Sample records for early larval growth

  1. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. VARIATIONS IN LARVAL GROWTH AND METABOLISM OF AN ESTUARINE SHRIMP DURING TOXICOSIS BY AN INSECT GROWTH REGULATOR

    EPA Science Inventory

    Exposure of the estuarine shrimp, Ptiaemonetes pugio, to a juvenile hormone analogue (> 3 ug methoprene-1) throughout larval development inhibited successful completion of metamorphosis. Methoprene exposure retarded growth in early larval stages and postlarvae enhanced growth in ...

  3. Fast versus slow larval growth in an invasive marine mollusc: does paternity matter?

    PubMed

    Le Cam, Sabrina; Pechenik, Jan A; Cagnon, Mathilde; Viard, Frédérique

    2009-01-01

    Reproductive strategies and parental effects play a major role in shaping early life-history traits. Although polyandry is a common reproductive strategy, its role is still poorly documented in relation to paternal effects. Here, we used as a case study the invasive sessile marine gastropod Crepidula fornicata, a mollusc with polyandry and extreme larval growth variation among sibling larvae. Based on paternity analyses, the relationships between paternal identity and the variations in a major early life-history trait in marine organisms, that is, larval growth, were investigated. Using microsatellite markers, paternities of 437 fast- and slow-growing larvae from 6 broods were reliably assigned to a set of 20 fathers. No particular fathers were found responsible for the specific growth performances of their offspring. However, the range of larval growth rates within a brood was significantly correlated to 1) an index of sire diversity and 2) the degree of larvae relatedness within broods. Multiple paternity could thus play an important role in determining the extent of pelagic larval duration and consequently the range of dispersal distances achieved during larval life. This study also highlighted the usefulness of using indices based on fathers' relative contribution to the progeny in paternity studies.

  4. Effect of corticosterone on larval growth, antipredator behaviour and metamorphosis of Hylarana indica.

    PubMed

    Kulkarni, P S; Gramapurohit, N P

    2017-09-15

    Corticosterone (CORT), a principal glucocorticoid in amphibians, is known to regulate diverse physiological processes including growth and metamorphosis of anuran tadpoles. Environmental stressors activate the neuroendocrine stress axis (hypothalamus-pituitary-interrenal axis, HPI) leading to an acute increase in CORT, which in turn, helps in coping with particular stress. However, chronic increase in CORT can negatively affect other physiological processes such as growth and metamorphosis. Herein, we studied the effect of exogenous CORT on larval growth, antipredator behaviour and metamorphic traits of Hylarana indica. Embryonic exposure to 5 or 20μg/L CORT did not affect their development, hatching duration as well as larval growth and metamorphosis. Exposure of tadpoles to 10 or 20μg/L CORT throughout larval development caused slower growth and development leading to increased body mass at stage 37. However, body and tail morphology of tadpoles was not affected. Interestingly, larval exposure to 5, 10 or 20μg/L CORT enhanced their antipredator response against kairomones in a concentration-dependent manner. Further, larval exposure to increasing concentrations of CORT resulted in the emergence of heavier froglets at 10 and 20μg/L while, delaying metamorphosis at all concentrations. Interestingly, the heavier froglets had shorter hindlimbs and consequently shorter jump distances. Tadpoles exposed to 20μg/L CORT during early, mid or late larval stages grew and developed slowly but tadpole morphology was not altered. Interestingly, exposure during early or mid-larval stages resulted in an enhanced antipredator response. These individuals metamorphosed later but at higher body mass while SVL was unaffected. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Expression analysis of the insulin-like growth factors I and II during embryonic and early larval development of turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang

    2015-04-01

    The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.

  6. Early exposure of bay scallops (Argopecten irradians) to high CO₂ causes a decrease in larval shell growth.

    PubMed

    White, Meredith M; McCorkle, Daniel C; Mullineaux, Lauren S; Cohen, Anne L

    2013-01-01

    Ocean acidification, characterized by elevated pCO₂ and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO₂ exposure (resulting in pH = 7.39, Ω(ar) = 0.74) on the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a switch from high CO₂ to ambient CO₂ conditions (pH = 7.93, Ω(ar) = 2.26) after 3 d, to assess the possibility of persistent effects of early exposure. The survival of larvae in the high CO₂ treatment was consistently lower than the survival of larvae in ambient conditions, and was already significantly lower at 1 d. Likewise, the shell length of larvae in the high CO₂ treatment was significantly smaller than larvae in the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5%. This study also demonstrates that the size effects of short-term exposure to high CO₂ are still detectable after 7 d of larval development; the shells of larvae exposed to high CO₂ for the first 3 d of development and subsequently exposed to ambientCO₂ were not significantly different in size at 3 and 7 d than the shells of larvae exposed to high CO₂ throughout the experiment.

  7. Larval traits show temporally consistent constraints, but are decoupled from post-settlement juvenile growth, in an intertidal fish.

    PubMed

    Thia, Joshua A; Riginos, Cynthia; Liggins, Libby; Figueira, Will F; McGuigan, Katrina

    2018-05-05

    1.Complex life-cycles may evolve to dissociate distinct developmental phases in an organism's lifetime. However, genetic or environmental factors may restrict trait independence across life stages, constraining ontogenetic trajectories. Quantifying covariance across life-stages and their temporal variability is fundamental in understanding life-history phenotypes and potential distributions and consequences for selection. 2.We studied developmental constraints in an intertidal fish (Bathygobius cocosensis: Gobiidae) with a discrete pelagic larval phase and benthic juvenile phase. We tested whether traits occurring earlier in life affected those expressed later, and whether larval traits were decoupled from post-settlement juvenile traits. Sampling distinct cohorts from three annual breeding seasons afforded tests of temporally variability in trait covariance. 3.From otoliths (fish ear stones), we measured hatch size, larval duration, pelagic growth (larval traits) and early post-settlement growth (juvenile trait) in 124 juvenile B. cocoensis. We used path analyses to model trait relationships with respect to their chronological expression, comparing models among seasons. We also modelled the effect of season and hatch date on each individual trait to quantify their inherent variability. 4.Our path analyses demonstrated a decoupling of larval traits on juvenile growth. Within the larval phase, longer larval durations resulted in greater pelagic growth, and larger size-at-settlement. There was also evidence that larger hatch size might reduce larval durations, but this effect was only marginally significant. Although pelagic and post-settlement growth were decoupled, pelagic growth had post-settlement consequences: individuals with high pelagic growth were among the largest fish at settlement, and remained among the largest early post-settlement. We observed no evidence that trait relationships varied among breeding seasons, but larval duration differed among

  8. Excess dietary cholesterol may have an adverse effect on growth performance of early post-larval Litopenaeus vannamei

    PubMed Central

    2012-01-01

    One experiment was conducted to determine the nutritive value of cholesterol for post-larval shrimp, Litopenaeus vannamei. Four isoenergetic and isonitrogenous diets supplemented with four levels of cholesterol (D1, D2, D3 and D4 with 0, 0.5%, 1% and 2% cholesterol, respectively) were fed to triplicate groups of L. vannamei shrimp (mean initial wet weight 0.8 mg) for 27 days. After the trial, shrimp fed the D1 diet had the best growth performance (final body weights: FBW; weight gain: WG; specific growth rate: SGR), while there was no significant difference between diet treatments with respect to survival. The whole body crude protein level in the shrimp decreased with the increase in dietary cholesterol levels, while the whole body crude lipid level in shrimps in the D4 diet treatment was significantly higher (P < 0.05) than in other diet treatments. Dietary analysis indicated that the D1 diet contained 0.92% cholesterol prior to supplementation, which may have satisfied the dietary cholesterol requirement of post-larval L. vannamei; excess dietary cholesterol may thus lead to adverse effects on the growth performance of post-larval shrimp. PMID:22958647

  9. Rearing Tenebrio molitor in BLSS: Dietary fiber affects larval growth, development, and respiration characteristics

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Stasiak, Michael; Li, Liang; Xie, Beizhen; Fu, Yuming; Gidzinski, Danuta; Dixon, Mike; Liu, Hong

    2016-01-01

    Rearing of yellow mealworm (Tenebrio molitor L.) will provide good animal nutrition for astronauts in a bioregenerative life support system. In this study, growth and biomass conversion data of T. molitor larvae were tested for calculating the stoichiometric equation of its growth. Result of a respiratory quotient test proved the validity of the equation. Fiber had the most reduction in mass during T. molitor‧s consumption, and thus it is speculated that fiber is an important factor affecting larval growth of T. molitor. In order to further confirm this hypothesis and find out a proper feed fiber content, T. molitor larvae were fed on diets with 4 levels of fiber. Larval growth, development and respiration in each group were compared and analyzed. Results showed that crude-fiber content of 5% had a significant promoting effect on larvae in early instars, and is beneficial for pupa eclosion. When fed on feed of 5-10% crude-fiber, larvae in later instars reached optimal levels in growth, development and respiration. Therefore, we suggest that crude fiber content in feed can be controlled within 5-10%, and with the consideration of food palatability, a crude fiber of 5% is advisable.

  10. Stock-specific advection of larval walleye (Sander vitreus) in western Lake Erie: Implications for larval growth, mixing, and stock discrimination

    USGS Publications Warehouse

    Fraker, Michael E.; Anderson, Eric J.; May, Cassandra J.; Chen, Kuan-Yu; Davis, Jeremiah J.; DeVanna, Kristen M.; DuFour, Mark R.; Marschall, Elizabeth A.; Mayer, Christine M.; Miner, Jeffery G.; Pangle, Kevin L.; Pritt, Jeremy J.; Roseman, Edward F.; Tyson, Jeffrey T.; Zhao, Yingming; Ludsin, Stuart A

    2015-01-01

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

  11. Growth and Survival of Larval Alewife (Alosa pseudoharengus) in Southern New England Lakes

    NASA Astrophysics Data System (ADS)

    Suca, J.; Jones, A.; Llopiz, J.

    2016-02-01

    Alewives (Alosa pseudoharengus) are ecologically and commercially important anadromous fish in eastern North America, and populations have declined to close to 1% of their historic levels. Despite moratoriums in recent years in most US states, there has been little recovery of alewives. In light of this poor recovery, we examined the factors that influence the survival of alewife larvae that were spawned in multiple freshwater systems in Massachusetts. Four lakes were sampled each week throughout the spring and summer for fish larvae, zooplankton and physicochemical parameters. Abundances of larvae from the lakes were analyzed, along with environmental factors. In the lab, otoliths of larvae from two different lakes were used for age and growth rate determination, as well as examining selective mortality during the larval period. Additionally, differences in growth and selective mortality of early and late spawned larvae were analyzed to investigate the tradeoffs between spawning early versus late in the spawning season. Abundances varied greatly between lakes and sampling times. Through otolith analysis, differences in growth rates between lakes were observed. This is likely due to differences in either temperature or food availability, and ongoing work quantifying zooplankton abundances will address these potential factors. Interestingly, there was no evidence for selective mortality in the two lakes examined, a result that is consistent with the hypothesis that anadromy in this species evolved as a strategy to minimize predation during the vulnerable larval period.

  12. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    NASA Astrophysics Data System (ADS)

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C. S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.

  13. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    PubMed Central

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C.S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian–Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea. PMID:26765261

  14. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana.

    PubMed

    Mouro, Lucas D; Zatoń, Michał; Fernandes, Antonio C S; Waichel, Breno L

    2016-01-14

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.

  15. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion.

    PubMed

    Cheng, Jack Y K; Chiu, Sam L H; Lo, Irene M C

    2017-09-01

    In order to foster sustainable management of food waste, innovations in food waste valorization technologies are crucial. Black soldier fly (BSF) bioconversion is an emerging technology that can turn food waste into high-protein fish feed through the use of BSF larvae. The conventional method of BSF bioconversion is to feed BSF larvae with food waste directly without any moisture adjustment. However, it was reported that difficulty has been experienced in the separation of the residue (larval excreta and undigested material) from the insect biomass due to excessive moisture. In addition to the residue separation problem, the moisture content of the food waste may also affect the growth and survival aspects of BSF larvae. This study aims to determine the most suitable moisture content of food waste that can improve residue separation as well as evaluate the effects of the moisture content of food waste on larval growth and survival. In this study, pre-consumer and post-consumer food waste with different moisture content (70%, 75% and 80%) was fed to BSF larvae in a temperature-controlled rotary drum reactor. The results show that the residue can be effectively separated from the insect biomass by sieving using a 2.36mm sieve, for both types of food waste at 70% and 75% moisture content. However, sieving of the residue was not feasible for food waste at 80% moisture content. On the other hand, reduced moisture content of food waste was found to slow down larval growth. Hence, there is a trade-off between the sieving efficiency of the residue and the larval growth rate. Furthermore, the larval survival rate was not affected by the moisture content of food waste. A high larval survival rate of at least 95% was achieved using a temperature-controlled rotary drum reactor for all treatment groups. The study provides valuable insights for the waste management industry on understanding the effects of moisture content when employing BSF bioconversion for food waste recycling

  16. Ocean Acidification Impacts Larval and Juvenile Growth in the Native Oyster Ostrea lurida

    NASA Astrophysics Data System (ADS)

    Hettinger, A.; Hoey, J. A.; Sanford, E.; Gaylord, B.; Hill, T. M.; Russell, A. D.

    2008-12-01

    The impacts of ocean acidification have only recently been recognized as a human-induced stressor on marine ecosystems. Ocean acidification can disrupt calcification in organisms that precipitate calcareous structures, including many ecologically and economically important species. We examined how decreased levels of carbonate saturation affected larval and juvenile growth and settlement in the native oyster Ostrea lurida. Larvae were cultured at three carbonate saturation levels that represent present day CO2 concentrations (380 ppm) and two future projected pCO2 scenarios (540 and 970 ppm). These treatments were maintained for 20 days throughout larval duration until settlement occurred. Larval and juvenile growth were determined by calculating change in shell area. Larvae exposed to 970 ppm grew 12% less than larvae held under control conditions (380 ppm). In addition, growth varied among larvae produced by different parents, suggesting that impacts of ocean acidification might vary intraspecifically. Juvenile growth (i.e., new shell added following settlement) was significantly different among CO2 treatments, and juveniles exposed to 970 ppm grew 24% less than juveniles held under control conditions (380 ppm). Carry-over effects from the larval stage influence juvenile growth, and because post-settlement mortality is often high for marine invertebrates, ocean acidification may negatively impact the size of native oyster populations.

  17. Interannual variations in the hatching pattern, larval growth and otolith size of a sand-dwelling fish from central Chile

    NASA Astrophysics Data System (ADS)

    Rodríguez-Valentino, Camilo; Landaeta, Mauricio F.; Castillo-Hidalgo, Gissella; Bustos, Claudia A.; Plaza, Guido; Ojeda, F. Patricio

    2015-09-01

    The interannual variation (2010-2013) of larval abundance, growth and hatching patterns of the Chilean sand stargazer Sindoscopus australis (Pisces: Dactyloscopidae) was investigated through otolith microstructure analysis from samples collected nearshore (<500 m from shore) during austral late winter-early spring off El Quisco bay, central Chile. In the studied period, the abundance of larval stages in the plankton samples varied from 2.2 to 259.3 ind. 1000 m-3; larval abundance was similar between 2010 and 2011, and between 2012 and 2013, but increased significantly from 2011 to 2012. The estimated growth rates increased twice, from 0.09 to 0.21 mm day-1, between 2011 and 2013. Additionally, otolith size (radius, perimeter and area), related to body length of larvae, significantly decreased from 2010 to 2012, but increases significantly in 2013. Although the mean values of microincrement widths of sagitta otoliths were similar between 2010 and 2011 (around 0.6-0.7 μm), the interindividual variability increases in 2011 and 2013, suggesting large environmental variability experienced by larvae during these years. Finally, the hatching pattern of S. australis changed significantly from semi-lunar to lunar cycle after 2012.

  18. [Effects of temperature on the embryonic development and larval growth of Sepia lycidas].

    PubMed

    Jiang, Xia-Min; Peng, Rui-Bing; Luo, Jiang; Tang, Feng

    2013-05-01

    A single-factor experiment was conducted to study the effects of different temperature (15, 18, 21, 24, 27, 30, and 33 degrees C) on the embryonic development and larval growth of Sepia lycidas, aimed to search for the optimum temperature for the development and growth of S. lycidas. The results showed that temperature had significant effects on the embryonic development and larval growth of S. lycidas (P < 0.05). The suitable temperature for hatching ranged from 21 degrees C to 30 degrees C, and the optimum temperature was 24 degrees C. At the optimum temperature, the hatching rate was (93.3 +/- 2.9)%, incubation period was (24.33 +/- 0.58) d, hatching period was (6.00 +/- 1.00) d, completely absorked rate of yolk sac was (96.4 +/- 3.1)%, and newly hatched larvae mass was (0.258 +/- 0.007) g. The effective accumulated temperature model was N = 284.42/(T-12.57). The suitable temperature for the larval survival and growth ranged from 21 degrees C to 30 degrees C, and the optimum temperature was from 24 degrees C to 27 degrees C. At the optimum temperature, the survival rate ranged from 70.0% to 73.3%, and the specific growth rate was from 2.4% to 3.8%.

  19. Impacts of a gape limited Brook Trout, Salvelinus fontinalis, on larval Northwestern salamander, Ambystoma gracile, growth: A field enclosure experiment

    USGS Publications Warehouse

    Currens, C.R.; Liss, W.J.; Hoffman, R.L.

    2007-01-01

    The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  20. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  1. Growth and Development of Larval Bay Scallops (Argopecten irradians) in Response to Early Exposure to High CO2

    DTIC Science & Technology

    2013-02-01

    used  by  different  groups   on  post-­‐ metamorphic  life  stages  of  scallops...exposure  has  severe  effects  on  larval  growth   and  development  of  bay  scallop  (Argopecten  irradians).     Using ...Gallager  were  very  helpful  in  letting  me   use  their  space  at  ESL  for  my   culturing  experiments.

  2. Acidification reduced growth rate but not swimming speed of larval sea urchins.

    PubMed

    Chan, Kit Yu Karen; García, Eliseba; Dupont, Sam

    2015-05-15

    Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many benthic marine invertebrates. This key ecological function is modulated by larval development dynamics, biomechanics of the resulting morphology, and behavioral choices. Studies on ocean acidification effects on larval stages have yet to address this important interaction between development and swimming under environmentally-relevant flow conditions. Our video motion analysis revealed that pH covering present and future natural variability (pH 8.0, 7.6 and 7.2) did not affect age-specific swimming of larval green urchin Strongylocentrotus droebachiensis in still water nor in shear, despite acidified individuals being significantly smaller in size (reduced growth rate). This maintenance of speed and stability in shear was accompanied by an overall change in size-corrected shape, implying changes in swimming biomechanics. Our observations highlight strong evolutionary pressure to maintain swimming in a varying environment and the plasticity in larval responses to environmental change.

  3. Depletion of juvenile hormone esterase extends larval growth in Bombyx mori.

    PubMed

    Zhang, Zhongjie; Liu, Xiaojing; Shiotsuki, Takahiro; Wang, Zhisheng; Xu, Xia; Huang, Yongping; Li, Muwang; Li, Kai; Tan, Anjiang

    2017-02-01

    Two major hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulate insect growth and development according to their precisely coordinated titres, which are controlled by both biosynthesis and degradation pathways. Juvenile hormone esterase (JHE) is the primary JH-specific degradation enzyme that plays a key role in regulating JH titers, along with JH epoxide hydrolase (JHEH) and JH diol kinase (JHDK). In the current study, a loss-of-function analysis of JHE in the silkworm, Bombyx mori, was performed by targeted gene disruption using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system. Depletion of B. mori JHE (BmJHE) resulted in the extension of larval stages, especially the penultimate and ultimate larval stages, without deleterious effects to silkworm physiology. The expression of JHEH and JHDK was upregulated in mutant animals, indicating the existence of complementary routes in the JH metabolism pathway in which inactivation of one enzyme will activate other enzymes. RNA-Seq analysis of mutant animals revealed that genes involved in protein processing in the endoplasmic reticulum and in amino acid metabolism were affected by BmJHE depletion. Depletion of JHE and subsequent delayed JH metabolism activated genes in the TOR pathway, which are ultimately responsible for extending larval growth. The transgenic Cas9 system used in the current study provides a promising approach for analysing the actions of JH, especially in nondrosophilid insects. Furthermore, prolonging larval stages produced larger larvae and cocoons, which is greatly beneficial to silk production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Role of specific activators of intestinal amino acid transport in Bombyx mori larval growth and nutrition.

    PubMed

    Leonardi, M G; Casartelli, M; Fiandra, L; Parenti, P; Giordana, B

    2001-12-01

    Nutrient absorption and its modulation are critical for animal growth. In this paper, we demonstrate that leucine methyl ester (Leu-OMe) can greatly increase the activity of the transport system responsible for the absorption of most essential amino acids in the larval midgut of the silkworm Bombyx mori. We investigated leucine uptake activation by Leu-OMe in brush border membrane vesicles and in the apical membrane of epithelial cells in the midgut incubated in vitro. Moreover, the addition of this strong activator of amino acid absorption to diet significantly affected larval growth. Silkworms fed on artificial diet supplemented with Leu-OMe reached maximum body weight 12-18 h before control larvae, and produced cocoon shells up to 20% heavier than those of controls. The activation of amino acid absorption plays an essential role in larval development so that larval growth and cocoon production similar to controls reared on an artificial diet with 25% of dry mulberry leaf powder were observed in silkworms fed on an artificial diet with only 5% of mulberry powder. Arch. Copyright 2001 Wiley-Liss, Inc.

  5. Survival and growth of larval coastal giant salamanders (Dicamptodon tenebrosus) in streams in the Oregon Coast Range.

    Treesearch

    J.P. Sagar; D.H. Olson; R.A. Schmitz

    2007-01-01

    The purpose of this study was to estimate the variation in growth and survival that occur during the larval stage of Dicamptodon tenebrosus. We used mark-recapture to assess the rates of apparent survival and growth for two larval age classes (first-years and second/third-years), in winter and summer seasons and in the presence of culverts. By...

  6. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees

    PubMed Central

    Slater, Garett P.; Rajamohan, Arun; Yocum, George D.; Greenlee, Kendra J.; Bowsher, Julia H.

    2017-01-01

    ABSTRACT In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient. PMID:28396492

  7. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development

    PubMed Central

    Contreras, Esteban G.; Sierralta, Jimena

    2018-01-01

    Background Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called ‘brain sparing’. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Results Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Conclusions Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals. PMID:29621246

  8. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development.

    PubMed

    Contreras, Esteban G; Sierralta, Jimena; Glavic, Alvaro

    2018-01-01

    Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.

  9. Strategic larval decision-making in a bivoltine butterfly.

    PubMed

    Friberg, Magne; Dahlerus, Josefin; Wiklund, Christer

    2012-07-01

    In temperate areas, insect larvae must decide between entering winter diapause or developing directly and reproducing in the same season. Long daylength and high temperature promote direct development, which is generally associated with a higher growth rate. In this work, we investigated whether the larval pathway decision precedes the adjustment of growth rate (state-independent), or whether the pathway decision is conditional on the individual's growth rate (state-dependent), in the butterfly Pieris napi. This species typically makes the pathway decision in the penultimate instar. We measured growth rate throughout larval development under two daylengths: slightly shorter and slightly longer than the critical daylength. Results indicate that the pathway decision can be both state-independent and state-dependent; under the shorter daylength condition, most larvae entered diapause, and direct development was chosen exclusively by a small subset of larvae showing the highest growth rates already in the early instars; under the longer daylength condition, most larvae developed directly, and the diapause pathway was chosen exclusively by a small subset of slow-growing individuals. Among the remainder, the choice of pathway was independent of the early growth rate; larvae entering diapause under the short daylength grew as fast as or faster than the direct developers under the longer daylength in the early instars, whereas the direct developers grew faster than the diapausers only in the ultimate instar. Hence, the pathway decision was state-dependent in a subset with a very high or very low growth rate, whereas the decision was state-independent in the majority of the larvae, which made the growth rate adjustment downstream from the pathway decision.

  10. Effect of Oxadiazolyl 3(2H)-Pyridazinone on the Larval Growth and Digestive Physiology of the Armyworm, Pseudaletia separata

    PubMed Central

    Huang, Qingchun; Kong, Yuping; Liu, Manhui; Feng, Jun; Liu, Yang

    2008-01-01

    The effect of oxadiazolyl 3(2H)-pyridazinone (ODP), a new insect growth regulator, on growth of larvae of the armyworm, Pseudaletia separata Walker (Lepidoptera: Noctuidae) was evaluated in comparison to the insecticide, toosendanin, a tetranortriterpenoid extracted from the bark of Melia toosendan that has multiple effects on insects. The digestive physiological properties of these compounds on insects were investigated by feeding them maize leaves dipped in these compounds. The results showed that ODP inhibited the growth of P. separata significantly, causing a slowed development and a prolonged larval period, smaller body size and sluggish behavior, delayed pupation and a reduced eclosion rate of pupae and adults. Moreover, ODP strongly inhibited the activities of weak alkaline trypsine-like enzyme, chymotrypsin-like enzyme and alpha amylase in the midguts of fifth instar P. separata larvae, in vivo, and inhibited the activity of alpha amylase, in vitro. These data suggest that ODP has severe consequences on the larval carbohydrate assimilation and/or nutrient intake and thereby causes inhibition of larval growth. The regulatory action of ODP on larval growth development was similar to that of toosendanin; both could be used to decrease the growth of insect populations. PMID:20337556

  11. Diatom diet selectivity by early post-larval abalone Haliotis diversicolor supertexta under hatchery conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyu; Gao, Yahui; Liang, Junrong; Chen, Changping; Zhao, Donghai; Li, Xuesong; Li, Yang; Wu, Wenzhong

    2010-11-01

    Benthic diatoms constitute the primary diet of abalone during their early stages of development. To evaluate the dietary preferences of early post-larval abalone, Haliotis diversicolor supertexta, we analyzed the gut contents of post-larvae that settled on diatom films. We compared the abundance and species diversity of diatom assemblages in the gut to those of the epiphytic diatom assemblages on the attachment films, and identified 40 benthic diatom species in the gut contents of post-larvae 12 to 24 d after settlement. The most abundant taxa in the gut contents were Navicula spp., Amphora copulate, and Amphora coffeaeformis. Navicula spp. accounted for 64.0% of the cell density. In the attachment films, we identified 110 diatom species belonging to 38 genera. Pennate diatoms were the dominant members including the species Amphiprora alata, Cocconeis placentula var. euglypta, Cylindrotheca closterium, Navicula sp. 2, and A. coffeaeformis. Nano-diatoms (<20 μm in length) accounted for a considerable proportion of the total species number and cell density of the diatom assemblages in the gut contents and on the films. This suggests that nano-diatoms are important to the efficient production of abalone seed. The difference of the composition and abundance of diatoms between in the guts and on the biofilms suggests that early post-larval grazing was selective. An early post-larval abalone preferred nano-diatoms and the genera Navicula and Amphora during the month after settlement.

  12. LARVAL SALAMANDER GROWTH RESPONDS TO ENRICHMENT OF A NUTRIENT POOR HEADWATER STREAM

    EPA Science Inventory

    While many studies have measured effects of nutrient enrichment on higher trophic levels in grazing food webs, few such studies exist for detritus-based systems. We measured effects of nitrogen and phosphorus addition on growth of larval Eruycea wilderae in a heterotrophic head...

  13. Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2

    PubMed Central

    Stiasny, Martina H.; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona

    2018-01-01

    In the coming decades, environmental change like warming and acidification will affect life in the ocean. While data on single stressor effects on fish are accumulating rapidly, we still know relatively little about interactive effects of multiple drivers. Of particular concern in this context are the early life stages of fish, for which direct effects of increased CO2 on growth and development have been observed. Whether these effects are further modified by elevated temperature was investigated here for the larvae of Atlantic herring (Clupea harengus), a commercially important fish species. Over a period of 32 days, larval survival, growth in size and weight, and instantaneous growth rate were assessed in a crossed experimental design of two temperatures (10°C and 12°C) with two CO2 levels (400 μatm and 900 μatm CO2) at food levels mimicking natural levels using natural prey. Elevated temperature alone led to increased swimming activity, as well as decreased survival and instantaneous growth rate (Gi). The comparatively high sensitivity to elevated temperature in this study may have been influenced by low food levels offered to the larvae. Larval size, Gi and swimming activity were not affected by CO2, indicating tolerance of this species to projected "end of the century" CO2 levels. A synergistic effect of elevated temperature and CO2 was found for larval weight, where no effect of elevated CO2 concentrations was detected in the 12°C treatment, but a negative CO2 effect was found in the 10°C treatment. Contrasting CO2 effects were found for survival between the two temperatures. Under ambient CO2 conditions survival was increased at 12°C compared to 10°C. In general, CO2 effects were minor and considered negligible compared to the effect of temperature under these mimicked natural food conditions. These findings emphasize the need to include biotic factors such as energy supply via prey availability in future studies on interactive effects of multiple

  14. Pelagic larval duration and settlement size of a reef fish are spatially consistent, but post-settlement growth varies at the reef scale

    NASA Astrophysics Data System (ADS)

    Leahy, Susannah M.; Russ, Garry R.; Abesamis, Rene A.

    2015-12-01

    Recent research has demonstrated that, despite a pelagic larval stage, many coral reef fishes disperse over relatively small distances, leading to well-connected populations on scales of 0-30 km. Although variation in key biological characteristics has been explored on the scale of 100-1000 s of km, it has rarely been explored at the scale relevant to actual larval dispersal and population connectivity on ecological timescales. In this study, we surveyed the habitat and collected specimens ( n = 447) of juvenile butterflyfish, Chaetodon vagabundus, at nine sites along an 80-km stretch of coastline in the central Philippines to identify variation in key life history parameters at a spatial scale relevant to population connectivity. Mean pelagic larval duration (PLD) was 24.03 d (SE = 0.16 d), and settlement size was estimated to be 20.54 mm total length (TL; SE = 0.61 mm). Both traits were spatially consistent, although this PLD is considerably shorter than that reported elsewhere. In contrast, post-settlement daily growth rates, calculated from otolith increment widths from 1 to 50 d post-settlement, varied strongly across the study region. Elevated growth rates were associated with rocky habitats that this species is known to recruit to, but were strongly negatively correlated with macroalgal cover and exhibited negative density dependence with conspecific juveniles. Larger animals had lower early (first 50 d post-settlement) growth rates than smaller animals, even after accounting for seasonal variation in growth rates. Both VBGF and Gompertz models provided good fits to post-settlement size-at-age data ( n = 447 fish), but the VBGF's estimate of asymptotic length ( L ∞ = 168 mm) was more consistent with field observations of maximum fish length. Our findings indicate that larval characteristics are consistent at the spatial scale at which populations are likely well connected, but that site-level biological differences develop post-settlement, most likely as a

  15. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Sun, You-Fang; Zhang, Yu-Yang; Zhou, Guo-Wei; Li, Xiu-Bao; McCook, Laurence J.; Lian, Jian-Sheng; Lei, Xin-Ming; Liu, Sheng; Cai, Lin; Qian, Pei-Yuan; Huang, Hui

    2017-12-01

    Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C) and two diurnally fluctuating treatments (28-31 and 30-33 °C with daily means of 29 and 31 °C, respectively) simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  16. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.

    PubMed

    Stumpp, M; Wren, J; Melzner, F; Thorndyke, M C; Dupont, S T

    2011-11-01

    Anthropogenic CO(2) emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129 Pa, 1271 μatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of +100% under elevated pCO(2), while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO(2) spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Effects of temperature on the embryonic and early larval development in tropical species of black sea urchin, Diadema setosum (Leske, 1778).

    PubMed

    Sarifudin, M; Rahman, M A; Yusoff, F M; Arshad, Aziz; Tan, Soon Guan

    2016-07-01

    Influence of temperature on the embryonic and early development and growth performance of larva in tropical sea urchin, Diadema setosum was investigated in water temperature ranging between 16 and 34?C under controlled laboratory conditions. The critical lower and higher temperature for embryonic development was found at 16 and 34?C, respectively. Embryos reared in both of these two temperatures exhibited 100% abnormality within 48 hrs post-insemination. The time required to reach these embryonic and larval stages increased with temperature from 28 followed by 31, 25, 22 and 19?C in that order. The developmental times of 2-cell stage until 4-arm pluteus larva showed significant differences (P < 0.05) among the tested temperatures. The larvae in the state of prism and 2-arm pluteus, survived at temperature ranging from 19 to 31?C, while the 4-arm pluteus larvae survived at temperature between 22? to 31?C. However, larval development within a temperature range of 22? to 31?C was acceptable since no abnormalities occurred. The morphometric characteristics from prism to 4-arm pluteus larvae in all the temperatures differed significantly (P > 0.05). Among them, 28?C was found to be the best temperature with respect of the highest larval growth and development at all stages. The findings of the study will not only be helpful to understand the critical limits of temperature, but also to identify the most appropriate temperature for optimum growth and development of embryos and larvae, as well as to facilitate the development of captive breeding and mass seed production of D. setosum and other important sea urchins for commercial aquaculture.

  18. Maintained larval growth in mussel larvae exposed to acidified under-saturated seawater.

    PubMed

    Ventura, Alexander; Schulz, Sabrina; Dupont, Sam

    2016-03-29

    Ocean acidification (OA) is known to affect bivalve early life-stages. We tested responses of blue mussel larvae to a wide range of pH in order to identify their tolerance threshold. Our results confirmed that decreasing seawater pH and decreasing saturation state increases larval mortality rate and the percentage of abnormally developing larvae. Virtually no larvae reared at average pHT 7.16 were able to feed or reach the D-shell stage and their development appeared to be arrested at the trochophore stage. However larvae were capable of reaching the D-shell stage under milder acidification (pHT ≈ 7.35, 7.6, 7.85) including in under-saturated seawater with Ωa as low as 0.54 ± 0.01 (mean ± s. e. m.), with a tipping point for normal development identified at pHT 7.765. Additionally growth rate of normally developing larvae was not affected by lower pHT despite potential increased energy costs associated with compensatory calcification in response to increased shell dissolution. Overall, our results on OA impacts on mussel larvae suggest an average pHT of 7.16 is beyond their physiological tolerance threshold and indicate a shift in energy allocation towards growth in some individuals revealing potential OA resilience.

  19. Maintained larval growth in mussel larvae exposed to acidified under-saturated seawater

    NASA Astrophysics Data System (ADS)

    Ventura, Alexander; Schulz, Sabrina; Dupont, Sam

    2016-03-01

    Ocean acidification (OA) is known to affect bivalve early life-stages. We tested responses of blue mussel larvae to a wide range of pH in order to identify their tolerance threshold. Our results confirmed that decreasing seawater pH and decreasing saturation state increases larval mortality rate and the percentage of abnormally developing larvae. Virtually no larvae reared at average pHT 7.16 were able to feed or reach the D-shell stage and their development appeared to be arrested at the trochophore stage. However larvae were capable of reaching the D-shell stage under milder acidification (pHT ≈ 7.35, 7.6, 7.85) including in under-saturated seawater with Ωa as low as 0.54 ± 0.01 (mean ± s. e. m.), with a tipping point for normal development identified at pHT 7.765. Additionally growth rate of normally developing larvae was not affected by lower pHT despite potential increased energy costs associated with compensatory calcification in response to increased shell dissolution. Overall, our results on OA impacts on mussel larvae suggest an average pHT of 7.16 is beyond their physiological tolerance threshold and indicate a shift in energy allocation towards growth in some individuals revealing potential OA resilience.

  20. Larval green and white sturgeon swimming performance in relation to water-diversion flows

    PubMed Central

    Verhille, Christine E.; Poletto, Jamilynn B.; Cocherell, Dennis E.; DeCourten, Bethany; Baird, Sarah; Cech, Joseph J.; Fangue, Nann A.

    2014-01-01

    Little is known of the swimming capacities of larval sturgeons, despite global population declines in many species due in part to fragmentation of their spawning and rearing habitats by man-made water-diversion structures. Larval green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) inhabit the highly altered Sacramento–San Joaquin watershed, making them logical species to examine vulnerability to entrainment by altered water flows. The risk of larval sturgeon entrainment is influenced by the ontogeny of swimming capacity and dispersal timing and their interactions with water-diversion structure operations. Therefore, the aim of this study was to describe and compare the ontogeny and allometry of larval green and white sturgeon swimming capacities until completion of metamorphosis into juveniles. Despite the faster growth rates and eventual larger size of larval white sturgeon, green sturgeon critical swimming velocities remained consistently, though modestly, greater than those of white sturgeon throughout the larval life stage. Although behavioural interactions with water-diversion structures are also important considerations, regarding swimming capacity, Sacramento–San Joaquin sturgeons are most vulnerable to entrainment in February–May, when white sturgeon early larvae are in the middle Sacramento River, and April–May, when green sturgeon early larvae are in the upper river. Green sturgeon migrating downstream to the estuary and bays in October–November are also susceptible to entrainment due to their movements combined with seasonal declines in their swimming capacity. An additional inter-species comparison of the allometric relationship between critical swimming velocities and total length with several sturgeon species found throughout the world suggests a similar ontogeny of swimming capacity with growth. Therefore, although dispersal and behaviour differ among river systems and sturgeon species, similar recommendations are

  1. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    EPA Pesticide Factsheets

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  2. Unravelling the Gordian knot! Key processes impacting overwintering larval survival and growth: A North Sea herring case study

    NASA Astrophysics Data System (ADS)

    Hufnagl, Marc; Peck, Myron A.; Nash, Richard D. M.; Dickey-Collas, Mark

    2015-11-01

    Unraveling the key processes affecting marine fish recruitment will ultimately require a combination of field, laboratory and modelling studies. We combined analyzes of long-term (30-year) field data on larval fish abundance, distribution and length, and biophysical model simulations of different levels of complexity to identify processes impacting the survival and growth of autumn- and winter-spawned Atlantic herring (Clupea harengus) larvae. Field survey data revealed interannual changes in intensity of utilization of the five major spawning grounds (Orkney/Shetland, Buchan, Banks north, Banks south, and Downs) as well as spatio-temporal variability in the length and abundance of overwintered larvae. The mean length of larvae captured in post-winter surveys was negatively correlated to the proportion of larvae from the southern-most (Downs) winter-spawning component. Furthermore, the mean length of larvae originating from all spawning components has decreased since 1990 suggesting ecosystem-wide changes impacting larval growth potential, most likely due to changes in prey fields. A simple biophysical model assuming temperature-dependent growth and constant mortality underestimated larval growth rates suggesting that larval mortality rates steeply declined with increasing size and/or age during winter as no match with field data could be obtained. In contrast better agreement was found between observed and modelled post-winter abundance for larvae originating from four spawning components when a more complex, physiological-based foraging and growth model was employed using a suite of potential prey field and size-based mortality scenarios. Nonetheless, agreement between field and model-derived estimates was poor for larvae originating from the winter-spawned Downs component. In North Sea herring, the dominant processes impacting larval growth and survival appear to have shifted in time and space highlighting how environmental forcing, ecosystem state and other

  3. Field-level validation of a CLIMEX model for Cactoblastis cactorum (Lepidoptera: Pyralidae) using estimated larval growth rates.

    PubMed

    Legaspi, Benjamin C; Legaspi, Jesusa Crisostomo

    2010-04-01

    Invasive pests, such as the cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), have not reached equilibrium distributions and present unique opportunities to validate models by comparing predicted distributions with eventual realized geographic ranges. A CLIMEX model was developed for C. cactorum. Model validation was attempted at the global scale by comparing worldwide distribution against known occurrence records and at the field scale by comparing CLIMEX "growth indices" against field measurements of larval growth. Globally, CLIMEX predicted limited potential distribution in North America (from the Caribbean Islands to Florida, Texas, and Mexico), Africa (South Africa and parts of the eastern coast), southern India, parts of Southeast Asia, and the northeastern coast of Australia. Actual records indicate the moth has been found in the Caribbean (Antigua, Barbuda, Montserrat Saint Kitts and Nevis, Cayman Islands, and U.S. Virgin Islands), Cuba, Bahamas, Puerto Rico, southern Africa, Kenya, Mexico, and Australia. However, the model did not predict that distribution would extend from India to the west into Pakistan. In the United States, comparison of the predicted and actual distribution patterns suggests that the moth may be close to its predicted northern range along the Atlantic coast. Parts of Texas and most of Mexico may be vulnerable to geographic range expansion of C. cactorum. Larval growth rates in the field were estimated by measuring differences in head capsules and body lengths of larval cohorts at weekly intervals. Growth indices plotted against measures of larval growth rates compared poorly when CLIMEX was run using the default historical weather data. CLIMEX predicted a single period conducive to insect development, in contrast to the three generations observed in the field. Only time and more complete records will tell whether C. cactorum will extend its geographical distribution to regions predicted by the CLIMEX model. In terms

  4. Growth and mortality of larval Myctophum affine (Myctophidae, Teleostei).

    PubMed

    Namiki, C; Katsuragawa, M; Zani-Teixeira, M L

    2015-04-01

    The growth and mortality rates of Myctophum affine larvae were analysed based on samples collected during the austral summer and winter of 2002 from south-eastern Brazilian waters. The larvae ranged in size from 2·75 to 14·00 mm standard length (L(S)). Daily increment counts from 82 sagittal otoliths showed that the age of M. affine ranged from 2 to 28 days. Three models were applied to estimate the growth rate: linear regression, exponential model and Laird-Gompertz model. The exponential model best fitted the data, and L(0) values from exponential and Laird-Gompertz models were close to the smallest larva reported in the literature (c. 2·5 mm L(S)). The average growth rate (0·33 mm day(-1)) was intermediate among lanternfishes. The mortality rate (12%) during the larval period was below average compared with other marine fish species but similar to some epipelagic fishes that occur in the area. © 2015 The Fisheries Society of the British Isles.

  5. A SoxC gene related to larval shell development and co-expression analysis of different shell formation genes in early larvae of oyster.

    PubMed

    Liu, Gang; Huan, Pin; Liu, Baozhong

    2017-06-01

    Among the potential larval shell formation genes in mollusks, most are expressed in cells surrounding the shell field during the early phase of shell formation. The only exception (cgi-tyr1) is expressed in the whole larval mantle and thus represents a novel type of expression pattern. This study reports another gene with such an expression pattern. The gene encoded a SoxC homolog of the Pacific oyster Crassostrea gigas and was named cgi-soxc. Whole-mount in situ hybridization revealed that the gene was highly expressed in the whole larval mantle of early larvae. Based on its spatiotemporal expression, cgi-soxc is hypothesized to be involved in periostracum biogenesis, biomineralization, and regulation of cell proliferation. Furthermore, we investigated the interrelationship between cgi-soxc expression and two additional potential shell formation genes, cgi-tyr1 and cgi-gata2/3. The results confirmed co-expression of the three genes in the larval mantle of early D-veliger. Nevertheless, cgi-gata2/3 was only expressed in the mantle edge, and the other two genes were expressed in all mantle cells. Based on the spatial expression patterns of the three genes, two cell groups were identified from the larval mantle (tyr1 + /soxc + /gata2/3 + cells and tyr1 + /soxc + /gata2/3 - cells) and are important to study the differentiation and function of this tissue. The results of this study enrich our knowledge on the structure and function of larval mantle and provide important information to understand the molecular mechanisms of larval shell formation.

  6. Maintained larval growth in mussel larvae exposed to acidified under-saturated seawater

    PubMed Central

    Ventura, Alexander; Schulz, Sabrina; Dupont, Sam

    2016-01-01

    Ocean acidification (OA) is known to affect bivalve early life-stages. We tested responses of blue mussel larvae to a wide range of pH in order to identify their tolerance threshold. Our results confirmed that decreasing seawater pH and decreasing saturation state increases larval mortality rate and the percentage of abnormally developing larvae. Virtually no larvae reared at average pHT 7.16 were able to feed or reach the D-shell stage and their development appeared to be arrested at the trochophore stage. However larvae were capable of reaching the D-shell stage under milder acidification (pHT ≈ 7.35, 7.6, 7.85) including in under-saturated seawater with Ωa as low as 0.54 ± 0.01 (mean ± s. e. m.), with a tipping point for normal development identified at pHT 7.765. Additionally growth rate of normally developing larvae was not affected by lower pHT despite potential increased energy costs associated with compensatory calcification in response to increased shell dissolution. Overall, our results on OA impacts on mussel larvae suggest an average pHT of 7.16 is beyond their physiological tolerance threshold and indicate a shift in energy allocation towards growth in some individuals revealing potential OA resilience. PMID:27020613

  7. Modelling developmental changes in the carbon and nitrogen budgets of larval brachyuran crabs

    NASA Astrophysics Data System (ADS)

    Anger, K.

    1990-03-01

    The uptake and partitioning of nutritional carbon (C) and nitrogen (N) were studied during the complete larval development of a brachyuran crab, Hyas araneus, reared under constant conditions in the laboratory. Biochemical and physiological data were published in a foregoing paper, and complete budgets of C and N were now constructed from these data. Regression equations describing rates of feeding ( F), growth ( G), respiration ( R), and ammonia excretion ( U) as functions of time during individual larval moult cycles were inserted in a simulation model, in order to analyse time-dependent (i.e. developmental) patterns of variation in these parameters as well as in bioenergetic efficiencies. Absolute daily feeding rates ( F; per individual) as well as carbon and nitrogen-specific rates ( F/C, F/N) are in general maximum in early, and minimum in late stages of individual larval moult cycles (postmoult and premoult, respectively). Early crab zoeae may ingest equivalents of up to ca 40% body C and 30% body N per day, respectively, whereas megalopa larvae usually eat less than 10%. Also growth rates ( G; G/C, G/N) reveal decreasing tendencies both during individual moult cycles and, on the average, in subsequent instars. Conversion of C and N data to lipid and protein, respectively, suggests that in all larval instars there is initially an increase in the lipid: protein ratio. Protein, however, remains clearly the predominant biochemical constituent in larval biomass. The absolute and specific values of respiration ( R; R/C) and excretion ( U; U/N) vary only little during the course of individual moult cycles. Thus, their significance in relation to G increases within the C and N budgets, and net growth efficiency ( K 2) decreases concurrently. Also gross growth and assimilation efficiency ( K 2; A/F) are, in general, maximum in early stages of the moult cycle (postmoult). Biochemical data suggest that lipid utilization efficiency is particularly high in early moult

  8. Development of the larval amphibian growth and development ...

    EPA Pesticide Factsheets

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in model amphibian species Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg/L BP-2 until two months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg/L treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genotypic males showing both testis and ovary tissues (1.5 mg/L) and 100% of the genotypic males in the higher treatments (3.0 and 6.0 mg/L) experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin (Vtg) induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely Vtg

  9. A comparison of spring larval fish assemblages in the Strait of Georgia (British Columbia, Canada) between the early 1980s and late 2000s

    NASA Astrophysics Data System (ADS)

    Guan, Lu; Dower, John F.; McKinnell, Skip M.; Pepin, Pierre; Pakhomov, Evgeny A.; Hunt, Brian P. V.

    2015-11-01

    The concentration and composition of the larval fish assemblage in the Strait of Georgia (British Columbia, Canada) has changed between the early 1980s (1980 and 1981) and the late 2000s (2007, 2009 and 2010). During both periods, the spring larval fish assemblages were dominated by pelagic species: Clupea pallasi (Pacific herring), Merluccius productus (Pacific hake), Leuroglossus schmidti (northern smoothtongue) and Theragra chalcogramma (walleye Pollock). The average concentration of Merluccius productus, Theragra chalcogramma, Leuroglossus schmidti, and Sebastes spp. declined between the early 1980s and the late 2000s; in contrast, the absolute concentration and proportion of Pleuronectidae and several demersal fish taxa increased in the spring larval assemblage. Examination of the associations between larval fish assemblages and environmental fluctuations suggests that large-scale climate processes are potential contributors to variations in overall larval concentrations of the dominant taxa and assemblage composition in the Strait of Georgia.

  10. Early detection monitoring for larval dreissenid mussels: How much plankton sampling is enough?

    USGS Publications Warehouse

    Counihan, Timothy D.; Bollens, Stephen M.

    2017-01-01

    The development of quagga and zebra mussel (dreissenids) monitoring programs in the Pacific Northwest provides a unique opportunity to evaluate a regional invasive species detection effort early in its development. Recent studies suggest that the ecological and economic costs of a dreissenid infestation in the Pacific Northwest of the USA would be significant. Consequently, efforts are underway to monitor for the presence of dreissenids. However, assessments of whether these efforts provide for early detection are lacking. We use information collected from 2012 to 2014 to characterize the development of larval dreissenid monitoring programs in the states of Idaho, Montana, Oregon, and Washington in the context of introduction and establishment risk. We also estimate the effort needed for high-probability detection of rare planktonic taxa in four Columbia and Snake River reservoirs and assess whether the current level of effort provides for early detection. We found that the effort expended to monitor for dreissenid mussels increased substantially from 2012 to 2014, that efforts were distributed across risk categories ranging from high to very low, and that substantial gaps in our knowledge of both introduction and establishment risk exist. The estimated volume of filtered water required to fully census planktonic taxa or to provide high-probability detection of rare taxa was high for the four reservoirs examined. We conclude that the current level of effort expended does not provide for high-probability detection of larval dreissenids or other planktonic taxa when they are rare in these reservoirs. We discuss options to improve early detection capabilities.

  11. Patterns of larval source distribution and mixing in early life stages of Pacific cod (Gadus macrocephalus) in the southeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Miller, Jessica A.; DiMaria, Ruth A.; Hurst, Thomas P.

    2016-12-01

    Effective and sustainable management depends on knowledge of spawning locations and their relative contributions to marine fish populations. Pacific cod (Gadus macrocephalus) in the southeastern Bering Sea aggregate at discrete spawning locations but there is little information on patterns of larval dispersal and the relative contribution of specific spawning areas to nursery habitats. Age-0 Pacific cod from two cohorts (2006 and 2008) were examined to address the following questions: (1) does size, age, and otolith chemistry vary among known capture locations; (2) can variation in elemental composition of the otolith cores (early larval signatures) be used to infer the number of chemically distinct sources contributing to juvenile recruits in the Bering Sea; and (3) to what extent are juvenile collection locations represented by groups of fish with similar chemical histories throughout their early life history? Hierarchical cluster (HCA) and discriminant function analyses (DFA) were used to examine variation in otolith chemistry at discrete periods throughout the early life history. HCA identified five chemically distinct groups of larvae in the 2006 cohort and three groups in 2008; however, three sources accounted for 80-100% of the juveniles in each year. DFA of early larval signatures indicated that there were non-random spatial distributions of early larvae in both years, which may reflect interannual variation in regional oceanography. There was also a detectable and substantial level of coherence in chemical signatures within groups of fish throughout the early life history. The variation in elemental signatures throughout the early life history (hatch to capture) indicates that otolith chemical analysis could be an effective tool to further clarify larval sources and dispersal, identify juvenile nursery habitats, and estimate the contributions of juvenile nursery habitats to the adult population within the southeastern Bering Sea.

  12. Development of the larval amphibian growth and development ...

    EPA Pesticide Factsheets

    The Larval Amphibian Growth and Development Assay (LAGDA) is a Tier II test guideline being developed by the US Environmental Protection Agency under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects of chronic chemical exposure on growth, thyroid-mediated amphibian metamorphosis and reproductive development. To evaluate the assay’s performance, two model chemicals targeting the hypothalamic-pituitary-gonadal (HPG) axis were tested; a weak estrogen receptor agonist, 4-tert-octylphenol (tOP), and an androgen receptor agonist, 17β-trenbolone (TB). Xenopus laevis embryos were constantly exposed in flow-through conditions to various test concentrations of tOP (nominal: 6.25, 12.5, 25, 50 μg/L) or TB (nominal: 12.5, 25, 50, 100 ng/L) and clean water controls until 8 weeks post-metamorphosis, at which time growth measurements were taken and histopathology assessments were made on gonads, reproductive ducts, liver and kidneys. There were no effects on growth in either study and no signs of overt toxicity, sex reversal or gonad dysgenesis at the concentrations tested. Exposure to tOP caused a treatment-related decrease in circulating thyroxine and an increase in thyroid follicular cell hypertrophy and hyperplasia (25, 50 μg/L). Müllerian duct development was clearly affected following exposure to both chemicals; tOP exposure caused dose-dependent maturation of oviducts in both male and female frogs, whereas TB exposure ca

  13. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    PubMed

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  14. Testing the effect of dietary carotenoids on larval survival, growth and development in the critically endangered southern corroboree frog.

    PubMed

    Byrne, Phillip G; Silla, Aimee J

    2017-03-01

    The success of captive breeding programs (CBPs) for threatened species is often limited due to a lack of knowledge of the nutritional conditions required for optimal growth and survival. Carotenoids are powerful antioxidants known to accelerate vertebrate growth and reduce mortality. However, the effect of carotenoids on amphibian life-history traits remains poorly understood. The aim of our study was to use a manipulative laboratory experiment to test the effect of dietary-carotenoid supplementation during the larval life stage on the survival, growth and development of the critically endangered southern corroboree frog (Pseudophryne corroboree). Larvae were fed either a carotenoid supplemented diet or an unsupplemented diet and the survival, growth and development of individuals was monitored and compared. There was no significant effect of dietary treatment on larval survival, growth rate, time taken to reach metamorphosis, or body size at metamorphosis. Our findings provide no evidence that carotenoid supplementation during the larval life stage improves the growth and development of southern corroboree frogs. However, because the carotenoid dose used in our study did not have any detrimental effects on P. corroboree larvae, but has previously been shown to improve adult coloration, immunity, and exercise performance, carotenoid supplementation should be considered when evaluating the nutritional requirements of P. corroboree in captivity. Carotenoid supplementation studies are now required for a diversity of anuran species to determine the effects of carotenoids on amphibian survival, growth and development. Understanding the effects of dietary carotenoids on different life-history traits may assist with amphibian captive breeding and conservation. © 2017 Wiley Periodicals, Inc.

  15. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae.

    PubMed

    Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin

    2015-12-01

    The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in

  16. Balb/Cj male mice do not feminize after infection with larval Taenia crassiceps.

    PubMed

    Aldridge, Jerry R; Jennette, Mary A; Kuhn, R E

    2007-02-01

    Balb/cJ mice fail to mount an immune response capable of clearing infection with larval Taenia crassiceps. Additionally, male Balb/cJ mice display a lag in larval growth of approximately 3 wk as compared to growth in female mice. It has been reported that male Balb/ cAnN mice generate a protective immune response early in infection, and become permissive to larval growth after they feminize (200-fold increase in serum estradiol and 90% decrease in serum testosterone). To determine if a different strain of Balb/c mice (Balb/cJ) also feminize, serum was collected from infected male mice for 16 wk and levels of 17-beta-estradiol and testosterone were measured via ELISA. In addition, the mounting responses of 12- and 16-wk infected male mice, as well as uninfected control mice, were determined after isolation with a female mouse. The results of these experiments show that male Balb/cJ mice do not feminize during infection with larval T. crassiceps. There was no significant change in serum levels of either 17-beta-estradiol or testosterone during the course of infection (> 16 wk). Moreover, there was no significant decrease in the number of times infected male mice mounted the female mouse as compared to uninfected controls. These results suggest that there may be variances between the substrains of Balb/c mice that lead to the phenotypic differences reported for male Balb/cJ and Balb/cAnN mice.

  17. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    PubMed

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  18. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci

    PubMed Central

    Pratchett, Morgan S.; Kerr, Alexander M.; Rivera-Posada, Jairo A.

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  19. Larval fish dynamics in spring pools in middle Tennessee

    USGS Publications Warehouse

    Bettoli, Phillip William; Goldsworthy, C.A.

    2011-01-01

    We used lighted larval traps to assess reproduction by fishes inhabiting nine spring pools in the Barrens Plateau region of middle Tennessee between May and September 2004. The traps (n = 162 deployments) captured the larval or juvenile forms of Etheostoma crossopterum (Fringed Darter) (n = 188), Gambusia affinis (Western Mosquitofish) (n = 139), Hemitremia flammea (Flame Chub) (n = 55), the imperiled Fundulus julisia (Barrens Topminnow) (n = 10), and Forbesichthys agassizii (Spring Cavefish) (n = 1). The larval forms of four other species (Families Centrarchidae, Cyprinidae, and Cottidae) were not collected, despite the presence of adults. Larval Barrens Topminnow hatched over a protracted period (early June through late September); in contrast, hatching intervals were much shorter for Fringed Darter (mid-May through early June). Flame Chub hatching began before our first samples in early May and concluded by late-May. Juvenile Western Mosquitofish were collected between early June and late August. Our sampling revealed that at least two species (Flame Chub and Fringed Darter) were able to reproduce and recruit in habitats harboring the invasive Western Mosquitofish, while Barrens Topminnow could not.

  20. Effects of climate change on the survival of larval cod

    NASA Astrophysics Data System (ADS)

    Kristiansen, T.; Stock, C. A.; Drinkwater, K. F.; Curchitser, E. N.

    2011-12-01

    Understanding how climate change may impact important commercial fisheries is critical for developing sustainable fisheries management strategies. In this study, we used simulations from an Earth System Model (NOAA GFDL ESM2.1) coupled with an individual-based model (IBM) for larval fish to provide a first assessment of the potential importance of climate-change driven changes in primary productivity and temperature on cod recruitment in the North Atlantic to the year 2100. ESM model output was averaged for 5 regions, each with an area of 5x5 on a latitude-longitude grid, and representing the geographic boundaries of the current cod range. The physical and environmental data were incorporated into a mechanistic IBM used to simulate the critical early phases in the life of larval fish (e.g. cod) in a changing environment. Large phytoplankton production was predicted to decrease in most regions, thereby lowering the number of meso-zooplankton in the water column. Meso-zooplankton is the most important prey item for larval cod and a reduction in their numbers have strong impacts on larval cod survival. The combination of lowered prey abundance with increased energy requirement for growth and metabolism through increased temperature had a negative impact on cod recruitment in all modeled regions of the North Atlantic. The probability of survival past the larval stages was reduced with 20-30% at all five spawning grounds by the year 2100. Together, these results suggest climate change could have significant impacts on the survival of larval cod in the North Atlantic.

  1. The effects of parasites on the early life stages of a damselfish

    NASA Astrophysics Data System (ADS)

    Sun, D.; Blomberg, S. P.; Cribb, T. H.; McCormick, M. I.; Grutter, A. S.

    2012-12-01

    Early life history traits, such as larval growth, influence the success of coral reef fish in the transition from the larval to the juvenile life phase. Few studies, however, have examined the relationship between parasites and growth in the early life history stages of such fishes. This study examined how parasite prevalence (% infected) and load, and the relationship between parasite presence and fish growth, differed among life stages of the damselfish Pomacentrus amboinensis. Parasite prevalence decreased significantly between the larval stage, which was sampled immediately before settlement on the reef (97 %) and recently settled juveniles (60 %); prevalence was also high for 4-month-old juveniles (90 %), 7-month-old juveniles (100 %) and adult fish (100 %). Total numbers of parasites per fish decreased dramatically (fourfold) between larval and recently settled fish, and then increased in the older stages to levels similar to those observed in larvae, but they did so more gradually than did prevalence. One explanation for these patterns is that heavily infected larvae were preferentially removed from the population during or soon after settlement. Daily fish growth, determined from otolith increments, revealed that growth did not differ between parasitised and non-parasitised larval fish, whereas recently settled fish that were parasitised had faster growth; these parasitised recently settled fish also displayed faster growth prior to settlement. These data provide evidence that parasites may explain some of the variation in growth and survival observed among coral reef fishes after settlement and thereby have a greater impact on population dynamics than previously understood.

  2. Efficacy and longevity of the newly developed catnip oil microcapsules against stable fly oviposition larval growth

    USDA-ARS?s Scientific Manuscript database

    The stable fly, Stomoxys calcitrans (Diptera: Muscidae), is one of the most important pests of cattle and costs U.S. cattle producers billions of dollars in losses annually. In this study, the efficacy of catnip oil encapsulated in gelatin in oviposition deterrence and larval growth inhibition in st...

