced the transcription and protein expression of the antimicrobial peptide LL37 and the autophagy enzyme IRGM in alveolar macrophages, demonstrating a novel function for this receptor in these cells. MDP treatment of alveolar macrophages improved the intracellular growth control of virulent M. tuberculosis; this was associated with a significant release of TNF-α and IL-6 and overexpression of bactericidal LL37. In addition, the autophagy proteins IRGM, LC3 and ATG16L1 were recruited to the bacteria-containing autophagosome after treatment with MDP. In conclusion, our results suggest that NOD2 can modulate the innate immune response of alveolar macrophages and play a role in the initial control of respiratory M. tuberculosis infections. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation.

    PubMed

    Wang, Shuo; Xia, Pengyan; Chen, Yi; Qu, Yuan; Xiong, Zhen; Ye, Buqing; Du, Ying; Tian, Yong; Yin, Zhinan; Xu, Zhiheng; Fan, Zusen

    2017-09-21

    An emerging family of innate lymphoid cells (termed ILCs) has an essential role in the initiation and regulation of inflammation. However, it is still unclear how ILCs are regulated in the duration of intestinal inflammation. Here, we identify a regulatory subpopulation of ILCs (called ILCregs) that exists in the gut and harbors a unique gene identity that is distinct from that of ILCs or regulatory T cells (Tregs). During inflammatory stimulation, ILCregs can be induced in the intestine and suppress the activation of ILC1s and ILC3s via secretion of IL-10, leading to protection against innate intestinal inflammation. Moreover, TGF-β1 is induced by ILCregs during the innate intestinal inflammation, and autocrine TGF-β1 sustains the maintenance and expansion of ILCregs. Therefore, ILCregs play an inhibitory role in the innate immune response, favoring the resolution of intestinal inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Beyond NK cells: the expanding universe of innate lymphoid cells.

    PubMed

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  17. Chapter 2: Innate Immunity

    PubMed Central

    Turvey, Stuart E.; Broide, David H.

    2009-01-01

    Recent years have witnessed an explosion of interest in the innate immune system. Questions about how the innate immune system senses infection and empowers a protective immune response are being answered at the molecular level. These basic science discoveries are being translated into a more complete understanding of the central role innate immunity plays in the pathogenesis of many human infectious and inflammatory diseases. It is particularly exciting that we are already seeing a return on these scientific investments with the emergence of novel therapies to harness the power of the innate immune system. In this review we explore the defining characteristics of the innate immune system, and through more detailed examples, we highlight recent breakthroughs that have advanced our understanding of the role of innate immunity in human health and disease. PMID:19932920

  18. Ozone Enhances Pulmonary Innate Immune Response to a Toll-Like Receptor–2 Agonist

    PubMed Central

    Oakes, Judy L.; O’Connor, Brian P.; Warg, Laura A.; Burton, Rachel; Hock, Ashley; Loader, Joan; LaFlamme, Daniel; Jing, Jian; Hui, Lucy; Schwartz, David A.

    2013-01-01

    Previous work demonstrated that pre-exposure to ozone primes innate immunity and increases Toll-like receptor–4 (TLR4)–mediated responses to subsequent stimulation with LPS. To explore the pulmonary innate immune response to ozone exposure further, we investigated the effects of ozone in combination with Pam3CYS, a synthetic TLR2/TLR1 agonist. Whole-lung lavage (WLL) and lung tissue were harvested from C57BL/6 mice after exposure to ozone or filtered air, followed by saline or Pam3CYS 24 hours later. Cells and cytokines in the WLL, the surface expression of TLRs on macrophages, and lung RNA genomic expression profiles were examined. We demonstrated an increased WLL cell influx, increased IL-6 and chemokine KC (Cxcl1), and decreased macrophage inflammatory protein (MIP)-1α and TNF-α in response to Pam3CYS as a result of ozone pre-exposure. We also observed the increased cell surface expression of TLR4, TLR2, and TLR1 on macrophages as a result of ozone alone or in combination with Pam3CYS. Gene expression analysis of lung tissue revealed a significant increase in the expression of genes related to injury repair and the cell cycle as a result of ozone alone or in combination with Pam3CYS. Our results extend previous findings with ozone/LPS to other TLR ligands, and suggest that the ozone priming of innate immunity is a general mechanism. Gene expression profiling of lung tissue identified transcriptional networks and genes that contribute to the priming of innate immunity at the molecular level. PMID:23002100

  19. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA.

    PubMed

    Luo, Wei-Wei; Li, Shu; Li, Chen; Zheng, Zhou-Qin; Cao, Pan; Tong, Zhen; Lian, Huan; Wang, Su-Yun; Shu, Hong-Bing; Wang, Yan-Yi

    2017-11-01

    VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus.

  20. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA

    PubMed Central

    Luo, Wei-Wei; Li, Shu; Cao, Pan; Tong, Zhen; Lian, Huan; Wang, Su-Yun; Shu, Hong-Bing

    2017-01-01

    VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus. PMID:29155878

  1. Co-factors Required for TLR7- and TLR9- dependent Innate Immune Responses

    PubMed Central

    Chiang, Chih-yuan; Engel, Alex; Opaluch, Amanda M.; Ramos, Irene; Maestre, Ana M.; Secundino, Ismael; De Jesus, Paul D.; Nguyen, Quy T.; Welch, Genevieve; Bonamy, Ghislain M.C.; Miraglia, Loren J.; Orth, Anthony P.; Nizet, Victor; Fernandez-Sesma, Ana; Zhou, Yingyao; Barton, Gregory M.; Chanda, Sumit K.

    2012-01-01

    SUMMARY Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent pro-inflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis we identify 190 co-factors required for TLR7- and TLR9-directed signaling responses. A set of co-factors were cross-profiled for their activities downstream of several immunoreceptors, and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection. PMID:22423970

  2. Enhanced innate immune responses in a brood parasitic cowbird species: degranulation and oxidative burst

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    We examined the relative effectiveness of two innate immune responses in two species of New World blackbirds (Passeriformes, Icteridae) that differ in resistance to West Nile virus (WNV). We measured degranulation and oxidative burst, two fundamental components of phagocytosis, and we predicted that the functional effectiveness of these innate immune responses would correspond to the species' relative resistance to WNV. The brown-headed cowbird (Molothrus ater), an obligate brood parasite, had previously shown greater resistance to infection with WNV, lower viremia and faster recovery when infected, and lower subsequent antibody titers than the red-winged blackbird (Agelaius phoeniceus), a close relative that is not a brood parasite. We found that cowbird leukocytes were significantly more functionally efficient than those of the blackbird leukocytes and 50% more effective at killing the challenge bacteria. These results suggest that further examination of innate immunity in the cowbird may provide insight into adaptations that underlie its greater resistance to WNV. These results support an eco-immunological interpretation that species like the cowbird, which inhabit ecological niches with heightened exposure to parasites, experience evolutionary selection for more effective immune responses.

  3. Emerging Concepts in Innate Immunity.

    PubMed

    Pelka, Karin; De Nardo, Dominic

    2018-01-01

    This review introduces recent concepts in innate immunity highlighting some of the latest exciting findings. These include: the discovery of the initiator of pyroptosis, Gasdermin D, and mechanisms of inflammatory caspases in innate immune signaling; the formation of oligomeric signalosomes downstream of innate immune receptors; mechanisms that shape innate immune responses, such as cellular homeostasis, cell metabolism, and pathogen viability; rapid methods of cell-to-cell communication; the interplay between the host and its microbiome and the concept of innate immunological memory. Furthermore, we discuss open questions and illustrate how technological advances, such as CRISPR/Cas9, may provide important answers for outstanding questions in the field of innate immunity.

  4. Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells

    PubMed Central

    Motran, Claudia Cristina; Silvane, Leonardo; Chiapello, Laura Silvina; Theumer, Martin Gustavo; Ambrosio, Laura Fernanda; Volpini, Ximena; Celias, Daiana Pamela; Cervi, Laura

    2018-01-01

    The survival of helminths in the host over long periods of time is the result of a process of adaptation or dynamic co-evolution between the host and the parasite. However, infection with helminth parasites causes damage to the host tissues producing the release of danger signals that induce the recruitment of various cells, including innate immune cells such as macrophages (Mo), dendritic cells (DCs), eosinophils, basophils, and mast cells. In this scenario, these cells are able to secrete soluble factors, which orchestrate immune effector mechanisms that depend on the different niches these parasites inhabit. Here, we focus on recent advances in the knowledge of excretory-secretory products (ESP), resulting from helminth recognition by DCs and Mo. Phagocytes and other cells types such as innate lymphocyte T cells 2 (ILC2), when activated by ESP, participate in an intricate cytokine network to generate innate and adaptive Th2 responses. In this review, we also discuss the mechanisms of innate immune cell-induced parasite killing and the tissue repair necessary to assure helminth survival over long periods of time. PMID:29670630

  5. Innate or Acquired? - Disentangling Number Sense and Early Number Competencies.

    PubMed

    Siemann, Julia; Petermann, Franz

    2018-01-01

    The clinical profile termed developmental dyscalculia (DD) is a fundamental disability affecting children already prior to arithmetic schooling, but the formal diagnosis is often only made during school years. The manifold associated deficits depend on age, education, developmental stage, and task requirements. Despite a large body of studies, the underlying mechanisms remain dubious. Conflicting findings have stimulated opposing theories, each presenting enough empirical support to remain a possible alternative. A so far unresolved question concerns the debate whether a putative innate number sense is required for successful arithmetic achievement as opposed to a pure reliance on domain-general cognitive factors. Here, we outline that the controversy arises due to ambiguous conceptualizations of the number sense. It is common practice to use early number competence as a proxy for innate magnitude processing, even though it requires knowledge of the number system. Therefore, such findings reflect the degree to which quantity is successfully transferred into symbols rather than informing about quantity representation per se . To solve this issue, we propose a three-factor account and incorporate it into the partly overlapping suggestions in the literature regarding the etiology of different DD profiles. The proposed view on DD is especially beneficial because it is applicable to more complex theories identifying a conglomerate of deficits as underlying cause of DD.

  6. Human Innate Immune Responses to Hexamethylene Diisocyanate (HDI) and HDI-Albumin Conjugates

    PubMed Central

    Wisnewski, Adam V.; Liu, Qing; Liu, Jian; Redlich, Carrie A.

    2011-01-01

    Background Isocyanates, a leading cause of occupational asthma, are known to induce adaptive immune responses; however, innate immune responses, which generally precede and regulate adaptive immunity, remain largely uncharacterized. Objective Identify and characterize cellular, molecular and systemic innate immune responses induced by hexamethylene diisocyanate (HDI). Methods Human peripheral blood mononuclear cells (PBMCs) were stimulated in vitro with HDI-albumin conjugates or control antigen, and changes in phenotype, gene, and protein expression were characterized by flow cytometry, microarray, Western blot and ELISA. Cell uptake of isocyanate was visualized microscopically using HDI-albumin conjugates prepared with fluorescently-labeled albumin. In vivo, human HDI exposure was performed via specific inhalation challenge, and subsequent changes in PBMCs and serum proteins were measured by flow cytometry and ELISA. Genotypes were determined by PCR. Results Human monocytes take-up HDI-albumin conjugates and undergo marked changes in morphology and gene/protein expression in vitro. The most significant (p 0.007 – 0.05) changes in mircoarray gene expression were noted in lysosomal genes, especially peptidases and proton pumps involved in antigen processing. Chemokines that regulate monocyte/macrophage trafficking (MIF, MCP-1), and pattern recognition receptors that bind chitin (chitinases) and oxidized low-density lipoprotein (CD68) were also increased following isocyanate-albumin exposure. In vivo, HDI exposed subjects exhibited an acute increase in the percentage of PBMCs with the same HDI-albumin responsive phenotype characterized in vitro (HLA-DR+/CD11c+ with altered light scatter properties). An exposure-dependent decrease (46±11%; p<0.015) in serum concentrations of chitinase-3-like-1 was also observed, in individuals that lack the major (type 1) human chitinase (due to genetic polymorphism), but not in individuals possessing at least one functional

  7. The Receptor That Tames the Innate Immune Response

    PubMed Central

    Brines, Michael; Cerami, Anthony

    2012-01-01

    Tissue injury, hypoxia and significant metabolic stress activate innate immune responses driven by tumor necrosis factor (TNF)-α and other proinflammatory cytokines that typically increase damage surrounding a lesion. In a compensatory protective response, erythropoietin (EPO) is synthesized in surrounding tissues, which subsequently triggers antiinflammatory and antiapoptotic processes that delimit injury and promote repair. What we refer to as the sequelae of injury or disease are often the consequences of this intentionally discoordinated, primitive system that uses a “scorched earth” strategy to rid the invader at the expense of a serious lesion. The EPO-mediated tissue-protective system depends on receptor expression that is upregulated by inflammation and hypoxia in a distinctive temporal and spatial pattern. The tissue-protective receptor (TPR) is generally not expressed by normal tissues but becomes functional immediately after injury. In contrast to robust and early receptor expression within the immediate injury site, EPO production is delayed, transient and relatively weak. The functional EPO receptor that attenuates tissue injury is distinct from the hematopoietic receptor responsible for erythropoiesis. On the basis of current evidence, the TPR is composed of the β common receptor subunit (CD131) in combination with the same EPO receptor subunit that is involved in erythropoiesis. Additional receptors, including that for the vascular endothelial growth factor, also appear to be a component of the TPR in some tissues, for example, the endothelium. The discoordination of the EPO response system and its relative weakness provide a window of opportunity to intervene with the exogenous ligand. Recently, molecules were designed that preferentially activate only the TPR and thus avoid the potential adverse consequences of activating the hematopoietic receptor. On administration, these agents successfully substitute for a relative deficiency of EPO

  8. The receptor that tames the innate immune response.

    PubMed

    Brines, Michael; Cerami, Anthony

    2012-05-09

    Tissue injury, hypoxia and significant metabolic stress activate innate immune responses driven by tumor necrosis factor (TNF)-α and other proinflammatory cytokines that typically increase damage surrounding a lesion. In a compensatory protective response, erythropoietin (EPO) is synthesized in surrounding tissues, which subsequently triggers antiinflammatory and antiapoptotic processes that delimit injury and promote repair. What we refer to as the sequelae of injury or disease are often the consequences of this intentionally discoordinated, primitive system that uses a "scorched earth" strategy to rid the invader at the expense of a serious lesion. The EPO-mediated tissue-protective system depends on receptor expression that is upregulated by inflammation and hypoxia in a distinctive temporal and spatial pattern. The tissue-protective receptor (TPR) is generally not expressed by normal tissues but becomes functional immediately after injury. In contrast to robust and early receptor expression within the immediate injury site, EPO production is delayed, transient and relatively weak. The functional EPO receptor that attenuates tissue injury is distinct from the hematopoietic receptor responsible for erythropoiesis. On the basis of current evidence, the TPR is composed of the β common receptor subunit (CD131) in combination with the same EPO receptor subunit that is involved in erythropoiesis. Additional receptors, including that for the vascular endothelial growth factor, also appear to be a component of the TPR in some tissues, for example, the endothelium. The discoordination of the EPO response system and its relative weakness provide a window of opportunity to intervene with the exogenous ligand. Recently, molecules were designed that preferentially activate only the TPR and thus avoid the potential adverse consequences of activating the hematopoietic receptor. On administration, these agents successfully substitute for a relative deficiency of EPO

  9. Lysosomal Protein Lamtor1 Controls Innate Immune Responses via Nuclear Translocation of Transcription Factor EB.

    PubMed

    Hayama, Yoshitomo; Kimura, Tetsuya; Takeda, Yoshito; Nada, Shigeyuki; Koyama, Shohei; Takamatsu, Hyota; Kang, Sujin; Ito, Daisuke; Maeda, Yohei; Nishide, Masayuki; Nojima, Satoshi; Sarashina-Kida, Hana; Hosokawa, Takashi; Kinehara, Yuhei; Kato, Yasuhiro; Nakatani, Takeshi; Nakanishi, Yoshimitsu; Tsuda, Takeshi; Koba, Taro; Okada, Masato; Kumanogoh, Atsushi

    2018-06-01

    Amino acid metabolism plays important roles in innate immune cells, including macrophages. Recently, we reported that a lysosomal adaptor protein, Lamtor1, which serves as the scaffold for amino acid-activated mechanistic target of rapamycin complex 1 (mTORC1), is critical for the polarization of M2 macrophages. However, little is known about how Lamtor1 affects the inflammatory responses that are triggered by the stimuli for TLRs. In this article, we show that Lamtor1 controls innate immune responses by regulating the phosphorylation and nuclear translocation of transcription factor EB (TFEB), which has been known as the master regulator for lysosome and autophagosome biogenesis. Furthermore, we show that nuclear translocation of TFEB occurs in alveolar macrophages of myeloid-specific Lamtor1 conditional knockout mice and that these mice are hypersensitive to intratracheal administration of LPS and bleomycin. Our observation clarified that the amino acid-sensing pathway consisting of Lamtor1, mTORC1, and TFEB is involved in the regulation of innate immune responses. Copyright © 2018 by The American Association of Immunologists, Inc.

  10. Limited Colonization Undermined by Inadequate Early Immune Responses Defines the Dynamics of Decidual Listeriosis.

    PubMed

    Rizzuto, Gabrielle; Tagliani, Elisa; Manandhar, Priyanka; Erlebacher, Adrian; Bakardjiev, Anna I

    2017-08-01

    The bacterial pathogen Listeria monocytogenes causes foodborne systemic disease in pregnant women, which can lead to preterm labor, stillbirth, or severe neonatal disease. Colonization of the maternal decidua appears to be an initial step in the maternal component of the disease as well as bacterial transmission to the placenta and fetus. Host-pathogen interactions in the decidua during this early stage of infection remain poorly understood. Here, we assessed the dynamics of L. monocytogenes infection in primary human decidual organ cultures and in the murine decidua in vivo A high inoculum was necessary to infect both human and mouse deciduas, and the data support the existence of a barrier to initial colonization of the murine decidua. If successful, however, colonization in both species was followed by significant bacterial expansion associated with an inability of the decidua to mount appropriate innate cellular immune responses. The innate immune deficits included the failure of bacterial foci to attract macrophages and NK cells, cell types known to be important for early defenses against L. monocytogenes in the spleen, as well as a decrease in the tissue density of inflammatory Ly6C hi monocytes in vivo These results suggest that the infectivity of the decidua is not the result of an enhanced recruitment of L. monocytogenes to the gestational uterus but rather is due to compromised local innate cellular immune responses. Copyright © 2017 American Society for Microbiology.

  11. Characteristics of the Early Immune Response Following Transplantation of Mouse ES Cell Derived Insulin-Producing Cell Clusters

    PubMed Central

    Boyd, Ashleigh S.; Wood, Kathryn J.

    2010-01-01

    Background The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Methodology/Principal Findings Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Conclusions/Significance Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT. PMID:20532031

  12. PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation

    PubMed Central

    Yan, Bing-Ru; Zhou, Lu; Hu, Ming-Ming; Li, Mi; Lin, Heng; Yang, Yan; Wang, Yan-Yi

    2017-01-01

    Sensing of viral RNA by RIG-I-like receptors initiates innate antiviral response, which is mediated by the central adaptor VISA. How the RIG-I-VISA-mediated antiviral response is terminated at the late phase of infection is enigmatic. Here we identified the protein kinase A catalytic (PKAC) subunits α and β as negative regulators of RNA virus-triggered signaling in a redundant manner. Viral infection up-regulated cellular cAMP levels and activated PKACs, which then phosphorylated VISA at T54. This phosphorylation abrogated virus-induced aggregation of VISA and primed it for K48-linked polyubiquitination and degradation by the E3 ligase MARCH5, leading to attenuation of virus-triggered induction of downstream antiviral genes. PKACs-deficiency or inactivation by the inhibitor H89 potentiated innate immunity to RNA viruses in cells and mice. Our findings reveal a critical mechanism of attenuating innate immune response to avoid host damage at the late phase of viral infection by the house-keeping PKA kinase. PMID:28934360

  13. PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation.

    PubMed

    Yan, Bing-Ru; Zhou, Lu; Hu, Ming-Ming; Li, Mi; Lin, Heng; Yang, Yan; Wang, Yan-Yi; Shu, Hong-Bing

    2017-09-01

    Sensing of viral RNA by RIG-I-like receptors initiates innate antiviral response, which is mediated by the central adaptor VISA. How the RIG-I-VISA-mediated antiviral response is terminated at the late phase of infection is enigmatic. Here we identified the protein kinase A catalytic (PKAC) subunits α and β as negative regulators of RNA virus-triggered signaling in a redundant manner. Viral infection up-regulated cellular cAMP levels and activated PKACs, which then phosphorylated VISA at T54. This phosphorylation abrogated virus-induced aggregation of VISA and primed it for K48-linked polyubiquitination and degradation by the E3 ligase MARCH5, leading to attenuation of virus-triggered induction of downstream antiviral genes. PKACs-deficiency or inactivation by the inhibitor H89 potentiated innate immunity to RNA viruses in cells and mice. Our findings reveal a critical mechanism of attenuating innate immune response to avoid host damage at the late phase of viral infection by the house-keeping PKA kinase.

  14. An Evolutionarily Conserved Innate Immunity Protein Interaction Network*

    PubMed Central

    De Arras, Lesly; Seng, Amara; Lackford, Brad; Keikhaee, Mohammad R.; Bowerman, Bruce; Freedman, Jonathan H.; Schwartz, David A.; Alper, Scott

    2013-01-01

    The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice. PMID:23209288

  15. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps.

    PubMed

    Shaw, Joanne L; Fakhri, Samer; Citardi, Martin J; Porter, Paul C; Corry, David B; Kheradmand, Farrah; Liu, Yong-Jun; Luong, Amber

    2013-08-15

    Chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP) are associated with Th1 and Th2 cytokine polarization, respectively; however, the pathophysiology of CRS remains unclear. The importance of innate lymphoid cells in Th2-mediated inflammatory disease has not been clearly defined. The objective of this study was to investigate the role of the epithelial cell-derived cytokine IL-33 and IL-33-responsive innate lymphoid cells in the pathophysiology of CRS. Relative gene expression was evaluated using quantitative real-time polymerase chain reaction. Innate lymphoid cells in inflamed ethmoid sinus mucosa from patients with CRSsNP and CRSwNP were characterized using flow cytometry. Cytokine production from lymphoid cells isolated from inflamed mucosa of patients with CRS was examined using ELISA and intracellular cytokine staining. Elevated expression of ST2, the ligand-binding chain of the IL-33 receptor, was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP and healthy control subjects. An increased percentage of innate lymphoid cells was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP. ST2(+) innate lymphoid cells are a consistent source of IL-13 in response to IL-33 stimulation. Significant induction of IL-33 was observed in epithelial cells derived from patients with CRSwNP compared with patients with CRSsNP in response to stimulation with Aspergillus fumigatus extract. These data suggest a role for sinonasal epithelial cell-derived IL-33 and an IL-33-responsive innate lymphoid cell population in the pathophysiology of CRSwNP demonstrating the functional importance of innate lymphoid cells in Th2-mediated inflammatory disease.

  16. Innate immune activation in neurodegenerative disease.

    PubMed

    Heneka, Michael T; Kummer, Markus P; Latz, Eicke

    2014-07-01

    The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.

  17. Experimental Chagas disease in Balb/c mice previously vaccinated with T. rangeli. II. The innate immune response shows immunological memory: reality or fiction?

    PubMed

    Basso, B; Marini, V

    2015-03-01

    Trypanosoma cruzi is a real challenge to the host's immune system, because it requires strong humoral and cellular immune response to remove circulating trypomastigote forms, and to prevent the replication of amastigote forms in tissues, involving many regulator and effector components. This protozoan is responsible for Chagas disease, a major public health problem in Latinamerica. We have developed a model of vaccination with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, which reduces the infectiousness in three different species of animals, mice, dogs and guinea pigs, against challenge with T. cruzi. In a previous work, we demonstrated that mice vaccinated with T. rangeli showed important soluble mediators that stimulate phagocytic activity versus only infected groups. The aim of this work was to study the innate immune response in mice vaccinated or not with T. rangeli. Different population cells and some soluble mediators (cytokines) in peritoneal fluid and plasma in mice vaccinated-infected and only infected with T. cruzi were studied. In the first hours of challenge vaccinated mice showed an increase of macrophages, NK, granulocytes, and regulation of IL6, IFNγ, TNFα and IL10, with an increase of IL12, with respect to only infected mice. Furthermore an increase was observed of Li T, Li B responsible for adaptative response. Finally the findings showed that the innate immune response plays an important role in vaccinated mice for the early elimination of the parasites, complementary with the adaptative immune response, suggesting that vaccination with T. rangeli modulates the innate response, which develops some kind of immunological memory, recognizing shared antigens with T. cruzi. These results could contribute to the knowledge of new mechanisms which would have an important role in the immune response to Chagas disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions

    PubMed Central

    Kuzmin, Ivan V.; Schwarz, Toni M.; Ilinykh, Philipp A.; Jordan, Ingo; Ksiazek, Thomas G.; Sachidanandam, Ravi; Basler, Christopher F.

    2017-01-01

    ABSTRACT Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat (Rousettus aegyptiacus); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with

  19. Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions.

    PubMed

    Kuzmin, Ivan V; Schwarz, Toni M; Ilinykh, Philipp A; Jordan, Ingo; Ksiazek, Thomas G; Sachidanandam, Ravi; Basler, Christopher F; Bukreyev, Alexander

    2017-04-15

    Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat ( Rousettus aegyptiacus ); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with

  20. Development of fetal and placental innate immune responses during establishment of persistent infection with bovine viral diarrhea virus.

    PubMed

    Smirnova, Natalia P; Webb, Brett T; Bielefeldt-Ohmann, Helle; Van Campen, Hana; Antoniazzi, Alfredo Q; Morarie, Susan E; Hansen, Thomas R

    2012-08-01

    Transplacental viral infections are dependent upon complex interactions between feto-placental and maternal immune responses and the stage of fetal development at which the infection occurs. Bovine viral diarrhea virus (BVDV) has the ability to cross the placenta and infect the fetus. Infection early in gestation with non-cytopathic (ncp) BVDV leads to persistent infection. Establishment of fetal persistent infection results in life-long viremia, virus-specific immunotolerance, and may have detrimental developmental consequences. We have previously shown that heifers infected experimentally with ncp BVDV type 2 on d. 75 of gestation had transient robust up-regulation of the type I interferon (IFN) stimulated genes (ISGs) 3-15 days after viral inoculation. Blood from persistently infected (PI) fetuses, collected 115 days post maternal infection, demonstrated moderate chronic up-regulation of ISGs. This infection model was used to delineate timing of the development of innate immune responses in the fetus and placenta during establishment of persistent infection. It was hypothesized that: (i) chronic stimulation of innate immune responses occurs following infection of the fetus and (ii) placental production of the type I IFN contributes to up-regulation of ISGs in PI fetuses. PI fetuses, generated by intranasal inoculation of pregnant heifers with ncp BVDV, and control fetuses from uninfected heifers, were collected via Cesarean sections on d. 82, 89, 97, 192, and 245 of gestation. Fetal viremia was confirmed starting on d. 89. Significant up-regulation of mRNA encoding cytosolic dsRNA sensors -RIG-I and MDA5 - was detected on d. 82-192. Detection of viral dsRNA by cytosolic sensors leads to the stimulation of ISGs, which was reflected in significant up-regulation of ISG15 mRNA in fetal blood on d. 89, 97, and 192. No difference in IFN-α and IFN-β mRNA concentration was found in fetal blood or caruncular tissue, while a significant increase in both IFN-α and IFN

  1. Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study.

    PubMed

    Loss, Georg; Bitter, Sondhja; Wohlgensinger, Johanna; Frei, Remo; Roduit, Caroline; Genuneit, Jon; Pekkanen, Juha; Roponen, Marjut; Hirvonen, Maija-Riitta; Dalphin, Jean-Charles; Dalphin, Marie-Laure; Riedler, Josef; von Mutius, Erika; Weber, Juliane; Kabesch, Michael; Michel, Sven; Braun-Fahrländer, Charlotte; Lauener, Roger

    2012-08-01

    There is evidence that gene expression of innate immunity receptors is upregulated by farming-related exposures. We sought to determine environmental and nutritional exposures associated with the gene expression of innate immunity receptors during pregnancy and the first year of a child's life. For the Protection Against Allergy: Study in Rural Environments (PASTURE) birth cohort study, 1133 pregnant women were recruited in rural areas of Austria, Finland, France, Germany, and Switzerland. mRNA expression of the Toll-like receptor (TLR) 1 through TLR9 and CD14 was assessed in blood samples at birth (n= 938) and year 1 (n= 752). Environmental exposures, as assessed by using questionnaires and a diary kept during year 1, and polymorphisms in innate receptor genes were related to gene expression of innate immunity receptors by using ANOVA and multivariate regression analysis. Gene expression of innate immunity receptors in cord blood was overall higher in neonates of farmers (P for multifactorial multivariate ANOVA= .041), significantly so for TLR7 (adjusted geometric means ratio [aGMR], 1.15; 95% CI, 1.02-1.30) and TLR8 (aGMR, 1.15; 95% CI, 1.04-1.26). Unboiled farm milk consumption during the first year of life showed the strongest association with mRNA expression at year 1, taking the diversity of other foods introduced during that period into account: TLR4 (aGMR, 1.22; 95% CI, 1.03-1.45), TLR5 (aGMR, 1.19; 95% CI, 1.01-1.41), and TLR6 (aGMR, 1.20; 95% CI, 1.04-1.38). A previously described modification of the association between farm milk consumption and CD14 gene expression by the single nucleotide polymorphism CD14/C-1721T was not found. Farming-related exposures, such as raw farm milk consumption, that were previously reported to decrease the risk for allergic outcomes were associated with a change in gene expression of innate immunity receptors in early life. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All

  2. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    PubMed Central

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  3. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    PubMed

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  4. MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha

    PubMed Central

    Li, Yingke; Fan, Xiaohua; He, Xingying; Sun, Haijing; Zou, Zui; Yuan, Hongbin; Xu, Haitao; Wang, Chengcai; Shi, Xueyin

    2012-01-01

    Effective recognition of viral infections and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs (miRNAs). A previous study showed that miR-466l upregulates IL-10 expression in macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. However, the ability of miR-466l to regulate antiviral immune responses remains unknown. Here, we found that interferon-alpha (IFN-α) expression was repressed in Sendai virus (SeV)- and vesicular stomatitis virus (VSV)-infected macrophages and in dendritic cells transfected with miR-466l expression. Moreover, multiple IFN-α species can be directly targeted by miR-466l through their 3′ untranslated region (3′UTR). This study has demonstrated that miR-466l could directly target IFN-α expression to inhibit host antiviral innate immune response. PMID:23042536

  5. Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Vartanian, Keri B.; Mitchell, Hugh D.

    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controllingmore » innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.« less

  6. Experimental Chagas disease. Innate immune response in Balb/c mice previously vaccinated with Trypanosoma rangeli. I. The macrophage shows immunological memory: Reality or fiction?

    PubMed

    Basso, B; Marini, V

    2014-04-01

    Chagas' disease, caused by Trypanosoma cruzi, is a major vector borne health problem in Latin America and an emerging or re-emerging infectious disease in several countries. Immune response to T. cruzi infection is highly complex and involves many components, both regulators and effectors. Although different parasites have been shown to activate different mechanisms of innate immunity, T. cruzi is often able to survive and replicate in its host because they are well adapted to resisting host defences. An experimental model for vaccinating mice with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, has been designed in our laboratory, showing protection against challenge with T. cruzi infection. The aim of this work was to analyze some mechanisms of the early innate immune response in T. rangeli vaccinated mice challenged with T. cruzi. For this purpose, some interactions were studied between T. cruzi and peritoneal macrophages of mice vaccinated with T. rangeli, infected or not with T. cruzi and the levels of some molecules or soluble mediators which could modify these interactions. The results in vaccinated animals showed a strong innate immune response, where the adherent cells of the vaccinated mice revealed important phagocytic activity, and some soluble mediator (Respiratory Burst: significantly increase, p ≤ 0.03; NO: the levels of vaccinated animals were lower than those of the control group; Arginasa: significantly increase, p ≤ 0.04). The results showed an important role in the early elimination of the parasites and their close relation with the absence of histological lesions that these animals present with regard to the only infected mice. This behaviour reveals that the macrophages act with some type of memory, recognizing the antigens to which they have previously been exposed, in mice were vaccinated with T. rangeli, which shares epitopes with T. cruzi. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis

    PubMed Central

    Chousterman, Benjamin G.; Hilgendorf, Ingo; Robbins, Clinton S.; Theurl, Igor; Gerhardt, Louisa M.S.; Iwamoto, Yoshiko; Quach, Tam D.; Ali, Muhammad; Chen, John W.; Rothstein, Thomas L.; Nahrendorf, Matthias; Weissleder, Ralph

    2014-01-01

    Pneumonia is a major cause of mortality worldwide and a serious problem in critical care medicine, but the immunophysiological processes that confer either protection or morbidity are not completely understood. We show that in response to lung infection, B1a B cells migrate from the pleural space to the lung parenchyma to secrete polyreactive emergency immunoglobulin M (IgM). The process requires innate response activator (IRA) B cells, a transitional B1a-derived inflammatory subset which controls IgM production via autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. The strategic location of these cells, coupled with the capacity to produce GM-CSF–dependent IgM, ensures effective early frontline defense against bacteria invading the lungs. The study describes a previously unrecognized GM-CSF-IgM axis and positions IRA B cells as orchestrators of protective IgM immunity. PMID:24821911

  8. Single cell analysis of innate cytokine responses to pattern recognition receptor stimulation in children across four continents

    PubMed Central

    Smolen, Kinga K; Cai, Bing; Fortuno, Edgardo S; Gelinas, Laura; Larsen, Martin; Speert, David P; Chamekh, Mustapha; Kollmann, Tobias R

    2014-01-01

    Innate immunity instructs adaptive immunity, and suppression of innate immunity is associated with increased risk for infection. We had previously shown that whole blood cellular components from a cohort of South African children secreted significantly lower levels of most cytokines following stimulation of pattern recognition receptors (PRR) as compared to whole blood from cohorts of Ecuadorian, Belgian, or Canadian children. To begin dissecting the responsible molecular mechanisms, we now set out to identify the relevant cellular source of these differences. Across the four cohorts represented in our study, we identified significant variation in the cellular composition of whole blood; however, significant reduction of the intracellular cytokine production on the single cell level was only detected in South African childrens’ monocytes, cDC, and pDC. We also uncovered a marked reduction in polyfunctionality for each of these cellular compartments in South African children as compared to children from other continents. Together our data identify differences in cell composition as well as profoundly lower functional responses of innate cells in our cohort of South African children. A possible link between altered innate immunity and increased risk for infection or lower response to vaccines in South African infants needs to be explored. PMID:25135829

  9. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    PubMed

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  10. Toll-Like Receptor-3 Is Dispensable for the Innate MicroRNA Response to West Nile Virus (WNV)

    PubMed Central

    Chugh, Pauline E.; Damania, Blossom A.; Dittmer, Dirk P.