  3. Hydrodynamic regime determines the feeding success of larval fish through the modulation of strike kinematics

    PubMed Central

    China, Victor; Levy, Liraz; Elmaliach, Tal

    2017-01-01

    Larval fishes experience extreme mortality rates, with 99% of a cohort perishing within days after starting to actively feed. While recent evidence suggests that hydrodynamic factors contribute to constraining larval feeding during early ontogeny, feeding is a complex process that involves numerous interacting behavioural and biomechanical components. How these components change throughout ontogeny and how they contribute to feeding remain unclear. Using 339 observations of larval feeding attempts, we quantified the effects of morphological and behavioural traits on feeding success of Sparus aurata larvae during early ontogeny. Feeding success was determined using high-speed videography, under both natural and increased water viscosity treatments. Successful strikes were characterized by Reynolds numbers that were an order of magnitude higher than those of failed strikes. The pattern of increasing strike success with increasing age was driven by the ontogeny of traits that facilitate the transition to higher Reynolds numbers. Hence, the physical growth of a larva plays an important role in its transition to a hydrodynamic regime of higher Reynolds numbers, in which suction feeding is more effective. PMID:28446697

  4. Hydrodynamic regime determines the feeding success of larval fish through the modulation of strike kinematics.

    PubMed

    China, Victor; Levy, Liraz; Liberzon, Alex; Elmaliach, Tal; Holzman, Roi

    2017-04-26

    Larval fishes experience extreme mortality rates, with 99% of a cohort perishing within days after starting to actively feed. While recent evidence suggests that hydrodynamic factors contribute to constraining larval feeding during early ontogeny, feeding is a complex process that involves numerous interacting behavioural and biomechanical components. How these components change throughout ontogeny and how they contribute to feeding remain unclear. Using 339 observations of larval feeding attempts, we quantified the effects of morphological and behavioural traits on feeding success of Sparus aurata larvae during early ontogeny. Feeding success was determined using high-speed videography, under both natural and increased water viscosity treatments. Successful strikes were characterized by Reynolds numbers that were an order of magnitude higher than those of failed strikes. The pattern of increasing strike success with increasing age was driven by the ontogeny of traits that facilitate the transition to higher Reynolds numbers. Hence, the physical growth of a larva plays an important role in its transition to a hydrodynamic regime of higher Reynolds numbers, in which suction feeding is more effective. © 2017 The Author(s).

  5. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: A bioenergetics analysis

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an

  6. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: a bioenergetics analysis

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an

  7. Elevated major ion concentrations inhibit larval mayfly growth and development.

    PubMed

    Johnson, Brent R; Weaver, Paul C; Nietch, Christopher T; Lazorchak, James M; Struewing, Katherine A; Funk, David H

    2015-01-01

    Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363 µS cm(-1) ) and larvae in treatments with specific conductance >812 µS cm(-1) were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513 µS cm(-1) and the calculated 20-d 50% lethal concentration was 2866 µS cm(-1) . The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species. © 2014 SETAC.

  8. Spontaneous heterosis in larval life-history traits of hemiclonal frog hybrids

    PubMed Central

    Hotz, Hansjürg; Semlitsch, Raymond D.; Gutmann, Eva; Guex, Gaston-Denis; Beerli, Peter

    1999-01-01

    European water frog hybrids Rana esculenta (Rana ridibunda × Rana lessonae) reproduce hemiclonally, transmitting only their ridibunda genome to gametes. We compared fitness-related larval life-history traits of natural R. esculenta from Poland with those of the two sympatric parental species and of newly generated F1 hybrids. Compared with either parental species, F1 hybrid offspring had higher survival, higher early growth rates, a more advanced developmental stage by day 49, and earlier metamorphosis, but similar mass at metamorphosis. R. esculenta from natural lineages had trait values intermediate between those of F1 offspring and of the two parental species. The data support earlier observations on natural R. esculenta that had faster larval growth, earlier metamorphosis, and higher resistance to hypoxic conditions compared with either parental species. Observing larval heterosis in F1 hybrids in survival, growth rate, and time to metamorphosis, however, at an even higher degree than in hybrids from natural lineages, demonstrates that heterosis is spontaneous and results from hybridity per se rather than from subsequent interclonal selection; in natural lineages the effects of hybridity and of clonal history are confounded. This is compelling evidence for spontaneous heterosis in hybrid clonals. Results on hemiclonal fish hybrids (Poeciliopsis) showed no spontaneous heterosis; thus, our frog data are not applicable to all hybrid clonals. Our data do show, however, that heterosis is an important potential source for the extensively observed ecological success of hybrid clonals. We suggest that heterosis and interclonal selection together shape fitness of natural R. esculenta lineages. PMID:10051613

  9. Larval fish feeding ecology, growth and mortality from two basins with contrasting environmental conditions of an inner sea of northern Patagonia, Chile.

    PubMed

    Landaeta, Mauricio F; Bustos, Claudia A; Contreras, Jorge E; Salas-Berríos, Franco; Palacios-Fuentes, Pámela; Alvarado-Niño, Mónica; Letelier, Jaime; Balbontín, Fernando

    2015-05-01

    During austral spring 2011, a survey was carried out in the inland sea (41°30'-44°S) of north Patagonia, South Pacific, studying a northern basin (NB: Reloncaví Fjord, Reloncaví Sound and Ancud Gulf) characterized by estuarine regime with stronger vertical stratification and warmer (11-14 °C) and most productive waters, and a southern basin (SB: Corcovado Gulf and Guafo mouth), with more oceanic water influence, showed mixed conditions of the water column, colder (11-10.5 °C) and less productive waters. Otolith microstructure and gut content analysis of larval lightfish Maurolicus parvipinnis and rockfish Sebastes oculatus were studied. Larval M. parvipinnis showed similar growth rates in both regions (0.13-0.15 mm d(-1)), but in NB larvae were larger-at-age than in SB. Larval S. oculatus showed no differences in size-at-age and larval growth (0.16 and 0.11 mm d(-1) for NB and SB, respectively). M. parvipinnis larvae from NB had larger number of prey items (mostly invertebrate eggs), similar total volume in their guts and smaller prey size than larvae collected in SB (mainly calanoid copepods). Larval S. oculatus had similar number, volume and body width of prey ingested at both basins, although prey ingestion rate by size was 5 times larger in NB than in SB, and prey composition varied from nauplii in NB to copepodites in SB. This study provides evidence that physical-biological interactions during larval stages of marine fishes from Chilean Patagonia are species-specific, and that in some cases large size-at-age correspond to increasing foraging success. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development.

    PubMed

    Cheng, Zhe; Liu, Fan; Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli; Wang, Yanhai

    2017-02-01

    Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis.

  11. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development

    PubMed Central

    Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli

    2017-01-01

    Background Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Methodology/Principal findings Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. Conclusions/Significance These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis. PMID:28241017

  12. Fitness consequences of larval traits persist across the metamorphic boundary.

    PubMed

    Crean, Angela J; Monro, Keyne; Marshall, Dustin J

    2011-11-01

    Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life-history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry-over to influence postmetamorphic performance, suggesting that these life-history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata. Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  13. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB)

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...

  14. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in...

  15. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986.

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28?C; 20o/ooS) from hatching to the megalopa stage. Growth in...

  16. GROWTH AND CHANGES IN BIOCHEMICAL COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986

    EPA Science Inventory

    Larval development in Menippe adina was associated with changes in weight and biochemical composition. Larvae of the stone crab, M. adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in M. adina is exponential througho...

  17. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes

    PubMed Central

    Shulzitski, Kathryn; Sponaugle, Su; Hauff, Martha; Walter, Kristen D.; Cowen, Robert K.

    2016-01-01

    Oceanographic features, such as eddies and fronts, enhance and concentrate productivity, generating high-quality patches that dispersive marine larvae may encounter in the plankton. Although broad-scale movement of larvae associated with these features can be captured in biophysical models, direct evidence of processes influencing survival within them, and subsequent effects on population replenishment, are unknown. We sequentially sampled cohorts of coral reef fishes in the plankton and nearshore juvenile habitats in the Straits of Florida and used otolith microstructure analysis to compare growth and size-at-age of larvae collected inside and outside of mesoscale eddies to those that survived to settlement. Larval habitat altered patterns of growth and selective mortality: Thalassoma bifasciatum and Cryptotomus roseus that encountered eddies in the plankton grew faster than larvae outside of eddies and likely experienced higher survival to settlement. During warm periods, T. bifasciatum residing outside of eddies in the oligotrophic Florida Current experienced high mortality and only the slowest growers survived early larval life. Such slow growth is advantageous in nutrient poor habitats when warm temperatures increase metabolic demands but is insufficient for survival beyond the larval stage because only fast-growing larvae successfully settled to reefs. Because larvae arriving to the Straits of Florida from distant sources must spend long periods of time outside of eddies, our results indicate that they have a survival disadvantage. High productivity features such as eddies not only enhance the survival of pelagic larvae, but also potentially increase the contribution of locally spawned larvae to reef populations. PMID:27274058

  18. Molecular characterization of two ferritins of the scallop Argopecten purpuratus and gene expressions in association with early development, immune response and growth rate.

    PubMed

    Coba de la Peña, Teodoro; Cárcamo, Claudia B; Díaz, María I; Brokordt, Katherina B; Winkler, Federico M

    2016-08-01

    Ferritin is involved in several iron homoeostasis processes in molluscs. We characterized two ferritin homologues and their expression patterns in association with early development, growth rate and immune response in the scallop Argopecten purpuratus, a species of economic importance for Chile and Peru. Two ferritin subunits (Apfer1 and Apfer2) were cloned. Apfer1 cDNA is a 792bp clone containing a 516bp open reading frame (ORF) that corresponds to a novel ferritin subunit in A. purpuratus. Apfer2 cDNA is a 681bp clone containing a 522bp ORF that corresponds to a previously sequenced EST. A putative iron responsive element (IRE) was identified in the 5'-untranslated region of both genes. The deduced protein sequences of both cDNAs possessed the motifs and domains characteristic of functional ferritin subunits. Both genes showed differential expression patterns at tissue-specific and early development stage levels. Apfer1 expression level increased 40-fold along larval developmental stages, decreasing markedly after larval settlement. Apfer1 expression in mantle tissue was 2.8-fold higher in fast-growing than in slow-growing scallops. Apfer1 increased 8-fold in haemocytes 24h post-challenge with the bacterium Vibrio splendidus. Apfer2 expression did not differ between fast- and slow-growing scallops or in response to bacterial challenge. These results suggest that Apfer1 and Apfer2 may be involved in iron storage, larval development and shell formation. Apfer1 expression may additionally be involved in immune response against bacterial infections and also in growth; and thus would be a potential marker for immune capacity and for fast growth in A. purpuratus. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: molecular and biochemical implications.

    PubMed

    Olivotto, Ike; Di Stefano, Michele; Rosetti, Silvestro; Cossignani, Lina; Pugnaloni, Armanda; Giantomassi, Federica; Carnevali, Oliana

    2011-07-01

    In fast growing organisms, like fish larvae, fatty acids provided through live prey are essential to satisfy high energy demand and are required to promote growth. Therefore, in recent decades, a great amount of research has been directed towards the development of lipid enrichment in order to improve larval fish survival and growth. However, in fish, the biochemical and molecular processes related to highly unsaturated fatty acid (HUFA) administration are still poorly understood. In the current study, the false percula clownfish, a short larval phase marine species, was used as an experimental model and the effects of a standard and a HUFAs-enriched diet were tested through a molecular, biochemical, ultrastructural and morphometric approach. Our results support the hypothesis that HUFA administration may improve larval development through the presence of better structured mitochondria, a higher synthesis of energy compounds and coenzymes with a central position in the metabolism, with respect to controls. This higher energy status was confirmed by better growth performance and a shorter larval phase in larvae fed with an enriched diet with respect to the control. This strategy of rapid growth and early energy storage may be considered positively adaptive and beneficial to the survival of this species. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Effects of parasites on larval and juvenile stages of the coral reef fish Pomacentrus moluccensis

    NASA Astrophysics Data System (ADS)

    Grutter, A. S.; Cribb, T. H.; McCallum, H.; Pickering, J. L.; McCormick, M. I.

    2010-03-01

    The ecological role of parasites in the early life-history stages of coral reef fish is far from clear. Parasitism in larval, recently settled and juvenile stages of a coral reef fish damselfish (Pomacentridae) was therefore investigated by quantifying the ontogenetic change in parasite load and comparing the growth rates of parasitized juvenile fish to those of unparasitized ones. Parasite prevalence in two lunar pulses of Pomacentrus moluccensis was 4 and 0% for larval stage fish, 34 and 56% for recently settled fish and 42 and 49% for juveniles. A significant increase in parasite prevalence with age group was found; the most marked increase occurred immediately after larval fish had settled. Standard length did not model prevalence well; as length is a proxy for age, this indicates that the higher prevalence in recently settled and juvenile fish compared with larvae was not a simple result of parasites accumulating with age. In one of three cohorts, there was some evidence that parasitism affected the growth rate of juveniles, as measured by otolith width. The study suggests that settling on the reef exposes young fish to potentially harmful parasites. This supports the idea that the pelagic phase may have the effect of reducing the exposure of young fish to the debilitating effects of parasites.

  1. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    NASA Technical Reports Server (NTRS)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  2. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB(R))

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...

  3. Maternal effects and larval survival of marbled sole Pseudopleuronectes yokohamae

    NASA Astrophysics Data System (ADS)

    Higashitani, Tomomi; Takatsu, Tetsuya; Nakaya, Mitsuhiro; Joh, Mikimasa; Takahashi, Toyomi

    2007-07-01

    Maternal effects of animals are the phenotypic influences of age, size, and condition of spawners on the survival and phenotypic traits of offspring. To clarify the maternal effects for marbled sole Pseudopleuronectes yokohamae, we investigated the effects of body size, nutrient condition, and growth history of adult females on egg size, larval size, and starvation tolerance, growth, and feeding ability of offspring. The fecundity of adult females was strongly dependent on body size. Path analysis revealed that the mother's total length positively affected mean egg diameter, meaning that large females spawned large eggs. In contrast, the relative growth rate of adult females negatively affected egg diameter. Egg diameters positively affected both notochord length and yolk sac volume of the larvae at hatching. Under starvation conditions, notochord length at hatching strongly and positively affected days of survival at 14 °C but not at 9 °C. Under adequate food conditions (1000 rotifers L - 1 ), the notochord length of larvae 5 days after hatching positively affected feeding rate, implying that large larvae have high feeding ability. In addition, the mean growth rate of larvae between 0 and 15 days increased with increasing egg diameter under homogenous food conditions, suggesting that larvae hatched from large eggs might have a growth advantage for at least to 15 days after hatching. In marbled sole, these relationships (i.e., mother's body size-egg size-larval size-larval resistance to starvation-larval feeding ability) may help explain recruitment variability.

  4. Hypoxia tolerance of common sole juveniles depends on dietary regime and temperature at the larval stage: evidence for environmental conditioning.

    PubMed

    Zambonino-Infante, José L; Claireaux, Guy; Ernande, Bruno; Jolivet, Aurélie; Quazuguel, Patrick; Sévère, Armelle; Huelvan, Christine; Mazurais, David

    2013-05-07

    An individual's environmental history may have delayed effects on its physiology and life history at later stages in life because of irreversible plastic responses of early ontogenesis to environmental conditions. We chose a marine fish, the common sole, as a model species to study these effects, because it inhabits shallow marine areas highly exposed to environmental changes. We tested whether temperature and trophic conditions experienced during the larval stage had delayed effects on life-history traits and resistance to hypoxia at the juvenile stage. We thus examined the combined effect of global warming and hypoxia in coastal waters, which are potential stressors to many estuarine and coastal marine fishes. Elevated temperature and better trophic conditions had a positive effect on larval growth and developmental rates; warmer larval temperature had a delayed positive effect on body mass and resistance to hypoxia at the juvenile stage. The latter suggests a lower oxygen demand of individuals that had experienced elevated temperatures during larval stages. We hypothesize that an irreversible plastic response to temperature occurred during early ontogeny that allowed adaptive regulation of metabolic rates and/or oxygen demand with long-lasting effects. These results could deeply affect predictions about impacts of global warming and eutrophication on marine organisms.

  5. Growth hormone and early treatment.

    PubMed

    Antoniazzi, F; Cavarzere, P; Gaudino, R

    2015-06-01

    Growth hormone (GH) treatment is approved by the US Food and Drug Administration (FDA) not only for GH deficiency (GHD) but also for other childhood growth disorders with growth failure and/or short stature. GHD is the most frequent endocrine disorder presenting with short stature in childhood. During neonatal period, metabolic effects due to congenital GHD require a prompt replacement therapy to avoid possible life-threatening complications. In childhood and adolescence, growth impairment is the most evident effect of GHD and early treatment has the aim of restore normal growth and to reach normal adult height. We reassume in this review the conditions causing GHD and the diagnostic challenge to reach an early diagnosis, and an early treatment, necessary to obtain the best results. Finally, we summarize results obtained in clinical studies about pediatric patients with GHD treated at an early age, in which a marked early catch-up growth and a normalization of adult height were obtained.

  6. Growth and mortality of larval sunfish in backwaters of the upper Mississippi River

    USGS Publications Warehouse

    Zigler, S.J.; Jennings, C.A.

    1993-01-01

    The authors estimated the growth and mortality of larval sunfish Lepomis spp. in backwater habitats of the upper Mississippi River with an otolith-based method and a length-based method. Fish were sampled with plankton nets at one station in Navigation Pools 8 and 14 in 1989 and at two stations in Pool 8 in 1990. For both methods, growth was modeled with an exponential equation, and instantaneous mortality was estimated by regressing the natural logarithm of fish catch for each 1-mm size-group against the estimated age of the group, which was derived from the growth equations. At two of the stations, the otolith-based method provided more precise estimates of sunfish growth than the length-based method. We were able to compare length-based and otolith-based estimates of sunfish mortality only at the two stations where we caught the largest numbers of sunfish. Estimates of mortality were similar for both methods in Pool 14, where catches were higher, but the length-based method gave significantly higher estimates in Pool 8, where the catches were lower. The otolith- based method required more laboratory analysis, but provided better estimates of the growth and mortality than the length-based method when catches were low. However, the length-based method was more cost- effective for estimating growth and mortality when catches were large.

  7. Investigating phenology of larval fishes in St. Louis River ...

    EPA Pesticide Factsheets

    As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages across different habitats and at multiple temporal scales. To optimize early detection monitoring we need to understand temporal and spatial patterns of larval fishes related to their development and dispersion, as well as the environmental factors that influence them. In 2016 we designed an experiment to assess the phenological variability in larval fish abundance and assemblages amongst shallow water habitats. Specifically, we sought to contrast different thermal environments and turbidity levels, as well as assess the importance of vegetation in these habitats. To evaluate phenological differences we sampled larval fish bi-weekly at nine locations from mid-May to mid-July. Sampling locations were split between upper estuary and lower estuary to contrast river versus seiche influenced habitats. To assess differences in thermal environments, temperature was monitored every 15 minutes at each sampling location throughout the study, beginning in early April. Our design also included sampling at both vegetated (or pre-vegetated) and non-vegetated stations within each sampling location throughout the study to assess the importance of this habitat variable. Hydroacoustic surveys (Biosonics) were

  8. Development of the larval amphibian growth and development assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile

    EPA Science Inventory

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a ...

  9. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.

    PubMed

    Rao, Ashit; Seto, Jong; Berg, John K; Kreft, Stefan G; Scheffner, Martin; Cölfen, Helmut

    2013-08-01

    The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis.

    PubMed

    Macedo, Maria Lígia R; Freire, Maria das Graças M; Kubo, Carlos Eduardo G; Parra, José Roberto P

    2011-01-01

    Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Characteristics of the larval Echinococcus vogeli Rausch and Bernstein, 1972 in the natural intermediate host, the paca, Cuniculus paca L. (Rodentia: Dasyproctidae).

    PubMed

    Rausch, R L; D'Alessandro, A; Rausch, V R

    1981-09-01

    In Colombia, the natural intermediate host of Echinococcus vogeli Rausch and Bernstein, 1972 is the paca, Cuniculus paca L. (Rodentia: Dasyproctidae). The larval cestode develops in the liver of the host, where it usually is situated superficially, partly exposed beneath Glisson's capsule. The infective larva consists of a subspherical to asymmetrical, fluid-filled vesicle, up to 30 mm in diameter, enclosed by a thick laminated membrane. It typically contains numerous chambers, often interconnected, produced by endogenous proliferation of germinal and laminated tissue, within which brood capsules arise in an irregular pattern from the germinal layer. Invasive growth by means of exogenous proliferation, typical of infections in man, was not observed in the natural intermediate host. The development of the larval cestode is described on the basis of material from pacas, supplemented by observations on early-stage lesions in experimentally infected nutrias, Myocastor coypus (Molina) (Rodentia: Capromyidae). The tissue response is characterized for early-stage, mature (infective), and degenerating larvae in the comparatively long-lived intermediate host. In addition to previously reported differences in size and form of rostellar hooks, other morphologic characteristics are defined by which the larval stage of E. vogeli is distinguished from that of E. oligarthrus (Diesing, 1863). Pathogenesis by the larval E. vogeli in man, like that by the larval E. multilocularis Leuckart, 1863, is the consequence of atypical proliferation of vesicles attributable to parasite-host incompatibility.

  12. The influence of larval migration and dispersal depth on potential larval trajectories of a deep-sea bivalve

    NASA Astrophysics Data System (ADS)

    McVeigh, Doreen M.; Eggleston, David B.; Todd, Austin C.; Young, Craig M.; He, Ruoying

    2017-09-01

    Many fundamental questions in marine ecology require an understanding of larval dispersal and connectivity, yet direct observations of larval trajectories are difficult or impossible to obtain. Although biophysical models provide an alternative approach, in the deep sea, essential biological parameters for these models have seldom been measured empirically. In this study, we used a biophysical model to explore the role of behaviorally mediated migration from two methane seep sites in the Gulf of Mexico on potential larval dispersal patterns and population connectivity of the deep-sea mussel ;Bathymodiolus; childressi, a species for which some biological information is available. Three possible larval dispersal strategies were evaluated for larvae with a Planktonic Larval Duration (PLD) of 395 days: (1) demersal drift, (2) dispersal near the surface early in larval life followed by an extended demersal period before settlement, and (3) dispersal near the surface until just before settlement. Upward swimming speeds varied in the model based on the best data available. Average dispersal distances for simulated larvae varied between 16 km and 1488 km. Dispersal in the upper water column resulted in the greatest dispersal distance (1173 km ± 2.00), followed by mixed dispersal depth (921 km ± 2.00). Larvae originating in the Gulf of Mexico can potentially seed most known seep metapopulations on the Atlantic continental margin, whereas larvae drifting demersally cannot (237 km ± 1.43). Depth of dispersal is therefore shown to be a critical parameter for models of deep-sea connectivity.

  13. Larval gizzard shad characteristics in Lake Oahe, South Dakota: A species at the northern edge of its range

    USGS Publications Warehouse

    Fincel, Mark J.; Chipps, Steven R.; Graeb, Brian D. S.; Edwards, Kris R.

    2013-01-01

    Gizzard shad, Dorosoma cepedianum, have generally been restricted to the lower Missouri River impoundments in South Dakota. In recent years, gizzard shad numbers have increased in Lake Oahe, marking the northern-most natural population. These increases could potentially affect recreational fishes. Specifically, questions arise about larval gizzard shad growth dynamics and if age-0 gizzard shad in Lake Oahe will exhibit fast or slow growth, both of which can have profound effects on piscivore populations in this reservoir. In this study, we evaluated larval gizzard shad hatch timing, growth, and density in Lake Oahe. We collected larval gizzard shad from six sites from May to July 2008 and used sagittal otoliths to estimate the growth and back-calculate the hatch date. We found that larval gizzard shad hatched earlier in the upper part of the reservoir compared to the lower portion and that hatch date appeared to correspond to warming water temperatures. The peak larval gizzard shad density ranged from 0.6 to 33.6 (#/100 m3) and varied significantly among reservoir sites. Larval gizzard shad growth ranged from 0.24 to 0.57 (mm/d) and differed spatially within the reservoir. We found no relationship between the larval gizzard shad growth or density and small- or large-bodied zooplankton density (p > 0.05). As this population exhibits slow growth and low densities, gizzard shad should remain a suitable forage option for recreational fishes in Lake Oahe.

  14. Bioenergetics models to estimate numbers of larval lampreys consumed by smallmouth bass in Elk Creek, Oregon

    USGS Publications Warehouse

    Schultz, Luke; Heck, Michael; Kowalski, Brandon M; Eagles-Smith, Collin A.; Coates, Kelly C.; Dunham, Jason B.

    2017-01-01

    Nonnative fishes have been increasingly implicated in the decline of native fishes in the Pacific Northwest. Smallmouth Bass Micropterus dolomieu were introduced into the Umpqua River in southwest Oregon in the early 1960s. The spread of Smallmouth Bass throughout the basin coincided with a decline in counts of upstream-migrating Pacific Lampreys Entosphenus tridentatus. This suggested the potential for ecological interactions between Smallmouth Bass and Pacific Lampreys, as well as freshwater-resident Western Brook Lampreys Lampetra richardsoni. To evaluate the potential effects of Smallmouth Bass on lampreys, we sampled diets of Smallmouth Bass and used bioenergetics models to estimate consumption of larval lampreys in a segment of Elk Creek, a tributary to the lower Umpqua River. We captured 303 unique Smallmouth Bass (mean: 197 mm and 136 g) via angling in July and September. We combined information on Smallmouth Bass diet and energy density with other variables (temperature, body size, growth, prey energy density) in a bioenergetics model to estimate consumption of larval lampreys. Larval lampreys were found in 6.2% of diet samples, and model estimates indicated that the Smallmouth Bass we captured consumed 925 larval lampreys in this 2-month study period. When extrapolated to a population estimate of Smallmouth Bass in this segment, we estimated 1,911 larval lampreys were consumed between July and September. Although the precision of these estimates was low, this magnitude of consumption suggests that Smallmouth Bass may negatively affect larval lamprey populations.

  15. EVALUATION OF THE ROBUSTNESS OF THE FATHEAD MINNOW, PIMEPHALES PROMELAS, LARVAL SURVIVAL AND GROWTH TEST, U.S. EPA METHOD 1000.0

    EPA Science Inventory

    An intralaboratory study was conducted to evaluate the robustness of the Fathead Minnow (Pimephales promelas) Larval Survival and Growth Test, Method 1000.0 Toxicity tests were conducted with the reference toxicants hexavalent chromium (Cr6+) and copper (Cu), and the data were st...

  16. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    PubMed

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  17. Physiological and biochemical changes during the larval development of a brachyuran crab reared under constant conditions in the laboratory

    NASA Astrophysics Data System (ADS)

    Anger, K.; Harms, J.; Püschel, C.; Seeger, B.

    1989-06-01

    protein, whereas an inverse growth patterns is typical of the later (premoult) stages. These two different growth phases are interpreted as periods dominated by reserve accumulation in the hepatopancreas, and epidermal growth and reconstruction (morphogenesis), respectively. Differences between individual larval instars in average biochemical composition and growth patterns may be related to different strategies: the zoeal instars and the early megalopa are pelagic feeding stages, accumulating energy reserves (principally lipids) necessary for the completion of larval development, whereas the later (premoult) megalopa is a semibenthic settling stage that converts a significant part of this energy to epidermal protein. The megalopa shifts in behaviour and energy partitioning from intense feeding activity and body growth to habitat selection and morphogenesis, preparing itself for metamorphosis, i.e. it shows an increasing degree of lecithotrophy. Data from numerous parallel elemental and biochemical analyses are compiled to show quantitative relationships between W, C, N, H, lipid, and protein. These regressions may be used as empirical conversion equations for estimates of single chemical components in larval Hyas araneus, and, possibly, other decapods.

  18. Redescription of the early larval stages of the pandalid shrimp Chlorotocus crassicornis (Decapoda: Caridea: Pandalidae).

    PubMed

    Landeira, Jose M; Jiang, Guo-Chen; Chan, Tin-Yam; Shih, Tung-Wei; Gozález-Gordillo, J Ignacio

    2015-09-07

    The first four larval stages of the pandalid shrimp Chlorotocus crassicornis (A. Costa, 1871) are described and illustrated from laboratory-reared material obtained from ovigerous females collected in the southwestern Spain and south Taiwan. The second to fourth larval stages of this species are reported for the first time to science. Detailed examination of the first larval stages reveals that previous description misidentified some key larval characters which have prevented its identification in plankton samples. It is found that the zoeal morphology of Chlorotocus is not very different from other pandalid larvae, and in fact closely resembles Plesionika and Heterocarpus.

  19. Variability in size-selective mortality obscures the importance of larval traits to recruitment success in a temperate marine fish.

    PubMed

    Murphy, Hannah M; Warren-Myers, Fletcher W; Jenkins, Gregory P; Hamer, Paul A; Swearer, Stephen E

    2014-08-01

    In fishes, the growth-mortality hypothesis has received broad acceptance as a driver of recruitment variability. Recruitment is likely to be lower in years when the risk of starvation and predation in the larval stage is greater, leading to higher mortality. Juvenile snapper, Pagrus auratus (Sparidae), experience high recruitment variation in Port Phillip Bay, Australia. Using a 5-year (2005, 2007, 2008, 2010, 2011) data set of larval and juvenile snapper abundances and their daily growth histories, based on otolith microstructure, we found selective mortality acted on larval size at 5 days post-hatch in 4 low and average recruitment years. The highest recruitment year (2005) was characterised by no size-selective mortality. Larval growth of the initial larval population was related to recruitment, but larval growth of the juveniles was not. Selective mortality may have obscured the relationship between larval traits of the juveniles and recruitment as fast-growing and large larvae preferentially survived in lower recruitment years and fast growth was ubiquitous in high recruitment years. An index of daily mortality within and among 3 years (2007, 2008, 2010), where zooplankton were concurrently sampled with ichthyoplankton, was related to per capita availability of preferred larval prey, providing support for the match-mismatch hypothesis. In 2010, periods of low daily mortality resulted in no selective mortality. Thus both intra- and inter-annual variability in the magnitude and occurrence of selective mortality in species with complex life cycles can obscure relationships between larval traits and population replenishment, leading to underestimation of their importance in recruitment studies.

  20. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  1. Effect of Larval Density on Food Utilization Efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae).

    PubMed

    Morales-Ramos, Juan A; Rojas, M Guadalupe

    2015-10-01

    Crowding conditions of larvae may have a significant impact on commercial production efficiency of some insects, such as Tenebrio molitor L. (Coleoptera: Tenebrionidae). Although larval densities are known to affect developmental time and growth in T. molitor, no reports were found on the effects of crowding on food utilization. The effect of larval density on food utilization efficiency of T. molitor larvae was studied by measuring efficiency of ingested food conversion (ECI), efficiency of digested food conversion (EDC), and mg of larval weight gain per gram of food consumed (LWGpFC) at increasing larval densities (12, 24, 36, 48, 50, 62, 74, and 96 larvae per dm(2)) over four consecutive 3-wk periods. Individual larval weight gain and food consumption were negatively impacted by larval density. Similarly, ECI, ECD, and LWGpFC were negatively impacted by larval density. Larval ageing, measured as four consecutive 3-wk periods, significantly and independently impacted ECI, ECD, and LWGpFC in a negative way. General linear model analysis showed that age had a higher impact than density on food utilization parameters of T. molitor larvae. Larval growth was determined to be responsible for the age effects, as measurements of larval mass density (in grams of larvae per dm(2)) had a significant impact on food utilization parameters across ages and density treatments (in number of larvae per dm(2)). The importance of mass versus numbers per unit of area as measurements of larval density and the implications of negative effects of density on food utilization for insect biomass production are discussed. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  2. Larval connectivity of pearl oyster through biophysical modelling; evidence of food limitation and broodstock effect

    NASA Astrophysics Data System (ADS)

    Thomas, Yoann; Dumas, Franck; Andréfouët, Serge

    2016-12-01

    The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia atoll lagoons. This aquaculture relies on spat collection, a process that experiences spatial and temporal variability and needs to be optimized by understanding which factors influence recruitment. Here, we investigate the sensitivity of P. margaritifera larval dispersal to both physical and biological factors in the lagoon of Ahe atoll. Coupling a validated 3D larval dispersal model, a bioenergetics larval growth model following the Dynamic Energy Budget (DEB) theory, and a population dynamics model, the variability of lagoon-scale connectivity patterns and recruitment potential is investigated. The relative contribution of reared and wild broodstock to the lagoon-scale recruitment potential is also investigated. Sensitivity analyses pointed out the major effect of the broodstock population structure as well as the sensitivity to larval mortality rate and inter-individual growth variability to larval supply and to the subsequent settlement potential. The application of the growth model clarifies how trophic conditions determine the larval supply and connectivity patterns. These results provide new cues to understand the dynamics of bottom-dwelling populations in atoll lagoons, their recruitment, and discuss how to take advantage of these findings and numerical models for pearl oyster management.

  3. Functional analysis of a tyrosinase gene involved in early larval shell biogenesis in Crassostrea angulata and its response to ocean acidification.

    PubMed

    Yang, Bingye; Pu, Fei; Li, Lingling; You, Weiwei; Ke, Caihuan; Feng, Danqing

    2017-04-01

    The formation of the primary shell is a vital process in marine bivalves. Ocean acidification largely influences shell formation. It has been reported that enzymes involved in phenol oxidation, such as tyrosinase and phenoloxidases, participate in the formation of the periostracum. In the present study, we cloned a tyrosinase gene from Crassostrea angulata named Ca-tyrA1, and its potential function in early larval shell biogenesis was investigated. The Ca-tyrA1 gene has a full-length cDNA of 2430bp in size, with an open reading frame of 1896bp in size, which encodes a 631-amino acid protein that includes a 24-amino acid putative signal peptide. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that Ca-tyrA1 transcription mainly occurs at the trochophore stage, and the Ca-tyrA1 mRNA levels in the 3000ppm treatment group were significantly upregulated in the early D-veliger larvae. WMISH and electron scanning microscopy analyses showed that the expression of Ca-tyrA1 occurs at the gastrula stage, thereby sustaining the early D-veliger larvae, and the shape of its signal is saddle-like, similar to that observed under an electron scanning microscope. Furthermore, the RNA interference has shown that the treatment group has a higher deformity rate than that of the control, thereby indicating that Ca-tyrA1 participates in the biogenesis of the primary shell. In conclusion, and our results indicate that Ca-tyrA1 plays a vital role in the formation of the larval shell and participates in the response to larval shell damages in Crassostrea angulata that were induced by ocean acidification. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Xinzhong; Haidvogel, Dale; Munroe, Daphne; Powell, Eric N.; Klinck, John; Mann, Roger; Castruccio, Frederic S.

    2015-02-01

    To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The model results show a typical along-shore connectivity pattern from the northeast to the southwest among the surfclam populations distributed from Georges Bank west and south along the MAB shelf. Continuous surfclam larval input into regions off Delmarva (DMV) and New Jersey (NJ) suggests that insufficient larval supply is unlikely to be the factor causing the failure of the population to recover after the observed decline of the surfclam populations in DMV and NJ from 1997 to 2005. The GBK surfclam population is relatively more isolated than populations to the west and south in the MAB; model results suggest substantial inter-population connectivity from southern New England to the Delmarva region. Simulated surfclam larvae generally drift for over one hundred kilometers along the shelf, but the distance traveled is highly variable in space and over time. Surfclam larval growth and transport are strongly impacted by the physical environment. This suggests the need to further examine how the interaction between environment, behavior, and physiology affects inter-population connectivity. Larval vertical swimming and sinking behaviors have a significant net effect of increasing larval drifting distances when compared with a purely passive model, confirming the need to include larval behavior.

  5. Ctenophore population recruits entirely through larval reproduction in the central Baltic Sea.

    PubMed

    Jaspers, Cornelia; Haraldsson, Matilda; Bolte, Sören; Reusch, Thorsten B H; Thygesen, Uffe H; Kiørboe, Thomas

    2012-10-23

    The comb jelly Mertensia ovum, widely distributed in Arctic regions, has recently been discovered in the northern Baltic Sea. We show that M. ovum also exists in the central Baltic but that the population consists solely of small-sized larvae (less than 1.6 mm). Despite the absence of adults, eggs were abundant. Experiments revealed that the larvae were reproductively active. Egg production and anticipated mortality rates suggest a self-sustaining population. This is the first account of a ctenophore population entirely recruiting through larval reproduction (paedogenesis). We hypothesize that early reproduction is favoured over growth to compensate for high predation pressure.

  6. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    PubMed

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  7. TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth

    PubMed Central

    Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.

    2014-01-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674

  8. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development.

    PubMed

    De Marco, Rodrigo J; Groneberg, Antonia H; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging.

  9. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development

    PubMed Central

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  10. Effects of hatching time for larval ambystomatid salamanders

    USGS Publications Warehouse

    Boone, M.D.; Scott, D.E.; Niewiarowski, P.H.

    2002-01-01

    In aquatic communities, the phenology of breeding may influence species interactions. In the early-breeding marbled salamander, Ambystoma opacum, timing of pond filling may determine whether interactions among larvae are competitive or predatory. The objectives of our studies were to determine how time of egg hatching affected size, larval period, and survival to metamorphosis in A. opacum, and if early-hatching in A. opacum influenced the competitive and predator-prey relationships with smaller larvae of the mole salamander, Ambystoma talpoideum. Salamander larvae were reared from hatching through metamorphosis in large, outdoor enclosures located in a natural temporary pond in Aiken County, South Carolina, in two experiments. In study 1, we reared early- and late-hatching A. opacum larvae separately from hatching through metamorphosis. In study 2, we examined how early- versus late-hatching A. opacum affected a syntopic species, A. talpoideum. In general, early-hatching A. opacum were larger and older at metamorphosis, had greater survival, and left the pond earlier than late-hatching larvae. Ambystoma talpoideum reared in the presence of early-hatching A. opacum had lower survival than in controls, suggesting that A. opacum may predate upon A. talpoideum when they gain a growth advantage over later-hatching larvae. Our studies demonstrate that time of pond filling and phenology of breeding may influence population dynamics and alter the nature of relationships that develop among species.

  11. Development of the larval amphibian growth and development assay: Effects of chronic 4-tert-octylphenol or 17ß-trenbolone exposure in Xenopus laevis from embryo to juvenile

    EPA Science Inventory

    The Larval Amphibian Growth and Development Assay (LAGDA) is a Tier II test guideline being developed by the US Environmental Protection Agency under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects of chronic chemical exposure on growth, thy...

  12. Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora

    PubMed Central

    Siboni, Nachshon; Abrego, David; Motti, Cherie A.; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT–qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement. PMID:24632854

  13. The sex of specific neurons controls female body growth in Drosophila.

    PubMed

    Sawala, Annick; Gould, Alex P

    2017-10-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.

  14. The sex of specific neurons controls female body growth in Drosophila

    PubMed Central

    Sawala, Annick

    2017-01-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs. PMID:28976974

  15. Contemporary divergence in early life history in grayling (Thymallus thymallus).

    PubMed

    Thomassen, Gaute; Barson, Nicola J; Haugen, Thrond O; Vøllestad, L Asbjørn

    2011-12-13

    Following colonization of new habitats and subsequent selection, adaptation to environmental conditions might be expected to be rapid. In a mountain lake in Norway, Lesjaskogsvatnet, more than 20 distinct spawning demes of grayling have been established since the lake was colonized, some 20-25 generations ago. The demes spawn in tributaries consistently exhibiting either colder or warmer temperature conditions during spawning in spring and subsequent early development during early summer. In order to explore the degree of temperature-related divergence in early development, a multi-temperature common-garden experiment was performed on embryos from four different demes experiencing different spring temperatures. Early developmental characters were measured to test if individuals from the four demes respond differently to the treatment temperatures. There was clear evidence of among-deme differences (genotype - environment interactions) in larval growth and yolk-to-body-size conversion efficiency. Under the cold treatment regime, larval growth rates were highest for individuals belonging to cold streams. Individuals from warm streams had the highest yolk-consumption rate under cold conditions. As a consequence, yolk-to-body-mass conversion efficiency was highest for cold-deme individuals under cold conditions. As we observed response parallelism between individuals from demes belonging to similar thermal groups for these traits, some of the differentiation seems likely to result from local adaptation The observed differences in length at age during early larval development most likely have a genetic component, even though both directional and random processes are likely to have influenced evolutionary change in the demes under study.

  16. Movement maintains forebrain neurogenesis via peripheral neural feedback in larval zebrafish

    PubMed Central

    Hall, Zachary Jonas

    2018-01-01

    The postembryonic brain exhibits experience-dependent development, in which sensory experience guides normal brain growth. This neuroplasticity is thought to occur primarily through structural and functional changes in pre-existing neurons. Whether neurogenesis also mediates the effects of experience on brain growth is unclear. Here, we characterized the importance of motor experience on postembryonic neurogenesis in larval zebrafish. We found that movement maintains an expanded pool of forebrain neural precursors by promoting progenitor self-renewal over the production of neurons. Physical cues associated with swimming (bodily movement) increase neurogenesis and these cues appear to be conveyed by dorsal root ganglia (DRG) in the zebrafish body: DRG-deficient larvae exhibit attenuated neurogenic responses to movement and targeted photoactivation of DRG in immobilized larvae expands the pallial pool of proliferative cells. Our results demonstrate the importance of movement in neurogenic brain growth and reveal a fundamental sensorimotor association that may couple early motor and brain development. PMID:29528285

  17. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution

    PubMed Central

    Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.

    2017-01-01

    Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959

  18. Novel methodologies in marine fish larval nutrition.

    PubMed

    Conceição, Luis E C; Aragão, Cláudia; Richard, Nadège; Engrola, Sofia; Gavaia, Paulo; Mira, Sara; Dias, Jorge

    2010-03-01

    Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of (14)C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for

  19. Azadirachtin Affects the Growth of Spodoptera litura Fabricius by Inducing Apoptosis in Larval Midgut.

    PubMed

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura , but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE) analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK) and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR). In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1) on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae.

  20. Environmental factors limiting fertilisation and larval success in corals

    NASA Astrophysics Data System (ADS)

    Woods, Rachael M.; Baird, Andrew H.; Mizerek, Toni L.; Madin, Joshua S.

    2016-12-01

    Events in the early life history of reef-building corals, including fertilisation and larval survival, are susceptible to changes in the chemical and physical properties of sea water. Quantifying how changes in water quality affect these events is therefore important for understanding and predicting population establishment in novel and changing environments. A review of the literature identified that levels of salinity, temperature, pH, suspended sediment, nutrients and heavy metals affect coral early life-history stages to various degrees. In this study, we combined published experimental data to determine the relative importance of sea water properties for coral fertilisation success and larval survivorship. Of the water properties manipulated in experiments, fertilisation success was most sensitive to suspended sediment, copper, salinity, phosphate and ammonium. Larval survivorship was sensitive to copper, lead and salinity. A combined model was developed that estimated the joint probability of both fertilisation and larval survivorship in sea water with different chemical and physical properties. We demonstrated the combined model using water samples from Sydney and Lizard Island in Australia to estimate the likelihood of larvae surviving through both stages of development to settlement competency. Our combined model could be used to recommend targets for water quality in coastal waterways as well as to predict the potential for species to expand their geographical ranges in response to climate change.

  1. Embryo-larval toxicity tests with the African catfish (Clarias gariepinus): comparative sensitivity of endpoints.

    PubMed

    Nguyen, L T H; Janssen, C R

    2002-02-01

    Embryo-larval toxicity tests with the African catfish (Clarias gariepinus) were performed to assess the comparative sensitivity of different endpoints. Measured test responses included embryo and larval survival, hatching, morphological development, and larval growth. Chromium, cadmium, copper, sodium pentachlorphenol (NaPCP), and malathion were used as model toxicants. Hatching was not affected by any of the chemicals tested, and embryo survival was only affected by chromium at > or = 36 mg/L. The growth of larvae was significantly reduced at > or = 11 mg/L Cr, > or = 0.63 mg/L Cu, > or = 0.03 mg/L NaPCP, and > or = 1.25 mg/L malathion. Morphological development of C. gariepinus was affected by all of the toxicants tested. Different types of morphological aberrations were observed, i.e., reduction of pigmentation in fish exposed to cadmium and copper, yolk sac edema in fish exposed to NaPCP and malathion, and deformation of the notochord in fish exposed to chromium and malathion. The sensitivity of the endpoints measured can be summarized as follows: growth > abnormality > larval survival > embryo survival > hatching.

  2. Growth and development of larval green frogs (Rana clamitans) exposed to multiple doses of an insecticide

    USGS Publications Warehouse

    Boone, M.D.; Bridges, C.M.; Rothermel, B.B.

    2001-01-01

    Our objective was to determine how green frogs (Rana clamitans) are affected by multiple exposures to a sublethal level of the carbamate insecticide, carbaryl, in outdoor ponds. Tadpoles were added to 1,000-1 ponds at a low or high density which were exposed to carbaryl 0, 1, 2, or 3 times. Length of the larval period, mass, developmental stage, tadpole survival, and proportion metamorphosed were used to determine treatment effects. The frequency of dosing affected the proportion of green frogs that reached metamorphosis and the developmental stage of tadpoles. Generally, exposure to carbaryl increased rates of metamorphosis and development. The effect of the frequency of carbaryl exposure on development varied with the density treatment; the majority of metamorphs and the most developed tadpoles came from high-density ponds exposed to carbaryl 3 times. This interaction suggests that exposure to carbaryl later in the larval period stimulated metamorphosis, directly or indirectly, under high-density conditions. Our study indicates that exposure to a contaminant can lead to early initiation of metamorphosis and that natural biotic factors can mediate the effects of a contaminant in the environment.

  3. [BIO-INSECTICIDAL ACTIVITY OF ALPINIA GALANGA (L.) ON LARVAL DEVELOPMENT OF SPODOPTERA LITURA (LEPIDOPTERA: NOCTUIDAE).

    PubMed

    Pumchan, A; Puangsomchit, A; Temyarasilp, P; Pluempanupat, W; Bullangpoti, V

    2015-01-01

    The aim of the study was to assess the bio-efficacy of four Alpinia galanga rhizome crude extracts against the second and third instars of Spodoptera litura, an important field pest. The growth of younger larvae was significantly affected while that of the older larval stage was less influenced. In both stages, the methanol crude extract showed the greatest efficiency which caused the highest number of abnormal adults to occur and produced a large LD₅₀ value (12.816 µg/ larvae) pupicidal percentage after treatment, whereas, hexane extract caused the highest mortality during the larval-pupal stage after treatment with an LD₅₀ value of 6.354 µg/ larvae. However, the larval development was not significantly different among all treated larvae compared to the control. This study suggests that secondary larval instars of S. litura are more susceptible to the larval growth inhibitory action of Alpinia galanga extracts and these extracts could also be applied for use in the management of pests.

  4. Mechanistic insights into the effects of climate change on larval cod.

    PubMed

    Kristiansen, Trond; Stock, Charles; Drinkwater, Kenneth F; Curchitser, Enrique N

    2014-05-01

    Understanding the biophysical mechanisms that shape variability in fisheries recruitment is critical for estimating the effects of climate change on fisheries. In this study, we used an Earth System Model (ESM) and a mechanistic individual-based model (IBM) for larval fish to analyze how climate change may impact the growth and survival of larval cod in the North Atlantic. We focused our analysis on five regions that span the current geographical range of cod and are known to contain important spawning populations. Under the SRES A2 (high emissions) scenario, the ESM-projected surface ocean temperatures are expected to increase by >1 °C for 3 of the 5 regions, and stratification is expected to increase at all sites between 1950-1999 and 2050-2099. This enhanced stratification is projected to decrease large (>5 μm ESD) phytoplankton productivity and mesozooplankton biomass at all 5 sites. Higher temperatures are projected to increase larval metabolic costs, which combined with decreased food resources will reduce larval weight, increase the probability of larvae dying from starvation and increase larval exposure to visual and invertebrate predators at most sites. If current concentrations of piscivore and invertebrate predators are maintained, larval survival is projected to decrease at all five sites by 2050-2099. In contrast to past observed responses to climate variability in which warm anomalies led to better recruitment in cold-water stocks, our simulations indicated that reduced prey availability under climate change may cause a reduction in larval survival despite higher temperatures in these regions. In the lower prey environment projected under climate change, higher metabolic costs due to higher temperatures outweigh the advantages of higher growth potential, leading to negative effects on northern cod stocks. Our results provide an important first large-scale assessment of the impacts of climate change on larval cod in the North Atlantic. © 2013 John

  5. Overcrowding-mediated stress alters cell proliferation in key neuroendocrine areas during larval development in Rhinella arenarum.

    PubMed

    Distler, Mijal J; Jungblut, Lucas D; Ceballos, Nora R; Paz, Dante A; Pozzi, Andrea G

    2016-02-01

    Exposure to adverse environmental conditions can elicit a stress response, which results in an increase in endogenous corticosterone levels. In early life stages, it has been thoroughly demonstrated that amphibian larval growth and development is altered as a consequence of chronic stress by interfering with the metamorphic process, however, the underlying mechanisms involved have only been partially disentangled. We examined the effect of intraspecific competition on corticosterone levels during larval development of the toad Rhinella arenarum and its ultimate effects on cell proliferation in particular brain areas as well as the pituitary gland. While overcrowding altered the number of proliferating cells in the pituitary gland, hypothalamus, and third ventricle of the brain, no differences were observed in areas which are less associated with neuroendocrine processes, such as the first ventricle of the brain. Apoptosis was increased in hypothalamic regions but not in the pituitary. With regards to pituitary cell populations, thyrotrophs but not somatoatrophs and corticotrophs showed a decrease in the cell number in overcrowded larvae. Our study shows that alterations in growth and development, produced by stress, results from an imbalance in the neuroendocrine systems implicated in orchestrating the timing of metamorphosis. © 2016 Wiley Periodicals, Inc.

  6. Acute exposure to tris (2-butoxyethyl) phosphate (TBOEP) affects growth and development of embryo-larval zebrafish.

    PubMed

    Liu, Yiran; Wu, Ding; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua

    2017-10-01

    Tris (2-butoxyethyl) phosphate (TBOEP), is used as a flame retardant worldwide. It is an additive in materials and can be easily discharged into the surrounding environment. There is evidence linking TBOEP exposure to abnormal development and growth in zebrafish embryos/larvae. Here, using zebrafish embryo as a model, we investigated toxicological effects on developing zebrafish (Danio rerio) caused by TBOEP at concentrations of 0, 20, 200, 1000, 2000μg/L starting from 2h post-fertilization (hpf). Our findings revealed that TBOEP exposure caused developmental toxicity, such as malformation, growth delay and decreased heart rate in zebrafish larvae. Correlation analysis indicated that inhibition of growth was possibly due to down-regulation of expression of genes related to the growth hormone/insulin-like growth factor (GH/IGF) axis. Furthermore, exposure to TBOEP significantly increased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in whole larvae. In addition, changed expression of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis was observed, indicating that perturbation of HPT axis might be responsible for the developmental damage and growth delay induced by TBOEP. The present study provides a new set of evidence that exposure of embryo-larval zebrafish to TBOEP can cause perturbation of GH/IGF axis and HPT axis, which could result in developmental impairment and growth inhibition. Copyright © 2017. Published by Elsevier B.V.

  7. Sperm cryopreservation affects postthaw motility, but not embryogenesis or larval growth in the Brazilian fish Brycon insignis (Characiformes).

    PubMed

    Viveiros, A T M; Isaú, Z A; Caneppele, D; Leal, M C

    2012-09-01

    Sperm cryopreservation is an important method for preserving genetic information and facilitating artificial reproduction. The objective was to investigate whether the cryopreservation process affects postthaw sperm motility, embryogenesis, and larval growth in the fish Brycon insignis. Sperm was diluted in methyl glycol and Beltsville Thawing solution, frozen in a nitrogen vapor vessel (dry shipper) and stored in liquid nitrogen. Half of the samples were evaluated both subjectively (% of motile sperm and motility quality score-arbitrary grading system from 0 [no movement] to 5 [rapidly swimming sperm]) and in a computer-assisted sperm analyzer (CASA; percentage of motile sperm and velocity). The other half was used for fertilization and the evaluation of embryogenesis (cleavage and gastrula stages), hatching rate, percentage of larvae with normal development and larval growth up to 112 days posthatching (dph). Fresh sperm was analyzed subjectively (percentage of motile sperm and motility quality score) and used as the control. In the subjective analysis, sperm motility significantly decreased from 100% motile sperm and quality score of 5 in fresh sperm to 54% motile sperm and quality score of 3 after thawing. Under computer-assisted sperm analyzer evaluation, postthaw sperm had 67% motile sperm, 122 μm/sec of curvilinear velocity, 87 μm/sec of straight-line velocity and 103 μm/sec of average path velocity. There were no significant differences between progenies (pooled data) for the percentage of viable embryos in cleavage (62%) or gastrula stages (24%) or in the hatching rate (24%), percentage of normal hatched larvae (93%), larval body weight (39.8 g), or standard length (12.7 cm) at 112 days posthatching. Based on these findings, cryopreserved sperm can be used as a tool to restore the population of endangered species, such as B. insignis, as well as for aquaculture purposes, without any concern regarding quality of the offspring. Copyright © 2012 Elsevier

  8. Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei).

    PubMed

    Nimrat, Subuntith; Suksawat, Sunisa; Boonthai, Traimat; Vuthiphandchai, Verapong

    2012-10-12

    Epidemics of epizootics and occurrence of multiresistant antibiotics of pathogenic bacteria in aquaculture have put forward a development of effective probiotics for the sustainable culture. This study examined the effectiveness of forms of mixed Bacillus probiotics (probiotic A and probiotic B) and mode of probiotic administration on growth, bacterial numbers and water quality during rearing of white shrimp (Litopenaeus vannamei) in two separated experiments: (1) larval stages and (2) postlarval (PL) stages. Forms of Bacillus probiotics and modes of probiotic administration did not affect growth and survival of larval to PL shrimp. The compositions of Bacillus species in probiotic A and probiotic B did not affect growth and survival of larvae. However, postlarvae treated with probiotic B exhibited higher (P<0.05) growth than probiotic A and controls, indicating Bacillus probiotic composition affects the growth of PL shrimp. Total heterotrophic bacteria and Bacillus numbers in larval and PL shrimp or culture water of the treated groups were higher (P<0.05) than in controls. Levels of pH, ammonia and nitrite of the treated shrimp were significantly decreased, compared to the controls. Microencapsulated Bacillus probiotic was effective for rearing of PL L. vannamei. This investigation showed that administration of mixed Bacillus probiotics significantly improved growth and survival of PL shrimp, increased beneficial bacteria in shrimp and culture water and enhanced water quality for the levels of pH, ammonia and nitrite of culture water. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Azadirachtin Affects the Growth of Spodoptera litura Fabricius by Inducing Apoptosis in Larval Midgut

    PubMed Central

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura, but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE) analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK) and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR). In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1) on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae. PMID:29535638

  10. On-plant movement and feeding of western bean cutworm (Lepidoptera: Noctuidae) early instars on corn.

    PubMed

    Paula-Moraes, S V; Hunt, T E; Wright, R J; Hein, G L; Blankenship, E E

    2012-12-01

    Western bean cutworm, Striacosta albicosta (Smith), has undergone a recent eastward expansion from the western U.S. Corn Belt to Pennsylvania and parts of Canada. Little is known about its ecology and behavior, particularly during the early instars, on corn (Zea mays L.). There is a narrow treatment window for larvae, and early detection of the pest in the field is essential. An understanding of western bean cutworm larval feeding and early-instar dispersal is essential to understand larval survival and establishment in corn. Studies were conducted in 2009 through 2011 in Nebraska to determine the feeding and dispersal of early-instar western bean cutworm on corn. The treatment design was a factorial with three corn stages (pretassel, tassel, and posttassel) and five corn plant zones (tassel, above ear, primary ear, secondary ear, and below ear) in a randomized complete block design. The effects of different corn tissues on larval survival and development were investigated in laboratory studies in a randomized complete block design during 2009 and 2011. Treatments were different corn tissues (leaf alone, leaf with developing tassel, pollen, pollen plus silk, and silk alone). Results demonstrated that neonate larvae move to the upper part of the plant, independent of corn stage. Larval growth was optimal when fed on tassel tissue. Overall results indicated a selective benefit for movement of the early instar to upper part of the plant.

  11. Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans.

    PubMed

    Min, Hyemin; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2015-03-01

    Intake of caffeine during pregnancy can cause retardation of fetal development. Although the significant influence of caffeine on animal development is widely recognized, much remains unknown about its mode of action because of its pleiotropic effects on living organisms. In the present study, by using Caenorhabditis elegans as a model organism, the effects of caffeine on development were examined. Brood size, embryonic lethality, and percent larval development were investigated, and caffeine was found to inhibit the development of C. elegans at most of the stages in a dosage-dependent fashion. Upon treatment with 30 mM caffeine, the majority (86.1 ± 3.4%) of the L1 larvae were irreversibly arrested without further development. In contrast, many of the late-stage larvae survived and grew to adults when exposed to the same 30 mM caffeine. These results suggest that early-stage larvae are more susceptible to caffeine than later-stage larvae. To understand the metabolic responses to caffeine treatment, the levels of expression of cytochrome P450 (cyp) genes were examined with or without caffeine treatment using comparative micro-array, and it was found that the expression of 24 cyp genes was increased by more than 2-fold (p < 0.05). Among them, induction of the cyp-35A gene family was the most prominent. Interestingly, depletion of the cyp-35A family genes one-by-one or in combination through RNA interference resulted in partial rescue from early larval developmental arrest caused by caffeine treatment, suggesting that the high-level induction of cyp-35A family genes can be fatal to the development of early-stage larvae.

  12. The effect of larval and early adult experience on behavioural plasticity of the aphid parasitoid Aphidius ervi (Hymenoptera, Braconidae, Aphidiinae)

    NASA Astrophysics Data System (ADS)

    Villagra, Cristian A.; Pennacchio, Francesco; Niemeyer, Hermann M.

    2007-11-01

    The relevance of the integration of preimaginal and eclosion experiences on the subsequent habitat preferences and mate finding by the adult has been rarely tested in holometabolous insects. In this work, the effect of larval and early adult experiences on the behavioural responses of adult males of the aphid parasitoid, Aphidius ervi, towards volatiles from the host-plant complex (HPC) and from conspecific females were evaluated. Two experience factors were considered: host diet (normal diet=ND; artificial diet=AD), and eclosion, i.e. extraction or non-extraction of the parasitoid larva from the parasitised aphid (extracted=EX; non-extracted=NE). Thus, four treatments were set up: ND/NE, ND/EX, AD/NE and AD/EX. Glass Y-tube olfactometers were used to investigate the responses of adult A. ervi males to the odour sources used. Males from the ND/NE treatment showed a shorter latency to the first choice of olfactometer arms, displayed a marked preference towards the HPC olfactometer arm, and spent more time in the HPC arm than males from the other treatments. Only the interaction of host diet and eclosion experiences proved to be relevant in explaining the differences in latency to first choice, time spent in olfactometers arms, and behaviours displayed in the olfactometer arms. These results show the importance of the integration of larval and eclosion experiences in the development of stereotyped responses of the adults. This process may involve memory retention from the preimaginal and emergence period, but further research is needed to disentangle the contribution of each stage. The response to conspecific females was much less affected by the treatments in relation to first arm choice and times in olfactometer arms, suggesting a pheromone-mediated behaviour, even though a prompter and more intense wing fanning courtship behaviour was registered in the ND/NE males compared to males from the AD/NE treatment. These results show that sexual behaviours are less

  13. Comparative larval growth and mortality of mesopelagic fishes and their predatory impact on zooplankton in the Kuroshio region

    NASA Astrophysics Data System (ADS)

    Sassa, Chiyuki; Takahashi, Motomitsu

    2018-01-01

    Larvae of mesopelagic fishes usually dominate in oceanic larval fish assemblages, but detailed investigations of their ecology are limited and thus preclude full assessment of the ecosystem structure and dynamics in oceanic waters. Here, we examined the growth and mortality of six taxa of numerically dominant mesopelagic fish larvae and their predatory impact on zooplankton in the Kuroshio region off southern Japan during late winter. The weight-specific growth coefficient (Gw) ranged from 0.077 (Sigmops gracilis) to 0.156 d-1 (Vinciguerria nimbaria), and the instantaneous daily mortality coefficient (M) from 0.067 (S. gracilis) to 0.143 d-1 (Myctophum asperum). The ratio Gw/M, an index of stage-specific survival of the larvae, was from 0.90 (Notoscopelus japonicus) to 1.24 (V. nimbaria), without a significant difference from a value of 1 in all species. Based on the reported relationship between Gw and ingestion rate of the larval fishes, the daily ration of each species was calculated to be 32-57% of body dry weight d-1. Mean and 95% confidence interval of food requirements of the six taxa of larvae was 1.41 ± 0.55 mg C m-2 d-1. Predatory impact of the mesopelagic fish larvae on the production rate of the available prey was estimated to be approximately 3.5-5.2%, implying that the larvae have a low level but consistent effect on zooplankton production in the oligotrophic Kuroshio region.

  14. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya.

    PubMed

    Mwangangi, Joseph M; Shililu, Josephat; Muturi, Ephantus J; Muriu, Simon; Jacob, Benjamin; Kabiru, Ephantus W; Mbogo, Charles M; Githure, John; Novak, Robert J

    2010-08-09

    The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance. These results suggest that agricultural

  15. Identification of Late Larval Stage Developmental Checkpoints in Caenorhabditis elegans Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways

    PubMed Central

    Schindler, Adam J.; Baugh, L. Ryan; Sherwood, David R.

    2014-01-01

    Organisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint. PMID:24945623

  16. Early recognition of growth abnormalities permitting early intervention

    USDA-ARS?s Scientific Manuscript database

    Normal growth is a sign of good health. Monitoring for growth disturbances is fundamental to children's health care. Early detection and diagnosis of the causes of short stature allows management of underlying medical conditions, optimizing attainment of good health and normal adult height. This rev...

  17. Growth and feeding patterns of European anchovy ( Engraulis encrasicolus) early life stages in the Aegean Sea (NE Mediterranean)

    NASA Astrophysics Data System (ADS)

    Catalán, Ignacio A.; Folkvord, Arild; Palomera, Isabel; Quílez-Badía, Gemma; Kallianoti, Fotini; Tselepides, Anastasios; Kallianotis, Argyris

    2010-01-01

    The objective of this work was to describe inter- and intra-annual variations in the environmental characteristics of the North-eastern Aegean Sea and to relate these changes to the egg and larval distributions, growth and feeding of larval anchovy ( Engraulis encrasicolus). Four cruises, two in July and two in September in 2003 and 2004 were performed. The distributions of eggs and larvae were associated with i) salinity fronts related to the Black Sea Water and ii) shallow areas of high productivity over the continental shelf, some of them with high riverine influence. The first published description of the anchovy larval diet in the Eastern Mediterranean was conducted in individuals ranging from 2.2 to 17 mm standard length. The number of non-empty guts was relatively high (between 20% and 30%), and the diet was described through 15 main items. The mean size of the prey increased with larval size, and was generally dominated by prey widths smaller than 80 μm (mainly the nauplii and copepodite stages of copepods). Small larvae positively selected copepod nauplii. As larvae grew, they shifted to larger copepod stages. At all sizes, larvae rejected abundant taxa like cladocerans. The average trophic level calculated for anchovy of all size ranges was 2.98 ± 0.16 (SE). Growth rates varied from 0.41 to 0.75 mm d -1, with the highest growth rates generally observed in September. Variability in the Black Sea Water influence and the recorded inter- and intra-annual changes in primary and secondary production, combined with marked changes in temperature over the first 20 m depth, are used to frame the discussion regarding the observed significant differences in growth rates in terms of both length and weight.

  18. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    PubMed Central

    Chi, Michael W.; Griffith, Leslie C.; Vecsey, Christopher G.

    2014-01-01

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis. PMID:25116571

  19. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies.

    PubMed

    Chi, Michael W; Griffith, Leslie C; Vecsey, Christopher G

    2014-08-11

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  20. Offshore-onshore linkages in the larval life history of sole in the Gulf of Lions (NW-Mediterranean)

    NASA Astrophysics Data System (ADS)

    Morat, Fabien; Letourneur, Yves; Blamart, Dominique; Pécheyran, Christophe; Darnaude, Audrey M.; Harmelin-Vivien, Mireille

    2014-08-01

    Understanding individual dispersion from offshore natal areas to coastal nurseries during pelagic larval life is especially important for the sustainable management of exploited marine fish species. For several years, the hatching period, the larval life duration, the average growth rate and the otolith chemical composition (δ13C, δ18O, Sr:Ca and Ba:Ca) during the larval life were studied for young of the year (YOY) of sole collected in three main nurseries of the Gulf of Lions (GoL) (Thau, Mauguio and Berre). We investigated the spatial variation in the origin of the sole larvae which colonised the nurseries around the GoL, and whether temporal differences in environmental conditions during this life stage affected growth and larval life duration. The hatching period ranges from October to March, depending on year and site. Average ages at metamorphosis varied between 43 and 50 days, with the lowest and highest values consistently found for Mauguio and Berre, respectively. Otolith growth rates ranged between 2.7 and 3.2 μm d-1, with the lowest values in Thau and Mauguio and the highest in Berre. Otolith chemical composition during the larval life also varied, suggesting contrasted larval environmental histories in YOY among nurseries. In fishes from Berre and Mauguio, larval life was more influenced by the Rhône River, showing consistently higher larval Ba:Ca ratios (10/23 μmol mol-1) and lower δ13C (-6.5/-6.1‰) and δ18O values (-1.6/0.1‰) than for Thau (with Ba:Ca ratios < 8 μmol mol-1, δ13C ˜-2.3‰ and δ18O ˜1.5‰). Differences in larval otolith composition were observed for 2004, with higher Ba:Ca and lower δ13C and δ18O values than in the two other years. These differences were explained by changes in composition and chemical signatures of water masses after an exceptional flooding event of the Rhône River in late 2003.

  1. Dissection and staining of Drosophila larval ovaries.

    PubMed

    Maimon, Iris; Gilboa, Lilach

    2011-05-13

    Many organs depend on stem cells for their development during embryogenesis and for maintenance or repair during adult life. Understanding how stem cells form, and how they interact with their environment is therefore crucial for understanding development, homeostasis and disease. The ovary of the fruit fly Drosophila melanogaster has served as an influential model for the interaction of germ line stem cells (GSCs) with their somatic support cells (niche) (1, 2). The known location of the niche and the GSCs, coupled to the ability to genetically manipulate them, has allowed researchers to elucidate a variety of interactions between stem cells and their niches (3-12). Despite the wealth of information about mechanisms controlling GSC maintenance and differentiation, relatively little is known about how GSCs and their somatic niches form during development. About 18 somatic niches, whose cellular components include terminal filament and cap cells (Figure 1), form during the third larval instar (13-17). GSCs originate from primordial germ cells (PGCs). PGCs proliferate at early larval stages, but following the formation of the niche a subgroup of PGCs becomes GSCs (7, 16, 18, 19). Together, the somatic niche cells and the GSCs make a functional unit that produces eggs throughout the lifetime of the organism. Many questions regarding the formation of the GSC unit remain unanswered. Processes such as coordination between precursor cells for niches and stem cell precursors, or the generation of asymmetry within PGCs as they become GSCs, can best be studied in the larva. However, a methodical study of larval ovary development is physically challenging. First, larval ovaries are small. Even at late larval stages they are only 100μm across. In addition, the ovaries are transparent and are embedded in a white fat body. Here we describe a step-by-step protocol for isolating ovaries from late third instar (LL3) Drosophila larvae, followed by staining with fluorescent

  2. Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo

    PubMed Central

    Ohno, Yoshikazu; Otaki, Joji M.

    2015-01-01

    Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings. PMID:26107809

  3. Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo.

    PubMed

    Ohno, Yoshikazu; Otaki, Joji M

    2015-01-01

    Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.

  4. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    PubMed

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  5. Feeding ecology of pelagic larval Burbot in Northern Lake Huron, Michigan

    USGS Publications Warehouse

    George, Ellen M.; Roseman, Edward F.; Davis, Bruce M.; O'Brien, Timothy P.

    2013-01-01

    Burbot Lota lota are a key demersal piscivore across the Laurentian Great Lakes whose populations have declined by about 90% in recent decades. Larval Burbot typically hatch in the early spring and rely on abundant crustacean zooplankton prey. We examined the stomach contents of larval Burbot from inshore (≤15 m) and offshore sites (37 and 91 m) in northern Lake Huron, Michigan. Concurrent zooplankton vertical tows at the same sites showed that the prey community was dominated by calanoid copepods, dreissenid mussel veligers, and rotifers. Burbot consumed mostly cyclopoid copepods, followed by copepod nauplii and calanoid copepods. Chesson's index of selectivity was calculated and compared among sites and months for individual Burbot. According to this index, larval Burbot exhibited positive selection for cyclopoid copepods and copepod nauplii and negative selection for calanoid copepods, cladocerans, rotifers, and dreissenid veligers. This selectivity was consistent across sites and throughout the sampling period. Burbot displayed little variation in their prey preferences during the larval stage, which suggests that the recent shifts in zooplankton abundance due to the invasion of the predatory zooplankter Bythotrephes longimanus and competition from invasive Rainbow Smelt Osmerus mordax could negatively impact larval Burbot populations.

  6. Independent and interactive effects of immune activation and larval diet on adult immune function, growth and development in the greater wax moth (Galleria mellonella).

    PubMed

    Kangassalo, Katariina; Valtonen, Terhi M; Sorvari, Jouni; Kecko, Sanita; Pölkki, Mari; Krams, Indrikis; Krama, Tatjana; Rantala, Markus J

    2018-06-29

    Organisms in the wild are likely to face multiple immune challenges as well as additional ecological stressors, yet their interactive effects on immune function are poorly understood. Insects are found to respond to cues of increased infection risk by enhancing their immune capacity. However, such adaptive plasticity in immune function may be limited by physiological and environmental constraints. Here, we investigated the effects of two environmental stressors - poor larval diet and an artificial parasite-like immune challenge at the pupal stage - on adult immune function, growth and development in the greater wax moth (Galleria mellonella). Males whose immune system was activated with an artificial parasite-like immune challenge had weaker immune response - measured as strength of encapsulation response - as adults compared to the control groups, but only when raised in high-nutrition larval diet. Immune activation did not negatively affect adult immune response in males reared in low-nutrition larval diet, indicating that poor larval diet improved the capacity of the insects to respond to repeated immune challenges. Low-nutrition larval diet also had a positive independent effect on immune capacity in females, yet it negatively affected development time and adult body mass in both sexes. As in the nature immune challenges are rarely isolated, and adverse nutritional environment may indicate an elevated risk of infection, resilience to repeated immune challenges as a response to poor nutritional environment could provide a significant fitness advantage. The present study highlights the importance of considering environmental context when investigating effects of immune activation in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto

    PubMed Central

    2010-01-01

    Background Natural populations of the malaria mosquito Anopheles gambiae s.s. are exposed to large seasonal and daily fluctuations in relative humidity and temperature, which makes coping with drought a crucial aspect of their ecology. Methods To better understand natural variation in desiccation resistance in this species, the effects of variation in larval food availability and access to water as an adult on subsequent phenotypic quality and desiccation resistance of adult females of the Mopti chromosomal form were tested experimentally. Results It was found that, under normal conditions, larval food availability and adult access to water had only small direct effects on female wet mass, dry mass, and water, glycogen and body lipid contents corrected for body size. In contrast, when females subsequently faced a strong desiccation challenge, larval food availability and adult access to water had strong carry-over effects on most measured physiological and metabolic parameters, and affected female survival. Glycogen and water content were the most used physiological reserves in relative terms, but their usage significantly depended on female phenotypic quality. Adult access to water significantly influenced the use of water and body lipid reserves, which subsequently affected desiccation resistance. Conclusions These results demonstrate the importance of growth conditions and water availability on adult physiological status and subsequent resistance to desiccation. PMID:20691104

  8. Overwintering growth and development of larval Euphausia superba: an interannual comparison under varying environmental conditions west of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Daly, Kendra L.

    2004-08-01

    Growth, molting, and development of larval Antarctic krill were investigated near Marguerite Bay during four cruises in austral autumn and winter 2001 and 2002, as part of the US Southern Ocean GLOBEC program. Overwintering survival of larvae has been linked to annual sea-ice formation and extent, as sea-ice biota may provide food when other sources are scarce in the water column. During autumn 2001, larvae were very abundant (1-19 individuals m -3), with younger stages dominant offshelf and older stages dominant on-shelf. On-shelf larvae were in better condition than offshore larvae. During autumn 2002, larvae again were abundant offshelf (0.01-110 m -3), whereas all stages were scarce on-shelf. Declining diatom and radiolarian blooms were present during autumn in both years. Average chlorophyll concentrations were low (0.10 vs. 0.22 μg l -1) in autumn and an order of magnitude lower in winter. Carbon content of larvae during autumn 2001 and 2002 (41% vs. 38% C of DW) suggested that lipid storage was moderate. The median autumn larval growth rate (0.027 mm d -1) was lower and the intermolt period (19 d) longer than reported summer values. During winter, larvae appeared to be food-limited based on the following observations: (1) the median growth rate decreased (0.00 mm d -1) and the intermolt period increased (40 d), (2) larval length-specific dry weight (DW) and % carbon and nitrogen of DW decreased, and (3) 88% of furcilia 6 did not develop to the juvenile stage, but remained at the same stage after molting. Experimental results demonstrated that some larvae could survive starvation for a month by combusting body reserves (ca. 1% decrease in DW and body C and N d -1), implying that a portion of the population was resilient to the suboptimal food supply. Although sea ice formed up to 2 months earlier in 2002, ice algae at the ice-water interface, where it is accessible to krill, was not an abundant food source in either year (0.05 vs. 0.07 μg chl l -1). In

  9. Induction of Larval Settlement in the Reef Coral Porites astreoides by a Cultivated Marine Roseobacter Strain.

    PubMed

    Sharp, K H; Sneed, J M; Ritchie, K B; Mcdaniel, L; Paul, V J

    2015-04-01

    Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces. © 2015 Marine Biological Laboratory.

  10. Transglutaminase activity in equine strongyles and its potential role in growth and development.

    PubMed

    Rao, U R; Chapman, M R; Singh, R N; Mehta, K; Klei, T R

    1999-06-01

    Transglutaminases (E.C. 2.3.3.13) are a family of Ca(2+)-dependent enzymes that stabilize protein structure by catalyzing the formation of isopeptide bonds. A novel form of transglutaminase has been identified and characterized that seem to play an important role in growth, development, and molting in adult and larval stages of filarial nematodes. The aim of this study was to identify the ubiquitous nature of this enzyme in other nematodes and to measure its significance to larval growth, molting, and development. For this purpose, equine Strongylus spp. were used. Activity of this enzyme was identified in extracts of larvae and adults of Strongylus vulgaris, S. edentatus, Parascaris equorum and Cylicocyclus insigne. The significance of transglutaminase in the early growth and development of Strongylus vulgaris, S. edentatus and S. equinus was tested by adding specific inhibitors, monodansylcadaverine (MDC) or cystamine (CS), to in vitro cultures of third (L3) and fourth stage larvae (L4). The viability, molting and growth of these nematode species were affected by both inhibitors. Cystamine promoted abnormal development of Strongylus edentatus L3, resulting in an aberrant expansion of the anterior end. Addition of these inhibitors to cultures of L4 also reduced growth of the three species. The results indicated that transglutaminase is present in a wide array of nematode parasites and may be important in growth and development of their larval stages.

  11. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    PubMed

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  12. Increased Relative Calcification, Shell Dissolution and Maintained Larval Growth in Mussel (Mytilus edulis) Larvae Exposed to Acidified Under-Saturated Seawater

    NASA Astrophysics Data System (ADS)

    Ventura, A.; Dupont, S. T.; Schulz, S.

    2016-02-01

    Ocean acidification (OA) is known to affect bivalve early life-stages. It is often assumed that aragonite saturation state (Ωa) is the main driver of the biological response. However saturation state of different CaCO3 forms is not the main driver of most physiological processes and pH/pCO2 are playing an overarching role (e.g. acid-base regulation). The aim of our study was to investigate the effects of a wide range of seawater pH on different physiological parameters (e. g. calcification; growth) of blue mussel (Mytilus edulis) developing larvae in order to identify a physiological tipping point beyond which they are no longer capable of carrying out those functions necessary to their survival and recruitment into the adult population. Our results confirmed that increasing seawater acidity and decreasing saturation state increases larval mortality rate and the percentage of abnormally developing larvae. No larvae reared at pHT ≈ 7.1 were able to reach the D-shell veliger stage and their development appeared to be arrested at the trochophore stage. However - despite morphological shell abnormalities - larvae were capable of reaching the D-shell stage when reared at pHT ≈ 7.35 and normally D-shaped larvae were observed in all the remaining treatments (pH ≈ 7.6, 7.85 and 8.1) including in under-saturated seawater with Ωa as low as 0.75 ± 0.03 (mean ± SE). Growth rate of these larvae was not affected by lower pHT despite potential increased energy costs associated with compensatory calcification in response to increased shell dissolution. Overall, our results suggest a shift in energy allocation toward growth in larvae exposed to ocean acidification.

  13. The effects of exposure in sandy beach surf zones on larval fishes.

    PubMed

    Pattrick, P; Strydom, N A

    2014-05-01

    The influence of wind and wave exposure on larval fish assemblages within a large bay system was investigated. Larval fishes were sampled from two areas with vastly different exposure to waves and wind, namely the windward and leeward sectors of Algoa Bay. In total, 5702 larval fishes were collected using a modified larval seine. Of these, 4391 were collected in the leeward and 1311 in the windward sector of the bay, representing a total of 23 families and 57 species. Dominant fish families included Clinidae, Engraulidae, Kyphosidae, Mugilidae, Soleidae and Sparidae, similar to the situation elsewhere, highlighting continuity in the composition of larval fish assemblages and the utilization of surf zones by a specific group of larval fishes. Nineteen estuary-associated marine species occurred within the surf zones of Algoa Bay and dominated catches (86·7%) in terms of abundance. Postflexion larvae comprised > 80% of the catch, indicating the importance of the seemingly inhospitable surf zone environment for the early life stages of many fish species. The greatest species diversity was observed within the windward sector of the bay. Distance-based linear modelling identified wave period as the environmental variable explaining the largest proportion of the significant variation in the larval fish assemblage. The physical disturbance generated by breaking waves could create a suitable environment for fish larvae, sheltered from predators and with an abundance of food resources. © 2014 The Fisheries Society of the British Isles.

  14. Growing Pains: Development of the Larval Nocifensive Response in Drosophila

    PubMed Central

    SULKOWSKI, MIKOLAJ J.; KUROSAWA, MATHIEU S.; OX, DANIEL N.

    2014-01-01

    The ability to perceive and avoid harmful substances or stimuli is key to an organism’s survival. The neuronal cognate of the perception of pain is known as nociception, and the reflexive motion to avoid pain is termed the nocifensive response. As the nocifensive response is an ancient and evolutionarily conserved behavioral response to nociceptive stimuli, it is amenable to study in relatively simple and genetically tractable model systems such as Drosophila. Recent studies have taken advantage of the useful properties of Drosophila larvae to begin elucidating the neuronal connectivity and molecular machinery underlying the nocifensive response. However, these studies have primarily utilized the third-instar larval stage, and many mutations that potentially influence nociception survive only until earlier larval stages. Here we characterize the nocifensive responses of Drosophila throughout larval development and find dramatic changes in the nature of the behavior. Notably, we find that prior to the third instar, larvae are unable to perform the characteristic “corkscrew-like roll” behavior. Also, we identify an avoidance behavior consistent with a nocifensive response that is present immediately after larval hatching, representing a paradigm that may be useful in examining mutations with an early lethal phenotype. PMID:22186918

  15. Environmentally relevant concentrations of di(2-ethylhexyl)phthalate exposure alter larval growth and locomotion in medaka fish via multiple pathways.

    PubMed

    Yang, Wen-Kai; Chiang, Li-Fen; Tan, Shi-Wei; Chen, Pei-Jen

    2018-06-01

    Di(2-ethylhexyl)phthalate (DEHP) is a commonly used plasticizer, with evidence of ubiquitous human exposure and widespread occurrence in the aquatic environment. It is an emerging environmental pollutant with regulatory priority; however, most studies have focused on the toxicity of DEHP related to endocrine disruption and reproduction in mammals. The ecotoxicological impact of phthalates (e.g., DEHP) on early life stages of fish under environmentally relevant concentrations of chronic exposure remains unclear. In this study, 7-day post-hatching fry of medaka fish (Oryzias latipes) underwent 21-day continuous exposure to DEHP solutions at 20, 100 and 200 μg/L to assess the effects on fish development and locomotion and related toxic mechanisms. Larval mortality was low with DEHP (20-200 μg/L) within 21 days, but such exposure significantly reduced fish body weight and length and altered swimming behavior. At 21 days, DEHP exposure resulted in specific patterns of larval locomotion (e.g., increased maximum velocity and absolute turn angle) and dose-dependently increased the mRNA expression of acetylcholinesterase (ache) but did not alter AChE activity. Transcriptional expression of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase and peroxisome proliferation-activated receptor and retinoid X receptor genes was significantly suppressed with 21-day DEHP exposure (20-200 μg/L), with marginal alteration in reactive oxygen species levels and antioxidant activities within the dosing period. As well, DEHP altered the mRNA expression of p53-regulated apoptosis pathways, such as upregulated p53, p21 and bcl-2 and downregulated caspase-3 expression, with increased enzymatic activity of caspase-3 in larvae. Our results suggest that toxic mechanisms of waterborne DEHP altered fish growth and locomotion likely via a combined effect of oxidative stress, neurotoxicity and apoptosis pathways. Copyright © 2018

  16. Allometric growth and development of organs in ballan wrasse (Labrus bergylta Ascanius, 1767) larvae in relation to different live prey diets and growth rates

    PubMed Central

    Wold, Per-Arvid; Bardal, Tora; Øie, Gunvor; Kjørsvik, Elin

    2016-01-01

    ABSTRACT Small fish larvae grow allometrically, but little is known about how this growth pattern may be affected by different growth rates and early diet quality. The present study investigates how different growth rates, caused by start-feeding with copepods or rotifers the first 30 days post-hatch (dph), affect allometric growth and development of nine major organs in ballan wrasse (Labrus bergylta) larvae up to experimental end at 60 dph. Feeding with cultivated copepod nauplii led to both increased larval somatic growth and faster development and growth of organ systems than feeding with rotifers. Of the organs studied, the digestive and respiratory organs increased the most in size between 4 and 8 dph, having a daily specific growth rate (SGR) between 30 and 40% in larvae fed copepods compared with 20% or less for rotifer-fed larvae. Muscle growth was prioritised from flexion stage and onwards, with a daily SGR close to 30% between 21 and 33 dph regardless of treatment. All larvae demonstrated a positive linear correlation between larval standard length (SL) and increase in total tissue volume, and no difference in allometric growth pattern was found between the larval treatments. A change from positive allometric to isometric growth was observed at a SL close to 6.0 mm, a sign associated with the start of metamorphosis. This was also where the larvae reached postflexion stage, and was accompanied by a change in growth pattern for most of the major organ systems. The first sign of a developing hepatopancreas was, however, first observed in the largest larva (17.4 mm SL, 55 dph), indicating that the metamorphosis in ballan wrasse is a gradual process lasting from 6.0 to at least 15-17 mm SL. PMID:27422903

  17. Juvenile frogs compensate for small metamorph size with terrestrial growth: Overcoming the effects of larval density and insecticide exposure

    USGS Publications Warehouse

    Boone, M.D.

    2005-01-01

    I reared four species of anurans (Rana sphenocephala [Southern Leopard Frog], Rana blairi [Plains Leopard Frog], Rana clamitans [Green Frog], and Bufo woodhousii [Woodhouse's Toad]) for seven to 12 months in small, outdoor terrestrial enclosures (1 x 2 m) to examine the consequences of larval competition (via density) and contaminant exposure (via the insecticide carbaryl). I added six Rana clamitans, eight Rana sphenocephala, eight Rana blairi, and 10 Bufo woodhousii to terrestrial enclosures shortly after metamorphosis and recaptured them during the following spring. All anurans from low-density ponds were significantly larger than those from high-density ponds, but these size differences did not significantly affect survival to or size at spring emergence. However, R. sphenocephala, R. blairi, and R. clamitans that survived to spring had been larger at metamorphosis on average than those that did not survive; in contrast, B. woodhousii that survived the winter were smaller at metamorphosis on average than those that did not survive. Carbaryl exposure affected mass at metamorphosis of R. clamitans and B. woodhousii that were added to enclosures, but this difference disappeared or did not increase by spring emergence. Overall, exposure to carbaryl during the larval period did not have any apparent effects on survival or growth during the terrestrial phase. In my study, anurans were able to offset small size at metamorphosis with terrestrial growth, although there was a trend of reduced overwinter survival for ranid species that metamorphosed at a smaller size. Copyright 2005 Society for the Study of Amphibians and Reptiles.

  18. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees

    USDA-ARS?s Scientific Manuscript database

    In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diet are often complex and may interact with one another, necessitating the use of a geometric framework for und...

  19. Field study suggests that sex determination in sea lamprey is directly influenced by larval growth rate.

    PubMed

    Johnson, Nicholas S; Swink, William D; Brenden, Travis O

    2017-03-29

    Sex determination mechanisms in fishes lie along a genetic-environmental continuum and thereby offer opportunities to understand how physiology and environment interact to determine sex. Mechanisms and ecological consequences of sex determination in fishes are primarily garnered from teleosts, with little investigation into basal fishes. We tagged and released larval sea lamprey ( Petromyzon marinus ) into unproductive lake and productive stream environments. Sex ratios produced from these environments were quantified by recapturing tagged individuals as adults. Sex ratios from unproductive and productive environments were initially similar. However, sex ratios soon diverged, with unproductive environments becoming increasingly male-skewed and productive environments becoming less male-skewed with time. We hypothesize that slower growth in unproductive environments contributed to the sex ratio differences by directly influencing sex determination. To the best of our knowledge, this is the first study suggesting that growth rate in a fish species directly influences sex determination; other studies have suggested that the environmental variables to which sex determination is sensitive (e.g. density, temperature) act as cues for favourable or unfavourable growth conditions. Understanding mechanisms of sex determination in lampreys may provide unique insight into the underlying principles of sex determination in other vertebrates and provide innovative approaches for their management where valued and invasive. © 2017 The Author(s).

  20. Field study suggests that sex determination in sea lamprey is directly influenced by larval growth rate

    USGS Publications Warehouse

    Johnson, Nicholas; Swink, William D.; Brenden, Travis O.

    2017-01-01

    Sex determination mechanisms in fishes lie along a genetic-environmental continuum and thereby offer opportunities to understand how physiology and environment interact to determine sex. Mechanisms and ecological consequences of sex determination in fishes are primarily garnered from teleosts, with little investigation into basal fishes. We tagged and released larval sea lamprey (Petromyzon marinus) into unproductive lake and productive stream environments. Sex ratios produced from these environments were quantified by recapturing tagged individuals as adults. Sex ratios from unproductive and productive environments were initially similar. However, sex ratios soon diverged, with unproductive environments becoming increasingly male-skewed and productive environments becoming less male-skewed with time. We hypothesize that slower growth in unproductive environments contributed to the sex ratio differences by directly influencing sex determination. To the best of our knowledge, this is the first study suggesting that growth rate in a fish species directly influences sex determination; other studies have suggested that the environmental variables to which sex determination is sensitive (e.g. density, temperature) act as cues for favourable or unfavourable growth conditions. Understanding mechanisms of sex determination in lampreys may provide unique insight into the underlying principles of sex determination in other vertebrates and provide innovative approaches for their management where valued and invasive.

  1. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.

    PubMed

    Dingeldein, Andrea L; White, J Wilson

    2016-07-01

    Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post

  2. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    PubMed

    Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun

    2012-01-01

    Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats

  3. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.).

    PubMed

    Lysenko, Liudmila A; Kantserova, Nadezda P; Kaivarainen, Elena I; Krupnova, Marina Yu; Nemova, Nina N

    2017-09-01

    Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ontogenetic development in the morphology and behavior of loach ( Misgurnus anguillicaudatus) during early life stages

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Duan, Ming; Cheng, Fei; Xie, Songguang

    2014-09-01

    Loach ( Misgurnus anguillicaudatus) are a commercially important fish in China and an ideal aquaculture species. However, culturists experience high larval and juvenile mortality during mass production. To provide insight into ways to improve larviculture techniques, we describe the morphological characteristics and behavior of loach during the larval and early juvenile stages. Yolksac larvae ranged from 2.8 to 4.0 mm body length (BL) between days 0 to 4; preflexion larvae ranged from 3.6 to 5.5 mm BL between days 4 to 6; flexion larvae ranged from 4.8 to 8.1 mm BL between days 5 and 14; and postflexion larvae ranged from 7.1 to 15.7 mm BL between days 11 to 27; the minimum length and age of juveniles was 14.1 mm BL and 23 d, respectively. Loach are demersal from hatch through to the early juvenile stages. A suite of morphological characteristics (e.g., external gill filament and ventral mouth opening) and behavioral traits have developed to adapt to demersal living. We observed positive allometric growth in eye diameter, head length, head height, and pectoral fin length during the early larval stages, reflecting the priorities in the development of the organs essential for survival. Our results provide a basis for developing techniques to improve the survival of larval and juvenile loach during mass production.

  5. Optimizing larval assessment to support sea lamprey control in the Great Lakes

    USGS Publications Warehouse

    Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam

    2003-01-01

    Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.

  6. Drosophila Growth and Development in the Absence of dMyc and dMnt

    PubMed Central

    Pierce, Sarah B.; Yost, Cynthia; Anderson, Sarah A. R.; Flynn, Erin M.; Delrow, Jeffrey; Eisenman, Robert N.

    2008-01-01

    Myc oncoproteins are essential regulators of the growth and proliferation of mammalian cells. In Drosophila the single ortholog of Myc (dMyc), encoded by the dm gene, influences organismal size and the growth of both mitotic and endoreplicating cells. A null mutation in dm results in attenuated endoreplication and growth arrest early in larval development. Drosophila also contains a single ortholog of the mammalian Mad/Mnt transcriptional repressor proteins (dMnt), which is thought to antagonize dMyc function. Here we show that animals lacking both dMyc and dMnt display increased viability and grow significantly larger and develop further than dMyc single mutants. We observe increased endoreplication and growth of larval tissues in these double mutants and disproportionate growth of the imaginal discs. Gene expression analysis indicates that loss of dMyc leads to decreased expression of genes required for ribosome biogenesis and protein synthesis. The additional loss of dMnt partially rescues expression of a small number of dMyc and dMnt genes that are primarily involved in rRNA synthesis and processing. Our results indicate that dMnt repression is normally overridden by dMyc activation during larval development. Therefore the severity of the dm null phenotype is likely due to unopposed repression by dMnt on a subset of genes critical for cell and organismal growth. Surprisingly, considerable growth and development can occur in the absence of both dMyc and dMnt. PMID:18241851

  7. Hypoxia and Acidification Have Additive and Synergistic Negative Effects on the Growth, Survival, and Metamorphosis of Early Life Stage Bivalves

    PubMed Central

    Gobler, Christopher J.; DePasquale, Elizabeth L.; Griffith, Andrew W.; Baumann, Hannes

    2014-01-01

    Low oxygen zones in coastal and open ocean ecosystems have expanded in recent decades, a trend that will accelerate with climatic warming. There is growing recognition that low oxygen regions of the ocean are also acidified, a condition that will intensify with rising levels of atmospheric CO2. Presently, however, the concurrent effects of low oxygen and acidification on marine organisms are largely unknown, as most prior studies of marine hypoxia have not considered pH levels. We experimentally assessed the consequences of hypoxic and acidified water for early life stage bivalves (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria), marine organisms of significant economic and ecological value and sensitive to climate change. In larval scallops, experimental and naturally-occurring acidification (pH, total scale  = 7.4–7.6) reduced survivorship (by >50%), low oxygen (30–50 µM) inhibited growth and metamorphosis (by >50%), and the two stressors combined produced additively negative outcomes. In early life stage clams, however, hypoxic waters led to 30% higher mortality, while acidified waters significantly reduced growth (by 60%). Later stage clams were resistant to hypoxia or acidification separately but experienced significantly (40%) reduced growth rates when exposed to both conditions simultaneously. Collectively, these findings demonstrate that the consequences of low oxygen and acidification for early life stage bivalves, and likely other marine organisms, are more severe than would be predicted by either individual stressor and thus must be considered together when assessing how ocean animals respond to these conditions both today and under future climate change scenarios. PMID:24416169

  8. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves.

    PubMed

    Gobler, Christopher J; DePasquale, Elizabeth L; Griffith, Andrew W; Baumann, Hannes

    2014-01-01

    Low oxygen zones in coastal and open ocean ecosystems have expanded in recent decades, a trend that will accelerate with climatic warming. There is growing recognition that low oxygen regions of the ocean are also acidified, a condition that will intensify with rising levels of atmospheric CO2. Presently, however, the concurrent effects of low oxygen and acidification on marine organisms are largely unknown, as most prior studies of marine hypoxia have not considered pH levels. We experimentally assessed the consequences of hypoxic and acidified water for early life stage bivalves (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria), marine organisms of significant economic and ecological value and sensitive to climate change. In larval scallops, experimental and naturally-occurring acidification (pH, total scale  = 7.4-7.6) reduced survivorship (by >50%), low oxygen (30-50 µM) inhibited growth and metamorphosis (by >50%), and the two stressors combined produced additively negative outcomes. In early life stage clams, however, hypoxic waters led to 30% higher mortality, while acidified waters significantly reduced growth (by 60%). Later stage clams were resistant to hypoxia or acidification separately but experienced significantly (40%) reduced growth rates when exposed to both conditions simultaneously. Collectively, these findings demonstrate that the consequences of low oxygen and acidification for early life stage bivalves, and likely other marine organisms, are more severe than would be predicted by either individual stressor and thus must be considered together when assessing how ocean animals respond to these conditions both today and under future climate change scenarios.

  9. Can metamorphosis survival during larval development in spiny lobster Sagmariasus verreauxi be improved through quantitative genetic inheritance?

    PubMed

    Nguyen, Nguyen H; Fitzgibbon, Quinn P; Quinn, Jane; Smith, Greg; Battaglene, Stephen; Knibb, Wayne

    2018-05-04

    One of the major impediments to spiny lobster aquaculture is the high cost of hatchery production due to the long and complex larval cycle and poor survival during the many moult stages, especially at metamorphosis. We examined if the key trait of larval survival can be improved through selection by determining if genetic variance exists for this trait. Specifically, we report, for the first time, genetic parameters (heritability and correlations) for early survival rates recorded at five larval phases; early-phyllosoma stages (instars 1-6; S1), mid-phyllosoma stages (instars; 7-12; S2), late-phyllosoma stages (instars 13-17; S3), metamorphosis (S4) and puerulus stage (S5) in hatchery-reared spiny lobster Sagmariasus verreauxi. The data were collected from a total of 235,060 larvae produced from 18 sires and 30 dams over nine years (2006 to 2014). Parentage of the offspring and full-sib families was verified using ten microsatellite markers. Analysis of variance components showed that the estimates of heritability for all the five phases of larval survival obtained from linear mixed model were generally similar to those obtained from threshold logistic generalised models (0.03-0.47 vs. 0.01-0.50). The heritability estimates for survival traits recorded in the early larval phases (S1 and S2) were higher than those estimated in later phases (S3, S4 and S5). The existence of the additive genetic component in larval survival traits indicate that they could be improved through selection. Both phenotypic and genetic correlations among the five survival measures studied were moderate to high and positive. The genetic associations between successive rearing periods were stronger than those that are further apart. Our estimates of heritability and genetic correlations reported here in a spiny lobster species indicate that improvement in the early survival especially during metamorphosis can be achieved through genetic selection in this highly economic value species.

  10. Survival against the odds: ontogenetic changes in selective pressure mediate growth-mortality trade-offs in a marine fish.

    PubMed

    Gagliano, Monica; McCormick, Mark I; Meekan, Mark G

    2007-07-07

    For organisms with complex life cycles, variation among individuals in traits associated with survival in one life-history stage can strongly affect the performance in subsequent stages with important repercussions on population dynamics. To identify which individual attributes are the most influential in determining patterns of survival in a cohort of reef fish, we compared the characteristics of Pomacentrus amboinensis surviving early juvenile stages on the reef with those of the cohort from which they originated. Individuals were collected at hatching, the end of the planktonic phase, and two, three, four, six and eight weeks post-settlement. Information stored in the otoliths of individual fish revealed strong carry-over effects of larval condition at hatching on juvenile survival, weeks after settlement (i.e. smaller-is-better). Among the traits examined, planktonic growth history was, by far, the most influential and long-lasting trait associated with juvenile persistence in reef habitats. However, otolith increments suggested that larval growth rate may not be maintained during early juvenile life, when selective mortality swiftly reverses its direction. These changes in selective pressure may mediate growth-mortality trade-offs between predation and starvation risks during early juvenile life. Ontogenetic changes in the shape of selectivity may be a mechanism maintaining phenotypic variation in growth rate and size within a population.

  11. Falls, sarcopenia and growth in early life

    PubMed Central

    Sayer, Avan Aihie; Syddall, Holly E; Martin, Helen J; Dennison, Elaine M; Anderson, Frazer H; Cooper, Cyrus

    2007-01-01

    Recent studies have shown that people with poor early growth have an increased risk of sarcopenia. Sarcopenia is an important risk factor for falls but it is not known whether poor early growth is related to falls. We investigated this in the Hertfordshire Cohort Study where 2148 participants completed a falls history. Grip strength was used as a marker of sarcopenia. Birth weight, weight at one year and conditional infant growth were analysed in relation to falls history. The prevalence of any fall in the last year was 14.3% for men and 22.5% for women. Falls in the last year were inversely related to adult grip strength, height and walking speed in men and women as well as to lower conditional infant growth in men (OR 1.27 [95% CI 1.04, 1.56] per SD decrease in conditional infant growth, p=0.02). This association was attenuated after adjustment for grip strength. Our findings support an association between poor early growth and falls in older men which appears to be mediated partly through sarcopenia. The lack of relationship with birth weight suggests that postnatal rather than prenatal influences on muscle growth and development may be important for risk of falls in later life. PMID:16905644

  12. Phenology of larval fish in the St. Louis River estuary

    EPA Science Inventory

    Little work has been done on the phenology of fish larvae in Great Lakes coastal wetlands. As part of an aquatic invasive species early detection study, we conducted larval fish surveys in the St. Louis River estuary (SLRE) in 2012 and 2013. Using multiple gears in a spatially ba...

  13. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni

    NASA Astrophysics Data System (ADS)

    Criales, M. M.; Anger, K.

    1986-09-01

    Larvae of the shrimps Crangon crangon L. and C. allmanni Kinahan were reared in the laboratory from hatching through metamorphosis. Effects of rearing methods (larval density, application of streptomycin, food) and of salinity on larval development were tested only in C. crangon, influence of temperature was studied in both species. Best results were obtained when larvae were reared individually, with a mixture of Artemia sp. and the rotifer Brachionus plicatilis as food. Streptomycin had partly negative effects and was thus not adopted for standard rearing techniques. All factors tested in this study influenced not only the rates of larval survival and moulting, but also morphogenesis. In both species, in particular in C. crangon, a high degree of variability in larval morphology and in developmental pathways was observed. Unsuitable conditions, e.g. crowding in mass culture, application of antibiotics, unsuitable food (rotifers, phytoplankton), extreme temperatures and salinities, tend to increase the number of larval instars and of morphological forms. The frequency of moulting is controlled mainly by temperature. Regression equations describing the relations between the durations of larval instars and temperature are given for both Crangon species. The number of moults is a linear function of larval age and a power function of temperature. There is high variation in growth (measured as carapace length), moulting frequency, morphogenesis, and survival among hatches originating from different females. The interrelations between these different measures of larval development in shrimps and prawns are discussed.

  14. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which,more » at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the

  15. Regulation of early human growth: impact on long-term health.

    PubMed

    Koletzko, Berthold; Chourdakis, Michael; Grote, Veit; Hellmuth, Christian; Prell, Christine; Rzehak, Peter; Uhl, Olaf; Weber, Martina

    2014-01-01

    Growth and development are central characteristics of childhood. Deviations from normal growth can indicate serious health challenges. The adverse impact of early growth faltering and malnutrition on later health has long been known. In contrast, the impact of rapid early weight and body fat gain on programming of later disease risk have only recently received increased attention. Numerous observational studies related diet in early childhood and rapid early growth to the risk of later obesity and associated disorders. Causality was confirmed in a large, double-blind randomised trial testing the 'Early Protein Hypothesis'. In this trial we found that attenuation of protein supply in infancy normalized early growth and markedly reduced obesity prevalence in early school age. These results indicate the need to describe and analyse growth patterns and their regulation through diet in more detail and to characterize the underlying metabolic and epigenetic mechanisms, given the potential major relevance for public health and policy. Better understanding of growth patterns and their regulation could have major benefits for the promotion of public health, consumer-orientated nutrition recommendations, and the development of improved food products for specific target populations. © 2014 S. Karger AG, Basel.

  16. New records of larval stages of the eel cod genus Muraenolepis Günther 1880 (Gadiformes: Muraenolepididae) from the western Antarctic Peninsula.

    PubMed

    Konstantinidis, P; Hilton, E J; Matarese, A C

    2016-08-01

    Three newly discovered larval specimens of the genus Muraenolepis collected from the waters of the western Antarctic Peninsula are described. Knowledge of their natural history is sparse and information about their early life history is based on only a few larval stages. Here, the available literature on larval eel cods is reviewed, and the specimens placed in context. © 2016 The Fisheries Society of the British Isles.

  17. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila.

    PubMed

    Whon, Tae Woong; Shin, Na-Ri; Jung, Mi-Ja; Hyun, Dong-Wook; Kim, Hyun Sik; Kim, Pil Soo; Bae, Jin-Woo

    2017-12-01

    Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.

  18. Spatial and temporal variation in distribution of larval lake whitefish in eastern Lake Ontario: signs of recovery?

    USGS Publications Warehouse

    McKenna, J.E.; Johnson, J. H.

    2009-01-01

    The lake whitefish (Coregonus clupeaformis) is one of the native Lake Ontario fishes that declined severely over the past century. Recent evidence of larval lake whitefish production in a historic spawning area (Chaumont Bay) might signal a recovery of this species in New York waters. We surveyed coastal and open water areas to evaluate densities and estimate total abundance of larval lake whitefish in Chaumont Bay. Other historic spawning areas and embayments with appropriate spawning and nursery habitat were also surveyed, but only a few larvae were found outside of Chaumont Bay. Lake whitefish larvae were found in every embayment sampled within Chaumont Bay, with larval densities of nearly 600/1000 m2 in some samples. Greatest abundances occurred in the northern sectors and near the mouth of the bay. Open water densities were generally less than half that of nearshore sites. The total bay-wide estimate for 2005 was approximately 644,000 lake whitefish larvae, but dropped to 230,000–400,000 in 2006 and 2007, respectively. Mean larval growth rates (0.36 mm/day) did not differ by year, but were consistently higher in early May than in late April. Lake whitefish production in Chaumont Bay is encouraging for this species, but the cause and persistence of the decline after 2005 can be determined only by continued monitoring. Other possible bottlenecks of survival may exist at juvenile and adult stages and could significantly affect recruitment dynamics. This species is sensitive to normal climatic fluctuations and increased variability associated with global climatic change could make winter nursery conditions unfavorable for this species.

  19. Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus

    PubMed Central

    Padilla-Gamiño, Jacqueline L.; Kelly, Morgan W.; Evans, Tyler G.; Hofmann, Gretchen E.

    2013-01-01

    Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species. PMID:23536595

  20. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua)

    PubMed Central

    Nedelec, Sophie L.; Simpson, Stephen D.; Morley, Erica L.; Nedelec, Brendan; Radford, Andrew N.

    2015-01-01

    Anthropogenic noise impacts behaviour and physiology in many species, but responses could change with repeat exposures. As repeat exposures can vary in regularity, identifying regimes with less impact is important for regulation. We use a 16-day split-brood experiment to compare effects of regular and random acoustic noise (playbacks of recordings of ships), relative to ambient-noise controls, on behaviour, growth and development of larval Atlantic cod (Gadus morhua). Short-term noise caused startle responses in newly hatched fish, irrespective of rearing noise. Two days of both regular and random noise regimes reduced growth, while regular noise led to faster yolk sac use. After 16 days, growth in all three sound treatments converged, although fish exposed to regular noise had lower body width–length ratios. Larvae with lower body width–length ratios were easier to catch in a predator-avoidance experiment. Our results demonstrate that the timing of acoustic disturbances can impact survival-related measures during development. Much current work focuses on sound levels, but future studies should consider the role of noise regularity and its importance for noise management and mitigation measures. PMID:26468248

  1. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua).

    PubMed

    Nedelec, Sophie L; Simpson, Stephen D; Morley, Erica L; Nedelec, Brendan; Radford, Andrew N

    2015-10-22

    Anthropogenic noise impacts behaviour and physiology in many species, but responses could change with repeat exposures. As repeat exposures can vary in regularity, identifying regimes with less impact is important for regulation. We use a 16-day split-brood experiment to compare effects of regular and random acoustic noise (playbacks of recordings of ships), relative to ambient-noise controls, on behaviour, growth and development of larval Atlantic cod (Gadus morhua). Short-term noise caused startle responses in newly hatched fish, irrespective of rearing noise. Two days of both regular and random noise regimes reduced growth, while regular noise led to faster yolk sac use. After 16 days, growth in all three sound treatments converged, although fish exposed to regular noise had lower body width-length ratios. Larvae with lower body width-length ratios were easier to catch in a predator-avoidance experiment. Our results demonstrate that the timing of acoustic disturbances can impact survival-related measures during development. Much current work focuses on sound levels, but future studies should consider the role of noise regularity and its importance for noise management and mitigation measures. © 2015 The Authors.

  2. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    PubMed

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  3. Size and growth rate differences of larval Baltic sprat Sprattus sprattus collected with bongo and MIK nets.

    PubMed

    Fey, D P

    2015-01-01

    The effect of sampling with bongo (0·6 m diameter frame with 500 µm mesh) and Methot Isaac Kidd (MIK) (2 m diameter frame with 2 mm mesh finished with 500 µm codend) nets on standard length (LS ) range and growth rate differences was tested for larval Sprattus sprattus (n = 906, LS range: 7·0-34·5 mm) collected during four cruises in the summer months of 2006, 2007, 2009 and 2010 in the southern Baltic Sea. Although the minimum size of larvae collected with the bongo and MIK nets was similar in each cruise (from c. 7 to 9 mm), the MIK nets permitted collecting larger specimens (up to c. 34 mm) than the bongo nets did (up to c. 27 mm). The growth rates of larvae collected with the bongo and MIK nets (specimens of the same size range were compared for three cruises) were not statistically different (mean = 0·55 mm day(-1) , n = 788, LS range: 7·0-27·4 mm), which means the material collected with these two nets can be combined and growth rate results between them were compared. © 2014 The Fisheries Society of the British Isles.

  4. Adaptations to host infection and larval parasitism in Unionoida

    Treesearch

    Christopher M. Barnhart; Wendell R. Haag; William N. Roston

    2008-01-01

    Freshwater mussel larval parasitism of fish is unique among bivalves. The relationship is primarily phoretic rather than nutritive; only the smallest glochidia and the haustorial larva grow substantially while on the host. Growth of the smallest larvae suggests a lower functional size limit of -150 )um for the juvenile stage. Most Ambleminae, the most diverse North...

  5. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  6. Density-dependent coral recruitment displays divergent responses during distinct early life-history stages

    PubMed Central

    Evensen, Nicolas R.; Gómez-Lemos, Luis A.; Babcock, Russell C.

    2017-01-01

    Population growth involves demographic bottlenecks that regulate recruitment success during various early life-history stages. The success of each early life-history stage can vary in response to population density, interacting with intrinsic (e.g. behavioural) and environmental (e.g. competition, predation) factors. Here, we used the common reef-building coral Acropora millepora to investigate how density-dependence influences larval survival and settlement in laboratory experiments that isolated intrinsic effects, and post-settlement survival in a field experiment that examined interactions with environmental factors. Larval survival was exceptionally high (greater than 80%) and density-independent from 2.5 to 12 days following spawning. By contrast, there was a weak positive effect of larval density on settlement, driven by gregarious behaviour at the highest density. When larval supply was saturated, settlement was three times higher in crevices compared with exposed microhabitats, but a negative relationship between settler density and post-settlement survival in crevices and density-independent survival on exposed surfaces resulted in similar recruit densities just one month following settlement. Moreover, a negative relationship was found between turf algae and settler survival in crevices, whereas gregarious settlement improved settler survival on exposed surfaces. Overall, our findings reveal divergent responses by coral larvae and newly settled recruits to density-dependent regulation, mediated by intrinsic and environmental interactions. PMID:28573015

  7. Larval development to the first eighth zoeal stages in the deep-sea caridean shrimp Plesionika grandis Doflein, 1902 (Crustacea, Decapoda, Pandalidae).

    PubMed

    Jiang, Guo-Chen; Chan, Tin-Yam; Shih, Tung-Wei

    2017-01-01

    The larvae of the deep-sea pandalid shrimp Plesionika grandis Doflein, 1902 were successfully reared in the laboratory for the first time. The larvae reached the eighth zoeal stage in 36 days, both of which are longest records for the genus. Early larval stages of P. grandis bear the general characters of pandalid shrimps and differ from the other two species of Plesionika with larval morphology known in the number of spines on the anteroventral margin of carapace, number of tubercles on antennule, endopod segmentation in antenna, and third maxilliped setation. Although members in Plesionika are often separated into species groups, members of the same species group do not necessarily have similar early larval morphology. Since the zoea VIII of P. grandis still lacks pleopods and fifth pereiopod, this shrimp likely has at least 12 zoeal stages and a larval development of 120 days.

  8. Use of main channel and two backwater habitats by larval fishes in the Detroit River

    USGS Publications Warehouse

    McDonald, Erik A.; McNaught, A. Scott; Roseman, Edward F.

    2014-01-01

    Recent investigations in the Detroit River have revealed renewed spawning activity by several important fishes, but little is known about their early life history requirements. We surveyed two main channel and two backwater areas in the lower Detroit River weekly from May to July 2007 to assess habitat use by larval fishes. Backwater areas included a soft-sediment embayment (FI) and a hard-sediment area (HIW). Main channel sites were located adjacent to each backwater area. Water temperature, velocity and clarity measurements and zooplankton samples were collected weekly. A macrophyte assessment was conducted in July. Growth and diet of larval yellow perch (Perca flavescens), bluegill (Lepomis macrochirus) and round goby (Neogobius melanostomus) were used to assess habitat quality. Macrophyte diversity and percent cover were higher and velocity lower at FI than HIW. Although larval fish diversity was highest in the main channel, yellow perch and bluegill larvae only grew beyond the yolk stage at FI, where they preferentially selected copepods, while Daphnia were selected in the main channel. Round goby ate harpacticoid copepods and Daphnia and grew at similar rates in HIW and the main channel. These data indicate that FI was a valuable nursery area for yellow perch and bluegill, whereas HIW was better suited to round goby. We only assessed two backwater areas, thus a complete census of wetland areas in the Detroit River is needed to identify valuable habitats. Restoration of shallow backwater areas is essential for rehabilitating fish populations and should be a priority in the Detroit River.

  9. Foraging characteristics of larval bluegill sunfish and larval longear sunfish in the Kanawha River, West Virginia

    USGS Publications Warehouse

    Rider, S.J.; Margraf, F.J.

    1998-01-01

    We determined spatial and temporal foraging characteristics of larval bluegill sunfish (Lepomis macrochirus) and longear sunfish (Lepomis megalotis) in the upper Kanawha River, West Virginia during the summer of 1989. Stomach contents were examined among habitat types (i.e., main channel, main-channel border, and shoreline habitats) and depth (surface, middle, and bottom). Diet of larval bluegill sunfish was dominated by Chironomidae, temporally and spatially. Chironomidae dominated larval longear sunfish diet in main channel and main-channel border collections from all three depths. However, along the shoreline, larval longear sunfish diet was dominated by Cladocera.

  10. In vitro development of Strongylus edentatus to the fourth larval stage with notes on Strongylus vulgaris and Strongylus equinus.

    PubMed

    Farrar, R G; Klei, T R

    1985-08-01

    Strongylus edentatus was successfully cultured in vitro to the fourth larval stage (L4). Some growth continued for periods of 40-50 days at which time reductions in viability were observed in some of the culture systems tested. Various combinations of media, sera, buffers and organ explant cultures were tested. All cultures were incubated at 37 C in an atmosphere of 95% air and 5% CO2. Larvae underwent growth and differentiation to the L4 in all medium-serum combinations with and without organ explant cultures. Development and growth did occur but viability was reduced to insignificant levels in media without serum or cells. Optimal growth, differentiation, and longevity were observed in bicarbonate buffered RPMI-1640 containing 10% fetal calf serum and gerbil (Meriones unguiculatus) cecum explant cultures. Observations indicated that Strongylus vulgaris and Strongylus equinus also developed to the L4 stage using similar techniques. However, viability of S. vulgaris L4 was markedly limited. Specific morphological changes marked phases of development of S. edentatus, categorized as early, middle and late third stage, third molt and early fourth stage. Strongylus equinus appeared to follow the same developmental pattern in vitro as S. edentatus. Distinct differences in morphological features during differentiation were observed between S. edentatus and S. vulgaris.

  11. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands.

    PubMed

    Russell, Tanya L; Burkot, Thomas R; Bugoro, Hugo; Apairamo, Allan; Beebe, Nigel W; Chow, Weng K; Cooper, Robert D; Collins, Frank H; Lobo, Neil F

    2016-03-15

    There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm(2)) when compared with the lowest density (1 larva per 38 cm(2)). The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most

  12. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we

  13. Host-plant effects on larval survival of a salicin-using leaf beetle Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae).

    PubMed

    Rank, Nathan Egan

    1994-04-01

    Several species of willow leaf beetles use hostplant salicin to produce a defensive secretion that consists of salicylaldehyde. Generalist arthropod predators such as ants, ladybird beetles, and spiders are repelled by this secretion. The beetle larvae produce very little secretion when they feed on willows that lack salicylates, and salicin-using beetles prefer salicylate-rich willows over salicylate-poor ones. This preference may exist because the larvae are better defended against natural enemies on salicylate-rich willows. If this is true, the larvae should survive longer on those willows in nature. However, this prediction has not been tested. I determined the larval growth and survival of Chrysomela aeneicollis (Coleoptera: Chrysomelidae) on five willow species (Salix boothi, S. drummondiana, S. geyeriana, S. lutea, and S. orestera). These species differed in their salicylate chemistries and in leaf toughness but not in water content. The water content varied among the individual plants. Larval growth of C. aeneicollis did not differ among the five species in the laboratory, but it varied among the individual plants and it was related to the water content. In the field, C. aeneicollis larvae developed equally rapidly on the salicylate-poor S. lutea and on the salicylate-rich S. orestera. Larval survival was greater on S. orestera than on S. lutea in one year (1986), but there was no difference between them during three succeeding years. In another survivorship experiment, larval survival was low on the medium-salicylate S. geyeriana, but high on the salicylate-poor S. boothi and on S. orestera. Larval survival in the field was related to the larval growth and water content that had been previously measured in the laboratory. These results showed that the predicted relationship between the host plant chemistry and larval survival did not usually exist for C. aeneicollis. One possible reason for this was that the most important natural enemies were specialist

  14. Phylogenetic analyses of mode of larval development.

    PubMed

    Hart, M

    2000-12-01

    Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.

  15. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish.

    PubMed

    Talmage, Stephanie C; Gobler, Christopher J

    2010-10-05

    The combustion of fossil fuels has enriched levels of CO(2) in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO(3) shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO(2) concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenaria and Argopecten irradians). Larvae grown under near preindustrial CO(2) concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO(2) levels. Bivalves grown under near preindustrial CO(2) levels displayed thicker, more robust shells than individuals grown at present CO(2) concentrations, whereas bivalves exposed to CO(2) levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations.

  16. Foraging and predation risk for larval cisco (Coregonus artedi) in Lake Superior: a modelling synthesis of empirical survey data

    USGS Publications Warehouse

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Quinlan, Henry R.; Berglund, Eric K.

    2014-01-01

    The relative importance of predation and food availability as contributors to larval cisco (Coregonus artedi) mortality in Lake Superior were investigated using a visual foraging model to evaluate potential predation pressure by rainbow smelt (Osmerus mordax) and a bioenergetic model to evaluate potential starvation risk. The models were informed by observations of rainbow smelt, larval cisco, and zooplankton abundance at three Lake Superior locations during the period of spring larval cisco emergence and surface-oriented foraging. Predation risk was highest at Black Bay, ON, where average rainbow smelt densities in the uppermost 10 m of the water column were >1000 ha−1. Turbid conditions at the Twin Ports, WI-MN, affected larval cisco predation risk because rainbow smelt remained suspended in the upper water column during daylight, placing them alongside larval cisco during both day and night hours. Predation risk was low at Cornucopia, WI, owing to low smelt densities (<400 ha−1) and deep light penetration, which kept rainbow smelt near the lakebed and far from larvae during daylight. In situ zooplankton density estimates were low compared to the values used to develop the larval coregonid bioenergetics model, leading to predictions of negative growth rates for 10 mm larvae at all three locations. The model predicted that 15 mm larvae were capable of attaining positive growth at Cornucopia and the Twin Ports where low water temperatures (2–6 °C) decreased their metabolic costs. Larval prey resources were highest at Black Bay but warmer water temperatures there offset the benefit of increased prey availability. A sensitivity analysis performed on the rainbow smelt visual foraging model showed that it was relatively insensitive, while the coregonid bioenergetics model showed that the absolute growth rate predictions were highly sensitive to input parameters (i.e., 20% parameter perturbation led to order of magnitude differences in model estimates). Our

  17. Preferred larval fish habitat in a frontal zone of the northern Gulf of California during the early cyclonic phase of the seasonal circulation (June 2008)

    NASA Astrophysics Data System (ADS)

    Sánchez-Velasco, L.; Lavín, M. F.; Jiménez-Rosenberg, S. P. A.; Godínez, V. M.

    2014-01-01

    We analyze the larval fish habitats in the northern Gulf of California during the early stages of the cyclonic phase of the seasonally-reversing circulation (June 2008). The geostrophic current was cyclonic (~ 5-9 cm/s), and the pycnocline was slightly convex, suggesting a cyclonic eddy. The fish larvae distribution gradients showed four contiguous larval fish habitats: (i) A habitat located in the vertically well-mixed and most saline area of the Upper Gulf, which was dominated by the costal demersal species Anchoa spp. and Gobulus crescentalis. (ii) A habitat situated in the tidal-mixing frontal area on the south rim of the Upper Gulf, where the highest species number (> 50% of the study) and the highest larval fish abundance were found. In addition to the dominant species in the former habitat, larvae of Opisthonema sp. 1, Anisotremus davidsoni and Eucinostomus dowii also dominated this habitat. Their distribution suggests retention associated with the front. (iii) A third habitat was defined in the deep area adjacent to the tidal mixing front, which was influenced by the incipient cyclonic eddy. Larvae of Opisthonema sp. 1 and Etropus crossotus were dominant, but with low abundance and frequency. (iv) A fourth habitat was observed in the southern, deeper portion of the northern Gulf, with the lowest fish larvae abundance, and characterized by the exclusive dominance of species like Shyraena sp. 1 and Benthosema panamense. These results suggest that the tidal-mixing frontal area is the preferred habitat for spawning and larval nursing of the fish species that inhabit the region. This contrasts with the unfavorable habitats in the deeper areas, which is an unexpected result in view of the presence of the cyclonic eddy, which potentially could be highly productive. This indicates that caution should be exercised in predicting an ecosystem organization of richness based on oceanographic mesoscale structures.