    2014-01-01

    The innate immune response to West Nile virus (WNV) infection involves recognition through toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), leading to establishment of an antiviral state. MiRNAs (miRNAs) have been shown to be reliable biomarkers of TLR activation. Here, we sought to evaluate the contribution of TLR3 and miRNAs to the host response to WNV infection. We first analyzed HEK293-NULL and HEK293-TLR3 cells for changes in the innate immune response to infection. The presence of TLR3 did not seem to affect WNV load, infectivity or phosphorylation of IRF3. Analysis of experimentally validated NFκB-responsive genes revealed a WNV-induced signature largely independent of TLR3. Since miRNAs are involved in viral pathogenesis and the innate response to infection, we sought to identify changes in miRNA expression upon infection in the presence or absence of TLR3. MiRNA profiling revealed 70 miRNAs induced following WNV infection in a TLR3-independent manner. Further analysis of predicted gene targets of WNV signature miRNAs revealed genes highly associated with pathways regulating cell death, viral pathogenesis and immune cell trafficking. PMID:25127040

  11. Innate Immune Activation in Obesity

    PubMed Central

    Lumeng, Carey N.

    2014-01-01

    The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases. PMID:23068074

  12. Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity—Clues for Treatments and Vaccines

    PubMed Central

    Melchjorsen, Jesper

    2013-01-01

    Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response. PMID:23435233

  13. Innate or Acquired? – Disentangling Number Sense and Early Number Competencies

    PubMed Central

    Siemann, Julia; Petermann, Franz

    2018-01-01

    The clinical profile termed developmental dyscalculia (DD) is a fundamental disability affecting children already prior to arithmetic schooling, but the formal diagnosis is often only made during school years. The manifold associated deficits depend on age, education, developmental stage, and task requirements. Despite a large body of studies, the underlying mechanisms remain dubious. Conflicting findings have stimulated opposing theories, each presenting enough empirical support to remain a possible alternative. A so far unresolved question concerns the debate whether a putative innate number sense is required for successful arithmetic achievement as opposed to a pure reliance on domain-general cognitive factors. Here, we outline that the controversy arises due to ambiguous conceptualizations of the number sense. It is common practice to use early number competence as a proxy for innate magnitude processing, even though it requires knowledge of the number system. Therefore, such findings reflect the degree to which quantity is successfully transferred into symbols rather than informing about quantity representation per se. To solve this issue, we propose a three-factor account and incorporate it into the partly overlapping suggestions in the literature regarding the etiology of different DD profiles. The proposed view on DD is especially beneficial because it is applicable to more complex theories identifying a conglomerate of deficits as underlying cause of DD. PMID:29725316

  14. Induction of innate immune responses by flagellin from the intracellular bacterium, 'Candidatus Liberibacter solanacearum'.

    PubMed

    Hao, Guixia; Pitino, Marco; Ding, Fang; Lin, Hong; Stover, Ed; Duan, Yongping

    2014-08-05

    'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited alphaproteobacterium associated with the devastating zebra chip disease of potato (Solanum tuberosum). Like other members of Liberibacter, Lso-ZC1 encodes a flagellin domain-containing protein (Fla Lso ) with a conserved 22 amino-acid peptide (flg22 Lso ). To understand the innate immune responses triggered by this unculturable intracellular bacterium, we studied the pathogen-associated molecular patterns (PAMPs) that triggered immunity in Nicotiana benthamiana, using the flg22 Lso peptide and the full length fla Lso gene. Our results showed that the expression of fla Lso via Agrobacterium-mediated transient expression induced a slow necrotic cell death in the inoculated leaves of N. benthamiana, which was coupled with a burst of reactive oxygen species (ROS) production. Moreover, the expression of several representative genes involved in innate immunity was transiently up-regulated by the flg22 Lso in N. benthamiana. The Fla Lso , however, induced stronger up-regulation of these representative genes compared to the flg22 Lso , especially that of flagellin receptor FLAGELLIN SENSING2 (FLS2) and respiratory burst oxidase (RbohB) in N. benthamiana. Although neither cell death nor ROS were induced by the synthetic flg22 Lso , a weak callose deposition was observed in infiltrated leaves of tobacco, tomato, and potato plants. The flagellin of Lso and its functional domain, flg22 Lso share characteristics of pathogen-associated molecular patterns, and trigger unique innate immune responses in N. benthamiana. Slow and weak activation of the innate immune response in host plants by the flagellin of Lso may reflect the nature of its intracellular life cycle. Our findings provide new insights into the role of the Lso flagellin in the development of potato zebra chip disease and potential application in breeding for resistance.

  15. The interdependencies of viral load, the innate immune response, and clinical outcome in children presenting to the emergency department with respiratory syncytial virus-associated bronchiolitis

    PubMed Central

    Mei, Minghua; Mehta, Reena

    2017-01-01

    Respiratory syncytial virus (RSV) causes significant infant morbidity and mortality. For decades severe RSV-induced disease was thought to result from an uncontrolled host response to viral replication, but recent work suggests that a strong innate immune response early in infection is protective. To shed light on host-virus interactions and the viral determinants of disease, copy numbers of five RSV genes (NS1, NS2, N, G, F) were measured by quantitative real-time polymerase chain reaction (qPCR) in nasal wash samples from children with RSV-associated bronchiolitis. Correlations were sought with host cytokines/chemokines and biomarkers. Associations with disposition from the emergency department (hospitalized or sent home) and pulse oximetry O2 saturation levels were also sought. Additionally, RNase P copy number was measured and used to normalize nasal wash data. RSV gene copy numbers were found to significantly correlate with both cytokine/chemokine and biomarker levels; and RNase P-normalized viral gene copy numbers (NS1, NS2, N and G) were significantly higher in infants with less severe disease. Moreover, three of the normalized viral gene copy numbers (NS1, NS2, and N) correlated significantly with arterial O2 saturation levels. The data support a model where a higher viral load early in infection can promote a robust innate immune response that protects against progression into hypoxic RSV-induced lower respiratory tract illness. PMID:28267794

  16. The interdependencies of viral load, the innate immune response, and clinical outcome in children presenting to the emergency department with respiratory syncytial virus-associated bronchiolitis.

    PubMed

    Piedra, Felipe-Andrés; Mei, Minghua; Avadhanula, Vasanthi; Mehta, Reena; Aideyan, Letisha; Garofalo, Roberto P; Piedra, Pedro A

    2017-01-01

    Respiratory syncytial virus (RSV) causes significant infant morbidity and mortality. For decades severe RSV-induced disease was thought to result from an uncontrolled host response to viral replication, but recent work suggests that a strong innate immune response early in infection is protective. To shed light on host-virus interactions and the viral determinants of disease, copy numbers of five RSV genes (NS1, NS2, N, G, F) were measured by quantitative real-time polymerase chain reaction (qPCR) in nasal wash samples from children with RSV-associated bronchiolitis. Correlations were sought with host cytokines/chemokines and biomarkers. Associations with disposition from the emergency department (hospitalized or sent home) and pulse oximetry O2 saturation levels were also sought. Additionally, RNase P copy number was measured and used to normalize nasal wash data. RSV gene copy numbers were found to significantly correlate with both cytokine/chemokine and biomarker levels; and RNase P-normalized viral gene copy numbers (NS1, NS2, N and G) were significantly higher in infants with less severe disease. Moreover, three of the normalized viral gene copy numbers (NS1, NS2, and N) correlated significantly with arterial O2 saturation levels. The data support a model where a higher viral load early in infection can promote a robust innate immune response that protects against progression into hypoxic RSV-induced lower respiratory tract illness.

  17. Regulation of Innate Responses during Pre-patent Schistosome Infection Provides an Immune Environment Permissive for Parasite Development

    PubMed Central

    Riner, Diana K.; Ferragine, Christine E.; Maynard, Sean K.; Davies, Stephen J.

    2013-01-01

    Blood flukes of the genus Schistosoma infect over 200 million people, causing granulomatous pathology with accompanying morbidity and mortality. As a consequence of extensive host-parasite co-evolution, schistosomes exhibit a complex relationship with their hosts, in which immunological factors are intimately linked with parasite development. Schistosomes fail to develop normally in immunodeficient mice, an outcome specifically dependent on the absence of CD4+ T cells. The role of CD4+ T cells in parasite development is indirect and mediated by interaction with innate cells, as repeated toll-like receptor 4 stimulation is sufficient to restore parasite development in immunodeficient mice in the absence of CD4+ T cells. Here we show that repeated stimulation of innate immunity by an endogenous danger signal can also restore parasite development and that both these stimuli, when administered repeatedly, lead to the regulation of innate responses. Supporting a role for regulation of innate responses in parasite development, we show that regulation of inflammation by neutralizing anti-TNF antibodies also restores parasite development in immunodeficient mice. Finally, we show that administration of IL-4 to immunodeficient mice to regulate inflammation by induction of type 2 responses also restores parasite development. These findings suggest that the type 2 response driven by CD4+ T cells during pre-patent infection of immunocompetent hosts is exploited by schistosomes to complete their development to reproductively mature adult parasites. PMID:24130499

  18. The bradykinin B2 receptor in the early immune response against Listeria infection.

    PubMed

    Kaman, Wendy E; Wolterink, Arthur F W M; Bader, Michael; Boele, Linda C L; van der Kleij, Desiree

    2009-02-01

    The endogenous danger signal bradykinin was recently found implicated in the development of immunity against parasites via dendritic cells. We here report an essential role of the B(2) (B(2)R) bradykinin receptor in the early immune response against Listeria infection. Mice deficient in B(2)R (B(2)R(-/-) mice) were shown to suffer from increased hepatic bacterial burden and concomitant dramatic weight loss during infection with Listeria monocytogenes. Levels of cytokines known to play a pivotal role in the early phase immune response against L. monocytogenes, IL-12p70 and IFN-gamma, were reduced in B(2)R(-/-) mice. To extend these findings to the human system, we show that bradykinin potentiates the production of IL-12p70 in human monocyte-derived dendritic cells. Thus, we show that bradykinin and the B(2)R play a role in early innate immune functions during bacterial infection.

  19. Survey of Innate Immune Responses to Burkholderia pseudomallei in Human Blood Identifies a Central Role for Lipopolysaccharide

    PubMed Central

    Chantratita, Narisara; Tandhavanant, Sarunporn; Myers, Nicolle D.; Seal, Sudeshna; Arayawichanont, Arkhom; Kliangsa-ad, Aroonsri; Hittle, Lauren E.; Ernst, Robert K.; Emond, Mary J.; Wurfel, Mark M.; Day, Nicholas P. J.; Peacock, Sharon J.; West, T. Eoin

    2013-01-01

    B. pseudomallei is a gram-negative bacterium that causes the tropical infection melioidosis. In northeast Thailand, mortality from melioidosis approaches 40%. As exemplified by the lipopolysaccharide-Toll-like receptor 4 interaction, innate immune responses to invading bacteria are precipitated by activation of host pathogen recognition receptors by pathogen associated molecular patterns. Human melioidosis is characterized by up-regulation of pathogen recognition receptors and pro-inflammatory cytokine release. In contrast to many gram-negative pathogens, however, the lipopolysaccharide of B. pseudomallei is considered only weakly inflammatory. We conducted a study in 300 healthy Thai subjects to investigate the ex vivo human blood response to various bacterial pathogen associated molecular patterns, including lipopolysaccharide from several bacteria, and to two heat-killed B. pseudomallei isolates. We measured cytokine levels after stimulation of fresh whole blood with a panel of stimuli. We found that age, sex, and white blood cell count modulate the innate immune response to B. pseudomallei. We further observed that, in comparison to other stimuli, the innate immune response to B. pseudomallei is most highly correlated with the response to lipopolysaccharide. The magnitude of cytokine responses induced by B. pseudomallei lipopolysaccharide was significantly greater than those induced by lipopolysaccharide from Escherichia coli and comparable to many responses induced by lipopolysaccharide from Salmonella minnesota despite lower amounts of lipid A in the B. pseudomallei lipopolysaccharide preparation. In human monocytes stimulated with B. pseudomallei, addition of polymyxin B or a TLR4/MD-2 neutralizing antibody inhibited the majority of TNF-α production. Challenging existing views, our data indicate that the innate immune response to B. pseudomallei in human blood is largely driven by lipopolysaccharide, and that the response to B. pseudomallei

  20. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System

    PubMed Central

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497

  1. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    PubMed

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  2. The innate immune response to Aspergillus fumigatus at the alveolar surface.

    PubMed

    Margalit, Anatte; Kavanagh, Kevin

    2015-09-01

    Aspergillus fumigatus is an ubiquitous, saprophytic mould that forms and releases airborne conidia which are inhaled by humans on a daily basis. When the immune system is compromised (e.g. immunosuppressive therapy prior to organ transplantation) or there is pre-existing pulmonary malfunction (e.g. asthma, cystic fibrosis, TB lesions), A. fumigatus exploits weaknesses in the host defenses which can result in the development of saphrophytic, allergic or invasive aspergillosis. If not effectively eliminated by the innate immune response, conidia germinate and form invasive hyphae which can penetrate pulmonary tissues. The innate immune response to A. fumigatus is stage-specific and various components of the host's defenses are recruited to challenge the different cellular forms of the pathogen. In immunocompetent hosts, anatomical barriers (e.g. the mucociliary elevator) and professional phagocytes such as alveolar macrophages (AM) and neutrophils prevent the development of aspergillosis by inhibiting the growth of conidia and hyphae. The recognition of inhaled conidia by AM leads to the intracellular degradation of the spores and the secretion of proinflammatory mediators which recruit neutrophils to assist in fungal clearance. During the later stages of infection, dendritic cells activate a protective A. fumigatus-specific adaptive immune response which is driven by Th1 CD4(+) T cells. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Innate cell communication kick-starts pathogen-specific immunity

    PubMed Central

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  4. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    PubMed Central

    Lang, Pierre Olivier; Aspinall, Richard

    2015-01-01

    Vitamin D (VitD), which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response. PMID:25803545

  5. Innate and adaptive immune responses to cell death

    PubMed Central

    Rock, Kenneth L.; Lai, Jiann-Jyh; Kono, Hajime

    2011-01-01

    Summary The immune system plays an essential role in protecting the host against infections and to accomplish this task has evolved mechanisms to recognize microbes and destroy them. In addition, it monitors the health of cells and responds to ones that have been injured and die, even if this occurs under sterile conditions. This process is initiated when dying cells expose intracellular molecules that can be recognized by cells of the innate immune system. As a consequence of this recognition, dendritic cells are activated in ways that help to promote T-cell responses to antigens associated with the dying cells. In addition, macrophages are stimulated to produce the cytokine interleukin-1 that then acts on radioresistant parenchymal cells in the host in ways that drive a robust inflammatory response. In addition to dead cells, a number of other sterile particles and altered physiological states can similarly stimulate an inflammatory response and do so through common pathways involving the inflammasome and interleukin-1. These pathways underlie the pathogenesis of a number of diseases. PMID:21884177

  6. Control of pathogens and microbiota by innate lymphoid cells.

    PubMed

    Cording, Sascha; Medvedovic, Jasna; Lecuyer, Emelyne; Aychek, Tegest; Eberl, Gérard

    2018-05-28

    Innate lymphoid cells (ILCs) are the innate counterpart of T cells. Upon infection or injury, ILCs react promptly to direct the developing immune response to the one most adapted to the threat facing the organism. Therefore, ILCs play an important role early in resistance to infection, but also to maintain homeostasis with the symbiotic microbiota following perturbations induced by diet and pathogens. Such roles of ILCs have been best characterized in the intestine and lung, mucosal sites that are exposed to the environment and are therefore colonized with diverse but specific types of microbes. Understanding the dialogue between pathogens, microbiota and ILCs may lead to new strategies to re-inforce immunity for prevention, vaccination and therapy. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. HIV neuropathogenesis: a tight rope walk of innate immunity.

    PubMed

    Yao, Honghong; Bethel-Brown, Crystal; Li, Cicy Zidong; Buch, Shilpa J

    2010-12-01

    During the course of HIV-1 disease, virus neuroinvasion occurs as an early event, within weeks following infection. Intriguingly, subsequent central nervous system (CNS) complications manifest only decades after the initial virus exposure. Although CNS is commonly regarded as an immune-privileged site, emerging evidence indicates that innate immunity elicited by the CNS glial cells is a critical determinant for the establishment of protective immunity. Sustained expression of these protective immune responses, however, can be a double-edged sword. As protective immune mediators, cytokines have the ability to function in networks and co-operate with other host/viral mediators to tip the balance from a protective to toxic state in the CNS. Herein, we present an overview of some of the essential elements of the cerebral innate immunity in HIV neuropathogenesis including the key immune cell types of the CNS with their respective soluble immune mediators: (1) cooperative interaction of IFN-γ with the host/virus factor (platelet-derived host factor (PDGF)/viral Tat) in the induction of neurotoxic chemokine CXCL10 by macrophages, (2) response of astrocytes to viral infection, and (3) protective role of PDGF and MCP-1 in neuronal survival against HIV Tat toxicity. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. The ultimate outcome of HIV infection in the CNS will thus be dependent on the regulation of the net balance of cell-specific protective versus detrimental responses.

  8. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone

    PubMed Central

    Ciencewicki, Jonathan M.; Verhein, Kirsten C.; Gerrish, Kevin; McCaw, Zachary R.; Li, Jianying; Bushel, Pierre R.

    2016-01-01

    Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl+/+) and MBL-deficient (Mbl−/−) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl−/− than Mbl+/+ mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl+/+ and Mbl−/− mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS2 data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at

  9. The Yin and Yang of innate immunity in stroke.

    PubMed

    Xu, Xiaomeng; Jiang, Yongjun

    2014-01-01

    Immune system plays an elementary role in the pathophysiological progress of ischemic stroke. It consists of innate and adaptive immune system. Activated within minutes after ischemic onset, innate immunity is responsible for the elimination of necrotic cells and tissue repair, while it is critically involved in the initiation and amplification of poststroke inflammation that amplifies ischemic damage to the brain tissue. Innate immune response requires days to be fully developed, providing a considerable time window for therapeutic intervention, suggesting prospect of novel immunomodulatory therapies against poststroke inflammation-induced brain injury. However, obstacles still exist and a comprehensive understanding of ischemic stroke and innate immune reaction is essential. In this review, we highlighted the current experimental and clinical data depicting the innate immune response following ischemic stroke, mainly focusing on the recognition of damage-associated molecular patterns, activation and recruitment of innate immune cells, and involvement of various cytokines. In addition, clinical trials targeting innate immunity were also documented regardless of the outcome, stressing the requirements for further investigation.

  10. Innate immunity in the small intestine

    PubMed Central

    Santaolalla, Rebeca; Abreu, Maria T.

    2012-01-01

    Purpose of review This manuscript reviews the most recent publications on innate immunity in the small intestine. We will go over the innate immune receptors that act as sensors of microbial presence or cell injury, Paneth cells as the main epithelial cell type that secrete antimicrobial peptides, and mucosal production of IgA. In addition, we will give an update on examples of imbalance of the innate immune response resulting in clinical disease with the most relevant example being Crohn’s disease. Recent findings Toll-like receptors (TLRs) are involved in B-cell homing to the intestine, rejection of small intestinal allografts and recruitment of mast cells. The TLR adaptor TRIF is necessary to activate innate immunity after Yersinia enterocolitica infection. Moreover, MyD88 is required to keep the intestinal microbiota under control and physically separated from the epithelium and RegIIIγ is responsible for the bacterial segregation from the lining epithelial cells. In Crohn’s disease, ATG16L1 T300A variant promotes a pro-inflammatory response; and miR-196 downregulates a protective IRGM polymorphism leading to impaired clearance of adherent Escherichia coli in the intestine. Summary The intestine is continuously exposed to dietary and microbial antigens. The host has to maintain intestinal homeostasis to keep the commensal and pathogenic bacteria under control. Some of the mechanisms to do so are by expression of innate immune receptors, production of antimicrobial peptides, secretion of IgA or autophagy of intracellular bacteria. Unfortunately, in some cases the innate immune response fails to protect the host and chronic inflammation, transplant rejection, or other pathologies may occur. PMID:22241076

  11. Three Pairs of Protease-Serpin Complexes Cooperatively Regulate the Insect Innate Immune Responses*

    PubMed Central

    Jiang, Rui; Kim, Eun-Hye; Gong, Ji-Hee; Kwon, Hyun-Mi; Kim, Chan-Hee; Ryu, Kyoung-Hwa; Park, Ji-Won; Kurokawa, Kenji; Zhang, Jinghai; Gubb, David; Lee, Bok-Luel

    2009-01-01

    Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins (SPN40, SPN55, and SPN48) from the hemolymph of T. molitor. These serpins made specific serpin-serine protease pairs with three Toll cascade-activating serine proteases, such as modular serine protease, Spätzle-processing enzyme-activating enzyme, and Spätzle-processing enzyme and cooperatively blocked the Toll signaling cascade and β-1,3-glucan-mediated melanin biosynthesis. Also, the levels of SPN40 and SPN55 were dramatically increased in vivo by the injection of a Toll ligand, processed Spätzle, into Tenebrio larvae. This increase in SPN40 and SPN55 levels indicates that these serpins function as inducible negative feedback inhibitors. Unexpectedly, SPN55 and SPN48 were cleaved at Tyr and Glu residues in reactive center loops, respectively, despite being targeted by trypsin-like Spätzle-processing enzyme-activating enzyme and Spätzle-processing enzyme. These cleavage patterns are also highly similar to those of unusual mammalian serpins involved in blood coagulation and blood pressure regulation, and they may contribute to highly specific and timely inactivation of detrimental serine proteases during innate immune responses. Taken together, these results demonstrate the specific regulatory evidences of innate immune responses by three novel serpins. PMID:19858208

  12. Innate and Adaptive Immune Responses during Acute M. tuberculosis Infection in Adult Household Contacts in Kampala, Uganda

    PubMed Central

    Mahan, C. Scott; Zalwango, Sarah; Thiel, Bonnie A.; Malone, LaShaunda L.; Chervenak, Keith A.; Baseke, Joy; Dobbs, Dennis; Stein, Catherine M.; Mayanja, Harriet; Joloba, Moses; Whalen, Christopher C.; Boom, W. Henry

    2012-01-01

    Contacts of active pulmonary tuberculosis (TB) patients are at risk for Mycobacterium tuberculosis (MTB) infection. Because most infections are controlled, studies during MTB infection provide insight into protective immunity. We compared immune responses of adult household contacts that did and did not convert the tuberculin skin test (TST). Innate and adaptive immune responses were measured by whole blood assay. Responses of TST converters (TSTC) were compared with persistently TST negative contacts (PTST–) and contacts who were TST+ at baseline (TST+). TLR-2, TLR-4, and IFN-γR responses to IFN-γ did not differ between the groups, nor did γδ T cell responses. T cell responses to MTB antigens differed markedly among TSTC, PTST–, and TST+ contacts. Thus, no differences in innate responses were found among the three household contact groups. However, adaptive T cell responses to MTB antigens did differ before and during MTB infection among PTST–, TSTC, and TST+ contacts. PMID:22492155

  13. Feliform carnivores have a distinguished constitutive innate immune response

    PubMed Central

    Heinrich, Sonja K.; Wachter, Bettina; Aschenborn, Ortwin H. K.; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á.

    2016-01-01

    ABSTRACT Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. PMID:27044323

  14. Feliform carnivores have a distinguished constitutive innate immune response.

    PubMed

    Heinrich, Sonja K; Wachter, Bettina; Aschenborn, Ortwin H K; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á

    2016-05-15

    Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. © 2016. Published by The Company of Biologists Ltd.

  15. T-Helper 17 Cell Cytokine Responses in Lyme Disease Correlate With Borrelia burgdorferi Antibodies During Early Infection and With Autoantibodies Late in the Illness in Patients With Antibiotic-Refractory Lyme Arthritis

    PubMed Central

    Sulka, Katherine B.; Pianta, Annalisa; Crowley, Jameson T.; Arvikar, Sheila L.; Anselmo, Anthony; Sadreyev, Ruslan; Steere, Allen C.

    2017-01-01

    Abstract Background. Control of Lyme disease is attributed predominantly to innate and adaptive T-helper 1 cell (TH1) immune responses, whereas the role of T-helper 17 cell (TH17) responses is less clear. Here we characterized these inflammatory responses in patients with erythema migrans (EM) or Lyme arthritis (LA) to elucidate their role early and late in the infection. Methods. Levels of 21 cytokines and chemokines, representative of innate, TH1, and TH17 immune responses, were assessed by Luminex in acute and convalescent sera from 91 EM patients, in serum and synovial fluid from 141 LA patients, and in serum from 57 healthy subjects. Antibodies to Borrelia burgdorferi or autoantigens were measured by enzyme-linked immunosorbent assay. Results. Compared with healthy subjects, EM patients had significantly higher levels of innate, TH1, and TH17-associated mediators (P ≤ .05) in serum. In these patients, the levels of inflammatory mediators, particularly TH17-associated cytokines, correlated directly with B. burgdorferi immunoglobulin G antibodies (P ≤ .02), suggesting a beneficial role for these responses in control of early infection. Late in the disease, in patients with LA, innate and TH1-associated mediators were often >10-fold higher in synovial fluid than serum. In contrast, the levels of TH17-associated mediators were more variable, but correlated strongly with autoantibodies to endothelial cell growth factor, matrix metalloproteinase 10, and apolipoprotein B-100 in joints of patients with antibiotic-refractory LA, implying a shift in TH17 responses toward an autoimmune phenotype. Conclusions. Patients with Lyme disease often develop pronounced TH17 immune responses that may help control early infection. However, late in the disease, excessive TH17 responses may be disadvantageous by contributing to autoimmune responses associated with antibiotic-refractory LA. PMID:28077518

  16. GSL-enriched membrane microdomains in innate immune responses.

    PubMed

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  17. A key requirement for CD300f in innate immune responses of eosinophils in colitis.

    PubMed

    Moshkovits, I; Reichman, H; Karo-Atar, D; Rozenberg, P; Zigmond, E; Haberman, Y; Ben Baruch-Morgenstern, N; Lampinen, M; Carlson, M; Itan, M; Denson, L A; Varol, C; Munitz, A

    2017-01-01

    Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn's disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f -/- mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f -/- mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.

  18. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  19. Innate immune reconstitution with suppression of HIV-1.

    PubMed

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  20. Innate immune reconstitution with suppression of HIV-1

    PubMed Central

    Scully, Eileen P.; Garcia-Beltran, Wilfredo; Palmer, Christine D.; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M.; Bosch, Ronald J.

    2016-01-01

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4+ T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses. PMID:27158667

  1. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon,more » 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.« less

  2. Innate Immunity and the Inter-exposure Interval Determine the Dynamics of Secondary Influenza Virus Infection and Explain Observed Viral Hierarchies

    PubMed Central

    Cao, Pengxing; Yan, Ada W. C.; Heffernan, Jane M.; Petrie, Stephen; Moss, Robert G.; Carolan, Louise A.; Guarnaccia, Teagan A.; Kelso, Anne; Barr, Ian G.; McVernon, Jodie; Laurie, Karen L.; McCaw, James M.

    2015-01-01

    Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus–innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re

  3. Innate Immunity and the Inter-exposure Interval Determine the Dynamics of Secondary Influenza Virus Infection and Explain Observed Viral Hierarchies.

    PubMed

    Cao, Pengxing; Yan, Ada W C; Heffernan, Jane M; Petrie, Stephen; Moss, Robert G; Carolan, Louise A; Guarnaccia, Teagan A; Kelso, Anne; Barr, Ian G; McVernon, Jodie; Laurie, Karen L; McCaw, James M

    2015-08-01

    Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus-innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re

  4. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids.

    PubMed

    Blanc, Landry; Gilleron, Martine; Prandi, Jacques; Song, Ok-Ryul; Jang, Mi-Seon; Gicquel, Brigitte; Drocourt, Daniel; Neyrolles, Olivier; Brodin, Priscille; Tiraby, Gérard; Vercellone, Alain; Nigou, Jérôme

    2017-10-17

    Mycobacterium tuberculosis is a major human pathogen that is able to survive inside host cells and resist immune clearance. Most particularly, it inhibits several arms of the innate immune response, including phagosome maturation or cytokine production. To better understand the molecular mechanisms by which M. tuberculosis circumvents host immune defenses, we used a transposon mutant library generated in a virulent clinical isolate of M. tuberculosis of the W/Beijing family to infect human macrophages, utilizing a cell line derivative of THP-1 cells expressing a reporter system for activation of the transcription factor NF-κB, a key regulator of innate immunity. We identified several M. tuberculosis mutants inducing a NF-κB activation stronger than that of the wild-type strain. One of these mutants was found to be deficient for the synthesis of cell envelope glycolipids, namely sulfoglycolipids, suggesting that the latter can interfere with innate immune responses. Using natural and synthetic molecular variants, we determined that sulfoglycolipids inhibit NF-κB activation and subsequent cytokine production or costimulatory molecule expression by acting as competitive antagonists of Toll-like receptor 2, thereby inhibiting the recognition of M. tuberculosis by this receptor. Our study reveals that producing glycolipid antagonists of pattern recognition receptors is a strategy used by M. tuberculosis to undermine innate immune defense. Sulfoglycolipids are major and specific lipids of M. tuberculosis , considered for decades as virulence factors of the bacilli. Our study uncovers a mechanism by which they may contribute to M. tuberculosis virulence.

  5. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease

    PubMed Central

    Corridoni, Daniele; Chapman, Thomas; Ambrose, Tim; Simmons, Alison

    2018-01-01

    Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation. PMID:29515999

  6. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    PubMed

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  7. Stroma: the forgotten cells of innate immune memory.

    PubMed

    Crowley, Thomas; Buckley, Christopher D; Clark, Andrew R

    2018-05-05

    All organisms are constantly exposed to a variety of infectious and injurious stimuli. These induce inflammatory responses tailored to the threat posed. Whilst the innate immune system is the front line of response to each stimulant, it has been traditionally considered to lack memory, acting in a generic fashion until the adaptive immune arm can take over. This outmoded simplification of the roles of innate and acquired arms of the immune system has been challenged by evidence of myeloid cells altering their response to subsequent encounters based on earlier exposure. This concept of "innate immune memory" has been known for nearly a century, and is accepted amongst myeloid biologists. In recent years, other innate immune cells, such as natural killer cells, have been shown to display memory, suggesting innate immune memory is a trait common to several cell types. Over the last thirty years, evidence has slowly accumulated in favour of not only haematopoietic cells, but also stromal cells, being imbued with memory following inflammatory episodes. A recent publication showing this also to be true in epithelial cells suggests innate immune memory to be widespread, if underappreciated, in non-haematopoietic cells. In this review, we will examine the evidence supporting the existence of innate immune memory in stromal cells. We will also discuss the ramifications of memory in long-lived tissue-resident cells. Finally, we will pose questions we feel to be important in the understanding of these forgotten cells in the field of innate memory. This article is protected by copyright. All rights reserved. © 2018 British Society for Immunology.

  8. Vγ1+γδT, early cardiac infiltrated innate population dominantly producing IL-4, protect mice against CVB3 myocarditis by modulating IFNγ+ T response.

    PubMed

    Wan, Fangfang; Yan, Kepeng; Xu, Dan; Qian, Qian; Liu, Hui; Li, Min; Xu, Wei

    2017-01-01

    Viral myocarditis (VMC) is an inflammation of the myocardium closely associated with Coxsackievirus B3 (CVB3) infection. Vγ1 + γδT cells, one of early cardiac infiltrated innate population, were reported to protect CVB3 myocarditis while the precise mechanism not fully addressed. To explore cytokine profiles and kinetics of Vγ1 + γδT and mechanism of protection against VMC, flow cytometry was conducted on cardiac Vγ1 cells in C57BL/6 mice following CVB3 infection. The level of cardiac inflammation, transthoracic echocardiography and viral replication were evaluated after monoclonal antibody depletion of Vγ1γδT. We found that Vγ1 + γδT cells infiltration peaked in the heart at day3 post CVB3 infection and constituted a minor source of IFN-γ but major producers for early IL-4. Vγ1γδT cells were activated earlier holding a higher IL-4-producing efficiency than CD4 + Th cells in the heart. Depletion of Vγ1 + γδT resulted in a significantly exacerbated cardiac infiltration, increased T, macrophage and neutrophil population in heart homogenates and worse cardiomyopathy; which was accompanied by a significant expansion of peripheral IFNγ + CD4+ and CD8+T cells. Neutralization of IL-4 in mice resulted in an exacerbated acute myocarditis confirming the IL-4-mediated protective mechanism of Vγ1. Our findings identify a unique property of Vγ1 + γδT cells as one dominant early producers of IL-4 upon CVB3 acute infection which is a key mediator to protect mice against acute myocarditis by modulating IFNγ-secreting T response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.

    PubMed

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Guo, Qingcheng; Gu, Nana; Zhang, Dapeng; Qian, Weizhu; Dai, Jianxin; Hou, Sheng; Wang, Hao; Guo, Yajun

    The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical "don't find me" signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the "don't eat me" signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using "Knobs-into-holes" technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.

  10. Activation of innate anti-viral immune response genes in symptomatic benign prostatic hyperplasia

    PubMed Central

    Madigan, Allison A.; Sobek, Kathryn M.; Cummings, Jessica L.; Green, William R.; Bacich, Dean J.; O’Keefe, Denise S.