  18. Larval feeding behavior and ant association in frosted elfin, Callophrys irus (Lycaenidae)

    USGS Publications Warehouse

    Albanese, G.; Nelson, M.W.; Vickery, P.D.; Sievert, P.R.

    2007-01-01

    Callophrys irus is a rare and declining lycaenid found in the eastern U.S., inhabiting xeric and open habitats maintained by disturbance. Populations are localized and monophagous. We document a previously undescribed larval feeding behavior in both field and lab reared larvae in which late instar larvae girdled the main stem of the host plant. Girdled stems provide a unique feeding sign that was useful in detecting the presence of larvae in the field. We also observed frequent association of field larvae with several species of ants and provide a list of ant species. We suggest two hypotheses on the potential benefits of stem-girdling to C. irus larvae: 1) Stem girdling provides phloem sap as a larval food source and increases the leaf nutrient concentration, increasing larval growth rates and providing high quality honeydew for attending ants; 2) Stem girdling reduces stem toxicity by inhibiting transport of toxins from roots to the stem.

  19. Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper.

    PubMed

    Negri, A P; Heyward, A J

    2001-02-01

    Fertilisation and larval metamorphosis of reef-building corals are important life history events leading to recruitment of juvenile corals to reef populations. Little is known of the sensitivity of these early life phases to pollution, or their relative susceptibility to certain toxicants compared with established coral colonies. Inhibition of fertilisation and larval metamorphosis of the coral Acropora millepora (Ehrenberg, 1834) was assessed in response to solutions of the antifoulants tributyltin (TBT) and copper (Cu) using laboratory-based bioassays. Nominal concentrations that inhibited 50% fertilisation and metamorphosis (IC50) were calculated from 4 h fertilisation and 24 h metamorphosis assays and were based on introduced dose. Cu was most potent towards fertilisation with an IC50 of 17.4 micrograms/l. TBT however, proved more toxic to larval metamorphosis having an IC50 of 2.0 micrograms/l. Inert surfaces coated with either Cu- or TBT-based antifouling paint also inhibited fertilisation and metamorphosis. The degree of inhibition was correlated with surface area of the paint coating. These results indicate fertilisation and metamorphosis of coral can be sensitive to active components of antifouling paints.

  20. Variation in food availability mediate the impact of density on cannibalism, growth, and survival in larval yellow spotted mountain newts (Neurergus microspilotus): Implications for captive breeding programs.

    PubMed

    Vaissi, Somaye; Sharifi, Mozafar

    2016-11-01

    In this study, we examined cannibalistic behavior, growth, metamorphosis, and survival in larval and post-metamorph endangered yellow spotted mountain newts Neurergus microspilotus hatched and reared in a captive breeding facility. We designed a 2 × 2 factorial experiment, crossing two levels of food with two levels of density including high food/high density, high food/low density, low food/high density, and low food/low density. The level of cannibalistic behavior (including the loss of fore and hind limbs, missing toes, tail, gills, body damage, and whole body consumption) changed as the larvae grew, from a low level during the first 4 weeks, peaking from weeks 7 to 12, and then dropped during weeks 14-52. Both food level and density had a significant effect on cannibalism. The highest frequency of cannibalism was recorded for larvae reared in the low food/high density and lowest in high food/low density treatments. Growth, percent of larval metamorphosed, and survival were all highest in the high food/low density and lowest in low food/high density treatment. Food level had a significant effect on growth, metamorphosis, and survival. However, the two levels of density did not influence growth and metamorphosis but showed a significant effect on survival. Similarly, combined effects of food level and density showed significant effects on growth, metamorphosis, and survival over time. Information obtained from current experiment could improve productivity of captive breeding facilities to ensure the release of adequate numbers of individuals for reintroduction programs. Zoo Biol. 35:513-521, 2016. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc.

  1. Exploration of the "larval pool": development and ground-truthing of a larval transport model off leeward Hawai'i.

    PubMed

    Wren, Johanna L K; Kobayashi, Donald R

    2016-01-01

    Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai'i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai'i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai'i, and the dispersal of larvae throughout the Hawaiian archipelago.

  2. Effect of bodily fluids from honey bee (Apis mellifera) larvae on growth and genome-wide transcriptional response of the causal agent of American Foulbrood disease (Paenibacillus larvae).

    PubMed

    De Smet, Lina; De Koker, Dieter; Hawley, Alyse K; Foster, Leonard J; De Vos, Paul; de Graaf, Dirk C

    2014-01-01

    Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Gram-positive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general down-regulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related genes. A theoretical mechanism of carbon catabolite repression is discussed.

  3. Morphological features to distinguish the larval stage of invasive Ruffe from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  4. Investigating phenology of larval fishes in St. Louis River estuary shallow water habitats

    EPA Science Inventory

    As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages acro...

  5. New biomarkers of post-settlement growth in the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Fadl, Alyaa Elsaid Abdelaziz; Mahfouz, Magdy Elsayed; El-Gamal, Mona Mabrouk Taha; Heyland, Andreas

    2017-10-01

    Some sea urchins, including the purple sea urchin Strongylocentrotus purpuratus, have been successfully used in aquaculture, but their slow growth and late reproduction are challenging to overcome when developing efficient aquaculture production techniques. S. purpuratus develops via an indirect life history that is characterized by a drastic settlement process at the end of a larval period that lasts for several weeks. During this transition, the bilateral larva is transformed into a pentaradial juvenile, which will start feeding and growing in the benthic habitat. Due to predation and other ecological factors, settlement is typically associated with high mortality rates in juvenile populations. Additionally, juveniles require several days to develop a functional mouth and digestive system. During this perimetamorphic period, juveniles use up larval resources until they are capable to digest adult food. Mechanisms underlying the onset of juvenile feeding and metabolism have implications for the recruitment of natural populations as well as aquaculture and are relatively poorly understood in S. purpuratus . The insulin/insulin-like growth factor signalling (IIS)/Target of Rapamycin (TOR) pathway (IIS/TOR) is well conserved among animal phyla and regulates physiological and developmental functions, such as growth, reproduction, aging and nutritional status. We analyzed the expression of FoxO, TOR, and ILPs in post-settlement juveniles in conjunction with their early growth trajectories. We also tested how pre-settlement starvation affected post-settlement expression of IIS. We found that FoxO provides a useful molecular marker in early juveniles as its expression is strongly correlated with juvenile growth. We also found that pre-settlement starvation affects juvenile growth trajectories as well as IIS. Our findings provide preliminary insights into the mechanisms underlying post-settlement growth and metabolism in S. purpuratus . They also have important

  6. A general theory of early growth?. Comment on: "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    House, Thomas

    2016-09-01

    Chowell et al. [1] consider the early growth behaviour of various epidemic models that range from phenomenological approaches driven by data to mechanistic descriptions of complex interactions between individuals. This is particularly timely given the recent Ebola epidemic, although non-exponential early growth may be more common (but less immediately evident) than we realise.

  7. Changes in protein expression during honey bee larval development.

    PubMed

    Chan, Queenie W T; Foster, Leonard J

    2008-10-29

    The honey bee (Apis mellifera), besides its role in pollination and honey production, serves as a model for studying the biochemistry of development, metabolism, and immunity in a social organism. Here we use mass spectrometry-based quantitative proteomics to quantify nearly 800 proteins during the 5- to 6-day larval developmental stage, tracking their expression profiles. We report that honey bee larval growth is marked by an age-correlated increase of protein transporters and receptors, as well as protein nutrient stores, while opposite trends in protein translation activity and turnover were observed. Levels of the immunity factors prophenoloxidase and apismin are positively correlated with development, while others surprisingly were not significantly age-regulated, suggesting a molecular explanation for why bees are susceptible to major age-associated bee bacterial infections such as American Foulbrood or fungal diseases such as chalkbrood. Previously unreported findings include the reduction of antioxidant and G proteins in aging larvae. These data have allowed us to integrate disparate findings in previous studies to build a model of metabolism and maturity of the immune system during larval development. This publicly accessible resource for protein expression trends will help generate new hypotheses in the increasingly important field of honey bee research.

  8. Effects of ocean acidification driven by elevated CO2 on larval shell growth and abnormal rates of the venerid clam, Mactra veneriformis

    NASA Astrophysics Data System (ADS)

    Kim, Jee-Hoon; Yu, Ok Hwan; Yang, Eun Jin; Kang, Sung-Ho; Kim, Won; Choy, Eun Jung

    2016-11-01

    The venerid clam ( Mactra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidification on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fissures. Specimens were incubated in seawater equilibrated with bubbled CO2-enriched air at (400±25)×10-6 (ambient control), (800±25)×10-6 (high pCO2), or (1 200±28)×10-6 (extremely high pCO2), the atmospheric CO2 concentrations predicted for the years 2014, 2084, and 2154 (70-year intervals; two human generations), respectively, in the Representative Concentration Pathway (RCP) 8.5 scenario. The mean shell lengths of larvae were significantly decreased in the high and extremely high pCO2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO2 conditions, the cultures exhibited significantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fissures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.

  9. A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity

    NASA Astrophysics Data System (ADS)

    Waldbusser, George G.; Brunner, Elizabeth L.; Haley, Brian A.; Hales, Burke; Langdon, Christopher J.; Prahl, Frederick G.

    2013-05-01

    Acidified waters are impacting commercial oyster production in the U.S. Pacific Northwest, and favorable carbonate chemistry conditions are predicted to become less frequent. Within 48 h of fertilization, unshelled Pacific oyster (Crassostrea gigas) larvae precipitate roughly 90% of their body weight as calcium carbonate. We measured stable carbon isotopes in larval shell and tissue and in algal food and seawater dissolved inorganic carbon in a longitudinal study of larval development and growth. Using these data and measured biochemical composition of larvae, we show that sensitivity of initial shell formation to ocean acidification results from diminished ability to isolate calcifying fluid from surrounding seawater, a limited energy budget and a strong kinetic demand for calcium carbonate precipitation. Our results highlight an important link between organism physiology and mineral kinetics in larval bivalves and suggest the consideration of mineral kinetics may improve understanding winners and losers in a high CO2 world.

  10. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae)

    USDA-ARS?s Scientific Manuscript database

    Rearing conditions, particularly the crowding of larvae, may have a significant impact on production efficiency of some insects produced commercially, such as Tenebrio molitor L. (Coleoptera: Tenebrionidae). Although larval densities are known to affect developmental time and growth in T. molitor, n...

  11. Embryonic, Larval, and Juvenile Development of the Sea Biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)

    PubMed Central

    Vellutini, Bruno C.; Migotto, Alvaro E.

    2010-01-01

    Sea biscuits and sand dollars diverged from other irregular echinoids approximately 55 million years ago and rapidly dispersed to oceans worldwide. A series of morphological changes were associated with the occupation of sand beds such as flattening of the body, shortening of primary spines, multiplication of podia, and retention of the lantern of Aristotle into adulthood. To investigate the developmental basis of such morphological changes we documented the ontogeny of Clypeaster subdepressus. We obtained gametes from adult specimens by KCl injection and raised the embryos at 26C. Ciliated blastulae hatched 7.5 h after sperm entry. During gastrulation the archenteron elongated continuously while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larvae began to feed in 3 d and were 20 d old at metamorphosis; starved larvae died 17 d after fertilization. Postlarval juveniles had neither mouth nor anus nor plates on the aboral side, except for the remnants of larval spicules, but their bilateral symmetry became evident after the resorption of larval tissues. Ossicles of the lantern were present and organized in 5 groups. Each group had 1 tooth, 2 demipyramids, and 2 epiphyses with a rotula in between. Early appendages consisted of 15 spines, 15 podia (2 types), and 5 sphaeridia. Podial types were distributed in accordance to Lovén's rule and the first podium of each ambulacrum was not encircled by the skeleton. Seven days after metamorphosis juveniles began to feed by rasping sand grains with the lantern. Juveniles survived in laboratory cultures for 9 months and died with wide, a single open sphaeridium per ambulacrum, aboral anus, and no differentiated food grooves or petaloids. Tracking the morphogenesis of early juveniles is a necessary step to elucidate the developmental mechanisms of echinoid growth and important groundwork to clarify homologies between irregular urchins. PMID:20339592

  12. Larval connectivity studies in the Western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Dubert, Jesus; Nolasco, Rita; Queiroga, Henrique

    2010-05-01

    The study of the connectivity between populations is one of the 'hot' applications of numerical models of the ocean circulation. An IBM (Individual Based model) was developed, using Carcinus manenas larvae crab as a model. A set of particles was used as a representation of larvae, in order to study their larval life cycle, including the larval growth, larval mortality (both depending on temperature and salinity), larval dispersal by currents, diel vertical migration, and larval recruitment. The life cycle of every larvae in the ocean, was modeled from zoeae 1 stage to megalopae stage, during typical periods of 30-50 days. Larvae were initialized in 14 estuarine systems of the Atlantic Western Iberian Peninsula, from January to July. In every period, a number of 225 larvae are initialized in everyone of the 14 considered estuaries, with fortynighly periodicity. The larvae evolves during the (variable, depending mainly on temperature) period of growth in the ocean, and when a larvae reach the age for recruit, if it is located in the neighborhood of the considered estuarine systems, the larvae is accounted as a recruited larvae in that place. With this methodology, a connectivity matrix can be computed, acconting for the 225 larvae emitted in every estuary, the number of larvae that reaches the every place. The connectivity matrix depends strongly on the current regime along the Atlantic coast of Iberian Peninsula, and has been calculated for the present circulation, for the period 2001 to 2009, for runs with realistic forcing with NCEP2 and Quikscat (for winds) forcing. The connectivity matrix, have also been calculated for climatological runs. For the present climatological conditions, it is observed the prevalence of southward transport for the period January-July, because the prevalence of Northerly winds along the west coast of IP in the COADS present time climatology. Strong dispersal is observed at the Northern estuaries, during winter with strong loss of

  13. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.

    PubMed

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A; Davis, Andrew R; Byrne, Maria

    2010-06-29

    As the oceans simultaneously warm, acidify and increase in P(CO2), prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. We examined the interactive effects of near-future ocean warming and increased acidification/P(CO2) on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P(CO2) treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P(CO2) and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P(CO2) treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth. This study of the effects of ocean warming and CO(2) driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P(CO2) ocean would likely impair their performance with negative consequent effects for benthic adult populations.

  14. Effects of temperature and food supply on the growth of whitefish Coregonus lavaretus larvae in an oligotrophic peri-alpine lake.

    PubMed

    Perrier, C; Molinero, J C; Gerdeaux, D; Anneville, O

    2012-10-01

    The relative roles of temperature and food availability on the seasonal and daily growth of whitefish Coregonus lavaretus larvae were investigated in the oligotrophic peri-alpine Lake Annecy, France. During the spring from 2004 to 2007, surface water temperature and density of potential zooplankton prey were monitored, and 2688 larvae were caught and measured. In addition, the daily growth of 130 larvae was estimated retrospectively by investigating the microstructure of their otoliths. Temperature played the predominant role in controlling both seasonal and daily growth of early larvae. In contrast, the abundance of Mesocyclops leuckarti and larval density was only slightly correlated to larval growth, suggesting no food limitation nor strong interindividual competition over the study period. Overall, these findings run counter to concerns about potential food limitation, but sound a warning about the potential impact of climate change on fish ecology and fisheries management. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  15. In situ measurement of Larval Salamander growth using individuals marked with acrylic polymers

    Treesearch

    Brent R. Johnson; J. Bruce Wallace

    2002-01-01

    Mark-recapture studies are often used to provide valuable life history information for animal populations. However, long-term marking of larval amphibians has been problematic because of their small size, delicate skin, and ability to regenerate tissues (Cecil and Just 1978; Donnelly et al. 1994; Seale and Boraas 1974). Procedures that have been used to mark larvae...

  16. Staggered larval time-to-hatch and insecticide resistance in the major malaria vector Anopheles gambiae S form.

    PubMed

    Kaiser, Maria L; Koekemoer, Lizette L; Coetzee, Maureen; Hunt, Richard H; Brooke, Basil D

    2010-12-14

    Anopheles gambiae is a major vector of malaria in the West African region. Resistance to multiple insecticides has been recorded in An. gambiae S form in the Ahafo region of Ghana. A laboratory population (GAH) established using wild material from this locality has enabled a mechanistic characterization of each resistance phenotype as well as an analysis of another adaptive characteristic - staggered larval time-to-hatch. Individual egg batches obtained from wild caught females collected from Ghana and the Republic of the Congo were monitored for staggered larval time-to-hatch. In addition, early and late larval time-to-hatch sub-colonies were selected from GAH. These selected sub-colonies were cross-mated and their hybrid progeny were subsequently intercrossed and back-crossed to the parental strains. The insecticide susceptibilities of the GAH base colony and the time-to-hatch selected sub-colonies were quantified for four insecticide classes using insecticide bioassays. Resistance phenotypes were mechanistically characterized using insecticide-synergist bioassays and diagnostic molecular assays for known reduced target-site sensitivity mutations. Anopheles gambiae GAH showed varying levels of resistance to all insecticide classes. Metabolic detoxification and reduced target-site sensitivity mechanisms were implicated. Most wild-caught families showed staggered larval time-to-hatch. However, some families were either exclusively early hatching or late hatching. Most GAH larvae hatched early but many egg batches contained a proportion of late hatching larvae. Crosses between the time-to-hatch selected sub-colonies yielded ambiguous results that did not fit any hypothetical models based on single-locus Mendelian inheritance. There was significant variation in the expression of insecticide resistance between the time-to-hatch phenotypes. An adaptive response to the presence of multiple insecticide classes necessarily involves the development of multiple resistance

  17. Recruitment phenology and pelagic larval duration in Caribbean amphidromous fishes

    USGS Publications Warehouse

    Engman, Augustin C.; Kwak, Thomas J.; Fischer, Jesse R.

    2017-01-01

    Amphidromous fishes are major components of oceanic tropical island stream ecosystems, such as those of the Caribbean island, Puerto Rico. Fishes with this life history face threats related to the requirement for connectivity between freshwater and marine environments during early life stages. Pelagic larval duration and recruitment phenology are 2 early life-history processes that are crucial for the biology, ecology, conservation, and management of amphidromous fishes. However, these processes are understudied in the Caribbean in general and have never been quantified in Puerto Rico. We quantified recruit abundance, recruitment phenology, and pelagic larval duration of several Caribbean amphidromous fish species in multiple rivers in Puerto Rico and explored the effects of environmental variables on recruit abundances. Two fish taxa—sirajo goby (Sicydium spp.) and River Goby (Awaous banana)—were exceptionally abundant as postlarvae and recruited to Caribbean rivers in pulsed migration episodes that were periodic at annual and lunar scales. Sirajo goby and River Goby recruit abundances varied among rivers, were greater at sunrise than at sunset, and were positively related to river discharge. The pelagic larval duration of 4 fish taxa ranged from a minimum of 28 d to a maximum of 103 d with means between 43 ± 7 d (SD) and 65 ± 11 d. We identified the last-quarter moon phase during the months of June through January as periods of maximum amphidromous fish recruitment to freshwater streams. The results and conclusions of our study can be applied to identify critical times to maintain river–ocean connectivity and stream flow for the benefit of the amphidromous fish population dynamics, stream ecology, and natural resources of the Caribbean.

  18. Development under elevated pCO2 conditions does not affect lipid utilization and protein content in early life-history stages of the purple sea urchin, Strongylocentrotus purpuratus.

    PubMed

    Matson, Paul G; Yu, Pauline C; Sewell, Mary A; Hofmann, Gretchen E

    2012-12-01

    Ocean acidification (OA) is expected to have a major impact on marine species, particularly during early life-history stages. These effects appear to be species-specific and may include reduced survival, altered morphology, and depressed metabolism. However, less information is available regarding the bioenergetics of development under elevated CO(2) conditions. We examined the biochemical and morphological responses of Strongylocentrotus purpuratus during early development under ecologically relevant levels of pCO(2) (365, 1030, and 1450 μatm) that may occur during intense upwelling events. The principal findings of this study were (1) lipid utilization rates and protein content in S. purpuratus did not vary with pCO(2); (2) larval growth was reduced at elevated pCO(2) despite similar rates of energy utilization; and (3) relationships between egg phospholipid content and larval length were found under control but not high pCO(2) conditions. These results suggest that this species may either prioritize endogenous energy toward development and physiological function at the expense of growth, or that reduced larval length may be strictly due to higher costs of growth under OA conditions. This study highlights the need to further expand our knowledge of the physiological mechanisms involved in OA response in order to better understand how present populations may respond to global environmental change.

  19. Stock size affects early growth of a loblolly pine

    Treesearch

    David B. South; Al Lyons; Russ Pohl

    2015-01-01

    For decades, forest researchers in the South have known that early gains in survival and growth of loblolly pine (Pinus taeda L.) can be achieved by planting large-diameter seedlings (South 1993; Wakeley 1949). For P. radiata, increasing size of planting stock also increases early growth of both seedlings (Mason and others 1996) and cuttings (South and others 2005)....

  20. The potential effects of pre-settlement processes on post-settlement growth and survival of juvenile northern rock sole (Lepidopsetta polyxystra) in Gulf of Alaska nursery habitats

    NASA Astrophysics Data System (ADS)

    Fedewa, Erin J.; Miller, Jessica A.; Hurst, Thomas P.; Jiang, Duo

    2017-04-01

    Early life history traits in marine fish such as growth, size, and timing of life history transitions often vary in response to environmental conditions. Identifying the potential effects of trait variation across life history stages is critical to understanding growth, recruitment, and survival. Juvenile northern rock sole (Lepidopsetta polyxystra) were collected (2005, 2007, 2009-2011) from two coastal nurseries in the Gulf of Alaska during the early post-settlement period (July-August) to examine variation in early life history traits in relation to water temperature and juvenile densities in nurseries as well as to evaluate the potential for carry-over effects. Size-at-hatch, larval growth, metamorphosis size and timing, and post-metamorphic and recent growth of juveniles were quantified using otolith structural analysis and compared across years and sites. Additionally, traits of fish caught in July and August were compared for evidence of selective mortality. Post-metamorphic and recent growth were related to temperatures in nurseries as well as temperatures during the larval period, indicating a direct influence of concurrent nursery temperatures and a potential indirect effect of thermal conditions experienced by larvae. Correlations between metamorphic traits and fish size at capture demonstrated that interannual variation in size persisted across life history stages regardless of post-settlement growth patterns. No evidence of density-dependent growth or growth-selective mortality were detected during the early post-settlement period; however, differences in hatch size and metamorphosis timing between fish collected in July and August indicate a selective loss of individuals although the pattern varied across years. Overall, variation in size acquired early in life and temperature effects on the phenology of metamorphosis may influence the direction of selection and survival of northern rock sole.

  1. Exposure to coal combustion residues during metamorphosis elevates corticosterone content and adversely affects oral morphology, growth, and development in Rana sphenocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.D.; Peterson, V.A.; Mendonca, M.T.

    Coal combustion residues (CCRs) are documented to negatively impact oral morphology, growth, and development in larval amphibians. It is currently unclear what physiological mechanisms may mediate these effects. Corticosterone, a glucocorticoid hormone, is a likely mediator because when administered exogenously it, like CCRs, also negatively influences oral morphology, growth, and development in larval amphibians. In an attempt to identify if corticosterone mediates these effects, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate and documented effects of sediment type on whole body corticosterone, oral morphology, and time to and mass at key metamorphic stages. Coalmore » combustion residue treated tadpoles contained significantly more corticosterone than controls throughout metamorphosis. However, significantly more oral abnormalities occurred early in metamorphosis when differences in corticosterone levels between treatments were minimal. Overall, CCR-treated tadpoles took significantly more time to transition between key stages and gained less mass between stages than controls, but these differences between treatments decreased during later stages when corticosterone differences between treatments were greatest. Our results suggest endogenous increase in corticosterone content and its influence on oral morphology, growth and development is more complex than previously thought.« less

  2. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth

    PubMed Central

    Beniash, E.; Aizenberg, J.; Addadi, L.; Weiner, S.

    1997-01-01

    Sea urchin larvae form an endoskeleton composed of a pair of spicules. For more than a century it has been stated that each spicule comprises a single crystal of the CaCO3 mineral, calcite. We show that an additional mineral phase, amorphous calcium carbonate, is present in the sea urchin larval spicule, and that this inherently unstable mineral transforms into calcite with time. This observation significantly changes our concepts of mineral formation in this well-studied organism.

  3. Evaluating sampling strategies for larval cisco (Coregonus artedi)

    USGS Publications Warehouse

    Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.

    2008-01-01

    To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.

  4. The role of internal waves in larval fish interactions with potential predators and prey

    NASA Astrophysics Data System (ADS)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy

    2014-09-01

    Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.

  5. Larval Connectivity and the International Management of Fisheries

    PubMed Central

    Kough, Andrew S.; Paris, Claire B.; Butler, Mark J.

    2013-01-01

    Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries. PMID:23762273

  6. Detecting larval export from marine reserves

    PubMed Central

    Pelc, R. A.; Warner, R. R.; Gaines, S. D.; Paris, C. B.

    2010-01-01

    Marine reserve theory suggests that where large, productive populations are protected within no-take marine reserves, fished areas outside reserves will benefit through the spillover of larvae produced in the reserves. However, empirical evidence for larval export has been sparse. Here we use a simple idealized coastline model to estimate the expected magnitude and spatial scale of larval export from no-take marine reserves across a range of reserve sizes and larval dispersal scales. Results suggest that, given the magnitude of increased production typically found in marine reserves, benefits from larval export are nearly always large enough to offset increased mortality outside marine reserves due to displaced fishing effort. However, the proportional increase in recruitment at sites outside reserves is typically small, particularly for species with long-distance (on the order of hundreds of kilometers) larval dispersal distances, making it very difficult to detect in field studies. Enhanced recruitment due to export may be detected by sampling several sites at an appropriate range of distances from reserves or at sites downcurrent of reserves in systems with directional dispersal. A review of existing empirical evidence confirms the model's suggestion that detecting export may be difficult without an exceptionally large differential in production, short-distance larval dispersal relative to reserve size, directional dispersal, or a sampling scheme that encompasses a broad range of distances from the reserves. PMID:20181570

  7. Survival and metamorphosis of larval sea lamprey (Petromyzon marinus) residing in Lakes Michigan and Huron near river mouths

    USGS Publications Warehouse

    Johnson, Nicholas S.; Brenden, Travis O.; Swink, William D.; Lipps, Mathew A.

    2016-01-01

    Although population demographics of larval lampreys in streams have been studied extensively, demographics in lake environments have not. Here, we estimated survival and rates of metamorphosis for larval sea lamprey (Petromyzon marinus) populations residing in the Great Lakes near river mouths (hereafter termed lentic areas). Tagged larvae were stocked and a Bayesian multi-state tag-recovery model was used to investigate population parameters associated with tag recovery, including survival and metamorphosis probabilities. Compared to previous studies of larvae in streams, larval growth in lentic areas was substantially slower (Brody growth coefficient = 0.00132; estimate based on the recovery of six tagged larvae), survival was slightly greater (annual survival = 63%), and the length at which 50% of the larvae would be expected to metamorphose was substantially shorter (126 mm). Stochastic simulations were used to estimate the production of parasitic stage (juvenile) sea lamprey from a hypothetical population of larvae in a lentic environment. Production of juvenile sea lamprey was substantial because, even though larval growth in these environments was slow relative to stream environments, survival was high and length at metamorphosis was less. However, estimated production of juvenile sea lamprey was less for the lentic environment than for similar simulations for river environments where larvae grew faster. In circumstances where the cost to kill a larva with lampricide was equal and control funds are limited, sea lamprey control effort may be best directed toward larvae in streams with fast-growing larvae, because stream-produced larvae will most likely contribute to juvenile sea lamprey populations.

  8. Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    PubMed Central

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A.; Davis, Andrew R.; Byrne, Maria

    2010-01-01

    Background As the oceans simultaneously warm, acidify and increase in P CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. Methodology/Principal Findings We examined the interactive effects of near-future ocean warming and increased acidification/P CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/P CO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth. Conclusions and Significance This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations. PMID:20613879

  9. The Implications of Temperature-Mediated Plasticity in Larval Instar Number for Development within a Marine Invertebrate, the Shrimp Palaemonetes varians

    PubMed Central

    Oliphant, Andrew; Hauton, Chris; Thatje, Sven

    2013-01-01

    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30°C to assess their thermal scope for development. Larvae developed at 17, 25, and 30°C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as ‘repeat’ instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25°C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20°C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of

  10. The implications of temperature-mediated plasticity in larval instar number for development within a marine invertebrate, the shrimp Palaemonetes varians.

    PubMed

    Oliphant, Andrew; Hauton, Chris; Thatje, Sven

    2013-01-01

    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30 °C to assess their thermal scope for development. Larvae developed at 17, 25, and 30 °C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as 'repeat' instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25 °C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20 °C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of

  11. Transcriptomic profile of leg muscle during early growth in chicken

    PubMed Central

    Zhang, Genxi; Li, Tingting; Ling, Jiaojiao; Zhang, Xiangqian; Wang, Jinyu

    2017-01-01

    The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development. PMID:28291821

  12. The potential of ocean acidification on suppressing larval development in the Pacific oyster Crassostrea gigas and blood cockle Arca inflata Reeve

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; Jiang, Zengjie; Zhang, Jihong; Mao, Yuze; Bian, Dapeng; Fang, Jianguang

    2014-11-01

    We evaluated the effect of pH on larval development in larval Pacific oyster ( Crassostrea gigas) and blood cockle ( Arca inflata Reeve). The larvae were reared at pH 8.2 (control), 7.9, 7.6, or 7.3 beginning 30 min or 24 h post fertilization. Exposure to lower pH during early embryonic development inhibited larval shell formation in both species. Compared with the control, larvae took longer to reach the D-veliger stage when reared under pH 7.6 and 7.3. Exposure to lower pH immediately after fertilization resulted in significantly delayed shell formation in the Pacific oyster larvae at pH 7.3 and blood cockle larvae at pH 7.6 and 7.3. However, when exposure was delayed until 24 h post fertilization, shell formation was only inhibited in blood cockle larvae reared at pH 7.3. Thus, the early embryonic stages were more sensitive to acidified conditions. Our results suggest that ocean acidification will have an adverse effect on embryonic development in bivalves. Although the effects appear subtle, they may accumulate and lead to subsequent issues during later larval development.

  13. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.

    PubMed

    Byrne, Maria; Ho, Melanie A; Koleits, Lucas; Price, Casandra; King, Catherine K; Virtue, Patti; Tilbrook, Bronte; Lamare, Miles

    2013-07-01

    Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: -1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, -0.2-0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20-28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8-19% decrease in PO length at pH 7.6-7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left-right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable

  14. Morphological features to distinguish the larval stage of invasive Ruffe (Gymnocephalus cernuus) from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  15. Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development.

    PubMed

    Xia, Jian-Hong; Liu, Jing-Xia; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2008-01-01

    Apo-14 is a fish-specific apolipoprotein and its biological function remains unknown. In this study, CagApo-14 was cloned from gibel carp (Carassius auratus gibelio) and its expression pattern was investigated during embryogenesis and early larval development. The CagApo-14 transcript and its protein product were firstly localized in the yolk syncytial layer at a high level during embryogenesis, and then found to be restricted to the digestive system including liver and intestine in later embryos and early larvae. Immunofluorescence staining in larvae and adults indicated that Cag Apo-14 protein was predominantly synthesized in and excreted from sinusoidal endothelial cells of liver tissue. Morpholino knockdown of Cag Apo-14 resulted in severe disruption of digestive organs including liver, intestine, pancreas and swim bladder. Moreover, yolk lipid transportation and utilization were severely affected in the Cag Apo-14 morphants. Overall, this data indicates that Cag Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development.

  16. Predator-induced larval cloning in the sand dollar Dendraster excentricus: might mothers matter?

    PubMed

    Vaughn, Dawn

    2009-10-01

    Predator-induced cloning in echinoid larvae, with reduced size a consequence of cloning, is a dramatic modification of development and a novel response to risks associated with prolonged planktonic development. Recent laboratory studies demonstrate that exposure to stimuli from predators (i.e., fish mucus) induces cloning in the pluteus larvae (plutei) of Dendraster excentricus. However, the timing and incidence of cloning and size reduction of unrelated conspecific plutei differed across experiments. A variable cloning response suggests the effects of such factors as cue quality, egg provisioning, maternal experience, and genetic background, indicating that the potential advantages of cloning as an adaptive response to predators are not available to all larvae. This study tested the hypothesis that cloning in D. excentricus plutei is maternally influenced. Plutei from three half-sibling larval families (different mothers, same father) were exposed to fish mucus for 9 days during early development. Cloning was inferred in a percentage of plutei from each family; however, the rate and success of cloning differed significantly among the larval half-siblings. Unexpectedly, all mucus-treated plutei were smaller and developmentally delayed when compared to all plutei reared in the absence of a mucus stimulus. Thus, while the results from this study support the hypothesis of an influence of mothers on cloning of larval offspring, reduced larval size was a uniform response to fish mucus and did not indicate an effect of mothers. Hypotheses of the developmental effects of fish mucus on larval size with or without successful cloning are discussed.

  17. Determination of the efficiency of diets for larval development in mass rearing Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gunathilaka, P A D H N; Uduwawala, U M H U; Udayanga, N W B A L; Ranathunge, R M T B; Amarasinghe, L D; Abeyewickreme, W

    2017-11-23

    Larval diet quality and rearing conditions have a direct and irreversible effect on adult traits. Therefore, the current study was carried out to optimize the larval diet for mass rearing of Aedes aegypti, for Sterile Insect Technique (SIT)-based applications in Sri Lanka. Five batches of 750 first instar larvae (L 1) of Ae. aegypti were exposed to five different concentrations (2-10%) of International Atomic Energy Agency (IAEA) recommended the larval diet. Morphological development parameters of larva, pupa, and adult were detected at 24 h intervals along with selected growth parameters. Each experiment was replicated five times. General Linear Modeling along with Pearson's correlation analysis were used for statistical treatments. Significant differences (P < 0.05) among the larvae treated with different concentrations were found using General Linear Modeling in all the stages namely: total body length and the thoracic length of larvae; cephalothoracic length and width of pupae; thoracic length, thoracic width, abdominal length and the wing length of adults; along with pupation rate and success, sex ratio, adult success, fecundity and hatching rate of Ae. aegypti. The best quality adults can be produced at larval diet concentration of 10%. However, the 8% larval diet concentration was most suitable for adult male survival.

  18. Sildenafil citrate therapy for severe early-onset intrauterine growth restriction.

    PubMed

    von Dadelszen, P; Dwinnell, S; Magee, L A; Carleton, B C; Gruslin, A; Lee, B; Lim, K I; Liston, R M; Miller, S P; Rurak, D; Sherlock, R L; Skoll, M A; Wareing, M M; Baker, P N

    2011-04-01

    Sildenafil citrate therapy for severe early-onset intrauterine growth restriction. BJOG 2011;118:624-628. Currently, there is no effective therapy for severe early-onset intrauterine growth restriction (IUGR). Sildenafil citrate vasodilates the myometrial arteries isolated from women with IUGR-complicated pregnancies. Women were offered Sildenafil (25 mg three times daily until delivery) if their pregnancy was complicated by early-onset IUGR [abdominal circumference (AC)< 5th percentile] and either the gestational age was <25(+0) weeks or an estimate of the fetal weight was <600 g (excluding known fetal anomaly/syndrome and/or planned termination). Sildenafil treatment was associated with increased fetal AC growth [odds ratio, 12.9; 95% confidence interval (CI), 1.3, 126; compared with institutional Sildenafil-naive early-onset IUGR controls]. Randomised controlled trial data are required to determine whether Sildenafil improves perinatal outcomes for early-onset IUGR-complicated pregnancies. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.

  19. Potential exposure of larval and juvenile delta smelt to dissolved pesticides in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Kuivila, K.M.; Moon, G.E.

    2004-01-01

    The San Francisco Estuary is critical habitat for delta smelt Hypomesus transpacificus, a fish whose abundance has declined greatly since 1983 and is now listed as threatened. In addition, the estuary receives drainage from the Central Valley, an urban and agricultural region with intense and diverse pesticide usage. One possible factor of the delta smelt population decline is pesticide toxicity during vulnerable larval and juvenile stages, but pesticide concentrations are not well characterized in delta smelt spawning and nursery habitat. The objective of this study was to estimate the potential exposure of delta smelt during their early life stages to dissolved pesticides. For 3 years (1998-2000), water samples from the Sacramento-San Joaquin Delta were collected during April-June in coordination with the California Department of Fish and Game's delta smelt early life stage monitoring program. Samples were analyzed for pesticides using solid-phase extraction and gas chromatography/mass spectrometry. Water samples contained multiple pesticides, ranging from 2 to 14 pesticides in each sample. In both 1999 and 2000, elevated concentrations of pesticides overlapped in time and space with peak densities of larval and juvenile delta smelt. In contrast, high spring outflows in 1998 transported delta smelt away from the pesticide sampling sites so that exposure could not be estimated. During 2 years, larval and juvenile delta smelt were potentially exposed to a complex mixture of pesticides for a minimum of 2-3 weeks. Although the measured concentrations were well below short-term (96-h) LC50 values for individual pesticides, the combination of multiple pesticides and lengthy exposure duration could potentially have lethal or sublethal effects on delta smelt, especially during early larval development.

  20. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    PubMed

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  1. Mathematical models to characterize early epidemic growth: A Review

    PubMed Central

    Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile

    2016-01-01

    There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa. PMID:27451336

  2. Mathematical models to characterize early epidemic growth: A review

    NASA Astrophysics Data System (ADS)

    Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile

    2016-09-01

    There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-2015 Ebola epidemic in West Africa.

  3. Behavioral and physiological responses to prey match-mismatch in larval herring

    NASA Astrophysics Data System (ADS)

    Illing, Björn; Moyano, Marta; Berg, Julia; Hufnagl, Marc; Peck, Myron A.

    2018-02-01

    The year-class success of Atlantic herring (Clupea harengus) spawning in the autumn/winter in the North Sea (NSAS stock) and in the spring in the western Baltic Sea (WBSS) appears driven by prey match-mismatch dynamics affecting the survival of larvae during the first weeks of life. To better understand and model the consequences of prey match-mismatch from an individual-based perspective, we measured aspects of the physiology and behavior of NSAS and WBSS herring larvae foraging in markedly different prey concentrations. When matched with prey (ad libitum concentrations of the copepod Acartia tonsa) larval growth, swimming activity, nutritional condition and metabolic rates were relatively high. When prey was absent (mismatch), swimming and feeding behavior rapidly declined within 2 and 4 days, for WBSS and NSAS larvae, respectively, concomitant with reductions in nutritional (RNA-DNA ratio) and somatic (weight-at-length) condition. After several days without prey, respiration measurements made on WBSS larvae suggested metabolic down-regulation (8-34%). An individual-based model depicting the time course of these Behavioral and physiological responses suggested that 25-mm larvae experiencing a mismatch would survive 25-33% (10, 7 °C) longer than 12-mm larvae. Warmer temperatures exacerbate starvation-induced decrements in performance. Without Behavioral and metabolic adjustments, survival of 25-mm larvae would be reduced from 8 to 6 days at 7 °C. Our findings highlight how adaptive Behavioral and physiological responses are tightly linked to prey match-mismatch dynamics in larval herring and how these responses can be included in models to better explore how bottom-up processes regulate larval fish growth and survival.

  4. Sampling uncharted waters: Examining rearing habitat of larval Longfin Smelt (Spirinchus thaleichthys) in the upper San Francisco Estuary

    USGS Publications Warehouse

    Grimaldo, Lenny; Feyrer, Frederick; Burns, Jillian; Maniscalco, Donna

    2017-01-01

    The southern-most reproducing Longfin Smelt population occurs in the San Francisco Estuary, California, USA. Long-term monitoring of estuarine habitat for this species has generally only considered deep channels, with little known of the role shallow waters play in supporting their early life stage. To address the need for focused research on shallow-water habitat, a targeted study of Longfin Smelt larvae in littoral habitat was conducted to identify potential rearing habitats during 2013 and 2014. Our study objectives were to (1) determine if larval densities vary between littoral habitats (tidal slough vs. open-water shoal), (2) determine how larval densities in littoral habitats vary with physicochemical and biological attributes, (3) determine if larval densities vary between littoral habitats and long-term monitoring channel collections, and (4) determine what factors predict larval rearing distributions from the long-term monitoring channel collections. Larval densities did not vary between littoral habitats but they did vary between years. Water temperature, salinity, and chlorophyll a were found important in predicting larval densities in littoral habitats. Larval densities do not vary between littoral and channel surveys; however, the analysis based on channel data suggests that Longfin Smelt are hatching and rearing in a much broader region and under higher salinities (∼2–12 psu) than previously recognized. Results of this study indicate that conservation efforts should consider how freshwater flow, habitat, climate, and food webs interact as mechanisms that influence Longfin Smelt recruitment in estuarine environments.

  5. Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation.

    PubMed

    Salze, G; Craig, S R; Smith, B H; Smith, E P; McLean, E

    2011-05-01

    The morphological development of larval cobia Rachycentron canadum from 3 days post hatch (dph) until weaning (27 dph) was examined using S.E.M. Two groups of fish were studied: a control group (CF), reared under standard feeding protocol, and a group in which prey items were enriched with supplemental taurine (4 g l(-1) day(-1) ; TF). TF fish grew faster (P < 0·001), attained greater size (mean ±s.e. 55·1 ± 1·5 v. 33·9 ± 1·0 mm total length) and had better survival (mean ±s.e. 29·3 ± 0·4 v. 7·1 ± 1·2 %) than CF fish. Canonical variance analysis confirmed findings with respect to differences in growth between the treatment groups with separation being explained by two cranial measurements. S.E.M. revealed that 3 dph larvae of R. canadum (in both groups) possess preopercular spines, superficial neuromasts on the head and body, taste buds in the mouth, an olfactory epithelium which takes the form of simple concave depressions, and primordial gill arches. Gill filaments start to form as early as 6 dph and lamellae buds are visible at 8 dph in both groups. In CF fish, the cephalic lateral line system continues its development at 12-14 dph with invagination of both supra- and infraorbital canals. At the same time, a thorn-like or acanthoid crest forms above the eye. At 14 dph, invaginations of the mandibular and preopercular canals are visible and around 22 dph enclosure of all cranial canals nears completion. In CF larvae, however, completely enclosed cranial canals were not observed within the course of the trial, i.e. 27 dph. In TF larvae, grooves of the cephalic lateral line system form 4 days earlier than observed in CF larvae of R. canadum (i.e. at 8 dph), with enclosure commencing at 16 dph, and completed by 27 dph. Along the flanks of 6 dph larvae of either treatment, four to five equally spaced neuromasts delineate the future position of the trunk lateral line. As myomeres are added to the growing larvae, new neuromasts appear such that at 16 dph

  6. Effects of temperature and salinity on larval survival and development in the invasive shrimp Palaemon macrodactylus (Caridea: Palaemonidae) along the reproductive season

    NASA Astrophysics Data System (ADS)

    Guadalupe Vázquez, M.; Bas, Claudia C.; Kittlein, Marcelo; Spivak, Eduardo D.

    2015-05-01

    The invasive shrimp Palaemon macrodactylus is associated mainly with brackish waters. Previous studies raised the question if tolerance to low salinities differs between larvae and adults. To answer this question, the combined effects of two temperatures (20 and 25 °C) and four salinities (5, 12, 23 and 34 psu) on survival and development of larvae that hatched at the beginning, in the midpoint and near the end of a reproductive season (denoted early, middle season and late larvae respectively) were examined. The three types of larvae were able to survive and reach juvenile phase at salinities between 12 and 34 psu and at both temperatures. At 5 psu all larvae died, but 45% molted at least once. Temperature and salinity to a lesser extent, had effects on the duration of development and on the number of larval stages in all larval types. Development was longer at the lower temperature, especially in middle season and late larvae. Most early larvae reached the juvenile phase through 5 larval stages; the number of larval stages of middle season and late larvae was higher at 20 °C and in late larvae also low salinity produced extra stages. Low salinity (12 psu) and, in early and middle season larvae, low temperature produced lighter and smaller individuals. Response of larvae to environmental factors seems to be related in part to the previous conditions (maternal effects and/or embryo development conditions). The narrower salinity tolerance of larvae compared to adults and the ability of zoea I to survive at least some days at 5 psu may be related with an export larval strategy.

  7. Diet composition of larval and young-of-year shovelnose sturgeon in the Upper Missouri River

    USGS Publications Warehouse

    Braaten, P. J.; Fuller, D.B.; McClenning, N.D.

    2007-01-01

    Obtaining food following the transition from endogenous to exogenous feeding and during the first year of life is a critical event that strongly influences growth and survival of young-of-year fishes. For shovelnose sturgeon Scaphirhynchus platorynchus, limited information is available on food habits during the first year of life. The objective of this study was to quantify diet components of shovelnose sturgeon during the transition from endogenous to exogenous feeding and during the young-of-year life stage in the North Dakota and Montana portions of the Missouri River. Young-of-year shovelnose sturgeon were sampled between early August and early September 2003. Shovelnose sturgeon initiated exogenous feeding by 16 mm, and individuals 16–140 mm fed exclusively on two macroinvertebrate orders (Diptera and Ephemeroptera). Young-of-year shovelnose sturgeon exhibited an apparently high feeding success as 99 of 100 individuals contained food in the gut. The number of organisms in the gut increased exponentially with fish length for larval Diptera (r2 = 0.73, P < 0.0001) and linearly (r2 = 0.12, P = 0.0006) for larval Ephemeroptera, but the number of Diptera pupae in the gut was not significantly related (P = 0.55) to length of young-of-year shovelnose sturgeon. The length of ingested prey was linearly related to fish length for Diptera larvae (r2 = 0.20, P = 0.002), whereas the relationship between lengths of ingested Ephemeroptera larvae and lengths of young-of-year shovelnose sturgeon was best described by a power function (r2 = 0.50, P < 0.0001). These results provide the first quantification of feeding dynamics for young-of-year shovelnose sturgeon in a natural river environment.

  8. Larval Survival and Growth of Emerald Ash Borer (Coleoptera: Buprestidae) on White Ash and White Fringetree Saplings Under Well-Watered and Water-Deficit Conditions.

    PubMed

    Rutledge, Claire E; Arango-Velez, Adriana

    2017-04-01

    Emerald ash borer (Agrilus planipennis Fairmaire) was recently found on a novel host in North America, white fringetree (Chionanthus virginicus L.) (Oleaceae). In this study, we artificially infested 4-yr-old, naïve white fringetree and white ash (Fraxinus americana L.) saplings under well-watered and water-deficit conditions with emerald ash borer eggs. We used physiological and phenotypical approaches to investigate both plant response to emerald ash borer and insect development at 21, 36, and 61 d postinfestation. Photosynthesis was reduced in both tree species by larval feeding, but not by water deficits. Emerald ash borer larvae established and survived successfully on white ash. Both establishment and survival were lower on white fringetree than on white ash. Larvae were larger, and had reached higher instars at all three time points on white ash than on white fringetrees. Larvae grew faster in white ash under water-deficit conditions; however, water-deficit conditions negatively impacted survival of larvae at 61 d postinfestation in white fringetrees, although head size did not differ among surviving larvae. White ash showed higher callus formation in well-watered trees, but no impact on larval survival was observed. In white fringetree, callus formation was not affected by water treatment, and was inversely related to larval survival. The higher rate of mortality and slow growth rate of larvae in white fringetree as compared to white ash suggest that populations of emerald ash borer may be sustained by white fringetree, but may grow more slowly than in white ash. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The Early Growth of the First Black Holes

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  10. [Early childhood growth and development].

    PubMed

    Arce, Melitón

    2015-01-01

    This article describes and discusses issues related to the process of childhood growth and development, with emphasis on the early years, a period in which this process reaches critical speed on major structures and functions of the human economy. We reaffirm that this can contribute to the social availability of a generation of increasingly better adults, which in turn will be able to contribute to building a better world and within it a society that enjoys greater prosperity. In the first chapter, we discuss the general considerations on the favorable evolution of human society based on quality of future adults, meaning the accomplishments that today’s children will gain. A second chapter mentions the basics of growth and development in the different fields and the various phenomena that occur in it. In the third we refer to lost opportunities and negative factors that can affect delaying the process and thereby result in not obtaining the expected accomplishments. In the fourth, conclusions and recommendations are presented confirming the initial conception that good early child care serves to build a better society and some recommendations are formulated to make it a good practice.

  11. Effects of light conditions and temperature gradients on vertical migration behavior of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma)

    NASA Astrophysics Data System (ADS)

    Flanders, K. R.; Laurel, B.

    2016-02-01

    Early life stages of marine fishes must maximize growth while minimizing vulnerability to predators. Larval stages in particular are subject to ocean currents, but encounter favorable habitats by adjusting their vertical position in the water column. The investigation of environmental cues that change larval fish behavior is therefore crucial to understanding larval drift and dispersal modeling, and subsequently population structure and connectivity. In this study, the behavioral responses of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma) in a vertical water column were examined. Two prominent environmental variables, light and temperature, were manipulated over 3 h during observational trials. Light intensity was studied at two levels (1.484 x 101 μE m-2 s-1 ; 2.54 x102 μE m-2 s-1), and a diel effect was studied through the removal of light after 2 h. Light intensity did not significantly impact the position of either species in a vertical water column. However, a significant difference by species was apparent when all light levels were considered: the mean position of Arctic cod was closer to the surface of the water than that of walleye pollock. The effect of temperature through the introduction of a thermocline (range 5.6°C - 1.5°C) was limited to walleye pollock given the Arctic cod larvae were surface oriented across all light treatments. However, the thermocline did not significantly impact the relative change in position from light to dark in walleye pollock, likely because they were also surface oriented in control treatments. These results could be incorporated into future larval dispersal and survival models, particularly in Alaskan and Arctic waters, to investigate changes in species distributions resulting from global warming impacts. These results also indicate population structures of Arctic cod and walleye pollock could be affected, which may be reflected in ecosystem and trophic interactions. Because Arctic cod

  12. Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth.

    PubMed

    Liu, Jinwen; Hai, Guanghui; Wang, Chong; Cao, Shenquan; Xu, Wenjing; Jia, Zhigang; Yang, Chuanping; Wang, Jack P; Dai, Shaojun; Cheng, Yuxiang

    2015-08-03

    Wood is derived from the secondary growth of tree stems. In this study, we investigated the global changes of protein abundance in Populus early stems using a proteomic approach. Morphological and histochemical analyses revealed three typical stages during Populus early stems, which were the primary growth stage, the transition stage from primary to secondary growth and the secondary growth stage. A total of 231 spots were differentially abundant during various growth stages of Populus early stems. During Populus early stem lignifications, 87 differential spots continuously increased, while 49 spots continuously decreased. These two categories encompass 58.9% of all differential spots, which suggests significant molecular changes from primary to secondary growth. Among 231 spots, 165 unique proteins were identified using LC-ESI-Q-TOF-MS, which were classified into 14 biological function groups. The proteomic characteristics indicated that carbohydrate metabolism, oxido-reduction, protein degradation and secondary cell wall metabolism were the dominantly occurring biochemical processes during Populus early stem development. This study helps in elucidating biochemical processes and identifies potential wood formation-related proteins during tree early stem development. It is a comprehensive proteomic investigation on tree early stem development that, for the first time, reveals the overall molecular networks that occur during Populus early stem lignifications. Copyright © 2015. Published by Elsevier B.V.

  13. Similarities and Differences for Swimming in Larval and Adult Lampreys.

    PubMed

    McClellan, Andrew D; Pale, Timothée; Messina, J Alex; Buso, Scott; Shebib, Ahmad

    2016-01-01

    The spinal locomotor networks controlling swimming behavior in larval and adult lampreys may have some important differences. As an initial step in comparing the locomotor systems in lampreys, in larval animals the relative timing of locomotor movements and muscle burst activity were determined and compared to those previously published for adults. In addition, the kinematics for free swimming in larval and adult lampreys was compared in detail for the first time. First, for swimming in larval animals, the neuromechanical phase lag between the onsets or terminations of muscle burst activity and maximum concave curvature of the body increased with increasing distance along the body, similar to that previously shown in adults. Second, in larval lampreys, but not adults, absolute swimming speed (U; mm s(-1)) increased with animal length (L). In contrast, normalized swimming speed (U'; body lengths [bl] s(-1)) did not increase with L in larval or adult animals. In both larval and adult lampreys, U' and normalized wave speed (V') increased with increasing tail-beat frequency. Wavelength and mechanical phase lag did not vary significantly with tail-beat frequency but were significantly different in larval and adult animals. Swimming in larval animals was characterized by a smaller U/V ratio, Froude efficiency, and Strouhal number than in adults, suggesting less efficient swimming for larval animals. In addition, during swimming in larval lampreys, normalized lateral head movements were larger and normalized lateral tail movements were smaller than for adults. Finally, larval animals had proportionally smaller lateral surface areas of the caudal body and fin areas than adults. These differences are well suited for larval sea lampreys that spend most of the time buried in mud/sand, in which swimming efficiency is not critical, compared to adults that would experience significant selection pressure to evolve higher-efficiency swimming to catch up to and attach to fish for

  14. Acquisition of Borrelia burgdorferi infection by larval Ixodes scapularis (Acari: Ixodidae) associated with engorgement measures

    USGS Publications Warehouse

    Couret, Janelle; Dyer, M.C.; Mather, T.N.; Han, S.; Tsao, J.I.; LeBrun, R.A.; Ginsberg, Howard

    2017-01-01

    Measuring rates of acquisition of the Lyme disease pathogen, Borrelia burgdorferi sensu lato Johnson, Schmid, Hyde, Steigerwalt & Brenner, by the larval stage of Ixodes scapularis Say is a useful tool for xenodiagnoses of B. burgdorferi in vertebrate hosts. In the nymphal and adult stages of I. scapularis, the duration of attachment to hosts has been shown to predict both body engorgement during blood feeding and the timing of infection with B. burgdorferi. However, these relationships have not been established for the larval stage of I. scapularis. We sought to establish the relationship between body size during engorgement of larval I. scapularis placed on B. burgdorferi-infected, white-footed mice (Peromyscus leucopus Rafinesque) and the presence or absence of infection in larvae sampled from hosts over time. Body size, time, and their interaction were the best predictors of larval infection with B. burgdorferi. We found that infected larvae showed significantly greater engorgement than uninfected larvae as early as 24 h after placement on a host. These findings may suggest that infection with B. burgdorferi affects the larval feeding process. Alternatively, larvae that engorge more rapidly on hosts may acquire infections faster. Knowledge of these relationships can be applied to improve effective xenodiagnosis of B. burgdorferi in white-footed mice. Further, these findings shed light on vector–pathogen–host interactions during an understudied part of the Lyme disease transmission cycle.

  15. The early growth of the first black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jarrett L.; Haardt, Francesco

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  16. The early growth of the first black holes

    DOE PAGES

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  17. Early stages of zeolite growth

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.

  18. Characterizing the reproduction number of epidemics with early subexponential growth dynamics

    PubMed Central

    Viboud, Cécile; Simonsen, Lone; Moghadas, Seyed M.

    2016-01-01

    Early estimates of the transmission potential of emerging and re-emerging infections are increasingly used to inform public health authorities on the level of risk posed by outbreaks. Existing methods to estimate the reproduction number generally assume exponential growth in case incidence in the first few disease generations, before susceptible depletion sets in. In reality, outbreaks can display subexponential (i.e. polynomial) growth in the first few disease generations, owing to clustering in contact patterns, spatial effects, inhomogeneous mixing, reactive behaviour changes or other mechanisms. Here, we introduce the generalized growth model to characterize the early growth profile of outbreaks and estimate the effective reproduction number, with no need for explicit assumptions about the shape of epidemic growth. We demonstrate this phenomenological approach using analytical results and simulations from mechanistic models, and provide validation against a range of empirical disease datasets. Our results suggest that subexponential growth in the early phase of an epidemic is the rule rather the exception. Mechanistic simulations show that slight modifications to the classical susceptible–infectious–removed model result in subexponential growth, and in turn a rapid decline in the reproduction number within three to five disease generations. For empirical outbreaks, the generalized-growth model consistently outperforms the exponential model for a variety of directly and indirectly transmitted diseases datasets (pandemic influenza, measles, smallpox, bubonic plague, cholera, foot-and-mouth disease, HIV/AIDS and Ebola) with model estimates supporting subexponential growth dynamics. The rapid decline in effective reproduction number predicted by analytical results and observed in real and synthetic datasets within three to five disease generations contrasts with the expectation of invariant reproduction number in epidemics obeying exponential growth. The

  19. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification.

    PubMed

    Martin, Sophie; Richier, Sophie; Pedrotti, Maria-Luiza; Dupont, Sam; Castejon, Charlotte; Gerakis, Yannis; Kerros, Marie-Emmanuelle; Oberhänsli, François; Teyssié, Jean-Louis; Jeffree, Ross; Gattuso, Jean-Pierre

    2011-04-15

    Ocean acidification is predicted to have significant effects on benthic calcifying invertebrates, in particular on their early developmental stages. Echinoderm larvae could be particularly vulnerable to decreased pH, with major consequences for adult populations. The objective of this study was to understand how ocean acidification would affect the initial life stages of the sea urchin Paracentrotus lividus, a common species that is widely distributed in the Mediterranean Sea and the NE Atlantic. The effects of decreased pH (elevated P(CO(2))) were investigated through physiological and molecular analyses on both embryonic and larval stages. Eggs and larvae were reared in Mediterranean seawater at six pH levels, i.e. pH(T) 8.1, 7.9, 7.7, 7.5, 7.25 and 7.0. Fertilization success, survival, growth and calcification rates were monitored over a 3 day period. The expression of genes coding for key proteins involved in development and biomineralization was also monitored. Paracentrotus lividus appears to be extremely resistant to low pH, with no effect on fertilization success or larval survival. Larval growth was slowed when exposed to low pH but with no direct impact on relative larval morphology or calcification down to pH(T) 7.25. Consequently, at a given time, larvae exposed to low pH were present at a normal but delayed larval stage. More surprisingly, candidate genes involved in development and biomineralization were upregulated by factors of up to 26 at low pH. Our results revealed plasticity at the gene expression level that allows a normal, but delayed, development under low pH conditions.

  20. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios

    USGS Publications Warehouse

    Mukhi, S.; Torres, L.; Patino, R.

    2007-01-01

    The objective of this study was to determine the effect of larval-juvenile exposure to perchlorate, a thyroid hormone synthesis inhibitor, on the establishment of gonadal sex ratios in zebrafish. Zebrafish were exposed to untreated water or water containing perchlorate at 100 or 250 ppm for a period of 30 days starting at 3 days postfertilization (dpf). Recovery treatments consisted of a combination of perchlorate and exogenous thyroxine (T4; 10 nM). Thyroid histology was assessed at the end of the treatment period (33 dpf), and gonadal histology and sex ratios were determined in fish that were allowed an additional 10-day period of growth in untreated water. As expected, exposure to perchlorate caused changes in thyroid histology consistent with hypothyroidism and these effects were reversed by co-treatment with exogenous T4. Perchlorate did not affect fish survival but co-treatment with T4 induced higher mortality. However, relative to the corresponding perchlorate concentration, co-treatment with T4 caused increased mortality only at a perchlorate concentration of 100 ppm. Perchlorate alone or in the presence of T4 suppressed body length at 43 dpf relative to control values. Perchlorate exposure skewed the sex ratio toward female in a concentration-dependent manner, and co-treatment with T4 not only blocked the feminizing effect of perchlorate but also overcompensated by skewing the sex ratio towards male. Moreover, co-treatment with T4 advanced the onset of spermatogenesis in males. There was no clear association between sex ratios and larval survival or growth. We conclude that endogenous thyroid hormone plays a role in the establishment of gonadal sex phenotype during early development in zebrafish. ?? 2006 Elsevier Inc. All rights reserved.