    2012-01-01

    Benign Prostatic Hyperplasia (BPH)is the most common urologic disease in men over age 50. Symptoms include acute urinary retention, urgency to urinate and nocturia. For patients with severe symptoms, surgical treatment is used to remove the affected tissue. Interestingly, the presence of histologic BPH does not always correlate with symptoms. The molecular basis of symptomatic BPH and how it differs from asymptomatic BPH is unknown. Investigation into the molecular players involved in symptomatic BPH will likely give insight into novel therapeutic, and potentially preventative, targets. We determined the expression of genes involved in the innate anti-viral immune response in tissues from patients undergoing surgery to alleviate the symptoms of BPH, and compared the results to prostate tissue with histologic BPH, but from patients with few urinary issues (asymptomatic BPH). We found that expression of CFI, APOBEC3G, OAS2, and IFIT1, four genes whose protein products are involved in the innate anti-viral immune response, were significantly transcriptionally upregulated in symptomatic BPH. Additionally we observe hypomethylation and concomitant expression of ancient retroviral-like sequences, the LINE-1 retrotransposons, in symptomatic BPH when compared to normal prostate tissue. These findings merit further investigation into the anti-viral immune response in symptomatic BPH. PMID:22952051

  11. Antimicrobial autophagy: a conserved innate immune response in Drosophila.

    PubMed

    Moy, Ryan H; Cherry, Sara

    2013-01-01

    Autophagy is a highly conserved degradative pathway that has rapidly emerged as a critical component of immunity and host defense. Studies have implicated autophagy genes in restricting the replication of a diverse array of pathogens, including bacteria, viruses and protozoans. However, in most cases, the in vivo role of antimicrobial autophagy against pathogens has been undefined. Drosophila provides a genetically tractable model system that can be easily adapted to study autophagy in innate immunity, and recent studies in flies have demonstrated that autophagy is an essential antimicrobial response against bacteria and viruses in vivo. These findings reveal striking conservation of antimicrobial autophagy between flies and mammals, and in particular, the role of pathogen-associated pattern recognition in triggering this response. This review discusses our current understanding of antimicrobial autophagy in Drosophila and its potential relevance to human immunity. Copyright © 2013 S. Karger AG, Basel.

  12. The participation of cortical amygdala in innate, odour-driven behaviour.

    PubMed

    Root, Cory M; Denny, Christine A; Hen, René; Axel, Richard

    2014-11-13

    Innate behaviours are observed in naive animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centres have been anatomically defined, but the specific pathways responsible for innate responses to volatile odours have not been identified. Here we devise genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviours. Moreover, we use the promoter of the activity-dependent gene arc to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odours that elicit innate behaviours. Optical activation of these neurons leads to appropriate behaviours that recapitulate the responses to innate odours. These data indicate that the cortical amygdala plays a critical role in generating innate odour-driven behaviours but do not preclude its participation in learned olfactory behaviours.

  13. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    USDA-ARS?s Scientific Manuscript database

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  14. Innate predator recognition in giant pandas.

    PubMed

    Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang

    2012-02-01

    Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species.

  15. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection.

    PubMed

    Sivick, Kelsey E; Schaller, Matthew A; Smith, Sara N; Mobley, Harry L T

    2010-02-15

    Uropathogenic Escherichia coli is the causative agent for >80% of uncomplicated urinary tract infections (UTIs). Uropathogenic E. coli strains express a number of virulence and fitness factors that allow successful colonization of the mammalian bladder. To combat this, the host has distinct mechanisms to prevent adherence to the bladder wall and to detect and kill uropathogenic E. coli in the event of colonization. In this study, we investigated the role of IL-17A, an innate-adaptive immunomodulatory cytokine, during UTI using a murine model. Splenocytes isolated from mice infected by the transurethral route robustly expressed IL-17A in response to in vitro stimulation with uropathogenic E. coli Ags. Transcript expression of IL-17A in the bladders of infected mice correlated with a role in the innate immune response to UTI, and gammadelta cells seem to be a key source of IL-17A production. Although IL-17A seems to be dispensable for the generation of a protective response to uropathogenic E. coli, its importance in innate immunity is demonstrated by a defect in acute clearance of uropathogenic E. coli in IL-17A(-/-) mice. This clearance defect is likely a result of deficient cytokine and chemokine transcripts and impaired macrophage and neutrophil influx during infection. These results show that IL-17A is a key mediator for the innate immune response to UTIs.

  16. Experimental in vitro and in vivo systems for studying the innate immune response during dengue virus infections.

    PubMed

    Kitab, Bouchra; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2018-03-08

    Dengue is the most prevalent arboviral disease in humans and leads to significant morbidity and socioeconomic burden in tropical and subtropical areas. Dengue is caused by infection with any of the four closely related serotypes of dengue virus (DENV1-4) and usually manifests as a mild febrile illness, but may develop into fatal dengue hemorrhagic fever and shock syndrome. There are no specific antiviral therapies against dengue because understanding of DENV biology is limited. A tetravalent chimeric dengue vaccine, Dengvaxia, has finally been licensed for use, but its efficacy was significantly lower against DENV-2 infections and in dengue-naïve individuals. The identification of mechanisms underlying the interactions between DENV and immune responses will help to determine efficient therapeutic and preventive options. It has been well established how the innate immune system responds to DENV infection and how DENV overcomes innate antiviral defenses, however further progress in this field remains hampered by the absence of appropriate experimental dengue models. Herein, we review the available in vitro and in vivo approaches to study the innate immune responses to DENV.

  17. A comparative study of an innate immune response in Lamprologine cichlid fishes.

    PubMed

    O'Connor, Constance M; Reddon, Adam R; Marsh-Rollo, Susan E; Hellmann, Jennifer K; Ligocki, Isaac Y; Hamilton, Ian M; Balshine, Sigal

    2014-10-01

    Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding (Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour (Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.

  18. A comparative study of an innate immune response in Lamprologine cichlid fishes

    NASA Astrophysics Data System (ADS)

    O'Connor, Constance M.; Reddon, Adam R.; Marsh-Rollo, Susan E.; Hellmann, Jennifer K.; Ligocki, Isaac Y.; Hamilton, Ian M.; Balshine, Sigal

    2014-10-01

    Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding ( Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour ( Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.

  19. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    PubMed Central

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  20. Natural Killer Cell Functions during the Innate Immune Response to Pathogenic Streptococci

    PubMed Central

    Lemire, Paul; Galbas, Tristan; Thibodeau, Jacques; Segura, Mariela

    2017-01-01

    Dendritic cells (DCs) and NK cells play a crucial role in the first phase of host defense against infections. Group B Streptococcus (GBS) and Streptococcus suis are encapsulated streptococci causing severe systemic inflammation, leading to septicemia and meningitis. Yet, the involvement of NK cells in the innate immune response to encapsulated bacterial infection is poorly characterized. Here, it was observed that these two streptococcal species rapidly induce the release of IFN-γ and that NK cells are the major cell type responsible for this production during the acute phase of the infection. Albeit S. suis capacity to activate NK cells was lower than that of GBS, these cells partially contribute to S. suis systemic infection; mainly through amplification of the inflammatory loop. In contrast, such a role was not observed during GBS systemic infection. IFN-γ release by NK cells required the presence of DCs, which in turn had a synergistic effect on DC cytokine production. These responses were mainly mediated by direct DC-NK cell contact and partially dependent on soluble factors. Though IL-12 and LFA-1 were shown to be critical in S. suis-mediated activation of the DC-NK cell crosstalk, different or redundant molecular pathways modulate DC-NK interactions during GBS infection. The bacterial capsular polysaccharides also differently modulated NK cell activation. Together, these results demonstrated a role of NK cells in the innate immune response against encapsulated streptococcal infections; yet the molecular pathways governing NK activation seem to differ upon the pathogen and should not be generalized when studying bacterial infections. PMID:28706510

  1. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.

    PubMed

    Tufail, Yusuf; Cook, Daniela; Fourgeaud, Lawrence; Powers, Colin J; Merten, Katharina; Clark, Charles L; Hoffman, Elizabeth; Ngo, Alexander; Sekiguchi, Kohei J; O'Shea, Clodagh C; Lemke, Greg; Nimmerjahn, Axel

    2017-02-08

    Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  3. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response

    PubMed Central

    Ezelle, Heather J.; Malathi, Krishnamurthy; Hassel, Bret A.

    2016-01-01

    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed. PMID:26760998

  4. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response.

    PubMed

    Ezelle, Heather J; Malathi, Krishnamurthy; Hassel, Bret A

    2016-01-08

    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2'-5'-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.

  5. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases.

    PubMed

    Krishnamoorthy, Nandini; Abdulnour, Raja-Elie E; Walker, Katherine H; Engstrom, Braden D; Levy, Bruce D

    2018-07-01

    Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.

  6. Kinetics of Innate Immune Response to Yersinia pestis after Intradermal Infection in a Mouse Model

    PubMed Central

    Jarrett, Clayton O.; Gardner, Donald; Hinnebusch, B. Joseph

    2012-01-01

    A hallmark of Yersinia pestis infection is a delayed inflammatory response early in infection. In this study, we use an intradermal model of infection to study early innate immune cell recruitment. Mice were injected intradermally in the ear with wild-type (WT) or attenuated Y. pestis lacking the pYV virulence plasmid (pYV−). The inflammatory responses in ear and draining lymph node samples were evaluated by flow cytometry and immunohistochemistry. As measured by flow cytometry, total neutrophil and macrophage recruitment to the ear in WT-infected mice did not differ from phosphate-buffered saline (PBS) controls or mice infected with pYV−, except for a transient increase in macrophages at 6 h compared to the PBS control. Limited inflammation was apparent even in animals with high bacterial loads (105 to 106 CFU). In addition, activation of inflammatory cells was significantly reduced in WT-infected mice as measured by CD11b and major histocompatibility complex class II (MHC-II) expression. When mice infected with WT were injected 12 h later at the same intradermal site with purified LPS, Y. pestis did not prevent recruitment of neutrophils. However, significant reduction in neutrophil activation remained compared to that of PBS and pYV− controls. Immunohistochemistry revealed qualitative differences in neutrophil recruitment to the skin and draining lymph node, with WT-infected mice producing a diffuse inflammatory response. In contrast, focal sites of neutrophil recruitment were sustained through 48 h postinfection in pYV−-infected mice. Thus, an important feature of Y. pestis infection is reduced activation and organization of inflammatory cells that is at least partially dependent on the pYV virulence plasmid. PMID:22966041

  7. Effects of engineered nanoparticles on the innate immune system.

    PubMed

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    PubMed

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  9. Alcohol, aging, and innate immunity.

    PubMed

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  10. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection

    PubMed Central

    Sun, Xingmin; Hirota, Simon A.

    2014-01-01

    Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of Clostridium difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis. PMID:25242213

  11. Human Respiratory Syncytial Virus Nucleoprotein and Inclusion Bodies Antagonize the Innate Immune Response Mediated by MDA5 and MAVS

    PubMed Central

    Lifland, Aaron W.; Jung, Jeenah; Alonas, Eric; Zurla, Chiara; Crowe, James E.

    2012-01-01

    Currently, the spatial distribution of human respiratory syncytial virus (hRSV) proteins and RNAs in infected cells is still under investigation, with many unanswered questions regarding the interaction of virus-induced structures and the innate immune system. Very few studies of hRSV have used subcellular imaging as a means to explore the changes in localization of retinoic-acid-inducible gene-I (RIG-I)-like receptors or the mitochondrial antiviral signaling (MAVS) protein, in response to the infection and formation of viral structures. In this investigation, we found that both RIG-I and melanoma differentiation-associated gene 5 (MDA5) colocalized with viral genomic RNA and the nucleoprotein (N) as early as 6 h postinfection (hpi). By 12 hpi, MDA5 and MAVS were observed within large viral inclusion bodies (IB). We used a proximity ligation assay (PLA) and determined that the N protein was in close proximity to MDA5 and MAVS in IBs throughout the course of the infection. Similar results were found with the transient coexpression of N and the phosphoprotein (P). Additionally, we demonstrated that the localization of MDA5 and MAVS in IBs inhibited the expression of interferon β mRNA 27-fold following Newcastle disease virus infection. From these data, we concluded that the N likely interacts with MDA5, is in close proximity to MAVS, and localizes these molecules within IBs in order to attenuate the interferon response. To our knowledge, this is the first report of a specific function for hRSV IBs and of the hRSV N protein as a modulator of the innate immune response. PMID:22623778

  12. Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS.

    PubMed

    Lifland, Aaron W; Jung, Jeenah; Alonas, Eric; Zurla, Chiara; Crowe, James E; Santangelo, Philip J

    2012-08-01

    Currently, the spatial distribution of human respiratory syncytial virus (hRSV) proteins and RNAs in infected cells is still under investigation, with many unanswered questions regarding the interaction of virus-induced structures and the innate immune system. Very few studies of hRSV have used subcellular imaging as a means to explore the changes in localization of retinoic-acid-inducible gene-I (RIG-I)-like receptors or the mitochondrial antiviral signaling (MAVS) protein, in response to the infection and formation of viral structures. In this investigation, we found that both RIG-I and melanoma differentiation-associated gene 5 (MDA5) colocalized with viral genomic RNA and the nucleoprotein (N) as early as 6 h postinfection (hpi). By 12 hpi, MDA5 and MAVS were observed within large viral inclusion bodies (IB). We used a proximity ligation assay (PLA) and determined that the N protein was in close proximity to MDA5 and MAVS in IBs throughout the course of the infection. Similar results were found with the transient coexpression of N and the phosphoprotein (P). Additionally, we demonstrated that the localization of MDA5 and MAVS in IBs inhibited the expression of interferon β mRNA 27-fold following Newcastle disease virus infection. From these data, we concluded that the N likely interacts with MDA5, is in close proximity to MAVS, and localizes these molecules within IBs in order to attenuate the interferon response. To our knowledge, this is the first report of a specific function for hRSV IBs and of the hRSV N protein as a modulator of the innate immune response.

  13. The early response during the interaction of fungal phytopathogen and host plant.

    PubMed

    Shen, Yilin; Liu, Na; Li, Chuang; Wang, Xin; Xu, Xiaomeng; Chen, Wan; Xing, Guozhen; Zheng, Wenming

    2017-05-01

    Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum , rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding. © 2017 The Authors.

  14. The early response during the interaction of fungal phytopathogen and host plant

    PubMed Central

    Shen, Yilin; Liu, Na; Li, Chuang; Wang, Xin; Xu, Xiaomeng; Chen, Wan; Xing, Guozhen

    2017-01-01

    Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum, rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding. PMID:28469008

  15. The participation of cortical amygdala in innate, odor-driven behavior

    PubMed Central

    Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard

    2014-01-01

    Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519

  16. T-Helper 17 Cell Cytokine Responses in Lyme Disease Correlate With Borrelia burgdorferi Antibodies During Early Infection and With Autoantibodies Late in the Illness in Patients With Antibiotic-Refractory Lyme Arthritis.

    PubMed

    Strle, Klemen; Sulka, Katherine B; Pianta, Annalisa; Crowley, Jameson T; Arvikar, Sheila L; Anselmo, Anthony; Sadreyev, Ruslan; Steere, Allen C

    2017-04-01

    Control of Lyme disease is attributed predominantly to innate and adaptive T-helper 1 cell (TH1) immune responses, whereas the role of T-helper 17 cell (TH17) responses is less clear. Here we characterized these inflammatory responses in patients with erythema migrans (EM) or Lyme arthritis (LA) to elucidate their role early and late in the infection. Levels of 21 cytokines and chemokines, representative of innate, TH1, and TH17 immune responses, were assessed by Luminex in acute and convalescent sera from 91 EM patients, in serum and synovial fluid from 141 LA patients, and in serum from 57 healthy subjects. Antibodies to Borrelia burgdorferi or autoantigens were measured by enzyme-linked immunosorbent assay. Compared with healthy subjects, EM patients had significantly higher levels of innate, TH1, and TH17-associated mediators (P ≤ .05) in serum. In these patients, the levels of inflammatory mediators, particularly TH17-associated cytokines, correlated directly with B. burgdorferi immunoglobulin G antibodies (P ≤ .02), suggesting a beneficial role for these responses in control of early infection. Late in the disease, in patients with LA, innate and TH1-associated mediators were often >10-fold higher in synovial fluid than serum. In contrast, the levels of TH17-associated mediators were more variable, but correlated strongly with autoantibodies to endothelial cell growth factor, matrix metalloproteinase 10, and apolipoprotein B-100 in joints of patients with antibiotic-refractory LA, implying a shift in TH17 responses toward an autoimmune phenotype. Patients with Lyme disease often develop pronounced TH17 immune responses that may help control early infection. However, late in the disease, excessive TH17 responses may be disadvantageous by contributing to autoimmune responses associated with antibiotic-refractory LA. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions

  17. Innate immunity in vertebrates: an overview.

    PubMed

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  18. 6-Shogaol inhibits chondrocytes' innate immune responses and cathepsin-K activity.

    PubMed

    Villalvilla, Amanda; da Silva, Jame's A; Largo, Raquel; Gualillo, Oreste; Vieira, Paulo Cezar; Herrero-Beaumont, Gabriel; Gómez, Rodolfo

    2014-02-01

    Ginger has long been used in traditional Asian medicine to treat osteoarthritis. Indeed, scientific research has reported that ginger derivatives (GDs) have the potential to control innate immune responses. Given the widespread use and demonstrated properties of GDs, we set out to study their anti-inflammatory and anticatabolic properties in chondrocytes. 6-shogaol (6-S), the most active GD, was obtained from ginger. 6-S was not toxic as measured by MTT assay, and inhibited NO production and IL-6 and MCP-1 induced gene expression in LPSbut not in IL-1β-stimulated chondrocytes. 6-S also inhibited LPS-mediated ERK1/2 activation as well as NOS2 and MyD88 induced expression as determined by Western blot. Moreover, zymography revealed that 6-S inhibited matrix metalloproteinases (MMP) 2/9 induction in LPS-treated cells. Hydrated 6-S was modified to obtain a compound (SSi6) without 6-S potential anti-inflammatory properties. Both 6-S and SSi6 inhibited cathepsin-K activity. 6-S blocked TLR4-mediated innate immune responses and MMP induction in chondrocytes. These results, together with GDs-mediated cathepsin-K inhibition, suggest the potential for GDs use against cartilage and bone degradation. Therefore, considering that clinical trials involving oral administration of ginger achieved relevant nontoxic GDs serum concentrations, we suggest that a ginger-supplemented diet might reduce OA symptoms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Testing the "toxin hypothesis of allergy": Mast cells, IgE, and innate and acquired immune responses to venoms*

    PubMed Central

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J.

    2015-01-01

    Summary Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell’s viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic Th2 immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. PMID:26210895

  20. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  1. PAR-1 contributes to the innate immune response during viral infection

    PubMed Central

    Antoniak, Silvio; Owens, A. Phillip; Baunacke, Martin; Williams, Julie C.; Lee, Rebecca D.; Weithäuser, Alice; Sheridan, Patricia A.; Malz, Ronny; Luyendyk, James P.; Esserman, Denise A.; Trejo, JoAnn; Kirchhofer, Daniel; Blaxall, Burns C.; Pawlinski, Rafal; Beck, Melinda A.; Rauch, Ursula; Mackman, Nigel

    2013-01-01

    Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3–induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1–/– mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1+/+ mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1–/– mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1+/+ mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection. PMID:23391721

  2. Identification of quantitative trait loci controlling gene expression during the innate immunity response of soybean

    USDA-ARS?s Scientific Manuscript database

    Microbe associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we re...

  3. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes.

    PubMed

    Farina, Antonella; Peruzzi, Giovanna; Lacconi, Valentina; Lenna, Stefania; Quarta, Silvia; Rosato, Edoardo; Vestri, Anna Rita; York, Michael; Dreyfus, David H; Faggioni, Alberto; Morrone, Stefania; Trojanowska, Maria; Farina, G Alessandra

    2017-02-28

    Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells. Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes. This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway

  4. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors

    PubMed Central

    Metcalf, Talibah U; Cubas, Rafael A; Ghneim, Khader; Cartwright, Michael J; Grevenynghe, Julien Van; Richner, Justin M; Olagnier, David P; Wilkinson, Peter A; Cameron, Mark J; Park, Byung S; Hiscott, John B; Diamond, Michael S; Wertheimer, Anne M; Nikolich-Zugich, Janko; Haddad, Elias K

    2015-01-01

    Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1β, IFNα, IFNγ, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections. PMID:25728020

  5. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague.

    PubMed

    Sebbane, Florent; Lemaître, Nadine; Sturdevant, Daniel E; Rebeil, Roberto; Virtaneva, Kimmo; Porcella, Stephen F; Hinnebusch, B Joseph

    2006-08-01

    Yersinia pestis causes bubonic plague, characterized by an enlarged, painful lymph node, termed a bubo, that develops after bacterial dissemination from a fleabite site. In susceptible animals, the bacteria rapidly escape containment in the lymph node, spread systemically through the blood, and produce fatal sepsis. The fulminant progression of disease has been largely ascribed to the ability of Y. pestis to avoid phagocytosis and exposure to antimicrobial effectors of innate immunity. In vivo microarray analysis of Y. pestis gene expression, however, revealed an adaptive response to nitric oxide (NO)-derived reactive nitrogen species and to iron limitation in the extracellular environment of the bubo. Polymorphonuclear neutrophils recruited to the infected lymph node expressed abundant inducible NO synthase, and several Y. pestis homologs of genes involved in the protective response to reactive nitrogen species were up-regulated in the bubo. Mutation of one of these genes, which encodes the Hmp flavohemoglobin that detoxifies NO, attenuated virulence. Thus, the ability of Y. pestis to destroy immune cells and remain extracellular in the bubo appears to limit exposure to some but not all innate immune effectors. High NO levels induced during plague may also influence the developing adaptive immune response and contribute to septic shock.

  6. Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections

    PubMed Central

    Domm, William; Misra, Ravi S.; O’Reilly, Michael A.

    2015-01-01

    Children born preterm often exhibit reduced lung function and increased severity of response to respiratory viruses, suggesting that premature birth has compromised proper development of the respiratory epithelium and innate immune defenses. Increasing evidence suggests that premature birth promotes aberrant lung development likely due to the neonatal oxygen transition occurring before pulmonary development has matured. Given that preterm infants are born at a point of time where their immune system is also still developing, early life oxygen exposure may also be disrupting proper development of innate immunity. Here, we review current literature in hopes of stimulating research that enhances understanding of how the oxygen environment at birth influences lung development and host defense. This knowledge may help identify those children at risk for disease and ideally culminate in the development of novel therapies that improve their health. PMID:26322310

  7. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  8. Innate inflammation as the common pathway of risk factors leading to TIAs and stroke.

    PubMed

    del Zoppo, Gregory J; Gorelick, Philip B

    2010-10-01

    In the early moments of ischemic stroke, the processes of thrombosis, ischemia, and inflammation are intimately interrelated, setting in motion an injury that leads to infarction and permanent damage. Of these, the potential roles that innate inflammation can play in the evolution of brain tissue damage in response to the ischemic injury are not well understood. Observations in the settings of atherosclerotic cardiovascular disease and cerebral ischemia have much to teach each other. The following provides an introductory overview of the conference "Innate Inflammation as the Common Pathway of Risk Factors Leading to Transient Ischemic Attacks and Stroke: Pathophysiology and Potential Interventions," which took place May 9-10, 2010 at the New York Academy of Sciences. This meeting was convened to explore aspects of the cellular and tissue responses to innate inflammation. A faculty of leading experts was assembled to discuss the role of inflammation in laboratory models of stroke and myocardial infarction, define possible novel means from laboratory evidence to alleviate or prevent inflammation underlying stroke and cardiovascular disease, and present information on current examples of clinical translation of these understandings in relation to human stroke and myocardial infarction. © 2010 New York Academy of Sciences.

  9. Transcriptional profiles of pulmonary innate immune responses to isogenic antibiotic-susceptible and multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Tam, Vincent H; Pérez, Cynthia; Ledesma, Kimberly R; Lewis, Russell E

    2018-04-01

    The virulence of an isogenic pair of Pseudomonas aeruginosa strains was studied under similar experimental conditions in two animal infection models. The time to death was significantly longer for the multidrug resistant (MDR) than the wild-type strain. The transcriptional profiles of 84 innate immune response genes in the lungs of immune competent Balb/C mice were further compared. Significantly weaker expression of genes involved in production of soluble pattern recognition receptor and complement were observed in animals infected with the MDR strain. Altered patterns of innate immune system activation may explain the attenuated virulence in MDR bacteria. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  10. Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms.

    PubMed

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J

    2015-10-01

    Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell's viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic type 2 (Th2) immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.

    PubMed

    Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2017-08-29

    RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.

  12. Neonatal lipopolysaccharide challenge does not diminish the innate immune response to a subsequent lipopolysaccharide challenge in holstein bull calves

    USDA-ARS?s Scientific Manuscript database

    The innate immune response following experimental mastitis is quite variable between individual dairy cattle. An inflammatory response that minimizes collateral damage to the mammary gland while still effectively resolving the infection following pathogen exposure is beneficial to dairy producers. ...

  13. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    PubMed

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  14. Differences in innate cytokine responses between European and African children.

    PubMed

    Labuda, Lucja A; de Jong, Sanne E; Meurs, Lynn; Amoah, Abena S; Mbow, Moustapha; Ateba-Ngoa, Ulysse; van der Ham, Alwin J; Knulst, André C; Yazdanbakhsh, Maria; Adegnika, Ayola A

    2014-01-01

    Although differences in immunological responses between populations have been found in terms of vaccine efficacy, immune responses to infections and prevalence of chronic inflammatory diseases, the mechanisms responsible for these differences are not well understood. Therefore, innate cytokine responses mediated by various classes of pattern-recognition receptors including Toll-like receptors (TLR), C-type lectin receptors (CLRs) and nucleotide-binding oligomerisation domain-like receptors (NLRs) were compared between Dutch (European), semi-urban and rural Gabonese (African) children. Whole blood was stimulated for 24 hours and the pro-inflammatory tumor necrosis factor (TNF) and the anti-inflammatory/regulatory interleukin-10 (IL-10) cytokines in culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). Gabonese children had a lower pro-inflammatory response to poly(I:C) (TLR3 ligand), but a higher pro-inflammatory response to FSL-1 (TLR2/6 ligand), Pam3 (TLR2/1 ligand) and LPS (TLR4 ligand) compared to Dutch children. Anti-inflammatory responses to Pam3 were also higher in Gabonese children. Non-TLR ligands did not induce substantial cytokine production on their own. Interaction between various TLR and non-TLR receptors was further assessed, but no differences were found between the three populations. In conclusion, using a field applicable assay, significant differences were observed in cytokine responses between European and African children to TLR ligands, but not to non-TLR ligands.

  15. Innate lymphoid cells: the new kids on the block.

    PubMed

    Withers, David R; Mackley, Emma C; Jones, Nick D

    2015-08-01

    The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.

  16. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    PubMed

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  17. Adolescent voluntary exercise attenuated hippocampal innate immunity responses and depressive-like behaviors following maternal separation stress in male rats.

    PubMed

    Sadeghi, Mahsa; Peeri, Maghsoud; Hosseini, Mir-Jamal

    2016-09-01

    Early life stressful events have detrimental effects on the brain and behavior, which are associated with the development of depression. Immune-inflammatory responses have been reported to contribute in the pathophysiology of depression. Many studies have reported on the beneficial effects of exercise against stress. However, underlying mechanisms through which exercise exerts its effects were poorly studied. Therefore, it applied maternal separation (MS), as a valid animal model of early-life adversity, in rats from postnatal day (PND) 2 to 14 for 180min per day. At PND 28, male Wistar albino rats were subjected to 5 experimental groups; 1) controls 2) MS rats 3) MS rats treated with fluoxetine 5mg/kg to PND 60, 4) MS rats that were subjected to voluntary running wheel (RW) exercise and 5) MS rats that were subjected to mandatory treadmill (TM) exercise until adulthood. At PND 60, depressive-like behaviors were assessed by using forced swimming test (FST), splash test, and sucrose preference test (SPT). Our results revealed that depressive-like behaviors following MS stress were associated with an increase in expression of toll-like receptor 4 (Tlr-4) and its main signaling protein, Myd88, in the hippocampal formation. Also, we found that voluntary (and not mandatory) physical exercise during adolescence is protected against depressant effects of early-life stress at least partly through mitigating the innate immune responses in the hippocampus. Copyright © 2016. Published by Elsevier Inc.

  18. Innate immunity against HIV: a priority target for HIV prevention research.

    PubMed

    Borrow, Persephone; Shattock, Robin J; Vyakarnam, Annapurna

    2010-10-11

    This review summarizes recent advances and current gaps in understanding of innate immunity to human immunodeficiency virus (HIV) infection, and identifies key scientific priorities to enable application of this knowledge to the development of novel prevention strategies (vaccines and microbicides). It builds on productive discussion and new data arising out of a workshop on innate immunity against HIV held at the European Commission in Brussels, together with recent observations from the literature.Increasing evidence suggests that innate responses are key determinants of the outcome of HIV infection, influencing critical events in the earliest stages of infection including the efficiency of mucosal HIV transmission, establishment of initial foci of infection and local virus replication/spread as well as virus dissemination, the ensuing acute burst of viral replication, and the persisting viral load established. They also impact on the subsequent level of ongoing viral replication and rate of disease progression. Modulation of innate immunity thus has the potential to constitute a powerful effector strategy to complement traditional approaches to HIV prophylaxis and therapy. Importantly, there is increasing evidence to suggest that many arms of the innate response play both protective and pathogenic roles in HIV infection. Consequently, understanding the contributions made by components of the host innate response to HIV acquisition/spread versus control is a critical pre-requisite for the employment of innate immunity in vaccine or microbicide design, so that appropriate responses can be targeted for up- or down-modulation. There is also an important need to understand the mechanisms via which innate responses are triggered and mediate their activity, and to define the structure-function relationships of individual innate factors, so that they can be selectively exploited or inhibited. Finally, strategies for achieving modulation of innate functions need to be

  19. Host-Specific Response to HCV Infection in the Chimeric SCID-beige/Alb-uPA Mouse Model: Role of the Innate Antiviral Immune Response

    PubMed Central

    Thompson, Jill C; Smith, Maria W; Yeh, Matthew M; Proll, Sean; Zhu, Lin-Fu; Gao, T. J; Kneteman, Norman M; Tyrrell, D. Lorne; Katze, Michael G

    2006-01-01

    The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression. PMID:16789836

  20. Genetic and transcriptomic analyses provide new insights on the early antiviral response to VHSV in resistant and susceptible rainbow trout.

    PubMed

    Verrier, Eloi R; Genet, Carine; Laloë, Denis; Jaffrezic, Florence; Rau, Andrea; Esquerre, Diane; Dechamp, Nicolas; Ciobotaru, Céline; Hervet, Caroline; Krieg, Francine; Jouneau, Luc; Klopp, Christophe; Quillet, Edwige; Boudinot, Pierre

    2018-06-19

    The viral hemorrhagic septicemia virus (VHSV) is a major threat for salmonid farming and for wild fish populations worldwide. Previous studies have highlighted the importance of innate factors regulated by a major quantitative trait locus (QTL) for the natural resistance to waterborne VHSV infection in rainbow trout. The aim of this study was to analyze the early transcriptomic response to VHSV inoculation in cell lines derived from previously described resistant and susceptible homozygous isogenic lines of rainbow trout to obtain insights into the molecular mechanisms responsible for the resistance to the viral infection. We first confirmed the presence of the major QTL in a backcross involving a highly resistant fish isogenic line (B57) and a highly susceptible one (A22), and were able to define the confidence interval of the QTL and to identify its precise position. We extended the definition of the QTL since it controls not only resistance to waterborne infection but also the kinetics of mortality after intra-peritoneal injection. Deep sequencing of the transcriptome of B57 and A22 derived cell lines exposed to inactivated VHSV showed a stronger response to virus inoculation in the resistant background. In line with our previous observations, an early and strong induction of interferon and interferon-stimulated genes was correlated with the resistance to VHSV, highlighting the major role of innate immune factors in natural trout resistance to the virus. Interestingly, major factors of the antiviral innate immunity were much more expressed in naive B57 cells compared to naive A22 cells, which likely contributes to the ability of B57 to mount a fast antiviral response after viral infection. These observations were further extended by the identification of several innate immune-related genes localized close to the QTL area on the rainbow trout genome. Taken together, our results improve our knowledge in virus-host interactions in vertebrates and provide novel

  1. The Innate Immune System in Acute and Chronic Wounds

    PubMed Central

    MacLeod, Amanda S.; Mansbridge, Jonathan N.

    2016-01-01

    Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464

  2. Evasion of Early Antiviral Responses by Herpes Simplex Viruses

    PubMed Central

    Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.

    2015-01-01

    Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478

  3. Innate Immune Response to Rift Valley Fever Virus in Goats

    PubMed Central

    Nfon, Charles K.; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M.

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings. PMID:22545170

  4. Innate immune response to Rift Valley fever virus in goats.

    PubMed

    Nfon, Charles K; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings.

  5. Probiotics and Innate and Adaptive Immune Responses in Premature Infants

    PubMed Central

    Underwood, Mark A.

    2017-01-01

    Premature infants are at increased risk for morbidity and mortality due to necrotizing enterocolitis (NEC) and sepsis. Probiotics decrease the risk of NEC and death in premature infants; however, mechanisms of action are unclear. A wide variety of probiotic species have been evaluated for potential beneficial properties in vitro, in animal models, and in clinical trials of premature infants. Although there is variation by species and even strain, common mechanisms of protection include attenuation of intestinal inflammation, apoptosis, dysmotility, permeability, supplanting other gut microbes through production of bacteriocins, and more effective use of available nutrients. Here, we review the most promising probiotics and what is known about their impact on the innate and adaptive immune response. PMID:28966796

  6. ID’ing Innate and Innate-like Lymphoid Cells

    PubMed Central

    Verykokakis, Mihalis; Zook, Erin C.; Kee, Barbara L.

    2014-01-01

    Summary The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. PMID:25123285

  7. Innate Immune sensing of DNA viruses

    PubMed Central

    Rathinam, Vijay A. K.; Fitzgerald, Katherine A.

    2011-01-01

    DNA viruses are a significant contributor to human morbidity and mortality. The immune system protects against viral infections through coordinated innate and adaptive immune responses. While the antigen-specific adaptive mechanisms have been extensively studied, the critical contributions of innate immunity to anti-viral defenses have only been revealed in the very recent past. Central to these anti-viral defenses is the recognition of viral pathogens by a diverse set of germ-line encoded receptors that survey nearly all cellular compartments for the presence of pathogens. In this review, we discuss the recent advances in the innate immune sensing of DNA viruses and focus on the recognition mechanisms involved. PMID:21334037

  8. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    PubMed Central

    Kenmoku, Hiroyuki

    2017-01-01

    ABSTRACT Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. PMID:28250052

  9. Neuronal overexpression of cyclooxygenase-2 does not alter the neuroinflammatory response during brain innate immune activation.

    PubMed

    Aid, Saba; Parikh, Nishant; Palumbo, Sara; Bosetti, Francesca

    2010-07-12

    Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells. Published by Elsevier Ireland Ltd.

  10. Innate Immunity and Resistance to Tolerogenesis in Allotransplantation

    PubMed Central

    Benichou, Gilles; Tonsho, Makoto; Tocco, Georges; Nadazdin, Ognjenka; Madsen, Joren C.

    2012-01-01

    The development of immunosuppressive drugs to control adaptive immune responses has led to the success of transplantation as a therapy for end-stage organ failure. However, these agents are largely ineffective in suppressing components of the innate immune system. This distinction has gained in clinical significance as mounting evidence now indicates that innate immune responses play important roles in the acute and chronic rejection of whole organ allografts. For instance, whereas clinical interest in natural killer (NK) cells was once largely confined to the field of bone marrow transplantation, recent findings suggest that these cells can also participate in the acute rejection of cardiac allografts and prevent tolerance induction. Stimulation of Toll-like receptors (TLRs), another important component of innate immunity, by endogenous ligands released in response to ischemia/reperfusion is now known to cause an inflammatory milieu favorable to graft rejection and abrogation of tolerance. Emerging data suggest that activation of complement is linked to acute rejection and interferes with tolerance. In summary, the conventional wisdom that the innate immune system is of little importance in whole organ transplantation is no longer tenable. The addition of strategies that target TLRs, NK cells, complement, and other components of the innate immune system will be necessary to eventually achieve long-term tolerance to human allograft recipients. PMID:22566954

  11. Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues

    PubMed Central

    Lischinsky, Julieta E; Sokolowski, Katie; Li, Peijun; Esumi, Shigeyuki; Kamal, Yasmin; Goodrich, Meredith; Oboti, Livio; Hammond, Timothy R; Krishnamoorthy, Meera; Feldman, Daniel; Huntsman, Molly; Liu, Judy; Corbin, Joshua G

    2017-01-01

    The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes. DOI: http://dx.doi.org/10.7554/eLife.21012.001 PMID:28244870

  12. The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens

    PubMed Central

    Díaz-Alvarez, Laura

    2017-01-01

    Galectins are a group of evolutionarily conserved proteins with the ability to bind β-galactosides through characteristic carbohydrate-recognition domains (CRD). Galectin-3 is structurally unique among all galectins as it contains a C-terminal CRD linked to an N-terminal protein-binding domain, being the only chimeric galectin. Galectin-3 participates in many functions, both intra- and extracellularly. Among them, a prominent role for Galectin-3 in inflammation has been recognized. Galectin-3 has also been shown to directly bind to pathogens and to have various effects on the functions of the cells of the innate immune system. Thanks to these two properties, Galectin-3 participates in several ways in the innate immune response against invading pathogens. Galectin-3 has been proposed to function not only as a pattern-recognition receptor (PRR) but also as a danger-associated molecular pattern (DAMP). In this review, we analyze the various roles that have been assigned to Galectin-3, both as a PRR and as a DAMP, in the context of immune responses against pathogenic microorganisms. PMID:28607536

  13. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes.

    PubMed

    Verrier, Eloi R; Colpitts, Che C; Bach, Charlotte; Heydmann, Laura; Zona, Laetitia; Xiao, Fei; Thumann, Christine; Crouchet, Emilie; Gaudin, Raphaël; Sureau, Camille; Cosset, François-Loïc; McKeating, Jane A; Pessaux, Patrick; Hoshida, Yujin; Schuster, Catherine; Zeisel, Mirjam B; Baumert, Thomas F

    2016-10-25

    Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Mast Cells and IgE can Enhance Survival During Innate and Acquired Host Responses to Venoms*

    PubMed Central

    GALLI, STEPHEN J.; STARKL, PHILIPP; MARICHAL, THOMAS; TSAI, MINDY

    2017-01-01

    Mast cells and immunoglobulin E (IgE) antibodies are thought to promote health by contributing to host responses to certain parasites, but other beneficial functions have remained obscure. Venoms provoke innate inflammatory responses and pathology reflecting the activities of the contained toxins. Venoms also can induce allergic sensitization and development of venom-specific IgE antibodies, which can predispose some subjects to exhibit anaphylaxis upon subsequent exposure to the relevant venom. We found that innate functions of mast cells, including degradation of venom toxins by mast cell–derived proteases, enhanced survival in mice injected with venoms from the honeybee, two species of scorpion, three species of poisonous snakes, or the Gila monster. We also found that mice injected with sub-lethal amounts of honeybee or Russell’s viper venom exhibited enhanced survival after subsequent challenge with potentially lethal amounts of that venom, and that IgE antibodies, FcεRI, and probably mast cells contributed to such acquired resistance. PMID:28790503

  15. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Switalla, S.; Lauenstein, L.; Prenzler, F.

    Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. Themore » initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1{beta}, MIP-1{beta}, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-{gamma}, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation > 0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1{beta}, and IFN-{gamma}. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans.« less

  16. Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer.

    PubMed

    Słotwiński, Robert; Słotwińska, Sylwia Małgorzata

    2016-01-01

    Disorders of innate antibacterial response are of fundamental importance in the development of gastrointestinal cancers, including pancreatic cancer. Multi-regulatory properties of the Toll-like receptors (TLRs) (e.g., regulation of proliferation, the activity of NF-κB, gene transcription of apoptosis proteins, regulation of angiogenesis, HIF-1α protein expression) are used in experimental studies to better understand the pathogenesis of pancreatic cancer, for early diagnosis, and for more effective therapeutic intervention. There are known numerous examples of TLR agonists (e.g., TLR2/5 ligands, TLR6, TLR9) of antitumor effect. The direction of these studies is promising, but a small number of them does not allow for an accurate assessment of the impact of TLR expression disorders, proteins of these signaling pathways, or attempts to block or stimulate them, on the results of treatment of pancreatic cancer patients. It is known, however, that the expression disorders of proteins of innate antibacterial response signaling pathways occur not only in tumor tissue but also in peripheral blood leukocytes of pancreatic cancer patients (e.g., increased expression of TLR4, NOD1, TRAF6), which is one of the most important factors facilitating further tumor development. This review mainly focuses on the genetic aspects of signaling pathway disorders associated with innate antibacterial response in the pathogenesis and diagnosis of pancreatic cancer.

  17. ID'ing innate and innate-like lymphoid cells.

    PubMed

    Verykokakis, Mihalis; Zook, Erin C; Kee, Barbara L

    2014-09-01

    The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    PubMed

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  19. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions

    PubMed Central

    Glennon, Nicole B.; Jabado, Omar; Lo, Michael K.

    2015-01-01

    ABSTRACT Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. IMPORTANCE Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral

  20. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions.

    PubMed

    Glennon, Nicole B; Jabado, Omar; Lo, Michael K; Shaw, Megan L

    2015-08-01

    Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral maintenance, research

  1. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN)

    PubMed Central

    Tomescu, C; Abdulhaqq, S; Montaner, L J

    2011-01-01

    The description of highly exposed individuals who remain seronegative (HESN) despite repeated exposure to human immunodeficiency virus (HIV)-1 has heightened interest in identifying potential mechanisms of HIV-1 resistance. HIV-specific humoral and T cell-mediated responses have been identified routinely in HESN subjects, although it remains unknown if these responses are a definitive cause of protection or merely a marker for exposure. Approximately half of HESN lack any detectible HIV-specific adaptive immune responses, suggesting that other mechanisms of protection from HIV-1 infection also probably exist. In support of the innate immune response as a mechanism of resistance, increased natural killer (NK) cell activity has been correlated with protection from infection in several high-risk cohorts of HESN subjects, including intravenous drug users, HIV-1 discordant couples and perinatally exposed infants. Inheritance of protective NK KIR3DL1high and KIR3DS1 receptor alleles have also been observed to be over-represented in a high-risk cohort of HESN intravenous drug users and HESN partners of HIV-1-infected subjects. Other intrinsic mechanisms of innate immune protection correlated with resistance in HESN subjects include heightened dendritic cell responses and increased secretion of anti-viral factors such as β-chemokines, small anti-viral factors and defensins. This review will highlight the most current evidence in HESN subjects supporting the role of epithelial microenvironment and the innate immune system in sustaining resistance against HIV-1 infection. We will argue that as a front-line defence the innate immune response determines the threshold of infectivity that HIV-1 must overcome to establish a productive infection. PMID:21413945

  2. Why Innate Lymphoid Cells?

    PubMed

    Kotas, Maya E; Locksley, Richard M

    2018-06-19

    Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4 + T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Combined Chromatin and Expression Analysis Reveals Specific Regulatory Mechanisms within Cytokine Genes in the Macrophage Early Immune Response

    PubMed Central

    Emanuelsson, Olof; Sennblad, Bengt; Pirmoradian Najafabadi, Mohammad; Folkersen, Lasse; Mälarstig, Anders; Lagergren, Jens; Eriksson, Per; Hamsten, Anders; Odeberg, Jacob

    2012-01-01

    Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS). To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches - gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac) and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII), which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF), was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines), was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/−LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40%) was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at the

  4. Circulating concentrations of non-esterified fatty acids (NEFA) as mediators of the innate immune response in cattle

    USDA-ARS?s Scientific Manuscript database

    We previously reported that temperamental cattle have greater non-esterified fatty acid (NEFA) concentrations and an altered innate immune response compared to calm cattle. Therefore, this trial was designed to determine if increasing energy availability via a lipid infusion or bolus dextrose inject...

  5. Cellular Innate Immunity: An Old Game with New Players.

    PubMed

    Gasteiger, Georg; D'Osualdo, Andrea; Schubert, David A; Weber, Alexander; Bruscia, Emanuela M; Hartl, Dominik

    2017-01-01

    Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases. © 2016 S. Karger AG, Basel.

  6. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection - a randomised controlled trial.

    PubMed

    Turner, R B; Woodfolk, J A; Borish, L; Steinke, J W; Patrie, J T; Muehling, L M; Lahtinen, S; Lehtinen, M J

    2017-04-26

    Ingestion of probiotics appears to have modest effects on the incidence of viral respiratory infection. The mechanism of these effects is not clear; however, there is evidence from animal models that the probiotic may have an effect on innate immune responses to pathogens. The purpose of this randomised, placebo-controlled study was to determine the effect of administration of Bifidobacterium animalis subspecies lactis Bl-04 on innate and adaptive host responses to experimental rhinovirus challenge. The effect on the response of chemokine (C-X-C motif) ligand 8 (CXCL8) to rhinovirus infection was defined as the primary endpoint for the study. 152 seronegative volunteers who had been supplemented for 28 days, 73 with probiotic and 79 with placebo, were challenged with RV-A39. Supplement or placebo administration was then continued for five days during collection of specimens for assessment of host response, infection, and symptoms. 58 probiotic and 57 placebo-supplemented volunteers met protocol-defined criteria for analysis. Probiotic resulted in higher nasal lavage CXCL8 on day 0 prior to virus challenge (90 vs 58 pg/ml, respectively, P=0.04, ANCOVA). The CXCL8 response to rhinovirus infection in nasal lavage was significantly reduced in the probiotic treated group (P=0.03, ANCOVA). Probiotic was also associated with a reduction in nasal lavage virus titre and the proportion of subjects shedding virus in nasal secretions (76% in the probiotic group, 91% in the placebo group, P=0.04, Fisher Exact test). The administration of probiotic did not influence lower respiratory inflammation (assessed by exhaled nitric oxide), subjective symptom scores, or infection rate. This study demonstrates that ingestion of Bl-04 may have an effect on the baseline state of innate immunity in the nose and on the subsequent response of the human host to rhinovirus infection. Clinicaltrials.gov registry number: NCT01669603.

  7. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour

    PubMed Central

    Zhu, Xiao-Na; Liu, Xian-Dong; Sun, Suya; Zhuang, Hanyi; Yang, Jing-Yu; Henkemeyer, Mark; Xu, Nan-Jie

    2016-01-01

    Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period. PMID:27008987

  8. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour.

    PubMed

    Zhu, Xiao-Na; Liu, Xian-Dong; Sun, Suya; Zhuang, Hanyi; Yang, Jing-Yu; Henkemeyer, Mark; Xu, Nan-Jie

    2016-03-24

    Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period.

  9. SAMHD1 host restriction factor: a link with innate immune sensing of retrovirus infection.

    PubMed

    Sze, Alexandre; Olagnier, David; Lin, Rongtuan; van Grevenynghe, Julien; Hiscott, John

    2013-12-13

    SAMHD1 [sterile alpha motif and histidine-aspartic domain (HD) containing protein 1] is the most recent addition to a unique group of host restriction factors that limit retroviral replication at distinct stages of the viral life cycle. SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase that degrades the intracellular pool of deoxynucleoside triphosphates available during early reverse transcription. SAMHD1 activity is blocked by the Vpx accessory function present in human immunodeficiency virus type 2 and SIVsm. Mutations in SAMHD1 are associated with the autoimmune disorder Aicardi-Goutières syndrome, thus emphasizing its role in regulation of the immune response. SAMHD1 antiretroviral activity is modulated by post-translational modifications, cell-cycle-dependent functions and cytokine-mediated changes. Innate receptors that sense retroviral DNA intermediates are the focus of intense study, and recent studies have established a link among SAMHD1 restriction, innate sensing of DNA and protective immune responses. Cell-cycle-dependent regulation of SAMHD1 by phosphorylation and the increasingly broad range of viruses inhibited by SAMHD1 further emphasize the importance of these mechanisms of host restriction. This review highlights current knowledge regarding SAMHD1 regulation and its impact on innate immune signaling and retroviral restriction. © 2013.

  10. Alterations in early cytokine-mediated immune responses to Plasmodium falciparum infection in Tanzanian children with mineral element deficiencies: a cross-sectional survey

    PubMed Central

    2010-01-01

    Background Deficiencies in vitamins and mineral elements are important causes of morbidity in developing countries, possibly because they lead to defective immune responses to infection. The aim of the study was to assess the effects of mineral element deficiencies on early innate cytokine responses to Plasmodium falciparum malaria. Methods Peripheral blood mononuclear cells from 304 Tanzanian children aged 6-72 months were stimulated with P. falciparum-parasitized erythrocytes obtained from in vitro cultures. Results The results showed a significant increase by 74% in geometric mean of TNF production in malaria-infected individuals with zinc deficiency (11% to 240%; 95% CI). Iron deficiency anaemia was associated with increased TNF production in infected individuals and overall with increased IL-10 production, while magnesium deficiency induced increased production of IL-10 by 46% (13% to 144%) in uninfected donors. All donors showed a response towards IL-1β production, drawing special attention for its possible protective role in early innate immune responses to malaria. Conclusions In view of these results, the findings show plasticity in cytokine profiles of mononuclear cells reacting to malaria infection under conditions of different micronutrient deficiencies. These findings lay the foundations for future inclusion of a combination of precisely selected set of micronutrients rather than single nutrients as part of malaria vaccine intervention programmes in endemic countries. PMID:20470442

  11. Analysis of Thioester-Containing Proteins during the Innate Immune Response of Drosophila melanogaster

    PubMed Central

    Bou Aoun, Richard; Hetru, Charles; Troxler, Laurent; Doucet, Daniel; Ferrandon, Dominique; Matt, Nicolas

    2010-01-01

    Thioester-containing proteins (TEPs) are conserved proteins among insects that are thought to be involved in innate immunity. In Drosophila, the Tep family is composed of 6 genes named Tep1–Tep6. In this study, we investigated the phylogeny, expression pattern and roles of these genes in the host defense of Drosophila. Protostomian Tep genes are clustered in 3 distinct branches, 1 of which is specific to mosquitoes. Most D. melanogaster Tep genes are expressed in hemocytes, can be induced in the fat body, and are expressed in specific regions of the hypodermis. This expression pattern is consistent with a role in innate immunity. However, we find that TEP1, TEP2, and TEP4 are not strictly required in the body cavity to fight several bacterial and fungal infections. One possibility is that Drosophila TEPs act redundantly or that their absence can be compensated by other components of the immune response. TEPs may thus provide a subtle selective advantage during evolution. Alternatively, they may be required in host defense against specific as yet unidentified natural pathogens of Drosophila. PMID:21063077

  12. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices.

    PubMed

    Switalla, S; Lauenstein, L; Prenzler, F; Knothe, S; Förster, C; Fieguth, H-G; Pfennig, O; Schaumann, F; Martin, C; Guzman, C A; Ebensen, T; Müller, M; Hohlfeld, J M; Krug, N; Braun, A; Sewald, K

    2010-08-01

    Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. The initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1β, MIP-1β, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-γ, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation >0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1β, and IFN-γ. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines.

    PubMed

    Dias, Joana; Leeansyah, Edwin; Sandberg, Johan K

    2017-07-03

    Mucosa-associated invariant T (MAIT) cells are a large innate-like T-cell subset in humans defined by invariant TCR Vα7.2 use and expression of CD161. MAIT cells recognize microbial riboflavin metabolites of bacterial or fungal origin presented by the monomorphic MR1 molecule. The extraordinary level of evolutionary conservation of MR1 and the limited known diversity of riboflavin metabolite antigens have suggested that MAIT cells are relatively homogeneous and uniform in responses against diverse microbes carrying the riboflavin biosynthesis pathway. The ability of MAIT cells to exhibit microbe-specific functional specialization has not been thoroughly investigated. Here, we found that MAIT cell responses against Escherichia coli and Candida albicans displayed microbe-specific polyfunctional response profiles, antigen sensitivity, and response magnitudes. MAIT cell effector responses against E. coli and C. albicans displayed differential MR1 dependency and TCR β-chain bias, consistent with possible divergent antigen subspecificities between these bacterial and fungal organisms. Finally, although the MAIT cell immunoproteome was overall relatively homogenous and consistent with an effector memory-like profile, it still revealed diversity in a set of natural killer cell-associated receptors. Among these, CD56, CD84, and CD94 defined a subset with higher expression of the transcription factors promyelocytic leukemia zinc finger (PLZF), eomesodermin, and T-bet and enhanced capacity to respond to IL-12 and IL-18 stimulation. Thus, the conserved and innate-like MAIT cells harbor multiple layers of functional heterogeneity as they respond to bacterial or fungal organisms or innate cytokines and adapt their antimicrobial response patterns in a stimulus-specific manner.

  14. Friend or Foe: Innate Sensing of HIV in the Female Reproductive Tract.

    PubMed

    Roan, Nadia R; Jakobsen, Martin R

    2016-02-01

    The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.

  15. Early activation of teleost B cells in response to rhabdovirus infection.

    PubMed

    Abós, Beatriz; Castro, Rosario; González Granja, Aitor; Havixbeck, Jeffrey J; Barreda, Daniel R; Tafalla, Carolina

    2015-02-01

    To date, the response of teleost B cells to specific pathogens has been only scarcely addressed. In this work, we have demonstrated that viral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus, has the capacity to infect rainbow trout spleen IgM-positive (IgM(+)) cells, although the infection is not productive. Consequently, we have studied the effects of VHSV on IgM(+) cell functionality, comparing these effects to those elicited by a Toll-like receptor 3 (TLR3) ligand, poly(I·C). We found that poly(I·C) and VHSV significantly upregulated TLR3 and type I interferon (IFN) transcription in spleen and blood IgM(+) cells. Further effects included the upregulated transcription of the CK5B chemokine. The significant inhibition of some of these effects in the presence of bafilomycin A1 (BAF), an inhibitor of endosomal acidification, suggests the involvement of an intracellular TLR in these responses. In the case of VHSV, these transcriptional effects were dependent on viral entry into B cells and the initiation of viral transcription. VHSV also provoked the activation of NF-κB and the upregulation of major histocompatibility complex class II (MHC-II) cell surface expression on IgM(+) cells, which, along with the increased transcription of the costimulatory molecules CD80/86 and CD83, pointed to VHSV-induced IgM(+) cell activation toward an antigen-presenting profile. Finally, despite the moderate effects of VHSV on IgM(+) cell proliferation, a consistent effect on IgM(+) cell survival was detected. Innate immune responses to pathogens established through their recognition by pattern recognition receptors (PRRs) have been traditionally ascribed to innate cells. However, recent evidence in mammals has revealed that innate pathogen recognition by B lymphocytes is a crucial factor in shaping the type of immune response that is mounted. In teleosts, these immediate effects of viral encounter on B lymphocytes have not been addressed to date. In our study, we have

  16. Pellino enhances innate immunity in Drosophila.

    PubMed

    Haghayeghi, Amirhossein; Sarac, Amila; Czerniecki, Stefan; Grosshans, Jörg; Schöck, Frieder

    2010-01-01

    The innate immune response is a defense mechanism against infectious agents in both vertebrates and invertebrates, and is in part mediated by the Toll pathway. Toll receptor activation upon exposure to bacteria causes stimulation of Pelle/IRAK kinase, eventually resulting in translocation of the transcription factor NF-kappaB to the nucleus. Here we show that Pellino, a highly conserved protein interacting with activated Pelle/IRAK, acts as a positive regulator of innate immunity in Drosophila.

  17. A novel mode of induction of the humoral innate immune response in Drosophila larvae.

    PubMed

    Kenmoku, Hiroyuki; Hori, Aki; Kuraishi, Takayuki; Kurata, Shoichiro

    2017-03-01

    Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin ; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. © 2017. Published by The Company of Biologists Ltd.

  18. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells

    PubMed Central

    Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita

    2018-01-01

    Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB. PMID:29692778

  19. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells.

    PubMed

    Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita

    2018-01-01

    Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis ( Mtb ) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB.

  20. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  1. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications.

    PubMed

    Hartman, Zachary C; Appledorn, Daniel M; Amalfitano, Andrea

    2008-03-01

    Extensively characterized, modified, and employed for a variety of purposes, adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility (i.e., Ad-based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad-based vaccines are regarded as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane-bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray-based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well as highlight areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications.

  2. Adenovirus vector induced Innate Immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications

    PubMed Central

    Hartman, Zachary C.; Appledorn, Daniel M.; Amalfitano, Andrea

    2013-01-01

    Extensively characterized, modified, and employed for a variety of purposes, Adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility, (i.e.: Ad based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad based vaccines are highly acknowledged as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well point areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications. PMID:18036698

  3. Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

    PubMed Central

    Arnaud, Noëlla; Dabo, Stéphanie; Akazawa, Daisuke; Fukasawa, Masayoshi; Shinkai-Ouchi, Fumiko; Hugon, Jacques; Wakita, Takaji; Meurs, Eliane F.

    2011-01-01

    Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response. PMID:22022264

  4. HEXIM1 and NEAT1 Long Non-coding RNA Form a Multi-subunit Complex that Regulates DNA-Mediated Innate Immune Response.

    PubMed

    Morchikh, Mehdi; Cribier, Alexandra; Raffel, Raoul; Amraoui, Sonia; Cau, Julien; Severac, Dany; Dubois, Emeric; Schwartz, Olivier; Bennasser, Yamina; Benkirane, Monsef

    2017-08-03

    The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis.

    PubMed

    Knight, Jason S; Luo, Wei; O'Dell, Alexander A; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C; Thompson, Paul R; Eitzman, Daniel T; Kaplan, Mariana J

    2014-03-14

    Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.

  6. Development of novel DIF-1 derivatives that selectively suppress innate immune responses.

    PubMed

    Nguyen, Van Hai; Kikuchi, Haruhisa; Kubohara, Yuzuru; Takahashi, Katsunori; Katou, Yasuhiro; Oshima, Yoshiteru

    2015-08-01

    The multiple pharmacological activities of differentiation-inducing factor-1 (DIF-1) of the cellular slime mold Dictyostelium discoideum led us to examine the use of DIF-1 as a 'drug template' to develop promising seed compounds for drug discovery. DIF-1 and its derivatives were synthesized and evaluated for their regulatory activities in innate immune responses. We found two new derivatives (4d and 5e) with highly selective inhibitory activities against production of the antimicrobial peptide attacin in Drosophila S2 cells and against production of interleukin-2 in Jurkat cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chitosan nanoparticles: A positive modulator of innate immune responses in plants

    NASA Astrophysics Data System (ADS)

    Chandra, Swarnendu; Chakraborty, Nilanjan; Dasgupta, Adhiraj; Sarkar, Joy; Panda, Koustubh; Acharya, Krishnendu

    2015-10-01

    The immunomodulatory role of the natural biopolymer, chitosan, has already been demonstrated in plants, whilst its nanoparticles have only been examined for biomedical applications. In our present study, we have investigated the possible ability and mechanism of chitosan nanoparticles (CNP) to induce and augment immune responses in plants. CNP-treatment of leaves produced significant improvement in the plant’s innate immune response through induction of defense enzyme activity, upregulation of defense related genes including that of several antioxidant enzymes as well as elevation of the levels of total phenolics. It is also possible that the extracellular localization of CNP may also play a role in the observed upregulation of defense response in plants. Nitric oxide (NO), an important signaling molecule in plant defense, was also observed to increase following CNP treatment. However, such CNP-mediated immuno-stimulation was significantly mitigated when NO production was inhibited, indicating a possible role of NO in such immune induction. Taken together, our results suggest that CNP may be used as a more effective phytosanitary or disease control agent compared to natural chitosan for sustainable organic cultivation.

  8. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    PubMed Central

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  9. Innate immunity in rice

    PubMed Central

    Chen, Xuewei; Ronald, Pamela C.

    2011-01-01

    Advances in studies of rice innate immunity have led to the identification and characterization of host sensors encoding receptor kinases that perceive conserved microbial signatures. The non-RD domain, a newly recognized hallmark of these receptor kinases is highly expanded in rice (Oryza sativa) compared with Arabidopsis (Arabidopsis thaliana). Researchers have also identified a diverse array of microbial effectors from bacterial and fungal pathogens that triggers immune responses upon perception. These include both, effectors that indirectly target host Nucleotide binding site/Leucine rice repeat (NBS-LRR) proteins and transcription activator-like (TAL) effectors that directly bind promoters of host genes. Here we review the recognition and signaling events that govern rice innate immunity. PMID:21602092

  10. Innate control of adaptive immunity: Beyond the three-signal paradigm

    PubMed Central

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-01-01

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987

  11. Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity.

    PubMed

    Ali, Rashid; Ma, Wei; Lemtiri-Chlieh, Fouad; Tsaltas, Dimitrios; Leng, Qiang; von Bodman, Susannne; Berkowitz, Gerald A

    2007-03-01

    Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca(2+), nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca(2+) into cells and provide a model linking this Ca(2+) current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca(2+) current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen-associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca(2+) current, which may be linked to NO generation due to buildup of cytosolic Ca(2+)/calmodulin.

  12. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  13. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza.

    PubMed

    Bermejo-Martin, Jesus F; Ortiz de Lejarazu, Raul; Pumarola, Tomas; Rello, Jordi; Almansa, Raquel; Ramírez, Paula; Martin-Loeches, Ignacio; Varillas, David; Gallegos, Maria C; Serón, Carlos; Micheloud, Dariela; Gomez, Jose Manuel; Tenorio-Abreu, Alberto; Ramos, María J; Molina, M Lourdes; Huidobro, Samantha; Sanchez, Elia; Gordón, Mónica; Fernández, Victoria; Del Castillo, Alberto; Marcos, Ma Angeles; Villanueva, Beatriz; López, Carlos Javier; Rodríguez-Domínguez, Mario; Galan, Juan-Carlos; Cantón, Rafael; Lietor, Aurora; Rojo, Silvia; Eiros, Jose M; Hinojosa, Carmen; Gonzalez, Isabel; Torner, Nuria; Banner, David; Leon, Alberto; Cuesta, Pablo; Rowe, Thomas; Kelvin, David J

    2009-01-01

    Human host immune response following infection with the new variant of A/H1N1 pandemic influenza virus (nvH1N1) is poorly understood. We utilize here systemic cytokine and antibody levels in evaluating differences in early immune response in both mild and severe patients infected with nvH1N1. We profiled 29 cytokines and chemokines and evaluated the haemagglutination inhibition activity as quantitative and qualitative measurements of host immune responses in serum obtained during the first five days after symptoms onset, in two cohorts of nvH1N1 infected patients. Severe patients required hospitalization (n = 20), due to respiratory insufficiency (10 of them were admitted to the intensive care unit), while mild patients had exclusively flu-like symptoms (n = 15). A group of healthy donors was included as control (n = 15). Differences in levels of mediators between groups were assessed by using the non parametric U-Mann Whitney test. Association between variables was determined by calculating the Spearman correlation coefficient. Viral load was performed in serum by using real-time PCR targeting the neuraminidase gene. Increased levels of innate-immunity mediators (IP-10, MCP-1, MIP-1beta), and the absence of anti-nvH1N1 antibodies, characterized the early response to nvH1N1 infection in both hospitalized and mild patients. High systemic levels of type-II interferon (IFN-gamma) and also of a group of mediators involved in the development of T-helper 17 (IL-8, IL-9, IL-17, IL-6) and T-helper 1 (TNF-alpha, IL-15, IL-12p70) responses were exclusively found in hospitalized patients. IL-15, IL-12p70, IL-6 constituted a hallmark of critical illness in our study. A significant inverse association was found between IL-6, IL-8 and PaO2 in critical patients. While infection with the nvH1N1 induces a typical innate response in both mild and severe patients, severe disease with respiratory involvement is characterized by early secretion of Th17 and Th1 cytokines usually

  14. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    PubMed

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  15. High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates.

    PubMed

    Roger, Thierry; Schneider, Anina; Weier, Manuela; Sweep, Fred C G J; Le Roy, Didier; Bernhagen, Jürgen; Calandra, Thierry; Giannoni, Eric

    2016-02-23

    The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.

  16. Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation.

    PubMed

    Borrego, Belén; Rodríguez-Pulido, Miguel; Revilla, Concepción; Álvarez, Belén; Sobrino, Francisco; Domínguez, Javier; Sáiz, Margarita

    2015-07-17

    The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs), to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs) in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs).

  17. Evolution of complement as an effector system in innate and adaptive immunity.

    PubMed

    Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina

    2003-01-01

    For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.

  18. Genome-wide RNAi Screen Reveals a New Role of a WNT/CTNNB1 Signaling Pathway as Negative Regulator of Virus-induced Innate Immune Responses

    PubMed Central

    Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Éric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection. PMID:23785285

  19. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    PubMed

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  20. Photodynamic therapy mediates innate immune responses via fibroblast-macrophage interactions.

    PubMed

    Zulaziz, N; Azhim, A; Himeno, N; Tanaka, M; Satoh, Y; Kinoshita, M; Miyazaki, H; Saitoh, D; Shinomiya, N; Morimoto, Y

    2015-10-01

    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.

  1. The innate immune response to lower respiratory tract E. Coli infection and the role of the CCL2-CCR2 axis in neonatal mice.

    PubMed

    McGrath-Morrow, Sharon A; Ndeh, Roland; Collaco, Joseph M; Poupore, Amy K; Dikeman, Dustin; Zhong, Qiong; Singer, Benjamin D; D'Alessio, Franco; Scott, Alan

    2017-09-01

    Neonates have greater morbidity/mortality from lower respiratory tract infections (LRTI) compared to older children. Lack of conditioning of the pulmonary immune system due to limited environmental exposures and/or infectious challenges likely contributes to the increase susceptibility in the neonate. In this study, we sought to gain insights into the nature and dynamics of the neonatal pulmonary immune response to LRTI using a murine model. Wildtype (WT) and Ccr2 -/- C57BL/6 neonatal and juvenile mice received E. coli or PBS by direct pharyngeal aspiration. Flow cytometry was used to measure immune cell dynamics and identify cytokine-producing cells. Real-time PCR and ELISA were used to measure cytokine/chemokine expression. Innate immune cell recruitment in response to E. coli-induced LRTI was delayed in the neonatal lung compared to juvenile lung. Lung clearance of bacteria was also significantly delayed in the neonate. Ccr2 -/- neonates, which lack an intact CCL2-CCR2 axis, had higher mortality after E. coli challenged than Ccr2 +/+ neonates. A greater percentage of CD8 + T cells and monocytes from WT neonates challenged with E. coli produced TNF compared to controls. The pulmonary immune response to E. coli-induced LRTI differed significantly between neonatal and juvenile mice. Neonates were more susceptible to increasing doses of E. coli and exhibited greater mortality than juveniles. In the absence of an intact CCL2-CCR2 axis, susceptibility to LRTI-induced mortality was further increased in neonatal mice. Taken together these findings underscore the importance of age-related differences in the innate immune response to LRTI during early stages of postnatal life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Differences in innate immune response gene regulation in the middle ear of children who are otitis prone and in those not otitis prone

    PubMed Central

    Casey, Janet; Pichichero, Michael

    2016-01-01

    Objective: Acute otitis media (AOM) causes an inflammatory response in the middle ear. We assessed differences in innate immune responses involved in bacterial defense at onset of AOM in children who were stringently defined as otitis prone (sOP) and children not otitis prone (NOP). Study Design: Innate immune genes analysis from middle ear fluid (MEF) samples of children. Methods: Genes of toll-like receptors (TLR), nod-like and retinoic acid-inducible gene-I-like receptors, downstream effectors important for inflammation and apoptosis, including cytokines and chemokines, were studied from MEF samples by using a real-time polymerase chain reaction array. Protein levels of differentially regulated genes were measured by Luminex. Results: Gene expression in MEF among children who were sOP was significantly different in upregulation of interleukin 8, secretory leukocyte peptidase inhibitor, and chemokine (C-C motif) ligand 3, and in downregulation of interferon regulatory factor 7 and its related signaling molecules interferon alpha, Toll-like receptor adaptor molecule 2, chemokine (C-C motif) ligand 5, and mitogen-activated protein kinase 8 compared with children who were NOP. Differences in innate gene regulation were similar when AOM was caused by Streptococcus pneumoniae or nontypeable Haemophilus influenzae. Conclusion: Innate-immune response genes are differentially regulated in children who were sOP compared with children with NOP. PMID:28124644

  3. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  4. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The Effective Regulation of Pro- and Anti-inflammatory Cytokines Induced by Combination of PA-MSHA and BPIFB1 in Initiation of Innate Immune Responses.