  1. Individual and mixture effects of selected pharmaceuticals on larval development of the estuarine shrimp Palaemon longirostris.

    PubMed

    González-Ortegón, Enrique; Blasco, Julian; Nieto, Elena; Hampel, Miriam; Le Vay, Lewis; Giménez, Luis

    2016-01-01

    Few ecotoxicological studies incorporate within the experimental design environmental variability and mixture effects when assessing the impact of pollutants on organisms. We have studied the combined effects of selected pharmaceutical compounds and environmental variability in terms of salinity and temperature on survival, development and body mass of larvae of the estuarine shrimp Palaemon longirostris. Drug residues found in coastal waters occur as mixture, and the evaluation of combined effects of simultaneously occurring compounds is indispensable for their environmental risk assessment. All larval stages of P. longirostris were exposed to the nonsteroidal anti-inflammatory drug (NSAID) diclofenac sodium (DS: 40 and 750 μg L(-1)), the lipid regulator clofibric acid (CA: 17 and 361 μg L(-1)) and the fungicide clotrimazole (CLZ: 0.14 and 4 μg L(-1)). We observed no effect on larval survival of P. longirostris with the tested pharmaceuticals. However, and in contrast to previous studies on larvae of the related marine species Palaemon serratus, CA affected development through an increase in intermoult duration and reduced growth without affecting larval body mass. These developmental effects in P. longirostris larvae were similar to those observed in the mixture of DS and CA confirming the toxic effects of CA. In the case of CLZ, its effects were similar to those observed previously in P. serratus: high doses affected development altering intermoult duration, tended to reduce the number of larval instars and decreased significantly the growth rate. This study suggests that an inter-specific life histories approach should be taken into account to assess the effect of emergent compounds in coastal waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Condition of larval (furcilia VI) and one year old juvenile Euphausia superba during the winter-spring transition in East Antarctica

    NASA Astrophysics Data System (ADS)

    Virtue, Patti; Meyer, Bettina; Freier, Ulrich; Nichols, Peter D.; Jia, Zhongnan; King, Rob; Virtue, Jacob; Swadling, Kerrie M.; Meiners, Klaus M.; Kawaguchi, So

    2016-09-01

    Antarctic krill, Euphausia superba, is an important species in the Southern Ocean ecosystem. Information on krill condition during winter and early spring is slowly evolving with our enhanced ability to sample at this time of year. However, because of the limited spatial and temporal data, our understanding of fundamental biological parameters for krill during winter is limited. Our study assessed the condition of larval (furcilia VI) and one year old juvenile krill collected in East Antarctica (115°E-130°E and 64°S-66°S) from September to October 2012. Krill condition was assessed using morphometric, elemental and biochemical body composition, growth rates, oxygen uptake and lipid content and composition. Diet was assessed using fatty acid biomarkers analysed in the krill. The growth rate of larvae was 0.0038 mm day with an inter-moult period of 14 days. The average oxygen uptake of juvenile krill was 0.30±0.02 μl oxygen consumed per mg dry weight per hour. Although protein was not significantly different amongst the krill analysed, the lipid content of krill was highly variable ranging from 9% to 27% dry weight in juveniles and from 4% to 13% dry weight in larvae. Specific algal biomarkers, fatty acids ratios, levels of both long-chain (≥C20) monounsaturated fatty acids and bacterial fatty acids found in krill were indicative of the mixed nature of dietary sources and the opportunistic feeding capability of larval and juvenile krill at the end of winter.

  3. An assessment of early mandibular growth.

    PubMed

    Hutchinson, E F; L'Abbé, E N; Oettlé, A C

    2012-04-10

    Quantification of skeletal data has been shown to be an effective and reliable method of demonstrating variation in human growth as well as for monitoring and interpreting growth. In South Africa as well as internationally, few researchers have assessed mandibular growth in late fetal period and early childhood and therefore standards for growth and age determination in these groups are limited. The purpose of this study was to evaluate growth in the mandible from the period of 31 gestational weeks to 36 months postnatal. A total of 74 mandibles were used. Dried mandibles were sourced from the Raymond A. Dart Collection (University of Witwatersrand), and cadaveric remains were obtained from the Universities of Pretoria and the Witwatersrand. The sample was divided into four groups; 31-40 gestational weeks (group 1), 0-11 months (group 2), 12-24 months (group 3), and 25-36 months (group 4). Twenty-one osteological landmarks were digitized using a MicroScribe G2. Ten standard measurements were created and included: the maximum length of mandible, mandibular body length and width, mandibular notch width and depth, mental foramen to inferior border of mandible, mandibular basilar widths bigonial and biantegonial, bigonial width of mental foramen and mental angle. Data were analyzed using PAST statistical software and Morphologika2 v2.5. Statistically significant differences were noted in the linear measurements for all group comparisons except between groups 3 and 4. The mandible morphologically changed from a round, smooth contour anteriorly to adopt a more sharp and narrow adult shape. A progressive increase in the depth and definition of the mandibular arch was also noted. In conclusion, the mandible initially grows to accommodate the developing tongue (up to 11 months), progressive dental eruption and mastication from 12 to 36 months. Mastication is associated with muscle mass development; this would necessitate an increase in the dimensions of the mandibular notch

  4. Development of the Acoustically Evoked Behavioral Response in Larval Plainfin Midshipman Fish, Porichthys notatus

    PubMed Central

    Alderks, Peter W.; Sisneros, Joseph A.

    2013-01-01

    The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r2 = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or −15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140–150 dB re 1 µPa or −33 to −23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9–2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages. PMID:24340003

  5. Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus.

    PubMed

    Alderks, Peter W; Sisneros, Joseph A

    2013-01-01

    The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2) = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.

  6. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    PubMed

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development. Copyright © 2016 Song et al.

  7. Early growth, dominance acquisition and lifetime reproductive success in male and female cooperative meerkats

    PubMed Central

    English, Sinead; Huchard, Elise; Nielsen, Johanna F; Clutton-Brock, Tim H

    2013-01-01

    In polygynous species, variance in reproductive success is higher in males than females. There is consequently stronger selection for competitive traits in males and early growth can have a greater influence on later fitness in males than in females. As yet, little is known about sex differences in the effect of early growth on subsequent breeding success in species where variance in reproductive success is higher in females than males, and competitive traits are under stronger selection in females. Greater variance in reproductive success has been documented in several singular cooperative breeders. Here, we investigated consequences of early growth for later reproductive success in wild meerkats. We found that, despite the absence of dimorphism, females who exhibited faster growth until nutritional independence were more likely to become dominant, whereas early growth did not affect dominance acquisition in males. Among those individuals who attained dominance, there was no further influence of early growth on dominance tenure or lifetime reproductive success in males or females. These findings suggest that early growth effects on competitive abilities and fitness may reflect the intensity of intrasexual competition even in sexually monomorphic species. PMID:24340181

  8. Larval Competition Reduces Body Condition in the Female Seed Beetle, Callosobruchus maculatus

    PubMed Central

    Schade, Daynika J.; Vamosi, Steven M.

    2012-01-01

    Early body condition may be important for adult behavior and fitness, and is impacted by a number of environmental conditions and biotic interactions. Reduced fecundity of adult females exposed to larval competition may be caused by reduced body condition or shifts in relative body composition, yet these mechanisms have not been well researched. Here, body mass, body size, scaled body mass index, and two body components (water content and lean dry mass) of adult Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae: Bruchinae) females exposed to larval competition or reared alone were examined. Experimental females emerged at significantly smaller body mass and body size than control females. Additionally, scaled body mass index and water content, but not lean dry mass, were significantly reduced in experimental females. To our knowledge, these are the first results that demonstrate a potential mechanism for previously documented direct effects of competition on fecundity in female bruchine beetles. PMID:22954282

  9. Larval competition reduces body condition in the female seed beetle, Callosobruchus maculatus.

    PubMed

    Schade, Daynika J; Vamosi, Steven M

    2012-01-01

    Early body condition may be important for adult behavior and fitness, and is impacted by a number of environmental conditions and biotic interactions. Reduced fecundity of adult females exposed to larval competition may be caused by reduced body condition or shifts in relative body composition, yet these mechanisms have not been well researched. Here, body mass, body size, scaled body mass index, and two body components (water content and lean dry mass) of adult Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae: Bruchinae) females exposed to larval competition or reared alone were examined. Experimental females emerged at significantly smaller body mass and body size than control females. Additionally, scaled body mass index and water content, but not lean dry mass, were significantly reduced in experimental females. To our knowledge, these are the first results that demonstrate a potential mechanism for previously documented direct effects of competition on fecundity in female bruchine beetles.

  10. Reduced growth and survival of larval razorback sucker fed selenium-laden zooplankton

    USGS Publications Warehouse

    Hamilton, Steven J.; Buhl, Kevin J.; Bullard, Fern A.; McDonald, Susan

    2005-01-01

    Four groups of larval razorback sucker, an endangered fish, were exposed to selenium-laden zooplankton and survival, growth, and whole-body residues were measured. Studies were conducted with 5, 10, 24, and 28-day-old larvae fed zooplankton collected from six sites adjacent to the Green River, Utah. Water where zooplankton were collected had selenium concentrations ranging from <0.4 to 78 μg/L, and concentrations in zooplankton ranged from 2.3 to 91 μg/g dry weight. Static renewal tests were conducted for 20 to 25 days using reference water with selenium concentrations of <1.1 μg/L. In all studies, 80–100% mortality occurred in 15–20 days. In the 28-day-old larvae, fish weight was significantly reduced 25% in larvae fed zooplankton containing 12 μg/g selenium. Whole-body concentrations of selenium ranged from 3.7 to 14.3 μg/g in fish fed zooplankton from the reference site (Sheppard Bottom pond 1) up to 94 μg/g in fish fed zooplankton from North Roadside Pond. Limited information prior to the studies suggested that the Sheppard pond 1 site was relatively clean and suitable as a reference treatment; however, the nearly complete mortality of larvae and elevated concentrations of selenium in larvae and selenium and other elements in zooplankton indicated that this site was contaminated with selenium and other elements. Selenium concentrations in whole-body larvae and in zooplankton from all sites were close to or greater than toxic thresholds where adverse effects occur in fish. Delayed mortality occurred in larvae fed the two highest selenium concentrations in zooplankton and was thought due to an interaction with other elements.

  11. CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans.

    PubMed

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J

    2012-01-01

    The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. CCDC-55 is required for larval development and distal tip cell migration in C. elegans

    PubMed Central

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J.

    2012-01-01

    The C. elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. PMID:22285439

  13. Condition of larval and early juvenile Japanese temperate bass Lateolabrax japonicus related to spatial distribution and feeding in the Chikugo estuarine nursery ground in the Ariake Bay, Japan

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shahidul; Hibino, Manabu; Nakayama, Kouji; Tanaka, Masaru

    2006-02-01

    The present study investigates feeding and condition of larval and juvenile Japanese temperate bass Lateolabrax japonicus in relation to spatial distribution in the Chikugo estuary (Japan). Larvae were collected in a wide area covering the nursery grounds of the species in 2002 and 2003. Food habits of the fish were analysed by examining their gut contents. Fish condition was evaluated by using morphometric (the length-weight relationship and condition factor) and biochemical (the RNA:DNA ratio and other nucleic acid based parameters) indices and growth rates. The nucleic-acid contents in individually frozen larvae and juveniles were quantified by standard fluorometric methods. Two distinct feeding patterns, determined by the distribution of prey copepods, were identified. The first pattern showed dependence on the calanoid copepod Sinocalanus sinensis, which was the single dominant prey in low-saline upper river areas. The second pattern involved a multi-specific dietary habit mainly dominated by Acartia omorii, Oithona davisae, and Paracalanus parvus. As in the gut contents analyses, two different sets of values were observed for RNA, DNA, total protein, growth rates and for all the nucleic acid-based indices: one for the high-saline downstream areas and a second for the low-saline upstream areas, which was significantly higher than the first. The proportion of starving fish was lower upstream than downstream. Values of the allometric coefficient ( b) and the condition factor ( K) obtained from the length-weight relationships increased gradually from the sea to the upper river. Clearly, fish in the upper river had a better condition than those in the lower estuary. RNA:DNA ratios correlated positively with temperature and negatively with salinity. We hypothesise that by migration to the better foraging grounds of the upper estuary (with higher prey biomass, elevated temperature and reduced salinity), the fish reduce early mortality and attain a better condition

  14. Effects of delayed metamorphosis on larval survival, metamorphosis, and juvenile performance of four closely related species of tropical sea urchins (genus Echinometra).

    PubMed

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Uehara, Tsuyoshi

    2014-01-01

    We report here, the effects of extended competency on larval survival, metamorphosis, and postlarval juvenile growth of four closely related species of tropical sea urchins, Echinometra sp. A (Ea), E. mathaei (Em), Echinometra sp. C (Ec), and E. oblonga (Eo). Planktotrophic larvae of all four species fed on cultured phytoplankton (Chaetoceros gracilis) attained metamorphic competence within 22-24 days after fertilization. Competent larvae were forced to delay metamorphosis for up to 5 months by preventing them from settling in culture bottles with continuous stirring on a set of 10 rpm rotating rollers and larval survival per monthly intervals was recorded. Larval survival was highest at 24 days, when competence was attained (0 delayed period), and there were no significant differences among the four species. Larvae that had experienced a prolonged delay had reduced survival rate, metamorphosis success, and juvenile survival, but among older larvae, Em had the highest success followed by Ea, Eo, and Ec. Juveniles from larvae of all four species that metamorphosed soon after becoming competent tended to have higher growth rates (test diameter and length of spines) than juveniles from larvae that metamorphosed after a prolonged period of competence with progressively slower growth the longer the prolonged period. Despite the adverse effects of delaying metamorphosis on growth parameters, competent larvae of all four species were able to survive up to 5 months and after metamorphosis grew into 1-month-old juveniles in lab condition. Overall, delayed larvae of Em showed significantly higher larval survival, metamorphosis, and juvenile survival than Ea and Eo, while Ec showed the lowest values in these performances. Em has the most widespread distribution of these species ranging from Africa to Hawaii, while Ec probably has the most restricted distribution. Consequently, differences in distribution may be related to differences in the ability to delay metamorphosis.

  15. Effects of Delayed Metamorphosis on Larval Survival, Metamorphosis, and Juvenile Performance of Four Closely Related Species of Tropical Sea Urchins (Genus Echinometra)

    PubMed Central

    Rahman, M. Aminur; Yusoff, Fatimah Md.; Arshad, A.; Uehara, Tsuyoshi

    2014-01-01

    We report here, the effects of extended competency on larval survival, metamorphosis, and postlarval juvenile growth of four closely related species of tropical sea urchins, Echinometra sp. A (Ea), E. mathaei (Em), Echinometra sp. C (Ec), and E. oblonga (Eo). Planktotrophic larvae of all four species fed on cultured phytoplankton (Chaetoceros gracilis) attained metamorphic competence within 22–24 days after fertilization. Competent larvae were forced to delay metamorphosis for up to 5 months by preventing them from settling in culture bottles with continuous stirring on a set of 10 rpm rotating rollers and larval survival per monthly intervals was recorded. Larval survival was highest at 24 days, when competence was attained (0 delayed period), and there were no significant differences among the four species. Larvae that had experienced a prolonged delay had reduced survival rate, metamorphosis success, and juvenile survival, but among older larvae, Em had the highest success followed by Ea, Eo, and Ec. Juveniles from larvae of all four species that metamorphosed soon after becoming competent tended to have higher growth rates (test diameter and length of spines) than juveniles from larvae that metamorphosed after a prolonged period of competence with progressively slower growth the longer the prolonged period. Despite the adverse effects of delaying metamorphosis on growth parameters, competent larvae of all four species were able to survive up to 5 months and after metamorphosis grew into 1-month-old juveniles in lab condition. Overall, delayed larvae of Em showed significantly higher larval survival, metamorphosis, and juvenile survival than Ea and Eo, while Ec showed the lowest values in these performances. Em has the most widespread distribution of these species ranging from Africa to Hawaii, while Ec probably has the most restricted distribution. Consequently, differences in distribution may be related to differences in the ability to delay metamorphosis

  16. Assessing Aromatic-Hydrocarbon Toxicity to Fish Early Life Stages Using Passive-Dosing Methods and Target-Lipid and Chemical-Activity Models.

    PubMed

    Butler, Josh D; Parkerton, Thomas F; Redman, Aaron D; Letinski, Daniel J; Cooper, Keith R

    2016-08-02

    Aromatic hydrocarbons (AH) are known to impair fish early life stages (ELS). However, poorly defined exposures often confound ELS-test interpretation. Passive dosing (PD) overcomes these challenges by delivering consistent, controlled exposures. The objectives of this study were to apply PD to obtain 5 d acute embryo lethality and developmental data and 30 d chronic embryo-larval survival and growth-effects data using zebrafish with different AHs; to analyze study and literature toxicity data using target-lipid (TLM) and chemical-activity (CA) models; and to extend PD to a mixture and test the assumption of AH additivity. PD maintained targeted exposures over a concentration range of 6 orders of magnitude. AH toxicity increased with log Kow up to pyrene (5.2). Pericardial edema was the most sensitive sublethal effect that often preceded embryo mortality, although some AHs did not produce developmental effects at concentrations causing mortality. Cumulative embryo-larval mortality was more sensitive than larval growth, with acute-to-chronic ratios of <10. More-hydrophobic AHs did not exhibit toxicity at aqueous saturation. The relationship and utility of the TLM-CA models for characterizing fish ELS toxicity is discussed. Application of these models indicated that concentration addition provided a conservative basis for predicting ELS effects for the mixture investigated.

  17. A global comparative analysis of the feeding dynamics and environmental conditions of larval tunas, mackerels, and billfishes

    NASA Astrophysics Data System (ADS)

    Llopiz, Joel K.; Hobday, Alistair J.

    2015-03-01

    Scombroid fishes, including tunas, mackerels, and billfishes, constitute some of the most important fisheries in lower latitudes around the world. Though the early life stages of these taxa are relatively well-studied, worldwide patterns in larval feeding dynamics and how such patterns relate to environmental conditions are poorly resolved. We present a synthesis of feeding success (i.e. feeding incidences) and diets of larval scombroids from around the world, and relate these results to water column and sea surface properties for the several regions in which larval feeding studies have been conducted. Feeding success of larval tunas was shown to be distinctly different among regions. In some locations (the Straits of Florida and the Mediterranean Sea), nearly no larvae had empty guts, whereas in other locations (the Gulf of California and off NW Australia) 40-60% of larvae were empty. Diets were consistently narrow in each region (dominated by cyclopoid copepods, appendicularians, nauplii, and other fish larvae), and were usually, but not always, similar for a given scombroid taxon among regions (though diets differed among taxa). Larval habitat conditions were often similar among the 9 regions examined, but some clear differences included low levels of eddy kinetic energy and cooler waters (at the surface and at depth) in the Mediterranean, and lower chlorophyll concentrations around the Nansei Islands, Japan and off NW Australia where feeding success was low. When observed zooplankton abundances are also taken into account, the compiled results on feeding and environmental conditions indicate a bottom-up influence on feeding success. Moreover, the variability among regions highlights the potential for region-specific mechanisms regulating larval survival and, ultimately, levels of adult recruitment.

  18. Correlation of hemocyte counts with different developmental parameters during the last larval instar of the tobacco hornworm, Manduca sexta.

    PubMed

    Beetz, Susann; Holthusen, Traute K; Koolman, Jan; Trenczek, Tina

    2008-02-01

    We determined the changes in hemocyte titer and in the abundance of hemocyte types of the tobacco hornworm Manduca sexta during the fourth and fifth larval stadium and the beginning of the pupal stadium. As we analyzed the samples of individual insects at daily intervals, we were able to correlate phenotypical features, body weight, as well as total protein content and lysozyme activity in the hemolymph with the observations on hemocytes. In the course of the fifth larval stadium, the hemocyte titer decreased slightly and declined further after pupation. Using calculated values for total hemocyte numbers, females had about five times and males three times more hemocytes in the circulating population at the beginning of the wandering stage (in the middle of the fifth larval stadium) than immediately after the last larval--larval molt (from the fourth to the fifth larval stadium). This sexual difference was mainly due to an increase in the number of plasmatocytes, which was more prominent in females than in males. Granular cells were dominant in early fifth larval stadium while plasmatocytes were the most abundant cells in pupae. Oenocytoids and spherule cells disappeared during the wandering stage. Lysozyme activity in the hemolymph rose to a maximum during the wandering stage, with females having lysozyme values twice as high as those for males. These changes in lysozyme activity, however, did not correlate with the increase of total hemolymph protein titer which occurred already at the beginning of the wandering stage. We postulate that changes in hemocyte titers are under direct hormonal control, which has to be proven in future experiments. (c) 2007 Wiley-Liss, Inc.

  19. Temporal Patterns of Larval Fish Occurrence in a Large Subtropical River

    PubMed Central

    Shuai, Fangmin; Li, Xinhui; Li, Yuefei; Li, Jie; Yang, Jiping; Lek, Sovan

    2016-01-01

    Knowledge of temporal patterns of larval fish occurrence is limited in south China, despite its ecological importance. This research examines the annual and seasonal patterns of fish larval presence in the large subtropical Pearl River. Data is based on samples collected every two days, from 2006 to 2013. In total, 45 taxa representing 13 families and eight orders were sampled. The dominant larval family was Cyprinidae, accounting for 27 taxa. Squaliobarbus curriculus was the most abundant species, followed by Megalobrama terminalis, Xenocypris davidi, Cirrhinus molitorella, Hemiculter leuscisculus and Squalidus argentatus. Fish larvae abundances varied significantly throughout the seasons (multivariate analyses: Cluster, SIMPROF and ANOSIM). The greatest numbers occurred between May and September, peaking from June through August, which corresponds to the reproductive season. In this study, redundancy analysis was used to describe the relationship between fish larval abundance and associated environmental factors. Mean water temperature, river discharge, atmospheric pressure, maximum temperature and precipitation play important roles in larval occurrence patterns. According to seasonal variations, fish larvae occurrence is mainly affected by water temperature. It was also noted that the occurrence of Salanx reevesii and Cyprinus carpio larvae is associated with higher dissolved oxygen (DO) concentrations, higher atmospheric pressure and lower water temperatures which occur in the spring. On the other hand, M. terminalis, X. davidi, and C. molitorella are associated with high precipitation, high river discharge, low atmospheric pressure and low DO concentrations which featured during the summer months. S. curriculus also peaks in the summer and is associated with peak water temperatures and minimum NH3–N concentrations. Rhinogobius giurinus occur when higher atmospheric pressure, lower precipitation and lower river discharges occur in the autumn. Dominant fish

  20. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio rerio FED A PROCESSED DIET, LIVE FOOD, OR THE COMBINATION

    EPA Science Inventory

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the cu...

  1. A simple approximation for larval retention around reefs

    NASA Astrophysics Data System (ADS)

    Cetina-Heredia, Paulina; Connolly, Sean R.

    2011-09-01

    Estimating larval retention at individual reefs by local scale three-dimensional flows is a significant problem for understanding, and predicting, larval dispersal. Determining larval dispersal commonly involves the use of computationally demanding and expensively calibrated/validated hydrodynamic models that resolve reef wake eddies. This study models variation in larval retention times for a range of reef shapes and circulation regimes, using a reef-scale three-dimensional hydrodynamic model. It also explores how well larval retention time can be estimated based on the "Island Wake Parameter", a measure of the degree of flow turbulence in the wake of reefs that is a simple function of flow speed, reef dimension, and vertical diffusion. The mean residence times found in the present study (0.48-5.64 days) indicate substantial potential for self-recruitment of species whose larvae are passive, or weak swimmers, for the first several days after release. Results also reveal strong and significant relationships between the Island Wake Parameter and mean residence time, explaining 81-92% of the variability in retention among reefs across a range of unidirectional flow speeds and tidal regimes. These findings suggest that good estimates of larval retention may be obtained from relatively coarse-scale characteristics of the flow, and basic features of reef geomorphology. Such approximations may be a valuable tool for modeling connectivity and meta-population dynamics over large spatial scales, where explicitly characterizing fine-scale flows around reef requires a prohibitive amount of computation and extensive model calibration.

  2. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster.

    PubMed

    Ko, Ginger W K; Dineshram, R; Campanati, Camilla; Chan, Vera B S; Havenhand, Jon; Thiyagarajan, Vengatesen

    2014-09-02

    Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

  3. Location Isn’t Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment

    PubMed Central

    Donahue, Megan J.; Karnauskas, Mandy; Toews, Carl; Paris, Claire B.

    2015-01-01

    Many species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness. Tracking virtual larvae from release to settlement and incorporating changes in larval behavior through ontogeny, we found that larval success was sensitive to the timing of spawning. Indeed, propagules released during the observed spawning period had higher larval success rates than those released outside the observed spawning period. In contrast, larval success rates were relatively insensitive to the spatial position of the release site. In addition, minimum (rather than mean) larval survival was maximized during the observed spawning period, indicating a reproductive strategy that minimizes the probability of recruitment failure. Given this landscape of larval fitness, we take an inverse optimization approach to define a biological objective function that reflects a tradeoff between the mean and variance of larval success in a temporally variable environment. Using this objective function, we suggest that the length of the spawning period can provide insight into the tradeoff between reproductive risk and reward. PMID:26103162

  4. Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life History Stages of the Coral Acropora tenuis

    PubMed Central

    Noonan, Sam H. C.; Willis, Bette L.; Fabricius, Katharina E.; Negri, Andrew P.

    2016-01-01

    Inshore coral reefs are experiencing the combined pressures of excess nutrient availability associated with coastal activities and warming seawater temperatures. Both pressures are known to have detrimental effects on the early life history stages of hard corals, but studies of their combined effects on early demographic stages are lacking. We conducted a series of experiments to test the combined effects of nutrient enrichment (three levels) and elevated seawater temperature (up to five levels) on early life history stages of the inshore coral Acropora tenuis, a common species in the Indo-Pacific and Red Sea. Gamete fertilization, larval survivorship and larval settlement were all significantly reduced as temperature increased, but only fertilization was further affected by simultaneous nutrient enrichment. Combined high temperatures and nutrient enrichment affected fertilization in an additive manner, whereas embryo abnormalities increased synergistically. Higher than normal temperatures (32°C) increased coral juvenile growth rates 1.6-fold, but mortality also increased by 50%. The co-occurrence of nutrient enrichment with high temperatures reduced juvenile mortality to 36%, ameliorating temperature stress (antagonistic interaction). Overall, the types of effect (additive vs synergistic or antagonistic) and their magnitude varied among life stages. Gamete and embryo stages were more affected by temperature stress and, in some cases, also by nutrient enrichment than juveniles. The data suggest that coastal runoff events might exacerbate the impacts of warming temperatures on fertilization if these events co-occur during corals spawning. The cumulative impacts of simultaneous exposure to nutrient enrichment and elevated temperatures over all early life history stages increases the likelihood for failure of larval supply and recruitment for this coral species. Our results suggest that improving the water quality of river discharges into coastal areas might help to

  5. Why do larval helminths avoid the gut of intermediate hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2009-10-07

    In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be

  6. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity.

    PubMed

    Chung, J Sook; Maurer, Leah; Bratcher, Meagan; Pitula, Joseph S; Ogburn, Matthew B

    2012-09-03

    of C. sapidus and the induction of its expression at early larval stages in the exposure of hyposalinity. However, it remains to be determined if the increase in CasAQP-1 expression at later larval stages may have a role in adaptation to hyposalinity.

  7. Modelling the transport of common sole larvae in the southern North Sea: Influence of hydrodynamics and larval vertical movements

    NASA Astrophysics Data System (ADS)

    Savina, Marie; Lacroix, Geneviève; Ruddick, Kevin

    2010-04-01

    In the present work we used a particle-tracking model coupled to a 3D hydrodynamic model to study the combined effect of hydrodynamic variability and active vertical movements on the transport of sole larvae in the southern North Sea. Larval transport from the 6 main spawning grounds was simulated during 40 day periods starting on 2 plausible spawning dates, the 15/04 and the 01/05, during 2 years, 1995 and 1996. In addition to a "passive" behaviour, 3 types of active vertical movements inspired from previous studies have been tested: (1) Eggs and early larvae float in the surface waters, late larvae migrate toward the bottom and stay there until the end of the simulation; (2 and 3) Eggs float in the surface waters, early larvae perform diel vertical migrations in the surface waters, and (2) Late larvae perform diel vertical migrations in the bottom waters until the end of the simulation; or (3) Late larvae perform tidally synchronised vertical migrations in the bottom waters until the end of the simulation. These behaviours have been implemented in the model with vertical migration rates, positive or negative, which can account for buoyancy or real swimming activity. Variations in larval transport were analysed in terms of mean trajectories, final larvae distribution, larval retention above nurseries, and connectivity. Results suggest that the variations in larval retention above nurseries due to the varying hydrodynamic conditions are not consistent in space i.e. not the same for all the spawning sites. The effect of active vertical movements on larval transport is also not consistent in space: Effects of active vertical movements include decreased retention above nurseries, decreased transport and/or decreased horizontal dispersion of larvae through reduced vertical shear (depending on the zone). The variability in larval retention due to hydrodynamic variability is higher than variability due to differences in the behaviour of larvae. In terms of connectivity

  8. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees. © 2016. Published by The Company of Biologists Ltd.

  9. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill.

    PubMed

    Meyer, Bettina; Freier, Ulrich; Grimm, Volker; Groeneveld, Jürgen; Hunt, Brian P V; Kerwath, Sven; King, Rob; Klaas, Christine; Pakhomov, Evgeny; Meiners, Klaus M; Melbourne-Thomas, Jessica; Murphy, Eugene J; Thorpe, Sally E; Stammerjohn, Sharon; Wolf-Gladrow, Dieter; Auerswald, Lutz; Götz, Albrecht; Halbach, Laura; Jarman, Simon; Kawaguchi, So; Krumpen, Thomas; Nehrke, Gernot; Ricker, Robert; Sumner, Michael; Teschke, Mathias; Trebilco, Rowan; Yilmaz, Noyan I

    2017-12-01

    A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.

  10. Infections of Larval Stages of Dicrocoelium dendriticum and Brachylaima sp. in Brown Garden Snail, Helix aspersa, in Turkey.

    PubMed

    Köse, Mustafa; Eser, Mustafa; Kartal, Kürşat; Bozkurt, Mehmet Fatih

    2015-10-01

    The aim of this study was to determine the presence and prevalence of larval stages of Dicrocoelium dendriticum and Brachylaima sp. in the first intermediate host, a species of land snail, Helix aspersa, in Turkey. A total of 211 snails were collected in April-May 2014 from pastures in Mersin District. Larval stages of D. dendriticum were identified under a light microscope. Hepatopancreas from naturally infected H. aspersa snails were examined histologically. The prevalence of larval stages of D. dendriticum and Brachylaima sp. in H. aspersa snails was found to be 2.4% and 1.9%, respectively, in Mersin, Turkey. Cercariae were not matured in sporocysts at the beginning of April; however, it was observed that cercariae matured and started to leave sporocysts by early-May. Thus, it was concluded that H. aspersa acts as an intermediate host to D. dendriticumin and Brachylaima sp. in Mersin, Turkey. A digenean trematode Brachylaima sp. was seen for the first time in Turkey.

  11. Annual Growth of Contract Costs for Major Programs in Development and Early Production

    DTIC Science & Technology

    2016-03-21

    changes, we can identify some underlying drivers and rule out others. Development and Early Production Differences BBP-era drops are driven by dropping...Annual Growth of Contract Costs for Major Programs in Development and Early Production Dan Davis and Philip S...Growth of Contract Costs for Major Programs in Development and Early Production Dan Davis and Philip S. Antón March 21, 2016 SUMMARY Cost is

  12. Effects of the herbicide atrazine on Ambystoma tigrinum metamorphosis: duration, larval growth, and hormonal response

    USGS Publications Warehouse

    Larson, Diane L.; McDonald, Susan; Hamilton, Steven J.; Fivizzani, Albert J.; Newton, Wesley E.

    1998-01-01

    We exposed larval tiger salamanders (Ambystoma tigrinum) reared in the laboratory from eggs collected from a prairie wetland in North Dakota to three concentrations of atrazine (0, 75, and 250 i??g/L) in a static renewal test to determine the pesticide's effect on (1) plasma corticosterone and thyroxine concentrations, (2) larval size, and (3) days-to-stage at stages 2 and 4 of metamorphic climax. We found significant effects of atrazine on each of these response variables. Plasma thyroxine was elevated in both atrazine-exposed groups compared to the control group; plasma corticosterone was depressed in the 75 i??g/L treatment compared with both the control and 250 i??g/L treatment. Larvae exposed to 75 i??g/L atrazine reached stage 4 later, but at a size and weight comparable to the control group. By contrast, larvae in the 250 i??g/L treatment progressed to stage 4 at the same time but at a smaller size and lower weight than larvae in the control group. These results indicate that the herbicide has the potential to influence tiger salamander life history. We present a model consistent with our results, whereby corticosterone and thyroxine interact to regulate metamorphosis of tiger salamanders based on nutrient assimilation and adult fitness

  13. Seasonal variations in larval biomass and biochemical composition of brown shrimp, Crangon crangon (Decapoda, Caridea), at hatching

    NASA Astrophysics Data System (ADS)

    Urzúa, Ángel; Anger, Klaus

    2013-06-01

    The "brown shrimp", Crangon crangon (Linnaeus 1758), is a benthic key species in the North Sea ecosystem, supporting an intense commercial fishery. Its reproductive pattern is characterized by a continuous spawning season from mid-winter to early autumn. During this extended period, C. crangon shows significant seasonal variations in egg size and embryonic biomass, which may influence larval quality at hatching. In the present study, we quantified seasonal changes in dry weight (W) and chemical composition (CHN, protein and lipid) of newly hatched larvae of C. crangon. Our data revealed significant variations, with maximum biomass values at the beginning of the hatching season (February-March), a decrease throughout spring (April-May) and a minimum in summer (June-September). While all absolute values of biomass and biochemical constituents per larva showed highly significant differences between months ( P < 0.001), CHN, protein and lipid concentrations (expressed as percentage values of dry weight) showed only marginally significant differences ( P < 0.05). According to generalized additive models (GAM), key variables of embryonic development exerted significant effects on larval condition at hatching: The larval carbon content (C) was positively correlated with embryonic carbon content shortly after egg-laying ( r 2 = 0.60; P < 0.001) and negatively with the average incubation temperature during the period of embryonic development ( r 2 = 0.35; P < 0.001). Additionally, water temperature ( r 2 = 0.57; P < 0.001) and food availability (phytoplankton C; r 2 = 0.39; P < 0.001) at the time of hatching were negatively correlated with larval C content at hatching. In conclusion, "winter larvae" hatching from larger "winter eggs" showed higher initial values of biomass compared to "summer larvae" originating from smaller "summer eggs". This indicates carry-over effects persisting from the embryonic to the larval phase. Since "winter larvae" are more likely exposed to

  14. The Not-so-Dark Ages: ecology for human growth in medieval and early twentieth century Portugal as inferred from skeletal growth profiles.

    PubMed

    Cardoso, Hugo F V; Garcia, Susana

    2009-02-01

    This study attempts to address the issue of relative living standards in Portuguese medieval and early 20th century periods. Since the growth of children provides a good measure of environmental quality for the overall population, the skeletal growth profiles of medieval Leiria and early 20th century Lisbon were compared. Results show that growth in femur length of medieval children did not differ significantly from that of early 20th century children, but after puberty medieval adolescents seem to have recovered, as they have significantly longer femora as adults. This is suggestive of greater potential for catch-up growth in medieval adolescents. We suggest that this results from distinct child labor practices, which impact differentially on the growth of Leiria and Lisbon adolescents. Work for medieval children and adolescents were related to family activities, and care and attention were provided by family members. Conversely, in early 20th century Lisbon children were more often sent to factories at around 12 years of age as an extra source of family income, where they were exploited for their labor. Since medieval and early 20th century children were stunted at an early age, greater potential for catch-up growth in medieval adolescents results from exhausting work being added to modern adolescent's burdens of disease and poor diet, when they entered the labor market. Although early 20th century Lisbon did not differ in overall unfavorable living conditions from medieval Leiria, after puberty different child labor practices may have placed modern adolescents at greater risk of undernutrition and poor growth. 2008 Wiley-Liss, Inc.

  15. Sole larval supply to coastal nurseries: Interannual variability and connectivity at interregional and interpopulation scales

    NASA Astrophysics Data System (ADS)

    Savina, M.; Lunghi, M.; Archambault, B.; Baulier, L.; Huret, M.; Le Pape, O.

    2016-05-01

    Simulating fish larval drift helps assess the sensitivity of recruitment variability to early life history. An individual-based model (IBM) coupled to a hydrodynamic model was used to simulate common sole larval supply from spawning areas to coastal and estuarine nursery grounds at the meta-population scale (4 assessed stocks), from the southern North Sea to the Bay of Biscay (Western Europe) on a 26-yr time series, from 1982 to 2007. The IBM allowed each particle released to be transported by currents, to grow depending on temperature, to migrate vertically depending on development stage, to die along pelagic stages or to settle on a nursery, representing the life history from spawning to metamorphosis. The model outputs were analysed to explore interannual patterns in the amounts of settled sole larvae at the population scale; they suggested: (i) a low connectivity between populations at the larval stage, (ii) a moderate influence of interannual variation in the spawning biomass, (iii) dramatic consequences of life history on the abundance of settling larvae and (iv) the effects of climate variability on the interannual variability of the larvae settlement success.

  16. Macroalgae Inhibits Larval Settlement and Increases Recruit Mortality at Ningaloo Reef, Western Australia

    PubMed Central

    Van Keulen, Mike; Loneragan, Neil R.

    2015-01-01

    Globally, many coral reefs are degraded and demonstrate reduced coral cover and increased macroalgal abundance. While negative correlations between macroalgae and coral recruitment have commonly been documented, the mechanisms by which macroalgae affects recruitment have received little attention. Here we examined the effect of macroalgae on larval settlement and the growth and survival of coral recruits, in a field experiment over nine months. Exclusion treatments were used to manipulate herbivory and macroalgal biomass, while settlement tiles measured coral settlement and survival. After nine months the volume of macroalgae was up to 40 times greater in the caged treatments than in controls and the settlement of coral larvae on the undersides of tiles within caged plots was 93% lower than in the uncaged treatments. The growth and survival of coral recruits was also severely reduced in the presence of macroalgae: survival was 79% lower in caged treatments and corals were up to 58% smaller with 75% fewer polyps. These data indicate that macroalgae has an additive effect on coral recruitment by reducing larval settlement and increasing recruit mortality. This research demonstrates that macroalgae can not only inhibit coral recruitment, but also potentially maintain dominance through a positive feedback system. PMID:25898011

  17. The effect of UV-C exposure on larval survival of the dreissenid quagga mussel

    USGS Publications Warehouse

    Stewart-Malone, Alecia; Misamore, Michael; Wilmoth, Siri K.; Reyes, Alejandro; Wong, Wai Hing; Gross, Jackson

    2015-01-01

    The rapid spread of quagga mussels (Dreissena rostriformis bugensis) has lead to their invasion of Lake Mead, Nevada, the largest reservoir in North America and partially responsible for providing water to millions of people in the southwest. Current strategies for mitigating the growth and spread of quagga mussels primarily include physical and chemical means of removing adults within water treatment, delivery, and hydropower facilities. In the present study, germicidal ultraviolet light (UV-C) was used to target the larval stage of wild-caught quagga mussel. The lethal effect of UV-C was evaluated at four different doses, 0.0, 13.1, 26.2, and 79.6 mJ/cm2. Tested doses were determined based on results from preliminary trials. The results demonstrate that germicidal UV-C is effective in controlling the free-swimming life history stages of larval quagga mussels.

  18. The Effect of UV-C Exposure on Larval Survival of the Dreissenid Quagga Mussel

    PubMed Central

    Stewart-Malone, Alecia; Misamore, Michael; Wilmoth, Siri; Reyes, Alejandro; Wong, Wai Hing; Gross, Jackson

    2015-01-01

    The rapid spread of quagga mussels (Dreissena rostriformis bugensis) has lead to their invasion of Lake Mead, Nevada, the largest reservoir in North America and partially responsible for providing water to millions of people in the southwest. Current strategies for mitigating the growth and spread of quagga mussels primarily include physical and chemical means of removing adults within water treatment, delivery, and hydropower facilities. In the present study, germicidal ultraviolet light (UV-C) was used to target the larval stage of wild-caught quagga mussel. The lethal effect of UV-C was evaluated at four different doses, 0.0, 13.1, 26.2, and 79.6 mJ/cm2. Tested doses were determined based on results from preliminary trials. The results demonstrate that germicidal UV-C is effective in controlling the free-swimming life history stages of larval quagga mussels. PMID:26186734

  19. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones

    NASA Astrophysics Data System (ADS)

    Goodbody-Gringley, Gretchen; Wong, Kevin H.; Becker, Danielle M.; Glennon, Keegan; de Putron, Samantha J.

    2018-06-01

    Early life history traits of brooding corals are often affected by the environmental conditions experienced by parental colonies. Such parental effects can impact offspring survival, which influences the overall success of a population as well as resilience to environmental challenges. This study examines the reproductive ecology and early life history traits of the brooding coral Porites astreoides across a depth gradient in Bermuda. Fecundity, larval size, larval Symbiodinium density, and settlement success, as well as post-metamorphic juvenile survival, growth, and Symbiodinium density were compared across three reef sites representing an inshore patch reef (2-5 m), an offshore rim reef (8-10 m), and an upper-mesophotic reef (30-33 m). Although fecundity did not differ across sites, larvae produced by colonies on the patch reef site were smaller, had lower Symbiodinium densities, and had lower rates of settlement and juvenile survival compared to larvae from colonies on the rim and upper-mesophotic reef sites. Larvae produced by colonies from the rim and upper-mesophotic sites did not differ in size or Symbiodinium densities; however, rates of settlement, growth, and survival were higher for larvae from the upper-mesophotic site compared to those from the rim reef site. These results indicate that offspring quality and success vary among sites with differing environmental conditions and may imply higher recruitment potential and resilience for upper-mesophotic corals.

  20. Volatile emissions from Aesculus hippocastanum induced by mining of larval stages of Cameraria ohridella influence oviposition by conspecific females.

    PubMed

    Johne, A Bettina; Weissbecker, Bernhard; Schütz, Stefan

    2006-10-01

    Larval stages of the horse chestnut leafminer Cameraria ohridella can completely destroy the surface of horse chestnut leaves, Aesculus hippocastanum. This study investigated the effect of the degree of leaf browning caused by the insect's larvae on olfactory detection, aggregation, and oviposition of C. ohridella adults. The influence of A. hippocastanum flower scent on oviposition of the first generation was also evaluated. Utilizing gas chromatography coupled with parallel detection by mass spectrometry and electroantennography (GC-MS/EAD), more than 30 compounds eliciting responses from antennae of C. ohridella were detected. Oviposition and mining by C. ohridella caused significant changes in the profile of leaf volatiles of A. hippocastanum. After oviposition and subsequent mining by early larval stages (L1-L3), substances such as benzaldehyde, 1,8-cineole, benzyl alcohol, 2-phenylethanol, methyl salicylate, (E)-beta-caryophyllene, and (E,E)-alpha-farnesene were emitted in addition to the compounds emitted by uninfested leaves. Insects were able to detect these compounds. The emitted amount of these substances increased with progressive larval development. During late larval stages (L4, L5) and severe loss of green leaf area, (E,E)-2,4-hexadienal, (E/Z)-linalool oxide (furanoid), nonanal, and decanal were also released by leaves. These alterations of the profile of volatiles caused modifications in aggregation of C. ohridella on leaves. In choice tests, leaves in early infestation stages showed no significant effect on aggregation, whereas insects avoided leaves in late infestation stages. Further choice tests with leaves treated with single compounds led to the identification of substances mediating an increase or decrease in oviposition.

  1. [Effects of postnatal growth retardation on early neurodevelopment in premature infants with intrauterine growth retardation].

    PubMed

    Cai, Yue-Ju; Song, Yan-Yan; Huang, Zhi-Jian; Li, Jian; Qi, Jun-Ye; Xiao, Xu-Wen; Wang, Lan-Xiu

    2015-09-01

    To study the effects of postnatal growth retardation on early neurodevelopment in premature infants with intrauterine growth retardation (IUGR). A retrospective analysis was performed on the clinical data of 171 premature infants who were born between May 2008 and May 2012 and were followed up until a corrected gestational age of 6 months. These infants were classified into two groups: IUGR group (n=40) and appropriate for gestational age (AGA) group (n=131). The growth retardation rates at the corrected gestational ages of 40 weeks, 3 months, and 6 months, as well as the neurodevelopmental outcome (evaluated by Gesell Developmental Scale) at corrected gestational ages of 3 and 6 months, were compared between the two groups. The growth retardation rate in the IUGR group was significantly higher than in the AGA group at the corrected gestational ages of 40 weeks, 3 months, and 6 months. All five developmental quotients evaluated by Gesell Developmental Scale (gross motor, fine motor, language, adaptability and individuality) in the IUGR group were significantly lower than in the AGA group at the corrected gestational ages of 3 months. At the corrected gestational age of 6 months, the developmental quotients of fine motor and language in the IUGR group were significantly lower than in the AGA group, however, there were no significant differences in the developmental quotients of gross motor, adaptability and individuality between the two groups. All five developmental quotients in IUGR infants with catch-up lag in weight were significantly lower than in IUGR and AGA infants who had caught up well. Growth retardation at early postnatal stages may adversely affect the early neurodevelopment in infants with IUGR.

  2. Silencing the HaAK Gene by Transgenic Plant-Mediated RNAi Impairs Larval Growth of Helicoverpa armigera

    PubMed Central

    Liu, Feng; Wang, Xiao-Dong; Zhao, Yi-Ying; Li, Yan-Jun; Liu, Yong-Chang; Sun, Jie

    2015-01-01

    Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests. PMID:25552931

  3. Early growth patterns are associated with intelligence quotient scores in children born small-for-gestational age.

    PubMed

    Varella, Marcia H; Moss, William J

    2015-08-01

    To assess whether patterns of growth trajectory during infancy are associated with intelligence quotient (IQ) scores at 4 years of age in children born small-for-gestational age (SGA). Children in the Collaborative Perinatal Project born SGA were eligible for analysis. The primary outcome was the Stanford-Binet IQ score at 4 years of age. Growth patterns were defined based on changes in weight-for-age z-scores from birth to 4 months and 4 to 12 months of age and consisted of steady, early catch-up, late catch-up, constant catch-up, early catch-down, late catch-down, constant catch-down, early catch-up & late catch-down, and early catch-down & late catch-up. Multivariate linear regression was used to assess associations between patterns of growth and IQ. We evaluated patterns of growth and IQ in 5640 children. Compared with children with steady growth, IQ scores were 2.9 [standard deviation (SD)=0.54], 1.5 (SD=0.63), and 2.2 (SD=0.9) higher in children with early catch-up, early catch-up and later catch-down, and constant catch-up growth patterns, respectively, and 4.4 (SD=1.4) and 3.9 (SD=1.5) lower in children with early catch-down & late catch-up, and early catch-down growth patterns, respectively. Patterns in weight gain before 4 months of age were associated with differences in IQ scores at 4 years of age, with children with early catch-up having slightly higher IQ scores than children with steady growth and children with early catch-down having slightly lower IQ scores. These findings have implications for early infant nutrition in children born SGA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. DYZ1 copy number variation, Y chromosome polymorphism and early recurrent spontaneous abortion/early embryo growth arrest.

    PubMed

    Yan, Junhao; Fan, Lingling; Zhao, Yueran; You, Li; Wang, Laicheng; Zhao, Han; Li, Yuan; Chen, Zi-Jiang

    2011-12-01

    To find the association between recurrent spontaneous abortion (RSA)/early embryo growth arrest and Y chromosome polymorphism. Peripheral blood samples of the male patients of big Y chromosome, small Y chromosome and other male patients whose partners suffered from unexplained RSA/early embryo growth arrest were collected. PCR and real-time fluorescent quantitative PCR were used to test the deletion and the copy number variation of DYZ1 region in Y chromosome of the patients. A total of 79 big Y chromosome patients (48 of whose partners suffered from RSA or early embryo growth arrest), 7 small Y chromosome patients, 106 other male patients whose partners had suffered from unexplained RSA or early embryo growth arrest, and 100 normal male controls were enrolled. There was no fraction deletion of DYZ1 detected both in big Y patients and in normal men. Of RSA patients, 1 case showed deletion of 266bp from the gene locus 25-290bp, and 2 cases showed deletion of 773bp from 1347 to 2119bp. Of only 7 small Y chromosome patients, 2 cases showed deletion of 266bp from 25 to 290bp, and 4 cases showed deletion of 773bp from 1347 to 2119bp and 275bp from 3128 to 3420bp. The mean of DYZ1 copies was 3900 in normal control men; the mean in big Y patients was 5571, in RSA patients was 2655, and in small Y patients was 1059. All of the others were significantly different (P<0.01) compared with normal control men, which meant that DYZ1 copy number in normal control men was less than that of big Y chromosome patients, and was more than that of unexplained early RSA patients and small Y patients. The integrity and copy number variation of DYZ1 are closely related to the Y chromosome length under microscope. The cause of RSA/early embryo growth arrest in some couples may be the increase (big Y patients) or decrease of DYZ1 copy number in the husbands' Y chromosome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. A case of functional growth hormone deficiency and early growth retardation in a child with IFT172 mutations.

    PubMed

    Lucas-Herald, Angela K; Kinning, Esther; Iida, Aritoshi; Wang, Zheng; Miyake, Noriko; Ikegawa, Shiro; McNeilly, Jane; Ahmed, S Faisal

    2015-04-01

    Ciliopathies are a group of rare conditions that present through a wide range of manifestations. Given the relative common occurrence of defects of the GH/IGF-I axis in children with short stature and growth retardation, the association between ciliopathies and these defects needs further attention. Our patient is a boy who was born at term and noted to have early growth retardation and weight gain within the first 18 months of life. Biochemical tests demonstrated low IGF-I but a normal peak GH on stimulation and an adequate increase in IGF-I on administration of recombinant human growth hormone (rhGH). A magnetic resonance imaging scan revealed pituitary hypoplasia and an ectopic posterior pituitary. His growth responded well to rhGH therapy. Subsequently he also developed a retinopathy of his rods and cones, metaphyseal dysplasia, and hypertension with renal failure requiring renal replacement therapy. Whole-exome sequencing demonstrated compound heterozygous mutations of IFT172, thus consistent with a ciliopathy. This is the first reported case of a child with a mutation in IFT172 who presented with growth retardation in early childhood and was initially managed as a case of functional GH deficiency that responded to rhGH therapy. This case highlights the importance of ciliary function in pituitary development and the link between early onset growth failure and ciliopathies.

  6. Ammonia and urea handling by early life stages of fishes.

    PubMed

    Zimmer, Alex M; Wright, Patricia A; Wood, Chris M

    2017-11-01

    Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes. © 2017. Published by The Company of Biologists Ltd.

  7. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development.

    PubMed

    Rabatel, Andréane; Febvay, Gérard; Gaget, Karen; Duport, Gabrielle; Baa-Puyoulet, Patrice; Sapountzis, Panagiotis; Bendridi, Nadia; Rey, Marjolaine; Rahbé, Yvan; Charles, Hubert; Calevro, Federica; Colella, Stefano

    2013-04-10

    Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch

  8. Development of the Larval Amphibian Growth and Development Assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile.

    PubMed

    Haselman, Jonathan T; Sakurai, Maki; Watanabe, Naoko; Goto, Yasushi; Onishi, Yuta; Ito, Yuki; Onoda, Yu; Kosian, Patricia A; Korte, Joseph J; Johnson, Rodney D; Iguchi, Taisen; Degitz, Sigmund J

    2016-12-01

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan's Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in a model amphibian species, Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg l -1 BP-2 until 2 months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg l -1 treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genetic males showing both testis and ovary tissues (1.5 mg l -1 ) and 100% of the genetic males in the 3.0 and 6.0 mg l -1 treatments experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely vitellogenin and other estrogen-responsive yolk proteins. This is the first study that demonstrates the endocrine effects of this mixed mode of action chemical in an amphibian species and demonstrates the utility of the LAGDA design for supporting chemical risk assessment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Larval salinity tolerance of the South American salt-marsh crab, Neohelice (Chasmagnathus) granulata: physiological constraints to estuarine retention, export and reimmigration

    NASA Astrophysics Data System (ADS)

    Anger, Klaus; Spivak, Eduardo; Luppi, Tomás; Bas, Claudia; Ismael, Deborah

    2008-06-01

    The semiterrestrial crab Neohelice (= Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5 32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10 15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4 10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4 10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.

  10. Integrating larval connectivity with local demography reveals regional dynamics of a marine metapopulation.

    PubMed

    Johnson, Darren W; Christie, Mark R; Pusack, Timothy J; Stallings, Christopher D; Hixon, Mark A

    2018-06-01

    Many ocean species exist within what are called marine metapopulations: networks of otherwise isolated local populations connected by the exchange of larval offspring. In order to manage these species as effectively as possible (e.g., by designing and implementing effective networks of marine protected areas), we must know how many offspring are produced within each local population (i.e., local demography), and where those offspring disperse (i.e., larval connectivity). Although there is much interest in estimating connectivity in the relatively simple sense of identifying the locations of spawning parents and their settling offspring, true measures of demographic connectivity that account for among-site variation in offspring production have been lacking. We combined detailed studies of local reproductive output and larval dispersal of a coral reef fish to quantify demographic connectivity within a regional metapopulation that included four widely spaced islands in the Bahamas. We present a new method for estimating demographic connectivity when the levels of dispersal among populations are inferred by the collection of genetically "tagged" offspring. We estimated that 13.3% of recruits returned to natal islands, on average (95% CI = 1.1-50.3%), that local retention was high on one of the islands (41%, 95% CI = 6.0-97.0%), and that larval connectivity was appreciable, even between islands 129 km apart (mean = 1.6%, 95% CI = 0.20-8.8%). Our results emphasize the importance of properly integrating measurements of production with measurements of connectivity. Had we not accounted for among-site variation in offspring production, our estimates of connectivity would have been inaccurate by a factor as much as 6.5. At a generational timescale, lifetime offspring production varied substantially (a fivefold difference among islands) and the importance of each island to long-term metapopulation growth was dictated by both larval production and connectivity. At the scale

  11. Dietary supplementation with vitamin k affects transcriptome and proteome of Senegalese sole, improving larval performance and quality.

    PubMed

    Richard, Nadège; Fernández, Ignacio; Wulff, Tune; Hamre, Kristin; Cancela, Leonor; Conceição, Luis E C; Gavaia, Paulo J

    2014-10-01

    Nutritional factors strongly influence fish larval development and skeletogenesis, and may induce skeletal deformities. Vitamin K (VK) has been largely disregarded in aquaculture nutrition, despite its important roles in bone metabolism, in γ-carboxylation of Gla proteins, and in regulating gene expression through the pregnane X receptor (Pxr). Since the mechanisms mediating VK effects over skeletal development are poorly known, we investigated the effects of VK-supplementation on skeletal development in Senegalese sole larvae, aiming to identify molecular pathways involved. Larvae were fed live preys enriched with graded levels of phylloquinone (PK) (0, 50, and 250 mg kg(-1)) and survival rate, growth, VK contents, calcium content and incidence of skeletal deformities were determined, revealing an improvement of larval performance and decreasing the incidence of deformities in VK-supplemented groups. Comparative proteome analysis revealed a number of differentially expressed proteins between Control and Diet 250 associated with key biological processes including skin, muscle, and bone development. Expression analysis showed that genes encoding proteins related to the VK cycle (ggcx, vkor), VK nuclear receptor (pxr), and VK-dependent proteins (VKDPs; oc1 and grp), were differentially expressed. This study highlights the potential benefits of increasing dietary VK levels in larval diets, and brings new insights on the mechanisms mediating the positive effects observed on larval performance and skeletal development.

  12. On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura)

    NASA Astrophysics Data System (ADS)

    Harzsch, S.; Dawirs, R. R.

    1993-02-01

    We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.

  13. Long-term resource limitation reduces insect detritivore growth in a headwater stream

    Treesearch

    Brent R. Johnson; Wyatt F. Cross; J. Bruce Wallace

    2003-01-01

    We measured larval growth rates of 2 dominant stream detritivore groups to assess the mechanism underlying declines in invertebrate production following exclusion of terrestrial litter inputs to a forested headwater stream. Larval Tallaperla spp. (P1ecoptera:Peltoperlidae) were chosen as representative shredders and non-Tanypodinae Chironomidae (...

  14. Soundscape manipulation enhances larval recruitment of a reef-building mollusk

    PubMed Central

    Bohnenstiehl, DelWayne R.; Eggleston, David B.

    2015-01-01

    Marine seafloor ecosystems, and efforts to restore them, depend critically on the influx and settlement of larvae following their pelagic dispersal period. Larval dispersal and settlement patterns are driven by a combination of physical oceanography and behavioral responses of larvae to a suite of sensory cues both in the water column and at settlement sites. There is growing evidence that the biological and physical sounds associated with adult habitats (i.e., the “soundscape”) influence larval settlement and habitat selection; however, the significance of acoustic cues is rarely tested. Here we show in a field experiment that the free-swimming larvae of an estuarine invertebrate, the eastern oyster, respond to the addition of replayed habitat-related sounds. Oyster larval recruitment was significantly higher on larval collectors exposed to oyster reef sounds compared to no-sound controls. These results provide the first field evidence that soundscape cues may attract the larval settlers of a reef-building estuarine invertebrate. PMID:26056624

  15. Studying Individual Plant AOX Gene Functionality in Early Growth Regulation: A New Approach.

    PubMed

    Arnholdt-Schmitt, Birgit; Patil, Vinod Kumar

    2017-01-01

    AOX1 and AOX2 genes are thought to play different physiological roles. Whereas AOX1 is typically expected to associate to stress and growth responses, AOX2 was more often found to be linked to development and housekeeping functions. However, this view is questioned by several adverse observations. For example, co-regulated expression for DcAOX1 and DcAOX2a genes was recently reported during growth induction in carrot (Daucus carota L.). Early expression peaks for both genes during the lag phase of growth coincided with a critical time point for biomass prediction, a result achieved by applying calorespirometry. The effect of both AOX family member genes cannot easily be separated. However, separate functional analysis is required in order to identify important gene-specific polymorphisms or patterns of polymorphisms for functional marker development and its use in breeding. Specifically, a methodology is missing that enables studying functional effects of individual genes or polymorphisms/polymorphic patterns on early growth regulation.This protocol aims to provide the means for identifying plant alternative oxidase (AOX) gene variants as functional markers for early growth regulation. Prerequisite for applying this protocol is available Schizosaccharomyces pombe strains that were transformed with individual AOX genes following published protocols from Anthony Moore's group (Albury et al., J Biol Chem 271:17062-17066, 1996; Affourtit et al., J Biol Chem 274:6212-6218, 1999). The novelty of the present protocol comes by modifying yeast cell densities in a way that allows studying critical qualitative and quantitative effects of AOX gene variants (isoenzymes or polymorphic genes) during the early phase of growth. Calorimetry is used as a novel tool to confirm differences obtained by optical density measurements in early growth regulation by metabolic phenotyping (released heat rates). This protocol enables discriminating between AOX genes that inhibit growth and

  16. Mechanisms to Explain the Elemental Composition of the Initial Aragonite Shell of Larval Oysters

    NASA Astrophysics Data System (ADS)

    Haley, Brian A.; Hales, Burke; Brunner, Elizabeth L.; Kovalchik, Kevin; Waldbusser, George G.