    PubMed

    Zhou, Weiqiang; Duan, Zhiwen; Yang, Biao; Xiao, Chunling

    2017-01-01

    PA-MSHA and BPIFB1 play especially important roles in triggering innate immune responses by inducing production of pro- or anti-inflammatory cytokines in the oral cavity and upper airway. We found that PA-MSHA had a strong ability to activate pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, BPIFB1 alone did not express a directly inductive effect. With incubation of PA-MSHA and BPIFB1, the combination can activate the CD14/TLR4/MyD88 complex and induce secretion of subsequent downstream cytokines. We used a proteome profiler antibody array to evaluate the phosphokinases status with PA-MSHA and BPIFB1 treatment. The results showed that the activation of MAPK, STAT, and PI-3K pathways is involved in PA-MSHA-BPIFB1 treatment, and that the related pathways control the secretion of targeting cytokines in the downstream. When we assessed the content changes of cytokines, we found that PA-MSHA-BPIFB1 treatment increased the production of pro-inflammatory cytokines in the early phase of treatment and induced the increase of IL-4 in the late phase. Our observations suggest that PA-MSHA-BPIFB1 stimulates the release of pro-inflammatory cytokines, and thereby initiates the innate immune system against inflammation. Meanwhile, the gradual release of anti-inflammatory cytokine IL-4 by PA-MSHA-BPIFB1 can also regulate the degree of inflammatory response; thus the host can effectively resist the environmental risks, but also manipulate inflammatory response in an appropriate and adjustable manner.

  6. Downregulation of MicroRNA miR-526a by Enterovirus Inhibits RIG-I-Dependent Innate Immune Response

    PubMed Central

    Xu, Changzhi; He, Xiang; Zheng, Zirui; Zhang, Zhe; Wei, Congwen; Guan, Kai; Hou, Lihua; Zhang, Buchang; Zhu, Lin; Cao, Yuan; Zhang, Yanhong; Cao, Ye; Ma, Shengli; Wang, Penghao; Zhang, Pingping; Xu, Quanbin; Ling, Youguo

    2014-01-01

    ABSTRACT Retinoic acid-inducible gene I (RIG-I) is an intracellular RNA virus sensor that induces type I interferon-mediated host-protective innate immunity against viral infection. Although cylindromatosis (CYLD) has been shown to negatively regulate innate antiviral response by removing K-63-linked polyubiquitin from RIG-I, the regulation of its expression and the underlying regulatory mechanisms are still incompletely understood. Here we show that RIG-I activity is regulated by inhibition of CYLD expression mediated by the microRNA miR-526a. We found that viral infection specifically upregulates miR-526a expression in macrophages via interferon regulatory factor (IRF)-dependent mechanisms. In turn, miR-526a positively regulates virus-triggered type I interferon (IFN-I) production, thus suppressing viral replication, the underlying mechanism of which is the enhancement of RIG-I K63-linked ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein, while ectopic miR-526a expression inhibits the replication of EV71 virus. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and suggest a novel mechanism for the evasion of the innate immune response controlled by EV71. IMPORTANCE RNA virus infection upregulates the expression of miR-526a in macrophages through IRF-dependent pathways. In turn, miR-526a positively regulates virus-triggered type I IFN production and inhibits viral replication, the underlying mechanism of which is the enhancement of RIG-I K-63 ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein; cells with overexpressed miR-526a were highly resistant to EV71 infection. The collective results of this study

  7. c-di-GMP enhances protective innate immunity in a murine model of pertussis.

    PubMed

    Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A; Gerdts, Volker

    2014-01-01

    Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.

  8. c-di-GMP Enhances Protective Innate Immunity in a Murine Model of Pertussis

    PubMed Central

    Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G.; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A.; Gerdts, Volker

    2014-01-01

    Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required. PMID:25333720

  9. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma.

    PubMed

    van Rijt, Leonie; von Richthofen, Helen; van Ree, Ronald

    2016-07-01

    Allergic asthma is a chronic inflammatory disease of the lower airways that affects millions of people worldwide. Allergic asthma is a T helper 2 cell (Th2)-mediated disease, in which Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 are closely associated with the symptoms. IL-4 is needed by B cells to switch toward an IgE response, IL-5 recruits and activates eosinophils while IL-13 increases mucus production. The identification of type 2 innate lymphoid cells (ILC2), which are able to rapidly produce large amounts of IL-5 and IL-13 in response to epithelial derived cytokines, implicated a new key player besides Th2 cells. ILCs constitute a family of innate lymphocytes distinct from T and B cells. ILC2s are located in various epithelial compartments in mice and human, including the lung. The recent finding of increased numbers of ILC2s in the airways of severe asthma patients prompts further research to clarify their immunological function. Murine studies have shown that ILC2s are an early innate source of IL-5 and IL-13 after allergen exposure, which induce airway eosinophilic infiltration, mucus hyperproduction, and airway hyperresponsiveness but not allergen-specific IgE production. ILC2s contribute to the initiation as well as to the maintenance of the adaptive type 2 immune response. Here, we review the recent progress on our understanding of the role of ILC2s in the immunopathology of allergic asthma, in particular by studies using murine models which have elucidated fundamental mechanisms by which ILC2s act.

  10. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease.

    PubMed

    Maiuri, Luigi; Ciacci, Carolina; Ricciardelli, Ida; Vacca, Loredana; Raia, Valeria; Auricchio, Salvatore; Picard, Jean; Osman, Mohamed; Quaratino, Sonia; Londei, Marco

    2003-07-05

    The adaptive immune system is central to the development of coeliac disease. Adaptive immune responses are, however, controlled by a preceding activation of the innate immune system. We investigated whether gliadin, a protein present in wheat flour, could activate an innate as well as an adaptive immune response in patients with coeliac disease. Duodenal biopsy samples from 42 patients with untreated coeliac disease, 37 treated patients, and 18 controls, were cultured in vitro for 3 h or 24 h, in the presence of either immunodominant gliadin epitopes (p(alpha)-2 and p(alpha)-9) or a non-immunodominant peptide (p31-43) known to induce small intestine damage in coeliac disease. We also incubated biopsy samples from nine untreated and six treated patients with a non-immunodominant peptide for 3 h, before incubation with immunodominant gliadin epitopes. Different combinations of interleukin-15 or signal transduction inhibitors were added to selected incubations. Only the non-immunodominant peptide induced rapid expression of interleukin-15, CD83, cyclo-oxygenase (COX)-2, and CD25 by CD3- cells (p=0.005 vs medium alone) and enterocyte apoptosis (p<0.0001). Only the non-immunodominant peptide induced p38 MAP kinase activation in CD3- cells. Pre-incubation with the non-immunodominant peptide enabled immunodominant epitopes to induce T-cell activation (p=0.001) and enterocyte apoptosis. Inhibition of interleukin-15 or of p38 MAP kinase controlled such activity. A gliadin fragment can activate the innate immune system, affecting the in situ T-cell recognition of dominant gliadin epitopes. Although our findings emphasise the key role of gliadin-specific T cells, they suggest a complex pathogenic situation, and show that inhibition of interleukin-15 or p38 MAP kinase might have the potential to control coeliac disease.

  11. A phosphatidylinositol species acutely generated by activated macrophages regulates innate immune responses.

    PubMed

    Gil-de-Gómez, Luis; Astudillo, Alma M; Meana, Clara; Rubio, Julio M; Guijas, Carlos; Balboa, María A; Balsinde, Jesús

    2013-05-15

    Activation of macrophages with stimuli of the innate immune response results in the intense remodeling of arachidonate-containing phospholipids, leading to the mobilization of large quantities of this fatty acid for conversion into biologically active eicosanoids. As a consequence of this process, the arachidonate levels in membrane phospholipids markedly decrease. We have applied mass spectrometry-based lipid profiling to study the levels of arachidonate-containing phospholipids under inflammatory activation of macrophages. We identify an unusual inositol phospholipid molecule, PI(20:4/20:4), the levels of which do not decrease but actually increase by 300% after activation of the macrophages. PI(20:4/20:4) is formed and degraded rapidly, suggesting a role for this molecule in regulating cell signaling events. Using a metabolipidomic approach consisting in exposing the cells to deuterium-labeled arachidonate at the time they are exposed to stimuli, we show that PI(20:4/20:4) biosynthesis occurs via the sequential incorporation of arachidonate, first into the sn-2 position of a preformed phosphatidylinositol (PI) molecule, followed by the rapid introduction of a second arachidonate moiety into the sn-1 position. Generation requires the participation of cytosolic phospholipase A2α and CoA-dependent acyltransferases. PI(20:4/20:4) formation is also detected in vivo in murine peritonitis exudates. Elevating the intracellular concentration of PI(20:4/20:4) by introducing the lipid into the cells results in enhancement of the microbicidal capacity of macrophages, as measured by reactive oxygen metabolite production and lysozyme release. These findings suggest that PI(20:4/20:4) is a novel bioactive inositol phospholipid molecule that regulates innate immune responses in macrophages.

  12. Dendritic cells coordinate innate immunity via MyD88 signaling to control Listeria monocytogenes infection.

    PubMed

    Arnold-Schrauf, Catharina; Dudek, Markus; Dielmann, Anastasia; Pace, Luigia; Swallow, Maxine; Kruse, Friederike; Kühl, Anja A; Holzmann, Bernhard; Berod, Luciana; Sparwasser, Tim

    2014-02-27

    Listeria monocytogenes (LM), a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88) is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs) is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection. We also demonstrate that MyD88 signaling by DCs controls the infection rates of CD8α(+) cDCs and thus limits the spread of LM to the T cell areas. Furthermore, in mice expressing MyD88 in DCs, inflammatory monocytes, which are required for bacterial clearance, are activated independently of intrinsic MyD88 signaling. In conclusion, CD11c(+) conventional DCs critically integrate pathogen-derived signals via MyD88 signaling during early infection with LM in vivo. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation.

    PubMed

    Bergsbaken, Tessa; Cookson, Brad T

    2009-11-01

    Yersinia pestis, the etiological agent of plague, is one of the most deadly pathogens on our planet. This organism shares important attributes with its ancestral progenitor, Yersinia pseudotuberculosis, including a 70-kb virulence plasmid, lymphotropism during growth in the mammalian host, and killing of host macrophages. Infections with both organisms are biphasic, where bacterial replication occurs initially with little inflammation, followed by phagocyte influx, inflammatory cytokine production, and tissue necrosis. During infection, plasmid-encoded attributes facilitate bacterial-induced macrophage death, which results from two distinct processes and corresponds to the inflammatory crescendo observed in vivo: Naïve cells die by apoptosis (noninflammatory), and later in infection, activated macrophages die by pyroptosis (inflammatory). The significance of this redirected cell death for the host is underscored by the importance of phagocyte activation for immunity to Yersinia and the protective role of pyroptosis during host responses to anthrax lethal toxin and infections with Francisella, Legionella, Pseudomonas, and Salmonella. The similarities of Y. pestis and Y. pseudotuberculosis, including conserved, plasmid-encoded functions inducing at least two distinct mechanisms of cell death, indicate that comparative studies are revealing about their critical pathogenic mechanism(s) and host innate immune responses during infection. Validation of this idea and evidence of similar interactions with the host immune system are provided by Y. pseudotuberculosis-priming, cross-protective immunity against Y. pestis. Despite these insights, additional studies indicate much remains to be understood concerning effective host responses against Yersinia, including chromosomally encoded attributes that also contribute to bacterial evasion and modulation of innate and adaptive immune responses.

  14. Death Don't Have No Mercy and Neither Does Calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and Innate Immunity[W

    PubMed Central

    Ali, Rashid; Ma, Wei; Lemtiri-Chlieh, Fouad; Tsaltas, Dimitrios; Leng, Qiang; von Bodman, Susannne; Berkowitz, Gerald A.

    2007-01-01

    Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca2+, nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca2+ into cells and provide a model linking this Ca2+ current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca2+ current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen–associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca2+ current, which may be linked to NO generation due to buildup of cytosolic Ca2+/calmodulin. PMID:17384171

  15. Innate immunological function of TH2 cells in vivo

    USDA-ARS?s Scientific Manuscript database

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  16. Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood

    PubMed Central

    Nakaya, Helder I.; Clutterbuck, Elizabeth; Kazmin, Dmitri; Wang, Lili; Cortese, Mario; Bosinger, Steven E.; Patel, Nirav B.; Zak, Daniel E.; Aderem, Alan; Dong, Tao; Del Giudice, Giuseppe; Rappuoli, Rino; Cerundolo, Vincenzo; Pollard, Andrew J.; Pulendran, Bali; Siegrist, Claire-Anne

    2016-01-01

    The dynamics and molecular mechanisms underlying vaccine immunity in early childhood remain poorly understood. Here we applied systems approaches to investigate the innate and adaptive responses to trivalent inactivated influenza vaccine (TIV) and MF59-adjuvanted TIV (ATIV) in 90 14- to 24-mo-old healthy children. MF59 enhanced the magnitude and kinetics of serum antibody titers following vaccination, and induced a greater frequency of vaccine specific, multicytokine-producing CD4+ T cells. Compared with transcriptional responses to TIV vaccination previously reported in adults, responses to TIV in infants were markedly attenuated, limited to genes regulating antiviral and antigen presentation pathways, and observed only in a subset of vaccinees. In contrast, transcriptional responses to ATIV boost were more homogenous and robust. Interestingly, a day 1 gene signature characteristic of the innate response (antiviral IFN genes, dendritic cell, and monocyte responses) correlated with hemagglutination at day 28. These findings demonstrate that MF59 enhances the magnitude, kinetics, and consistency of the innate and adaptive response to vaccination with the seasonal influenza vaccine during early childhood, and identify potential molecular correlates of antibody responses. PMID:26755593

  17. Beyond empiricism: Informing vaccine development through innate immunity research

    PubMed Central

    Levitz, Stuart M.; Golenbock, Douglas T.

    2012-01-01

    Summary While a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response resulting in enhanced protection. PMID:22424235

  18. Transcriptional analysis of the innate immune response of ducks to different species-of-origin low pathogenic H7 avian influenza viruses.

    PubMed

    Maughan, Michele N; Dougherty, Lorna S; Preskenis, Lauren A; Ladman, Brian S; Gelb, Jack; Spackman, Erica V; Keeler, Calvin L

    2013-03-23

    Wild waterfowl, including ducks, represent the classic reservoir for low pathogenicity avian influenza (LPAI) viruses and play a major role in the worldwide dissemination of AIV. AIVs belonging to the hemagglutinin (H) 7 subtype are of epidemiological and economic importance due to their potential to mutate into a highly pathogenic form of the virus. Thus far, however, relatively little work has been conducted on elucidating the host-pathogen interactions of ducks and H7 LPAIVs. In the current study, three H7 LPAIVs isolated from either chicken, duck, or turkey avian species were evaluated for their comparative effect on the transcriptional innate immune response of ducks. Three H7 LPAIV isolates, chicken-origin (A/chicken/Maryland/MinhMa/2004), duck-origin (A/pintail/Minnesota/423/1999), and turkey-origin (A/turkey/Virginia/SEP-67/2002) were used to infect Pekin ducks. At 3 days post-infection, RNA from spleen tissue was used for transcriptional analysis using the Avian Innate Immune Microarray (AIIM) and quantitative real-time RT-PCR (qRT-PCR). Microarray analysis revealed that a core set of 61 genes was differentially regulated in response to all three LPAIVs. Furthermore, we observed 101, 135, and 628 differentially expressed genes unique to infection with the chicken-, duck-, or turkey-origin LPAIV isolates, respectively. qRT-PCR results revealed significant (p<0.05) induction of IL-1β, IL-2, and IFNγ transcription, with the greatest induction observed upon infection with the chicken-origin isolate. Several key innate immune pathways were activated in response to LPAIV infection including the toll-like receptor and RIG-I-like receptor pathways. Pekin ducks elicit a unique innate immune response to different species-of-origin H7 LPAIV isolates. However, twelve identifiable genes and their associated cell signaling pathways (RIG-I, NOD, TLR) are differentially expressed regardless of isolate origin. This core set of genes are critical to the duck immune

  19. Innate Immune Regulations and Liver Ischemia Reperfusion Injury

    PubMed Central

    Lu, Ling; Zhou, Haoming; Ni, Ming; Wang, Xuehao; Busuttil, Ronald; Kupiec-Weglinski, Jerzy; Zhai, Yuan

    2016-01-01

    Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory, but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver IRI involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver IRI in patients. PMID:27861288

  20. Gut-liver axis: gut microbiota in shaping hepatic innate immunity.

    PubMed

    Wu, Xunyao; Tian, Zhigang

    2017-11-01

    Gut microbiota play an essential role in shaping immune cell responses. The liver was continuously exposed to metabolic products of intestinal commensal bacterial through portal vein and alteration of gut commensal bateria was always associated with increased risk of liver inflammation and autoimmune disease. Considered as a unique immunological organ, the liver is enriched with a large number of innate immune cells. Herein, we summarize the available literature of gut microbiota in shaping the response of hepatic innate immune cells including NKT cells, NK cells, γδ T cells and Kupffer cells during health and disease. Such knowledge might help to develop novel and innovative strategies for the prevention and therapy of innate immune cell-related liver disease.

  1. Reactive Oxygen Species Induce Antiviral Innate Immune Response through IFN-λ Regulation in Human Nasal Epithelial Cells

    PubMed Central

    Kim, Hyun Jik; Kim, Chang-Hoon; Ryu, Ji-Hwan; Kim, Min-Ji; Park, Chong Yoon; Lee, Jae Myun; Holtzman, Michael J.

    2013-01-01

    This study sought to explore the role of the IFN-related innate immune responses (IFN-β and IFN-λ) and of reactive oxygen species (ROS) after influenza A virus (IAV) infection for antiviral innate immune activity in normal human nasal epithelial (NHNE) cells that are highly exposed to IAV. Passage-2 NHNE cells were inoculated with the IAV WSN/33 for 1, 2, and 3 days to assess the capacity of IFN and the relationship between ROS generation and IFN-λ secretion for controlling IAV infection. Viral titers and IAV mRNA levels increased after infection. In concert with viral titers, we found that the generation of IFNs, such as IFN-β, IFN-λ1, and IFN-λ2/3, was induced after IAV infection until 3 days after infection. The induction of IFN-λ gene expression and protein secretion may be predominant after IAV infection. Similarly, we observed that intracellular ROS generation increased 60 minutes after IAV infection. Viral titers and mRNA levels of IAV were significantly higher in cases with scavenging ROS, in cases with an induced IFN-λ mRNA level, or where the secreted protein concentration of IFN-λ was attenuated after the suppression of ROS generation. Both mitochondrial and dual oxidase (Doux)2-generated ROS were correlated with IAV mRNA and viral titers. The inhibition of mitochondrial ROS generation and the knockdown of Duox2 gene expression highly increased IAV viral titers and decreased IFN-λ secretion. Our findings suggest that the production of ROS may be responsible for IFN-λ secretion to control IAV infection. Both mitochondria and Duox2 are possible sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. PMID:23786562

  2. Innate immunity and the sensing of infection, damage and danger in the female genital tract.

    PubMed

    Sheldon, Iain Martin; Owens, Siân-Eleri; Turner, Matthew Lloyd

    2017-02-01

    Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis

    PubMed Central

    Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.

    2014-01-01

    Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713

  4. The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes?

    PubMed

    Wang, Weijun; Zhang, Yaxing; Yang, Ling; Li, Hongliang

    2017-02-28

    The innate immune system is responsible for sensing pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by several types of germline-encoded pattern-recognition receptors (PRRs). It has the capacity to help the human body maintain homeostasis under normal conditions. However, in pathological conditions, PAMPs or DAMPs trigger aberrant innate immune and inflammatory responses and thus negatively or positively influence the progression of cancer and cardiometabolic diseases. Interestingly, we found that some elements of innate immune signaling are involved in these diseases partially via immune-independent manners, indicating a deeper understanding of the function of innate immune signaling in these diseases is urgent. In this review, we summarize the primary innate immune signaling pathways and their association with cancer and cardiometabolic diseases, with the aim of providing effective therapies for these diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Glutathione Fine-Tunes the Innate Immune Response toward Antiviral Pathways in a Macrophage Cell Line Independently of Its Antioxidant Properties

    PubMed Central

    Diotallevi, Marina; Checconi, Paola; Palamara, Anna Teresa; Celestino, Ignacio; Coppo, Lucia; Holmgren, Arne; Abbas, Kahina; Peyrot, Fabienne; Mengozzi, Manuela; Ghezzi, Pietro

    2017-01-01

    Glutathione (GSH), a major cellular antioxidant, is considered an inhibitor of the inflammatory response involving reactive oxygen species (ROS). However, evidence is largely based on experiments with exogenously added antioxidants/reducing agents or pro-oxidants. We show that depleting macrophages of 99% of GSH does not exacerbate the inflammatory gene expression profile in the RAW264 macrophage cell line or increase expression of inflammatory cytokines in response to the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS); only two small patterns of LPS-induced genes were sensitive to GSH depletion. One group, mapping to innate immunity and antiviral responses (Oas2, Oas3, Mx2, Irf7, Irf9, STAT1, il1b), required GSH for optimal induction. Consequently, GSH depletion prevented the LPS-induced activation of antiviral response and its inhibition of influenza virus infection. LPS induction of a second group of genes (Prdx1, Srxn1, Hmox1, GSH synthase, cysteine transporters), mapping to nrf2 and the oxidative stress response, was increased by GSH depletion. We conclude that the main function of endogenous GSH is not to limit inflammation but to fine-tune the innate immune response to infection. PMID:29033950

  6. Inflammatory Monocytes Orchestrate Innate Antifungal Immunity in the Lung

    PubMed Central

    Dutta, Orchi; Kasahara, Shinji; Donnelly, Robert; Du, Peicheng; Rosenfeld, Jeffrey; Leiner, Ingrid; Chen, Chiann-Chyi; Ron, Yacov; Hohl, Tobias M.; Rivera, Amariliz

    2014-01-01

    Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung. PMID:24586155

  7. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear.

    PubMed

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark; Yang, Jing-Yu; Xu, Nan-Jie

    2016-09-28

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal

  8. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear

    PubMed Central

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark

    2016-01-01

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB–ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions

  9. Chitosan nanoparticles: A positive modulator of innate immune responses in plants

    PubMed Central

    Chandra, Swarnendu; Chakraborty, Nilanjan; Dasgupta, Adhiraj; Sarkar, Joy; Panda, Koustubh; Acharya, Krishnendu

    2015-01-01

    The immunomodulatory role of the natural biopolymer, chitosan, has already been demonstrated in plants, whilst its nanoparticles have only been examined for biomedical applications. In our present study, we have investigated the possible ability and mechanism of chitosan nanoparticles (CNP) to induce and augment immune responses in plants. CNP-treatment of leaves produced significant improvement in the plant’s innate immune response through induction of defense enzyme activity, upregulation of defense related genes including that of several antioxidant enzymes as well as elevation of the levels of total phenolics. It is also possible that the extracellular localization of CNP may also play a role in the observed upregulation of defense response in plants. Nitric oxide (NO), an important signaling molecule in plant defense, was also observed to increase following CNP treatment. However, such CNP-mediated immuno-stimulation was significantly mitigated when NO production was inhibited, indicating a possible role of NO in such immune induction. Taken together, our results suggest that CNP may be used as a more effective phytosanitary or disease control agent compared to natural chitosan for sustainable organic cultivation. PMID:26471771

  10. Testicular defense systems: immune privilege and innate immunity

    PubMed Central

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-01-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  11. Innate Lymphoid Cells in Intestinal Inflammation

    PubMed Central

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  12. Innate lymphoid cells and their stromal microenvironments.

    PubMed

    Kellermayer, Zoltán; Vojkovics, Dóra; Balogh, Péter

    2017-09-01

    In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

    PubMed Central

    van der Lee, Robin; ter Horst, Rob; Szklarczyk, Radek; Netea, Mihai G.; Andeweg, Arno C.; van Kuppeveld, Frank J. M.; Huynen, Martijn A.

    2015-01-01

    The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known RLR pathway components that collectively predict novel members. We demonstrate that RLR pathway genes, among others, tend to evolve rapidly, interact with viral proteins, contain a limited set of protein domains, are regulated by specific transcription factors, and form a tightly connected interaction network. Using a Bayesian approach to integrate these signatures, we propose likely novel RLR regulators. RNAi knockdown experiments revealed a high prediction accuracy, identifying 94 genes among 187 candidates tested (~50%) that affected viral RNA-induced production of IFNβ. The discovered antiviral regulators may participate in a wide range of processes that highlight the complexity of antiviral defense (e.g. MAP3K11, CDK11B, PSMA3, TRIM14, HSPA9B, CDC37, NUP98, G3BP1), and include uncharacterized factors (DDX17, C6orf58, C16orf57, PKN2, SNW1). Our validated RLR pathway list (http://rlr.cmbi.umcn.nl/), obtained using a combination of integrative genomics and experiments, is a new resource for innate antiviral immunity research. PMID:26485378

  14. Changes in bone marrow innate lymphoid cell subsets in monoclonal gammopathy: target for IMiD therapy.

    PubMed

    Kini Bailur, Jithendra; Mehta, Sameet; Zhang, Lin; Neparidze, Natalia; Parker, Terri; Bar, Noffar; Anderson, Tara; Xu, Mina L; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2017-11-28

    Altered number, subset composition, and function of bone marrow innate lymphoid cells are early events in monoclonal gammopathies.Pomalidomide therapy leads to reduction in Ikzf1 and Ikzf3 and enhanced human innate lymphoid cell function in vivo.

  15. [Aspects of the innate immune response to intramammary Staphylococcus aureus infections in cattle].

    PubMed

    Pereyra, Elizabet A L; Dallard, Bibiana E; Calvinho, Luis F

    2014-01-01

    Staphylococcus aureus is the pathogen most frequently isolated from bovine mastitis worldwide, causing chronic intramammary infections that limit profitable dairying. The objective of this article is to characterize the mechanisms involved in S. aureus mammary gland infections considering two different aspects of the infectious process; on the one hand, the aspects involved in the host innate immune response and on the other hand, the capacity of this organism to evade the immune system and interact with different cell types. The exploration of S. aureus interactions with the immune response of bovine mammary gland will help identify targets to outline new preventive or curative alternatives for intramammary infections caused by this organism. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  16. Infectious Agents as Stimuli of Trained Innate Immunity.

    PubMed

    Rusek, Paulina; Wala, Mateusz; Druszczyńska, Magdalena; Fol, Marek

    2018-02-03

    The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  17. Alternatives to conventional vaccines--mediators of innate immunity.

    PubMed

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  18. PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig

    PubMed Central

    Islam, Md. Aminul; Große-Brinkhaus, Christine; Pröll, Maren Julia; Uddin, Muhammad Jasim; Aqter Rony, Sharmin; Tesfaye, Dawit; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Neuhoff, Christiane

    2017-01-01

    The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to

  19. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}mmore » or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.« less

  20. The role of extracellular vesicles when innate meets adaptive.

    PubMed

    Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M

    2018-04-03

    Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.

  1. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs.

    PubMed

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2013-06-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.

  2. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862

  3. Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

    PubMed

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Willis, Craig K R; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  4. Positive regulation of humoral and innate immune responses induced by inactivated Avian Influenza Virus vaccine in broiler chickens.

    PubMed

    Abdallah, Fatma; Hassanin, Ola

    2015-12-01

    Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.

  5. Beyond empiricism: informing vaccine development through innate immunity research.

    PubMed

    Levitz, Stuart M; Golenbock, Douglas T

    2012-03-16

    Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Cathepsin O is involved in the innate immune response and metamorphosis of Antheraea pernyi.

    PubMed

    Sun, Yu-Xuan; Zhu, Bao-Jian; Tang, Lin; Sun, Yu; Chen, Chen; Nadeem Abbas, Muhammad; Wang, Lei; Qian, Cen; Wei, Guo-Qing; Liu, Chao-Liang

    2017-11-01

    Cathepsins are key members of mammalian papain-like cysteine proteases that play an important role in the immune response. In this study, a fragment of cDNA encoding cathepsin O proteinase (ApCathepsin O) was cloned from Antheraea pernyi. It contains an open reading frame of 1170bp and encodes a protein with 390 amino acid residues, including a conserved I29 inhibitor domain and a peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) domain. Comparison with other previously reported cathepsin O proteins showed identity ranging from 45% to 79%. Quantitative real-time PCR (qRT-PCR) and Western blot analysis revealed that ApCathepsin O was highly expressed in the fat body; furthermore, the high expression during the pupal stage indicated that it might be involved during metamorphosis. After exposure to four different heat-killed pathogens (Escherichia coli, Beauveria bassiana, Micrococcus luteus, and A. pernyi nucleopolyhedrovirus), the expression levels of ApCathepsin O mRNA significantly increased and showed variable expression patterns. This indicates that ApCathepsin O is potentially involved in the innate immune system of A. pernyi. Interestingly, ApCathepsin O expression was upregulated after 20-hydroxyecdysone (20E) injection, which suggested that it might be regulated by 20E. In conclusion, ApCathepsin O is a protease that may play an important role in the innate immune response and metamorphosis of A. pernyi. Copyright © 2017. Published by Elsevier Inc.

  7. Innate immune response to Mycobacterium tuberculosis Beijing and other genotypes.

    PubMed

    Wang, Chongzhen; Peyron, Pascale; Mestre, Olga; Kaplan, Gilla; van Soolingen, Dick; Gao, Qian; Gicquel, Brigitte; Neyrolles, Olivier

    2010-10-25

    As a species, Mycobacterium tuberculosis is more diverse than previously thought. In particular, the Beijing family of M. tuberculosis strains is spreading and evaluating throughout the world and this is giving rise to public health concerns. Genetic diversity within this family has recently been delineated further and a specific genotype, called Bmyc10, has been shown to represent over 60% of all Beijing clinical isolates in several parts of the world. How the host immune system senses and responds to various M. tuberculosis strains may profoundly influence clinical outcome and the relative epidemiological success of the different mycobacterial lineages. We hypothesised that the success of the Bmyc10 group may, at least in part, rely upon its ability to alter innate immune responses and the secretion of cytokines and chemokines by host phagocytes. We infected human macrophages and dendritic cells with a collection of genetically well-defined M. tuberculosis clinical isolates belonging to various mycobacterial families, including Beijing. We analyzed cytokine and chemokine secretion on a semi-global level using antibody arrays allowing the detection of sixty-five immunity-related soluble molecules. Our data indicate that Beijing strains induce significantly less interleukin (IL)-6, tumor necrosis factor (TNF), IL-10 and GRO-α than the H37Rv reference strain, a feature that is variously shared by other modern and ancient M. tuberculosis families and which constitutes a signature of the Beijing family as a whole. However, Beijing strains did not differ relative to each other in their ability to modulate cytokine secretion. Our results confirm and expand upon previous reports showing that M. tuberculosis Beijing strains in general are poor in vitro cytokine inducers in human phagocytes. The results suggest that the epidemiological success of the Beijing Bmyc10 is unlikely to rely upon any specific ability of this group of strains to impair anti-mycobacterial innate

  8. Quantifying Adaptive and Innate Immune Responses in HIV-Infected Participants Using a Novel High Throughput Assay.

    PubMed

    Yong, Michelle K; Cameron, Paul U; Spelman, Tim; Elliott, Julian H; Fairley, Christopher K; Boyle, Jeffrey; Miyamasu, Misato; Lewin, Sharon R

    2016-01-01

    HIV infection is characterised by persistent immune dysfunction of both the adaptive and innate immune responses. The aim of this study was to evaluate these responses using a novel high throughput assay in healthy controls and HIV-infected individuals prior to and following anti-retroviral treatment (ART). Cross-sectional study. Whole blood was assessed using the QuantiFERON Monitor® (QFM) assay containing adaptive and innate immunostimulants. Interferon (IFN)-γ levels (IU/mL) were measured by enzyme-linked immunosorbent assay (ELISA). We recruited HIV-infected participants (n = 20 off ART and viremic; n = 59 on suppressive ART) and HIV-uninfected controls (n = 229). Median IFN-γ production was significantly higher in HIV-infected participants compared to controls (IFN-γ 512 vs 223 IU/ml, p<0.0001), but within the HIV-infected participants there was no difference between those on or off ART (median IFN-γ 512 vs 593 IU/ml p = 0.94). Amongst the HIV-infected participants, IFN-γ production was higher in individuals with CD4 count>350 compared to <350 cells/μL (IFN-γ IU/ml 561 vs 259 p = 0.02) and in males compared to females (IFN-γ 542 vs 77 IU/ml p = 0.04). There were no associations between IFN-γ production and age, plasma HIV RNA, nadir CD4 count or duration of HIV infection. Using a multivariable analysis, neither CD4 nor sex were independently predictive of IFN-γ production. Using a high throughput assay which assesses both adaptive and innate immune function, we showed elevated IFN-γ production in HIV-infected patients both on and off ART. Further research is warranted to determine if changes in QuantiFERON Monitor® are associated with clinical outcomes.

  9. Role of Innate Immunity in a Model of Histidyl-tRNA Synthetase (Jo-1)-mediated Myositis

    PubMed Central

    Soejima, Makoto; Kang, Eun Ha; Gu, Xinyan; Katsumata, Yasuhiro; Clemens, Paula R.; Ascherman, Dana P.