    2018-04-01

    Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling regions of the world, such as the coastal and estuarine waters of Oregon (USA). Arguably the first and most significant developmental hurdle faced by larval oysters is formation of their initial prodissoconch I (PDI) shell, upon which further ontological development depends. We measured the minor metal compositions (Sr/Ca, Mg/Ca) of this aragonitic PDI shell and of post-PDI larval Crassostrea gigas shell, as well as the water they were reared in, over ˜20 days for a May and an August cohort in 2011, during which time there was no period of carbonate under-saturation. After testing various methods, we successfully isolated the shell from organic tissue using a 5% active chlorine bleach solution. Elemental compositions (Sr, Mg, C, N) of the shells post-treatment showed that shell Sr/Ca ranged from 1.55 to 1.82 mmol/mol; Mg/Ca from 0.60 to 1.11 mmol/mol, similar to the few comparable published data for larval oyster aragonite compositions. We compare these data in light of possible biomineralization mechanisms: an amorphous calcium carbonate (ACC) path, an intercellular path, and a direct-from-seawater path to shell formation via biologically induced inorganic precipitation of aragonite. The last option provides a mechanistic explanation for: (1) the accelerated precipitation rates of biogenic calcification in the absence of a calcifying fluid; (2) consistently elevated precipitation rates at varying ambient-water saturation states; and (3) the high Ca-selectivity of the early larval calcification despite rapid precipitation rates.

  17. Pheromone modulates two phenotypically plastic traits - adult reproduction and larval diapause - in the nematode Caenorhabditis elegans.

    PubMed

    Wharam, Barney; Weldon, Laura; Viney, Mark

    2017-08-22

    Animals use information from their environment to make decisions, ultimately to maximize their fitness. The nematode C. elegans has a pheromone signalling system, which hitherto has principally been thought to be used by worms in deciding whether or not to arrest their development as larvae. Recent studies have suggested that this pheromone can have other roles in the C. elegans life cycle. Here we demonstrate a new role for the C. elegans pheromone, showing that it accelerates hermaphrodites' reproductive rate, a phenomenon which we call pheromone-dependent reproductive plasticity (PDRP). We also find that pheromone accelerates larval growth rates, but this depends on a live bacterial food source, while PDRP does not. Different C. elegans strains all show PDRP, though the magnitude of these effects differ among the strains, which is analogous to the diversity of arrested larval phenotypes that this pheromone also induces. Using a selection experiment we also show that selection for PDRP or for larval arrest affects both the target and the non-target trait, suggesting that there is cross-talk between these two pheromone-dependent traits. Together, these results show that C. elegans' pheromone is a signal that acts at two key life cycle points, controlling alternative larval fates and affecting adult hermaphrodites' reproduction. More broadly, these results suggest that to properly understand and interpret the biology of pheromone signalling in C. elegans and other nematodes, the life-history biology of these organisms in their natural environment needs to be considered.

  18. Larval fish distribution in the St. Louis River estuary

    EPA Science Inventory

    Our objective was to determine what study design, environmental, and habitat variables contribute to the distribution and abundance of larval fish in the St. Louis River estuary. Larval fish habitat associations are poorly understood in Great Lakes coastal wetlands, yet critical ...

  19. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence

    PubMed Central

    Wheeler, Jeanette D.; Chan, Kit Yu Karen; Anderson, Erik J.; Mullineaux, Lauren S.

    2016-01-01

    ABSTRACT Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology

  20. Effects of arginine vasotocin and mesotocin on the activation and development of amiloride-blockable short-circuit current across larval, adult, and cultured larval bullfrog skins.

    PubMed

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2010-03-01

    Amphibian skin has osmoregulatory functions, with Na(+) crossing from outside to inside. Na(+) transport can be measured as the short-circuit current (SCC). We investigated the short-term and long-term effects of arginine vasotocin (AVT) and mesotocin (MT) (which modulate Na(+) transport) on the activation and development of an amiloride-blockable SCC (adult-type feature) in larval, adult, and corticoid-cultured larval bullfrog skins. We found: (1) AVT-receptor (AVT-R) and MT-receptor (MT-R) mRNAs could be detected in both larval and adult skins, (2) in the short term (within 60 min), the larval SCC (amiloride-stimulated SCC) was increased by AVT, forskolin, and MT, suggesting that AVT and MT did not activate the inactive ENaC (epithelial sodium channel) protein thought to be expressed in larval skin, (3) in the short term (within 90 min), AVT, forskolin, and MT stimulated the adult SCC (amiloride-blockable SCC), (4) AVT and MT increased both the larval and adult SCC via receptors insensitive to OPC-21268 (an antagonist of the V(1)-type receptor), OPC-31260 (an antagonist of the V(2)-type receptor), and ([d(CH(2))(5),Tyr(Me)(2),Thr(4),Orn(8),des-Gly-NH (2) (9) ]VT) (an antagonist of the oxytocin receptor), (5) culturing EDTA-treated larval skin with corticoids supplemented with AVT (1 microM) or MT (1 microM) for 2 weeks (long-term effects of AVT and MT) did not alter the corticoid-induced development of an amiloride-blockable SCC (adult-type feature). AVT and MT thus have the potential to stimulate SCC though channels that are already expressed, but they may not influence the development of the amiloride-blockable SCC (an adult-type feature) in larval skin.

  1. Biological impacts of glyphosate on morphology, embryo biomechanics and larval behavior in zebrafish (Danio rerio).

    PubMed

    Zhang, Shuhui; Xu, Jia; Kuang, Xiangyu; Li, Shibao; Li, Xiang; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2017-08-01

    All of these days, residues of herbicides such as glyphosate are widely distributed in the environment. The ubiquitous use of glyphosate has drawn extensive attention to its toxicity as an organic pollutant. In this study, we employed larval zebrafish as an animal model to evaluate the effect of different concentrations of glyphosate on early development via morphological, biomechanics, behavioral and physiological analyses. Morphological results showed that an obvious delay occurred in the epiboly process and body length, eye and head area were reduced at concentrations higher than 10 mg/L. The expression of ntl (no tail) shortened and krox20 (also known as Egr2b, early growth response 2b) changed as the glyphosate concentration increased, but there was no change in the expression of shh (sonic hedgehog). In addition, biomechanical analysis of the elasticity of chorion indicated that treated embryos' surface tension was declined. Furthermore, a 48-h locomotion test revealed that embryonic exposure to glyphosate significantly elevated locomotor activities, which is probably attributed to motoneuronal damage. The decreased surface tension of chorion and the increased locomotive activities may contribute to the hatching rates after glyphosate treatment. Our study enriches the researches of evaluating glyphosate toxicity and probablely plays a warning role in herbicides used in farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Early treatment with metformin induces resistance against tumor growth in adult rats

    PubMed Central

    Trombini, Amanda B; Franco, Claudinéia CS; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane AS; Fabricio, Gabriel S; de Sant’Anna, Juliane R; Castro-Prado, Marialba AA; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo CF

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer. PMID:26024008

  3. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro.

    PubMed

    Wang, Tian-ren; Yan, Li-ying; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhu, Xiao-hui; Gao, Jiang-man; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Qiao, Jie

    2014-03-01

    What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings

  4. Embryonic and larval development and early behavior in grass carp, Ctenopharyngodon idella: implications for recruitment in rivers

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2015-01-01

    With recent findings of grass carp Ctenopharyngodon idella in tributaries of the Great Lakes, information on developmental rate and larval behavior is critical to efforts to assess the potential for establishment within the tributaries of that region. In laboratory experiments, grass carp were spawned and eggs and larvae reared at two temperature treatments, one "cold" and one "warm", and tracked for developmental rate, egg size, and behavior. Developmental rate was quantified using Yi's (1988) developmental stages and the cumulative thermal units method. Grass carp had a thermal minimum of 13.5°C for embryonic stages and 13.3°C for larval stages. Egg size was related to temperature and maternal size, with the largest eggs coming from the largest females, and eggs were generally larger in warmer treatments. Young grass carp larvae exhibited upward and downward swimming interspersed with long periods of lying on the bottom. Swimming capacity increased with ontogeny, and larvae were capable of horizontal swimming and position holding with gas bladder emergence. Developmental rates, behavior, and egg attributes can be used in combination with physical parameters of a river to assess the risk that grass carp are capable of reproduction and recruitment in rivers.

  5. Larval long-toed salamanders incur nonconsumptive effects in the presence of nonnative trout

    USGS Publications Warehouse

    Kenison, Erin K.; Litt, Andrea R.; Pilliod, David S.; McMahon, Thomas E.

    2016-01-01

    Predators can influence prey directly through consumption or indirectly through nonconsumptive effects (NCEs) by altering prey behavior, morphology, and life history. We investigated whether predator-avoidance behaviors by larval long-toed salamanders (Ambystoma macrodactylum) in lakes with nonnative trout result in NCEs on morphology and development. Field studies in lakes with and without trout were corroborated by experimental enclosures, where prey were exposed only to visual and chemical cues of predators. We found that salamanders in lakes with trout were consistently smaller than in lakes without trout: 38% lower weight, 24% shorter body length, and 29% shorter tail length. Similarly, salamanders in protective enclosures grew 2.9 times slower when exposed to visual and olfactory trout cues than when no trout cues were present. Salamanders in trout-free lakes and enclosures were 22.7 times and 1.48 times, respectively, more likely to metamorphose during the summer season than those exposed to trout in lakes and/or their cues. Observed changes in larval growth rate and development likely resulted from a facultative response to predator-avoidance behavior and demonstrate NCEs occurred even when predation risk was only perceived. Reduced body size and growth, as well as delayed metamorphosis, could have ecological consequences for salamander populations existing with fish if those effects carry-over into lower recruitment, survival, and fecundity.

  6. Trait-based Modeling of Larval Dispersal in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Jones, B.; Richardson, D.; Follows, M. J.; Hill, C. N.; Solow, A.; Ji, R.

    2016-02-01

    Population connectivity of marine species is the inter-generational movement of individuals among geographically separated subpopulations and is a crucial determinant of population dynamics, community structure, and optimal management strategies. For many marine species, population connectivity is largely determined by the dispersal patterns that emerge from a pelagic larval phase. These dispersal patterns are a result of interactions between the physical environment, adult spawning strategy, and larval ecology. Using a generalized trait-based model that represents the adult spawning strategy as a distribution of larval releases in time and space and the larval trait space with the pelagic larval duration, vertical swimming behavior, and settlement habitat preferences, we simulate dispersal patterns in the Gulf of Maine and surrounding regions. We implement this model as an individual-based simulation that tracks Lagrangian particles on a graphics processing unit as they move through hourly archived output from the Finite-Volume Community Ocean Model. The particles are released between the Hudson Canyon and Nova Scotia and the release distributions are determined using a novel method that minimizes the number of simulations required to achieve a predetermined level of precision for the connectivity matrices. The simulated larvae have a variable pelagic larval duration and exhibit multiple forms of dynamic depth-keeping behavior. We describe how these traits influence the dispersal trajectories and connectivity patterns among regions in the northwest Atlantic. Our description includes the probability of successful recruitment, patchiness of larval distributions, and the variability of these properties in time and space under a variety of larval dispersal strategies.

  7. Influence of salinity on the early development and biochemical dynamics of a marine fish, Inimicus japonicus

    NASA Astrophysics Data System (ADS)

    Gong, Xu; Huang, Xuxiong; Wen, Wen

    2018-03-01

    Fertilised eggs of the devil stringer ( Inimicus japonicus) were incubated at different salinity levels (21, 25, 29, 33, and 37), and then the hatching performances, morphological parameters, and biochemical composition (protein, lipid and carbohydrate) of the larvae were assayed to determine the influence of salinity on the early development of I. japonicus. The tested salinity levels did not affect the times of hatching or mouth opening for yolk-sac larvae. However, the salinity significantly influenced the hatching and survival rates of open-mouthed larvae, as well as the morphology of yolk-sac larvae. The data indicated that 30.5 to 37.3 and 24.4 to 29.8 were suitable salinity ranges for the survival of embryos and larvae of I. japonicus, respectively. Larvae incubated at a salinity level of 29 had the greatest full lengths, and decreasing yolk volume was positively correlated with the environmental salinity. With increasing salinity, the individual dry weights of newly hatched larvae or open-mouthed larvae decreased significantly. Newly hatched larvae incubated at a salinity level of 29 had the greatest metabolic substrate contents and gross energy levels, while the openmouthed larvae's greatest values occurred at a salinity level of 25. Larvae incubated in the salinity range of 33 to 37 had the lowest nutritional reserves and energy values. Thus, the I. japonicus yolk-sac larvae acclimated more readily to the lower salinity level than the embryos, and higher salinity levels negatively influenced larval growth and development. In conclusion, the environmental salinity level should be maintained at 29-33 during embryogenesis and at 25-29 during early larval development for this species. Our results can be used to provide optimum aquaculture conditions for the early larval development of I. japonicus.

  8. Influence of salinity on the early development and biochemical dynamics of a marine fish, Inimicus japonicus

    NASA Astrophysics Data System (ADS)

    Gong, Xu; Huang, Xuxiong; Wen, Wen

    2017-05-01

    Fertilised eggs of the devil stringer (Inimicus japonicus) were incubated at different salinity levels (21, 25, 29, 33, and 37), and then the hatching performances, morphological parameters, and biochemical composition (protein, lipid and carbohydrate) of the larvae were assayed to determine the influence of salinity on the early development of I. japonicus. The tested salinity levels did not affect the times of hatching or mouth opening for yolk-sac larvae. However, the salinity significantly influenced the hatching and survival rates of open-mouthed larvae, as well as the morphology of yolk-sac larvae. The data indicated that 30.5 to 37.3 and 24.4 to 29.8 were suitable salinity ranges for the survival of embryos and larvae of I. japonicus, respectively. Larvae incubated at a salinity level of 29 had the greatest full lengths, and decreasing yolk volume was positively correlated with the environmental salinity. With increasing salinity, the individual dry weights of newly hatched larvae or open-mouthed larvae decreased significantly. Newly hatched larvae incubated at a salinity level of 29 had the greatest metabolic substrate contents and gross energy levels, while the openmouthed larvae's greatest values occurred at a salinity level of 25. Larvae incubated in the salinity range of 33 to 37 had the lowest nutritional reserves and energy values. Thus, the I. japonicus yolk-sac larvae acclimated more readily to the lower salinity level than the embryos, and higher salinity levels negatively influenced larval growth and development. In conclusion, the environmental salinity level should be maintained at 29-33 during embryogenesis and at 25-29 during early larval development for this species. Our results can be used to provide optimum aquaculture conditions for the early larval development of I. japonicus.

  9. The importance of accounting for larval detectability in mosquito habitat-association studies.

    PubMed

    Low, Matthew; Tsegaye, Admasu Tassew; Ignell, Rickard; Hill, Sharon; Elleby, Rasmus; Feltelius, Vilhelm; Hopkins, Richard

    2016-05-04

    Mosquito habitat-association studies are an important basis for disease control programmes and/or vector distribution models. However, studies do not explicitly account for incomplete detection during larval presence and abundance surveys, with potential for significant biases because of environmental influences on larval behaviour and sampling efficiency. Data were used from a dip-sampling study for Anopheles larvae in Ethiopia to evaluate the effect of six factors previously associated with larval sampling (riparian vegetation, direct sunshine, algae, water depth, pH and temperature) on larval presence and detectability. Comparisons were made between: (i) a presence-absence logistic regression where samples were pooled at the site level and detectability ignored, (ii) a success versus trials binomial model, and (iii) a presence-detection mixture model that separately estimated presence and detection, and fitted different explanatory variables to these estimations. Riparian vegetation was consistently highlighted as important, strongly suggesting it explains larval presence (-). However, depending on how larval detectability was estimated, the other factors showed large variations in their statistical importance. The presence-detection mixture model provided strong evidence that larval detectability was influenced by sunshine and water temperature (+), with weaker evidence for algae (+) and water depth (-). For larval presence, there was also some evidence that water depth (-) and pH (+) influenced site occupation. The number of dip-samples needed to determine if larvae were likely present at a site was condition dependent: with sunshine and warm water requiring only two dips, while cooler water and cloud cover required 11. Environmental factors influence true larval presence and larval detectability differentially when sampling in field conditions. Researchers need to be more aware of the limitations and possible biases in different analytical approaches used to

  10. Correlated evolution between mode of larval development and habitat in muricid gastropods.

    PubMed

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.

  11. [Experimental study of the larval development of Hymenolepis stylosa (Rudolphi, 1809), Raillet, 1899 (Cestoda : cyelophyllidea) (author's transl)].

    PubMed

    Gabrion, C

    1977-01-01

    Comparative studies of the larval development of Hymenolepis stylosa Rudolphi, 1809 (Cestoda : Cyclophyllidea), a parasite of Corvid birds are undertaken from three insect species. The development in the beetle, Tenebrio molitor shows that the scolex differenciation occurs before the invagination of the metacestode in the cystic vesicle. The cercomer is long, narrow and flexuous. In the grasshopper, Lousta migratoria, the development is the same one but the scolex invaganation begins early. In another beetle, Dermestes frischi, the oncosphere is stopped in the gut-wall. The morphology and development of the cysticercoids of avian species of Hymenolepis, which have a well known life cycle, are similar. Studies on the structure of the larval stages of avian and mammal species of Hymenolepis seem necessary to find the relations between the different species of this genus.

  12. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.)

    NASA Astrophysics Data System (ADS)

    Arnold, K. E.; Findlay, H. S.; Spicer, J. I.; Daniels, C. L.; Boothroyd, D.

    2009-03-01

    Oceanic uptake of anthropogenic CO2 results in a reduction in pH termed "Ocean Acidification" (OA). Comparatively little attention has been given to the effect of OA on the early life history stages of marine animals. Consequently, we investigated the effect of culture in CO2-acidified sea water (approx. 1200 ppm, i.e. average values predicted using IPCC 2007 A1F1 emissions scenarios for year 2100) on early larval stages of an economically important crustacean, the European lobster Homarus gammarus. Culture in CO2-acidified sea water did not significantly affect carapace length or development of H. gammarus. However, there was a reduction in carapace mass during the final stage of larval development in CO2-acidified sea water. This co-occurred with a reduction in exoskeletal mineral (calcium and magnesium) content of the carapace. As the control and high CO2 treatments were not undersaturated with respect to any of the calcium carbonate polymorphs measured, the physiological alterations we record are most likely the result of acidosis or hypercapnia interfering with normal homeostatic function, and not a direct impact on the carbonate supply-side of calcification per se. Thus despite there being no observed effect on survival, carapace length, or zoeal progression, OA related (indirect) disruption of calcification and carapace mass might still adversely affect the competitive fitness and recruitment success of larval lobsters with serious consequences for population dynamics and marine ecosystem function.

  13. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.)

    NASA Astrophysics Data System (ADS)

    Arnold, K. E.; Findlay, H. S.; Spicer, J. I.; Daniels, C. L.; Boothroyd, D.

    2009-08-01

    Oceanic uptake of anthropogenic CO2 results in a reduction in pH termed "Ocean Acidification" (OA). Comparatively little attention has been given to the effect of OA on the early life history stages of marine animals. Consequently, we investigated the effect of culture in CO2-acidified sea water (approx. 1200 ppm, i.e. average values predicted using IPCC 2007 A1F1 emissions scenarios for year 2100) on early larval stages of an economically important crustacean, the European lobster Homarus gammarus. Culture in CO2-acidified sea water did not significantly affect carapace length of H. gammarus. However, there was a reduction in carapace mass during the final stage of larval development in CO2-acidified sea water. This co-occurred with a reduction in exoskeletal mineral (calcium and magnesium) content of the carapace. As the control and high CO2 treatments were not undersaturated with respect to any of the calcium carbonate polymorphs measured, the physiological alterations we record are most likely the result of acidosis or hypercapnia interfering with normal homeostatic function, and not a direct impact on the carbonate supply-side of calcification per se. Thus despite there being no observed effect on survival, carapace length, or zoeal progression, OA related (indirect) disruption of calcification and carapace mass might still adversely affect the competitive fitness and recruitment success of larval lobsters with serious consequences for population dynamics and marine ecosystem function.

  14. 'Peer pressure' in larval Drosophila?

    PubMed

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  15. Using variance components to estimate power in a hierarchically nested sampling design improving monitoring of larval Devils Hole pupfish

    USGS Publications Warehouse

    Dzul, Maria C.; Dixon, Philip M.; Quist, Michael C.; Dinsomore, Stephen J.; Bower, Michael R.; Wilson, Kevin P.; Gaines, D. Bailey

    2013-01-01

    We used variance components to assess allocation of sampling effort in a hierarchically nested sampling design for ongoing monitoring of early life history stages of the federally endangered Devils Hole pupfish (DHP) (Cyprinodon diabolis). Sampling design for larval DHP included surveys (5 days each spring 2007–2009), events, and plots. Each survey was comprised of three counting events, where DHP larvae on nine plots were counted plot by plot. Statistical analysis of larval abundance included three components: (1) evaluation of power from various sample size combinations, (2) comparison of power in fixed and random plot designs, and (3) assessment of yearly differences in the power of the survey. Results indicated that increasing the sample size at the lowest level of sampling represented the most realistic option to increase the survey's power, fixed plot designs had greater power than random plot designs, and the power of the larval survey varied by year. This study provides an example of how monitoring efforts may benefit from coupling variance components estimation with power analysis to assess sampling design.

  16. Morphology of First Zoeal Stage of Four Genera of Alvinocaridid Shrimps from Hydrothermal Vents and Cold Seeps: Implications for Ecology, Larval Biology and Phylogeny

    PubMed Central

    Hernández-Ávila, Iván; Cambon-Bonavita, Marie-Anne; Pradillon, Florence

    2015-01-01

    Alvinocaridid shrimps are endemic species inhabiting hydrothermal vents and/or cold seeps. Although indirect evidences (genetic and lipid markers) suggest that their larval stages disperse widely and support large scale connectivity, larval life and mechanisms underlying dispersal are unknown in alvinocaridids. Here we provide for the first time detailed descriptions of the first larval stage (zoea I) of four alvinocaridid species: Rimicaris exoculata and Mirocaris fortunata from the Mid-Atlantic Ridge, Alvinocaris muricola from the Congo Basin and Nautilocaris saintlaurentae from the Western Pacific. The larvae were obtained from onboard hatching of brooding females (either at atmospheric pressure or at habitat pressure in hyperbaric chambers) and from the water column near adult habitats, sampled with plankton pumps or sediment traps. Major characteristics of the alvinocaridid larvae include undeveloped mandible and almost complete absence of setation in the inner margin of the mouth parts and maxillipeds. Although the larvae are very similar between the four species studied, some morphological features could be used for species identification. In addition, undeveloped mouthparts and the large amount of lipid reserves strongly support the occurrence of primary lecithotrophy in the early stage of alvinocaridids. Although lecithotrophy in decapod crustaceans is usually associated with abbreviated larval development, as a mechanism of larval retention, morphological and physiological evidences suggest the occurrence of an extended and lecithotrophic larval stage in the Alvinocarididae. These traits permit the colonization of widely dispersed and fragmented environments of hydrothermal vents and cold seeps. Distribution of larval traits along the phylogenetic reconstruction of the Alvinocarididae and related families suggest that lecithotrophy/planktotrophy and extended/abbreviated development have evolved independently along related families in all potential

  17. Genetic and Environmental Influences on the Growth of Early Reading Skills

    ERIC Educational Resources Information Center

    Petrill, Stephen A.; Hart, Sara A.; Harlaar, Nicole; Logan, Jessica; Justice, Laura M.; Schatschneider, Christopher; Thompson, Lee; DeThorne, Laura S.; Deater-Deckard, Kirby; Cutting, Laurie

    2010-01-01

    Background: Studies have suggested genetic and environmental influences on overall level of early reading whereas the larger reading literature has shown environmental influences on the rate of growth of early reading skills. This study is the first to examine the genetic and environmental influences on both initial level of performance and rate…

  18. Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle

    2002-11-01

    Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples.

  19. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling

    PubMed Central

    Cinnamon, Einat; Sawala, Annick; Tittiger, Claus; Paroush, Ze'ev

    2016-01-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  20. A sampler for capturing larval and juvenile Atlantic menhaden

    USGS Publications Warehouse

    Hedrick, J.D.; Hedrick, L.R.; Margraf, F.J.

    2005-01-01

    Interest in capturing larval and juvenile Atlantic menhaden Brevoortia tyrannus for use in laboratory studies required the design and construction of a sampling device that would allow us to make collections of live fish from open-water areas. Our device for capturing 1-2.5-in larval-juvenile fish was constructed of a stainless steel frame that supported a 9.84-ft-long (3-m-long)5 cone plankton net with a 3.28-ft-diameter (1-m-diameter) opening and a 0.04-in (1-mm) mesh size. Although the plankton net was similar to that used during typical larval fish collections, the cod end was constructed of Plexiglas and was nearly watertight; this prevented impingement and injury to larval fish and provided a calm-water environment. The cod end was designed for quick release from the plankton net, and the entire cod end could be submerged into a 75-gal onboard holding tank. This design and technique obviated the netting or emerging of fish from the water until they were returned to the laboratory. ?? Copyright by the American Fisheries Society 2005.

  1. Larval fish assemblages across an upwelling front: Indication for active and passive retention

    NASA Astrophysics Data System (ADS)

    Tiedemann, Maik; Brehmer, Patrice

    2017-03-01

    In upwelling areas, enrichment, concentration and retention are physical processes that have major consequences for larval fish survival. While these processes generally increase larval survival, strong upwelling can also increase mortality due to an offshore transport of larvae towards unfavorable habitats. In 2013 a survey was conducted along the Senegalese coast to investigate the upwelling effect with regard to larval fish assemblages and possible larval fish retention. According to water column characteristics two distinct habitats during an upwelling event were discriminated, i.e. the inshore upwelled water and the transition area over the deepest part of the Senegalese shelf. Along the two areas 42,162 fish larvae were collected representing 133 species within 40 families. Highest larval fish abundances were observed in the inshore area and decreasing abundances towards the transition, indicating that certain fish species make use of the retentive function of the inner shelf area as spawning grounds. Two larval fish assemblages overlap both habitats, which are sharply delimited by a strong upwelling front. One assemblage inhabited the inshore/upwelling area characterized by majorly neritic and pelagic species (Sparidae spp., Sardinella aurita), that seem to take the advantage of a passive retention on the shelf. The second assemblage consisted of a mix of pelagic and mesopelagic species (Engraulis encrasicolus, Carangidae spp. and Myctophidae spp.). Some species of the second assemblage, e.g. horse mackerels (Trachurus trachurus and Trachurus trecae), large finned-lantern fish (Hygophum macrochir) and foureyed sole (Microchirus ocellatus), revealed larval peak occurrences at intermediate and deep water layers, where the near-ground upwelling layer is able to transport larvae back to the shelf. This indicates active larval retention for species that are dominant in the transition area. Diel vertical migration patterns of S. aurita, E. encrasicolus and M

  2. Plastic larval development in a butterfly has complex environmental and genetic causes and consequences for population dynamics.

    PubMed

    Saastamoinen, Marjo; Ikonen, Suvi; Wong, Swee C; Lehtonen, Rainer; Hanski, Ilkka

    2013-05-01

    1. In insects, the length of larval development time typically influences adult body size and individual fitness, and hence development time can be expected to respond in an adaptive manner to variation in environmental conditions. In the wild, larval growth may be influenced by individual condition, which can be affected by population-level parameters such as population density and abundance and quality of resources. 2. We sampled larvae of the Glanville fritillary butterfly (Melitaea cinxia) from 514 local populations across a large metapopulation before the winter diapause and reared the larvae in common garden conditions after diapause. Here, we report that small post-diapause larvae prolonged their development via an extra larval instar, apparently to compensate for their 'bad start' after diapause. The number of instars was additionally a plastic response to environmental conditions, as the frequency of the extra instar increased under cooler thermal conditions. 3. The benefit of the extra instar is clear, as it allows individuals to develop into larger adults, but the cost is delayed adult eclosion, which is likely to select against the extra instar especially in males, in which early eclosion is critical for mating success. In support of this, the frequency of the extra instar was significantly lower in males (7%) than in females (42%). 4. Polymorphisms in three genes, serpin-1, vitellin-degrading protease precursor and phosphoglucose isomerase, which are known to influence development in insects, were associated with the occurrence of the extra instar. 5. At the level of local populations, the frequency of the extra instar was higher in newly established populations than that in old local ones, possibly reflecting maternal effects, as new populations are often established by females with heavy investment in dispersal. The frequency of the extra instar in turn correlated with the change in population size over 1 year and the risk of local extinction in the

  3. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain

    PubMed Central

    Hartenstein, Volker; Younossi-Hartenstein, Amelia; Lovick, Jennifer; Kong, Angel; Omoto, Jaison; Ngo, Kathy; Viktorin, Gudrun

    2015-01-01

    Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, Inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses. PMID:26141956

  4. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.

    PubMed

    Hartenstein, Volker; Younossi-Hartenstein, Amelia; Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Viktorin, Gudrun

    2015-10-01

    Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    PubMed

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  6. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae)

    USGS Publications Warehouse

    Slone, D.H.; Gruner, Susan V.

    2007-01-01

    The growth and development of carrion-feeding calliphorid (Diptera Calliphoridae) larvae, or maggots, is of great interest to forensic sciences, especially for estimation of a postmortem interval (PMI). The development rate of calliphorid larvae is influenced by the temperature of their immediate environment. Heat generation in larval feeding aggregations (=maggot masses) is a well-known phenomenon, but it has not been quantitatively described. Calculated development rates that do not include internally generated temperatures will result in overestimation of PMI. Over a period of 2.5 yr, 80 pig, Sus scrofa L., carcasses were placed out at study sites in north central Florida and northwestern Indiana. Once larval aggregations started to form, multiple internal and external temperatures, and weather observations were taken daily or every few days between 1400 and 1800 hours until pupation of the larvae. Volume of each aggregation was determined by measuring surface area and average depth. Live and preserved samples of larvae were taken for species identification. The four most common species collected were Lucilia coeruleiviridis (=Phaenicia) (Macquart) (77%), Cochliomyia macellaria (F.) (8.3%), Chrysomya rufifaces (Macquart) (7.7%), and Phormia regina (Meigen) (5.5%). Statistical analyses showed that 1) volume of a larval mass had a strong influence on its temperature, 2) internal temperatures of masses on the ground were influenced by soil temperature and mass volume, 3) internal temperatures of masses smaller than 20 cm3 were influenced by ambient air temperature and mass volume, and 4) masses larger than 20 cm3 on the carcass had strongly regulated internal temperatures determined only by the volume of the mass, with larger volumes associated with higher temperatures. Nonsignificant factors included presence of rain or clouds, shape of the aggregation, weight of the carcass, species composition of the aggregation, time since death, or season.

  7. High resolution microscopy reveals significant impacts of ocean acidification and warming on larval shell development in Laternula elliptica.

    PubMed

    Bylenga, Christine H; Cummings, Vonda J; Ryan, Ken G

    2017-01-01

    Environmental stressors impact marine larval growth rates, quality and sizes. Larvae of the Antarctic bivalve, Laternula elliptica, were raised to the D-larvae stage under temperature and pH conditions representing ambient and end of century projections (-1.6°C to +0.4°C and pH 7.98 to 7.65). Previous observations using light microscopy suggested pH had no influence on larval abnormalities in this species. Detailed analysis of the shell using SEM showed that reduced pH is in fact a major stressor during development for this species, producing D-larvae with abnormal shapes, deformed shell edges and irregular hinges, cracked shell surfaces and even uncalcified larvae. Additionally, reduced pH increased pitting and cracking on shell surfaces. Thus, apparently normal larvae may be compromised at the ultrastructural level and these larvae would be in poor condition at settlement, reducing juvenile recruitment and overall survival. Elevated temperatures increased prodissoconch II sizes. However, the overall impacts on larval shell quality and integrity with concurrent ocean acidification would likely overshadow any beneficial results from warmer temperatures, limiting populations of this prevalent Antarctic species.

  8. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi.

    PubMed

    Vogels, Chantal B F; Bukhari, Tullu; Koenraadt, Constantianus J M

    2014-06-01

    Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible. Copyright © 2014. Published by Elsevier Inc.

  9. Hydrodynamic starvation in first-feeding larval fishes

    PubMed Central

    China, Victor; Holzman, Roi

    2014-01-01

    Larval fishes suffer prodigious mortality rates, eliminating 99% of the brood within a few days after first feeding. Hjort (1914) famously attributed this “critical period” of low survival to the larvae’s inability to obtain sufficient food [Hjort (1914) Rapp P-v Réun Cons Int Explor Mer 20:1–228]. However, the cause of this poor feeding success remains to be identified. Here, we show that hydrodynamic constraints on the ubiquitous suction mechanism in first-feeding larvae limit their ability to capture prey, thereby reducing their feeding rates. Dynamic-scaling experiments revealed that larval size is the primary determinant of feeding rate, independent of other ontogenetic effects. We conclude that first-feeding larvae experience “hydrodynamic starvation,” in which low Reynolds numbers mechanistically limit their feeding performance even under high prey densities. Our results provide a hydrodynamic perspective on feeding of larval fishes that focuses on the physical properties of the larvae and prey, rather than on prey concentration and the rate of encounters. PMID:24843180

  10. Identification of mosquito larval habitats in high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.

    2003-09-01

    Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.

  11. Inter-annual and spatial difference in hatch date and settlement date distribution and planktonic larval duration in yellow striped flounder Pseudopleuronectes herzensteini

    NASA Astrophysics Data System (ADS)

    Joh, Mikimasa; Wada, Akihiko

    2018-07-01

    Hatch date and settlement date distribution and planktonic larval duration (PLD) in yellow striped flounder in nursery grounds in the northern Japan Sea and in the Okhotsk Sea around Hokkaido (Northern Japan Sea-Okhotsk Sea population) were investigated. We examined the relationship between the ecological features and water temperature in these two locations where oceanographic conditions considerably differ. For both nursery grounds, the timing of hatch was early in a warm year and late in a cold year, indicating the strong link between water temperature and the timing of hatch in this population. Although spatial difference in hatch date in 2007 was not significant, hatching and settlement of juveniles collected in the Okhotsk Sea nursery (Okhotsk Sea subpopulation: OSS) occurred later than in those collected in the Japan Sea (Japan Sea subpopulation: JSS); in the spring, the water temperature of the Japan Sea rises earlier in the southern area. The precise area where eggs of both subpopulations originated is unknown; however, this study indicates that eggs that become the JSS may be produced further south than those for the OSS. Comparing on the same date, the water temperature around potential spawning area of OSS in 2006 was ca. 2 °C lower than in 2007 and 2009; however, the overall difference in water temperature at the median date of hatching was 0.7 °C. This result indicates that a spring rise in water temperature probably determines the timing of spawning and larval hatch of this population. Spatiotemporal differences in the PLD were affected by water temperature in which juveniles were exposed during pelagic phase. The PLDs were shorter in warmer years and for warmer subpopulation. The PLD of OSS was longer than that of JSS and spatial difference was statistically significant in 2006. Water temperature in which OSS was exposed in later pelagic phase was relatively low, and the growth of pelagic larvae of OSS was probably slow, and consequently, the PLD

  12. Granulomatous responses in larval taeniid infections.

    PubMed

    Díaz, Á; Sagasti, C; Casaravilla, C

    2018-05-01

    Granulomas are responses to persistent nonliving bodies or pathogens, centrally featuring specialized macrophage forms called epithelioid and multinucleated giant cells. The larval stages of the cestode parasites of the Taeniidae family (Taenia, Echinococcus) develop for years in fixed tissue sites in mammals. In consequence, they are targets of granulomatous responses. The information on tissue responses to larval taeniids is fragmented among host and parasite species and scattered over many decades. We attempt to draw an integrated picture of these responses in solid tissues. The intensity of inflammation around live parasites spans a spectrum from minimal to high, parasite vitality correlating with low inflammation. The low end of the inflammatory spectrum features collagen capsules proximal to the parasites and moderate distal infiltration. The middle of the spectrum is dominated by classical granulomatous responses, whereas the high end features massive eosinophil invasions. Across the range of parasite species, much observational evidence suggests that eosinophils are highly effective at killing larval taeniids in solid tissues, before and during chronic granulomatous responses. The evidence available also suggests that these parasites are adapted to inhibit host granulomatous responses, in part through the exacerbation of host regulatory mechanisms including regulatory T cells and TGF-β. © 2018 John Wiley & Sons Ltd.

  13. ‘Peer pressure’ in larval Drosophila?

    PubMed Central

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-01-01

    ABSTRACT Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371

  14. Dietary supplementation of Haematococcus pluvialis improved the immune capacity and low salinity tolerance ability of post-larval white shrimp, Litopenaeus vannamei.

    PubMed

    Xie, Shiwei; Fang, Weiping; Wei, Dan; Liu, Yongjian; Yin, Peng; Niu, Jin; Tian, Lixia

    2018-06-20

    A 25-days experiment was conducted to evaluate the effect of dietary Haematococcus pluvialis on growth, survival, immune response and stress tolerance ability of post-larval Litopenaeus vannamei. Post-larval white shrimp (mean initial weight 2.1 mg) were fed five isoenergic and isonitrogenous diets containing grade levels of Haematococcus pluvialis (0, 1.7, 3.3, 6.7 and 13.3 g kg -1 diet, respectively). Results indicated that 3.3 g Haematococcus pluvialis kg -1 diet increased the survival rate of post-larval white shrimp. Specific growth rate (SGR) and weight gain (WG) showed no difference among each groups. After the acute salinity stress (salinity decreased rapidly from 28‰ to 5‰), survival of shrimp fed 6.7 g Haematococcus pluvialis kg -1 diet significant higher than the control (P < 0.05), and the total antioxidant capacity (T-AOC) was increased with the increasing dietary Haematococcus pluvialis levels. The malonaldehyde (MDA) contents in whole body decreased with the increasing dietary Haematococcus pluvialis levels before and after the salinity stress. Before the salinity stress, relative mRNA levels of Caspase 3, Rho and Janus kinase (JAK) decreased in shrimp fed diets contain Haematococcus pluvialis. After the salinity stress, relative mRNA levels of anti-oxidative related genes and immune related genes decreased with the dietary Haematococcus pluvialis level increased to 3.3 g kg -1 . Based on the effect of Haematococcus pluvialis on survival, salinity stress tolerance ability and the immune response of post-larval L. vannamei, the optimal level of Haematococcus pluvialis was 3.3-6.7 g kg -1 diet (100-200 mg astaxanthin kg -1 diet). Copyright © 2018. Published by Elsevier Ltd.

  15. Linking ocean acidification and warming to the larval development of the American lobster (Homarus americanus)

    NASA Astrophysics Data System (ADS)

    Waller, J. D.; Fields, D.; Wahle, R.; Mcveigh, H.; Greenwood, S.

    2016-02-01

    The American lobster upholds the most culturally and economically iconic fishery in New England. Over the past three decades lobster landings have risen steadily in northern New England as lobster populations have shifted northward, leaving policy makers and coastal communities wondering what the future of this fishery may hold. The underlying causes of this population shift are likely due to a suite of environmental stressors including increasing temperature and ocean acidification. In this study we investigated the interactive effects of IPCC predicted temperature and pH on key aspects of larval lobster development (size, survival, development time, respiration rate, swimming speed, prey consumption and gene expression). Our experiments showed that larvae raised in the high temperature treatments (19 °C) experienced significantly higher mortality than larvae in our control treatments (16 °C) with 50% mortality occurring in the high temperature treatment one week after hatching. The larvae in these high temperature treatments developed twice as fast and experienced respiration rates that were three times higher in the third and fourth larval stages. While temperature had a distinct effect, pH treatment had few significant effects on any of our measured parameters. These data suggest that projected end-century warming will have greater adverse effects than acidification on early larval survival, despite the hurrying effect of higher temperatures on lobster larval development and increase in physiological activity. There were no significant treatment effects on carapace length, dry weight, or carbon and nitrogen content. Analysis of swimming speed and gene expression (through RNA sequencing) are in progress. Understanding how the most vulnerable life stages of the lobster life cycle responds to climate change is essential in connecting the northward geographic shifts projected by habitat quality models, and the underlying physiological and genetic mechanisms that

  16. Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. larval growth and physiology.

    PubMed

    Movva, Vijaya; Pathipati, Usha Rani

    2017-05-01

    We studied the role of induced plant phenols as a defense response to insect herbivory. Phenolic compounds were induced in Capsicum annuum L., the source of many culinary peppers, after feeding by different stages of the insect pest, Spodoptera litura F. The phenols were identified and quantified using high performance liquid chromatography (HPLC) and effects produced by these phenols on larval development were studied. Vanillic acid was identified in plants challenged by second, fourth, and fifth instar larvae, but not in plants challenged by third instar nor unchallenged plants. Syringic acid production was induced in chili plants infested with second (0.429 ± 0.003 μg/g fresh weight, fourth (0.396 ± 0.01 μg/g fresh weight), and fifth instar (5.5 ± 0.06 μg/g fresh weight) larvae, compared to untreated plants (0.303 ± 0.01 μg/g fresh weight) plants. Leaves surface treated with the rutin deterred oviposition. Dietary exposure to chlorogenic acid, vanillic acid, syringic acid, sinapic acid, and rutin led to enhanced activities of detoxifying enzymes, β-glucosidase, carboxyl esterase, glutathione S-transferase, and glutathione reductase in the midgut tissues of all the larval instars, indicating the toxic nature of these compounds. Protein carbonyl content and acetylcholinesterase activity was analyzed to appreciate the role of induced plant phenols in insect protein oxidation and terminating nerve impulses. © 2017 Wiley Periodicals, Inc.

  17. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems.

    PubMed

    Jayaprakash, N S; Pai, S Somnath; Anas, A; Preetha, R; Philip, Rosamma; Singh, I S Bright

    2005-12-30

    A marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and alpha-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae.

  18. Association Between Early Life Growth and Blood Pressure Trajectories in Black South African Children.

    PubMed

    Kagura, Juliana; Adair, Linda S; Munthali, Richard J; Pettifor, John M; Norris, Shane A

    2016-11-01

    Early growth is associated with blood pressure measured on one occasion, but whether early life growth patterns are associated with longitudinal blood pressure trajectories is under-researched. Therefore, we sought to examine the association between early growth and blood pressure trajectories from childhood to adulthood. Blood pressure was measured on 7 occasions between ages 5 and 18 years in the Birth to Twenty cohort study, and conditional variables for growth in infancy and mid-childhood were computed from anthropometric measures (n=1937, 52% girls). We used a group-based trajectory modeling approach to identify distinct height-adjusted blood pressure trajectories and then tested their association with growth between birth and mid-childhood adjusting for several covariates. Three trajectory groups were identified for systolic and diastolic blood pressure: lower, middle, and upper in boys and girls, separately. In boys, predictors of the middle or upper systolic blood pressure trajectories versus the lower trajectory were in birth weight (odds ratio 0.75 [95% confidence interval 0.58-0.96] per SD) and relative weight gain in infancy (4.11 [1.25-13.51] per SD). In girls, greater relative weight gain and linear growth in both infancy and mid-childhood were consistently associated with an almost 2-fold higher likelihood of being in the upper versus lower systolic blood pressure trajectory. The associations for the diastolic blood pressure trajectories were inconsistent. These findings emphasize the importance of identifying children at risk of progression to high blood pressure. Accelerated growth in infancy and mid-childhood may be a key target for early life intervention in prevention of elevated blood pressure progression. © 2016 American Heart Association, Inc.

  19. Resilience of the larval slipper limpet Crepidula onyx to direct and indirect-diet effects of ocean acidification.

    PubMed

    Maboloc, Elizaldy A; Chan, Kit Yu Karen

    2017-09-21

    Ocean acidification (OA) is known to directly impact larval physiology and development of many marine organisms. OA also affects the nutritional quality and palatability of algae, which are principal food sources for many types of planktonic larvae. This potential indirect effect of OA via trophic interactions, however, has not been fully explored. In this study, veligers of Crepidula onyx were exposed to different pH levels representing the ambient (as control) and low pH values (pH 7.7 and pH 7.3) for 14 days, and were fed with Isochrysis galbana cultured at these three respective pHs. pH, diet, nor their interactions had no effect on larval mortality. Decrease in pH alone had a significant effect on growth rate and shell size. Structural changes (increased porosity) in larval shells were also observed in the low pH treatments. Interactions between acidification and reduced diet quality promoted earlier settlement. Unlike other calcifying molluscs, this population of slipper limpets introduced to Hong Kong in 1960s appeared to be resilient to OA and decreased algal nutritional value. If this robustness observed in the laboratory applies to the field, competition with native invertebrates may intensify and this non-native snail could flourish in acidified coastal ecosystems.

  20. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish.

    PubMed

    Heap, Lucy A; Vanwalleghem, Gilles C; Thompson, Andrew W; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K

    2017-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.

  1. Interspecific Larval Competition Between Aedes albopictus and Aedes japonicus (Diptera: Culicidae) in Northern Virginia

    PubMed Central

    Armistead, J. S.; Arias, J. R.; Nishimura, N.; Lounibos, L. P.

    2008-01-01

    Aedes albopictus (Skuse) and Aedes japonicus (Theobald) are two of the most recent and widespread invasive mosquito species to have become established in the United States. The two species co-occur in water-filled artificial containers, where crowding and limiting resources are likely to promote inter- or intraspecific larval competition. The performance of northern Virginia populations of Ae. japonicus and Ae. albopictus competing as larvae under field conditions was evaluated. Per capita rates of population increase for each species were estimated, and the effects of species composition and larval density were determined. In water-containing cups provided with oak leaves, Ae. albopictus larvae exhibited a competitive advantage over Ae. japonicus as a consequence of higher survivorship, shorter developmental time, and a significantly higher estimated population growth rate under conditions of interspecific competition. Intraspecific competition constrained population performance of Ae. albopictus significantly more than competition with Ae. japonicus. In the context of the Lotka-Volterra model of competition, these findings suggest competitive exclusion of Ae. japonicus in those habitats where this species co-occurs with Ae. albopictus. PMID:18714861

  2. Interspecific larval competition between Aedes albopictus and Aedes japonicus (Diptera: Culicidae) in northern Virginia.

    PubMed

    Armistead, J S; Arias, J R; Nishimura, N; Lounibos, L P

    2008-07-01

    Aedes albopictus (Skuse) and Aedes japonicus (Theobald) are two of the most recent and widespread invasive mosquito species to have become established in the United States. The two species co-occur in water-filled artificial containers, where crowding and limiting resources are likely to promote inter- or intraspecific larval competition. The performance of northern Virginia populations of Ae. japonicus and Ae. albopictus competing as larvae under field conditions was evaluated. Per capita rates of population increase for each species were estimated, and the effects of species composition and larval density were determined. In water-containing cups provided with oak leaves, Ae. albopictus larvae exhibited a competitive advantage over Ae. japonicus as a consequence of higher survivorship, shorter developmental time, and a significantly higher estimated population growth rate under conditions of interspecific competition. Intraspecific competition constrained population performance of Ae. albopictus significantly more than competition with Ae. japonicus. In the context of the Lotka-Volterra model of competition, these findings suggest competitive exclusion of Ae. japonicus in those habitats where this species co-occurs with Ae. albopictus.

  3. OBSERVATIONS ON THE 10-DAY CHIRONOMUS TENTANS SURVIVAL AND GROWTH BIOASSAY IN EVALUATING GREAT LAKES SEDIMENTS

    EPA Science Inventory

    A 10-day bioassay with larval chironomids (Chironomus tentans) was used to evaluate sediment samples from harbors at Michigan City, IN, St. Joseph, MI, Grand Haven, MI and Toledo, OH for toxicity, based on the endpoints of survival, dry weight, and growth. Larval responses in se...

  4. EFFECTS OF AMMONIUM SULFATE ON GROWTH OF LARVAL NORTHWESTERN SALAMANDERS, RED-LEGGED AND PACIFIC TREEFROG TADPOLES, AND JUVENILE FATHEAD MINNOWS

    EPA Science Inventory

    Ammonium-nitrogen fertilizers are used in large quantities in agricultural areas of the United States, including the grass-seed fields of the Willamette Valley of western Oregon, and are a potential threat to larval amphibians living in the treat areas (Edwards and Daniel 1994, M...

  5. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon.

    PubMed

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia; Ghirardini, Annamaria Volpi; Kusk, Kresten Ole

    2018-01-01

    The early-life stages of development of the calanoid copepod Acartia tonsa from egg to copepodite I is proposed as an endpoint for assessing sediment toxicity by exposing newly released eggs directly onto the sediment-water interface. A preliminary study of 5 sediment samples collected in the lagoon of Venice highlighted that the larval development rate (LDR) and the early-life stages (ELS) mortality endpoints with A. tonsa are more sensitive than the standard amphipod mortality test; moreover LDR resulted in a more reliable endpoint than ELS mortality, due to the interference of the sediment with the recovery of unhatched eggs and dead larvae. The LDR data collected in a definitive study of 48 sediment samples from the Venice Lagoon has been analysed together with the preliminary data to evaluate the statistical performances of the bioassay (among replicate variance and minimum significant difference between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus purpuratus embryotoxicity test), sediments (Neanthes arenaceodentata survival and growth test) and porewater (S. purpuratus); the LDR endpoint did, however, show a slightly higher variance as compared with other tests used in the Lagoon of Venice, such as 10-d amphipod lethality test and larval development with sea urchin and bivalves embryos. Sediment toxicity data highlighted the high sensitivity and the clear ability of the larval development to discriminate among sediments characterized by different levels of contamination. The data of the definitive study evidenced that inhibition of the larval development was not affected by grain-size and the organic carbon content of the sediment; in contrast, a strong correlation between inhibition of the larval development

  6. Effects of beach morphology and waves on onshore larval transport

    NASA Astrophysics Data System (ADS)

    Fujimura, A.; Reniers, A.; Paris, C. B.; Shanks, A.; MacMahan, J.; Morgan, S.

    2015-12-01

    Larvae of intertidal species grow offshore, and migrate back to the shore when they are ready to settle on their adult substrates. In order to reach the habitat, they must cross the surf zone, which is characterized as a semi-permeable barrier. This is accomplished through physical forcing (i.e., waves and current) as well as their own behavior. Two possible scenarios of onshore larval transport are proposed: Negatively buoyant larvae stay in the bottom boundary layer because of turbulence-dependent sinking behavior, and are carried toward the shore by streaming of the bottom boundary layer; positively buoyant larvae move to the shore during onshore wind events, and sink to the bottom once they encounter high turbulence (i.e., surf zone edge), where they are carried by the bottom current toward the shore (Fujimura et al. 2014). Our biophysical Lagrangian particle tracking model helps to explain how beach morphology and wave conditions affect larval distribution patterns and abundance. Model results and field observations show that larval abundance in the surf zone is higher at mildly sloped, rip-channeled beaches than at steep pocket beaches. Beach attributes are broken up to examine which and how beach configuration factors affect larval abundance. Modeling with alongshore uniform beaches with variable slopes reveal that larval populations in the surf zone are negatively correlated with beach steepness. Alongshore variability enhances onshore larval transport because of increased cross-shore water exchange by rip currents. Wave groups produce transient rip currents and enhance cross-shore exchange. Effects of other wave components, such as wave height and breaking wave rollers are also considered.

  7. Exposure to 2,4-decadienal negatively impacts upon marine invertebrate larval fitness.

    PubMed

    Caldwell, Gary S; Lewis, Ceri; Olive, Peter J W; Bentley, Matthew G

    2005-06-01

    Diatoms liberate volatile, biologically active unsaturated aldehydes following cell damage, which negatively impact upon invertebrate reproductive processes such as fertilization, embryogenesis and larval survival. 2,4-Decadienal is frequently identified among the aldehydes produced and is one of the more biologically active. The majority of studies which have examined the toxic effects of diatom aldehydes to invertebrate reproduction have scored egg production and/or hatching success as indicators of biological impacts. There are very few studies which have dealt specifically with the impacts of diatom-derived aldehydes on larval fitness. Larval stages of the polychaetes Arenicola marina and Nereis virens and the echinoderms Asterias rubens and Psammechinus miliaris exposed to 2,4-decadienal at sub 1 microg ml(-1) concentrations suffered reduced survival over the incubation period (day 1-8 post fertilization) with detectable differences for the polychates at a concentration of 0.005 and 0.01-0.1 microg ml(-1) for the echinoderms. Susceptibility of larval N. virens was investigated using stage specific 24 h exposures at 2,4-decadienal concentrations up to 1.5 microg ml(-1). A clear stage specific effect was found, with earlier larval stages most vulnerable. Nectochaete larvae (9-10 d) showed no reduction in survival at the concentrations assayed. Fluctuating asymmetry (FA), defined as random deviations from perfect bilateral symmetry, was used to analyse fitness of larval P. miliaris exposed to 2,4-decadienal at concentrations of 0.1, 0.5 and 1 microg ml(-1). The degree and frequency of asymmetrical development increased with increasing 2,4-decadienal concentration. Equally, as FA increased larval survival decreased. These results provide further support for the teratogenic nature of 2,4-decadienal and its negative impact on invertebrate larval fitness.

  8. Age, growth and hatch dates of ingressing larvae and surviving juveniles of Atlantic menhaden Brevoortia tyrannus.

    PubMed

    Lozano, C; Houde, E D; Wingate, R L; Secor, D H

    2012-10-01

    Ages, growth and hatch dates of ingressing Brevoortia tyrannus larvae were determined in a 3 year sampling survey at the mouth of the Chesapeake Bay, U.S.A. To determine if otolith-aged cohorts had variable relative survival, hatch dates of summer-caught young-of-the-year (YOY) juveniles collected throughout the Chesapeake Bay were compared with hatch dates of ingressing larvae. Modal total length of ingressing larvae was similar among years: 28 mm in 2005-2006 and 2007-2008, and 30 mm in 2006-2007. Ages of ingressing larvae ranged from 9 to 96 days post hatch (dph); mean ages were similar among years, but significantly older in 2006-2007 (50 dph) than in 2005-2006 (44 dph) and 2007-2008 (46 dph). Larval growth rates differed among years. Earliest growth, when larvae were offshore (0-20 dph), was faster in 2006-2007 (0·62 mm day(-1)), than in 2005-2006 and 2007-2008 (0·55 mm day(-1) in these years). Subsequently, from 30 to 80 dph, growth was slowest in 2006-2007. Hatch dates of ingressing larvae occurred from September to March and 90% (2007-2008) to 98% (2006-2007) had hatched prior to 31 December. In contrast, most surviving YOY juvenile B. tyrannus had hatched in January to February, suggesting selective mortality of early-hatched individuals, apparently during the overwinter, larval to juvenile transition period. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  9. On-Plant Larval Movement and Feeding Behavior of Fall Armyworm (Lepidoptera: Noctuidae) on Reproductive Corn Stages.

    PubMed

    Pannuti, L E R; Baldin, E L L; Hunt, T E; Paula-Moraes, S V

    2016-02-01

    Spodoptera frugiperda J.E. Smith (fall armyworm) is considered one of the most destructive pests of corn throughout the Americas. Although this pest has been extensively studied, little is known about its larval movement and feeding behavior on reproductive compared to vegetative corn stages. Thus, we conducted studies with two corn stages (R1 and R3) and four corn plant zones (tassel, above ear, ear zone, and below ear) in the field at Concord, NE (USA), and in the field and greenhouse at Botucatu, SP (Brazil), to investigate on-plant larval movement. The effects of different corn tissues (opened tassel, closed tassel, silk, kernel, and leaf), two feeding sequence scenarios (closed tassel-leaf-silk-kernel and leaf-silk-kernel), and artificial diet (positive control) on larval survival and development were also evaluated in the laboratory. Ear zone has a strong effect on feeding choice and survival of fall armyworm larvae regardless of reproductive corn stage. Feeding site choice is made by first-instar. Corn leaves of reproductive plants were not suitable for early instar development, but silk and kernel tissues had a positive effect on survival and development of fall armyworm larvae on reproductive stage corn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Larval descriptions of the family Porcellanidae: A worldwide annotated compilation of the literature (Crustacea, Decapoda)

    PubMed Central

    Vela, María José; González-Gordillo, Juan Ignacio

    2016-01-01

    Abstract For most of the family Porcellanidae, which comprises 283 species, larval development remains to be described. Full development has been only described for 52 species, while part of the larval cycle has been described for 45 species. The importance of knowing the complete larval development of a species goes beyond allowing the identification of larval specimens collected in the plankton. Morphological larval data also constitute a support to cladistic techniques used in the establishment of the phylogenetic status (see Hiller et al. 2006, Marco-Herrero et al. 2013). Nevertheless, the literature on the larval development of this family is old and widely dispersed and in many cases it is difficult to collect the available information on a particular taxon. Towards the aim of facilitating future research, all information available on the larval development of porcellanids has been compiled. Following the taxonomic checklist of Porcellanidae proposed by Osawa and McLaughlin (2010), a checklist has been prepared that reflects the current knowledge about larval development of the group including larval stages and the method used to obtain the larvae, together with references. Those species for which the recognised names have been changed according to Osawa and McLaughlin (2010) are indicated. PMID:27081332

  11. Food, growth and time: Elsie Widdowson's and Robert McCance's research into prenatal and early postnatal growth.

    PubMed

    Buklijas, Tatjana

    2014-09-01

    Cambridge scientists Robert McCance and Elsie Widdowson are best known for their work on the British food tables and wartime food rations, but it is their research on prenatal and early postnatal growth that is today seen as a foundation of the fields studying the impact of environment upon prenatal development and, consequently, adult disease. In this essay I situate McCance's and Widdowson's 1940s human and 1950s experimental studies in the context of pre-war concerns with fetal growth and development, especially within biochemistry, physiology and agriculture; and the Second World War and post-war focus on the effects of undernutrition during pregnancy upon the fetus. I relate Widdowson's and McCance's research on the long-term effects of early undernutrition to the concern with recovery from early trauma so pertinent in post-war Europe and with sensitive (critical) periods, a concept of high importance across different fields. Finally I discuss how, following a hiatus in which fetal physiology engaged with different questions and stressed fetal autonomy, interest in the impact of environment upon prenatal growth and development revived towards the end of the twentieth century. The new field of "developmental origins of health and disease", I suggest, has provided a context in which Widdowson's and McCance's work has regained importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Vegetative substrates used by larval northern pike in Rainy and Kabetogama Lakes, Minnesota

    Treesearch

    Anne L. Timm; Rodney B. Pierce

    2015-01-01

    Our objective was to identify characteristics of aquatic vegetative communities used as larval northern pike nursery habitat in Rainy and Kabetogama lakes, glacial shield reservoirs in northern Minnesota. Quatrefoil light traps fished at night were used to sample larval northern pike in 11 potential nursery areas. Larval northern pike were most commonly sampled among...

  13. Early Acceleration of Mathematics Students and its Effect on Growth in Self-esteem: A Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    2002-11-01

    The Longitudinal Study of American Youth (LSAY) database was employed to examine the educational practice of early acceleration of students of mathematics on the development of their self-esteem across the entire secondary grade levels. Students were classified into three different academic categories (gifted, honors, and regular). Results indicated that, in terms of the development of their self-esteem, gifted students benefited from early acceleration, honors students neither benefited nor were harmed by early acceleration, and regular students were harmed by early acceleration. Early acceleration in mathematics promoted significant growth in self-esteem among gifted male students and among gifted, honors, and regular minority students. When students were accelerated, schools showed similar average growth in self-esteem among gifted students and regular students and a large effect of general support for mathematics on the average growth in self-esteem among honors students.

  14. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.

    PubMed

    Shenoi, V N; Ali, S Z; Prasad, N G

    2016-02-01

    In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. Larval Transport on the Atlantic Continental Shelf of North America: a Review

    NASA Astrophysics Data System (ADS)

    Epifanio, C. E.; Garvine, R. W.

    2001-01-01

    This review considers transport of larval fish and crustaceans on the continental shelf. Previous reviews have contained only limited treatments of the physical processes involved. The present paper provides a physical background that is considerably more comprehensive. It includes a discussion of three principal forcing agents: (1) wind stress; (2) tides propagating from the deep ocean; and (3) differences in density associated with the buoyant outflow of estuaries, surface heat flux, or the interaction of coastal and oceanic water masses at the seaward margin of the shelf. The authors discuss the effects of these forcing agents on transport of larvae in the Middle Atlantic and South Atlantic Bights along the east coast of North America. The discussion concentrates on three species (blue crab, menhaden, bluefish) that have been the subject of a very recent multi-disciplinary study. Taken as a whole, the reproductive activities of these three species span the entire year and utilize the entire shelf, from the most seaward margin to the estuarine nursery. The blue crab is representative of species affected by physical processes occurring during summer and early autumn on the inner and mid-shelf. Menhaden are impacted by processes occurring in winter on the outer and mid-shelf. Bluefish are influenced primarily by processes occurring during early spring at the outer shelf margin near the western boundary current. The authors conclude that alongshore wind stress and density differences, i.e. buoyancy-driven flow, are the primary agents of larval transport in the region. Circulation associated with the western boundary current is only important at the shelf margin and tidally driven processes are generally inconsequential.

  16. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products.

    PubMed

    van Broekhoven, Sarah; Oonincx, Dennis G A B; van Huis, Arnold; van Loon, Joop J A

    2015-02-01

    Insects receive increasing attention as an alternative protein-rich food source for humans. Producing edible insects on diets composed of organic by-products could increase sustainability. In addition, insect growth rate and body composition, and hence nutritional quality, can be altered by diet. Three edible mealworm species Tenebrio molitor L., Zophobas atratus Fab. and Alphitobius diaperinus Panzer were grown on diets composed of organic by-products originating from beer brewing, bread/cookie baking, potato processing and bioethanol production. Experimental diets differed with respect to protein and starch content. Larval growth and survival was monitored. Moreover, effects of dietary composition on feed conversion efficiency and mealworm crude protein and fatty acid profile were assessed. Diet affected mealworm development and feed conversion efficiency such that diets high in yeast-derived protein appear favourable, compared to diets used by commercial breeders, with respect to shortening larval development time, reducing mortality and increasing weight gain. Diet also affected the chemical composition of mealworms. Larval protein content was stable on diets that differed 2-3-fold in protein content, whereas dietary fat did have an effect on larval fat content and fatty acid profile. However, larval fatty acid profile did not necessarily follow the same trend as dietary fatty acid composition. Diets that allowed for fast larval growth and low mortality in this study led to a comparable or less favourable n6/n3 fatty acid ratio compared to control diets used by commercial breeders. In conclusion, the mealworm species used in this study can be grown successfully on diets composed of organic by-products. Diet composition did not influence larval protein content, but did alter larval fat composition to a certain extent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment.

    PubMed

    Näslund, Joacim; Pauliny, Angela; Blomqvist, Donald; Johnsson, Jörgen I

    2015-04-01

    After a period of food deprivation, animals often respond with a period of faster than normal growth. Such responses have been suggested to result in decreased chromosomal maintenance, which in turn may affect the future fitness of an individual. Here, we present a field experiment in which a food deprivation period of 24 days was enforced on fish from a natural population of juvenile brown trout (Salmo trutta) at the start of the high-growth season in spring. The growth of the food-deprived fish and a non-deprived control group was then monitored in the wild during 1 year. Fin tissue samples were taken at the start of the experiment and 1 year after food deprivation to monitor the telomere dynamics, using reduced telomere length as an indicator of maintenance cost. The food-deprived fish showed partial compensatory growth in both mass and length relative to the control group. However, we found no treatment effects on telomere dynamics, suggesting that growth-compensating brown trout juveniles are able to maintain their telomeres during their second year in the stream. However, body size at the start of the experiment, reflecting growth rate during their first year of life, was negatively correlated with change in telomere length over the following year. This result raises the possibility that rapid growth early in life induces delayed costs in cellular maintenance.

  18. Beyond birth-weight: early growth and adolescent blood pressure in a Peruvian population.

    PubMed

    Sterling, Robie; Checkley, William; Gilman, Robert H; Cabrera, Lilia; Sterling, Charles R; Bern, Caryn; Miranda, J Jaime

    2014-01-01

    Background. Longitudinal investigations into the origins of adult essential hypertension have found elevated blood pressure in children to accurately track into adulthood, however the direct causes of essential hypertension in adolescence and adulthood remains unclear. Methods. We revisited 152 Peruvian adolescents from a birth cohort tracked from 0 to 30 months of age, and evaluated growth via monthly anthropometric measurements between 1995 and 1998, and obtained anthropometric and blood pressure measurements 11-14 years later. We used multivariable regression models to study the effects of infantile and childhood growth trends on blood pressure and central obesity in early adolescence. Results. In regression models adjusted for interim changes in weight and height, each 0.1 SD increase in weight for length from 0 to 5 months of age, and 1 SD increase from 6 to 30 months of age, was associated with decreased adolescent systolic blood pressure by 1.3 mm Hg (95% CI -2.4 to -0.1) and 2.5 mm Hg (95% CI -4.9 to 0.0), and decreased waist circumference by 0.6 (95% CI -1.1 to 0.0) and 1.2 cm (95% CI -2.3 to -0.1), respectively. Growth in infancy and early childhood was not significantly associated with adolescent waist-to-hip ratio. Conclusions. Rapid compensatory growth in early life has been posited to increase the risk of long-term cardiovascular morbidities such that nutritional interventions may do more harm than good. However, we found increased weight growth during infancy and early childhood to be associated with decreased systolic blood pressure and central adiposity in adolescence.

  19. Growth curve analyses of the relationship between early maternal age and children's mathematics and reading performance.

    PubMed

    Torres, D Diego

    2015-03-01

    Regarding the methods used to examine the early maternal age-child academic outcomes relationship, the extant literature has tended to examine change using statistical analyses that fail to appreciate that individuals vary in their rates of growth. Of the one study I have been able to find that employs a true growth model to estimate this relationship, the authors only controlled for characteristics of the maternal household after family formation; confounding background factors of mothers that might select them into early childbearing, a possible source of bias, were ignored. The authors' findings nonetheless suggested an inverse relationship between early maternal age, i.e., a first birth between the ages of 13 and 17, and Canadian adolescents' mean math performance at age 10. Early maternal age was not related to the linear slope of age. To elucidate whether the early maternal age-child academic outcomes association, treated in a growth context, is consistent with this finding, the present study built on it using US data and explored children's mathematics and reading trajectories from age 5 on. Its unique contribution is that it further explicitly controlled for maternal background factors and employed a three-level growth model with repeated measures of children nested within their mothers. Though the strength of the relationship varied between mean initial academic performance and mean academic growth, results confirmed that early maternal age was negatively related to children's mathematics and reading achievement, net of post-teen first birth child-specific and maternal household factors. Once maternal background factors were included, there was no statistically significant relationship between early maternal age and either children's mean initial mathematics and reading scores or their mean mathematics and reading growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Environmentally relevant concentrations of microplastic particles influence larval fish ecology.

    PubMed

    Lönnstedt, Oona M; Eklöv, Peter

    2016-06-03

    The widespread occurrence and accumulation of plastic waste in the environment have become a growing global concern over the past decade. Although some marine organisms have been shown to ingest plastic, few studies have investigated the ecological effects of plastic waste on animals. Here we show that exposure to environmentally relevant concentrations of microplastic polystyrene particles (90 micrometers) inhibits hatching, decreases growth rates, and alters feeding preferences and innate behaviors of European perch (Perca fluviatilis) larvae. Furthermore, individuals exposed to microplastics do not respond to olfactory threat cues, which greatly increases predator-induced mortality rates. Our results demonstrate that microplastic particles operate both chemically and physically on larval fish performance and development. Copyright © 2016, American Association for the Advancement of Science.

  1. Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood

    PubMed Central

    Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin

    2009-01-01

    In the current study, we examined latent growth in 731 young children’s inhibitory control from ages 2 to 4, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the Family Check-Up (FCU), children’s inhibitory control was assessed yearly at ages 2, 3, and 4. Inhibitory control was initially low and increased linearly to age 4. High levels of harsh parenting and male gender were associated with low initial status in inhibitory control. High levels of supportive parenting were associated with faster growth. Extreme family poverty and African American ethnicity were also associated with slower growth. The results highlight parenting as a target for early interventions in contexts of high socioeconomic risk. PMID:20376201

  2. Benefits of Turbid River Plume Habitat for Lake Erie Yellow Perch (Perca flavescens) Recruitment Determined by Juvenile to Larval Genotype Assignment

    PubMed Central

    Carreon-Martinez, Lucia B.; Walter, Ryan P.; Johnson, Timothy B.; Ludsin, Stuart A.; Heath, Daniel D.

    2015-01-01

    Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process. PMID:25954968

  3. Survival and metamorphosis of low-density populations of larval sea lampreys (Petromyzon marinus) in streams following lampricide treatment

    USGS Publications Warehouse

    Johnson, Nicholas S.; Swink, William D.; Brenden, Travis O.; Slade, Jeffrey W.; Steeves, Todd B.; Fodale, Michael F.; Jones, Michael L.

    2014-01-01

    Sea lamprey Petromyzon marinus control in the Great Lakes primarily involves application of lampricides to streams where larval production occurs to kill larvae prior to their metamorphosing and entering the lakes as parasites (juveniles). Because lampricides are not 100% effective, larvae that survive treatment maymetamorphose before streams are again treated. Larvae that survive treatment have not beenwidely studied, so their dynamics are notwell understood.Wetagged and released larvae in six Great Lake tributaries following lampricide treatment and estimated vital demographic rates using multistate tag-recovery models. Model-averaged larval survivals ranged from 56.8 to 57.6%. Model-averaged adult recovery rates, which were the product of juvenile survivals and adult capture probabilities, ranged from 6.8 to 9.3%. Using stochastic simulations, we estimated production of juvenile sea lampreys from a hypothetical population of treatment survivors under different growth conditions based on parameter estimates from this research. For fast-growing populations, juvenile production peaked 2 years after treatment. For slow-growing populations, juvenile production was approximately one-third that of fast-growing populations,with production not peaking until 4 years after treatment. Our results suggest that dynamics (i.e., survival, metamorphosis) of residual larval populations are very similar to those of untreated larval populations. Consequently, residual populations do not necessarily warrant special consideration for the purpose of sea lamprey control and can be ranked for treatment along with other populations. Consecutive lampricide treatments, which are under evaluation by the sea lamprey control program, would bemost effective for reducing juvenile production in large, fast-growing populations.

  4. Late effects of early growth hormone treatment in Down syndrome.

    PubMed

    Myrelid, Å; Bergman, S; Elfvik Strömberg, M; Jonsson, B; Nyberg, F; Gustafsson, J; Annerén, G

    2010-05-01

    Down syndrome (DS) is associated with short stature and psychomotor delay. We have previously shown that growth hormone (GH) treatment during infancy and childhood normalizes growth velocity and improves fine motor skill performance in DS. The aim of this study was to investigate late effects of early GH treatment on growth and psychomotor development in the DS subjects from the previous trial. Twelve of 15 adolescents with DS (3 F) from the GH group and 10 of 15 controls (5 F) participated in this follow-up study. Fifteen other subjects with DS (6 F) were included as controls in anthropometric analyses. Cognitive function was assessed with the Leiter International Performance Scale-Revised (Leiter-R) and selected subtests of the Wechsler Intelligence Scale for Children, Third edition (WISC-III). The Bruininks-Oseretsky Test of Motor Proficiency, Second edition (BOT-2), was used to assess general motor ability. Although early GH treatment had no effect on final height, the treated subjects had a greater head circumference standard deviation score (SDS) than the controls (-1.6 SDS vs. -2.2 SDS). The adolescents previously treated with GH had scores above those of the controls in all subtests of Leiter-R and WISC-III, but no difference in Brief IQ-score was seen between the groups. The age-adjusted motor performance of all subjects was below -2 SD, but the GH-treated subjects performed better than the controls in all but one subtest. The combined finding of a greater head circumference SDS and better psychomotor performance indicates that DS subjects may benefit from early GH treatment.

  5. Evolved differences in larval social behavior mediated by novel pheromones

    PubMed Central

    Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L

    2014-01-01

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects. DOI: http://dx.doi.org/10.7554/eLife.04205.001 PMID:25497433

  6. Yolk-sac larval development of the substrate-brooding cichlid Archocentrus nigrofasciatus in relation to temperature.

    PubMed

    Vlahos, Nikolaos; Vasilopoulos, Michael; Mente, Eleni; Hotos, George; Katselis, George; Vidalis, Kosmas

    2015-09-01

    In order to conserve and culture the cichlid fish Archocentrus nigrofasciatus, more information about its reproductive biology and its larval behavior and morphogenesis is necessary. Currently, temperatures ranging from 21 to 27 °C are used in ornamental aquaculture hatcheries. Lower temperatures are preferred to reduce the costs of water heating, and 23 °C is usually the selected temperature. However, there is limited information on culturing protocols for ornamental species and most of the information generated on this topic remains scarce. Thus, the present study examines the morphological development of Archocentrus nigrofasciatus during the yolk-sac period up to the age of 100 h post-hatching in relation to 2 temperature regimes used in ornamental aquaculture: a temperature of 27 °C (thermal optimum) and a decreased temperature of 23 °C (thermal tolerance). The results of this study suggest that the 27 °C temperature generates intense morphological changes in yolk-sac development in a shorter period. This has advantages as it reduces the time of yolk-sac larval development, and, thus, minimizes the transition phase to exogenous feeding and maximizes the efficiency at which yolk is converted into body tissues. The present paper provides necessary information to produce freshwater ornamental fish with better practices so as to increase larval survival and capitalize on time for growth. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  7. Effects of pulsed, high-velocity water flow on larval robust redhorse and V-lip redhorse

    USGS Publications Warehouse

    Weyers, R.S.; Jennings, C.A.; Freeman, Mary C.

    2003-01-01

    The pulsed, high-velocity water flow characteristic of water-flow patterns downstream from hydropower-generating dams has been implicated in the declining abundance of both aquatic insects and fishes in dam-regulated rivers. This study examined the effects of 0, 4, and 12 h per day of pulsed, high-velocity water flow on the egg mortality, hatch length, final length, and survival of larval robust redhorse Moxostoma robusturn, a presumedly extinct species that was rediscovered in the 1990s, and V-lip redhorse M. collapsum (previously synonomized with the silver redhorse M. anisurum) over a 3-5 week period in three separate experiments. Twelve 38.0-L aquaria (four per treatment) were modified to simulate pulsed, high-velocity water flow (>35 cm/s) and stable, low-velocity water flow (<10 cm/s). Temperature, dissolved oxygen, zooplankton density, and water quality variables were kept the same across treatments. Fertilized eggs were placed in gravel nests in each aquarium. Hatch success was estimated visually at greater than 90%, and the mean larval length at 24 h posthatch was similar in each experiment. After emergence from the gravel nest, larvae exposed to 4 and 12 h of pulsed, high-velocity water flow grew significantly more slowly and had lower survival than those in the 0-h treatment. These results demonstrate that the altered water-flow patterns that typically occur when water is released during hydropower generation can have negative effects on the growth and survival of larval catostomid suckers.

  8. Observations on the reproductive and larval biology of Blennius pavo (Pisces: Teleostei)

    NASA Astrophysics Data System (ADS)

    Westernhagen, H.

    1983-09-01

    Social behaviour and spawning of adult Blennius pavo kept in the laboratory are described. Eggs are deposited in batches on the walls of artificial spawning places (PVC pipes). One male guards and tends the eggs of different females in one spawning place. Larval hatching occurs in groups according to oviposition. Minimum incubation temperature is around 14 15°C. Larval survival in 1-1 rearing jars is not related to larval total length but to density of larval stock. An experimental population of laboratory reared juvenile and adolescent B. pavo displays a male to female ratio of 1:1.4. Factors possibly influencing the sex ratio of this littoral fish are discussed in view of the situation in its natural environment.

  9. Phormidium animalis (Cyanobacteria: Oscillatoriaceae) supports larval development of Anopheles albimanus.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sánchez, José D

    2003-06-01

    The capability of Phormidium animalis, a cyanobacterium commonly found in larval habitats of Anopheles albimanus in southern Mexico, to support larval development of this mosquito was investigated. First-stage larvae were reared under insectary conditions with P. animalis ad libitum and their development was compared with larvae fed with wheat germ. The time of pupation and adult mosquito size, assessed by wing length, were similar in both groups, but fewer adult mosquitoes were obtained from larvae fed with the cyanobacteria. Nevertheless, these observations indicate that P. animalis is ingested and assimilated by larval An. albimanus, making this cyanobacterium a good candidate for genetic engineering for the introduction of mosquitocidal toxins for malaria control in the region.

  10. Swimming behavior of larval Medaka fish under microgravity

    NASA Astrophysics Data System (ADS)

    Furukawa, R.; Ijiri, K.

    Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish ( Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.

  11. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    PubMed Central

    Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.

    2018-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362

  12. Effects of road salt on larval amphibian susceptibility to parasitism through behavior and immunocompetence.

    PubMed

    Milotic, Dino; Milotic, Marin; Koprivnikar, Janet

    2017-08-01

    Large quantities of road salts are used for de-icing in temperate climates but often leach into aquatic ecosystems where they can cause harm to inhabitants, including reduced growth and survival. However, the implications of road salt exposure for aquatic animal susceptibility to pathogens and parasites have not yet been examined even though infectious diseases can significantly contribute to wildlife population declines. Through a field survey, we found a range of NaCl concentrations (50-560mg/L) in ponds known to contain larval amphibians, with lower levels found in sites close to gravel- rather than hard-surfaced roads. We then investigated how chronic exposure to environmentally-realistic levels of road salt (up to 1140mg/L) affected susceptibility to infection by trematode parasites (helminths) in larval stages of two amphibian species (Lithobates sylvaticus - wood frogs, and L. pipiens - northern leopard frogs) by considering effects on host anti-parasite behavior and white blood cell profiles. Wood frogs exposed to road salt had higher parasite loads, and also exhibited reduced anti-parasite behavior in these conditions. In contrast, infection intensity in northern leopard frogs had a non-monotonic response to road salts even though lymphocytes were only elevated at the highest concentration. Our results indicate the potential for chronic road salt exposure to affect larval amphibian susceptibility to pathogenic parasites through alterations of behavior and immunocompetence, with further studies needed at higher concentrations, as well as that of road salts on free-living parasite infectious stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Measuring larval nematode contamination on cattle pastures: Comparing two herbage sampling methods.

    PubMed

    Verschave, S H; Levecke, B; Duchateau, L; Vercruysse, J; Charlier, J

    2015-06-15

    Assessing levels of pasture larval contamination is frequently used to study the population dynamics of the free-living stages of parasitic nematodes of livestock. Direct quantification of infective larvae (L3) on herbage is the most applied method to measure pasture larval contamination. However, herbage collection remains labour intensive and there is a lack of studies addressing the variation induced by the sampling method and the required sample size. The aim of this study was (1) to compare two different sampling methods in terms of pasture larval count results and time required to sample, (2) to assess the amount of variation in larval counts at the level of sample plot, pasture and season, respectively and (3) to calculate the required sample size to assess pasture larval contamination with a predefined precision using random plots across pasture. Eight young stock pastures of different commercial dairy herds were sampled in three consecutive seasons during the grazing season (spring, summer and autumn). On each pasture, herbage samples were collected through both a double-crossed W-transect with samples taken every 10 steps (method 1) and four random located plots of 0.16 m(2) with collection of all herbage within the plot (method 2). The average (± standard deviation (SD)) pasture larval contamination using sampling methods 1 and 2 was 325 (± 479) and 305 (± 444)L3/kg dry herbage (DH), respectively. Large discrepancies in pasture larval counts of the same pasture and season were often seen between methods, but no significant difference (P = 0.38) in larval counts between methods was found. Less time was required to collect samples with method 2. This difference in collection time between methods was most pronounced for pastures with a surface area larger than 1 ha. The variation in pasture larval counts from samples generated by random plot sampling was mainly due to the repeated measurements on the same pasture in the same season (residual variance

  14. Non-additive effects of intra- and interspecific competition between two larval salamanders.

    PubMed

    Anderson, Thomas L; Whiteman, Howard H

    2015-05-01

    Assessment of the relative strengths of intra- and interspecific competition has increased in recent years and is critical to understanding the importance of competition. Yet, whether intra- and interspecific competition can have non-additive effects has rarely been tested. The resulting fitness consequences of such non-additive interactions are important to provide the context necessary to advance our understanding of competition theory. We compared the strength of additive and non-additive intra- and interspecific competition by manipulating densities of a pair of larval salamanders (Ambystoma talpoideum and A. maculatum) in experimental mesocosms within a response surface design. Intraspecific density had the strongest effect on the strength of competition for both species, and few observed comparisons indicated interspecific competition was an important factor in predicting body size, growth or larval period length of either species. Non-additive effects of intra- and interspecific competition influenced some response variables, including size and mass at metamorphosis in A. maculatum, but at a reduced strength compared to intraspecific effects alone. Intraspecific competition was thus the dominant biotic interaction, but non-additive effects also impact the outcome of competition in these species, validating the importance of testing for and incorporating non-additive density effects into competition models. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  15. Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow.

    PubMed

    Parrott, Joanne L; Bartlett, Adrienne J; Balakrishnan, Vimal K

    2016-03-01

    The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4-10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Morphological and histomorphological structures of testes and ovaries in early developmental stages of the silkworm, Bombyx mori.

    PubMed

    Sakai, Hiroki; Kirino, Yohei; Katsuma, Susumu; Aoki, Fugaku; Suzuki, Masataka G

    2016-01-01

    The gonad develops as a testis in male or an ovary in female. In the silkworm, B. mori , little is known about testis and ovary in the embryonic stages and early larval stages. In this study, we performed morphological and histomorphological observations of ovaries and testes from the late embryonic stage to the 1st instar larval stage. Results obtained with lack of accurate information on sex of examined individuals may be misleading, thus we performed phenotypic observations of gonads by utilizing sex-limited strain that enables us to easily discriminate female embryos from male ones based on those egg colors. In testis, four testicular follicles were clearly observed in the testis at the first instar larval stage, and boundary layers were formed between the testicular follicles. At the late embryonic stage, the testis consisted of four testicular follicles, while the boundary layers were still obscure. In ovary, four ovarioles were easily recognizable in the ovary at the first instar larval stage, and boundary layers were formed between the ovarioles. However, in the late embryonic stage, it was quite difficult to identify four ovarioles. Morphological characteristics were almost similar between testis and ovary in early developmental stages. Our present study demonstrates that the most reliable difference between testis and ovary in early developmental stages is the attaching point of the duct. Formation and development of the duct may be sensitive to the sex-determining signal and display sexual dimorphism in early embryonic stages.

  17. Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish

    PubMed Central

    Harmon, Thomas C; Magaram, Uri; McLean, David L; Raman, Indira M

    2017-01-01

    To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish. DOI: http://dx.doi.org/10.7554/eLife.22537.001 PMID:28541889

  18. The impact of CO2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius.

    PubMed

    Zhan, Yaoyao; Hu, Wanbin; Zhang, Weijie; Liu, Minbo; Duan, Lizhu; Huang, Xianya; Chang, Yaqing; Li, Cong

    2016-11-15

    The impact of CO 2 -driven ocean acidification(OA) on early development and calcification in the sea urchin Strongylocentrotus intermedius cultured in northern Yellow Sea was investigated by comparing fertilization success, early cleavage rate, hatching rate of blastulae, larvae survival rate at 70h post-fertilization, larval morphology and calcification under present natural seawater condition (pH=8.00±0.03) and three laboratory-controlled acidified conditions (OA 1 , △pH=-0.3units; OA 2 , △pH=-0.4units; OA 3 , △pH=-0.5units) projected by IPCC for 2100. Results showed that pH decline had no effect on the overall fertilization, however, with decreased pH, delayed early embryonic cleavage, reduced hatching rate of blastulae and four-armed larvae survival rate at 70h post-fertilization, impaired larval symmetry, shortened larval spicules, and corrosion spicule structure were observed in all OA-treated groups as compared to control, which indicated that CO 2 -driven OA affected early development and calcification in S. intermedius negatively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ontogenetic scaling of metabolism, growth, and assimilation: testing metabolic scaling theory with Manduca sexta larvae.

    PubMed

    Sears, Katie E; Kerkhoff, Andrew J; Messerman, Arianne; Itagaki, Haruhiko

    2012-01-01

    Metabolism, growth, and the assimilation of energy and materials are essential processes that are intricately related and depend heavily on animal size. However, models that relate the ontogenetic scaling of energy assimilation and metabolism to growth rely on assumptions that have yet to be rigorously tested. Based on detailed daily measurements of metabolism, growth, and assimilation in tobacco hornworms, Manduca sexta, we provide a first experimental test of the core assumptions of a metabolic scaling model of ontogenetic growth. Metabolic scaling parameters changed over development, in violation of the model assumptions. At the same time, the scaling of growth rate matches that of metabolic rate, with similar scaling exponents both across and within developmental instars. Rates of assimilation were much higher than expected during the first two instars and did not match the patterns of scaling of growth and metabolism, which suggests high costs of biosynthesis early in development. The rapid increase in size and discrete instars observed in larval insect development provide an ideal system for understanding how patterns of growth and metabolism emerge from fundamental cellular processes and the exchange of materials and energy between an organism and its environment.

  20. Comparison of Swirl Sign and Black Hole Sign in Predicting Early Hematoma Growth in Patients with Spontaneous Intracerebral Hemorrhage.

    PubMed

    Xiong, Xin; Li, Qi; Yang, Wen-Song; Wei, Xiao; Hu, Xi; Wang, Xing-Chen; Zhu, Dan; Li, Rui; Cao, Du; Xie, Peng

    2018-01-29

    BACKGROUND Early hematoma growth is associated with poor outcome in patients with spontaneous intracerebral hemorrhage (ICH). The swirl sign (SS) and the black hole sign (BHS) are imaging markers in ICH patients. The aim of this study was to compare the predictive value of these 2 signs for early hematoma growth. MATERIAL AND METHODS ICH patients were screened for the appearance of the 2 signs within 6 h after onset of symptoms. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the 2 signs in predicting early hematoma growth were assessed. The accuracy of the 2 signs in predicting early hematoma growth was analyzed by receiver-operator analysis. RESULTS A total of 200 patients were enrolled in this study. BHS was found in 30 (15%) patients, and SS was found in 70 (35%) patients. Of the 71 patients with early hematoma growth, BHS was found on initial computed tomography scans in 24 (33.8%) and SS in 33 (46.5%). The sensitivity, specificity, PPV, and NPV of BHS for predicting early hematoma growth were 33.8%, 95.3%, 80.0%, and 72.0%, respectively. The sensitivity, specificity, PPV, and NPV of SS were 46.5%, 71.3%, 47.0%, and 71.0%, respectively. The area under the curve was 0.646 for BHS and 0.589 for SS (P=0.08). Multivariate logistic regression showed that presence of BHS is an independent predictor of early hematoma growth. CONCLUSIONS The Black hole sign seems to be good predictor for hematoma growth. The presence of swirl sign on admission CT does not independently predict hematoma growth in patients with ICH.

  1. Germination and early seedling growth of Pinus densata Mast. provenances

    Treesearch

    Yulan Xu; Nianhui Cai; Bin He; Ruili Zhang; Wei Zhao; Jianfeng Mao; Anan Duan; Yue Li; Keith Woeste

    2016-01-01

    We studied seed germination and early seedling growth of Pinus densata to explore the range of variability within the species and to inform afforestation practices. Phenotypes were evaluated at a forest tree nursery under conditions that support Pinus yunnanensis, one of the presumed parental species of P. densata...

  2. Patterns of larval sucker emigration from the Sprague and lower Williamson Rivers of the Upper Klamath Basin, Oregon, after the removal of Chiloquin Dam - 2009-10 Annual Report

    USGS Publications Warehouse

    Ellsworth, Craig M.; Martin, Barbara A.

    2012-01-01

    Data presented in this report is a continuation of a research project that began in 2004. Larval drift parameters measured in 2009 and 2010 were similar to those measured from 2004 to 2008. Most larvae and eggs were collected at the two drift sites downstream of the former Chiloquin Dam (river kilometer 0.7 on the Sprague River and river kilometer 7.4 on the Williamson River). Mean and peak sample densities increased with proximity to Upper Klamath Lake. Peak larval densities continued to be collected between 1 and 3 hours after sunset at Chiloquin, which is the drift site nearest a known spawning area. Catch distribution of larvae and eggs in the lower Sprague and Williamson Rivers suggests that most SNS and LRS spawning continues to occur downstream of the site of the former Chiloquin Dam. The sizes and growth stages indicate that larval emigration from spawning areas resulting from drift occurs within a few days after swim-up. Larval suckers appear to move downstream quickly until they reach suitable rearing habitat.

  3. Reproduction and development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) clarifies larval ecology in the Hawaiian anchialine ecosystem.

    PubMed

    Havird, Justin C; Vaught, Rebecca C; Weese, David A; Santos, Scott R

    2015-10-01

    Larvae in aquatic habitats often develop in environments different from those they inhabit as adults. Shrimp in the Atyidae exemplify this trend, as larvae of many species require salt or brackish water for development, while adults are freshwater-adapted. An exception within the Atyidae family is the "anchialine clade," which are euryhaline as adults and endemic to habitats with subterranean fresh and marine water influences. Although the Hawaiian anchialine atyid Halocaridina rubra is a strong osmoregulator, its larvae have never been observed in nature. Moreover, larval development in anchialine species is poorly studied. Here, reproductive trends in laboratory colonies over a 5-y period are presented from seven genetic lineages and one mixed population of H. rubra; larval survivorship under varying salinities is also discussed. The presence and number of larvae differed significantly among lineages, with the mixed population being the most prolific. Statistical differences in reproduction attributable to seasonality also were identified. Larval survivorship was lowest (12% settlement rate) at a salinity approaching fresh water and significantly higher in brackish and seawater (88% and 72%, respectively). Correlated with this finding, identifiable gills capable of ion transport did not develop until metamorphosis into juveniles. Thus, early life stages of H. rubra are apparently excluded from surface waters, which are characterized by lower and fluctuating salinities. Instead, these stages are restricted to the subterranean (where there is higher and more stable salinity) portion of Hawaii's anchialine habitats due to their inability to tolerate low salinities. Taken together, these data contribute to the understudied area of larval ecology in the anchialine ecosystem. © 2015 Marine Biological Laboratory.

  4. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Treesearch

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  5. Do larval fishes exhibit diel drift patterns in a large, turbid river?

    USGS Publications Warehouse

    Reeves, K.S.; Galat, D.L.

    2010-01-01

    Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.

  6. Larval nematodes found in amphibians from northeastern Argentina.

    PubMed

    González, C E; Hamann, M I

    2010-11-01

    Five species of amphibians, Leptodactylus podicipinus, Scinax acuminatus, S. nasicus, Rhinella fernandezae and Pseudis paradoxa, were collected in Corrientes province, Argentina and searched for larval nematodes. All larval nematodes were found as cysts in the serous of the stomach of hosts. Were identified one superfamily, Seuratoidea; one genus, Spiroxys (Superfamily Gnathostomatoidea) and one family, Rhabdochonidae (Superfamily Thelazioidea). We present a description and illustrations of these taxa. These nematodes have an indirect life cycle and amphibians are infected by consuming invertebrate, the intermediate hosts. The genus Spiroxys and superfamily Seuratoidea were reported for the first time for Argentinean amphibians.

  7. Effects of chlorpyrifos on in vitro sex steroid production and thyroid follicular development in adult and larval Lake Sturgeon, Acipenser fulvescens.

    PubMed

    Brandt, Catherine; Burnett, Duncan C; Arcinas, Liane; Palace, Vince; Gary Anderson, W

    2015-08-01

    Chlorpyrifos is a widely used organophosphate pesticide that has previously been shown to enter waterways in biologically relevant concentrations and has the potential to disrupt both thyroid hormone and sex steroid biosynthesis in vertebrates. Because gonadal maturation and larval development in Lake Sturgeon, Acipenser fulvescens, potentially coincide with the application of chlorpyrifos we examined the effects of chlorpyrifos on both thyroid follicular development in larval Lake Sturgeon, and sex hormone synthesis in adult Lake Sturgeon. For the first time, the present study reports steroidogenesis from testicular and ovarian tissue in Lake Sturgeon using an established in vitro bioassay. Furthermore, incubating gonad tissue with 5, 500 or 2000ngmL(-1) chlorpyrifos revealed an inhibitory effect on testosterone synthesis in both testicular (control, 40.29pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 21.84pgmg(-1) tissue wet weight(-1)h(-1)) and ovarian (control, 33.83pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 15.19pgmg(-1) tissue wet weight(-1)h(-1)) tissue. In a second series of experiments, larval Lake Sturgeon were exposed to equivalent concentrations of chlorpyrifos as above for 10days (d) between hatch and the onset of exogenous feeding. Larvae from each treatment group were raised until 67days post hatch (dph) and growth rates were compared alongside key indicators of thyroid follicle growth. Chlorpyrifos treatment had no effect on the measured indicators of thyroid follicular development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume

    PubMed Central

    Perrichon, Prescilla; Grosell, Martin; Burggren, Warren W.

    2017-01-01

    Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output. PMID:28725199

  9. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  10. The Growth of Early Galaxies and Reionization of Hydrogen

    NASA Astrophysics Data System (ADS)

    Chary, Ranga Ram

    2012-07-01

    The reionization of the intergalactic medium about a billion years after the Big Bang was an important event which occurred due to the release of ionizing photons from the growth of stellar mass and black holes in the early Universe. By leveraging the benefits of field galaxy surveys, I will present some recent breakthroughs in our understanding of how the earliest galaxies in the Universe evolved. I will present evidence that unlike in the local Universe where galaxy growth occurs through intermittent cannibalism, star-formation in the distant Universe is a more continuous if violent process with an overabundance of massive stars. Implications for the reionization history of the Universe will also be discussed.

  11. STATISTICAL GROWTH MODELING OF LONGITUDINAL DT-MRI FOR REGIONAL CHARACTERIZATION OF EARLY BRAIN DEVELOPMENT.

    PubMed

    Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido

    2012-01-01

    A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.

  12. Reproduction and early-life accommodations of landlocked alewives to a southern range extension

    USGS Publications Warehouse

    Nigro, A.A.; Ney, John J.

    1982-01-01

    Reproduction and first-year growth and food habits of landlocked alewives Alosa pseudoharengus in Claytor Lake, Virginia were examined and compared to descriptions for populations in the species' established New England-Great Lakes range. Alewives in mesothermal (2–27 C) Claytor Lake are shorter-lived (3 years) but grow faster, mature earlier (age 1), and have higher relative and absolute fecundities than have been reported for populations in colder northern waters. The 1979 spawning period extended from early May to early August, beginning at least 1 month earlier and lasting 4–9 weeks longer than in northern lakes. Changes in ovary condition during the spawning period suggest that alewives may be fractional spawners. Evidence of spawning was found in littoral areas throughout the lower 15 km of the reservoir. Growth in length of age-0 Claytor Lake alewives was linear through September and terminated in late autumn. Total first-year growth was reduced in 1979 (maximum of 130 mm total length, TL) from previous years (average of 160 mm TL), although it was substantially greater than recorded in the Great Lakes and the northeastern United States. The longer growing season, rather than accelerated in-season growth, appears to account for larger size achieved in Claytor Lake. High annual growth limits predation by Claytor Lake game fish on early spawned age-0 alewives by late summer. As elsewhere, larval and juvenile alewives (6–70 mm TL) fed primarily on copepods and cladocerans. Age-0 alewives longer than 35 mm TL demonstrated positive size-selection for cyclopoid copepods comparable to that shown by adults. Our findings suggest that self-sustaining alewife populations can be established in many inland waters but raise concerns regarding their forage value and community impacts.

  13. Cutting Diameter Influences Early Survival and Growth of Several Populus Clones

    Treesearch

    Donald Dickmann; Howard Phipps; Daniel Netzer

    1980-01-01

    The effects of cutting diameter on early survival and growth of several Populus clones were studied in field tests in Wisconsin and Michigan. Generally, large diameter cuttings survived and grew better than small diameter cuttings. Response differences among clones were evident.

  14. Observations of the larval stages of Diceroprocta apache Davis (Homoptera: Tibicinidae)

    USGS Publications Warehouse

    Ellingson, A.R.; Andersen, D.C.; Kondratieff, B.C.

    2002-01-01

    Diceroprocta apache Davis is a locally abundant cicada in the riparian woodlands of the southwestern United States. While its ecological importance has often been hypothesized, very little is known of its specific life history. This paper presents preliminary information on life history of D. apache from larvae collected in the field at seasonal intervals as well as a smaller number of reared specimens. Morphological development of the fore-femoral comb closely parallels growth through distinct size classes. The data indicate the presence of five larval instars in D. apache. Development times from greenhouse-reared specimens suggest a 3-4 year life span and overlapping broods were present in the field. Sex ratios among pre-emergent larvae suggest the asynchronous emergence of sexes.

  15. Passive larval transport explains recent gene flow in a Mediterranean gorgonian

    NASA Astrophysics Data System (ADS)

    Padrón, Mariana; Costantini, Federica; Baksay, Sandra; Bramanti, Lorenzo; Guizien, Katell

    2018-06-01

    Understanding the patterns of connectivity is required by the Strategic Plan for Biodiversity 2011-2020 and will be used to guide the extension of marine protection measures. Despite the increasing accuracy of ocean circulation modelling, the capacity to model the population connectivity of sessile benthic species with dispersal larval stages can be limited due to the potential effect of filters acting before or after dispersal, which modulates offspring release or settlement, respectively. We applied an interdisciplinary approach that combined demographic surveys, genetic methods (assignment tests and coalescent-based analyses) and larval transport simulations to test the relative importance of demographics and ocean currents in shaping the recent patterns of gene flow among populations of a Mediterranean gorgonian ( Eunicella singularis) in a fragmented rocky habitat (Gulf of Lion, NW Mediterranean Sea). We show that larval transport is a dominant driver of recent gene flow among the populations, and significant correlations were found between recent gene flow and larval transport during an average single dispersal event when the pelagic larval durations (PLDs) ranged from 7 to 14 d. Our results suggest that PLDs that efficiently connect populations distributed over a fragmented habitat are filtered by the habitat layout within the species competency period. Moreover, a PLD ranging from 7 to 14 d is sufficient to connect the fragmented rocky substrate of the Gulf of Lion. The rocky areas located in the centre of the Gulf of Lion, which are currently not protected, were identified as essential hubs for the distribution of migrants in the region. We encourage the use of a range of PLDs instead of a single value when estimating larval transport with biophysical models to identify potential connectivity patterns among a network of Marine Protected Areas or even solely a seascape.

  16. Microbial composition affects the performance of an artificial Tephritid larval diet.

    PubMed

    Rempoulakis, P; Sela Saldinger, S; Nemny-Lavy, E; Pinto, R; Birke, A; Nestel, D

    2017-09-20

    The present study investigated the patterns of microorganisms in an artificial larval diet during Dacus ciliatus (Diptera; Tephritidae) larval development. Microbial population contents in the diet of total heterotrophic bacteria, yeast and molds, coliform and lactobacilli, and their dynamics during development, were monitored. Initially, the microbial composition in diet trays failing to produce viable pupae and in trays successfully producing pupae and adult flies was characterized. The failing diet trays contained large populations of lactobacilli that increased during larval development, and low populations of coliforms. In contrast, the successful diet showed an increasing population of coliforms and a low, or undetected, population of lactobacilli. To study the hypothesis that lactobacilli affect D. ciliatus larval development, we conducted controlled inoculation experiments in which Lactobacillus plantarum was added into fresh diet at the time of egg seeding. L. plantarum inoculated trays showed no production of D. ciliatus. Control trays without lactobacilli inoculation showed variable results. One tray successfully produced viable pupae and adults, and showed a slight and slow increase in the indigenous populations of lactobacilli. The second tray, however, failed to produce pupae and showed a fast increase of the indigenous lactobacilli to very high levels. Monitored pH trends in L. plantarum-inoculated diet showed a sharp pH decrease during the first 4 days of larval development from 5 to less than 4 units, while successful diet, producing viable D. ciliatus pupae and adults, showed a moderate pH drop during most of the larval development period. The paper discusses the possible ecological interactions between D. ciliatus larvae, the microbial content of the diet and the physical properties of the diet. The discussion also points out at the usefulness of this approach in understanding and managing mass production parameters of tephritid fruit flies

  17. Characterization of receptor of activated C kinase 1 (RACK1) and functional analysis during larval metamorphosis of the oyster Crassostrea angulata.

    PubMed

    Yang, Bingye; Pu, Fei; Qin, Ji; You, Weiwei; Ke, Caihuan

    2014-03-10

    During a large-scale screen of the larval transcriptome library of the Portuguese oyster, Crassostrea angulata, the oyster gene RACK, which encodes a receptor of activated protein kinase C protein was isolated and characterized. The cDNA is 1,148 bp long and has a predicted open reading frame encoding 317 aa. The predicted protein shows high sequence identity to many RACK proteins of different organisms including molluscs, fish, amphibians and mammals, suggesting that it is conserved during evolution. The structural analysis of the Ca-RACK1 genomic sequence implies that the Ca-RACK1 gene has seven exons and six introns, extending approximately 6.5 kb in length. It is expressed ubiquitously in many oyster tissues as detected by RT-PCR analysis. The Ca-RACK1 mRNA expression pattern was markedly increased at larval metamorphosis; and was further increased along with Ca-RACK1 protein synthesis during epinephrine-induced metamorphosis. These results indicate that the Ca-RACK1 plays an important role in tissue differentiation and/or in cell growth during larval metamorphosis in the oyster, C. angulata. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Lin, Xiao-Li; Kang, Zhi-Wei; Pan, Qin-Jian; Liu, Tong-Xian

    2015-10-01

    Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  19. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    PubMed Central

    González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  20. Larval Chigger Mites Collected from Small Mammals in 3 Provinces, Korea

    PubMed Central

    Lee, In-Yong; Song, Hyeon-Je; Choi, Yeon-Joo; Shin, Sun-Hye; Choi, Min-Kyung; Kwon, So-Hyun; Shin, E-Hyun; Park, Chan; Kim, Heung-Chul; Klein, Terry A.; Park, Kyung-Hee

    2014-01-01

    A total of 9,281 larval chigger mites were collected from small mammals captured at Hwaseong-gun, Gyeonggi-do (Province) (2,754 mites from 30 small mammals), Asan city, Chungcheongnam-do (3,358 mites from 48 mammals), and Jangseong-gun, Jeollanam-do (3,169 for 62 mammals) from April-November 2009 in the Republic of Korea (= Korea) and were identified to species. Leptotrombidium pallidum was the predominant species in Hwaseong (95.8%) and Asan (61.2%), while Leptotrombidium scutellare was the predominant species collected from Jangseong (80.1%). Overall, larval chigger mite indices decreased from April (27.3) to June (4.9), then increased in September (95.2) and to a high level in November (169.3). These data suggest that L. pallidum and L. scutellare are the primary vectors of scrub typhus throughout their range in Korea. While other species of larval chigger mites were also collected with some implications in the transmission of Orientia tsutsugamushi, they only accounted for 11.2% of all larval chigger mites collected from small mammals. PMID:24850971

  1. The Relationship between Early Growth and Survival of Hatchling Saltwater Crocodiles (Crocodylus porosus) in Captivity

    PubMed Central

    Brien, Matthew L.; Webb, Grahame J.; McGuinness, Keith; Christian, Keith A.

    2014-01-01

    Hatchling fitness in crocodilians is affected by “runtism” or failure to thrive syndrome (FTT) in captivity. In this study, 300 hatchling C. porosus, artificially incubated at 32°C for most of their embryonic development, were raised in semi-controlled conditions, with growth criteria derived for the early detection of FTT (within 24 days). Body mass, four days after hatching (BM4d), was correlated with egg size and was highly clutch specific, while snout-vent length (SVL4d) was much more variable within and between clutches. For the majority of hatchlings growth trajectories within the first 24 days continued to 90 days and could be used to predict FTT affliction up to 300 days, highlighting the importance of early growth. Growth and survival of hatchling C. porosus in captivity was not influenced by initial size (BM4d), with a slight tendency for smaller hatchlings to grow faster in the immediate post-hatching period. Strong clutch effects (12 clutches) on affliction with FTT were apparent, but could not be explained by measured clutch variables or other factors. Among individuals not afflicted by FTT (N = 245), mean growth was highly clutch specific, and the variation could be explained by an interaction between clutch and season. FTT affliction was 2.5 times higher among clutches (N = 7) that hatched later in the year when mean minimum air temperatures were lower, compared with those clutches (N = 5) that hatched early in the year. The results of this study highlight the importance of early growth in hatchling C. porosus, which has implications for the captive management of this species. PMID:24960026

  2. Effects of metal and predator stressors in larval southern toads (Anaxyrus terrestris).

    PubMed

    Rumrill, Caitlin T; Scott, David E; Lance, Stacey L

    2016-08-01

    Natural and anthropogenic stressors typically do not occur in isolation; therefore, understanding ecological risk of contaminant exposure should account for potential interactions of multiple stressors. Realistically, common contaminants can also occur chronically in the environment. Because parental exposure to stressors may cause transgenerational effects on offspring, affecting their ability to cope with the same or novel environmental stressors, the exposure histories of generations preceding that being tested should be considered. To examine multiple stressor and parental exposure effects we employed a 2 × 2 × 2 factorial design in outdoor 1000-L mesocosms (n = 24). Larval southern toads (Anaxyrus terrestris), bred from parents collected from reference and metal-contaminated sites, were exposed to two levels of both an anthropogenic (copper-0, 30 µg/L Cu) and natural (predator cue - present/absent) stressor and reared to metamorphosis. Toads from the metal-contaminated parental source population were smaller at metamorphosis and had delayed development; i.e., a prolonged larval period. Similarly, larval Cu exposure also reduced size at metamorphosis and prolonged the larval period. We, additionally, observed a significant interaction between larval Cu and predator-cue exposure on larval period, wherein delayed emergence was only present in the 30-µg/L Cu treatments in the absence of predator cues. The presence of parental effects as well as an interaction between aquatic stressors on commonly measured endpoints highlight the importance of conducting multistressor studies across generations to obtain data that are more relevant to field conditions in order to determine population-level effects of contaminant exposure.

  3. Influences of acid mine drainage and thermal enrichment on stream fish reproduction and larval survival

    USGS Publications Warehouse

    Hafs, Andrew W.; Horn, C.D.; Mazik, P.M.; Hartman, K.J.

    2010-01-01

    Potential effects of acid mine drainage (AMD) and thermal enrichment on the reproduction of fishes were investigated through a larval-trapping survey in the Stony River watershed, Grant County, WV. Trapping was conducted at seven sites from 26 March to 2 July 2004. Overall larval catch was low (379 individuals in 220 hours of trapping). More larval White Suckers were captured than all other species. Vectors fitted to nonparametric multidimensional scaling ordinations suggested that temperature was highly correlated to fish communities captured at our sites. Survival of larval Fathead Minnows was examined in situ at six sites from 13 May to 11 June 2004 in the same system. Larval survival was lower, but not significantly different between sites directly downstream of AMD-impacted tributaries (40% survival) and non-AMD sites (52% survival). The lower survival was caused by a significant mortality event at one site that coincided with acute pH depression in an AMD tributary immediately upstream of the site. Results from a Cox proportional hazard test suggests that low pH is having a significant negative influence on larval fish survival in this system. The results from this research indicate that the combination of low pH events and elevated temperature are negatively influencing the larval fish populations of the Stony River watershed. Management actions that address these problems would have the potential to substantially increase both reproduction rates and larval survival, therefore greatly enhancing the fishery.

  4. Adaptive Locomotor Behavior in Larval Zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish. PMID:21909325

  5. Adaptive locomotor behavior in larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  6. Rapid Effects of Marine Reserves via Larval Dispersal

    PubMed Central

    Cudney-Bueno, Richard; Lavín, Miguel F.; Marinone, Silvio G.; Raimondi, Peter T.; Shaw, William W.

    2009-01-01

    Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest. PMID:19129910

  7. Managing Ammonia Emissions From Screwworm Larval Rearing Media.

    PubMed

    Sagel, Agustin; Phillips, Pamela; Chaudhury, Muhammad; Skoda, Steven

    2016-02-01

    Mass production, sterilization, and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts resulting from protein-rich diets required for larval screwworms lead to ammonia liberation, sometimes at high levels, within the mass rearing facility. Until recently a sodium polyacrylate gel bulking agent was used for the larval media and adsorbed much of the ammonia. A need to replace the gel with an environmentally "friendly" bulking agent, while not increasing ammonia levels in the rearing facility, led to a series of experiments with the objective of developing procedures to reduce ammonia emissions from the larval media bulked with cellulose fiber. Additives of ammonia-converting bacteria, potassium permanganate, and Yucca schidigera Roezl ex Otrgies powder extract, previously reported to reduce ammonia levels in organic environments, were evaluated. Ammonia-converting bacteria did not have a positive effect. Addition of Y. schidigera powder extract (∼1% of total volume), potassium permanganate (∼250 ppm), and a combination of these two additives (at these same concentrations) kept ammonia at equivalent levels as when larval media was bulked with gel. Potassium permanganate also had sufficient antimicrobial properties that the use of formaldehyde in the diet was not necessary. Further testing is needed, at a mass rearing level, before full implementation into the screwworm eradication program. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  8. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using (14)C-starch.

    PubMed

    Rocha, Filipa; Dias, Jorge; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane; Engrola, Sofia

    2016-11-01

    The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (P<0.05). Our metabolic data suggests that the early glucose stimuli may alter carbohydrate utilization in seabream juveniles. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Early Literacy Individual Growth and Development Indicators (EL-IGDIs): Growth Trajectories Using a Large, Internet-Based Sample

    ERIC Educational Resources Information Center

    Roseth, Cary J.; Missall, Kristen N.; McConnell, Scott R.

    2012-01-01

    Early literacy individual growth and development indicators (EL-IGDIs) assess preschoolers' expressive vocabulary development and phonological awareness. This study investigated longitudinal change in EL-IGDIs using a large (N=7355), internet-based sample of 36- to 60-month-old United States preschoolers without identified risks for later…

  10. Larval diet affects mosquito development and permissiveness to Plasmodium infection.

    PubMed

    Linenberg, Inbar; Christophides, George K; Gendrin, Mathilde

    2016-12-02

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke's Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing.

  11. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms.

    PubMed

    Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le

    2013-01-01

    The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.

  12. Detecting critical periods in larval flatfish populations

    NASA Astrophysics Data System (ADS)

    Chambers, R. Christopher; Witting, David A.; Lewis, Stephen J.

    2001-06-01

    We evaluate the time-course of deaths and evidence of periods of increased mortality (i.e., critical periods) in laboratory populations of larval flatfish. First, we make the distinction between age-at-death and abundance-at-time data for fish larvae, the latter being typical in studies of natural populations. Next, we describe an experimental investigation of age- and temperature-dependent mortality in larval winter flounder, Pseudopleuronectes americanus. The survivorship curves of these populations differed significantly in both the magnitude and time-course of mortality among the four water temperatures evaluated (7, 10, 13, and 16°C). Mortality was highest in the cooler temperatures and concentrated in the third quarter of larval life, largely concurrent with settlement of surviving members of the cohort. Among the statistical methods for analysing survival data, the proportional-hazards model with time-varying covariates proved best at capturing the patterns of age-specific mortalities. We conclude that fair appraisals of recruitment hypotheses which are predicated on periods of high, age-specific mortality that vary with environmental conditions (e.g., Hjort's critical period hypothesis) will require: (1) data that are based on age, not time; (2) data that are of higher temporal resolution than commonly available at present and (3) analytical methods that are sensitive to irregularities in survivorship curves. We suggest four research approaches for evaluating critical periods in nature.

  13. Developmental transitions in C. elegans larval stages.

    PubMed

    Rougvie, Ann E; Moss, Eric G

    2013-01-01

    Molecular mechanisms control the timing, sequence, and synchrony of developmental events in multicellular organisms. In Caenorhabditis elegans, these mechanisms are revealed through the analysis of mutants with "heterochronic" defects: cell division or differentiation patterns that occur in the correct lineage, but simply at the wrong time. Subsets of cells in these mutants thus express temporal identities normally restricted to a different life stage. A seminal finding arising from studies of the heterochronic genes was the discovery of miRNAs; these tiny miRNAs are now a defining feature of the pathway. A series of sequentially expressed miRNAs guide larval transitions through stage-specific repression of key effector molecules. The wild-type lineage patterns are executed as discrete modules programmed between temporal borders imposed by the molting cycles. How these successive events are synchronized with the oscillatory molting cycle is just beginning to come to light. Progression through larval stages can be specifically, yet reversibly, halted in response to environmental cues, including nutrient availability. Here too, heterochronic genes and miRNAs play key roles. Remarkably, developmental arrest can, in some cases, either mask or reveal timing defects associated with mutations. In this chapter, we provide an overview of how the C. elegans heterochronic gene pathway guides developmental transitions during continuous and interrupted larval development. © 2013 Elsevier Inc. All rights reserved.

  14. Ammonia Volatilization from Urea-Application Influenced Germination and Early Seedling Growth of Dry Direct-Seeded Rice

    PubMed Central

    Qi, Xiaoli; Wu, Wei; Shah, Farooq; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Liu, Hongyan; Nie, Lixiao

    2012-01-01

    Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding. PMID:22454611

  15. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae).

    PubMed

    Ituarte, Romina Belén; Lignot, Jehan-Hervé; Charmantier, Guy; Spivak, Eduardo; Lorin-Nebel, Catherine

    2016-06-01

    The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp.

  16. Embryogenesis and Larval Biology of the Cold-Water Coral Lophelia pertusa

    PubMed Central

    Strömberg, Susanna M.; Dahl, Mikael P.; Lundälv, Tomas; Brooke, Sandra

    2014-01-01

    Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼160 µm large neutral or negatively buoyant eggs, to 120–270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6–8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s−1) initially residing in the upper part of the water column, with bottom probing behavior starting 3–5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations. PMID:25028936

  17. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae

    PubMed Central

    Mazurais, David; Servili, Arianna; Zambonino-Infante, Jose-Luis; Miest, Joanna J.; Sørensen, Sune R.; Tomkiewicz, Jonna; Butts, Ian A. E.

    2017-01-01

    Temperature is important for optimization of rearing conditions in aquaculture, especially during the critical early life history stages of fish. Here, we experimentally investigated the impact of temperature (16, 18, 20, 22 and 24°C) on thermally induced phenotypic variability, from larval hatch to first-feeding, and the linked expression of targeted genes [heat shock proteins (hsp), growth hormone (gh) and insulin-like growth factors (igf)] associated to larval performance of European eel, Anguilla anguilla. Temperature effects on larval morphology and gene expression were investigated throughout early larval development (in real time from 0 to 18 days post hatch) and at specific developmental stages (hatch, jaw/teeth formation, and first-feeding). Results showed that hatch success, yolk utilization efficiency, survival, deformities, yolk utilization, and growth rates were all significantly affected by temperature. In real time, increasing temperature from 16 to 22°C accelerated larval development, while larval gene expression patterns (hsp70, hsp90, gh and igf-1) were delayed at cold temperatures (16°C) or accelerated at warm temperatures (20–22°C). All targeted genes (hsp70, hsp90, gh, igf-1, igf-2a, igf-2b) were differentially expressed during larval development. Moreover, expression of gh was highest at 16°C during the jaw/teeth formation, and the first-feeding developmental stages, while expression of hsp90 was highest at 22°C, suggesting thermal stress. Furthermore, 24°C was shown to be deleterious (resulting in 100% mortality), while 16°C and 22°C (~50 and 90% deformities respectively) represent the lower and upper thermal tolerance limits. In conclusion, the high survival, lowest incidence of deformities at hatch, high yolk utilization efficiency, high gh and low hsp expression, suggest 18°C as the optimal temperature for offspring of European eel. Furthermore, our results suggest that the still enigmatic early life history stages of European

  18. Insect growth regulatory activity of Vitex trifolia and Vitex agnus-castus essential oils against Spilosoma obliqua.

    PubMed

    Tandon, Shishir; Mittal, Ashutosh K; Pant, A K

    2008-06-01

    Essential oils of Vitex trifolia and Vitex agnus-castus were evaluated against Vth instar larvae of Spilosoma obliqua, when applied topically on the dorsal side of mesothoracic region, for insect growth regulatory activity. This treatment caused extended larval period and pupal period, increase in larval mortality and adult deformity and decrease in adult emergence, fecundity of female and egg fertility of test insect.

  19. Test of a foraging-bioenergetics model to evaluate growth dynamics of endangered pallid sturgeon (Scaphirhynchus albus)

    USGS Publications Warehouse

    Deslauriers, David; Heironimus, Laura B.; Chipps, Steven R.

    2016-01-01

    Factors affecting feeding and growth of early life stages of the federally endangered pallid sturgeon (Scaphirhynchus albus) are not fully understood, owing to their scarcity in the wild. In this study was we evaluated the performance of a combined foraging-bioenergetics model as a tool for assessing growth of age-0 pallid sturgeon in the Missouri River. In the laboratory, three size classes of sturgeon larvae (18–44 mm; 0.027–0.329 g) were grown for 7 to 14 days under differing temperature (14–24 °C) and prey density (0–9 Chironomidae larvae/d) regimes. After accounting for effects of water temperature and prey density on fish activity, we compared observed final weight, final length, and number of prey consumed to values generated from the foraging-bioenergetics model. When confronted with an independent dataset, the combined model provided reliable estimates (within 13% of observations) of fish growth and prey consumption, underscoring the usefulness of the modeling approach for evaluating growth dynamics of larval fish when empirical data are lacking.

  20. Elongator promotes germination and early post-germination growth.

    PubMed

    Woloszynska, Magdalena; Gagliardi, Olimpia; Vandenbussche, Filip; Van Lijsebettens, Mieke

    2018-01-02

    The Elongator complex interacts with RNA polymerase II and via histone acetylation and DNA demethylation facilitates epigenetically the transcription of genes involved in diverse processes in plants, including growth, development, and immune response. Recently, we have shown that the Elongator complex promotes hypocotyl elongation and photomorphogenesis in Arabidopsis thaliana by regulating the photomorphogenesis and growth-related gene network that converges on genes implicated in cell wall biogenesis and hormone signaling. Here, we report that germination in the elo mutant was delayed by 6 h in the dark when compared to the wild type in a time lapse and germination assay. A number of germination-correlated genes were down-regulated in the elo transcriptome, suggesting a transcriptional regulation by Elongator. We also show that the hypocotyl elongation defect observed in the elo mutants in darkness originates very early in the post-germination development and is independent from the germination delay.

  1. Does White Clover (Trifolium repens) Abundance in Temperate Pastures Determine Sitona obsoletus (Coleoptera: Curculionidae) Larval Populations?