    2010-01-01

    Objectives Previous work in humans and in animal models supports a key role for histidyl-tRNA synthetase (HRS=Jo-1) in the pathogenesis of idiopathic inflammatory myopathy. While most investigations have focused on the ability of HRS to trigger adaptive immune responses, in vitro studies clearly indicate that HRS possesses intrinsic chemokine-like properties capable of activating the innate immune system. The purpose of this study was therefore to examine the ability of HRS to direct innate immune responses in a murine model of myositis. Methods Following intramuscular immunization with soluble HRS in the absence of exogenous adjuvant, selected strains of mice were evaluated at different time points for histopathologic evidence of myositis. ELISA-based assessment of autoantibody formation and CFSE proliferation studies provided complementary measures of B and T cell responses triggered by HRS immunization. Results Compared to appropriate control proteins, a murine HRS fusion protein induced robust, statistically significant muscle inflammation in multiple congenic strains of C57BL/6 and NOD mice. Time course experiments revealed that this inflammatory response occurred as early as 7 days post immunization and persisted for up to 7 weeks. Parallel immunization strategies in DO11.10/Rag2−/− and C3H/HeJ (TLR4−/−) mice indicated that the ability of murine HRS to drive muscle inflammation was not dependent on B cell receptor or T cell receptor recognition and did not require TLR4 signaling. Conclusion Collectively, these experiments support a model in which HRS can trigger both innate and adaptive immune responses which culminate in severe muscle inflammation that is the hallmark of idiopathic inflammatory myopathy. PMID:21280002

  10. Live attenuated influenza vaccine (LAIV) impacts innate and adaptive immune responses.

    PubMed

    Lanthier, Paula A; Huston, Gail E; Moquin, Amy; Eaton, Sheri M; Szaba, Frank M; Kummer, Lawrence W; Tighe, Micheal P; Kohlmeier, Jacob E; Blair, Patrick J; Broderick, Michael; Smiley, Stephen T; Haynes, Laura

    2011-10-13

    Influenza A infection induces a massive inflammatory response in the lungs that leads to significant illness and increases the susceptibility to secondary bacterial pneumonia. The most efficient way to prevent influenza infection is through vaccination. While inactivated vaccines induce protective levels of serum antibodies to influenza hemaglutinin (HA) and neuraminidase (NA) surface proteins, these are strain specific and offer little protection against heterosubtypic influenza viruses. In contrast, live attenuated influenza vaccines (LAIVs) induce a T cell response in addition to antibody responses against HA and NA surface proteins. Importantly, LAIV vaccination induces a response in a mouse model that protects against illness due to heterosubtypic influenza strains. While it is not completely clear what is the mechanism of action of LAIV heterosubtypic protection in humans, it has been shown that LAIV induces heterosubtypic protection in mice that is dependent upon a Type 1 immune response and requires CD8 T cells. In this study, we show that LAIV-induced immunity leads to significantly reduced viral titers and inflammatory responses in the lungs of mice following heterosubtypic infection. Not only are viral titers reduced in LAIV vaccinated mice, the amounts of inflammatory cytokines and chemokines in lung tissue are significantly lower. Additionally, we show that LAIV vaccination of healthy adults also induces a robust Type 1 memory response including the production of chemokines and cytokines involved in T cell activation and recruitment. Thus, our results indicate that LAIV vaccination functions by inducing immune memory which can act to modulate the immune response to subsequent heterosubtypic challenge by influencing both innate and adaptive responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice.

    PubMed

    Amiri, Shayan; Haj-Mirzaian, Arya; Momeny, Majid; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Poursaman, Simin; Rastegar, Mojgan; Nikoui, Vahid; Mokhtari, Tahmineh; Ghazi-Khansari, Mahmoud; Hosseini, Mir-Jamal

    2017-01-06

    Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. We observed that the co-occurrence of anxiety and depressive-like behaviors in animals were associated with abnormal mitochondrial function, nitric oxide overproduction and, the increased activity of cytosolic phospholipase A 2 (cPLA 2 ) in the hippocampus. Further, STZ-treated mice had a significant upregulation of genes associated with the innate immune system such as toll-like receptors 2 and 4. Pathological evaluations showed no sign of neurodegeneration in the hippocampus of STZ-treated mice. Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. The innate immune response in fetal lung mesenchymal cells targets VEGFR2 expression and activity.

    PubMed

    Medal, Rachel M; Im, Amanda M; Yamamoto, Yasutoshi; Lakhdari, Omar; Blackwell, Timothy S; Hoffman, Hal M; Sahoo, Debashis; Prince, Lawrence S

    2017-06-01

    In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme. Copyright © 2017 the American Physiological Society.

  13. Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems.

    PubMed

    Russano, A M; Agea, E; Casciari, C; de Benedictis, F M; Spinozzi, F

    2008-11-01

    Recent advances in allergy research mostly focussed on two major headings: improving protein allergen purification, which is aimed towards a better characterization of IgE- and T-cell reactive epitopes, and the potential new role for unconventional innate and regulatory T cells in controlling airway inflammation. These advancements could appear to be in conflict each other, as innate T cells have a poorly-defined antigen specificity that is often directed toward nonprotein substances, such as lipids. To reconcile these contrasting findings, the model of cypress pollinosis as paradigmatic for studying allergic diseases in adults is suggested. The biochemical characterization of major native protein allergens from undenatured pollen grain demonstrated that the most relevant substance with IgE-binding activity is a glycohydrolase enzyme, which easily denaturizes in stored grains. Moreover, lipids from the pollen membrane are implicated in early pollen grain capture and recognition by CD1(+) dendritic cells (DC) and CD1-restricted T lymphocytes. These T cells display Th0/Th2 functional activity and are also able to produce regulatory cytokines, such as IL-10 and TGF-beta. CD1(+) immature DCs expand in the respiratory mucosa of allergic subjects and are able to process both proteins and lipids. A final scenario may suggest that expansion and functional activation of CD1(+) DCs is a key step for mounting a Th0/Th2-deviated immune response, and that such innate response does not confer long-lasting protective immunity.

  14. Differences in innate and adaptive immune response traits of Pahari (Indian non-descript indigenous breed) and Jersey crossbred cattle.

    PubMed

    Verma, Subhash; Thakur, Aneesh; Katoch, Shailja; Shekhar, Chander; Wani, Aasim Habib; Kumar, Sandeep; Dohroo, Shweta; Singh, Geetanjali; Sharma, Mandeep

    2017-10-01

    Cattle are an integral part of the largely agrarian economy of India. Indigenous breeds of cattle comprise about 80% of total cattle population of the country and contribute significantly to the overall milk production. There are 40 recognized indigenous breeds of cattle and a number of uncharacterized non-descript cattle. Pahari cattle of Himachal Pradesh in Northern India are one such non-descript indigenous breed. Here we describe a comprehensive evaluation of haematobiochemical parameters and innate and adaptive immune response traits of Pahari cattle and a comparison with Jersey crossbred cattle. The study shows demonstrable differences in the two breeds with respect to some innate and adaptive immunological traits. This is a first attempt to characterize immune response traits of Pahari cattle and the results of the study provide an understanding of breed differences in immune status of cattle which could be useful for their breeding and conservations programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    PubMed Central

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma. PMID:23209480

  16. Type 2 innate lymphoid cells: friends or foes-role in airway allergic inflammation and asthma.

    PubMed

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 "immune franchise." Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma.

  17. Beta-Glucan Activated Human B-Lymphocytes Participate in Innate Immune Responses by Releasing Pro-inflammatory Cytokines and Stimulating Neutrophil Chemotaxis

    PubMed Central

    Ali, Mohamed F.; Driscoll, Christopher B.; Walters, Paula R.; Limper, Andrew H.; Carmona, Eva M.

    2015-01-01

    B-lymphocytes play an essential regulatory role in the adaptive immune response through antibody production during infection. A less known function of B-lymphocytes is their ability to respond directly to infectious antigens through stimulation of pattern recognition receptors expressed on their surfaces. β-glucans are carbohydrates present in the cell wall of many pathogenic fungi that can be detected in the peripheral blood of patients during infection. They have been shown to participate in the innate inflammatory response as they can directly activate peripheral macrophages and dendritic cells. However, their effect as direct stimulators of B-lymphocytes has not been yet fully elucidated. The aim of this study was to examine the molecular mechanisms and cytokine profiles generated following β-glucan stimulation of B-lymphocytes, compared with the well-established TLR-9 agonist CpG-oligodeoxynucleotide (CpG) and study the participation of β-glucan stimulated B-cells in the innate immune response. Herein, we demonstrate that β-glucan activated B-lymphocytes upregulate pro-inflammatory cytokines (TNFα, IL-6 and IL-8). Interestingly, β-glucan, unlike CpG, had no effect on B-lymphocyte proliferation or IgM production. When compared with CpG (TLR9 agonist), β-glucan-activated cells secreted significantly higher levels of IL-8. Furthermore, IL-8 secretion was partially mediated by Dectin-1 and required SYK, MAPKs and the transcription factors NF-κB and AP-1. Moreover, we observed that conditioned media from β-glucan stimulated B-lymphocytes elicited neutrophil chemotaxis. These studies suggest that β-glucan activated B-lymphocytes have an important and novel role in fungal innate immune responses. PMID:26519534

  18. Comparative analysis of innate immune responses to Streptococcus phocae strains in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben

    2016-04-01

    Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Innate but not Adaptive Immune Responses Contribute to Behavioral Seizures Following Viral Infection

    PubMed Central

    Kirkman, Nikki J.; Libbey, Jane E.; Wilcox, Karen S.; White, H. Steve; Fujinami, Robert S.

    2011-01-01

    SUMMARY Purpose To examine the role of innate immunity in a novel viral infection-induced seizure model. Methods C57BL/6 mice, mouse strains deficient in interleukin (IL)-1RI, IL-6, tumor necrosis factor (TNF)-RI, or myeloid differentiation primary response gene 88 (MyD88), or transgenic mice (OT-I) were infected with Theiler’s murine encephalomyelitis virus (TMEV) or mock-infected. Mice were followed for acute seizures. Tissues were examined for neuron loss, the presence of virus (viral RNA and antigen), perivascular cuffs, macrophages/microglia and gliosis, and mRNA expression of IL-1, TNF-α and IL-6. Results IL-1 does not play a major role in seizures as IL-1RI and MyD88 deficient mice displayed a comparable seizure frequency relative to controls. In contrast, TNF-α and IL-6 appear to be important in the development of seizures as only 10% and 15% of TNF-RI and IL-6 deficient mice showed signs of seizure activity, respectively. TNF-α and IL-6 mRNA levels also increased in mice with seizures. Inflammation (perivascular cuffs, macrophages/microglia and gliosis) was greater in mice with seizures. OT-I mice (virus persists) had a seizure rate that was comparable to controls (no viral persistence) thereby discounting a role for TMEV-specific T–cells in seizures. Discussion We have implicated the innate immune response to viral infection, specifically TNF-α and IL-6, and concomitant inflammatory changes in the brain as contributing to the development of acute seizures. This model is a potential infection-driven model of mesial temporal lobe epilepsy with hippocampal sclerosis. PMID:19845729

  20. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies. Copyright © 2015. Published by Elsevier Ltd.

  1. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells.

    PubMed

    van Kasteren, Puck B; Bailey-Elkin, Ben A; James, Terrence W; Ninaber, Dennis K; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J; Mark, Brian L; Kikkert, Marjolein

    2013-02-26

    Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.

  2. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    PubMed Central

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  3. NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine

    PubMed Central

    Luci, Carmelo; Bekri, Selma; Bihl, Franck; Pini, Jonathan; Bourdely, Pierre; Nouhen, Kelly; Malgogne, Angélique; Walzer, Thierry; Braud, Véronique M.; Anjuère, Fabienne

    2015-01-01

    Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses. PMID:26630176

  4. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    PubMed

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. ß-1,3 glucan derived from Euglena gracilis and Algamune enhances innate immune responses of red drum (Sciaenops ocellatus L.)

    USDA-ARS?s Scientific Manuscript database

    To reduce susceptibility to stressors and diseases, immune-modulators such as ß-glucans have been proven effective tools to enhance the innate immune responses of fish. Consequently, commercial sources of this polysaccharide are becoming increasingly more available. AlgamuneTM is a commercial addi...

  6. Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons

    PubMed Central

    Figueroa Velez, Dario X.; Ellefsen, Kyle L.; Hathaway, Ethan R.; Carathedathu, Mathew C.

    2017-01-01

    The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed. PMID:28123018

  7. Transcriptomic and Proteomic Analyses Reveal Key Innate Immune Signatures in the Host Response to the Gastrointestinal Pathogen Campylobacter concisus

    PubMed Central

    Deshpande, Nandan P.; Man, Si Ming; Burgos-Portugal, Jose A.; Khattak, Faisal A.; Raftery, Mark J.; Wilkins, Marc R.; Mitchell, Hazel M.

    2014-01-01

    Pathogenic species within the genus Campylobacter are responsible for a considerable burden on global health. Campylobacter concisus is an emergent pathogen that plays a role in acute and chronic gastrointestinal disease. Despite ongoing research on Campylobacter virulence mechanisms, little is known regarding the immunological profile of the host response to Campylobacter infection. In this study, we describe a comprehensive global profile of innate immune responses to C. concisus infection in differentiated THP-1 macrophages infected with an adherent and invasive strain of C. concisus. Using RNA sequencing (RNA-seq), quantitative PCR (qPCR), mass spectrometry, and confocal microscopy, we observed differential expression of pattern recognition receptors and robust upregulation of DNA- and RNA-sensing molecules. In particular, we observed IFI16 inflammasome assembly in C. concisus-infected macrophages. Global profiling of the transcriptome revealed the significant regulation of a total of 8,343 transcripts upon infection with C. concisus, which included the activation of key inflammatory pathways involving CREB1, NF-κB, STAT, and interferon regulatory factor signaling. Thirteen microRNAs and 333 noncoding RNAs were significantly regulated upon infection, including MIR221, which has been associated with colorectal carcinogenesis. This study represents a major advance in our understanding of host recognition and innate immune responses to infection by C. concisus. PMID:25486993

  8. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    PubMed

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans

    PubMed Central

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Willis, Craig K. R.; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes. PMID:25391018

  10. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  11. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.

    PubMed

    Moriyama, Saya; Brestoff, Jonathan R; Flamar, Anne-Laure; Moeller, Jesper B; Klose, Christoph S N; Rankin, Lucille C; Yudanin, Naomi A; Monticelli, Laurel A; Putzel, Gregory Garbès; Rodewald, Hans-Reimer; Artis, David

    2018-03-02

    The type 2 inflammatory response is induced by various environmental and infectious stimuli. Although recent studies identified group 2 innate lymphoid cells (ILC2s) as potent sources of type 2 cytokines, the molecular pathways controlling ILC2 responses are incompletely defined. Here we demonstrate that murine ILC2s express the β 2 -adrenergic receptor (β 2 AR) and colocalize with adrenergic neurons in the intestine. β 2 AR deficiency resulted in exaggerated ILC2 responses and type 2 inflammation in intestinal and lung tissues. Conversely, β 2 AR agonist treatment was associated with impaired ILC2 responses and reduced inflammation in vivo. Mechanistically, we demonstrate that the β 2 AR pathway is a cell-intrinsic negative regulator of ILC2 responses through inhibition of cell proliferation and effector function. Collectively, these data provide the first evidence of a neuronal-derived regulatory circuit that limits ILC2-dependent type 2 inflammation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam.

    PubMed

    Cagle, Caran; Wasilenko, Jamie; Adams, Sean C; Cardona, Carol J; To, Thanh Long; Nguyen, Tung; Spackman, Erica; Suarez, David L; Smith, Diane; Shepherd, Eric; Roth, Jason; Pantin-Jackwood, Mary J

    2012-09-01

    In a previous study, we found clear differences in pathogenicity and response to vaccination against H5N1 highly pathogenic avian influenza (HPAI; HA dade 2.3.4) between Pekin (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) ducks vaccinated using a commercial inactivated vaccine (Re-1). The objective of the present study was to further investigate the pathogenicity of H5N1 HPAI viruses in different species of ducks by examining clinical signs and innate immune responses to infection with a different strain of H5N1 HPAI virus (HA clade 1) in two domestic ducks, Pekin and Muscovy, and one wild-type duck, mallard (Anas platyrhynchos). Protection conferred by vaccination using the Re-1 vaccine against infection with this virus was also compared between Pekin and Muscovy ducks. Differences in pathogenicity were observed among the virus-infected ducks, as the Muscovy ducks died 2 days earlier than did the Pekin and mallard ducks, and they presented more-severe neurologic signs. Conversely, the Pekin and mallard ducks had significantly higher body temperatures at 2 days postinfection (dpi) than did the Muscovy ducks, indicating possible differences in innate immune responses. However, similar expression of innate immune-related genes was found in the spleens of virus-infected ducks at this time point. In all three duck species, there was up-regulation of IFN-alpha, IFN-gamma, IL-6, CCL19, RIG-I, and MHC class I and down-regulation of MHC class II, but variable expression of IL-18 and TLR7. As in our previous study, vaccinated Muscovy ducks showed less protection against virus infection than did Pekin ducks, as evidenced by the higher mortality and higher number of Muscovy ducks shedding virus when compared to Pekin ducks. In conclusion, infection with an H5N1 HPAI virus produced a systemic infection with high mortality in all three duck species; however, the disease was more severe in Muscovy ducks, which also had a poor response to vaccination. The

  13. Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response

    PubMed Central

    Serafino, Annalucia; Vallebona, Paola Sinibaldi; Andreola, Federica; Zonfrillo, Manuela; Mercuri, Luana; Federici, Memmo; Rasi, Guido; Garaci, Enrico; Pierimarchi, Pasquale

    2008-01-01

    Background Besides few data concerning the antiseptic properties against a range of microbial agents and the anti-inflammatory potential both in vitro and in vivo, little is known about the influence of Eucalyptus oil (EO) extract on the monocytic/macrophagic system, one of the primary cellular effectors of the immune response against pathogen attacks. The activities of this natural extract have mainly been recognized through clinical experience, but there have been relatively little scientific studies on its biological actions. Here we investigated whether EO extract is able to affect the phagocytic ability of human monocyte derived macrophages (MDMs) in vitro and of rat peripheral blood monocytes/granulocytes in vivo in absence or in presence of immuno-suppression induced by the chemotherapeutic agent 5-fluorouracil (5-FU). Methods Morphological activation of human MDMs was analysed by scanning electron microscopy. Phagocytic activity was tested: i) in vitro in EO treated and untreated MDMs, by confocal microscopy after fluorescent beads administration; ii) in vivo in monocytes/granulocytes from peripheral blood of immuno-competent or 5-FU immuno-suppressed rats, after EO oral administration, by flow cytometry using fluorescein-labelled E. coli. Cytokine release by MDMs was determined using the BD Cytometric Bead Array human Th1/Th2 cytokine kit. Results EO is able to induce activation of MDMs, dramatically stimulating their phagocytic response. EO-stimulated internalization is coupled to low release of pro-inflammatory cytokines and requires integrity of the microtubule network, suggesting that EO may act by means of complement receptor-mediated phagocytosis. Implementation of innate cell-mediated immune response was also observed in vivo after EO administration, mainly involving the peripheral blood monocytes/granulocytes. The 5-FU/EO combined treatment inhibited the 5-FU induced myelotoxicity and raised the phagocytic activity of the granulocytic

  14. Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response.

    PubMed

    Webb, Andrew E; Gerek, Z Nevin; Morgan, Claire C; Walsh, Thomas A; Loscher, Christine E; Edwards, Scott V; O'Connell, Mary J

    2015-07-01

    It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Gut microbiome and innate immune response patterns in IgE-associated eczema.

    PubMed

    West, C E; Rydén, P; Lundin, D; Engstrand, L; Tulic, M K; Prescott, S L

    2015-09-01

    Gut microbiome patterns have been associated with predisposition to eczema potentially through modulation of innate immune signalling. We examined gut microbiome development in the first year of life in relation to innate immune responses and onset of IgE-associated eczema over the first 2.5 years in predisposed children due to maternal atopy [www.anzctr.org.au, trial ID ACTRN12606000280505]. Microbial composition and diversity were analysed with barcoded 16S rRNA 454 pyrosequencing in stool samples in pregnancy and at ages 1 week, 1 month and 12 months in infants (n = 10) who developed IgE-associated eczema and infants who remained free of any allergic symptoms at 2.5 years of age (n = 10). Microbiome data at 1 week and 1 month were analysed in relation to previously assessed immune responses to TLR 2 and 4 ligands at 6 months of age. The relative abundance of Gram-positive Ruminococcaceae was lower at 1 week of age in infants developing IgE-associated eczema, compared with controls (P = 0.0047). At that age, the relative abundance of Ruminococcus was inversely associated with TLR2 induced IL-6 (-0.567, P = 0.042) and TNF-α (-0.597, P = 0.032); there was also an inverse association between the abundance of Proteobacteria (comprising Gram-negative taxa) and TLR4-induced TNF-α (rs = -0.629, P = 0.024). This relationship persisted at 1 month, with inverse associations between the relative abundance of Enterobacteriaceae (within the Proteobacteria phylum) and TLR4-induced TNF-α (rs = -0.697, P = 0.038) and Enterobacteriaceae and IL-6 (rs = -0.709, P = 0.035). Mothers whose infants developed IgE-associated eczema had lower α-diversity of Bacteroidetes (P = 0.04) although this was not seen later in their infants. At 1 year, α-diversity of Actinobacteria was lower in infants with IgE-associated eczema compared with controls (P = 0.002). Our findings suggest that reduced relative abundance of potentially immunomodulatory gut bacteria is associated with exaggerated

  16. Human innate lymphoid cells (ILCs) in filarial infections.

    PubMed

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  17. Man's nature: innate determinants of response to natural environments

    Treesearch

    B. L. Driver; Peter Greene

    1977-01-01

    Man's sensory mechanisms evolved by natural selection in natural settings and humans survived as a species not so much by the "club in the hand" but by the "plan in the head." That plan or ability enabled man to remember, interpret, and predict environmental events. Humans have an innate capacity (but not necessarily a developed ability) to...

  18. The Role of Mitophagy in Innate Immunity

    PubMed Central

    Gkikas, Ilias; Palikaras, Konstantinos; Tavernarakis, Nektarios

    2018-01-01

    Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.

  19. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis.

    PubMed

    Rothchild, Alissa C; Sissons, James R; Shafiani, Shahin; Plaisier, Christopher; Min, Deborah; Mai, Dat; Gilchrist, Mark; Peschon, Jacques; Larson, Ryan P; Bergthaler, Andreas; Baliga, Nitin S; Urdahl, Kevin B; Aderem, Alan

    2016-10-11

    The regulation of host-pathogen interactions during Mycobacterium tuberculosis (Mtb) infection remains unresolved. MicroRNAs (miRNAs) are important regulators of the immune system, and so we used a systems biology approach to construct an miRNA regulatory network activated in macrophages during Mtb infection. Our network comprises 77 putative miRNAs that are associated with temporal gene expression signatures in macrophages early after Mtb infection. In this study, we demonstrate a dual role for one of these regulators, miR-155. On the one hand, miR-155 maintains the survival of Mtb-infected macrophages, thereby providing a niche favoring bacterial replication; on the other hand, miR-155 promotes the survival and function of Mtb-specific T cells, enabling an effective adaptive immune response. MiR-155-induced cell survival is mediated through the SH2 domain-containing inositol 5-phosphatase 1 (SHIP1)/protein kinase B (Akt) pathway. Thus, dual regulation of the same cell survival pathway in innate and adaptive immune cells leads to vastly different outcomes with respect to bacterial containment.

  20. Fungal mediated innate immune memory, what have we learned?

    PubMed

    Quintin, Jessica

    2018-05-30

    The binary classification of mammalian immune memory is now obsolete. Innate immune cells carry memory characteristics. The overall capacity of innate immune cells to remember and alter their responses is referred as innate immune memory and the induction of a non-specific memory resulting in an enhanced immune status is termed "trained immunity". Historically, trained immunity was first described as triggered by the human fungal pathogen Candida albicans. Since, numerous studies have accumulated and deciphered the main characteristics of trained immunity mediated by fungi and fungal components. This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer. Copyright © 2018. Published by Elsevier Ltd.

  1. The innate immune response in HIV/AIDS septic shock patients: a comparative study.

    PubMed

    Amancio, Rodrigo T; Japiassu, Andre M; Gomes, Rachel N; Mesquita, Emersom C; Assis, Edson F; Medeiros, Denise M; Grinsztejn, Beatriz; Bozza, Patrícia T; Castro-Faria Neto, Hugo C; Bozza, Fernando A

    2013-01-01

    In recent years, the incidence of sepsis has increased in critically ill HIV/AIDS patients, and the presence of severe sepsis emerged as a major determinant of outcomes in this population. The inflammatory response and deregulated cytokine production play key roles in the pathophysiology of sepsis; however, these mechanisms have not been fully characterized in HIV/AIDS septic patients. We conducted a prospective cohort study that included HIV/AIDS and non-HIV patients with septic shock. We measured clinical parameters and biomarkers (C-reactive protein and cytokine levels) on the first day of septic shock and compared these parameters between HIV/AIDS and non-HIV patients. We included 30 HIV/AIDS septic shock patients and 30 non-HIV septic shock patients. The HIV/AIDS patients presented low CD4 cell counts (72 [7-268] cells/mm(3)), and 17 (57%) patients were on HAART before hospital admission. Both groups were similar according to the acute severity scores and hospital mortality. The IL-6, IL-10 and G-CSF levels were associated with hospital mortality in the HIV/AIDS septic group; however, the CRP levels and the surrogates of innate immune activation (cytokines) were similar among HIV/AIDS and non-HIV septic patients. Age (odds ratio 1.05, CI 95% 1.02-1.09, p=0.002) and the IL-6 levels (odds ratio 1.00, CI 95% 1.00-1.01, p=0.05) were independent risk factors for hospital mortality. IL-6, IL-10 and G-CSF are biomarkers that can be used to predict prognosis and outcomes in HIV/AIDS septic patients. Although HIV/AIDS patients are immunocompromised, an innate immune response can be activated in these patients, which is similar to that in the non-HIV septic population. In addition, age and the IL-6 levels are independent risk factors for hospital mortality irrespective of HIV/AIDS disease.

  2. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    PubMed

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  3. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    PubMed

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  4. Viral degradasome hijacks mitochondria to suppress innate immunity

    PubMed Central

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  5. CD22 regulates adaptive and innate immune responses of B cells.

    PubMed

    Kawasaki, Norihito; Rademacher, Christoph; Paulson, James C

    2011-01-01

    B cells sense microenvironments through the B cell receptor (BCR) and Toll-like receptors (TLRs). While signals from BCR and TLRs synergize to distinguish self from nonself, inappropriate regulation can result in development of autoimmune disease. Here we show that CD22, an inhibitory co-receptor of BCR, also negatively regulates TLR signaling in B cells. CD22-deficient (Cd22(-/-)) B cells exhibit hyperactivation in response to ligands of TLRs 3, 4 and 9. Evidence suggests that this results from impaired induction of suppressors of cytokine signaling 1 and 3, well-known suppressors of TLR signaling. Antibody-mediated sequestration of CD22 on wild-type (WT) B cells augments proliferation by TLR ligands. Conversely, expression of CD22 in a Cd22(-/-) B cell line blunts responses to TLR ligands. We also show that lipopolysaccharide-induced transcription by nuclear factor-κB is inhibited by ectopic expression of CD22 in a TLR4 reporter cell line. Taken together, these results suggest that negative regulation of TLR signaling is an intrinsic property of CD22. Since TLRs and BCR activate B cells through different signaling pathways, and are differentially localized in B cells, CD22 exhibits a broader regulation of receptors that mediate adaptive and innate immune responses of B cells than previously recognized. Copyright © 2010 S. Karger AG, Basel.

  6. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages

    PubMed Central

    Abu Khweek, Arwa; Fernández Dávila, Natalia S.; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A.; Tazi, Mia; Hassan, Hoda; Novotny, Laura A.; Bakaletz, Lauren O.; Amer, Amal O.

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  7. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination

    PubMed Central

    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian

    2002-01-01

    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853

  8. Active hexose correlated compound enhances tumor surveillance through regulating both innate and adaptive immune responses.

    PubMed

    Gao, Yunfei; Zhang, Dongqing; Sun, Buxiang; Fujii, Hajime; Kosuna, Ken-Ichi; Yin, Zhinan

    2006-10-01

    Active hexose correlated compound (AHCC) is a mixture of polysaccharides, amino acids, lipids and minerals derived from cocultured mycelia of several species of Basidiomycete mushrooms. AHCC has been implicated to modulate immune functions and plays a protective role against infection. However, the potential role of AHCC in tumor immune surveillance is unknown. In this study, C57BL/6 mice were orally administered AHCC or water, followed by tumor cell inoculation. We showed that compared to pure water-treated mice, AHCC treatment significantly delayed tumor development after inoculation of either melanoma cell line B16F0 or lymphoma cell line EL4. Treatment with AHCC enhanced both Ag-specific activation and proliferation of CD4(+) and CD8(+) T cells, increased the number of tumor Ag-specific CD8(+) T cells, and more importantly, increased the frequency of tumor Ag-specific IFN-gamma producing CD8(+) T cells. Interestingly, AHCC treatment also showed increased cell number of NK and gammadelta T cells, indicating the role of AHCC in activating these innate-like lymphocytes. In summary, our results demonstrate that AHCC can enhance tumor immune surveillance through regulating both innate and adaptive immune responses.

  9. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.

    PubMed

    Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.

  10. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis

    PubMed Central

    Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan

    2011-01-01

    Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323

  11. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish.

    PubMed

    Chatterjee, Arunita; Roy, Debasish; Patnaik, Esha; Nongthomba, Upendra

    2016-06-01

    Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs) as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs) through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual. © 2016. Published by The Company of Biologists Ltd.

  12. The role of protease-activated receptor-2 on pulmonary neutrophils in the innate immune response to cockroach allergen

    PubMed Central

    2012-01-01

    upregulated on lung neutrophils following allergen exposure and the consequence is altered release of TNFα which could drive the early innate immune response. PMID:22954301

  13. The scent of disease: human body odor contains an early chemosensory cue of sickness.

    PubMed

    Olsson, Mats J; Lundström, Johan N; Kimball, Bruce A; Gordon, Amy R; Karshikoff, Bianka; Hosseini, Nishteman; Sorjonen, Kimmo; Olgart Höglund, Caroline; Solares, Carmen; Soop, Anne; Axelsson, John; Lekander, Mats

    2014-03-01

    Observational studies have suggested that with time, some diseases result in a characteristic odor emanating from different sources on the body of a sick individual. Evolutionarily, however, it would be more advantageous if the innate immune response were detectable by healthy individuals as a first line of defense against infection by various pathogens, to optimize avoidance of contagion. We activated the innate immune system in healthy individuals by injecting them with endotoxin (lipopolysaccharide). Within just a few hours, endotoxin-exposed individuals had a more aversive body odor relative to when they were exposed to a placebo. Moreover, this effect was statistically mediated by the individuals' level of immune activation. This chemosensory detection of the early innate immune response in humans represents the first experimental evidence that disease smells and supports the notion of a "behavioral immune response" that protects healthy individuals from sick ones by altering patterns of interpersonal contact.

  14. Systemic Inflammatory Response Syndrome After Major Abdominal Surgery Predicted by Early Upregulation of TLR4 and TLR5.

    PubMed

    Lahiri, Rajiv; Derwa, Yannick; Bashir, Zora; Giles, Edward; Torrance, Hew D T; Owen, Helen C; O'Dwyer, Michael J; O'Brien, Alastair; Stagg, Andrew J; Bhattacharya, Satyajit; Foster, Graham R; Alazawi, William

    2016-05-01

    To study innate immune pathways in patients undergoing hepatopancreaticobiliary surgery to understand mechanisms leading to enhanced inflammatory responses and identifying biomarkers of adverse clinical consequences. Patients undergoing major abdominal surgery are at risk of life-threatening systemic inflammatory response syndrome (SIRS) and sepsis. Early identification of at-risk patients would allow tailored postoperative care and improve survival. Two separate cohorts of patients undergoing major hepatopancreaticobiliary surgery were studied (combined n = 69). Bloods were taken preoperatively, on day 1 and day 2 postoperatively. Peripheral blood mononuclear cells and serum were separated and immune phenotype and function assessed ex vivo. Early innate immune dysfunction was evident in 12 patients who subsequently developed SIRS (postoperative day 6) compared with 27 who did not, when no clinical evidence of SIRS was apparent (preoperatively or days 1 and 2). Serum interleukin (IL)-6 concentration and monocyte Toll-like receptor (TLR)/NF-κB/IL-6 functional pathways were significantly upregulated and overactive in patients who developed SIRS (P < 0.0001). Interferon α-mediated STAT1 phosphorylation was higher preoperatively in patients who developed SIRS. Increased TLR4 and TLR5 gene expression in whole blood was demonstrated in a separate validation cohort of 30 patients undergoing similar surgery. Expression of TLR4/5 on monocytes, particularly intermediate CD14CD16 monocytes, on day 1 or 2 predicted SIRS with accuracy 0.89 to 1.0 (areas under receiver operator curves). These data demonstrate the mechanism for IL-6 overproduction in patients who develop postoperative SIRS and identify markers that predict patients at risk of SIRS 5 days before the onset of clinical signs.

  15. Early Alzheimer's and Parkinson's disease pathology in urban children: Friend versus Foe responses--it is time to face the evidence.

    PubMed

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Mora-Tiscareño, Antonieta; Medina-Cortina, Humberto; Torres-Jardón, Ricardo; Kavanaugh, Michael

    2013-01-01

    Chronic exposure to particulate matter air pollution is known to cause inflammation leading to respiratory- and cardiovascular-related sickness and death. Mexico City Metropolitan Area children exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, and innate and adaptive immune responses. Early dysregulated neuroinflammation, brain microvascular damage, production of potent vasoconstrictors, and perturbations in the integrity of the neurovascular unit likely contribute to progressive neurodegenerative processes. The accumulation of misfolded proteins coincides with the anatomical distribution observed in the early stages of both Alzheimer's and Parkinson's diseases. We contend misfolding of hyperphosphorylated tau (HPπ), alpha-synuclein, and beta-amyloid could represent a compensatory early protective response to the sustained systemic and brain inflammation. However, we favor the view that the chronic systemic and brain dysregulated inflammation and the diffuse vascular damage contribute to the establishment of neurodegenerative processes with childhood clinical manifestations. Friend turns Foe early; therefore, implementation of neuroprotective measures to ameliorate or stop the inflammatory and neurodegenerative processes is warranted in exposed children. Epidemiological, cognitive, structural, and functional neuroimaging and mechanistic studies into the association between air pollution exposures and the development of neuroinflammation and neurodegeneration in children are of pressing importance for public health.

  16. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease

    PubMed Central

    Richards, Robert I.; Robertson, Sarah A.; O'Keefe, Louise V.; Fornarino, Dani; Scott, Andrew; Lardelli, Michael; Baune, Bernhard T.

    2016-01-01

    Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an “intelligent system,” in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate

  17. Innateness Claims in Psycholinguistics.

    ERIC Educational Resources Information Center

    Lamendella, John T.

    While agreeing with psycholinguistic and neurolinguistic theories that suggest that innate language-related cognitive structures are the basis of language development, the author seeks to establish what it is that is innate and what is meant by innateness in the first place. The author considers the claims of psychological relevance made on behalf…

  18. Comparative Proteomic Analysis Reveals Activation of Mucosal Innate Immune Signaling Pathways during Cholera

    PubMed Central

    LaRocque, Regina C.; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M.; Sarracino, David; Karlsson, Elinor K.; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R.; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T.; Calderwood, Stephen B.; Qadri, Firdausi

    2015-01-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1. PMID:25561705

  19. Characterization of cellular immune response and innate immune signaling in human and nonhuman primate primary mononuclear cells exposed to Burkholderia mallei.