    PubMed

    McNeill, Mark R; van Koten, Chikako; Cave, Vanessa M; Chapman, David; Hodgson, Hamish

    2016-01-01

    To determine if host plant abundance determined the size of clover root weevil (CRW) Sitona obsoletus larval populations, a study was conducted over 4 years in plots sown in ryegrass ( Lolium perenne ) (cv. Nui) sown at either 6 or 30 kg/ha and white clover ( Trifolium repens ) sown at a uniform rate of 8 kg/ha. This provided a range of % white clover content to investigate CRW population establishment and impacts on white clover survival. Larval sampling was carried out in spring (October) when larval densities are near their spring peak at Lincoln (Canterbury, New Zealand) with % clover measured in autumn (April) and spring (September) of each year. Overall, mean larval densities measured in spring 2012-2015 were 310, 38, 59, and 31 larvae m -2 , respectively. There was a significant decline in larval populations between 2012 and 2013, but spring populations were relatively uniform thereafter. The mean % white clover measured in autumns of 2012 to 2015 was 17, 10, 3, and 11%, respectively. In comparison, mean spring % white clover from 2012 to 2015, averaged c. 5% each year. Analysis relating spring (October) larval populations to % white clover measured in each plot in autumn (April) found the 2012 larval population to be statistically significantly larger in the ryegrass 6 kg/ha plots than 30 kg/ha plots. Thereafter, sowing rate had no significant effect on larval populations. From 2013 to 2015, spring larval populations had a negative relationship with the previous autumn % white clover with the relationship highly significant for the 2014 data. When CRW larval populations in spring 2013 to 2015 were predicted from the 2013 to 2015 autumn % white clover, respectively, based on their positive relationship in 2012, the predicted densities were substantially larger than those observed. Conversely, when 2015 spring larval data and % clover was regressed against 2012-2014 larval populations, observed densities tended to be higher than predicted, but the numbers

  2. Drivers of larval fish assemblage shift during the spring-summer transition in the coastal Mediterranean

    NASA Astrophysics Data System (ADS)

    Álvarez, Itziar; Catalán, Ignacio A.; Jordi, Antoni; Palmer, Miquel; Sabatés, Ana; Basterretxea, Gotzon

    2012-01-01

    The influence of coastal environmental conditions from winter-spring to summer on fish larvae assemblages in a temperate area has suggested a seasonal shift in ecosystem-level variation through which trophic pathways shift from the pelagic to the benthic system. This variation may be related to marked effects in the reproductive strategies in the fishes inhabiting the area and indirectly affect ichthyoplankton assemblages. Larval fish assemblages were sampled fortnightly at three stations located in coastal waters off southern Mallorca (Western Mediterranean) from March to August 2007, covering the main spawning period for the resident coastal fish in this region. The larval fish assemblage showed clear seasonality with higher specific abundance but lower diversity in the spring. Two main assemblages were identified: a spring assemblage, occurring at surface seawater temperatures <20 °C and dominated by species with relatively larger home ranges, such as Boops boops, Sardina pilchardus, Trachurus trachurus, and Spicara smaris, and a summer assemblage characterised by the presence of the benthopelagic Coris julis, Serranus hepatus, Serranus cabrilla and Mullus spp., among others. The shift between these ichthyoplankton communities occurred in early June, coinciding with the onset of summer hydrographical conditions and the local benthic productivity peak.

  3. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes

    PubMed Central

    Courtney Jones, Stephanie K.; Munn, Adam J.; Penman, Trent D.; Byrne, Phillip G.

    2015-01-01

    Food availability and temperature are known to trigger phenotypic change, but the interactive effects between these factors are only beginning to be considered. The aim of this study was to examine the independent and interactive effects of long-term stochastic food availability and water temperature on larval survivorship, growth and development of the striped marsh frog, Limnodynastes peronii. Larval L. peronii were reared in conditions of either constant or stochastic food availability and in water at three different temperatures (18, 22 and 26°C), and effects on survival, growth and development were quantified. Over the experimental period, larval growth rate was highest and survivorship lowest at the warmest temperature. However, changes in food availability mediated the effects of temperature, with slower larval growth and higher survivorship in stochastic food availability treatments. Tadpoles in the stochastic food availability treatments did not reach metamorphosis during the experimental period, suggesting that developmental stasis may have been induced by food restriction. Overall, these results demonstrate that changes in food availability alter the effects of water temperature on survival, growth and development. From an applied perspective, understanding how environmental factors interact to cause phenotypic change may assist with amphibian conservation by improving the number of tadpoles generated in captive breeding programmes. PMID:27293714

  4. Developmental plasticity of growth and digestive efficiency in dependence of early-life food availability

    PubMed Central

    Kotrschal, Alexander; Szidat, Sönke; Taborsky, Barbara

    2014-01-01

    Nutrition is a potent mediator of developmental plasticity. If food is scarce, developing organisms may invest into growth to outgrow size-dependent mortality (short-term benefit) and/or into an efficient digestion system (long-term benefit). We investigated this potential trade-off, by determining the influence of food availability on juvenile body and organ growth, and on adult digestive efficiency in the cichlid fish Simochromis pleurospilus. We reared two groups of fish at constant high or low food rations, and we switched four other groups between these two rations at an early and late juvenile period. We measured juvenile growth and organ sizes at different developmental stages and determined adult digestive efficiency. Fish kept at constant, high rations grew considerably faster than low-food fish. Nevertheless, S. pleurospilus partly buffered the negative effects of low food availability by developing heavier digestive organs, and they were therefore more efficient in digesting their food as adults. Results of fish exposed to a ration switch during either the early or late juvenile period suggest (i) that the ability to show compensatory growth after early exposure to low food availability persists during the juvenile period, (ii) that digestive efficiency is influenced by varying juvenile food availability during the late juvenile phase and (iii) that the efficiency of the adult digestive system is correlated with the growth rate during a narrow time window of juvenile period. PMID:25866430

  5. Rhomboid Enhancer Activity Defines a Subset of Drosophila Neural Precursors Required for Proper Feeding, Growth and Viability

    PubMed Central

    Gresser, Amy L.; Gutzwiller, Lisa M.; Gauck, Mackenzie K.; Hartenstein, Volker; Cook, Tiffany A.; Gebelein, Brian

    2015-01-01

    Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability. PMID

  6. Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina

    PubMed Central

    Gore, Matthew; Burggren, Warren W.

    2012-01-01

    Swimming stamina in adult fish is heritable, it is unknown if inherited traits that support enhanced swimming stamina in offspring appear only in juveniles and/or adults, or if these traits actually appear earlier in the morphologically quite different larvae. To answer this question, mature adult zebrafish (Danio rerio) were subjected to a swimming performance test that allowed separation into low swimming stamina or high swimming stamina groups. Adults were then bred within their own performance groups. Larval offspring from each of the two groups, designated high (LHSD) and low stamina-derived larvae (LLSD), were then reared at 27°C in aerated water (21% O2). Routine (fH,r) and active (fH,a) heart rate, and routine (Ṁo2,r) and active (Ṁo2,a) mass-specific oxygen consumption were recorded from 5 days post fertilization (dpf) through 21 dpf, and gross cost of transport and factorial aerobic metabolic scope were derived from Ṁo2 measurements. Heart rate generally ranged between 150 and 225 bpm in both LHSD and LLSD populations. However, significant (P < 0.05) differences existed between the LLSD and LHSD populations at 5 and 14 dpf in fH,r and at days 10 and 15 dpf in fH,a. Ṁo2,r was 0.04–0.32 μmol mg−1 h−1, while Ṁo2,a was 0.2–1.2 μmol mg−1 h−1. Significant (P < 0.05) differences between the LLSD and LHSD populations in Ṁo2,r occurred at 7, 10, and 21 dpf and in Ṁo2,a at 7 dpf. Gross cost of transport was ∼6–10 μmol O2·μg−1 m−1 at 5 dpf, peaking at 14–19 μmol O2 μg−1 m−1 at 7–10 dpf, before falling again to 5–6 μmol O2 μg−1 m−1 at 21 dpf, with gross cost of transport significantly higher in the LLSD population at 7 dpf. Collectively, these data indicate that inherited physiological differences known to contribute to enhanced stamina in adult parents also appear in their larval offspring well before attainment of juvenile or adult features. PMID

  7. Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina.

    PubMed

    Gore, Matthew; Burggren, Warren W

    2012-01-01

    Swimming stamina in adult fish is heritable, it is unknown if inherited traits that support enhanced swimming stamina in offspring appear only in juveniles and/or adults, or if these traits actually appear earlier in the morphologically quite different larvae. To answer this question, mature adult zebrafish (Danio rerio) were subjected to a swimming performance test that allowed separation into low swimming stamina or high swimming stamina groups. Adults were then bred within their own performance groups. Larval offspring from each of the two groups, designated high (L(HSD)) and low stamina-derived larvae (L(LSD)), were then reared at 27°C in aerated water (21% O(2)). Routine (f(H),r) and active (f(H),a) heart rate, and routine [Formula: see text] and active [Formula: see text] mass-specific oxygen consumption were recorded from 5 days post fertilization (dpf) through 21 dpf, and gross cost of transport and factorial aerobic metabolic scope were derived from [Formula: see text] measurements. Heart rate generally ranged between 150 and 225 bpm in both L(HSD) and L(LSD) populations. However, significant (P < 0.05) differences existed between the L(LSD) and L(HSD) populations at 5 and 14 dpf in f(H),r and at days 10 and 15 dpf in f(H),a. [Formula: see text] was 0.04-0.32 μmol mg(-1) h(-1), while [Formula: see text] was 0.2-1.2 μmol mg(-1) h(-1). Significant (P < 0.05) differences between the L(LSD) and L(HSD) populations in [Formula: see text] occurred at 7, 10, and 21 dpf and in [Formula: see text] at 7 dpf. Gross cost of transport was ∼6-10 μmol O(2)·μg(-1) m(-1) at 5 dpf, peaking at 14-19 μmol O(2) μg(-1) m(-1) at 7-10 dpf, before falling again to 5-6 μmol O(2) μg(-1) m(-1) at 21 dpf, with gross cost of transport significantly higher in the L(LSD) population at 7 dpf. Collectively, these data indicate that inherited physiological differences known to contribute to enhanced stamina in adult

  8. Condition of larval red snapper (Lutjanus campechanus) relative to environmental variability and the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Hernandez, F. J., Jr.; Filbrun, J. E.; Fang, J.; Ransom, J. T.

    2016-09-01

    The Deepwater Horizon oil spill (DWHOS) spatially and temporally overlapped with the spawning of many fish species, including Red Snapper, one of the most economically important reef fish in the Gulf of Mexico. To investigate potential impacts of the DWHOS on larval Red Snapper, data from a long-term ichthyoplankton survey off the coast of Alabama were used to examine: (1) larval abundances among pre-impact (2007-2009), impact (2010), and post-impact (2011, 2013) periods; (2) proxies for larval condition (size-adjusted morphometric relationships and dry weight) among the same periods; and (3) the effects of background environmental variation on larval condition. We found that larval Red Snapper were in poorer body condition during 2010, 2011, and 2013 as compared to the 2007-2009 period, a trend that was strongly (and negatively) related to variation in Mobile Bay freshwater discharge. However, larvae collected during and after 2010 were in relatively poor condition even after accounting for variation in freshwater discharge and other environmental variables. By contrast, no differences in larval abundance were detected during these survey years. Taken together, larval supply did not change relative to the timing of the DWHOS, but larval condition was negatively impacted. Even small changes in condition can affect larval survival, so these trends may have consequences for recruitment of larvae to juvenile and adult life stages.

  9. Early life history pelagic exposure profiles of selected commercially important fish species in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Doyle, Miriam J.; Mier, Kathryn L.

    2016-10-01

    A synthesis of nearly four decades of ichthyoplankton survey data from the Gulf of Alaska was undertaken to provide the most comprehensive information available on the early life history ecology of five focal species: Pacific Cod (Gadus macrocephalus), Walleye Pollock (Gadus chalcogrammus), Pacific Ocean Perch (Sebastes alutus), Sablefish (Anoplopoma fimbria), and Arrowtooth Flounder (Atheresthes stomias). This analysis of historical data, along with information from published studies, is presented here in the form of ecological reviews of the species during their planktonic phase. The reviews include descriptions of temporal and spatial patterns of exposure to the environment, and interpretation regarding associated sensitivities to environmental forcing. On a temporal scale, patterns in abundance of eggs and larvae are synthesized that characterize seasonal exposure to the pelagic environment, and interannual variation that is presumed to incorporate responses to long-term environmental forcing. Spatial patterns are synthesized to identify horizontal and vertical extent of egg and larval distributions, delineate areas of primary larval habitat, and illuminate egg and larval drift pathways. The observed patterns are discussed with respect to characterizing species early life history strategies, identifying long-term adaptations to the Gulf of Alaska environment, and associated resilience and vulnerability factors that may modulate early life responses to environmental forcing in this region. For each species, gaps in knowledge are identified and are concerned primarily with the period of transition between the larval and juvenile stage, and feeding habits and ecology across seasons, habitats and sub-intervals of early ontogeny. These early life history reviews advance our ecological understanding of the pelagic phase, and fine-tune our focus for the investigation of potential response mechanisms to environmental forcing at appropriate, species-specific temporal

  10. Efficiency of selection methods for increased ratio of pupal-larval to adult-larval weight gains in Tribolium.

    PubMed

    Campo, J L; Cobos, P

    1994-01-12

    Four lines of Tribolium castaneum were selected in each of three replicates for increased ratio of (pupal-larval) to (adult-larval) weight gains, using selection for increased (pupal-larval) weight gain (PL), selection for decreased (adult-larval) weight gain (AL), direct selection for the ratio (R) and linear selection index of larval, pupal and adult weights (I), respectively, for four generations. Linear index was calculated with economic weights of m(2) -m(3) , m(3) -m(1) and m(1) -m(2) , respectively, with m(1) , m(2) and m(3) being the means for larval, pupal and adult weights. Selection to increase the ratio is considered to be a method to maximize the mean response in (adult-larval) weight while controlling the response in (pupal-adult) weight, and as a form of antagonistic selection to increase the weight gain during a given age period relative to the gain at another age period. Larval, pupal and adult weights were measured at 14, 21 and 28 days after adult emergence, respectively. The selected proportion was 20 % in all lines. The response observed for the ratio differed significantly among lines (p < 0.01), with the I and AL lines having the greatest responses. Line R was less effective in improving the objective of selection, while line PL appeared to be inappropriate. The observed responses for the numerator and denominator weight gains were positive in line PL, and negative in the AL, R and I lines. All lines apart from line PL decreased the (adult-larval) weight, holding (pupal-adult) weight constant. Larval weight showed the greatest influence on the response for the objective of selection. The results for this greater than 1 ratio are compared with results of others for smaller than 1 ratios, in which indirect selection for increased numerator is the more efficient alternative to the selection index. ZUSAMMENFASSUNG: Effizienz Selektionsverfahren zur Verbesserung des Quotienten der Gewichtsentwicklung zwischen Puppe/Larve und Käfer/Larve bei

  11. Negative effects of microplastic exposure on growth and development of Crepidula onyx.

    PubMed

    Lo, Hau Kwan Abby; Chan, Kit Yu Karen

    2018-02-01

    Microplastics exposure could be detrimental to marine organisms especially under high concentrations. However, few studies have considered the multiphasic nature of marine invertebrates' life history and investigated the impact of experiencing microplastics during early development on post-metamorphic stages (legacy effect). Many planktonic larvae can feed selectively and it is unclear whether such selectivity could modulate the impact of algal food-sized microplastic. In this two-stage experiment, veligers of Crepidula onyx were first exposed to additions of algae-sized micro-polystyrene (micro-PS) beads at different concentrations, including ones that were comparable their algal diet. These additions were then either halted or continued after settlement. At environmentally relevant concentration (ten 2-μm microplastic beads ml -1 ), larval and juvenile C. onyx was not affected. At higher concentrations, these micro-PS fed larvae consumed a similar amount of algae compared to those in control but grew relatively slower than those in the control suggesting that ingestion and/or removal of microplastic was/were energetically costly. These larvae also settled earlier at a smaller size compared to the control, which could negatively affect post-settlement success. Juvenile C. onyx receiving continuous micro-PS addition had slower growth rates. Individuals only exposed to micro-PS during their larval stage continued to have slower growth rates than those in the control even if micro-PS had been absent in their surroundings for 65 days highlighting a legacy effect of microplastic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oyster larval transport in coastal Alabama: Dominance of physical transport over biological behavior in a shallow estuary

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Ki; Park, Kyeong; Powers, Sean P.; Graham, William M.; Bayha, Keith M.

    2010-10-01

    Among the various factors affecting recruitment of marine invertebrates and fish, larval transport may produce spatial and temporal patterns of abundance that are important determinants of management strategies. Here we conducted a field and modeling study to investigate the larval transport of eastern oyster, Crassostrea virginica, in Mobile Bay and eastern Mississippi Sound, Alabama. A three-dimensional larval transport model accounting for physical transport, biological movement of larvae, and site- and larval-specific conditions was developed. A hydrodynamic model was used to simulate physical transport, and biological movement was parameterized as a function of swimming and sinking velocity of oyster larvae. Site- and larval-specific conditions, including spawning location, spawning stock size, spawning time, and larval period, were determined based on the previous studies. The model reasonably reproduced the observed gradient in oyster spat settlement and bivalve larval concentration, although the model results were less dynamic than the data, probably owing to the simplified biological conditions employed in the model. A persistent gradient decreasing from west to east in the model results at time scales of overall average, season, and each survey in 2006 suggests that the larval supply may be responsible for the corresponding gradient in oyster spat settlement observed over the past 40 years. Biological movement increased larval retention near the spawning area, thus providing a favorable condition for local recruitment of oysters. Inclusion of biological movement, however, caused little change in the overall patterns of larval transport and still resulted in a west-east gradient, presumably because of frequent destratification in the shallow Mobile Bay system.

  13. Aspects of embryonic and larval development in bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2013-01-01

    As bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix (the bigheaded carps) are poised to enter the Laurentian Great Lakes and potentially damage the region’s economically important fishery, information on developmental rates and behaviors of carps is critical to assessing their ability to establish sustainable populations within the Great Lakes basin. In laboratory experiments, the embryonic and larval developmental rates, size, and behaviors of bigheaded carp were tracked at two temperature treatments, one “cold” and one “warm”. Developmental rates were computed using previously described stages of development and the cumulative thermal unit method. Both species have similar thermal requirements, with a minimum developmental temperature for embryonic stages of 12.1° C for silver carp and 12.9° C for bighead carp, and 13.3° C for silver carp larval stages and 13.4° C for bighead carp larval stages. Egg size differed among species and temperature treatments, as egg size was larger in bighead carp, and “warm" temperature treatments. The larvae started robust upwards vertical swimming immediately after hatching, interspersed with intervals of sinking. Vertical swimming tubes were used to measure water column distribution, and ascent and descent rates of vertically swimming fish. Water column distribution and ascent and descent rates changed with ontogeny. Water column distribution also showed some diel periodicity. Developmental rates, size, and behaviors contribute to the drift distance needed to fulfill the early life history requirements of bigheaded carps and can be used in conjunction with transport information to assess invasibility of a river.

  14. Larval Behaviours and Their Contribution to the Distribution of the Intertidal Coral Reef Sponge Carteriospongia foliascens

    PubMed Central

    Abdul Wahab, Muhammad Azmi; de Nys, Rocky; Webster, Nicole; Whalan, Steve

    2014-01-01

    Sponges (Phylum Porifera) are an evolutionary and ecologically significant group; however information on processes influencing sponge population distributions is surprisingly limited. Carteriospongia foliascens is a common Indo-Pacific sponge, which has been reported from the intertidal to the mesophotic. Interestingly, the distribution of C. foliascens at inshore reefs of the Great Barrier Reef is restricted to the intertidal with no individuals evident in adjacent subtidal habitats. The abundance of C. foliascens and substrate availability was first quantified to investigate the influence of substrate limitation on adult distribution. Pre-settlement processes of larval spawning, swimming speeds, phototaxis, vertical migration, and settlement to intertidal and subtidal substrate cues were also quantified. Notably, suitable settlement substrate (coral rubble) was not limiting in subtidal habitats. C. foliascens released up to 765 brooded larvae sponge−1 day−1 during the day, with larvae (80%±5.77) being negatively phototactic and migrating to the bottom within 40 minutes from release. Subsequently, larvae (up to 58.67%±2.91) migrated to the surface after the loss of the daylight cue (nightfall), and after 34 h post-release >98.67% (±0.67) of larvae had adopted a benthic habit regardless of light conditions. Intertidal and subtidal biofilms initiated similar settlement responses, inducing faster (as early 6 h post-release) and more successful metamorphosis (>60%) than unconditioned surfaces. C. foliascens has a high larval supply and larval behaviours that support recruitment to the subtidal. The absence of C. foliascens in subtidal habitats at inshore reefs is therefore proposed to be a potential consequence of post-settlement mortalities. PMID:24853091

  15. Perturbations in growth trajectory due to early diet affect age-related deterioration in performance.

    PubMed

    Lee, Who-Seung; Monaghan, Pat; Metcalfe, Neil B

    2016-04-01

    Fluctuations in early developmental conditions can cause changes in growth trajectories that subsequently affect the adult phenotype. Here, we investigated whether compensatory growth has long-term consequences for patterns of senescence.Using three-spined sticklebacks ( Gasterosteus aculeatus ), we show that a brief period of dietary manipulation in early life affected skeletal growth rate not only during the manipulation itself, but also during a subsequent compensatory phase when fish caught up in size with controls.However, this growth acceleration influenced swimming endurance and its decline over the course of the breeding season, with a faster decline in fish that had undergone faster growth compensation.Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as indicated by the duration of sexual ornamentation) over the following two breeding seasons, suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of accelerated growth on these age-related declines in performance if the fish were under greater time stress to complete their compensation prior to the breeding season.Compensatory growth led to a reduction in median life span of 12% compared to steadily growing controls. While life span was independent of the eventual adult size attained, it was negatively correlated with the age-related decline in swimming endurance and sexual ornamentation.These results, complementary to those found when growth trajectories were altered by temperature rather than dietary manipulations, show that the costs of accelerated growth can last well beyond the time over which growth rates differ and are affected by the time available until an approaching life-history event such as reproduction.

  16. Effects of temperature on survival and development of early life stage Pacific and western brook lampreys

    USGS Publications Warehouse

    Meeuwig, M.H.; Bayer, J.M.; Seelye, J.G.

    2005-01-01

    We examined the effects of temperature (10, 14, 18, and 22??C) on survival and development of Pacific lampreys Lampetra tridentata and western brook lampreys L. richardsoni during embryological and early larval stages. The temperature for zero development was estimated for each species, and the response to temperature was measured as the proportion of individuals surviving to hatch, surviving to the larval stage, and exhibiting abnormalities at the larval stage (i.e., malformations of the body). The estimated temperature for zero development was 4.850C for Pacific lampreys and 4.97??C for western brook lampreys. Survival was greatest at 18??C, followed by 14, 10, and 22??C, significant differences being observed between 22??C and the other temperatures. Overall survival was significantly greater for western brook lampreys than for Pacific lampreys; however, the overall difference in proportion of individuals surviving was only 0.02. Overall survival significantly decreased from the time of hatch (proportion surviving = 0.85) to the larval stage (0.82; i.e., during the free-embryo stage). The proportion of individuals exhibiting abnormalities at the larval stage was greatest at 22??C, followed by 18, 10, and 14??C, significant differences being observed between 22??C and the other temperatures. These data provide baseline information on the thermal requirements of early life stage Pacific and western brook lampreys and will aid in assessment and prediction of suitable spawning and rearing habitats for these species.

  17. The structure and timescales of heat perception in larval zebrafish.

    PubMed

    Haesemeyer, Martin; Robson, Drew N; Li, Jennifer M; Schier, Alexander F; Engert, Florian

    2015-11-25

    Avoiding temperatures outside the physiological range is critical for animal survival, but how temperature dynamics are transformed into behavioral output is largely not understood. Here, we used an infrared laser to challenge freely swimming larval zebrafish with "white-noise" heat stimuli and built quantitative models relating external sensory information and internal state to behavioral output. These models revealed that larval zebrafish integrate temperature information over a time-window of 400 ms preceding a swimbout and that swimming is suppressed right after the end of a bout. Our results suggest that larval zebrafish compute both an integral and a derivative across heat in time to guide their next movement. Our models put important constraints on the type of computations that occur in the nervous system and reveal principles of how somatosensory temperature information is processed to guide behavioral decisions such as sensitivity to both absolute levels and changes in stimulation.

  18. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle

    PubMed Central

    Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro

    2015-01-01

    Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor. PMID:26195792

  19. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle.

    PubMed

    Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro

    2015-08-04

    Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor.

  20. A role for Lin-28 in growth and metamorphosis in Drosophila melanogaster.

    PubMed

    González-Itier, Sergio; Contreras, Esteban G; Larraín, Juan; Glavic, Álvaro; Faunes, Fernando

    2018-06-13

    Insect metamorphosis has been a classic model to understand the role of hormones in growth and timing of developmental transitions. In addition to hormones, transitions in some species are regulated by genetic programs, such as the heterochronic gene network discovered in C. elegans. However, the functional link between hormones and heterochronic genes is not clear. The heterochronic gene lin-28 is involved in the maintenance of stem cells, growth and developmental timing in vertebrates. In this work, we used gain-of-function and loss-of-function experiments to study the role of Lin-28 in larval growth and the timing of metamorphosis of Drosophila melanogaster. During the late third instar stage, Lin-28 is mainly expressed in neurons of the central nervous system and in the intestine. Loss-of-function lin-28 mutant larvae are smaller and the larval-to-pupal transition is accelerated. This faster transition correlates with increased levels of ecdysone direct target genes such as Broad-Complex (BR-C) and Ecdysone Receptor (EcR). Overexpression of Lin-28 does not affect the timing of pupariation but most animals are not able to eclose, suggesting defects in metamorphosis. Overexpression of human Lin-28 results in delayed pupariation and the death of animals during metamorphosis. Altogether, these results suggest that Lin-28 is involved in the control of growth during larval development and in the timing and progression of metamorphosis. Copyright © 2017. Published by Elsevier B.V.

  1. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae).

    PubMed

    Bezzar-Bendjazia, Radia; Kilani-Morakchi, Samira; Maroua, Ferdenache; Aribi, Nadia

    2017-11-01

    Botanical insecticides are a promising alternative to reduce the harmful effects of synthetic chemicals. Among the botanical biopesticides, azadirachtin obtained from the Indian neem tree Azadirachta indica A. Juss. (Meliaceae) is probably the biorational insecticide with greatest agriculture use nowadays due to its broad insecticide activity. The current study, evaluated the lethal and sublethal effects of azadirachtin on larval avoidance, food intake and digestive enzymes of Drosophila melanogaster larvae as biological model. Azadirachtin was applied topically at two doses LD 25 (0.28μg) and LD 50 (0.67μg) on early third instars larvae. Results evaluated 24h after treatment showed that larvae exhibited significant repellence to azadirachtin and prefer keeping in untreated arenas rather than moving to treated one. In addition, azadirachtin avoidance was more marked in larvae previously treated with this compound as compared with naïf larvae (controls). Moreover, azadirachtin treatment decreased significantly the amount of larval food intake. Finally, azadirachtin reduced significantly the activity of larval α-amylase, chitinase and protease and increased the activity of lipase. This finding showed that azadirachtin induced behavioral and physiological disruption affecting the ability of the insect to digest food. This rapid installation of avoidance and long term antifeedancy might reinforce the action of azadirachtin and provide a new behavioral strategy for integrated pest management programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Alternative Student Growth Measures for Teacher Evaluation: Implementation Experiences of Early-Adopting Districts. REL 2015-093

    ERIC Educational Resources Information Center

    McCullough, Moira; English, Brittany; Angus, Megan Hague; Gill, Brian

    2015-01-01

    Alternative student growth measures for teacher evaluation: Implementation experiences of early-adopting districts: State requirements to include student achievement growth in teacher evaluations are prompting the development of alternative ways to measure growth in grades and subjects not covered by state assessments. These alternative growth…

  3. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni.

    PubMed

    MacDonald, Kevin; Kimber, Michael J; Day, Tim A; Ribeiro, Paula

    2015-07-01

    The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Reverse osmosis and ultrafiltration for recovery and reuse of larval rearing water in Anopheles arabiensis mass production: Effect of water quality on larval development and fitness of emerging adults.

    PubMed

    Mamai, Wadaka; Hood-Nowotny, Rebecca; Maiga, Hamidou; Ali, Adel Barakat; Bimbile-Somda, Nanwintoun S; Soma, Diloma Dieudonné; Yamada, Hanano; Lees, Rosemary Susan; Gilles, Jeremie R L

    2017-06-01

    Countries around the world are showing increased interest in applying the sterile insect technique against mosquito disease vectors. Many countries in which mosquitoes are endemic, and so where vector control using the sterile insect technique may be considered, are located in arid zones where water provision can be costly or unreliable. Water reuse provides an alternate form of water supply. In order to reduce the cost of mass rearing of Anopheles arabiensis mosquitoes, the possibility of recycling and reusing larval rearing water was explored. The used rearing water ('dirty water') was collected after the tilting of rearing trays for collection of larvae/pupae, and larvae/pupae separation events and underwent treatment processes consisting of ultrafiltration and reverse osmosis. First-instar An. arabiensis larvae were randomly assigned to different water-type treatments, 500 larvae per laboratory rearing tray: 'clean' dechlorinated water, routinely used in rearing; dirty water; and 'recycled' dirty water treated using reverse osmosis and ultrafiltration. Several parameters of insect quality were then compared: larval development, pupation rate, adult emergence, body size and longevity. Water quality of the samples was analyzed in terms of ammonia, nitrite, nitrate, sulphate, dissolved oxygen, chloride, and phosphate concentrations after the larvae had all pupated or died. Surface water temperatures were also recorded continuously during larval development. Pupation rates and adult emergence were similar in all water treatments. Adult body sizes of larvae reared in recycled water were similar to those reared in clean water, but larger than those reared in the dirty larval water treatment, whereas the adult longevity of larvae reared in recycled water was significantly increased relative to both 'clean' and 'dirty' water. Dirty larval water contained significantly higher concentrations of ammonium, sulfate, phosphate and chloride and lower levels of dissolved

  5. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential.

    PubMed

    Walker, K; Lynch, M

    2007-03-01

    Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.

  6. Social coercion of larval development in an ant species

    NASA Astrophysics Data System (ADS)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  7. Social coercion of larval development in an ant species.

    PubMed

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  8. Physical growth and cognitive skills in early-life: evidence from a nationally representative US birth cohort.

    PubMed

    Murasko, Jason E

    2013-11-01

    This paper establishes associations between length/height and cognitive skills in infancy, toddlerhood, and school-entry. The data come from the Early Childhood Longitudinal Study--Birth Cohort (ECLS-B), a representative longitudinal sample of US children born in 2001. A positive association between length/height and cognition is found as early as 9 months and continues through school-entry. These associations are robust to controls for birthweight and economic status. Early growth is also shown to be a stronger predictor of reading and math skills in kindergarten than attained height. Girls exhibit stronger evidence of this latter result than boys. These findings have implications for the interpretation of early life as a critical period for the growth-cognition relationship. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  10. Regulation of cellular growth by the Drosophila target of rapamycin dTOR

    PubMed Central

    Zhang, Hongbing; Stallock, James P.; Ng, Joyce C.; Reinhard, Christoph; Neufeld, Thomas P.

    2000-01-01

    The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70S6K) in vitro, and we demonstrate that overexpression of p70S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability. PMID:11069888

  11. Complications of growth-sparing surgery in early onset scoliosis.

    PubMed

    Akbarnia, Behrooz A; Emans, John B

    2010-12-01

    Review of available literature, authors' opinion. To describe complications associated with growth-sparing surgical treatment of early onset scoliosis (EOS). EOS has many potential etiologies and is often associated with thoracic insufficiency syndrome. The growth of the spine, thorax, and lungs are interrelated, and severe EOS typically involves disturbance of the normal development of all 3. Severe EOS may be treated during growth with surgical techniques, intended to preserve growth while controlling deformity, the most common of which are spinal "growing rods" (GR) or "vertical expandable prosthetic titanium rib" (VEPTR). Although presently popular, there is minimal long-term data on the outcome of growth-sparing surgical techniques on EOS. Review. Potential adverse outcomes of GR or VEPTR treatment of EOS include failure to prevent progressive deformity or thoracic insufficiency syndrome, an unacceptably short or stiff spine or deformed thorax, increased family burden of care, and potentially negative psychological consequences from repeated surgical interventions. Neither technique reliably controls all deformity over the entirety of growth period. Infections are common to both GR and VEPTR. Rod breakage and spontaneous premature spinal fusion beneath rods are troublesome complications in GR, whereas drift of rib attachments and chest wall scarring are anticipated complications in VEPTR treatment. Indications for GR and VEPTR overlap, but thoracogenic scoliosis and severe upper thoracic kyphosis are best treated by VEPTR and GR, respectively. Surgeons planning treatment of EOS should anticipate the many complications common to growth-sparing surgery, share their knowledge with families, and use complications as one factor in the complex decision as to when and whether to initiate the repetitive surgeries associated with GR or VEPTR in the treatment of severe EOS.

  12. Circatrigintan instead of lunar periodicity of larval release in a brooding coral species.

    PubMed

    Linden, Bart; Huisman, Jef; Rinkevich, Baruch

    2018-04-04

    Larval release by brooding corals is often assumed to display lunar periodicity. Here, we show that larval release of individual Stylophora pistillata colonies does not comply with the assumed tight entrainment by the lunar cycle, and can better be classified as a circatrigintan pattern. The colonies exhibited three distinct reproductive patterns, characterized by short intervals, long intervals and no periodicity between reproductive peaks, respectively. Cross correlation between the lunar cycle and larval release of the periodic colonies revealed an approximately 30-day periodicity with a variable lag of 5 to 10 days after full moon. The observed variability indicates that the lunar cycle does not provide a strict zeitgeber. Other factors such as water temperature and solar radiation did not correlate significantly with the larval release. The circatrigintan patterns displayed by S. pistillata supports the plasticity of corals and sheds new light on discussions on the fecundity of brooding coral species.

  13. Early Childhood Memory and Attention as Predictors of Academic Growth Trajectories

    ERIC Educational Resources Information Center

    Stipek, Deborah; Valentino, Rachel A.

    2015-01-01

    Longitudinal data from the children of the National Longitudinal Survey of Youth (NLSY) were used to assess how well measures of short-term and working memory and attention in early childhood predicted longitudinal growth trajectories in mathematics and reading comprehension. Analyses also examined whether changes in memory and attention were more…

  14. Larval fish variability in response to oceanographic features in a nearshore nursery area.

    PubMed

    Pattrick, P; Strydom, N A

    2014-09-01

    The influence of oceanographic features on ichthyoplankton assemblages in the warm temperate nearshore region of Algoa Bay, South Africa, was assessed. The nearshore ichthyoplankton comprised 88 taxa from 34 families. Samples were collected at six stations between August 2010 and July 2012 using a plankton ring net of 750 mm diameter and 500 µm mesh aperture. The majority of larvae collected were in a preflexion stage, indicating the potential importance of the nearshore for newly hatched larvae. Engraulidae dominated the catch (38·4%), followed by Cynoglossidae (28·1%) and Sparidae (8·4%). Larval fish abundance was highest during austral spring and summer (September to February). Unique patterns in responses of each dominant fish species to oceanographic features in the nearshore indicate the sensitivity of the early developmental stage to environmental variables. Using generalized linear models, ichthyoplankton abundance responded positively to upwelling and when warm water plumes originating from an Agulhas Current meander entered Algoa Bay. Highest abundances of Engraulis encrasicolus and Sardinops sagax were observed during Agulhas Plume intrusions into Algoa Bay. When a mixed and stratified water column persisted in the nearshore region of Algoa Bay, larval fish abundance decreased. The nearshore region of Algoa Bay appears to serve as a favourable environment for the accumulation of ichthyoplankton. © 2014 The Fisheries Society of the British Isles.

  15. Recruitment dynamics and first year growth of the coral reef surgeonfish Ctenochaetus striatus, with implications for acanthurid growth models

    NASA Astrophysics Data System (ADS)

    Trip, Elizabeth D. L.; Craig, Peter; Green, Alison; Choat, J. Howard

    2014-12-01

    Newly recruited Ctenochaetus striatus were monitored over a 16-month period in American Samoa, 2002-2003. During this period, a mass recruitment of age-0 C. striatus occurred in March 2002 with numbers reaching 22.9 recruits m-2. This program provided an invaluable opportunity to (1) analyze the dynamics of a mass recruitment episode and to assess its significance with respect to more typical patterns of recruitment and (2) establish the pattern of recruit growth during their first year of life. Age-based analysis indicated that the mass recruitment generated about 90 % of annual recruitment, but recruit mortality was high; thus, most recruitment was provided by continuous settlement throughout the year. The mass event appeared to be a short-lived pulse with recruits residing on the reef an average of 14.1 d compared with 161.1 d for other recruits. Recruits grew rapidly, achieving 90 % of their adult size during their first year, and they formed their first otolith annulus after 1 yr, thereby providing a firm basis for otolith interpretation of fish ages during the early life history phase of this species. The extensive age-based documentation of their first year growth in this study validates the distinctive "square" growth pattern exhibited by acanthurids as described in the literature (i.e., long life span with rapid initial growth that quickly reaches an asymptotic size), and it demonstrates the impact that the presence of age-0 fish has when generating growth parameters for populations exhibiting square growth. We found that the parameters from the re-parameterized von Bertalanffy growth function have preferred characteristics when modeling square growth in fish and that fixing age-at-length zero to pelagic larval duration is a preferable method to constrain growth models when lacking age-0 fish.

  16. Diel variation of larval fish abundance in the Amazon and Rio Negro.

    PubMed

    Araujo-Lima, C A; da Silva, V V; Petry, P; Oliveira, E C; Moura, S M

    2001-08-01

    Many streams and large rivers present higher ichthyoplankton densities at night. However, in some rivers this does not occur and larvae are equally abundant during the day. Larval drift diel variation is an important information for planning sampling programs for evaluating larval distribution and production. The aim of this study was to test whether the abundance of larval fish was different at either period. We tested it by comparing day and night densities of characiform, clupeiform and siluriform larvae during five years in the Amazon and one year in Rio Negro. We found that larvae of three species of characiform and larvae of siluriform were equally abundant during day and night in the Amazon. Conversely, the catch of Pellona spp. larvae was significantly higher during the day. In Rio Negro, however, larval abundance was higher during the night. These results imply that day samplings estimate adequately the abundance of these characiform and siluriform larvae in the Amazon, but not Pellona larvae. Evaluations of larved densities of Rio Negro will have to consider night sampling.

  17. Emergence flux declines disproportionately to larval density along a stream metals gradient

    USGS Publications Warehouse

    Schmidt, Travis S.; Kraus, Johanna M.; Walters, David M.; Wanty, Richard B.

    2013-01-01

    Effects of contaminants on adult aquatic insect emergence are less well understood than effects on insect larvae. We compared responses of larval density and adult emergence along a metal contamination gradient. Nonlinear threshold responses were generally observed for larvae and emergers. Larval densities decreased significantly at low metal concentrations but precipitously at concentrations of metal mixtures above aquatic life criteria (Cumulative Criterion Accumulation Ratio (CCAR) ≥ 1). In contrast, adult emergence declined precipitously at low metal concentrations (CCAR ≤ 1), followed by a modest decline above this threshold. Adult emergence was a more sensitive indicator of the effect of low metals concentrations on aquatic insect communities compared to larvae, presumably because emergence is limited by a combination of larval survival and other factors limiting successful emergence. Thus effects of exposure to larvae are not manifest until later in life (during metamorphosis and emergence). This loss in emergence reduces prey subsidies to riparian communities at concentrations considered safe for aquatic life. Our results also challenge the widely held assumption that adult emergence is a constant proportion of larval densities in all streams.

  18. A review of postfeeding larval dispersal in blowflies: implications for forensic entomology

    NASA Astrophysics Data System (ADS)

    Gomes, Leonardo; Godoy, Wesley Augusto Conde; von Zuben, Claudio José

    2006-05-01

    Immature and adult stages of blowflies are one of the primary invertebrate consumers of decomposing animal organic matter. When the food supply is consumed or when the larvae complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as postfeeding larval dispersal. Several important ecological and physiological aspects of this process were studied since the work by Green (Ann Appl Biol 38:475, 1951) 50 years ago. An understanding of postfeeding larval dispersal can be useful for determining the postmortem interval (PMI) of human cadavers in legal medicine, particularly because this interval may be underestimated if older dispersing larvae or those that disperse longer, faster, and deeper are not taken into account. In this article, we review the process of postfeeding larval dispersal and its implications for legal medicine, in particular showing that aspects such as burial behavior and competition among species of blowflies can influence this process and consequently, the estimation of PMI.

  19. Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio).

    PubMed

    Cao, Fangjie; Wu, Peizhuo; Huang, Lan; Li, Hui; Qian, Le; Pang, Sen; Qiu, Lihong

    2018-05-01

    Previous study indicated that azoxystrobin had high acute toxicity to zebrafish, and larval zebrafish were more sensitive to azoxystrobin than adult zebrafish. The objective of the present study was to investigate short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish. After zebrafish embryos and adults were exposed to 0.01, 0.05 and 0.20 mg/L azoxystrobin (equal to 25, 124 and 496 nM azoxystrobin, respectively) for 8 days, the lethal effect, physiological responses, liver histology, mitochondrial ultrastructure, and expression alteration of genes related to mitochondrial respiration, oxidative stress, cell apoptosis and innate immune response were determined. The results showed that there was no significant effect on larval and adult zebrafish after exposure to 0.01 mg/L azoxystrobin. However, increased ROS, MDA concentration and il1b in larval zebrafish, as well as increased il1b, il8 and cxcl-c1c in adult zebrafish were induced after exposure to 0.05 mg/L azoxystrobin. Reduced mitochondrial complex III activity and ATP concentration, increased SOD activity, ROS and MDA concentration, decreased cytb, as well as increased sod1, sod2, cat, il1b, il8 and cxcl-c1c were observed both in larval and adult zebrafish after exposure to 0.20 mg/L azoxystrobin; meanwhile, increased p53, bax, apaf1 and casp9, alteration of liver histology and mitochondrial ultrastructure in larval zebrafish, and alteration of mitochondrial ultrastructure in adult zebrafish were also induced. The results demonstrated that azoxytrobin induced short-term developmental effects on larval zebrafish and adult zebrafish, including mitochondrial dysfunction, oxidative stress, cell apoptosis and innate immune response. Statistical analysis indicated that azoxystrobin induced more negative effects on larval zebrafish, which might be the reason for the differences of developmental toxicity between larval and adult zebrafish caused by

  20. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development.

    PubMed

    Wang, Xiaoming; Liu, Tong; Wu, Yang; Zhong, Daibin; Zhou, Guofa; Su, Xinghua; Xu, Jiabao; Sotero, Charity F; Sadruddin, Adnan A; Wu, Kun; Chen, Xiao-Guang; Yan, Guiyun

    2018-05-30

    Interactions between bacterial microbiota and mosquitoes play an important role in mosquitoes' capacity to transmit pathogens. However, microbiota assemblages within mosquitoes and the impact of microbiota in environments on mosquito development and survival remain unclear. This study examined microbiota assemblages and the effects of aquatic environment microbiota on the larval development of the Aedes albopictus mosquito, an important dengue virus vector. Life table studies have found that reducing bacterial load in natural aquatic habitats through water filtering and treatment with antibiotics significantly reduced the larva-to-adult emergence rate. This finding was consistent in two types of larval habitats examined-discarded tires and flowerpots, suggesting that bacteria play a crucial role in larval development. Pyrosequencing of the bacterial 16S rRNA gene was used to determine the diversity of bacterial communities in larval habitats and the resulting numbers of mosquitoes under both laboratory and field conditions. The microbiota profiling identified common shared bacteria among samples from different years; further studies are needed to determine whether these bacteria represent a core microbiota. The highest microbiota diversity was found in aquatic habitats, followed by mosquito larvae, and the lowest in adult mosquitoes. Mosquito larvae ingested their bacterial microbiota and nutrients from aquatic habitats of high microbiota diversity. Taken together, the results support the observation that Ae. albopictus larvae are able to utilize diverse bacteria from aquatic habitats and that live bacteria from aquatic habitats play an important role in larval mosquito development and survival. These findings provide new insights into bacteria's role in mosquito larval ecology. © 2018 John Wiley & Sons Ltd.

  1. Early growth and chronic disease: a public health overview.

    PubMed

    Law, Catherine

    2005-07-01

    Infant and childhood growth result from and reflect a range of influences in pre- and postnatal life. These include nutrition, burden of infection and the psycho-social environment. Nutrition in young children is dependent on individual level factors such as fetal experience, infant feeding and weaning practices, and on societal factors such as education of women and economic conditions. The relationship of early postnatal growth to adult disease may be indicative or causal, and may reveal both biological and sociological processes. Although non-insulin-dependent diabetes mellitus (NIDDM) and obesity are risk factors for ischaemic heart disease, the relationships of these three conditions to infant growth differ. Poor infant growth has been associated with higher levels of NIDDM and ischaemic heart disease, but lower levels of adult obesity. Most research has been of populations living in developed countries at different stages of nutritional transition. However, differences in context are not simply limited to the stage of the nutritional transition. They also need to consider the nature of that transition and its social correlates, which may result in the clustering of aetiological influences such as increased body mass and poverty. The size of effect of the relationship of infant growth to adult disease is important not only to determine its relative aetiological importance but also for its potential for public health policy. Such policy also needs to consider the relationships of infant growth to a range of outcomes, both health and human capital, which are not the subject of this workshop.

  2. Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran.

    PubMed

    Soleimani-Ahmadi, Moussa; Vatandoost, Hassan; Hanafi-Bojd, Ahmad-Ali; Zare, Mehdi; Safari, Reza; Mojahedi, Abdolrasul; Poorahmad-Garbandi, Fatemeh

    2013-07-01

    To determine the effects of environmental parameters of larval habitats on distribution and abundance of anopheline mosquitoes in Rudan county of Iran. This cross-sectional study was conducted during the mosquito breeding season from February 2010 to October 2011. The anopheline larvae were collected using the standard dipping method. The specimens were identified using a morphological-based key. Simultaneously with larval collection, environmental parameters of the larval habitats including water current and turbidity, sunlight situation, and substrate type of habitats were recorded. Water samples were taken from breeding sites during larval collection. Before collection of samples, the water temperature was measured. The water samples were analysed for turbidity, conductivity, total alkalinity, total dissolved solid, pH and ions including chloride, sulphate, calcium, and magnesium. Statistical correlation analysis and ANOVA test were used to analyze the association between environmental parameters and larval mosquito abundance. In total 2 973 larvae of the genus Anopheles were collected from 25 larval habitats and identified using morphological characters. They comprised of six species: An. dthali (53.21%), An. stephensi (24.22%), An. culicifacies (14.06%), An. superpictus (4.07%), An. turkhudi (3.30%), and An. apoci (1.14%). The most abundant species was An. dthali which were collected from all of the study areas. Larvae of two malaria vectors, An. dthali and An. stephensi, co-existed and collected in a wide range of habitats with different physico-chemical parameters. The most common larval habitats were man-made sites such as sand mining pools with clean and still water. The anopheline mosquitoes also preferred permanent habitats in sunlight with sandy substrates. The results indicated that there was a significant relationship between mean physico-chemical parameters such as water temperature, conductivity, total alkalinity, sulphate, chloride, and mosquito

  3. Early Life Growth Predictors of Childhood Adiposity Trajectories and Future Risk for Obesity: Birth to Twenty Cohort.

    PubMed

    Munthali, Richard J; Kagura, Juliana; Lombard, Zané; Norris, Shane A

    2017-10-01

    There is growing evidence of variations in adiposity trajectories among individuals, but the influence of early life growth patterns on these trajectories is underresearched in low- and middle-income countries. Therefore, our aim was to examine the association between early life conditional weight gain and childhood adiposity trajectories. We previously identified distinct adiposity trajectories (four for girls and three for boys) in black South African children (boys = 877; girls = 947). The association between the trajectories and early life growth patterns, and future obesity risk was assessed by multivariate linear and multinomial logistic and logistic regressions. Conditional weight gain independent of height was computed for infancy (0-2 years) and early childhood (2-4 years). Conditional weight gain before 5 years of age was significantly associated with early onset of obesity or overweight (excess weight) BMI trajectories in both boys and girls. In girls, greater conditional weight gain in infancy was associated with increased relative risk of being in the early-onset obese to morbid obese trajectory, with relative risk ratios of 2.03 (95% confidence interval: 1.17-3.52) compared to belonging to a BMI trajectory in the normal range. Boys and girls in the early-onset obesity or overweight BMI trajectories were more likely to be overweight or obese in early adulthood. Excessive weight gain in infancy and early childhood, independent of linear growth, predicts childhood and adolescent BMI trajectories toward obesity. These results underscore the importance of early life factors in the development of obesity and other NCDs in later life.

  4. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s.

    PubMed

    Christiansen-Jucht, Céline; Parham, Paul E; Saddler, Adam; Koella, Jacob C; Basáñez, María-Gloria

    2014-11-05

    Malaria transmission depends on vector life-history parameters and population dynamics, and particularly on the survival of adult Anopheles mosquitoes. These dynamics are sensitive to climatic and environmental factors, and temperature is a particularly important driver. Data currently exist on the influence of constant and fluctuating adult environmental temperature on adult Anopheles gambiae s.s. survival and on the effect of larval environmental temperature on larval survival, but none on how larval temperature affects adult life-history parameters. Mosquito larvae and pupae were reared individually at different temperatures (23 ± 1°C, 27 ± 1°C, 31 ± 1°C, and 35 ± 1°C), 75 ± 5% relative humidity. Upon emergence into imagoes, individual adult females were either left at their larval temperature or placed at a different temperature within the range above. Survival was monitored every 24 hours and data were analysed using non-parametric and parametric methods. The Gompertz distribution fitted the survivorship data better than the gamma, Weibull, and exponential distributions overall and was adopted to describe mosquito mortality rates. Increasing environmental temperature during the larval stages decreased larval survival (p < 0.001). Increases of 4°C (from 23°C to 27°C, 27°C to 31°C, and 31°C to 35°C), 8°C (27°C to 35°C) and 12°C (23°C to 35°C) statistically significantly increased larval mortality (p < 0.001). Higher environmental temperature during the adult stages significantly lowered adult survival overall (p < 0.001), with increases of 4°C and 8°C significantly influencing survival (p < 0.001). Increasing the larval environment temperature also significantly increased adult mortality overall (p < 0.001): a 4°C increase (23°C to 27°C) did not significantly affect adult survival (p > 0.05), but an 8°C increase did (p < 0.05). The effect of a 4°C increase in larval temperature from 27

  5. Larval Pacific herring, Clupea pallasii (Valenciennes), are highly susceptible to viral haemorrhagic septicaemia and survivors are partially protected after their metamorphosis to juveniles

    USGS Publications Warehouse

    Hershberger, P.K.; Gregg, J.; Pacheco, C.; Winton, J.; Richard, J.; Traxler, G.

    2007-01-01

    Pacific herring were susceptible to waterborne challenge with viral haemorrhagic septicaemia virus (VHSV) throughout their early life history stages, with significantly greater cumulative mortalities occurring among VHSV-exposed groups of 9-, 44-, 54- and 76-day-old larvae than among respective control groups. Similarly, among 89-day-1-year-old and 1+year old post-metamorphosed juveniles, cumulative mortality was significantly greater in VHSV-challenged groups than in respective control groups. Larval exposure to VHSV conferred partial protection to the survivors after their metamorphosis to juveniles as shown by significantly less cumulative mortalities among juvenile groups that survived a VHS epidemic as larvae than among groups that were previously nai??ve to VHSV. Magnitude of the protection, measured as relative per cent survival, was a direct function of larval age at first exposure and was probably a reflection of gradual developmental onset of immunocompetence. These results indicate the potential for easily overlooked VHS epizootics among wild larvae in regions where the virus is endemic and emphasize the importance of early life history stages of marine fish in influencing the ecological disease processes. ?? 2007 The Authors.

  6. Larval Settlement: The Role of Surface Topography for Sessile Coral Reef Invertebrates

    PubMed Central

    Whalan, Steve; Abdul Wahab, Muhammad A.; Sprungala, Susanne; Poole, Andrew J.; de Nys, Rocky

    2015-01-01

    For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates. PMID:25671562

  7. Larval settlement: the role of surface topography for sessile coral reef invertebrates.

    PubMed

    Whalan, Steve; Wahab, Muhammad A Abdul; Sprungala, Susanne; Poole, Andrew J; de Nys, Rocky

    2015-01-01

    For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.

  8. Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1

    PubMed Central

    Johnson, Wayne A.; Carder, Justin W.

    2012-01-01

    A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses. PMID:22403719

  9. Larval cannibalism and pupal defense against cannibalism in two species of tenebrionid beetles.

    PubMed

    Ichikawa, Toshio; Kurauchi, Toshiaki

    2009-08-01

    Cannibalism of pupae by larvae has been documented In many species of Insects, but the features of larval cannibalism and pupal defensive mechanisms against larval cannibalism have been largely Ignored. Pupae of tenebrionld beetles rotate their abdominal segments in a circular motion in response to the tactile stimulation of appendages, including legs, antennae, maxillary pulps, and wings. When the pupal abdominal rotation responses of Tenebrio molitor and Zophobas atratus were completely blocked by transecting the ventral nerve cord (VNC) of the pupae, the appendages of the paralytic pupae became initial, major targets for attack by larval cannibals. The majority of 20 paralytic pupae was cannibalized by 100 larvae within 6 h, and almost all the pupae were killed within 2-3 days. In contrast, only a few pupae of Z. atratus and several pupae of T. molitor were cannibalized when the VNC was Intact. The abdominal rotation response of the pupae thus functions as an effective defense against larval cannibalism.

  10. Larval biology of the crab Rhithropanopeus harrisii (Gould): a synthesis.

    PubMed

    Forward, Richard B

    2009-06-01

    This synthesis reviews the physiological ecology and behavior of larvae of the benthic crab Rhithropanopeus harrisii, which occurs in low-salinity areas of estuaries. Larvae are released rhythmically around the time of high tide in tidal estuaries and in the 2-h interval after sunset in nontidal estuaries. As in most subtidal crustaceans, the timing of larval release is controlled by the developing embryos, which release peptide pheromones that stimulate larval release behavior by the female to synchronize the time of egg hatching. Larvae pass through four zoeal stages and a postlarval or megalopal stage that are planktonic before metamorphosis. They are retained near the adult population by means of an endogenous tidal rhythm in vertical migration. Larvae have several safeguards against predation: they undergo nocturnal diel vertical migration (DVM) and have a shadow response to avoid encountering predators, and they bear long spines as a deterrent. Photoresponses during DVM and the shadow response are enhanced by exposure to chemical cues from the mucus of predator fishes and ctenophores. The primary visual pigment has a spectral sensitivity maximum at about 500 nm, which is typical for zooplankton and matches the ambient spectrum at twilight. Larvae can detect vertical gradients in temperature, salinity, and hydrostatic pressure, which are used for depth regulation and avoidance of adverse environmental conditions. Characteristics that are related to the larval habitat and are common to other crab larval species are considered.

  11. Oceanography promotes self-recruitment in a planktonic larval disperser.

    PubMed

    Teske, Peter R; Sandoval-Castillo, Jonathan; van Sebille, Erik; Waters, Jonathan; Beheregaray, Luciano B

    2016-09-30

    The application of high-resolution genetic data has revealed that oceanographic connectivity in marine species with planktonic larvae can be surprisingly limited, even in the absence of major barriers to dispersal. Australia's southern coast represents a particularly interesting system for studying planktonic larval dispersal, as the hydrodynamic regime of the wide continental shelf has potential to facilitate onshore retention of larvae. We used a seascape genetics approach (the joint analysis of genetic data and oceanographic connectivity simulations) to assess population genetic structure and self-recruitment in a broadcast-spawning marine gastropod that exists as a single meta-population throughout its temperate Australian range. Levels of self-recruitment were surprisingly high, and oceanographic connectivity simulations indicated that this was a result of low-velocity nearshore currents promoting the retention of planktonic larvae in the vicinity of natal sites. Even though the model applied here is comparatively simple and assumes that the dispersal of planktonic larvae is passive, we find that oceanography alone is sufficient to explain the high levels of genetic structure and self-recruitment. Our study contributes to growing evidence that sophisticated larval behaviour is not a prerequisite for larval retention in the nearshore region in planktonic-developing species.

  12. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector

    PubMed Central

    Dickson, Laura B.; Jiolle, Davy; Minard, Guillaume; Moltini-Conclois, Isabelle; Volant, Stevenn; Ghozlane, Amine; Bouchier, Christiane; Ayala, Diego; Paupy, Christophe; Moro, Claire Valiente; Lambrechts, Louis

    2017-01-01

    Conditions experienced during larval development of holometabolous insects can affect adult traits, but whether differences in the bacterial communities of larval development sites contribute to variation in the ability of insect vectors to transmit human pathogens is unknown. We addressed this question in the mosquito Aedes aegypti, a major arbovirus vector breeding in both sylvatic and domestic habitats in Sub-Saharan Africa. Targeted metagenomics revealed differing bacterial communities in the water of natural breeding sites in Gabon. Experimental exposure to different native bacterial isolates during larval development resulted in significant differences in pupation rate and adult body size but not life span. Larval exposure to an Enterobacteriaceae isolate resulted in decreased antibacterial activity in adult hemolymph and reduced dengue virus dissemination titer. Together, these data provide the proof of concept that larval exposure to different bacteria can drive variation in adult traits underlying vectorial capacity. Our study establishes a functional link between larval ecology, environmental microbes, and adult phenotypic variation in a holometabolous insect vector. PMID:28835919

  13. Organization of the Drosophila larval visual circuit

    PubMed Central

    Gendre, Nanae; Neagu-Maier, G Larisa; Fetter, Richard D; Schneider-Mizell, Casey M; Truman, James W; Zlatic, Marta; Cardona, Albert

    2017-01-01

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

  14. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review.

    PubMed

    Levine, Terri A; Grunau, Ruth E; McAuliffe, Fionnuala M; Pinnamaneni, RagaMallika; Foran, Adrienne; Alderdice, Fiona A

    2015-01-01

    Children who experienced intrauterine growth restriction (IUGR) may be at increased risk for adverse developmental outcomes in early childhood. The objective of this study was to carry out a systematic review of neurodevelopmental outcomes from 6 months to 3 years after IUGR. PubMed, Embase, PsycINFO, Maternity and Infant Care, and CINAHL databases were searched by using the search terms intrauterine, fetal, growth restriction, child development, neurodevelopment, early childhood, cognitive, motor, speech, language. Studies were eligible for inclusion if participants met specified criteria for growth restriction, follow-up was conducted within 6 months to 3 years, methods were adequately described, non-IUGR comparison groups were included, and full English text of the article was available. A specifically designed data extraction form was used. The methodological quality of included studies was assessed using well-documented quality-appraisal guidelines. Of 731 studies reviewed, 16 were included. Poorer neurodevelopmental outcomes after IUGR were described in 11. Ten found motor, 8 cognitive, and 7 language delays. Other delays included social development, attention, and adaptive behavior. Only 8 included abnormal Doppler parameters in their definitions of IUGR. Evidence suggests that children are at risk for poorer neurodevelopmental outcomes following IUGR from 6 months to 3 years of age. The heterogeneity of primary outcomes, assessment measures, adjustment for confounding variables, and definitions of IUGR limits synthesis and interpretation. Sample sizes in most studies were small, and some examined preterm IUGR children without including term IUGR or AGA comparison groups, limiting the value of extant studies. Copyright © 2015 by the American Academy of Pediatrics.

  15. Using larval fish community structure to guide long-term monitoring of fish spawning activity

    USGS Publications Warehouse

    Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.

    2015-01-01

    Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.

  16. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  17. The neural basis of visual behaviors in the larval zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2015-01-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. PMID:19896836

  18. The neural basis of visual behaviors in the larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Dietary protein intake and quality in early life: impact on growth and obesity.

    PubMed

    Lind, Mads V; Larnkjær, Anni; Mølgaard, Christian; Michaelsen, Kim F

    2017-01-01

    Obesity is an increasing problem and high-protein intake early in life seems to increase later risk of obesity. This review summarizes recent publications in the area including observational and intervention studies and publications on underlying mechanisms. Recent observational and randomized controlled trials confirmed that high-protein intake in early life seems to increase early weight gain and the risk of later overweight and obesity. Recent studies have looked at the effect of different sources of protein, and especially high-animal protein intake seems to have an effect on obesity. Specific amino acids, such as leucine, have also been implicated in increasing later obesity risk maybe via specific actions on insulin-like growth factor I. Furthermore, additional underlying mechanisms including epigenetics have been linked to long-term obesogenic programming. Finally, infants with catch-up growth or specific genotypes might be particularly vulnerable to high-protein intake. Recent studies confirm the associations between high-protein intake during the first 2 years and later obesity. Furthermore, knowledge of the mechanisms involved and the role of different dietary protein sources and amino acids has increased, but intervention studies are needed to confirm the mechanisms. Avoiding high-protein intake in early life holds promise as a preventive strategy for childhood obesity.

  20. High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae)

    PubMed Central

    He, Tianhua; Fowler, William M.; Causley, Casey L.

    2015-01-01

    Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea. PMID:26607493