    PubMed

    Alam, Shahabuddin; Amemiya, Kei; Bernhards, Robert C; Ulrich, Robert G; Waag, David M; Saikh, Kamal U

    2015-01-01

    Burkholderia pseudomallei infection causes melioidosis and is often characterized by severe sepsis. Although rare in humans, Burkholderia mallei has caused infections in laboratory workers, and the early innate cellular response to B. mallei in human and nonhuman primates has not been characterized. In this study, we examined the primary cellular immune response to B. mallei in PBMC cultures of non-human primates (NHPs), Chlorocebus aethiops (African Green Monkeys), Macaca fascicularis (Cynomolgus macaque), and Macaca mulatta (Rhesus macaque) and humans. Our results demonstrated that B. mallei elicited strong primary pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, and IL-6) equivalent to the levels of B. pseudomallei in primary PBMC cultures of NHPs and humans. When we examined IL-1β and other cytokine responses by comparison to Escherichia coli LPS, African Green Monkeys appears to be most responsive to B. mallei than Cynomolgus or Rhesus. Characterization of the immune signaling mechanism for cellular response was conducted by using a ligand induced cell-based reporter assay, and our results demonstrated that MyD88 mediated signaling contributed to the B. mallei and B. pseudomallei induced pro-inflammatory responses. Notably, the induced reporter activity with B. mallei, B. pseudomallei, or purified LPS from these pathogens was inhibited and cytokine production was attenuated by a MyD88 inhibitor. Together, these results show that in the scenario of severe hyper-inflammatory responses to B. mallei infection, MyD88 targeted therapeutic intervention may be a successful strategy for therapy. Published by Elsevier Ltd.

  20. Evasion and Interactions of the Humoral Innate Immune Response in Pathogen Invasion, Autoimmune Disease, and Cancer

    PubMed Central

    Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.

    2015-01-01

    The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788

  1. YopP-expressing variant of Y. pestis activates a potent innate immune response affording cross-protection against yersiniosis and tularemia [corrected].

    PubMed

    Zauberman, Ayelet; Flashner, Yehuda; Levy, Yinon; Vagima, Yaron; Tidhar, Avital; Cohen, Ofer; Bar-Haim, Erez; Gur, David; Aftalion, Moshe; Halperin, Gideon; Shafferman, Avigdor; Mamroud, Emanuelle

    2013-01-01

    Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.

  2. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    PubMed

    Jakobsen, Henrik; Bojer, Martin S; Marinus, Martin G; Xu, Tao; Struve, Carsten; Krogfelt, Karen A; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  3. Pattern recognition receptor immunomodulation of innate immunity as a strategy to limit the impact of influenza virus.

    PubMed

    Pizzolla, Angela; Smith, Jeffery M; Brooks, Andrew G; Reading, Patrick C

    2017-04-01

    Influenza remains a major global health issue and the effectiveness of current vaccines and antiviral drugs is limited by the continual evolution of influenza viruses. Therefore, identifying novel prophylactic or therapeutic treatments that induce appropriate innate immune responses to protect against influenza infection would represent an important advance in efforts to limit the impact of influenza. Cellular pattern recognition receptors (PRRs) recognize conserved structures expressed by pathogens to trigger intracellular signaling cascades, promoting expression of proinflammatory molecules and innate immunity. Therefore, a number of approaches have been developed to target specific PRRs in an effort to stimulate innate immunity and reduce disease in a variety of settings, including during influenza infections. Herein, we discuss progress in immunomodulation strategies designed to target cell-associated PRRs of the innate immune system, thereby, modifying innate responses to IAV infection and/or augmenting immune responses to influenza vaccines. © Society for Leukocyte Biology.

  4. Type III interferon is a critical regulator of innate antifungal immunity.

    PubMed

    Espinosa, Vanessa; Dutta, Orchi; McElrath, Constance; Du, Peicheng; Chang, Yun-Juan; Cicciarelli, Bryan; Pitler, Amy; Whitehead, Ian; Obar, Joshua J; Durbin, Joan E; Kotenko, Sergei V; Rivera, Amariliz

    2017-10-06

    Type III interferons (IFN-λs) are the most recently found members of the IFN cytokine family and engage IFNLR1 and IL10R2 receptor subunits to activate innate responses against viruses. We have identified IFN-λs as critical instructors of antifungal neutrophil responses. Using Aspergillus fumigatus ( Af ) as a model to study antifungal immune responses, we found that depletion of CCR2 + monocytes compromised the ability of neutrophils to control invasive fungal growth. Using an unbiased approach, we identified type I and III IFNs as critical regulators of the interplay between monocytes and neutrophils responding to Af We found that CCR2 + monocytes are an important early source of type I IFNs that prime optimal expression of IFN-λ. Type III IFNs act directly on neutrophils to activate their antifungal response, and mice with neutrophil-specific deletion of IFNLR1 succumb to invasive aspergillosis. Dysfunctional neutrophil responses in CCR2-depleted mice were rescued by adoptive transfer of pulmonary CCR2 + monocytes or by exogenous administration of IFN-α and IFN-λ. Thus, CCR2 + monocytes promote optimal activation of antifungal neutrophils by initiating a coordinated IFN response. We have identified type III IFNs as critical regulators of neutrophil activation and type I IFNs as early stimulators of IFN-λ expression. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    PubMed

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  6. Innate lymphoid cells in tissue homeostasis and diseases

    PubMed Central

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-01-01

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver. PMID:28878863

  7. Innate lymphoid cells in tissue homeostasis and diseases.

    PubMed

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  8. Arguing about innateness.

    PubMed

    Valian, Virginia

    2014-07-01

    This paper lays out the components of a language acquisition model, the interconnections among the components, and the differing stances of nativism and empiricism about syntax. After demonstrating that parsimony cannot decide between the two stances, the paper analyzes nine examples of evidence that have been used to argue for or against nativism, concluding that most pieces of evidence are either irrelevant or suggest that language is special but need not invoke innate ideas. Two pieces of evidence - the development of home sign languages and the acquisition of Determiners - do show not just that language is special but that the child has innate syntactic content. The existential claim that nativism makes - there is at least one innate syntactic idea - is an easier claim to verify than the universal claim that empiricism makes - there are no innate syntactic ideas.

  9. Serum Lipoproteins Are Critical for Pulmonary Innate Defense against Staphylococcus aureus Quorum Sensing.

    PubMed

    Manifold-Wheeler, Brett C; Elmore, Bradley O; Triplett, Kathleen D; Castleman, Moriah J; Otto, Michael; Hall, Pamela R

    2016-01-01

    Hyperlipidemia has been extensively studied in the context of atherosclerosis, whereas the potential health consequences of the opposite extreme, hypolipidemia, remain largely uninvestigated. Circulating lipoproteins are essential carriers of insoluble lipid molecules and are increasingly recognized as innate immune effectors. Importantly, severe hypolipidemia, which may occur with trauma or critical illness, is clinically associated with bacterial pneumonia. To test the hypothesis that circulating lipoproteins are essential for optimal host innate defense in the lung, we used lipoprotein-deficient mice and a mouse model of Staphylococcus aureus pneumonia in which invasive infection requires virulence factor expression controlled by the accessory gene regulator (agr) operon. Activation of agr and subsequent virulence factor expression is inhibited by apolipoprotein B, the structural protein of low-density lipoprotein, which binds and sequesters the secreted agr-signaling peptide (AIP). In this article, we report that lipoprotein deficiency impairs early pulmonary innate defense against S. aureus quorum-sensing-dependent pathogenesis. Specifically, apolipoprotein B levels in the lung early postinfection are significantly reduced with lipoprotein deficiency, coinciding with impaired host control of S. aureus agr-signaling and increased agr-dependent morbidity (weight loss) and inflammation. Given that lipoproteins also inhibit LTA- and LPS-mediated inflammation, these results suggest that hypolipidemia may broadly impact posttrauma pneumonia susceptibility to both Gram-positive and -negative pathogens. Together with previous reports demonstrating that hyperlipidemia also impairs lung innate defense, these results suggest that maintenance of normal serum lipoprotein levels is necessary for optimal host innate defense in the lung. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Totura, Allison L.; Whitmore, Alan; Agnihothram, Sudhakar; Schäfer, Alexandra; Katze, Michael G.; Heise, Mark T.

    2015-01-01

    ABSTRACT Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3−/−, TLR4−/−, and TRAM−/− mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF−/− mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF−/− mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections. PMID:26015500

  11. Violence: innate or acquired? A survey and some opinions.

    PubMed

    Bacciagaluppi, Marco

    2004-01-01

    Freud's psychoanalysis and Lorenz's ethology consider human aggressiveness to be innate. According to recent archaeological excavations and evolutionary studies, human groups in the Upper Paleolithic and Early Neolithic were peaceful and cooperative. This culture was replaced ten thousand years ago by a predatory hierarchical structure, which is here viewed as a cultural variant.

  12. Identification of Respiratory Syncytial Virus Nonstructural Protein 2 Residues Essential for Exploitation of the Host Ubiquitin System and Inhibition of Innate Immune Responses.

    PubMed

    Whelan, Jillian N; Tran, Kim C; van Rossum, Damian B; Teng, Michael N

    2016-07-15

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children worldwide. The RSV nonstructural protein 2 (NS2) is a multifunctional protein that primarily acts to antagonize the innate immune system by targeting STAT2 for proteasomal degradation. We investigated the structural determinants of NS2 important for interaction with the host ubiquitin system to degrade STAT2 during infection. We found that NS2 expression enhances ubiquitination of host proteins. Bioinformatics analysis provided a platform for identification of specific residues that limit NS2-induced ubiquitination. Combinations of multiple mutations displayed an additive effect on reducing NS2-induced ubiquitination. Using a reverse genetics system, we generated recombinant RSV (rRSV) containing NS2 ubiquitin mutations, which maintained their effect on ubiquitin expression during infection. Interestingly, STAT2 degradation activity was ablated in the NS2 ubiquitin mutant rRSV. In addition, NS2 ubiquitin mutations decreased rRSV replication, indicating a correlation between NS2's ubiquitin function and antagonism of innate immune signaling to enhance viral replication. Our approach of targeting NS2 residues required for NS2 inhibition of immune responses provides a mechanism for attenuating RSV for vaccine development. RSV has been circulating globally for more than 60 years, causing severe respiratory disease in pediatric, elderly, and immunocompromised populations. Production of a safe, effective vaccine against RSV is a public health priority. The NS2 protein is an effective target for prevention and treatment of RSV due to its antagonistic activity against the innate immune system. However, NS2-deleted RSV vaccine candidates rendered RSV overattenuated or poorly immunogenic. Alternatively, we can modify essential NS2 structural features to marginally limit viral growth while maintaining immune responses, providing the necessary balance between

  13. Infections in MS: An innate immunity perspective.

    PubMed

    Hänninen, A

    2017-11-01

    Multiple sclerosis is a multifaceted inflammatory-autoimmune disease, which shows remarkable heterogeneity in its clinical presentation, disease progression and in tissue lesions in the CNS. Focal lesions in white matter consist of immune effector cells, antibodies, and complement deposits in varying combinations, suggesting that immune mechanisms related to CNS pathology are multiple. Although adaptive immunity to myelin antigens is essential in MS pathogenesis, innate immune mechanisms are likely involved in its initiation and perpetuation. One key question is if recognition of infectious agents and microbial products by innate immune mechanisms impacts on MS and if so, how and where? This short review aims at conceptualizing how interactions between microbes and innate immune mechanisms could contribute to MS pathogenesis. Consideration is given to initiation of local inflammation and to myelin-specific immune responses, and how innate immunity and microbes may contribute to these. Recent advances in our understanding of lymphatic drainage of CNS, its immune surveillance and effects of gut microbiota and obesity on systemic endotoxin levels and T-cell priming may open new perspectives to understanding the roles that infectious agents and microbes may have in MS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. A time course study of glucose levels and innate immune response in gilthead seabream (Sparus aurata L.) after exposure to clove oil-eugenol derived anaesthetic.

    PubMed

    Bahi, A; Guardiola, F A; Esteban, M A

    2018-06-01

    Clove oil is used as an anaesthetic for many species of fish worldwide; however, relatively few studies have assessed its effects on the innate immune response on these species. The present work aimed to investigate the effects of clove oil-eugenol derived anaesthetic on some humoral and cellular immune response in gilthead seabream (Sparus aurata L.). To compare with an unexposed control group, fish were exposed to 55 ppm clove oil for 5 min, before being sampled at 1, 24 and 48 h post-exposure. Serum glucose level was also measured to obtain information on the fish physiological response after clove oil anaesthesia. One hour after exposure the haemolytic complement activity of fish was lower than in the unexposed group. By contrast, the leucocyte peroxidase activity in head-kidney was significantly stimulated 24 h after exposure to clove oil-eugenol. The rest of innate immune parameters evaluated and the glucose levels not were affected by clove oil exposure at any sampling point. Overall, the use of clove oil at 55 ppm as anaesthetic did not seem to alter the innate immune response and neither did it trigger a stress response. The use of clove oil-eugenol derived had become common practice in aquaculture, and its use with gilthead seabream can be considered safe as it does not cause immunodepression in anesthetized fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Prolactin-releasing peptide is a potent mediator of the innate immune response in leukocytes from Salmo salar.

    PubMed

    Romero, Alex; Manríquez, René; Alvarez, Claudio; Gajardo, Cristina; Vásquez, Jorge; Kausel, Gudrun; Monrás, Mónica; Olavarría, Víctor H; Yáñez, Alejandro; Enríquez, Ricardo; Figueroa, Jaime

    2012-06-30

    Prolactin (PRL)-releasing peptide (PrRP) is a strong candidate stimulator of pituitary PRL transcription and secretion in teleosts. However, the role in control of extrapituitary PRL expression or its effects on innate immunity are unclear even in mammals. To study the possible presence of PrRP in peripheral organs, PrRP expression patterns and their effect on innate immunity were characterised in SHK-1 cells and head kidney (HK) leukocytes purified from the salmonid, Salmo salar. We detected immunoreactive cells in leukocytes from blood and HK of S. salar and found that PrRP mRNA was abundantly expressed in these cells. We have recently reported that physiological concentrations of native PRL, downstream of neuropeptide PrRP were able to induce expression of pro-inflammatory cytokines and the production of reactive oxygen species (ROS) in HK leukocytes and macrophages from S. salar and Sparus aurata. It is of interest to note that in this work we have revealed that synthetic PrRP was able to induce expression of pro-inflammatory cytokines (interleukins) IL-1β, IL-6, IL-8, IL-12 and PRL. We also show here that PrRP increased both (ROS) production and phagocytosis. Taken together, our results demonstrate for the first time that PrRP may be a local modulator of innate immune responses in leukocytes from S. salar. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Cocaine evokes a profile of oxidative stress and impacts innate antiviral response pathways in astrocytes.

    PubMed

    Cisneros, Irma E; Erdenizmenli, Mert; Cunningham, Kathryn A; Paessler, Slobodan; Dineley, Kelly T

    2018-06-01

    HIV-1 and Zika virus (ZIKV) represent RNA viruses with neurotropic characteristics. Infected individuals suffer neurocognitive disorders aggravated by environmental toxins, including drugs of abuse such as cocaine, exacerbating HIV-associated neurocognitive disorders through a combination of astrogliosis, oxidative stress and innate immune signaling; however, little is known about how cocaine impacts the progression of ZIKV neural perturbations. Impaired innate immune signaling is characterized by weakened antiviral activation of interferon signaling and alterations in inflammatory signaling, factors contributing to cognitive sequela associated with cocaine in HIV-1/ZIKV infection. We employed cellular/molecular biology techniques to test if cocaine suppresses the efficacy of astrocytes to initiate a Type 1 interferon response to HIV-1/ZIKV, in vitro. We found cocaine activated antiviral signaling pathways and type I interferon in the absence of inflammation. Cocaine pre-exposure suppressed antiviral responses to HIV-1/ZIKV, triggering antiviral signaling and phosphorylation of interferon regulatory transcription factor 3 to stimulate type I interferon gene transcription. Our data indicate that oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immune responses. Although astrocyte antiviral signaling is activated following detection of foreign pathogenic material, oxidative stress and increased cytosolic double-stranded DNA (dsDNA) can drive antiviral signaling via stimulation of pattern recognition receptors. Pretreatment with the glial modulators propentofylline (PPF) or pioglitazone (PIO) reversed cocaine-mediated attenuation of astrocyte responses to HIV-1/ZIKV. Both PPF/PIO protected against cocaine-mediated generation of reactive oxygen species (ROS), increased dsDNA, antiviral signaling pathways and increased type I interferon, indicating that cocaine induces astrocyte type I interferon signaling in the absence of virus and oxidative

  17. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment

  18. The Anopheles innate immune system in the defense against malaria infection

    PubMed Central

    Clayton, April M.; Dong, Yuemei; Dimopoulos, George

    2014-01-01

    The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite’s successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito’s innate immune system. This review will discuss our current understanding of the Anopheles mosquito’s innate immune responses against the malaria parasite Plasmodium and the influence of the insect’s intestinal microbiota on parasite infection. PMID:23988482

  19. Migration and Tissue Tropism of Innate Lymphoid Cells

    PubMed Central

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  20. Impact of the Innate Immune Response in the Actions of Ethanol on the Central Nervous System.

    PubMed

    Montesinos, Jorge; Alfonso-Loeches, Silvia; Guerri, Consuelo

    2016-11-01

    The innate immune response in the central nervous system (CNS) participates in both synaptic plasticity and neural damage. Emerging evidence from human and animal studies supports the role of the neuroimmune system response in many actions of ethanol (EtOH) on the CNS. Research studies have shown that alcohol stimulates brain immune cells, microglia, and astrocytes, by activating innate immune receptors Toll-like receptors (TLRs) and NOD-like receptors (inflammasome NLRs) triggering signaling pathways, which culminate in the production of pro-inflammatory cytokines and chemokines that lead to neuroinflammation. This review focuses on evidence that indicates the participation of TLRs and the inflammasome NLRs signaling response in many effects of EtOH on the CNS, such as neuroinflammation associated with brain damage, cognitive and behavioral dysfunction, and adolescent brain development alterations. It also reviews findings that indicate the role of TLR4-dependent signaling immune molecules in alcohol consumption, reward, and addiction. The research data suggest that overactivation of TLR4 or NLRs increases pro-inflammatory cytokines and mediators to cause neural damage in the cerebral cortex and hippocampus, while modest TLR4 activation, along with the generation of certain cytokines and chemokines in specific brain areas (e.g., amygdala, ventral tegmental area), modulate neurotransmission, alcohol drinking, and alcohol rewards. Elimination of TLR4 and NLRP3 abolishes many neuroimmune effects of EtOH. Despite much progress being made in this area, there are some research gaps and unanswered questions that this review discusses. Finally, potential therapies that target neuroimmune pathways to treat neuropathological and behavioral consequences of alcohol abuse are also evaluated. Copyright © 2016 by the Research Society on Alcoholism.

  1. Programmed cell death 1 inhibits inflammatory helper T-cell development through controlling the innate immune response

    PubMed Central

    Rui, Yuxiang; Honjo, Tasuku; Chikuma, Shunsuke

    2013-01-01

    Programmed cell death 1 (PD-1) is an inhibitory coreceptor on immune cells and is essential for self-tolerance because mice genetically lacking PD-1 (PD-1−/−) develop spontaneous autoimmune diseases. PD-1−/− mice are also susceptible to severe experimental autoimmune encephalomyelitis (EAE), characterized by a massive production of effector/memory T cells against myelin autoantigen, the mechanism of which is not fully understood. We found that an increased primary response of PD-1−/− mice to heat-killed mycobacteria (HKMTB), an adjuvant for EAE, contributed to the enhanced production of T-helper 17 (Th17) cells. Splenocytes from HKMTB-immunized, lymphocyte-deficient PD-1−/− recombination activating gene (RAG)2−/− mice were found to drive antigen-specific Th17 cell differentiation more efficiently than splenocytes from HKMTB-immunized PD-1+/+ RAG2−/− mice. This result suggested PD-1’s involvement in the regulation of innate immune responses. Mice reconstituted with PD-1−/− RAG2−/− bone marrow and PD-1+/+ CD4+ T cells developed more severe EAE compared with the ones reconstituted with PD-1+/+ RAG2−/− bone marrow and PD-1+/+ CD4+ T cells. We found that upon recognition of HKMTB, CD11b+ macrophages from PD-1−/− mice produced very high levels of IL-6, which helped promote naive CD4+ T-cell differentiation into IL-17–producing cells. We propose a model in which PD-1 negatively regulates antimycobacterial responses by suppressing innate immune cells, which in turn prevents autoreactive T-cell priming and differentiation to inflammatory effector T cells. PMID:24043779

  2. Reovirus-Mediated Cytotoxicity and Enhancement of Innate Immune Responses Against Acute Myeloid Leukemia

    PubMed Central

    Hall, Kathryn; Scott, Karen J.; Rose, Ailsa; Desborough, Michael; Harrington, Kevin; Pandha, Hardev; Parrish, Christopher; Vile, Richard; Coffey, Matt; Bowen, David; Errington-Mais, Fiona

    2012-01-01

    Abstract Reovirus is a naturally occurring oncolytic virus that has shown preclinical efficacy in the treatment of a wide range of tumor types and has now reached phase III testing in clinical trials. The anti-cancer activity of reovirus has been attributed to both its direct oncolytic activity and the enhancement of anti-tumor immune responses. In this study, we have investigated the direct effect of reovirus on acute myeloid leukemia (AML) cells and its potential to enhance innate immune responses against AML, including the testing of primary samples from patients. Reovirus was found to replicate in and kill AML cell lines, and to reduce cell viability in primary AML samples. The pro-inflammatory cytokine interferon alpha (IFNα) and the chemokine (C-C motif) ligand 5 (known as RANTES [regulated upon activation, normal T-cell expressed, and secreted]) were also secreted from AML cells in response to virus treatment. In addition, reovirus-mediated activation of natural killer (NK) cells, within the context of peripheral blood mononuclear cells, stimulated their anti-leukemia response, with increased NK degranulation and IFNγ production and enhanced killing of AML targets. These data suggest that reovirus has the potential as both a direct cytotoxic and an immunotherapeutic agent for the treatment of AML. PMID:23515241

  3. Innate sensors of pathogen and stress: linking inflammation to obesity.

    PubMed

    Jin, Chengcheng; Flavell, Richard A

    2013-08-01

    Pathogen and nutrient response pathways are evolutionarily conserved and highly integrated to regulate metabolic and immune homeostasis. Excessive nutrients can be sensed by innate pattern recognition receptors as danger signals either directly or through production of endogenous ligands or modulation of intestinal microbiota. This triggers the activation of downstream inflammatory cascades involving nuclear factor κB and mitogen-activated protein kinase and ultimately induces the production of inflammatory cytokines and immune cell infiltration in various metabolic tissues. The chronic low-grade inflammation in the brain, islet, liver, muscle, and adipose tissue further promotes insulin resistance, energy imbalance, and impaired glucose/lipid metabolism, contributing to the metabolic complications of obesity, such as diabetes and atherosclerosis. In addition, innate pathogen receptors have now emerged as a critical link between the intestinal microbiota and host metabolism. In this review we summarize recent studies demonstrating the important roles of innate pathogen receptors, including Toll-like receptors, nucleotide oligomerization domain containing proteins, and inflammasomes in mediating the inflammatory response to metabolic stress in different tissues and highlight the interaction of innate pattern recognition receptors, gut microbiota, and nutrients during the development of obesity and related metabolic disorders. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Differential Responsiveness of Innate-like IL-17- and IFN-γ-Producing γδ T Cells to Homeostatic Cytokines.

    PubMed

    Corpuz, Theresa M; Stolp, Jessica; Kim, Hee-Ok; Pinget, Gabriela V; Gray, Daniel H D; Cho, Jae-Ho; Sprent, Jonathan; Webster, Kylie E

    2016-01-15

    γδ T cells respond to molecules upregulated following infection or cellular stress using both TCR and non-TCR molecules. The importance of innate signals versus TCR ligation varies greatly. Both innate-like IL-17-producing γδ T (γδT-17) and IFN-γ-producing γδ T (γδT-IFNγ) subsets tune the sensitivity of their TCR following thymic development, allowing robust responses to inflammatory cytokines in the periphery. The remaining conventional γδ T cells retain high TCR responsiveness. We determined homeostatic mechanisms that govern these various subsets in the peripheral lymphoid tissues. We found that, although innate-like γδT-17 and γδT-IFNγ cells share elements of thymic development, they diverge when it comes to homeostasis. Both exhibit acute sensitivity to cytokines compared with conventional γδ T cells, but they do not monopolize the same cytokine. γδT-17 cells rely exclusively on IL-7 for turnover and survival, aligning them with NKT17 cells; IL-7 ligation triggers proliferation, as well as promotes survival, upregulating Bcl-2 and Bcl-xL. γδT-IFNγ cells instead depend heavily on IL-15. They display traits analogous to memory CD8(+) T cells and upregulate Bcl-xL and Mcl-1 upon cytokine stimulation. The conventional γδ T cells display low sensitivity to cytokine-alone stimulation and favor IL-7 for their turnover, characteristics reminiscent of naive αβ T cells, suggesting that they may also require tonic TCR signaling for population maintenance. These survival constraints suggest that γδ T cell subsets do not directly compete with each other for cytokines, but instead fall into resource niches with other functionally similar lymphocytes. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin.

    PubMed

    Glatz, Martin; Means, Terry; Haas, Josef; Steere, Allen C; Müllegger, Robert R

    2017-03-01

    Little is known about the immunomodulation by tick saliva during a natural tick bite in human skin, the site of the tick-host interaction. We examined the expression of chemokines, cytokines and leucocyte markers on the mRNA levels and histopathologic changes in human skin biopsies of tick bites (n=37) compared to unaffected skin (n=9). Early tick-bite skin lesions (<24 hours of tick attachment) were characterized by a predominance of macrophages and dendritic cells, elevated mRNA levels of macrophage chemoattractants (CCL2, CCL3, CCL4) and neutrophil chemoattractants (CXCL1, CXCL8), of the pro-inflammatory cytokine, IL-1β, and the anti-inflammatory cytokine, IL-5. In contrast, the numbers of lymphocytes and mRNA levels of lymphocyte cell markers (CD4, CD8, CD19), lymphocyte chemoattractants (CXCL9, CXCL10, CXCL11, CXCL13, CCL1, CCL22), dendritic cell chemoattractants (CCL20), and other pro- (IL-6, IL-12p40, IFN-γ, TNF-α) and anti-inflammatory cytokines (IL-4, IL-10, TGF-β) did not differ from normal skin. With longer tick attachment (>24 hours), the numbers of innate immune cells and mediators (not significantly) declined, whereas the numbers of lymphocytes (not significantly) increased. Natural tick bites by Ixodes ricinus ticks initially elicit a strong local innate immune response in human skin. Beyond 24 hours of tick attachment, this response usually becomes less, perhaps because of immunomodulation by tick saliva. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication

    PubMed Central

    Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia; Li, Yize; Wilhelm, Jochen; Rabouw, Huib H.; Züst, Roland; Marti, Sabrina; Habjan, Matthias; Cervantes-Barragan, Luisa; Elliot, Ruth; Karl, Nadja; Gaughan, Christina; Silverman, Robert H.; Keller, Markus; Ludewig, Burkhard; Bergmann, Cornelia C.; Ziebuhr, John; Kalinke, Ulrich

    2017-01-01

    Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis–within the replicase complex—suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses. PMID:28158275

  7. Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells.

    PubMed

    Faget, Julien; Biota, Cathy; Bachelot, Thomas; Gobert, Michael; Treilleux, Isabelle; Goutagny, Nadège; Durand, Isabelle; Léon-Goddard, Sophie; Blay, Jean Yves; Caux, Christophe; Ménétrier-Caux, Christine

    2011-10-01

    In breast carcinomas, patient survival seems to be negatively affected by the recruitment of regulatory T cells (T(reg)) within lymphoid aggregates by CCL22. However, the mechanisms underpinning this process, which may be of broader significance in solid tumors, have yet to be described. In this study, we determined how CCL22 production is controlled in tumor cells. In human breast carcinoma cell lines, CCL22 was secreted at low basal levels that were strongly increased in response to inflammatory signals [TNF-α, IFN-γ, and interleukin (IL)-1β], contrasting with CCL17. Primary breast tumors and CD45(+) infiltrating immune cells appeared to cooperate in driving CCL22 secretion, as shown clearly in cocultures of breast tumor cell lines and peripheral blood mononuclear cells (PBMC) or their supernatants. We determined that monocyte-derived IL-1β and TNF-α are key players as monocyte depletion or neutralization of these cytokines attenuated secretion of CCL22. However, when purified monocytes were used, exogenous human IFN-γ was also required to generate this response suggesting a role for IFN-γ-producing cells within PBMCs. In this setting, we found that human IFN-γ could be replaced by the addition of (i) IL-2 or K562-activated natural killer (NK) cells or (ii) resting NK cells in the presence of anti-MHC class I antibody. Taken together, our results show a dialogue between NK and tumor cells leading to IFN-γ secretion, which in turn associates with monocyte-derived IL-1β and TNF-α to drive production of CCL22 by tumor cells and subsequent recruitment of T(reg). As one validation of this conclusion in primary breast tumors, we showed that NK cells and macrophages tend to colocalize within tumors. In summary, our findings suggest that at early times during tumorigenesis, the detection of tumor cells by innate effectors (monocytes and NK cells) imposes a selection for CCL22 secretion that recruits T(reg) to evade this early antitumor immune response.

  8. Innate immune function and mortality in critically ill children with influenza: a multicenter study.

    PubMed

    Hall, Mark W; Geyer, Susan M; Guo, Chao-Yu; Panoskaltsis-Mortari, Angela; Jouvet, Philippe; Ferdinands, Jill; Shay, David K; Nateri, Jyotsna; Greathouse, Kristin; Sullivan, Ryan; Tran, Tram; Keisling, Shannon; Randolph, Adrienne G

    2013-01-01

    To prospectively evaluate relationships among serum cytokine levels, innate immune responsiveness, and mortality in a multicenter cohort of critically ill children with influenza infection. Prospective, multicenter, observational study. Fifteen pediatric ICUs among members of the Pediatric Acute Lung Injury and Sepsis Investigators network. Patients ≤18 yrs old admitted to a PICU with community-acquired influenza infection. A control group of outpatient children was also evaluated. ICU patients underwent sampling within 72 hrs of ICU admission for measurement of a panel of 31 serum cytokine levels and quantification of whole blood ex vivo lipopolysaccharide-stimulated tumor necrosis factor-α production capacity using a standardized stimulation protocol. Outpatient control subjects also underwent measurement of tumor necrosis factor-α production capacity. Fifty-two patients (44 survivors, eight deaths) were sampled. High levels of serum cytokines (granulocyte macrophage colony-stimulating factor, interleukin-6, interleukin-8, interferon-inducible protein-10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1α) were associated with mortality (p < 0.0016 for each comparison) as was the presence of secondary infection with Staphylococcus aureus (p = 0.007), particularly methicillin-resistant S. aureus (p < 0.0001). Nonsurvivors were immunosuppressed with leukopenia and markedly reduced tumor necrosis factor-α production capacity compared with outpatient control subjects (n = 21, p < 0.0001) and to ICU survivors (p < 0.0001). This association remained after controlling for multiple covariables. A tumor necrosis factor-α response <250 pg/mL was highly predictive of death and longer duration of ICU stay (p < 0.0001). Patients with S. aureus coinfection demonstrated the greatest degree of immunosuppression (p < 0.0001). High serum levels of cytokines can coexist with marked innate immune suppression in children with critical influenza. Severe

  9. Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy.

    PubMed

    Gillard, Geoffrey O; Saenz, Steven A; Huss, David J; Fontenot, Jason D

    2016-05-15

    Innate lymphoid cells (ILCs) play an important role in immunity, inflammation, and tissue remodeling and their dysregulation is implicated in autoimmune and inflammatory disorders. We analyzed the impact of daclizumab, a humanized monoclonal anti-CD25 antibody, on circulating natural killer (NK) cells and ILCs in a cohort of multiple sclerosis patients. An increase in CD56(bright) NK cells and CD56(hi)CD16(intermediate) transitional NK cells was observed. No significant change in total ILCs or major ILC subpopulations was observed. These results refine our understanding of the impact of daclizumab on innate lymphoid cell populations. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. The Development of Adult Innate Lymphoid Cells

    PubMed Central

    Yang, Qi; Bhandoola, Avinash

    2016-01-01

    Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally-distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC. PMID:26871595

  11. Linking innate to adaptive immunity through dendritic cells.

    PubMed

    Steinman, Ralph M

    2006-01-01

    The function of dendritic cells (DCs) in linking innate to adaptive immunity is often summarized with two terms. DCs are sentinels, able to capture, process and present antigens and to migrate to lymphoid tissues to select rare, antigen-reactive T cell clones. DCs are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. The type of DC and the type of maturation induced by different stimuli influences the immunological outcome, such as the differentiation of Thl vs. Th2 T cells. Here we summarize the contributions of DCs to innate defences, particularly the production of immune enhancing cytokines and the activation of innate lymphocytes. Then we outline three innate features of DCs that influence peripheral tolerance and lead to adaptive immunity: a specialized endocytic system for antigen capture and processing, location and movements in vivo, and maturation in response to an array of stimuli. A new approach to the analysis of DC biology is to target antigens selectively to maturing DCs in vivo. This leads to stronger, more prolonged and broader (many immunogenic peptides) immunity by both T cells and B cells.

  12. Silencing the alarms: innate immune antagonism by rotavirus NSP1 and VP3

    PubMed Central

    Morelli, Marco; Ogden, Kristen M.; Patton, John T.

    2016-01-01

    The innate immune response involves a broad array of pathogen sensors that stimulate the production of interferons (IFN) to induce an antiviral state. Rotavirus, a significant cause of childhood gastroenteritis and a member of the Reoviridae family of segmented, double-stranded RNA viruses, encodes at least two direct antagonists of host innate immunity: NSP1 and VP3. NSP1, a putative E3 ubiquitin ligase, mediates the degradation of cellular factors involved in both IFN induction and downstream signaling. VP3, the viral capping enzyme, utilizes a 2H-phosphodiesterase domain to prevent activation of the cellular oligoadenylate synthase (OAS)-RNase L pathway. Computational, molecular, and biochemical studies have provided key insights into the structural and mechanistic basis of innate immune antagonism by NSP1 and VP3 of group A rotaviruses (RVA). Future studies with non-RVA isolates will be essential to understand how other RV species evade host innate immune responses. PMID:25724417

  13. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression12

    PubMed Central

    Chen, Chong-Sheng; Doloff, Joshua C; Waxman, David J

    2014-01-01

    Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses. PMID:24563621

  14. The Mevalonate Pathway and Innate Immune Hyper-Responsiveness in the Pathogenesis of COPD and Lung Cancer: Potential for Chemoprevention.

    PubMed

    Young, Robert P; Hopkins, Raewyn J

    2017-01-01

    Current evidence suggests that persisting and/or exaggerated inflammation in the lungs initiated by smoking, and up-regulated through genetic susceptibility, may result in lung remodelling and impaired repair. The mevalonate pathway, through its modifying effects on innate immune responsiveness, may be involved in these processes providing a plausible pathogenic link between the development of chronic obstructive pulmonary disease (COPD) and lung cancer. The mevalonate pathway, mediates these effects through important intra-cellular signalling molecules called guanine phosphate transferases (GTPases) such as Rho-A. Smoke exposure activates cell surface proteins which, through the mediating influence of GTPases, then modify the activation of NFkB and its downstream effects on genes underlying innate immunity, neutrophilic inflammation and carcinogenesis. The mevalonate pathway is readily and substantially modified by inhibition of the enzyme 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMGCo-A) reductase. This enzyme controls the rate limiting step of the mevalonate pathway and is subject to inhibition by statin drugs and small chain fatty acids derived from high dietary fibre intake. Thus inhibiting the mevelonate pathway, and dampening the innate immune response to smoking, may play a critical role in modifying pulmonary inflammation and lung remodelling. Such an action might slow the progression of COPD and reduce the tendency to the development of lung cancer. This review examines the pre-clinical and clinical data suggesting that HMGCoA-reductase inhibition and it's modification of the mevalonate pathway, may have a chemo-preventive effect on lung cancer, particularly in patients with COPD where pulmonary inflammation is increased and the risk of lung cancer is greatest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Innate Sensing of Influenza A Virus Hemagglutinin Glycoproteins by the Host Endoplasmic Reticulum (ER) Stress Pathway Triggers a Potent Antiviral Response via ER-Associated Protein Degradation.

    PubMed

    Frabutt, Dylan A; Wang, Bin; Riaz, Sana; Schwartz, Richard C; Zheng, Yong-Hui

    2018-01-01

    Innate immunity provides an immediate defense against infection after host cells sense danger signals from microbes. Endoplasmic reticulum (ER) stress arises from accumulation of misfolded/unfolded proteins when protein load overwhelms the ER folding capacity, which activates the unfolded protein response (UPR) to restore ER homeostasis. Here, we show that a mechanism for antiviral innate immunity is triggered after the ER stress pathway senses viral glycoproteins. When hemagglutinin (HA) glycoproteins from influenza A virus (IAV) are expressed in cells, ER stress is induced, resulting in rapid HA degradation via proteasomes. The ER-associated protein degradation (ERAD) pathway, an important UPR function for destruction of aberrant proteins, mediates HA degradation. Three class I α-mannosidases were identified to play a critical role in the degradation process, including EDEM1, EDEM2, and ERManI. HA degradation requires either ERManI enzymatic activity or EDEM1/EDEM2 enzymatic activity when ERManI is not expressed, indicating that demannosylation is a critical step for HA degradation. Silencing of EDEM1, EDEM2, and ERManI strongly increases HA expression and promotes IAV replication. Thus, the ER stress pathway senses influenza HA as "nonself" or misfolded protein and sorts HA to ERAD for degradation, resulting in inhibition of IAV replication. IMPORTANCE Viral nucleic acids are recognized as important inducers of innate antiviral immune responses that are sensed by multiple classes of sensors, but other inducers and sensors of viral innate immunity need to be identified and characterized. Here, we used IAV to investigate how host innate immunity is activated. We found that IAV HA glycoproteins induce ER stress, resulting in HA degradation via ERAD and consequent inhibition of IAV replication. In addition, we have identified three class I α-mannosidases, EDEM1, EDEM2, and ERManI, which play a critical role in initiating HA degradation. Knockdown of these proteins

  16. Animal Models of Inflammasomopathies Reveal Roles for Innate but not Adaptive Immunity

    PubMed Central

    Brydges, Susannah D; Mueller, James L; McGeough, Matthew D; Pena, Carla A; Misaghi, Amirhossein; Gandhi, Chhavi; Putnam, Chris D; Boyle, David L; Firestein, Gary S; Horner, Anthony A; Soroosh, Pejman; Watford, Wendy T; O’Shea, John J; Kastner, Daniel L; Hoffman, Hal M

    2009-01-01

    SUMMARY Cryopyrin (NALP3) mediates formation of the inflammasome, a protein complex responsible for cleavage of pro-IL-1β to its active form. Mutations in the cryopyrin gene, NLRP3, cause the autoinflammatory disease spectrum: cryopyrin-associated periodic syndromes (CAPS). The central role of IL-1β in CAPS is supported by the remarkable response to IL-1 targeted therapy. We developed two novel Nlrp3 mutant knock-in mouse strains to model CAPS to examine the role of other inflammatory mediators and adaptive immune responses in an innate immune driven disease. These mice had systemic inflammation and poor growth, similar to some human CAPS patients, and demonstrated early mortality, primarily mediated by myeloid cells. Mating these mutant mice to various knock-out backgrounds confirmed the mouse disease phenotype required an intact inflammasome, was only partially dependent on IL-1β, and was independent of T cells. This data suggests CAPS are true inflammasomopathies and provide insight for more common inflammatory disorders. PMID:19501000

  17. Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis

    PubMed Central

    Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin

    2016-01-01

    Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142

  18. Early feeding: setting the stage for healthy eating habits.

    PubMed

    Mennella, Julie A; Ventura, Alison K

    2011-01-01

    Food habits, an integral part of all cultures, have their beginnings during early life. This chapter reviews the development of the senses of taste and smell, which provide information on the flavor of foods, and discusses how children's innate predispositions interact with early-life feeding experiences to form dietary preferences and habits. Young children show heightened preferences for foods that taste sweet and salty and rejection of that which tastes bitter. These innate responses are salient during development since they likely evolved to encourage children to ingest that which is beneficial, containing needed calories or minerals, and to reject that which is harmful. Early childhood is also characterized by plasticity, partially evidenced by a sensitive period during early life when infants exhibit heightened acceptance of the flavors experienced in amniotic fluid and breast milk. While learning also occurs with flavors found in formulae, it is likely that this sensitive period formed to facilitate acceptance of and attraction to the flavors of foods eaten by the mother. A basic understanding of the development and functioning of the chemical senses during early childhood may assist in forming evidence-based strategies to improve children's diets. Copyright © 2011 S. Karger AG, Basel.

  19. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice.

    PubMed

    Pazos, Michael A; Kraus, Thomas A; Muñoz-Fontela, César; Moran, Thomas M

    2012-01-01

    Pregnancy is a leading risk factor for severe complications during an influenza virus infection. Women infected during their second and third trimesters are at increased risk for severe cardiopulmonary complications, premature delivery, and death. Here, we establish a murine model of aerosolized influenza infection during pregnancy. We find significantly altered innate antiviral responses in pregnant mice, including decreased levels of IFN-β, IL-1α, and IFN-γ at early time points of infection. We also find reduced cytotoxic T cell activity and delayed viral clearance. We further demonstrate that pregnancy levels of the estrogen 17-β-estradiol are able to induce key anti-inflammatory phenotypes in immune responses to the virus independently of other hormones or pregnancy-related stressors. We conclude that elevated estrogen levels result in an attenuated anti-viral immune response, and that pregnancy-associated morbidities occur in the context of this anti-inflammatory phenotype.

  20. Candida innate immunity at the mucosa.

    PubMed

    Richardson, Jonathan P; Moyes, David L; Ho, Jemima; Naglik, Julian R

    2018-03-09

    The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces. Copyright © 2018. Published by Elsevier Ltd.

  1. ECSIT bridges RIG-I-like receptors to VISA in signaling events of innate antiviral responses.

    PubMed

    Lei, Cao-Qi; Zhang, Yu; Li, Mi; Jiang, Li-Qun; Zhong, Bo; Kim, Yong Ho; Shu, Hong-Bing

    2015-01-01

    Upon binding to RNA structures from invading viruses, RIG-I and MDA5 are recruited to mitochondria to interact with VISA and initiate antiviral type I interferon (IFN) responses. How this process is mediated is less understood. In this report, we demonstrate that ECSIT is an essential scaffolding protein that mediates the association of VISA and RIG-I or MDA5. Overexpression of ECSIT potentiated virus-triggered activation of IFN-regulatory factor 3 (IRF3) and expression of IFNB1, whereas knockdown of ECSIT impaired viral infection-induced activation of IRF3 and expression of IFNB1 as well as cellular antiviral responses. Mechanistically, ECSIT was associated with VISA on mitochondria and important for bridging RIG-I and MDA5 to VISA. Our findings suggest that ECSIT mediates virus-triggered type I IFN induction by bridging RIG-I and MDA5 to the VISA complex, and provide new insights into the molecular events of innate antiviral immune responses. © 2014 S. Karger AG, Basel.

  2. Innate and Conditioned Responses to Chemosensory and Visual Cues in Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), Vector of Huanglongbing Pathogens.

    PubMed

    Patt, Joseph M; Stockton, Dara; Meikle, William G; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J

    2014-11-19

    Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid's host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid's primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal.

  3. Invariant NKT cells provide innate and adaptive help for B cells

    PubMed Central

    Vomhof-DeKrey, Emilie E.; Yates, Jennifer; Leadbetter, Elizabeth A.

    2014-01-01

    B cells rely on CD4+ T cells helper signals to optimize their responses to T-dependent antigens. Recently another subset of T cells has been identified which provides help for B cells, invariant natural killer T (iNKT) cells. INKT cells are unique because they provide both innate and adaptive forms of help to B cells, with divergent outcomes. iNKT cells are widely distributed throughout the spleen at rest, consolidate in the marginal zone of the spleen early after activation, and are later found in germinal centers. Understanding the activation requirements for iNKT cells has led to the development of glycolipid containing nanoparticles which efficiently activate iNKT cells, enhance their cooperation with B cells, and which hold promise for vaccine development. PMID:24514004

  4. Plant polysaccharides used as immunostimulants enhance innate immune response and disease resistance against Aeromonas hydrophila infection in fish.

    PubMed

    Wang, Erlong; Chen, Xia; Wang, Kaiyu; Wang, Jun; Chen, Defang; Geng, Yi; Lai, Weimin; Wei, Xianchao

    2016-12-01

    Plant polysaccharides (PPS) are an important medicinal plant product, and play a major role in preventing and controlling infectious microbes in aquaculture. The present study investigated the effect of three PPS; Ficus carica polysaccharides (FCPS), Radix isatidis polysaccharides (RIPS), and Schisandra chinensis polysaccharides (SCPS), used as feed additives, on innate immune responses and disease resistance against Aeromonas hydrophila in crucian carp. Results show that crucian carp fed with these PPS showed significant (p < 0.05) enhancement of their innate immune response including leukocyte phagocytosis activity, serum bactericidal activity, lysozyme activity, total protein level, complement C3, and superoxide dismutase activity compared with the control group. Their degree of influence on these immune parameters was in the order of FCPS > RIPS > SCPS, except for lysozyme activity (RIPS > FCPS > SCPS). In addition, fish cumulative mortalities in the three treatment groups were remarkably lower than in the control group (95%) when challenged with A. hydrophila, relative percent survivals were 57.9%, 47.4%, and 42.1% in FCPS, RIPS, and SCPS groups, respectively. These results suggest that FCPS, RIPS, and SCPS used as immunostimulants are capable of enhancing immune responses and disease resistance against A. hydrophila in crucian carp, and that FCPS was the most effective. The findings from this study will help accelerate research of this topic, and promote the application and development of immunostimulants, such as Chinese herbs, in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Innate and Learned Prey-Searching Behavior in a Generalist Predator.

    PubMed

    Ardanuy, Agnès; Albajes, Ramon; Turlings, Ted C J

    2016-06-01

    Early colonization by Zyginidia scutellaris leafhoppers might be a key factor in the attraction and settling of generalist predators, such as Orius spp., in maize fields. In this paper, we aimed to determine whether our observations of early season increases in field populations of Orius spp. reflect a specific attraction to Z. scutellaris-induced maize volatiles, and how the responses of Orius predators to herbivore-induced volatiles (HIPVs) might be affected by previous experiences on plants infested by herbivorous prey. Therefore, we examined the innate and learned preferences of Orius majusculus toward volatiles from maize plants attacked by three potential herbivores with different feeding strategies: the leafhopper Z. scutellaris (mesophyll feeder), the lepidopteran Spodoptera littoralis (chewer), and another leafhopper Dalbulus maidis (phloem feeder). In addition, we examined the volatile profiles emitted by maize plants infested by the three herbivores. Our results show that predators exhibit a strong innate attraction to volatiles from maize plants infested with Z. scutellaris or S. littoralis. Previous predation experience in the presence of HIPVs influences the predator's odor preferences. The innate preference for plants with cell or tissue damage may be explained by these plants releasing far more volatiles than plants infested by the phloem-sucking D. maidis. However, a predation experience on D. maidis-infested plants increased the preference for D. maidis-induced maize volatiles. After O. majusculus experienced L3-L4 larvae (too large to serve as prey) on S. littoralis-infested plants, they showed reduced attraction toward these plants and an increased attraction toward D. maidis-infested plants. When offered young larvae of S. littoralis, which are more suitable prey, preference toward HIPVs was similar to that of naive individuals. The HIPVs from plants infested by herbivores with distinctly different feeding strategies showed distinguishable

  6. The Alkaloid Compound Harmane Increases the Lifespan of Caenorhabditis elegans during Bacterial Infection, by Modulating the Nematode’s Innate Immune Response

    PubMed Central

    Marinus, Martin G.; Xu, Tao; Struve, Carsten; Krogfelt, Karen A.; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs. PMID:23544153

  7. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy.

    PubMed

    Fonseca, Adriana Barbosa de Lima; Simon, Marise do Vale; Cazzaniga, Rodrigo Anselmo; de Moura, Tatiana Rodrigues; de Almeida, Roque Pacheco; Duthie, Malcolm S; Reed, Steven G; de Jesus, Amelia Ribeiro

    2017-02-06

    Leprosy is a chronic infectious disease caused by Mycobacterium leprae. According to official reports from 121 countries across five WHO regions, there were 213 899 newly diagnosed cases in 2014. Although leprosy affects the skin and peripheral nerves, it can present across a spectrum of clinical and histopathological forms that are strongly influenced by the immune response of the infected individuals. These forms comprise the extremes of tuberculoid leprosy (TT), with a M. leprae-specific Th1, but also a Th17, response that limits M. leprae multiplication, through to lepromatous leprosy (LL), with M. leprae-specific Th2 and T regulatory responses that do not control M. leprae replication but rather allow bacterial dissemination. The interpolar borderline clinical forms present with similar, but less extreme, immune biases. Acute inflammatory episodes, known as leprosy reactions, are complications that may occur before, during or after treatment, and cause further neurological damages that can cause irreversible chronic disabilities. This review discusses the innate and adaptive immune responses, and their interactions, that are known to affect pathogenesis and influence the clinical outcome of leprosy.

  8. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.

    PubMed

    Rus, Florentina; Flatt, Thomas; Tong, Mei; Aggarwal, Kamna; Okuda, Kendi; Kleino, Anni; Yates, Elisabeth; Tatar, Marc; Silverman, Neal

    2013-05-29

    Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.

  9. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera.

    PubMed

    Ellis, Crystal N; LaRocque, Regina C; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M; Sarracino, David; Karlsson, Elinor K; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T; Calderwood, Stephen B; Qadri, Firdausi; Harris, Jason B

    2015-03-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Developmental exposure to bisphenol A modulates innate but not adaptive immune responses to influenza A virus infection.

    PubMed

    Roy, Anirban; Bauer, Stephen M; Lawrence, B Paige

    2012-01-01

    Bisphenol A (BPA) is used in numerous products, such as plastic bottles and food containers, from which it frequently leaches out and is consumed by humans. There is a growing public concern that BPA exposure may pose a significant threat to human health. Moreover, due to the widespread and constant nature of BPA exposure, not only adults but fetuses and neonates are also exposed to BPA. There is mounting evidence that developmental exposures to chemicals from our environment, including BPA, contribute to diseases late in life; yet, studies of how early life exposures specifically alter the immune system are limited. Herein we report an examination of how maternal exposure to a low, environmentally relevant dose of BPA affects the immune response to infection with influenza A virus. We exposed female mice during pregnancy and through lactation to the oral reference dose for BPA listed by the US Environmental Protection Agency, and comprehensively examined immune parameters directly linked to disease outcomes in adult offspring following infection with influenza A virus. We found that developmental exposure to BPA did not compromise disease-specific adaptive immunity against virus infection, or reduce the host's ability to clear the virus from the infected lung. However, maternal exposure to BPA transiently reduced the extent of infection-associated pulmonary inflammation and anti-viral gene expression in lung tissue. From these observations, we conclude that maternal exposure to BPA slightly modulates innate immunity in adult offspring, but does not impair the anti-viral adaptive immune response, which is critical for virus clearance and survival following influenza virus infection.

  11. Role of Innate Immunity in Neonatal Infection

    PubMed Central

    Cuenca, Alex G; Wynn, James L; Moldawer, Lyle L; Levy, Ofer

    2014-01-01

    Newborns are at increased risk of infection due to genetic, epigenetic, and environmental factors. Herein we examine the roles of the neonatal innate immune system in host defense against bacterial and viral infections. Full-term newborns express a distinct innate immune system biased towards TH2/TH17-polarizing and anti-inflammatory cytokine production with relative impairment in TH1-polarizing cytokine production that leaves them particularly vulnerable to infection with intracellular pathogens. In addition to these distinct features, preterm newborns also have fragile skin, impaired TH17-polarizing cytokine production and deficient expression of complement and of antimicrobial proteins and peptides (APPs) that likely contribute to susceptibility to pyogenic bacteria. Ongoing research is identifying APPs, including bacterial/permeability-increasing protein and lactoferrin, as well as pattern recognition receptor (PRR) agonists that may serve to enhance protective newborn and infant immune responses as stand alone immune response modifiers or vaccine adjuvants. PMID:23297181

  12. Neuromodulation of Innate Behaviors in Drosophila.

    PubMed

    Kim, Susy M; Su, Chih-Ying; Wang, Jing W

    2017-07-25

    Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.

  13. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation

    PubMed Central

    Nielsen, Carolyn M.; Wolf, Asia-Sophia; Goodier, Martin R.; Riley, Eleanor M.

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose–response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen–antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes. PMID:27047490

  14. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets.

    PubMed

    Kim, J Y; Kawabori, M; Yenari, M A

    2014-01-01

    Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome. Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke.

  15. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  16. Early Complementopathy after Multiple Injuries in Humans

    PubMed Central

    Burk, Anne-Maud; Martin, Myriam; Flierl, Michael A.; Rittirsch, Daniel; Helm, Matthias; Lampl, Lorenz; Bruckner, Uwe; Stahl, Gregory L.; Blom, Anna M.; Perl, Mario; Gebhard, Florian; Huber-Lang, Markus

    2012-01-01

    After severe tissue injury, innate immunity mounts a robust systemic inflammatory response. However, little is known about the immediate impact of multiple trauma on early complement function in humans. In the present study we hypothesized that multiple trauma results in immediate activation, consumption and dysfunction of the complement cascade and that the resulting severe “complementopathy” may be associated with morbidity and mortality. Therefore a prospective multicenter study with 25 healthy volunteers and 40 polytrauma patients (mean injury severity score [ISS] = 30.3 ± 2.9) was performed. After polytrauma serum was collected as early as possible at the scene, upon admission to the emergency room and 4, 12, 24, 120 and 240 hours post trauma and analysed for the complement profile. Complement hemolytic activity (CH-50) was massively reduced within the first 24 h after injury, recovered only 5 days after trauma and discriminated between lethal and non-lethal 28-day outcome. Serum levels of the complement activation products C3a and C5a were significantly elevated throughout the entire observation period and correlated with the severity of traumatic brain injury and survival. The soluble terminal complement complex SC5b-9 and mannose-binding lectin (MBL) showed a biphasic response after trauma. Key fluid phase inhibitors of complement, such as C4b-binding protein (C4BP) and factor I, were significantly diminished early after trauma. The present data indicate an almost synchronically rapid activation and dysfunction of complement suggesting a trauma-induced “complementopathy” early after injury. These events may participate to the impairment of the innate immune response observed after severe trauma. PMID:22258234

  17. Reproductive investment is connected to innate immunity in a long-lived animal.

    PubMed

    Neggazi, Sara A; Noreikiene, Kristina; Öst, Markus; Jaatinen, Kim

    2016-10-01

    Life-history theory predicts that organisms optimize their resource allocation strategy to maximize lifetime reproductive success. Individuals can flexibly reallocate resources depending on their life-history stage, and environmental and physiological factors, which lead to variable life-history strategies even within species. Physiological trade-offs between immunity and reproduction are particularly relevant for long-lived species that need to balance current reproduction against future survival and reproduction, but their underlying mechanisms are poorly understood. A major unresolved issue is whether the first-line innate immune function is suppressed by reproductive investment. In this paper, we tested if reproductive investment is associated with the suppression of innate immunity, and how this potential trade-off is resolved depending on physiological state and residual reproductive value. We used long-lived capital-breeding female eiders (Somateria mollissima) as a model. We showed that the innate immune response, measured by plasma bacteria-killing capacity (BKC), was negatively associated with increasing reproductive investment, i.e., with increasing clutch size and advancing incubation stage. Females in a better physiological state, as indexed by low heterophil-to-lymphocyte (H/L) ratios, showed higher BKC during early incubation, but this capacity decreased as incubation progressed, whereas females in poorer state showed low BKC capacity throughout incubation. Although plasma BKC generally declined with increasing H/L ratios, this decrease was most pronounced in young females. Our results demonstrate that reproductive investment can suppress constitutive first-line immune defence in a long-lived bird, but the degree of immunosuppression depends on physiological state and age.

  18. Innate-like behavior of human invariant natural killer T cells during herpes simplex virus infection.

    PubMed

    Novakova, Lucie; Nevoralova, Zuzana; Novak, Jan

    2012-01-01

    Invariant natural killer T (iNKT) cells, CD1d restricted T cells, are involved in the immune responses against various infection agents. Here we describe their behavior during reactivation of human herpes simplex virus (HSV). iNKT cells exhibit only discrete changes, which however, reached statistically significant level due to the relatively large patient group. Higher percentage of iNKT cells express NKG2D. iNKT cells down-regulate NKG2A in a subset of patients. Finally, iNKT cells enhance their capacity to produce TNF-α. Our data suggests that iNKT cells are involved in the immune response against HSV and contribute mainly to its early, innate phase. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

    PubMed Central

    Katzenback, Barbara A.

    2015-01-01

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection. PMID:26426065

  20. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.

    PubMed

    Marsden, Kurt C; Jain, Roshan A; Wolman, Marc A; Echeverry, Fabio A; Nelson, Jessica C; Hayer, Katharina E; Miltenberg, Ben; Pereda, Alberto E; Granato, Michael

    2018-04-17

    Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection

    PubMed Central

    O’Brien, Valerie P.; Hannan, Thomas J.; Schaeffer, Anthony J.; Hultgren, Scott J.

    2015-01-01

    Purpose of review Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Recent findings Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. Summary The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact. PMID:25517222

  2. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection.

    PubMed

    O'Brien, Valerie P; Hannan, Thomas J; Schaeffer, Anthony J; Hultgren, Scott J

    2015-02-01

    Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact.

  3. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus.

    PubMed

    Xiong, Xiaorui R; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A; Tao, Huizhong W; Zhang, Li I

    2015-06-11

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities.

  4. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus

    PubMed Central

    Xiong, Xiaorui R.; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A.; Tao, Huizhong W.; Zhang, Li I.

    2015-01-01

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. PMID:26068082

  5. SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways.

    PubMed

    Chen, Shuliang; Bonifati, Serena; Qin, Zhihua; St Gelais, Corine; Kodigepalli, Karthik M; Barrett, Bradley S; Kim, Sun Hee; Antonucci, Jenna M; Ladner, Katherine J; Buzovetsky, Olga; Knecht, Kirsten M; Xiong, Yong; Yount, Jacob S; Guttridge, Denis C; Santiago, Mario L; Wu, Li

    2018-04-17

    Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.

  6. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.

    PubMed

    Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.

  7. Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster.

    PubMed

    Pragya, P; Shukla, A K; Murthy, R C; Abdin, M Z; Kar Chowdhuri, D

    2015-11-01

    With the advancement of human race, different anthropogenic activities have heaped the environment with chemicals that can cause alteration in the immune system of exposed organism. As a first line of barrier, the evolutionary conserved innate immunity is crucial for the health of an organism. However, there is paucity of information regarding in vivo assessment of the effect of environmental chemicals on innate immunity. Therefore, we examined the effect of a widely used environmental chemical, Cr(VI), on humoral innate immune response using Drosophila melanogaster. The adverse effect of Cr(VI) on host humoral response was characterized by decreased gene expression of antimicrobial peptides (AMPs) in the exposed organism. Concurrently, a significantly decreased transcription of humoral pathway receptors (Toll and PGRP) and triglyceride level along with inhibition of antioxidant enzyme activities were observed in exposed organism. This in turn weakened the immune response of exposed organism that was manifested by their reduced resistance against bacterial infection. In addition, overexpression of the components of humoral immunity particularly Diptericin benefits Drosophila from Cr(VI)-induced humoral immune-suppressive effect. To our knowledge, this is the first report regarding negative impact of an environmental chemical on humoral innate immune response of Drosophila along with subsequent protection by AMPs, which may provide novel insight into host-chemical interactions. Also, our data validate the utility and sensitivity of Drosophila as a model that could be used for screening the possible risk of environmental chemicals on innate immunity with minimum ethical concern that can be further extrapolated to higher organisms. © 2014 Wiley Periodicals, Inc.

  8. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis

    PubMed Central

    Mindt, Barbara C.; Fritz, Jörg H.; Duerr, Claudia U.

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung. PMID:29760695

  9. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis.

    PubMed

    Mindt, Barbara C; Fritz, Jörg H; Duerr, Claudia U

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  10. Adaptive and Innate Immune Responsiveness to Borrelia burgdorferi sensu lato in Exposed Asymptomatic Children and Children with Previous Clinical Lyme Borreliosis

    PubMed Central

    Skogman, Barbro H.; Hellberg, Sandra; Ekerfelt, Christina; Jenmalm, Maria C.; Forsberg, Pia; Ludvigsson, Johnny; Bergström, Sven; Ernerudh, Jan

    2012-01-01

    Why some individuals develop clinical manifestations in Lyme borreliosis (LB) while others remain asymptomatic is largely unknown. Therefore, we wanted to investigate adaptive and innate immune responsiveness to Borrelia burgdorferi sensu lato in exposed Borrelia-antibody-positive asymptomatic children (n = 20), children with previous clinical LB (n = 24), and controls (n = 20). Blood samples were analyzed for Borrelia-specific interferon (IFN)-γ, interleukin (IL)-4, and IL-17 secretion by ELISPOT and Borrelia-induced IL-1β, IL-6, IL-10, IL-12(p70), and tumor necrosis factor (TNF) secretion by Luminex. We found no significant differences in cytokine secretion between groups, but a tendency towards an increased spontaneous secretion of IL-6 was found among children with previous clinical LB. In conclusion, the adaptive or innate immune responsiveness to Borrelia burgdorferi sensu lato was similar in Borrelia-exposed asymptomatic children and children with previous clinical LB. Thus, the immunological mechanisms of importance for eradicating the spirochete effectively without developing clinical manifestations of LB remain unknown. PMID:22190976

  11. Dectin-2 Is a C-Type Lectin Receptor that Recognizes Pneumocystis and Participates in Innate Immune Responses.

    PubMed

    Kottom, Theodore J; Hebrink, Deanne M; Jenson, Paige E; Marsolek, Paige L; Wüthrich, Marcel; Wang, Huafeng; Klein, Bruce; Yamasaki, Sho; Limper, Andrew H

    2018-02-01

    Pneumocystis is an important fungal pathogen that causes life-threatening pneumonia in patients with AIDS and malignancy. Lung fungal pathogens are recognized by C-type lectin receptors (CLRs), which bind specific ligands and stimulate innate immune responses. The CLR Dectin-1 was previously shown to mediate immune responses to Pneumocystis spp. For this reason, we investigated a potential role for Dectin-2. Rats with Pneumocystis pneumonia (PCP) exhibited elevated Dectin-2 mRNA levels. Soluble Dectin-2 carbohydrate-recognition domain fusion protein showed binding to intact Pneumocystis carinii (Pc) and to native Pneumocystis major surface glycoprotein/glycoprotein A (Msg/gpA). RAW macrophage cells expressing V5-tagged Dectin-2 displayed enhanced binding to Pc and increased protein tyrosine phosphorylation. Furthermore, the binding of Pc to Dectin-2 resulted in Fc receptor-γ-mediated intracellular signaling. Alveolar macrophages from Dectin-2-deficient mice (Dectin-2 -/- ) showed significant decreases in phospho-Syk activation after challenge with Pc cell wall components. Stimulation of Dectin-2 -/- alveolar macrophages with Pc components showed significant decreases in the proinflammatory cytokines IL-6 and TNF-α. Finally, during infection with Pneumocystis murina, Dectin-2 -/- mice displayed downregulated mRNA expression profiles of other CLRs implicated in fungal immunity. Although Dectin-2 -/- alveolar macrophages had reduced proinflammatory cytokine release in vitro, Dectin-2 -/- deficiency did not reduce the overall resistance of these mice in the PCP model, and organism burdens were statistically similar in the long-term immunocompromised and short-term immunocompetent PCP models. These results suggest that Dectin-2 participates in the initial innate immune signaling response to Pneumocystis, but its deficiency does not impair resistance to the organism.

  12. Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.

    The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most openmore » reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.« less

  13. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response

    PubMed Central

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most

  14. The role of innate immunity in acute allograft rejection after lung transplantation.

    PubMed

    Palmer, Scott M; Burch, Lauranell H; Davis, R Duane; Herczyk, Walter F; Howell, David N; Reinsmoen, Nancy L; Schwartz, David A

    2003-09-15

    Although innate immunity is crucial to pulmonary host defense and can initiate immune and inflammatory responses independent of adaptive immunity, it remains unstudied in the context of transplant rejection. To investigate the role of innate immunity in the development of allograft rejection, we assessed the impact of two functional polymorphisms in the toll-like receptor 4 (TLR4) associated with endotoxin hyporesponsiveness on the development of acute rejection after human lung transplantation. Patients and donors were screened for the TLR4 Asp299Gly and Thr399Ile polymorphisms by polymerase chain reaction using sequence-specific primers. The rate of acute rejection at 6 months was significantly reduced in recipients, but not in donors, with the Asp299Gly or Thr399Ile alleles as compared with wild type (29 vs. 56%, respectively, p = 0.05). This association was confirmed in Cox proportional hazards and multivariate logistic regression models. Our results suggest activation of innate immunity in lung transplant recipients through TLR4 contributes to the development acute rejection after lung transplantation. Therapies directed at inhibition of innate immune responses mediated by TLR4 may represent a novel and effective means to prevent acute rejection after lung transplantation.

  15. Distinct Effects of Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination Adjuvants on Modulating Innate and Adaptive Immune Responses to Influenza Vaccination.

    PubMed

    Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye; Kang, Sang-Moo

    2017-10-01

    Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination.

  16. Distinct Effects of Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination Adjuvants on Modulating Innate and Adaptive Immune Responses to Influenza Vaccination

    PubMed Central

    Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye

    2017-01-01

    Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination. PMID:29093654

  17. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system.

    PubMed

    Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan

    2017-10-27

    TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses

    PubMed Central

    Nogueira, Paula M.; Ribeiro, Kleber; Silveira, Amanda C. O.; Campos, João H.; Martins-Filho, Olindo A.; Bela, Samantha R.; Campos, Marco A.; Pessoa, Natalia L.; Colli, Walter; Alves, Maria J. M.; Soares, Rodrigo P.; Torrecilhas, Ana Claudia

    2015-01-01

    Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase. PMID:26613751

  19. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses.

    PubMed

    Nogueira, Paula M; Ribeiro, Kleber; Silveira, Amanda C O; Campos, João H; Martins-Filho, Olindo A; Bela, Samantha R; Campos, Marco A; Pessoa, Natalia L; Colli, Walter; Alves, Maria J M; Soares, Rodrigo P; Torrecilhas, Ana Claudia

    2015-01-01

    Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase.

  20. Innate immune response against an oomycete pathogen Aphanomyces invadans in common carp (Cyprinus carpio), a fish resistant to epizootic ulcerative syndrome.

    PubMed

    Yadav, Manoj K; Pradhan, Pravata K; Sood, Neeraj; Chaudhary, Dharmendra K; Verma, Dev K; Chauhan, U K; Punia, Peyush; Jena, Joy K

    2016-03-01

    Infection with Aphanomyces invadans, also known as epizootic ulcerative syndrome, is a destructive disease of freshwater and brackishwater fishes. Although more than 130 species of fish have been confirmed to be susceptible to this disease, some of the commercially important fish species like common carp, milk fish and tilapia are reported to be resistant. Species that are naturally resistant to a particular disease, provide a potential model to study the mechanisms of resistance against that disease. In the present study, following experimental infection with A. invadans in common carp Cyprinus carpio, sequential changes in various innate immune parameters and histopathological alterations were monitored. Some of the studied innate immunity parameters viz. respiratory burst, alternative complement and total antiproteases activities of the infected common carp were higher compared to control fish, particularly at early stages of infection. On the other hand, some parameters such as myeloperoxidase, lysozyme and alpha-2 macroglobulin activities were not altered. Histopathological examination of the muscle at the site of injection revealed well developed granulomas at 12 days post infection, with subsequent regeneration of muscle fibers. From the results, it could be inferred that innate defense mechanisms of common carp are able to neutralize the virulence factors secreted by A. invadans, thereby, preventing its invasive spread and containing the infection. The results obtained here will help to better understand the mechanisms underlying resistance against A. invadans infection. Copyright © 2015 Elsevier B.V. All rights reserved.